
A PRECISE COMPUTATIONAL

APPROACH TO KNOWLEDGE
by

Rafael Pass

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

@ MIT 2006. All rights reserved.

(7
ng and Computer Science

June 2006

Certified by
Silvio Micali

Professor
Thesis Supervisor

.. .•..' • f ,/ " ,
'7..·-·-

7- .•

Accepted by.. , ~..-..,.
Arthur C. Smith

Chairman, Department Committee on Graduate Studies

JLIBRARIES7

LIBRARIES

• . =!

Author % ... •. ..-

There's no sense in being precise when you don't
even know what you're talking about.

John von Neumann

Contents

List of Figures

1 Introduction
1.1 Zero-Knowledge Proofs..
1.2 Proofs of Knowledge . . .
1.3 Overview of the Thesis ..
1.4 A Wi(l)der Perspective ..

2 Preliminaries
2.1 Basic Notation

2.1.1 General Notation .
2.1.2 Protocol Notation .

2.2 Basic Notions........
2.2.1 Basic Complexity C
2.2.2 Indistinguishability
2.2.3 Interactive Proofs an
2.2.4 Commitment Schem

12
. . . 12

. . . 17

. . . 18

. . . 20

22
.......... 22

. 22
. 24

........... 25
lasses 25
. 26
d Arguments 26
les 28

3 Classical Work on Zero Knowledge
3.1 Classical Zero Knowledge Notions

3.1.1 Zero Knowledge
3.1.2 Witness Indistinguishability
3.1.3 Proofs of Knowledge

3.2 Classical Zero Knowledge Protocols
3.2. 1 ZIC proofs for all off./P
3.2.2 ZKC proofs for all of IP
3.2.3 Statistical ZKC Arguments for ANP
3.2.4 On the Existence of Statistical ZIC Proofs . . .
3.2.5 Round-efficiency of Zero-knowledge Proofs .

4 Capturing Knowledge in Expectation
4.1 Expected Precise Zero Knowledge
4.2 Expected Precise Proofs of Knowledge
4.3 Existence of Expected Precise Zero Knowledge

5 Capturing Knowledge Precisely 54
5.1 Precise Zero Knowledge 54
5.2 Properties of PreciseZK 56

5.2.1 Preserving Running-time Distribution 56
5.2.2 Composition of Precise ZC 58

5.3 Precise Proofs of Knowledge 59
5.4 Emulatable Precise Proofs of Knowledge 60

5.4.1 ZKC for the Prover and Emulatable Proofs of Knowledge . 62

6 Existence of Precise ZK 64
6.1 A Common Paradigm 66
6.2 Knowledge Precision Lemmas 66

6.2.1 Statistical Knowledge Precision Lemmas 67
6.2.2 Computational Knowledge Precision Lemmas 75

6.3 Constructions of WI Precise Proofs of Knowledge 76
6.3.1 WIV Precise Proofs of Knowledge 77
6.3.2 Statistical-WZ Precise Proofs of Knowledge 77
6.3.3 Emulatable Precise Proofs of Knowledge 78

6.4 Constructions of Precise ZK 78
6.4.1 Precise ZIC Arguments for P 78
6.4.2 Precise ZKC Proofs for NP 85
6.4.3 Everything Provable is Provable in Precise Z 89
6.4.4 Existence of Statistically Precise ZIC Proofs 90

6.5 Black-Box Lower Bounds 93
6.5.1 Definition of Black-Box Precise ZKC 93
6.5.2 The Lower Bound 94

A Appendix 98
A. Known Non Black-box Simulators are Not Precise 98

Bibliography 100

List of Figures

2.1 An interactive proof for GRAPHNONIso 27

3.1 GMW's ZKC Proof for GRAPH3COI. 37

3.2 Blum's ZIC Proof for KP 38

6.1 Statistical ZKC argument for A/P with polynomial precision 80

6.2 Statistical ZK: argument for A'P with linear precision 83

6.3 Computational ZKC Proof for ATP with Polynomial Precision 86

6.4 Statistically Precise ZKC proof for l OI:2GRAPHISO 91

6.5 Statistically Precise ZKC proof for GRAPHNONISO 92

A.1 Barak's Non Black-Box ZK Argument forAlP 99

Acknowledgments

FIRST AND FOREMOST, I wish to thank Silvio Micali, my advisor and mentor.
His daring creativity, colorfulness and energy, combined with knowledge,

wisdom and empathy, makes every meeting him a joy. I am deeply grateful to
him for his ability to understand me and give me freedom and confidence, while
at the same time, in critical moments, providing sincere and determined opinions,
helping me making the right decisions. I am also very grateful for his patience
and for the long hours he spent teaching me how to express (scientific) thoughts
in an aesthetic way.

My interest in Cryptography originated during my studies with Johan Histad.
His self-confidence, precise comments and clear view, helped me organize my
perpetually changing chaotic thinking. Johan was always available to listen to my
half-baked ideas and has an amazing way of extracting the core of the reasoning.
Johan's belief in me gave me the confidence to come to MIT. I am very grateful
for all of this.

During my studies at MIT, I have also had the fortune of often interacting with
Shafi Goldwasser. Her fantastic courses, rapid ideas, unusual associations and
amazing ability of finding connections between seemingly unrelated phenomena
opened up a new world.

Alon Rosen was my first co-author. As such he suffered from my worst writing
and most disorganized mumblings. He opened up his house for me, and has helped
me and guided me, both as a researcher and as a friend, from that point on. I am
very grateful for this.

I am also grateful to Madhu Sudan for always being available to answer
technical questions. Ran Canetti took me seriously, in an early stage of my
research, despite my apparent lack of knowledge. I am grateful for this and for
our enjoyable breakfast meetings at Le Pain Quotidien during my visit to IBM.
Tal Rabin has with her human warmth and wise opinions on both science and life,
guided me in many important situations. I am very grateful to her.

I am very grateful to Abhi Shelat for our perpetual and very fruitful discus-
sions on all topics and to Vinod Vaikunthathan for always having the time and
passion to listen to my ideas. Both Abhi and Vinod have had a strong impact on
the research in this thesis and are both dear friends.

Other researchers that have deeply influenced my research include Boaz
Barak, Cynthia Dwork, Isaac Elias, Yuval Ishai, Adam Kalai, Hugo Krawczyk,
Yehuda Lindell, Moni Naor, Yael Tauman-Kalai and Gustav Hast. I am very
grateful for my discussions with them.

LIST OF FIGURES 9

My experience at MIT also owes much to Adi Akavia, Ben Adida, Susan
Hohenberger, Guy Rothblum, Chris Peikert and Steve Weis.

My understand of the topics in this thesis have benefited a lot from discussions
with friends. I am grateful to Marcus Better, Omar Berrada, Ulrik Dahlerus,
Crispin Dickson, Magnus Larsson, Madelaine Levy, Johan Liljefors, Jacob Norda,
Daniel Lovas, Andreas R6berg, Sandra Virag, Rickard Wiirnelid, Magnus Aslund,
and in particular Sasha Devore, whose comments, advice and support has had an
important impact on this thesis.

Finally, my parents JULIA ROMANOWSKA and NATAN PASS and sisters
ARIELLA and ESTHER-LOU.

Please forgive me any omissions.

Abstract

The seminal work of Goldwasser, Micali and Rackoff put forward a computational
approach to knowledge in interactive systems, providing the foundation of
modern Cryptography. Their notion bounds the knowledge of a player in terms
of his potential computational power (technically defined as polynomial-time
computation).

In this thesis, we put forward a stronger notion that precisely bounds the
knowledge gained by a player in an interaction in terms of the actual computation
he has performed (which can be considerably less than any arbitrary polynomial-
time computation).

Our approach not only remains valid even if P = nMP, but is most meaningful
when modeling knowledge of computationally easy properties. As such, it
broadens the applicability of Cryptography and weakens the complexity theoretic
assumptions on which Cryptography can be based.

Introduction

Information is not knowledge.

Albert Einstein

The seminal works of Goldwasser and Micali [31] and of Goldwasser,
Micali and Rackoff [32] put forward a computational approach to knowledge
in interactive systems, providing the foundation of modem Cryptography. In a
nutshell, their approach can be summarized as follows:

A player knows only what he can feasibly compute.

Since "feasible computation" is formalized as probabilistic polynomial-time com-
putation, their notion bounds the knowledge gained by a player in an interaction
in terms of what is computable in probabilistic polynomial time.

In this thesis, we put forward a stronger notion that precisely bounds the
knowledge gained by a player in terms of the actual computation he has performed
(which can be considerably less than any arbitrary polynomial-time computation).
For convenience, we do so in the context of interactive proofs [32], but it should
be appreciated that our notion extends to more general types of interactions-
in particular, secure encryption schemes and general secure multi-party (i.e.,
distributed) computations.

1.1 Zero-Knowledge Proofs

Zero-knowledge interactive proofs, introduced by Goldwasser, Micali and Rack-
off [32] are fascinating (and seemingly paradoxical) constructs, allowing one
player (called the Prover) to convince another player (called the Verifier) of the
validity of a mathematical statement x E L, while providing zero additional
knowledge to the Verifier. For instance, a zero-knowledge proof can be used to

1.1. ZERO-KNOWLEDGE PROOFS

convince a verifier that a certain (large) number N = pq is the product of two
primes, without revealing the actual factors p and q.

Goldwasser, Micali and Rackoff's definition [33] essentially states that an
interactive proof of x E L provides zero (additional) knowledge to the Verifier, if,
for any probabilistic polynomial-time verifier V, the view of V in the interaction
can be "indistinguishably reconstructed" by a probabilistic polynomial-time
simulator S -interacting with no one- on just input x. The rational behind this
definition is that since whatever V "sees" in the interaction can be reconstructed
in polynomial-time, the interaction does not yield anything to V that cannot
already be computed in polynomial-time. Thus, zero-knowledge proofs, although
conveying a lot of information to the Verifier, guarantee that

The class ofprobabilistic polynomial-time verifiers learn nothing new
from the interaction!

A Stronger Desiderata

We wish to put forward a notion of zero knowledge that guarantees that also all
individual verifiers (rather than the class of polynomial-time verifiers) learn noth-
ing new. A first step towards this goal was taken already in [29]. The refinement
of [29, 27], aimed at measuring the "actual security " of a zero-knowledge proof
system, calls for a tighter coupling between the worst-case running-time of V
(i.e., an upperbound on the running-time of V in any interaction) and the expected
running-time of S: a proof is zero knowledge with tightness t(.) if there exists
a fixed polynomial p(-) such that the expected running time of S(x) is upper-
bounded by t(Ixl) times the worst-case running time of V(x) plus p(lzl). In
essence,

The tightness of a zero-knowledge proof bounds the knowledge of
the Verifier in terms of the upper-bound on its running-time (in any
interaction).

Let us argue, however, that such coupling may still be insufficient, even when the
tightness function is a constant and the polynomial p(-) is identically 0.

Consider a malicious verifier V that, on input an instance x E {0, 1 }n, with
probability .01 over the messages it receives, takes n 50 computational steps and n
steps the rest of the time. The worst-case running time' of V is n50 , and thus zero
knowledge with optimal tightness only requires that V be simulated in expected
time Q(n50). Does this really mean that it is indifferent for V to get out and
interact with the Prover or to stay home and run S? Unless we are confident that
n50 steps convey absolutely no knowledge (or unless we have stronger guarantees
about the behavior of the simulator) the answer is no. In fact, by interacting
with the Prover, V will almost always execute n steps of computation, while (in
absence of extra guarantees) running the simulator might always cause him to

'In fact, also the expected running-time of V is £Q(n50).

INTRODUCTION

invest n50 steps of computation! (This is not just a theoretical worry or an artifact
of the definition: it actually occurs for classical protocols and simulators. 2)

This discussion shows that we need a stronger notion of zero knowledge. This
is what we put forward in this thesis: informally,

P provides a zero-knowledge proof of x E L if the view v of any verifier V
in an interaction with P about x can be reconstructed -on just input x-
in the same time (within, say, a constant factor) as that taken by V in the
particular view v.

In other words, whatever V can "see with P" in t steps of computation, he can
reconstruct by himself in -say- 2t steps. We call a proof satisfying the above
property a precise zero-knowledge proof (or a zero-knowledge proof with linear
precision). In essence, whereas prior notions of zero knowledge were content
with requiring a simulation that only incurs a small slow down relative to the the
worst-case running time of the verifier, our notion calls for a small, precise slow
down with respect to the actual running time in each particular execution. Thus,

We bound the knowledge of the Verifier in terms of its actual
computation.

Notice that if restricting our attention to verifiers that always execute the same
(or roughly the same) number of computation steps, then any standard zero-
knowledge simulation with tightness t(n) also has precision t(n). However, if
considering general verifiers whose running-time depend (in some non-trivial
fashion) on the instance and the messages received, then precise simulation seems
harder to obtain.

Stronger Implications

The original definition of Zero Knowledge only considers polynomial-time
verifiers. In contrast, our definition does not make any reference to complexity
classes; our verifiers may well be exponential-time, or take exponentially many
steps a substantial fraction of the time, without trivializing the notion of zero
knowledge. This not only makes our definition more general and conceptually
simpler, but also more applicable. Let us give some examples.

Preserving Success/Time-Distribution. Standard Zero-Knowledge proofs pro-
vide the guarantee that the Verifier will not be able to compute any prop-
erties of the statement proved, that cannot already be computed (without

'Consider for instance, the protocol of Feige-Shamir [24] when instantiated with Goldreich,
Micali and Wigderson's Graph 3-Coloring proof system [29]. As above, consider a verifier V
that with prob .01 runs in time n50, and otherwise in time n. The Feige-Shamir simulator runs
the verifier n 2 times, each time feeding it new messages (this is done in order to extract a "fake"
witness). The probability that the verifier runs in time n in all n2 rewindings is .99"2. Thus,
although the verifier only runs in time n50 with probability .01, the simulator will essentially always
run in time Q(n 50).

1.1. ZERO-KNOWLEDGE PROOFS

interacting with the Prover) in expected time that is comparable to the worst-
case running-time of the Verifier. Barak and Lindell [6] point out that such a
coupling between the expected running-time of the simulator and the worst-
case running-time of the Verifier, allows for a success-probability/running-
time trade-off for the Verifier: a malicious Verifier might potentially with

probability, say, - compute some property after 1 year, that would have
taken him 100 years to compute before the interaction. They also note
that zero-knowledge proofs with strict polynomial-time simulators, i.e.,
simulators whose worst-case running-time is coupled to the worst-case
running-time of the Verifier do not allow such a trade-off. In other words
strict polynomial-time zero-knowledge proofs do not allow for success-
probability/(worst-case) running-time trade-offs.

Precise Zero Knowledge additionally guarantees that the success-
probability/running-time distribution of the Verifier is preserved. More
precisely, consider a verifier that can compute some property with a certain
success probability and a running time that is specified by some probability
distribution (over the random coins of both the honest prover and the
verifier). Then, the notion of Precise Zero Knowledge guarantees that the
same property can be computed with (roughly) the same success probability
and running-time distribution, without the help of the prover. In contrast,
traditional zero-knowledge proofs with a strict polynomial-time simulator
having optimal tightness (i.e., the worst-case running-time of the simulator
is equal to the worst-case running-time of the verifier) only guarantee that
the property can be computed with (roughly) the same success probability
but using a running-time that potentially always is equal to the worst-case
time of V.

Securing Semi-Easy Properties. Whereas standard Zero-Knowledge proofs
provide the guarantee that hard properties of the statement proved remain
secret, Precise Zero Knowledge furthermore guarantees that the computa-
tion of also "semi-easy" ones is not facilitated. In many natural situations
this may be very important. Consider, for instance, data mining. A large
database may very well be public, but the relations among its records may
not be automatically evident. One researcher may have found a correlation
between -say- race and wealth in n5 work, but may want to prove his
discovery in zero knowledge in order to preserve the remaining privacy of
the record holders to the maximum possible extent. In particular, we would
like to guarantee that if a verifier V can compute a second relation - say
between, race and a given disease - with a certain success probability and
a running time that is specified by some probability distribution, then this
relation can be discovered with (roughly) the same success probability and
running-time distribution, without the help of the prover; in other words,
we wish to preserve the success/time-distribution of a verifier. (Note that
this is significantly stronger and more meaningful than simply requiring
that the relation can be computed in time comparable to the worst-case

INTRODUCTION

running-time of V, as the worst-case running-time of the verifier might
potentially be very large. 3 This is exactly what Precise Zero Knowledge
stipulates and guarantees. In essence, precise zero knowledge proofs
leave intact the security of not only hard properties, but also semi-easy
ones.4 Consequently, precise zero-knowledge provides meaningfulness to
the notion of a zero-knowledge proof also for languages in P (just as in
the above data mining example). 5 That is, they keep zero knowledge very
meaningful even if P = NP!

"More Deniable" Identification. Perhaps the most important use of zero-
knowledge proofs in practice consists of (1) convincing a gate keeper of
our identity, without (2) leaving any evidence of our interaction that can
be believed by a third party [25, 14, 19]. Intuitively. the information left
in the hands of the gate keeper consists of his view of the interaction,
something that he could reconstruct himself without any help in the case
of a zero knowledge proof (of x E L, for a fixed hard language L and
for an input x publicly linked to the identity). However, let us argue that
also for such a "deniable identification" application, standard definitions of
zero-knowledge might not directly stipulate sufficient security guarantees.

Consider a gate keeper that with probability 0.01 takes n50 steps and n
steps otherwise. With probability 0.99, such a gate keeper might obtain
in n steps a view of the interaction that would have taken him n50 steps
to generate, if naively running the zero-knowledge simulator. Such a view
might therefore serve as a (plausible) evidence of the authenticity of his
interaction with us. Of course, if we know that the gate keeper always
executes either n steps, or n50 steps, then any view obtained by the keeper
in n steps can be reconstructed in roughly n steps by considering the zero-
knowledge simulator for a "truncated" version of the keeper, that executes
at most n steps. In general, however, the running time of the gate keeper
might be much more erratic (for instance, the gate keeper might take 1 steps
with probability p, or might use some even more complicated probability
distribution), and thus deniability becomes harder to argue. Precise Zero
Knowledge instead stipulates essentially optimal deniability: whatever view
the gate keeper obtains with our help, he could have generated alone in twice
its running time in that view.

3Consider, for instance, a verifier that has relatively feeble resources. Such a verifier could
nevertheless buy a lottery ticket that with some small probability could give him access to a large
amount of computational resources.

4For a more "mathematical" example of the same notion, consider a prover that wishes to
prove that a certain graph is three-colorable, but without facilitating the computation of any other
(potentially easy) property of the graph (such as for instance its maximum matching).

5Note that it is easy to construct "trivial" precise zero-knowledge proofs for all languages in
P: the proof system consisting of the prover sending nothing and the verifier checking itself the
validity of the statement, is clearly zero-knowledge with linear precision. The main challenge is,
however, to construct zero-knowledge proofs with linear precision, where the running time of the
honest verifier is (significantly) smaller than the time needed to decide the language.

1.2. PROOFS OF KNOWLEDGE

1.2 Proofs of Knowledge

The notion of a proof of knowledge was intuitively introduced by Goldwasser,
Micali and Rackoff [32] and was formalized by Feige, Fiat and Shamir [22] and
Tompa and Woll [57]. Loosely speaking, an interactive proof of x E L is a
proof of knowledge if the prover convinces the verifier that it possesses, or can
feasibly compute, a witness w for the statement x. Whereas any ./P-witness for
the statement x E L trivially is a proof of knowledge of x E L, zero-knowledge
interactive proofs (or other general types of interactive proofs) are not necessarily
proofs of knowledge.

Again, as "feasible" computation is defined through the notion of probabilistic
polynomial-time, the notion of a proof of knowledge is essentially formalized as
follows: an interactive proof of x E L is a proof of knowledge if there exists a
probabilistic polynomial-time extractor machine E, such that for any probabilistic
polynomial-time prover P, E on input the description of P and any statement
x E L readily outputs a valid witness for x E L if P succeeds in convincing the
Verifier that x E L.

The rational behind this definition is that any P that convinces the verifier, can
execute the extractor E on its own code and therefore reconstruct the witness in
probabilistic polynomial-time. Thus, in a proof of knowledge

P will only succeed in convincing the verifier that x E L if P in
probabilistic polynomial-time can compute a witness for x E L.

Halevi and Micali [36] introduced a strengthening of the notion of a proof of
knowledge, called a conservative proof of knowledge, which guarantees a tighter
coupling between the expected running-time of the extractor E and that of P.
Thus,

P will only succeed in convincing the verifier that x E L if P
can compute a witness for x E L in time "closely" related to P's
expected running-time.

We notice that the same arguments as used in the previous section also apply to
show that even the stronger notion of a conservative proof of knowledge only
"loosely" bounds the knowledge of P: Consider a prover P that, on input an
instance x E {0, 1}n, with probability .01 over the messages it receives, takes n50

computational steps and n steps the rest of the time. The expected running-time
of P is l(n50) and thus even a conservative proof of knowledge with "optimal"
tightness only requires that P can compute a witness for x in Q(n50) steps
(whereas P most of the time only takes n steps)

In order to more precisely bound the knowledge of the prover, we put forward
the notion of a proof of knowledge which instead provides the guarantee that

P will only succeed in convincing the verifier that x E L if P can
compute a witness for x E L in same time (within, say, a constant
factor) as the actual time P spent in the every interaction where V is
accepting.

INTRODUCTION

That is, whenever P spends t steps in a particular interaction in order to convince
the Verifier, P could in, say, 2t, steps compute a witness to the statement proved.
We call a proof satisfying the above property a precise proof of knowledge (or a
proof of knowledge with linear precision).

Note that in contrast to traditional notions of proofs of knowledge, our
definition allows us to capture what it means for a particular prover to know a
witness in aparticular interaction, providing more intrinsic meaning to the notion
of a proof of knowledge.

Furthermore, just as traditional proofs of knowledge protocols are useful in
the design of zero-knowledge proofs (and more general secure protocol), we
demonstrate the applicability of precise proofs of knowledge protocols as building
blocks in order to obtain precise zero-knowledge proofs. (In fact, we here show
that a slightly weaker variant of our notion of precise proofs of knowledge, called
emulatable precise proofs of knowledge, is sufficient.)

1.3 Overview of the Thesis

The main contribution of this thesis is the introduction of precise definitions of
zero-knowledge and proofs of knowledge. We also investigate the existence of
zero-knowledge proofs satisfying our stronger definitions. In this journey, we
additionally construct non-trivial proof of knowledge protocols satisfying our
stronger notions.

Chapter 2 - Preliminaries. We introduce basic notation and recall basic notions
that will be used throughout the thesis.

Chapter 3 -Classical Work on Zero-Knowledge. We recall classical definitions
of a zero-knowledge proof, a proof of knowledge, and a witness indistinguishable
proof (which is a weakening of the notion of a zero-knowledge proof). This
chapter also contains descriptions of some of the major results on zero-knowledge
proofs, as well as brief descriptions of some classical zero-knowledge protocols.

Chapter 4 - Capturing Knowledge in Expectation. We introduce new defini-
tions of zero-knowledge and proofs of knowledge, which bound the knowledge
of a player in terms of his expected running-time, or in terms of higher-order
moments of his running-time. For instance, a zero-knowledge proof with expected
(or i'th moment) precision requires that the expectation (i'th moment) of the
running-time distribution of the simulator is closely related to the expectation
(i'th moment) of the running time of the verifier. Although these notions are
considerably weaker than our precise notions of zero knowledge and proofs of
knowledge, they are already a significant strengthening of the traditional notions
and are interesting in their own right - the notion of expected precise zero-
knowledge guarantees that the average amount of resources needed by a verifier

1.3. OVERVIEW OF THE THESIS

to perform some task is not significantly altered by the zero-knowledge proof;
the notion of a higher-moment precise zero-knowledge proof guarantees the same
thing, even if the computation-cost function (i.e., the cost per computation step)
of the verifier is non-linear.6

We furthermore investigate to what extent known zero-knowledge protocols
and simulators satisfy our new notions of expected precise and higher-moment
precise zero-knowledge.

Chapter 5 - Capturing Knowledge Precisely. We introduce our notions of
precise zero-knowledge and precise proofs of knowledge. We additionally
introduce a potentially weaker notion of a precise proof of knowledge, called
an emulatable precise proof of knowledge, which is particularly useful in
cryptographic applications (and most notably in our constructions).

This chapter also discusses basic closure properties of precise zero knowledge
and contain a formalization of the statement that a precise zero-knowledge proof
guarantees that the running-time distribution of the simulator is (roughly) the same
as the running-time distribution of the verifier.

Chapter 6 - Existence of Precise Zero Knowledge. We investigate the existence
of precise zero-knowledge proofs. It should be appreciated that without any
trusted set-up assumptions, none of the known zero-knowledge protocols and
simulators satisfy our precise simulation requirement. In particular, we show
that only "trivial" languages have precise zero-knowledge proof systems with so
called black-box simulators (this is a severe lower-bound as all classical zero-
knowledge protocols, and all "practical" zero-knowledge protocols indeed have
black-box simulators). We, however, manage to prove the existence of precise
zero-knowledge protocols in a variety of settings under standard complexity
assumptions. To prove our positive results, while avoiding our impossibility
ones, we rely on a simulation that learns (in a very weak sense) the running-time
distribution of the verifier, and thereafter exploits it in order to perform a precise
simulation.

ACKNOWLEDGMENTS. This thesis is based on joint work with Silvio Micali
and has been supported by NSF Grant 0326277 and an MIT Akamai Presidential
Fellowship. Portions of the thesis originally appeared as an extended abstract in
the 38'th Symposium on Theory of Computing [44].

6As already mentioned, for the case of proofs of knowledge, the notion of a conservative proof
of knowledge [36] also bounds the knowledge of a player in terms of its expected running-time (but
not in terms of higher-order moments of it).

INTRODUCTION

1.4 A Wi(1)der Perspective

In this final section of the introduction we permit ourselves to put the results of
this thesis in a wider context.

PRECISE CRYPTOGRAPHY. We emphasize that whereas the treatment in this
thesis focuses of zero-knowledge proofs, the notion of precise zero knowledge
can be applied also to more general cryptographic protocols, e.g., encryptions
[31] and secure computations [29]. For concreteness, consider encryption.
Recall that Goldwasser and Micali's notion of security for encryption schemes
requires that a ciphertext does not reveal more than what can be computed in
probabilistic polynomial-time given only the length of the encrypted plain-text
[31]. A precise variant of their notion would instead be to require that anything
that can be computed in time t given the cipher-text can be computed in time,
say, 2t, given just the length of the plain text. Although a full investigation
of precisely secure encryptions schemes is outside the scope of this thesis we
mention that any secure encryptions scheme with pseudo-random ciphertexts (i.e.,
any encryption scheme having the property that the encryption of a message looks
"random") is a precisely secure encryption scheme. (Interestingly, this gives
a theoretical foundation to the folklore belief that a "good" encryption scheme
should "scramble" a message and make it look random).

THE IMPORTANCE OF KNOWLEDGE. The notion of knowledge has grown more
and more important in mathematical sciences such as Computer Science (and
in particular Cryptography, Distributed Computing and Artificial Intelligence),
Game Theory and Epistemic Logic. We believe that obtaining a fuller under-
standing of this fundamental notion might not only lead to major advances in
all the above fields, but also bears the potential of actually bringing these fields
closer together. In particular, we believe that our notions of knowledge provide
a useful framework for modeling bounded-rational agents in Game Theory; such
an approach could make it possible to apply game theoretic reasoning also to
cryptographic protocols.

KNOWLEDGE AND COMPUTATION. Computation and reasoning is at heart of
the notion of knowledge. We thus believe that any modern theory of knowledge
needs to take computation into account. Of course, "time" is just one aspect of
computation, and indeed all of our notions (as well as protocols) extend to also
consider other parameters of a computation (e.g., space-complexity).

A PRECISE APPROACH TO COGNITIVE NOTIONS. In this thesis we have
"only" addressed the notion of knowledge. The field of Game Theory allows for
mathematical formalizations of other cognitive notions such as beliefs, rationality
and preferences. Currently "main-stream" Game Theory defines these notions in
terms of the expectations of certain utility functions for the players (much like our
notions of expected precise zero knowledge and proofs of knowledge). It is well-
known in the Game Theory literature that such an approach might be inadequate

1.4. A WI(L)DER PERSPECTIVE 21

in several situations: For instance, a player might very well prefer to be killed with
probability one in a trillion (e.g., taking an airplane), to being robbed with 10%
probability, although both options have the same expected utility. Much like our
precise notion of knowledge, one could consider extending also game theoretic
definitions to take into account the actual distribution of the utility of players.

Information is not knowledge.
Knowledge is not wisdom. Wisdom
is not truth. Truth is not beauty.
Beauty is not love. Love is not
music. Music is the best.

Frank Zappa

2
Preliminaries

2.1 Basic Notation

2.1.1 General Notation

We employ the following general notation.

INTEGER AND STRING REPRESENTATION. We denote by N the set of natural
numbers: 0, 1, 2, Unless otherwise specified, a natural number is presented
in its binary expansion (with no leading Os) whenever given as an input to an
algorithm. If n E N, we denote by In the unary expansion of n (i.e., the
concatenation of n l's). We denote by {0, 1 }n the set of n-bit long string, by
{0, 1}* the set of binary strings, and by [n] the set {1, .., n}.

We denote the concatenation of two strings x and y by xly (or more simply by
xy). If a is a binary string, then cal denotes a's length and al ... ai denotes a's
i-bit prefix.

PROBABILISTIC NOTATION. We employ the following probabilistic notation from
[34]. We focus on probability distributions X : S --+ R + over finite sets S.

Probabilistic assignments. If D is a probability distribution and p a predicate,
then "x 4 D" denotes the elementary procedure consisting of choosing an
element x at random according to D and returning x, and "zx +R D I p(x)"
denotes the operation of choosing x according to D until p(x) is true and
then returning x.

Probabilistic experiments. Let p be a predicate and D1, D2,... probability dis-
tributions, then the notation Pr[zl + D 1 ; x2 + D 2; ... : p(x 1, 2 ,...)]
denotes the probability that p(xl, X2,...) will be true after the ordered
execution of the probabilistic assignments x1 +- D1; X2 4- D1; ...

2.1. BASIC NOTATION

New probability distributions. If D1, D2, ... are probability distributions, the
notation {x + Di; y ~- D2; ... : (x, y, .)} denotes the new probability
distribution over {(x, y, -) } generated by the ordered execution of the
probabilistic assignments x A D1, y +- D2 , .

Probability ensembles. Let I be a countable index set. A probability ensemble
indexed by I is a vector of random variables indexed by I: X = {Xi}iE~.

In order to simplify notation, we sometimes abuse of notation and employ the
following "short-cut": Given a probability distribution X, we let X denote the
random variable obtained by selecting x +- X and outputting x.

ALGORITHMS. We employ the following notation for algorithms.

Deterministic algorithms. By an algorithm we mean a Turing machine. We
only consider finite algorithms, i.e., machines that have some fixed upper-
bound on their running-time (and thus always halt). If M is a deterministic
algorithm, we denote by STEPSM(x) the number of computational steps
taken by M on input x. We say that an algorithm M has time-complexity
TIMEM(n) = t(n), if Vx E {0, 1}* STEPSM(x) <• t(x). (Note that
time complexity is defined as an upper-bound on the running time of M
independently of its input.)

Probabilistic algorithms. By a probabilistic algorithms we mean a Turing
machine that receives an auxiliary random tape as input. If M is a
probabilistic algorithm, then for any input x, the notation "Mr (x)" denotes
the output of the M on input x when receiving r as random tape. We let the
notation "M.(x)" denote the probability distribution over the outputs of M
on input x where each bit of the random tape r is selected at random and
independently(note that this is a well-defined probability distribution since
we only consider algorithms with finite running-time.)

Oracle algorithms. Given two algorithms M, A, we let MA (x) denote the output
of the algorithm M on input x, when given oracle access to A.

Emulation of algorithms. In counting computational steps, we assume that an
algorithm M, given the code of a second algorithm A and an input x, can
emulate the computation of A on input x with only linear overhead.

NEGLIGIBLE FUNCTIONS. The term "negligible" is used for denoting functions
that are asymptotically smaller than the inverse of any fixed polynomial. More
precisely, a function v(.) from non-negative integers to reals is called negligible if
for every constant c > 0 and all sufficiently large n, it holds that v(n) < n-c.

PRELIMINARIES

2.1.2 Protocol Notation

We assume familiarity with the basic notions of an Interactive Turing Machine
[33] (ITM for brevity) and a protocol. Briefly, an ITM is a Turing Machine with a
read-only input tape, a read-only auxiliary input tape, a read-only random tape, a
read/write work-tape, a read-only communication tape (for receiving messages) a
write-only communication tape (for sending messages) and finally an output tape.
The content of the input (respectively auxiliary input) tape of an ITM A is called
the input (respectively auxiliary input) of A and the content of the output tape of
A, upon halting, is called the output of A.

A protocol (A, B) is a pair of ITMs that share communication tapes so that
the (write-only) send-tape of the first ITM is the (read-only) receive-tape of the
second, and vice versa. The computation of such a pair consists of a sequence of
rounds 1, 2, In each round only one ITM is active, and the other is idle. A round
ends with the active machine either halting -in which case the protocol ends- or
by it entering a special idle state. The string m written on the communication tape
in a round is called the message sent by the active machine to the idle machine.

In this thesis we consider protocols (A, B) where both ITMs A, B receive the
same string as input (but not necessarily as auxiliary input); this input string will
be denoted the common input of A and B.

We make use of the following notation for protocol executions.

Rounds. In a protocol (A, B), a round r E N is denoted an A-round (respectively
B-round) if A (respectively B) is active in round r in (A, B). We say
that a protocol has r(n) rounds (or simply is an r(n)-round protocol) if the
protocol (A, B) consists of r(n)-rounds of communication between A and
B when executed on common input x E {0, 1}n.

Executions, transcripts and views. Let MA, MB be vectors of strings MA =
{mlA,m2,...}, MB = (mB , m,...} and let x, rl,21, z,r2 E {0, 1}*. We
say that the pair ((x, zl, rl, MA), (x, z2, r2, MB)) is an execution of the
protocol (A, B) if, running ITM A on common input x, auxiliary input z1
and random tape rl with ITM B on x, z2 and r2, results in miA being the
i'th message received by A and in mrn being the i'th message received by
B. We also denote such an execution by Ar, (x, z1) ; Br2 (x, z2).

In an execution ((x, zl,rl, MA), (xz2,r2 , MB)) := (VA, VB) of the
protocol (A, B), we call VA the view of A (in the execution), and VB the
view of B. We let VIEW1[Arl (X, zi) +- Br2 (, Z2)] denote A's view in the
execution Ar, (Z, zi) - Br2(, Z2) and VIEW2[Arl (X, zi) +-+ Br2(X, Z2)]
B's view in the same execution. (We occasionally find it convenient
referring to an execution of a protocol (A, B) as a joint view of (A, B).)

In an execution ((x, zlrl, MA), (x,2, r2, MB)), the pair (MA, MB) is
called the transcript of the execution.

2.2. BASIC NOTIONS

Outputs of executions and views. If e is an execution of a protocol (A 1, A 2) we
denote by OUTi(e) the output of Ai, where i E {1, 2}. Analogously, if v is
the view of A, we denote by OUT(v) the output of A in v.

Random executions. We denote by A.(x, zi) - Br2 (, Z2), Ar (x, Z1)
B.(x, z2) and A.(x, zi) +-* B.(x, z2) the probability distribution of the
random variable obtained by selecting each bit of rl (respectively, each
bit of r2, and each bit of rl and r2) randomly and independently, and
then outputting A,, (x, zl) - B12 (x, z2). The corresponding probability
distributions for VIEW and OUT are analogously defined.

Counting ITM steps. Let A be an ITM and v = (x, z, r, (ml, m2, ..mk)). Then
by STEPSA(v) we denote the number of computational steps taken by A
running on common input x, auxiliary input z, random tape r, and letting
the ith message received be mi.

Time Complexity of ITMs. We say that an ITM A has time-complexity
TIMEA(n) = t(n), if for every ITM B, every common input x, every
auxiliary inputs Za, zb, it holds that A(x, za) always halts within t(lxl)
steps in an interaction with B(x, Zb), regardless of the content of A and
B's random tapes). Note that time complexity is defined as an upperbound
on the running time of A independently of the content of the messages it
receives. In other words, the time complexity of A is the worst-case running
time of A in any interaction.

2.2 Basic Notions

2.2.1 Basic Complexity Classes

We recall the definitions of the basic complexity classes P,AP and BPP.

THE COMPLEXITY CLASS P. We start by recalling the definition of the class ',
i.e., the class of languages that can be decided in (deterministic) polynomial-time.

Definition 1 (Complexity Class 1P). A language L is recognizable in (determinis-
tic) polynomial-time if there exists a deterministic polynomial-time algorithm M
such that M(x) = 1 if and only if x E L. P is the class of languages recognizable
in polynomial time.

THE COMPLEXITY CLASS N.P. We recall the class NAP, i.e., the class of
languages for which there exists a proof of membership that can be verified in
polynomial-time.

Definition 2 (Complexity Class fNp). A language L is in AfP if there exists a
Boolean relation RL C {0, 1}* x {0, 1}* and a polynomial p(.) such that RL is
recognizable in polynomial-time, and x E L if and only if there exists a string
y E {0, 11* such that lyl < p(lxl) and (x, y) E RL.

PRELIMINARIES

The relation RL is called a witness relation for L. We say that y is a witness
for the membership x E L if (x, y) E RL. We will also let RL(X) denote the set
of witnesses for the membership x E L, i.e.,

RL(X) = {y: (x,y) E L}

We let co-.P denote the complement of the class AfP, i.e., a language L is in
co-KhP if the complement to L is in K'P.

THE COMPLEXITY CLASS BPP. We recall the class BPP, i.e., the class of
languages that can be decided in probabilistic polynomial-time (with two-sided
error).

Definition 3 (Complexity Class BPP). A language L is recognizable in proba-
bilistic polynomial-time if there exists a probabilistic polynomial-time algorithm
M such that

* Vx E L, Pr[M.(x) = 1] _ 2/3

* Vx ý L, Pr[M.(x) = 0] > 2/3

BPP is the class of languages recognizable in probabilistic polynomial time.

2.2.2 Indistinguishability

The following definition of (computational) indistinguishability originates in the
seminal paper of Goldwasser and Micali [31].

Definition 4 (Indistinguishability). Let X and Y be countable sets. Two
ensembles {Ax,y}EX,yEY and {Bx,y)E}x,yEy are said to be computationally
indistinguishable over X, if for every probabilistic "distinguishing" algorithm
D whose running time is polynomial in its first input, there exists a negligible
function v(.) so that for every x E X, y E Y:

I Pr [a - Ax,y: D(x, y, a) = 1] - Pr [a -- B,y : D(x, y, b) = 1]1 < v(Ixl)

{ Ax, }Ex,yEY and { Bx,y}Zx,YEY are said to be statistically close over X if the
above condition holds for all (possibly unbounded) algorithms D.

2.2.3 Interactive Proofs and Arguments

We state the standard definitions of interactive proofs (introduced by Goldwasser,
Micali and Rackoff [33]) and arguments (introduced by Brassard, Chaum and
Crepeau [11]).

Definition 5 (Interactive Proof(Argument) System). A pair of interactive machines
(P, V) is called an interactive proof system for a language L if machine V is
polynomial-time and the following two conditions hold with respect to some
negligible function v(.):

2.2. BASIC NOTIONS

* Completeness: For every x E L there exists a (witness) string y such that

Pr [OUTV[P.(x,y) -+ V.(x)] = 1I

* Soundness: For every x ý L, every interactive machine B and every y E
{0,1}*

Pr [ouTv[P.(x, y) - V.(x)] = 1 <• v(Ixl)

In case that the soundness condition is required to hold only with respect to a
computationally bounded prover, the pair (P, V) is called an interactive argument
system.

Definition 5 can be relaxed to require only soundness error that is bounded
away from 1 - v(|x|). This is so, since the soundness error can always be made
negligible by sufficiently many parallel repetitions of the protocol. However, in
the case of interactive arguments, we do not know whether this condition can be
relaxed. In particular, in this case parallel repetitions do not necessarily reduce the
soundness error (cf. [7]).

THE COMPLEXITY OF INTERACTIVE PROOFS. Whereas all of NP trivially

has an interactive proof (where the prover simply sends the NP-witness, and the
verifier checks if it is valid or not), the class of languages having interactive proof,
called IP, possibly extends beyond N/P. In particular, Shamir showed that all
of PSPACE (i.e., all languages that can be decided in polynomial space) have
interactive proofs [56]. We provide an example of a language which is not known
to be in NP but still has an interactive proof.

Example 27.1 Consider the language of non-isomorphic graphs of the same size
(this languages is clearly in co-ANP, but is not know to be in A/P). Goldreich,
Micali and Wigderson demonstrated that this language has an interactive proof
[29]. Their protocol (which has soundness error 1/2) is depicted in Figure 2.1.

Figure 2.1: An interactive proof for GRAPHNONISO

The intuition behind the protocol is as follows. If the graphs Go, G1 indeed are not
isomorphic, the honest prover P will always be able to tell which of the graphs H

PROTOCOL GMW-GraphNonlso

Common Input: an instance Go, G1 of the language GRAPHNONISO.

V uniformly chooses a bit i and let H be a random isomorphic copy of Gi.
V -- P: H.

P -- V: The bit i' such that H is isomorphic to Gi,.

V accepts if i' = i.

PRELIMINARIES

is isomorphic with. The protocol is thus complete (in fact, it has 0 completeness
error.) On the other hand, if Go, G1 are isomorphic, then H is isomorphic to both
Go and G1. This means that even an all powerful malicious prover will not be
able to guess the bit i with probability higher than 1/2.

ARTHUR-MERLIN PROTOCOLS. In certain applications of interactive proofs/
arguments it is desirable that the verifier only uses public random coins (i.e., all
its random coins are also revealed the prover; such proofs/arguments are called
public-coin or Arthur-Merlin[4]. Due to the fact that the verifier in a public-coin
protocol only uses public random coins, we can without loss of generality only
consider public-coin proofs/arguments having the following canonical structure:

1. the verifier only sends random messages to the prover,

2. at the end of the interaction, the verifier determines whether to accept or not
by applying a deterministic predicate to the transcript of all messages in the
interaction.

In Section 3.2 we provide examples of public-coin interactive proof systems.

INTERACTIVE PROOFS WITH EFFICIENT PROVERS. For cryptographic applica-
tions it is necessary that the prover strategy can be implemented efficiently when
given a witness.

Definition 6 (Efficient Provers). Let (P, V) be an interactive proof (argument)
system for the language L E NP with the witness relation RL. We say that
(P, V) has an efficient prover if P is a probabilistic polynomial-time algorithm
and the completeness condition of Definition 5 holds for every x E L and every
y E RL(X).

Example 28.1 As an example of an interactive proof system with an efficient
prover, consider the following "trivial" interactive proof system for a language
L E .AP, with witness relation RL: on common input x, and auxiliary input
w E RL (x), the prover P simply send the witness w to verifier V. V accepts if
and only if (x, w) E RL.

In section 3.2 we provide less "trivial" examples of interactive proof systems that
have efficient prover strategies.

2.2.4 Commitment Schemes

Commitment schemes are the digital equivalent of physical envelopes. They
enable a first party, referred to as the sender, to commit itself to a value while
keeping it secret from a second party, the receiver; this property is called hiding.
Furthermore, the commitment is binding, and thus in a later stage when the
commitment is opened, it is guaranteed that the "opening" can yield only a
single value determined in the committing phase. The opening phase traditionally

2.2. BASIC NOTIONS

consists of the sender simply sending the receiver the value v it committed to, as
well as the random coins r it used. The receiver accepts the opening to v if the
messages it received during the committing phase are produced by running the
honest sender algorithm on input v and the random tape r.

Commitment schemes come in two different flavors, perfectly-binding and
perfectly-hiding.

PERFECT-BINDING. In a perfectly-binding commitments, the binding property
holds against unbounded adversaries, while the hiding property only holds against
computationally bounded adversaries. Loosely speaking, the perfectly-binding
property asserts that the transcript of the interaction fully determines the value
committed to by the sender. The computational-hiding property guarantees that
commitments to any two different values are computationally indistinguishable;
actually, in most applications (and in particular for the construction of zero-
knowledge proofs) we require that the indistinguishability of commitments
holds even when the distinguisher receives an auxiliary "advice" string (this is
sometimes called non-uniform computational hiding).

For simplicity, we present a definition of a commitment scheme for enabling
a sender to commit to a single bit.

Definition 7 (Perfectly-binding commitment). A perfectly-binding bit commitment
scheme is a pair of probabilistic polynomial-time interactive machines (S, R)
satisfying the following properties:

* Perfect Binding: For all rl, r 2, r' E {0, 1}*, n E N it holds that

VIEW2[Sr, (1, 0) +-+ Rr, (1n)] VIEW2[Sr2 (I, 1) R- , (ln)]

* Computational Hiding: For every probabilistic polynomial-time ITM R'
the following ensembles are computationally indistinguishable over N

- {VIEW2 [S,(ln,0) Rt(ln, z)I]}ENzE{0,1}*

- VIEW2 [S.(ln ,1) R'(ln, Z)n

Above, the variable n is a parameter determining the security of the commitment
scheme.

PERFECT-HIDING. In perfectly-hiding commitments, the hiding property holds
against unbounded adversaries, while the binding property only holds against
computationally bounded adversaries. Loosely speaking, the perfectly-hiding
property asserts that commitments to any two different values are identically
distributed. The computational-binding property guarantees that no polynomial
time adversary algorithm is able to construct a commitment that can be opened
in two different ways; again, for our applications, we actually require that the
binding property holds also when providing the adversary with an "advice" string

PRELIMINARIES

(this property is sometimes called non-uniform computational binding). We omit
a formal definition of perfectly-hiding commitments and refer the reader to [27].

STATISTICAL BINDING/HIDING. We mention that it is often convenient to relax
the perfectly-binding or the perfectly-hiding properties to only statistical binding
or hiding. Loosely speaking, the statistical-binding property asserts that with
overwhelming probability (instead of probability 1) over the coin-tosses of the
receiver, the transcript of the interaction fully determines the committed value.
The statistical-hiding property asserts that commitments to any two different
values are statistically close (i.e., have negligible statistical difference, instead
of being identically distributed).

EXISTENCE OF COMMITMENT SCHEMES. Non-interactive perfectly-binding
commitment schemes can be constructed using any 1-1 one-way function (see
Section 4.4.1 of [27]). Allowing some minimal interaction (in which the receiver
first sends a single message), statistically-binding commitment schemes can be
obtained from any one-way function [48, 38]. Perfectly-hiding commitment
schemes can be constructed from any one-way permutation [49]. However,
constant-round schemes are only known to exist under stronger assumptions;
specifically, assuming the existence of a collection of certified clawfree permu-
tations [28] (see also [27], Section 4.8.2.3). Constant-round statistically-hiding
commitments can be constructed under the potentially weaker assumption of
collision-resistant hash functions [18, 37].

3
Classical Work on Zero

Knowledge

3.1 Classical Zero Knowledge Notions

3.1.1 Zero Knowledge

We recall the standard definition of ZKC proofs. Loosely speaking, an interactive
proof is said to be zero-knowledge (ZIC) if a verifier V learns nothing beyond
the validity of the assertion being proved, it could not have generated on its
own. As "feasible" computation in general is defined though the notion of
probabilistic polynomial-time, this notion is formalized by requiring that the
output of every (possibly malicious) verifier interacting with the honest prover P
can be "simulated" by a probabilistic expected polynomial-time machine S (a.k.a.
the simulator). The idea behind this definition is that whatever V* might have
learned from interacting with P, he could have learned by himself by running the
simulator S.

The notion of ZK: was introduced and formalized by Goldwasser, Micali and
Rackoff in [32, 33]. We present their definition below.'

Definition 8 (ZIC). Let L be a language in AlP, RL a witness relation for L,
(P, V) an interactive proof (argument) system for L. We say that (P, V) is
perfect/statistical/computational ZKC, if for every probabilistic polynomial-time
interactive machine V' there exists a probabilistic algorithm S whose expected
running-time is polynomial in the length of its first input, such that the following

'The definition we present here appears in the journal version [331 or [32]. It differs from the
original definition of [32] in that "simulation" is required to hold also with respect to all auxiliary
"advice"-string z E {0, 1}*, where both V* and S are allowed to obtain z as auxiliary input. The
authors of [33] mention that this refinement was independently suggested by the Oren [50], Tompa
and Woll [57] and the authors.

3.1. CLASSICAL ZERO KNOWLEDGE NOTIONS

ensembles are identical/statistically close/computationally indistinguishable over
L.

S{VIEW 2 [P(x, y) +- V*(x, z)] }XEL,YERL(x),ZE{0,1}*

* S.(x, z)}

BLACK-BOX ZERO-KNOWLEDGE. One can consider a particularly "well-
behaved" type of ZIC called black-box ZKC. Most known ZK protocols (with
the exception of [2]) and all "practical" ZKI protocols indeed satisfy this stronger
notion. Loosely speaking, an interactive proof is black-box ZKC if there exists a
(universal) simulator S that uses the verifier V' as a black-box in order to perform
the simulation. More precisely (following [27])

Definition 9 (Black-box ZK). Let (P, V) be an interactive proof (argument)
system for the language L E VP with the witness relation RL. We say that (P, V)
is perfect/statistical/computational black-box ZIC, if there exists a probabilistic
expected polynomial time oracle machine S such that for every probabilistic
polynomial-time interactive machine V', the following two ensembles are identi-
cal/statistically close/computationally indistinguishable over L.

S{VIEW2 [P.(x, y) - Vr(x, z)] }EL,yERL(x),z,rE{O,1}*

* { j'~(·x) EL,yERj,(x),z,rE{O,1}*

At first sight the definition of black-box ZK: might seems very restrictive: the
simulator is supposed to act as the prover, except that the simulator does not have
a witness, and is required to runs in polynomial-time! Note, however that the
simulator has an important advantage that the prover does not have - namely
that it can rewind and restart the verifier. Indeed, this seemingly small advantage
is sufficient to perform an efficient simulation, without knowing a witness.

KNOWLEDGE TIGHTNESS. Goldreich, Micali and Wigderson [29], and more
recently [27] proposes the notion of knowledge tightness as a refinement of ZKC.
Knowledge tightness is aimed at measuring the "actual security" of a ZKI proof
system, and is defined as the ratio between the expected running-time of the
simulator and the (worst-case) running-time of the verifier [27].2 More precisely,

2To be precise, the authors of [29] define the tightness of zero-knowledge proof as the ratio
between the expected running-time of S and the expected running-time of V, where the latter
expectation is taken only over the random-coins of V, and not over the messages V receives.
In other words, in the notation of [291 the expected running-time of V denotes the worst-case
expected running-time of V in any interaction (i.e., an upper-bound on the expected running-time
of V that holds when V is receiving all possible messages.) The definition of [27], on the other hand,
defines the tightness as the ratio between the expected running-time of S and an upper bound on the
running-time of V taken also over all possible random-tapes (as well as all possible messages). Note
that this difference is insubstantial as we without loss of generality can consider only deterministic
malicious verifiers that receive their random-coins as part of their auxiliary input.

CLASSICAL WORK ON ZERO KNOWLEDGE

Definition 10. Let t : N - N be a function. We say that a ZIC proof for
L has knowledge-tightness t(.) if there exists a polynomial p(-) such that for
every probabilistic polynomial-time verifier V' there exists a simulator S (as in
Definition 8) such that for all sufficiently long x E L and every z E {0, 1}* we
have

Exp [STEPSS.(x,z)] - p(Ixl)

TIMEV'(x,z)

where TIMEV'(x,z) denotes an upper-bound on the running time of V' on common
input x and auxiliary input z when receiving arbitrary messages.

Since black-box simulators only query the oracle they have access to an
(expected) polynomial number of times, it directly follows that black-box ZKC
protocols have polynomial knowledge tightness. Furthermore, many known ZIC
protocols have constant knowledge tightness.

We emphasize, however, that the knowledge tightness of ZIC proof systems
only refers to the overhead of the simulator with respect to the worst-case running
time of the verifier. (Looking ahead, we will introduce notions that require
tightness with respect to either the expected running-time of the verifier, or its
actual running-time.)

3.1.2 Witness Indistinguishability

The notion of Witness Indistinguishability (WI) was introduced by Feige and
Shamir in [23] as a weaker alternative to zero-knowledge. Intuitively an
interactive proof of an N/P relation, in which the prover uses one of several secret
witnesses is WZ if the verifier can not tell what witness the prover has used.

Note that WI proofs of statements with multiple witnesses provide the
guarantee that the (whole) witness used by the prover is not revealed, as this
would breach WI. Also note that WI provides no guarantees when considering
proofs of statements with a single witness, i.e., such proofs might reveal the whole
witness; as such WI is a significantly weaker property than ZIC. Nevertheless,
WZ proofs have proved very useful in the design of zero-knowledge protocols,
e.g., [24, 21, 53, 2].

We proceed to a formal definition (following [27]),

Definition 11 (Witness Indistinguishability). Let (P, V) be an interactive proof
for the language L E N/P, and RL be a fixed witness relation for L. We say that
(P, V) is WZ for RL if for every probabilistic polynomial-time algorithm V' and
every two sequences W 1 {= {W}xeL and W 2 = 2{w1 eL, such that w, w2 e
RL (x), the following two ensembles are computationally indistinguishable over
L.

* {VIEW2 [P.(x,w) + V.'(x, Z) }EL,ZE{O,1}*

* VIEW2 [P.(X, w) +V.'(x, z)] XELzE{O,1}*

3.1. CLASSICAL ZERO KNOWLEDGE NOTIONS

We further say that (P, V) is statistically (perfectly) WZ for RL if the above
ensembles are statistically close (identically distributed) for every (possibly
unbounded) verifier V'.

REMARK: Our definitions of statistical and perfect WI indistinguishability is
slightly stronger than the standard ones in that we require indistinguishability
for all (possibly unbounded) verifiers, whereas standard definitions only quantify
over polynomial-time verifiers. We note however that all known constructions of
statistical (perfect) WZ proofs satisfy also our stronger notion.

3.1.3 Proofs of Knowledge

The notion of a proof of knowledge was intuitively introduced in the paper
by Goldwasser, Micali and Rackoff [32] and was formalized by Feige, Fiat
and Shamir [22] and Tompa and Woll [57]. The definition was further refined
by Bellare and Goldreich [5]. Loosely speaking, an interactive proof is a
proof of knowledge if the prover convinces the verifier that it possesses, or
can feasibly compute, a witness for the statement proved. Again, as "feasible"
computation is defined through the notion of probabilistic polynomial-time, this
notion is formalized by requiring the existence of a probabilistic polynomial-time
"extractor"-machine that can, given the description of any (malicious) prover that
succeeds in convincing the honest verifier, readily compute a valid witness to the
statement proved.

We proceed to the actual definition of a proof of knowledge. Our definition
follows most closely that of Feige [20] (which in turn follows that of Tompa and
Woll [57]).

Definition 12 (Proof of knowledge). Let (P, V) be an interactive proof system
for the language L. We say that (P, V) is a proof of knowledge for the witness
relation RL for the language L it there exists a probabilistic expected polynomial-
time machine E (called extractor) and a negligible function v(n) such that for
every probabilistic polynomial-time machine P', every statement x E {0, 1}n ,

every random tape r E {0, 1}* and every auxiliary input z E {0, 1}*,

Pr[ouT2 [P,(x, z) +- V.(x)] = 1] • Pr[EP: (xz)(x) E RL (x)] + v(n)

CONSERVATIVE PROOFS OF KNOWLEDGE. Micali and Halevi propose a
strengthening of the definition of proofs of knowledge [36]. Their motivation is
to provide a definition of proofs of knowledge which implies that the expected
running-time of the extractor is polynomially related to the expected running-
time of the prover in a real interaction with the honest verifier (this property is
called prover feasibility). They note that even an extractor that makes only a
polynomial number of queries to the prover could potentially "lure" the prover to
take exponentially many steps (by for instance feeding him some special queries)
whereas the prover would never (or almost never) take this many steps in a true

CLASSICAL WORK ON ZERO KNOWLEDGE

interaction with a honest verifier. To circumvent this problem, they strengthen the
definition of a proof of knowledge by adding the requirement that the extractor
only feeds messages to the prover according to the same distribution as those
sent by the true verifier (this is called a valid distribution). They show that
this additional restriction (which anyway is satisfied by all traditional extractors)
guarantees prover feasibility, i.e., that the expected running-time of the extraction
is polynomially related to the expected running-time of the prover in an interaction
with the honest verifier.

3.2 Classical Zero Knowledge Protocols

In this section we review some classical results on Z/C.

3.2.1 ZIC proofs for all of AM P

The Protocol of GMW

Goldreich, Micali and Wigderson demonstrate the generality of ZKI by showing
that every language in NP has a zero-knowledge proof system [29].

Theorem 1 ([29]). Assuming the existence of statistically binding commitments,
every language in NP has an (efficient-prover) computational ZIC proof system.

They prove the above theorem by demonstrating a ZKC proof system for
the NP-language Graph Three-Coloring (GRAPH3COL) -- i.e., the language
consisting of graphs that can be colored using at most three colors. Since
GRAPH3COL is NP-Complete this proof system can be used for any language
L in NP - given an instance x E L simply reduce x to an instance x' E
GRAPH3COL and execute the ZKC proof system for GRAPH3COL on common
input x'. Their protocol is depicted in Figure 3.1.

We provide a sketch of why this protocol is complete, sound and zero-
knowledge. Completeness follows directly, since when the prover commits to
a valid coloring, the verifier will always accepts. On the other hand, if the graph
is not 3-colorable, then any coloring that a malicious prover can commit to must
contain two adjacent vertices with the same colors. It follows that with probability
lE-' the verifier will pick this edge and the malicious prover will be caught. We
conclude that the protocol has soundness error 1 - The soundness error
can then be decreased to become negligibly small by sequential repetition of the
protocol (i.e., by letting the Prover and Verifier engage in multiple consecutive
executions of the protocol.)

The zero-knowledge property intuitively follows from the fact that the verifier
only "sees" two random colors, which is something that he could have generated
himself. The actual proof of this seemingly simple statement turns out to be quite
subtle. We construct a black-box simulator S that given oracle access to any
malicious verifier V' outputs a view that is indistinguishable from the view of V'
in a true interaction with a prover. S proceeds as follows:

3.2. CLASSICAL ZERO KNOWLEDGE PROTOCOLS

Figure 3.1: GMW's ZIC Proof for GRAPH3COL

1. S uniformly picks a random edge (i, j) in the graph.

2. S then picks a coloring a such that ck = 1 for all k = i, j and ci, cj are two
random, but different, colors.

3. It commits to Z and feeds this commitment to V'.

4. If V' asks for the edge (i, j), S reveals the commitments and outputs the
generated view.

5. Otherwise, S restarts V' and repeats the above procedure.

It follows, due to the hiding property of all unrevealed commitments, that when
S indeed is able to output a view, this view will be indistinguishable from the
view of a real interaction, Furthermore, it follows, again from the hiding property
of the commitments, that the probability that V' picks the edge (i, j) is roughly

1-. We conclude that the expected running-time of S will be poly(IEG).
(We warn the reader that a complete proof of the correctness of the above
simulation is significantly more complicated and requires overcoming several
subtle complications.)

The protocol of Blum

Blum subsequently provided a ZIC proof system for the A/P-Complete language
Hamiltonian-Cycle (HAMCYCLE) - i.e., the language consisting of all graphs
containing a Hamiltonian cycle [9]. As this protocol will be used extensively in
this thesis we recall it in Figure 3.2.

The analysis of the protocol of Blum is very similar to that of the protocol
of GMW. The main advantage of this protocol is its strong soundness guarantee:

PROTOCOL GMW-Graph3Col

Common Input: a directed graph G = (VG, EG), with n = IVGI

Auxiliary Input for the prover: a 3-coloring of G, Z = co, C1, .., cn E {1, 2, 3}.

P uniformly chooses a permutation 7r over 1,2,3.

P -* V: Commits to 7r(co), ir(cl),.., 7r(c,,) using a statistically binding commit-
ment scheme.

V * P: Uniformly selects an edge (i, j) E EG.

P -* V: Reveals ci, cj.

V accepts if and only if P correctly revealed to ci, cj and if ci, cj are different
colors.

CLASSICAL WORK ON ZERO KNOWLEDGE

Figure 3.2: Blum's ZIC Proof for /'P

The protocol resulting from only a single invocation of Blum's protocol is a zero-
knowledge interactive proof with soundness error only 1/2 (in contrast, recall that
a single invocation of GMW's protocols has soundness error 1 - T).

3.2.2 ZKC proofs for all of IP

Ben-Or, Goldreich, Goldwasser, Hastad, Kilian, Micali and Rogaway [8] show
that the result of Goldreich, Micali and Wigderson can be extended to show the
following:

Theorem 2 ([8]). Every language in IP (i.e., every language that has an
interactive proof system) has a computational ZKC proof system.

We provide an outline of their proof. A fundamental result by Goldwasser and
Sipser [35] shows that any language having an interactive proof also has a public-
coin interactive proof. Thus, it is sufficient to show that any language having a
public-coin interactive proof system also has a ZKC proof. Given a public-coin
interactive proof system (P, V) for a language L, we construct a (computational)

PROTOCOL Blum-HCProof

Common Input: a graph G which is part of the language HAMCYCLE.

Auxiliary Input for Prover: a Hamilton cycle C in the graph G = (V, E).

V uniformly chooses a random permutation 7r of the vertices V and commits
to the adjacency matrix of resulting permuted graph. That is, V uses
a statistically binding commitment COM to send an IVI x IVj matrix
of commitments so that the (7r(i), 7r(j)) entry is a commitment to I if
(i,j) E E and is a commitment to 0 otherwise.

V - P: a uniformly chosen bit a.

P V:

1. If a = 0, P sends 7r, and also reveals the full matrix of
commitments sent.

2. If i = 1, P instead only reveals a cycle in the committed permuted
graph, i.e., only reveals the commitments to entries (wr(i), 7r(j))
with (i,j) E C.

V proceeds as follows.

1. If i = 0 it checks that P properly decommits, and that the revealed
graph is isomorphic to G, via r.

2. If i = 1, it checks that P properly decommits, that all the revealed
values are 1, and that the corresponding entries form a simple
cycle.

3.2. CLASSICAL ZERO KNOWLEDGE PROTOCOLS

ZKC proof system (P2, V2). (P2, V2) is defined as follows. On input x E L, P2
and V2 proceed in two stages.

1. In the first stage, P2 and V2 execute the original public-coin proof system
(P, V) on common input x, but with the exception that instead of sending
the messages of P in the clear, P2 rather sends commitments (using a
statistically binding commitment scheme) to these messages. Note that this
change does not affect the strategy of V, since V only sends random strings
as its messages.

2. In the second stage, P2 uses GMW's proof system to prove the A/P-
statement that "the messages committed to by P2 (in the first phase of the
protocol) would make V accept". Note that is indeed an NP-statement,
since 1) the verifier V only sends public-coins, and 2) V is a polynomial-
time algorithm.

3.2.3 Statistical Z/C Arguments for .NP

Brassard, Chaum and Crepeau [11] demonstrate the existence of a perfect/
statistical ZIC argument for .P. In fact, it can be shown that if instantiating
the commitment scheme COM in Protocols GMW-Graph3Col and Blum-HC with
a perfectly-hiding (statistically-hiding) commitment scheme, then both protocols
are in fact a perfect (statistical) ZKC arguments for AP.

Theorem 3 ([11]). Assuming the existence of perfectly/statistically hiding com-
mitments, every language in fNP has an (efficient-prover) perfect/statistical ZIC
argument system.

3.2.4 On the Existence of Statistical ZKC Proofs

We have above presented two complimentary results. The result of Goldreich,
Micali and Wigderson (GMW) concerns interactive proofs (as opposed to argu-
ments) satisfying computational zero-knowledge, whereas the result of Brassard,
Chaum and Crepeau (BCC) concerns the weaker notion of interactive arguments,
while achieving the stronger notion of perfect/statistical zero-knowledge. In
other words, the protocol of GMW is secure against an unbounded prover, but a
computationally bounded verifier, whereas the protocol of BCC is secure against
an unbounded verifier, but a computationally bounded prover.

It is unknown whether all of NP has statistical ZIC proofs (i.e., protocols
that are secure against both unbounded provers and verifiers). Indeed, Aiello and
Haistad show that the existence of such a proof system would imply the collapse
of the Polynomial Hierarchy [1].

Nevertheless, although it is unlikely that all ofANP has statistical Z/C proofs
several interesting languages (including for instance GRAPHNONISO mentioned
in Section 2.2.3 which are not known to be in P have statistical ZIC proofs.
Furthermore, the class of languages having such proof systems, denoted SZK,
has interesting complexity theoretic properties, including complete-problems, and

CLASSICAL WORK ON ZERO KNOWLEDGE

closure under complement [55]. We refer the interested reader to the thesis of
Vadhan for an extensive study of this topic [58].

3.2.5 Round-efficiency of Zero-knowledge Proofs

Recall that the original ZKC protocols for AP of [29, 9, 1 1I require repeating an
atomic protocol sequentially (at least) n times to obtain a ZIC proof (argument)
with soundness error 2- n . As such, the round-complexity of these protocols grows
as a function of the soundness error: the smaller the error, the larger the number
of rounds.

More recent results by Feige and Shamir [24] and Goldreich and Kahan [28]
instead show how to obtain constant-round Z)C protocols for .NP with negligible
soundness error. On a high-level (and over simplified), these protocols rely on
an appropriately adjusted parallel repetition of the protocols of [29, 9, 11]. (We
mention that it is unknown whether the protocols obtained by a simple parallel
repetition of the protocols of [29, 9, 11] are ZK.)

Theorem 4 ([24]). Assuming the existence of constant-round perfectly-/statistically-
hiding commitments, every language in NAP has an constant-round (efficient-
prover) perfect/statistical ZKI argument system.

Theorem 5 ([24]). Assuming the existence of one-way functions, every language
in A/P has an constant-round (efficient-prover) computational ZIC argument
system.

Theorem 6 ([28]). Assuming the existence of constant-round statistically-hiding
commitments, every language in ArP has a constant-round (efficient-prover)
computational ZKC proof system.

4
Capturing Knowledge in

Expectation

As previously mentioned, standard definitions of Z~C and proofs of knowledge
bound the knowledge of machine in terms of its the worst-case running-time. (As
discussed in Section 3.1.3 the proof of knowledge definition of Micali and Halevi
is an exception to this.)

We here put forward natural extensions of these notions, aimed at bounding
the knowledge of a player in terms of its expected running-time, or in terms of
higher-order moments of its running-time.

Although these notions are considerably weaker than our precise notions of
zero knowledge and proofs of knowledge (which will be introduced in Chapter
5), they are already a significant strengthening of the traditional notions and are
interesting in their own right - the notion of expected precise zero-knowledge
guarantees that the average amount of resources needed by a verifier to perform
some task is not significantly altered by the zero-knowledge proof; the notion of a
higher-moment precise zero-knowledge proof guarantees the same thing, even if
the computation-cost function (i.e., the cost per computation step) of the verifier
is non-linear.

As already mentioned, for the case of proofs of knowledge, the notion of a
conservative proof of knowledge [36] also bounds the knowledge of a player in
terms of its expected running-time (but not in terms of higher-order moments of
it). Our definition is, however, quite different: The definition of Micali and Halevi
requires extraction to be performed in a black-box manner' whereas our definition
makes no such restrictions; this makes our definition potentially more applicable.

'Furthermore, their definition puts additional restrictions on the nature of this black-box
extraction. In particular, they require that the extractor feeds the prover messages according to
the same distribution as the verifier.

4.1. EXPECTED PRECISE ZERO KNOWLEDGE

Furthermore, arguably our definition is simpler, and has a clearer "semantics" (in
particular, it easily extends to higher-order moments as well.)

In the context of ZIK proofs, to the best of our knowledge, our definition is the
first one to explicitly bound the knowledge of the verifier in terms of its expected
running-time.

4.1 Expected Precise Zero Knowledge

Definition 13 (Perfect Expected Precise ZiC). Let L be a language in A/P', RL
a witness relation for L, (P, V) an interactive proof (argument) system for L,
and p : N x N -- N a monotonically increasing function. We say that (P, V)
is perfect ZIC with expected precision p if, for every probabilistic polynomial-
time ITM V', there exists a probabilistic algorithm S such that the following two
conditions holds:

1. The following two ensembles are identical:

a) VIEW2 [P.(x, y) ` V(X, Z)IxELyERL(x),zE0,1 *

b) S.(x, z) XELYERL(X),ZE{,1}*

2. For all x E L, z E {0, 1}*,

Exp[STEPSS.(x,z)] p(xl, Tx,z)

where Tx,z denotes the expected running-time of V, (x, z) in an interaction
with P.(x, y) for any y E RL(X).

We refer to an algorithm S as above as an expected precise simulator, or as a
simulator with expected precision p.

COMPUTATIONAL/STATISTICAL ZIC. We obtain the notion of statistically/

computationally expected precise ZKC by requiring that the two ensembles of
Condition 1 be statistically close/computationally indistinguishable over L.

HIGHER-ORDER MOMENT PRECISION. One can naturally generalize the above

definition to consider also higher-order moments (and not just the first-order
moment).2 We obtain the notion of i'th moment precise ZKI by exchanging
condition 2 in Definition 13 for the following condition:

2'. For all x E L,z E {0, 1}*,

Exp[(STEPSS.(x,z)) i] • p(lxl, T(')

where T () denotes the i'the moment of the running-time distribution of
V.'(z) in an interaction with P.(y) on common input x and any y E RL(x).

2Recall that the i'th moment of a random variable X is Exp[X'].

CAPTURING KNOWLEI)GE IN EXPECTATION

REMARK: Note that our definition of expected (higher-moment) precise ZKC only
differs from the standard definition of ZKC in that we additionally require that
the expectation (higher-moment) of the running-time distribution of the simulator
(on inputs in the language) is "close" to the expectation (higher-moment) of the
running-time distribution of the verifier in true interactions with a prover.

4.2 Expected Precise Proofs of Knowledge

We present our definition of expected precise proofs of knowledge. Intuitively
we say that (P, V) is a proof of knowledge with expected precision p, if there for
every adversary prover P' exists an extractor E such that:

I. Given any joint-view (viewp,, viewv) of an execution between P' and V
on common input x, it holds that E on input only the view viewp, outputs
a valid witness for x E L, if viewv is a view where V is accepting.

2. Given a random joint-view (viewpl, viewV) of an execution between P'
and V on common input z it holds that the expected running-time of E
on input viewp, is smaller than p(lx|, T) where T denotes the expected
running-time of P' in an interaction with V' on common input x.

More precisely,

Definition 14 (Expected Precise Proof of Knowledge). Let L be a language in
.AP, RL a witness relation for L, (P, V) an interactive proof (argument) system
for L, and p : N x N -+ N a monotonically increasing function. We say that
(P, V) is a perfectly-sound proof of knowledge with expected precision p for the
witness relation RL, if for every probabilistic interactive machine P', there exists
a probabilistic algorithm E such that the following conditions hold:

1. For all x, z E {0, 1}*,

Pr [(viewp,,viewv) +- P.(X,z) + V.(x)

OUTv(viewv) = 1 A E(viewp,) 0 RL(X)] = 0

2. For all x, z E {0, 1}*,

Exp[(viewp,, view,) +- (P.(z), V.)(x) : STEPSE.(viewp,) I_ P(ll, Tx,z)

where Tx,z denote the expected running time of P.(x3, z) in an interaction
with V.(x).

We refer to an algorithm E as above as a extractor, or as an extractor with
expected precision p.

STATISTICALLY/COMPUTATIONALLY SOUND PRECISE PROOFS OF KNOWL-

EI)DGE. We obtain the notion of a statistically-sound expected precise proof of
knowledge by exchanging condition 1 in Definition 14 for the following condition:

4.3. EXISTENCE OF EXPECTED PRECISE ZERO KNOWLEDGE

1'. There exists some negligible function p(-) such that for every z, z E
{0, 1}*,

Pr [(viewp, viewyv) +- P.(x,z) +-+ V()

OUTV(viewy) = A E(viewp,) RLI(x)] < (x)

We obtain the notion of a computationally-sound expected precise proof of knowl-
edge by furthermore adding the restriction that P' is a probabilistic polynomial-
time machine.

HIGHER-ORDER MOMENT PRECISION. We obtain the notion of i'th moment

precise proofs of knowledge by by exchanging condition 2 in Definition 13 for
the following condition:

2'. Forallx, z E {0,1}*,

Exp[(viewp, viewv) +- (P.(z), V.)(x) : (STEPSE.(viewp,))i] <
p(IxI, T()

where T (i) denotes the i'th moment of the running time distribution of
P.(x, z) in an interaction with V.(x).

REMARK: We provide a brief comparison with the definition of Halevi-Micali
[36]. As mentioned in Section 3.1.3, the definition of [36] requires that extraction
is performed in a black-box way, and that the black-box extractor feeds the prover
messages according to the same distribution as the honest verifier. [36] shows
that this restriction implies that the running-time of the extractor is polynomially
related to the expected running-time of the prover in a true interaction with the
verifier. In our definition we make no such restrictions on the extractor. Instead,
we explicitly require a close relation between the (expected) running-time of the
extractor and the expected running-time of the prover.

4.3 Existence of Expected Precise Zero Knowledge

We show that "natural" black-box simulators have good expected precision. By
natural we mean black-box simulators that only feed the verifier messages that are
indistinguishable from true prover messages. We use the word natural, since all
known black-box simulators indeed are of this type.

This result can be seen as a generalization (and strengthening) of the results
of Halevi and Micali, showing a corresponding result for proofs of knowledge,
if assuming that the distribution of the messages produced by the extractor is
identical to the distribution of true verifier messages.

Our result is also related to a result. by Katz and Lindell [41] showing
that every proof system that has a certain strong type of natural simulator (in

CAPTURING KNOWLEDGE IN EXPECTATION

particular for which indistinguishability holds for super polynomial-time), is also
ZKC for expected polynomial-time verifiers (as opposed to strict polynomial-time
verifiers). Our results rely on proof techniques from both the above-mentioned
results.

We proceed to a formal definition of natural black-box simulators. Recall that
a black-box simulator only has black-box access to the malicious verifier V' and
proceeds by feeding messages to V' and waiting to receive back answers, much
like a standard prover; furthermore the black-box simulator can rewind and restart
V'. To simplify notation, we assume that a black-box simulator always feeds
(partial) views to V' containing all messages V' has received from the beginning
of the protocol execution; this is called a query.

Definition 15 (Natural Black-box Simulators). Let (P, V) be a k-round black-box
ZKC proof (argument) system for the language L E A/P with the witness relation
RL, and let S denote its black-box simulator. We say that S is a natural black-
box simulator, if for every probabilistic polynomial-time interactive machine V',
the following two ensembles, indexed by x E L, y E RL (), z, r E {0, 1}*, i E
[k(Ix)], j E N, are computationally indistinguishable over L.

* view +- VIEW 2 [P.(x,y) - Vr'(x,z)] : viewI

m view (j querysv(X,Z) (x) (j) view = i : view

where querys,(XZ)(X)(j) denotes the j'th (partial) view feed by Sr, to Vr(x, z)

(or I if Sr, feeds less than j queries to Vr(x, z)), view i denotes the partial view
consisting of the first i rounds in the view view, and Iviewl denotes the number
of communication rounds in the partial view view.

Lemma 1. Let S be a natural black-box simulator for the perfect/statistical/
computational ZKI proof systems (P, V) for L with witness relation RL. If S has
expected running-time pi(n) and makes in expectation P2(n) number of queries
to its oracle, then there exists a negligible function /u(n) such that S has expected
precision p(n, t) = pi (n) + p2(n)t + pu(n).

Proof: Consider any probabilistic polynomial-time adversary verifier V'. Fix
generic x E L, w E RL(X), z, r E {0, 11*. Let E 1eal denote the expected running
time of Vr;(x, z) in an interaction with P.(x, w). We start by noting that it follows
(by the linearity of expectations) that the expected running-time of S including
the steps of V' is pl (n) plus the expected running-time of V' in the queries posed
by S. We proceed to bound the latter quantity, which we call Evji. To simplify
notation, we let

q.(j) = querys~v,(,.Z)(i)

Let R denote an upper-bound on the number of random coins used by
sV.vx"')(xz)(j). Then,

E = E E [STEPSvy(qr(j)) = Exp [STEPSV,(q.(j))] (4.1)
rE{O,1}R j 3

4.3. EXISTENCE OF EXPECTED PRECISE ZERO KNOWLEDGE 47

Expanding the above expression, we get

oo k (n)
Ej-n = Pr [q.(j)) =i]Exp[v q.(j) (vj = i : STEPS(v)]

We bound the second factor

Exp[v +- q.(j) Iv = i : STEPSVI(V)] =

ZPr [v - q.(j) vI =i : STEPSV (V) Ž t]
t

TIMEvi(1lx)

SPr [v +- q.(j) lv = i STEPSVy(V) Ž t

Since S is a natural black-box simulator, and since STEPSv, is efficiently
computable (since it is bounded by TIMEv, (n), which in turned is bounded by
a polynomial) it follows that there exists a negligible function A(n) such that for
allt < TIMEv,(XI)

IPr [v - q.(j) I lv = i : STEPSvy () > t] -

Pr +- VIEW2 [P(x, y) - Vr(zx,)] : STEPSVyr,(i) t]

= /,(Ixi)

Since TIMEV, (n) is polynomial in n, it holds that there exist some other negligible
function /'(n) such that

TIMEVTIMEv ((I)

Pr v - VIEW 2 P (*Pr) I rV'(, z) : STEPSv,(V) t]t

TIMETIME (l)

In other words,

Exp[v +- q.(j) Ivl =i STEPSy (V)] -

Exp[v - VIEW2 [P(X, y) - V!(x,z)] : STEPSyrV (v)]

1/04xi

CAPTURING KNOWLEDGE IN EXPECTATION

Since V"s running time in a partial view is smaller or equal to its running-time in
a full view, we get

Exp[v +- q.(j) lvi = i : STEPSV(v)]

Exp[v +-- VIEW2 [P(X, y) - V(x, z)] : STEPSV, (V)] + T(X) <

E,?el + /'(Izl)

Plugging this in to equation 4.1 we get

o k(k(x))

Ew. +'Pr [(q.(j))l = i] (E=-ap +
oo k(jxj)

j i
00

(Eval + '(Ix)) Pr [q.(j))]
3

Letting #qr' denote the number of queries made by S to Vr'(x, z) in an execution
of S, (z) x(2) (j), and continuing,

EVs (EpaI+p(1xl))Pr #q. > j] =

(EVal + p'(x))Exp[#q.] =

(Eval + P'(Ixl))P2(Ix) -

P2(Ix|)Eveal + ~I"(x:|)

where a"(n) is a negligible function. We conclude that the total combined
expected running-time of S and V' is

Pl(I|xI) + p2(l x)Eal + Ap"(I 1)

REMARK: Using an argument of [36], we note that the lemma cannot be
strengthened to consider all black-box simulators: Simply consider a verifier
V' that always performs a small amount of computation, except upon receiving
a particular message m (which the honest prover only sends with exponentially
small probability); upon receiving this special message it instead performs a "very
large" amount of computation. Now, consider a simulator S that always feeds
its oracle the query m. The running-time of the simulator is thus always large,
whereas the expected time of the verifier is small.

4.3. EXISTENCE OF EXPECTED PRECISE ZERO KNOWLEDGE

By observing that the simulators of [29, 25, 28, 8] are natural, we directly
get:

Theorem 7. Assume the existence of one-way functions. Then, there exists a
polynomial p(n, t) such that:

1. Every language in ./P has an (efficient-prover) computational ZIC proof
with expected precision p(n, t).

2. Every language in .NP has an (efficient-prover) constant-round computa-
tional ZKC argument with expected precision p(n, t).

3. Every language in IP has a computational ZKI interactive proof with
expected precision p(n, t).

Theorem 8. Assume the existence of constant-round statistically (perfectly) hiding
commitments. Then, there exists a polynomial p(n, t) such that:

1. Every language in .AP has an (efficient-prover) constant-round computa-
tional ZIC proof with expected precision p(n, t).

2. Every language in fl/P has an (efficient-prover) constant-round statistical
(perfect) ZKC proof with expected precision p(n, t).

EXISTENCE OF ZKC WITH HIGHER-ORDER MOMENT PRECISION. We show

that natural strict polynomial-time black-box simulators (i.e., simulators whose
running-time is polynomially-bounded in the worst-case, and not in expectation)
guarantee ZIC also with m'th moment precision for m E N. By natural we here
mean a strict polynomial-time simulator having the following properties: 1) there
exists a round-function roundn(-) such that on input a statement x E {0, 1}n, the
j'th query of the simulator is always a partial transcript containing i = roundn ()
rounds, and 2) each such query is indistinguishable from an i-round transcript of
an interaction between the honest prover and the verifier. More precisely,

Definition 16 (Natural Strict Black-box Simulators). Let (P, V) be a k-round
black-box ZKC proof (argument) system for the language L E NfP with the
witness relation RL, and let S denote its black-box simulator. We say that
S is a natural strict black-box simulator, if S is a probabilistic polynomial-
time machine, and there exists a function roundn : [n] -+ [k(n)], such that
for every probabilistic polynomial-time interactive machine V', the following
two ensembles, indexed by x E L,y E RL(x),z,r E {0,1}*,j E N, are
computationally indistinguishable over L.

* view - VIEW 2 [P.(x,y) +- V!(x, z)] viewround"I()

* view - querys V, z)(x)(j) : view
I. s+ (•

CAPTURING KNOWLEDGE IN EXPECTATION

where querysv(X,Z)() (j) denotes the j'th (partial) view feed by Sr, to V'(x, z)

(or I if Sr, feeds less than j queries to Vr'(x, z)) and viewi denotes the partial
view consisting of the first i rounds in the view view.

Lemma 2. Let S be a natural strict black-box simulator for the perfect/statistical/
computational ZCK proof systems (P, V) for L with witness relation RL. If S
has running-time pi(n) and makes P2(n) queries to its oracle, then there exists a
negligible function p(n) such that S has m'th-moment precision

p(n, t) = (p 2(n)+ I) m t + (P2(n) + 1) m pl(n)m+ p (n)

Proof: Consider any probabilistic polynomial-time adversary verifier V'. Fix
generic x E L, w E RL(x), z, r E {0, 1}*. Let Mv,) denote the m-order moment
of the running time distribution of Vr,(x, z) in an interaction with P.(x, w). Let
M (m) denote the m'th-order moment of the running time distribution of S. (x, z).
As in the proof of lemma 1, to simplify notation, we let

q.(j) = querysvZ)(x,) (J)

By definition,

M(m) - Exp[(STEPSSv,(x,z))m]<

P2 (l)
Exp v -- .(j) : (pl(x|)+ + I STEPSVi (vj)) m

(We emphasize that in the above expression the queries vl, v2, ... are generated
from the same execution of S with a particular random tape. In other words,

q.(1), q.(2), .. refer to the same execution of S.V' (' z) (x).)
By applying H61ders inequality 3 and by the monotonicity of expectations, we

get

M(i) <S-

P2 (X

Exp[vj <- q.(j) : (P2(XI) 1)m 1 (Pl(IX)m+ STEPSV/(vj)m)

(p2(xl+ 1)m(pl(I) m + Exp [vj - q.(j) P2(STEPSIrX()m

By linearity of expectation, we get
M(m) <

S
P2(IxI)

(p2(I) + 1)m-l(xl)m + Exp[vj +- q.(j) STEPSv,(vj)m (4.2)

3Recall that Holder's inequality states that E Ijxiyl < (E jxf p) 'l(E ly(.Zq)' /
' when 1/p +

1/q = 1, which in particular means that (E Ix i) m (ZI Ixl m)(E, 1)m-Y.

4.3. EXISTENCE OF EXPECTED PRECISE ZERO KNOWLEDGE

We next show, in the same way as in the proof of lemma I that there exists a
negligible function p(n) such that

Exp[vj -- q.(j) : STEPSV,(Vj)m]

As in lemma 1,

Exp[vj +- q.(j) : STEPSV,(Vj) m]

EPr [v +- q.(j) : STEPSV(V) m t]
t

TIMEvI(IXl)"m

E Pr [v +-- q.(j): STEPSV'(V3) m t]

It follows, due to the natural simulation property of S, and due to the fact that
STEPSV, is efficiently computable (since it is bounded by TIMEv, (n), which in
turn is bounded by a polynomial), that there exists a negligible function g'(n)
such that for all t < TIMEv,(Ix)m

Pr v +- q.(j) : STEPSv,(Vj) m > t]

Pr [v +- VIEW 2 [P.(x,y) -+ V'(x, Z)] : STEPSV,(Vroulndjx(j))m > t] + /(Ixl)

Pr [v V+-IEW 2 [P.(x, y) - V(x, z)] : STEPSV, (V)m > t] ±+4(IxI)
Since TIMEV, (n) m is a polynomial, we conclude that there exists a negligible
function j(n) such that

Exp[vj -q.(j) : STEPSV'(, ()m]

TIMEV, (Ixl)n
P(lxl) + E Pr [v +- VIEW 2 [P.(x, y) +-+ Vr(x,z)] :STEPSV,(V)m > t]

L(IxI) + Exp[v +- VIEW2 [P.(x,y) +-+ V,(x,z)] : STEPSvy(V)m]

Mm) + ,(Ix)
Plugging this into equation 4.2 and continuing, we get

M _) 2 m - 1 (1 m)M(m)• (P2xIX +) r- (p oxr + (M) + (IxI))

< (p2(IxI)+ 1)mM(v) + (P2(uxD)+ 1)MP1(jxj)m+ t±"(IxI)

CAPTURING KNOWLEDGE IN EXPECTATION

for some negligible function /z". M
By observing that the strict polynomial-time simulators of the protocols of

[29, I i, 8] are natural, we directly get:

Theorem 9. Assume the existence of one-way functions. Then, then for every
i E N, there exists a polynomial p(n, t) such that:

1. Every language in .NP has an (efficient-prover) computational ZIC proof
with i'th moment precision p(n, t).

2. Every language in IP has a computational ZIC interactive proof with i'th
moment precision p(n, t).

Theorem 10. Assume the existence of statistically (perfectly) hiding commit-
ments. Then, then for every i E N, there exists a polynomial p(n, t) such that
every language in N/P has an (efficient-prover) statistical (perfect) ZKC proof with
i'th moment precision p(n, t).

We mention that whereas in the case of ZKC with expected precision we are
able to obtain constant-round protocols, we do not know whether constant-round
protocols that are Z/C with higher-moment precision can be constructed. We note
that it is unlikely that lemma 2 can be useful in the construction of such protocols,
as Barak and Lindell [6] show that only languages in B3PP have constant-round
ZKC arguments with strict polynomial-time black-box simulators.

We furthermore mention that the simulators for the constant-round protocols
of Feige and Shamir [25] and Goldreich and Kahan [28] do not have polynomial
second-moment precision: These simulators proceed by first running the mali-
cious verifier up until a certain round in the protocol. If the verifier has not aborted
in this first execution, they rewind the verifier and feed it new messages until they
get another execution where the verifier does not abort. Consider a verifier that
aborts with probability 1 - p. With probability p such simulators obtain in their
first execution a view in which the verifier does not abort. We conclude that the
second moment of their running-time is at least

0 0(1) _ 0(1)
p i2(1-l _ pi- p

i=1 P

Since the simulators should work for all verifiers of the above type, where p is an
arbitrary inverse polynomial, we conclude that the second moment of the running-
time of the simulators is not bounded by any fixed polynomial.

5
Capturing Knowledge Precisely

In this chapter we put forward our precise notions of zero knowledge and proofs
of knowledge. We also investigates properties of our new notions.

5.1 Precise Zero Knowledge

Definition 17 (Perfect Precise Z1C). Let L be a language in KN'P, RL a witness
relation for L, (P, V) an interactive proof (argument) system for L, and p : N x
N x N -- N a monotonically increasing function. We say that (P, V) is perfect
ZKC with precision p if, for every ITM V', there exists a probabilistic algorithm
S such that the following two conditions holds:

1. The following two ensembles are identical:

a) VIEW2 [P.(x, y) +-+ V'(x, z)] }EL,YERL(X),Z{O,1}*

b) {S.(X, z)}

2. For every x E L, every z E {0, 1}*, and every sufficiently long r E {0, 1}*,
STEPSS,(x,z) • p(IxI, STEPSV' (Sr(x, z)).

We refer to an algorithm S as above as a precise simulator, or as a simulator
with precision p. If p(n, t) is a polynomial (a linear function) in only t , we say
that (P, V) has polynomial (linear) precision.

COMPUTATIONAL/STATISTICAL ZKC. We obtain the notion of statistically
precise ZIC by requiring that the two ensembles of Condition 1 be statistically
close over L. We obtain the notion of a computationally precise ZKC by further-
more adding the restriction that V' is a probabilistic polynomial-time machine,
and by requiring that the two ensembles of Condition 1 are computationally
indistinguishable over L.

5.1. PRECISE ZERO KNOWLEDGE

REMARKS:

1. Note that in the case of computationally precise ZKC our definition only
differs from the standard definition of ZKC in that we additionally require
that the actual running-time of the simulator is "close" to the actual running-
time of the verifier in a true interactions with a prover.

In the case of perfectly and statistically precise Z/C, our definition addi-
tionally differs in that we require simulation of all malicious verifiers (even
those having an unbounded running time). By contrast, perfect/statistical
ZKI in the standard sense only calls for polynomial-time verifiers to be
simulatable (though, for classical examples of perfect/statistical ZKC proofs,
all verifiers can actually be simulated).'

2. Note that every perfect/statistical/computational ZKI proof system (P, V)
with polynomial precision is a perfect/statistical/computational ZKI proof
system in the standard sense. 2 The converse, however, may not be true -
for every fixed polynomial p there might exist a verifier having a worst-
case (or even expected) runnning-time that exceeds p by far, but whose
actual running time t is small a substantial amount of the time. Consider,
for instance, a verifier V' that with probability -L takes n 5o steps, and
otherwise n steps. The expected running-time of V' is thus Q(ns5);
we conclude that even a simulator with optimal expected precision could
potentially always take S(n 50) steps, whereas V' almost always takes n
steps. In fact, even a simulator with optimal higher-moment precision might
always take Q(n50) steps.

3. One might consider weakening Condition 2 by requiring that it holds only
for most (rather than all) tapes r of S. However, under such a relaxation,
perfect ZKA with polynomial precision would no longer imply perfect (nor
statistical, or computational!) ZKA in the standard sense. Consider a
simulator S that runs in fixed polynomial time, except for a fraction 2 -IxI of
its random tapes, where it always takes 2 1,12 steps. Such an S would run in
expected exponential time, but still satisfy polynomial precision under the
above relaxation of Condition 2.

4. A seemingly stronger definition would be to require the existence of a
universal precise simulator which works for all verifiers (assuming that it
also gets the code of the verifier). Interestingly, in the case of perfectly
and statistically precise ZIC this alternative formulation is equivalent to
our definition. This follows from the fact that it is sufficient to describe
a precise simulator for the Universal Turing Machine that runs the code
it receives as its auxiliary input. Note that the same argument does
not go through for computationally precise ZIC (nor the standard notion

'This is not a new observation. Indeed, the definition of statistical black-box zero-knowledge
of [58] calls for simulation of also unbounded verifiers.

2Indeed. even with respect to strict polynomial time simulators.

CAPTURING KNOWLEDGE PRECISELY

of ZJC): as the Universal Turing Machine is not a polynomial-time
machine, computationally precise ZIC (or standard Z/C) does not require
the existence of a simulator for it.

5.2 Properties of Precise ZK

5.2.1 Preserving Running-time Distribution

Whereas the notion of knowledge-tight ZIC (see Definition 3.1 .1) guarantees that
the (expected) running-time of the simulator is closely related to the worst-case
running-time of the adversarial verifier, we here show that the notion of precise
ZKC guarantees that the actual running-time distribution of the verifier is respected
by the simulator. Note that this is stronger than our requirement of expected
precise ZKC, which only guarantees that the simulator's expected running-time
respects the expected running-time of the verifier. (In fact, as we show below,
precise ZKC also implies i'th moment (i E N) precision.)

We proceed to a formal treatment. The following proposition shows that
the cumulative probability distribution function (cdf) of the running-time of the
simulator respects the cdf of the running-time of the adversary verifier.

Proposition 1. Let L be a language in .AP, RL a witness relation for L,
p : N x N -- N a monotonically increasing function, and (P, V) a statistical
(computational resp.) ZIC argument system for L with precision p. Let V' be an
arbitrary (polynomial-time resp.) probabilistic machine and let S be the precise
simulator for V'. Then there exists a negligible function p(n), such that for all
x E L, y E RL(X) all z E {0, 1}*, it holds that for every t E N:

Fv,(t) Fs(p(lxl,t)) + 1(Ixl)

where

Fv,(t) = Pr [v - VIEW 2[P(x,y) +- V'(x,z)] : STEPSV'(v) < t]

and
Fs(t) = Pr [STEPSS.(x,z) t]

Proof: Suppose for contradiction that there exists a (polynomial-time in the case
of computational ZKC, and arbitrary otherwise) verifier V' and a polynomial g(n)
such that for infinitely many x E L there exists y E RL(X), z E {0, 1}*, t E N
such that:

1
Fv,(t) > Fs(p(IxI,t)) +

where S is a precise simulator for V'. Towards the goal of contradicting the
precise simulation requirement of S, consider a generic x, y, z, t for which this
happens. Consider the distinguisher D defined as follows:

* D on input a view v outputs 1 if and only if STEPSv,(V) _ TIMEV,(IxI)
and STEPSV, (v) < t.

5.2. PROPERTIES OF PRECISE ZK

First, note that if V' is polynomial-time, then so is D. It follows directly from
the construction of D that D on input a random view v +- VIEW2 [P.(x, y) "
V.'(x, z)] output 1 with probability Fv, (t). Secondly, if follows from the precise
"reconstruction" requirement of S (i.e., that the actual number of steps used by
S to output a view is at most p(jxi, t) where t is the running-time of V' in the
view output by S) that D on input a random view v - S.(x, z) outputs 1 with
probability smaller or equal to Fs(p(Ilx, t)). We conclude that D distinguishes
the output of S.(x, z) from the view of V'(x, z) in a real execution with P(x, y),
with probability at least 1-I, which contradicts the fact that S is a valid simulator
for V'. I

By using exactly the same proof we also get:

Proposition 2. Let L be a language in A/P, RL a witness relation for L,
p : N x N -+ N a monotonically increasing function, and (P, V) a statistical
(computational resp.) ZK: argument system for L with precision p. Let V' be an
arbitrary (polynomial-time resp.) probabilistic machine and let S be the precise
simulator for V'. Then there exists a negligible function p(n), such that for all
x E L, y E RL(X) all z E {0, 1}*, it holds that for every t E N:

Fv, (t) > Fs(p(lzl,t)) + p(1xl)

where

Fv,(t) = Pr v -VIEW 2 [P*(x,y) - V'(X,z)} : STEPSV(v) _ t]

and
Ps(t) = Pr [STEPSS.(X,z) > t]

PRESERVING HIGHER-ORDER MOMENTS. In the sequel of the thesis we will
mainly be interested in precision functions of the form p(n, t) = p'(n)t (in
particular all our construction have such precision). As a corollary to Proposition
2 we directly get that for all protocols that are ZK with precision p(n, t) = p'(n)t,
it holds that for all probabilistic polynomial-time verifiers V', the i'th moment of
the running-time distribution of the simulator for V' is at most p2(n)i times the
i'th moment of the running-time distribution of V' in a real interaction with the
prover.

Corollary 1. Let (P, V) be a perfect/computational/statistical ZIC proof (or
argument) for the language L with witness relation RL, and precision p(n, t) =
p'(n)t, where p'(n) is a monotonically increasing function. Then there exists
a negligible function p such that (P, V) is ZKC with i'th moment precision
p(n) = (p'(n))1 t + p(n).

Proof: Consider any probabilistic polynomial-time ITM V' and its corresponding
simulator S. For any x E L, z E {0, 1}*, let M 1)(x, z) denote the i'th moment
of the running-time distribution of V.(x, z) in an interaction with P.(x, y) for

CAPTURING KNOWLEDGE PRECISELY

any y E RL(x), and let M (i)(, z) denote the i'th moment of the running-time
distribution of S. (x, z). We start by noting that

M(i)(x,z) =

ZPr [v- VIEW2 [P.(x,y) V(x,z) : (STEPSV,(V)) i > t]=
t

TIMEV, (Xl)

Z Pr v +- VIEW2 [P(x, y) ~ V,(x,z) (STEPSVy(V))' > t] =

TIMEv,(Ix)it

Z Pr v +- VIEW 2 [P(x,y) - V,(x,z) (STEPSV (V)) t1/']
t

By applying Proposition 2 we get that there exists some negligible function p (n)
such that

TIMEv, (sl)•MIM(x z[(STEPSS.(x,z) /i
M(W)(x,z)- E (PrL p'(x) tl/] I+(4l))

t

TIMEVI(Ix)i(l). TIMEEV,(r i STEPSS.(x,z) >t/i]
lt(IXI)-. TIMEV (IX t ± + (Pr jP p'xD)

Since V' is a polynomial-time machine, there thus exists a negligible function

tt'(n) such that

TIME ; (zl)i

M(i)(x,z) < '(IxI) + Pr STEPSS.'(x,) t/i]

/(+ TIMEv(IxIl)i Pr [(STEPSS (xz)) > t] =

TIMEV (xl)Dz
l'(|x|) +±pi(i-) Pr S.(x,z)i > t =

M (X, Z)+ i '(xl)

5.2.2 Composition of Precise ZIC

SEQUENTIAL COMPOSITION. Whereas the standard definition of ZIC only talks
about a single execution between a prover and a verifier, Goldreich and Oren [30]
have shown that the standard definition of ZIC (see Definition 8) in fact is closed

5.3. PRECISE PROOFS OF KNOWLEDGE

under sequential composition. That is, sequential repetitions of a ZIC protocol
results in a new protocol that still remains ZKC.

We observe that the exactly the same proof as was used by Goldreich and Oren
[30] can by used to show that the protocol resulting from sequentially repeating a
precise ZIC also is precise a ZKI proof (albeit with slightly worse precision).

Lemma 3 (Sequential Composition Theorem). Let (P, V) be a perfect/statistical/
computational ZIC with precision p interactive proof (or argument) for the
language L E K~P. Let Q(n) be a polynomial, and let (PQ, VQ) be an interactive
proof (argument) that on common input x E {0, 1 }n proceeds in Q(n) phases,
each on them consisting of an execution of the interactive proof (P, V) on
common input x (each time with independent random coins). Then (PQ, VQ) is an
perfect/statistical/computational Z/C interactive proof (argument) with precision
pQ(n, t) = O(Q(n)p(n, t))

PARALLEL COMPOSITION. Goldreich and Krawczyk [28] (see also Feige and
Shamir [24]) show that the standard notion of ZK is not closed under parallel
repetitions. More precisely, they show that there exists ZIC proofs, that have
the property that a malicious verifier participating in 2 parallel (i.e., simultaneous
and synchronized) executions of the same protocol in fact can recover the whole
witness to the statement proved.

We observe that the protocol of Feige and Shamir, when instantiated with the
corresponding precise ZKC protocols (as we construct in Chapter 6) suffices to
show that also the notion of precise ZKC is not closed under parallel repetition.

5.3 Precise Proofs of Knowledge

We define our notion of a precise proof of knowledge. Intuitively we say that
(P, V) is a proof of knowledge with precision p, if there for every adversary prover
P' exists an extractor E such that:

1. Given any joint-view (viewp', viewv) of an execution between P' and V
on common input x, it holds that E on input only the view viewp, outputs
a valid witness for x E L, if viewv is a view where V is accepting.

2. Given any view viewp, containing a proof of the statement x, it furthermore
holds that the worst-case running-time of E on input viewp, is smaller than
p(lx , t) where t denotes the actual running-time of P' in the view viewp,.

More precisely,

Definition 18 (Precise Proof of Knowledge). Let L be a language in A/p, RL a
witness relation for L, (P, V) an interactive proof (argument) system for L, and
p : N x N -- N a monotonically increasing function. We say that (P, V) is
a perfectly-sound proof of knowledge with precision p for the witness relation
RL, if for every probabilistic interactive machine P', there exists a probabilistic
algorithm E such that the following conditions hold:

CAPTURING KNOWLEDGE PRECISELY

1. For every x,z E {0,1}*,

Pr [(viewp,,viewv) +- P.(x,z)+- Vo(x)

OUTv(viewv) 1 A E(viewp,) V RL()] = 0

2. For every view viewp, which contains the view of a proof of the statement
x and every sufficiently long r E {0, 11* it holds that

STEPSEr(viewp,) • p(xl, STEPSp, (viewp,))

We refer to an algorithm E as above as a precise extractor, or as an extractor
with precision p.

STATISTICALLY/COMPUTATIONALLY SOUND PRECISE PROOFS OF KNOWL-

EDGE. As in the case of statistically-sound expected proofs of knowledge,
we obtain the notion of a statistically-sound precise proof of knowledge by
exchanging condition 1 in Definition 18 for the following condition:

1'. There exists some negligible function p(.) such that for every x, z E
{0, 1}*,

Pr [(viewp,viewv) + P.(x,z) + V(Z)

OUTv(viewv) = 1 A E(viewp,) RL(x)] (JxI)

We obtain the notion of a computationally-sound precise proof of knowledge
by furthermore adding the restriction that P' is a probabilistic polynomial-time
machine.

5.4 Emulatable Precise Proofs of Knowledge

We present a somewhat different notion of a proof of knowledge, called a
emulatable precise proof of knowledge. This notion seems more suitable for many
cryptographic applications (and in particular ours). As we elaborate in Section
5.4.1 this notion combines in a rather natural way the notions of precise ZIC and
precise proofs of knowledge.

In essence, we require that given an alleged prover P' and an alleged input
x E L, (a) the joint view of P' and the honest verifier V on input x, and (b) a
valid witness for x E L whenever V's view is accepting, can be simultaneously
reconstructed in a time that is essentially identical to that taken by P' in the
reconstructed view.

We mention that although the definition of an emulatable precise proofs of
knowledge bears certain similarities with Lindell's definition of witness extended
emulation [42], it differs in several crucial ways, as will be discussed shortly.

5.4. EMULATABLE PRECISE PROOFS OF KNOWLEDGE

Definition 19 (Emulatable Precise Proof of Knowledge). Let L be a language in
A/P, RL a witness relation for L, (P, V) an interactive proof (argument) system
for L, and p : N x N --+ N a monotonically increasing function. We say that
(P, V) is a perfectly-sound emulatable proof of knowledge with precision p for the
witness relation RL, if for every probabilistic interactive machine P', there exists
a probabilistic algorithm E such that the following conditions hold:

1. The following two ensembles are identical

a) {P.(x, z) +-+ V.(x)},Z{o,1

b) ((viewpI,viewy,w) +- E.(x,z) : (viewp, viewv) }

2. For every x, z E {0, 1}*,

Pr [(viewpr, viewv, w) -- E.(x,z)

OUTv(viewv) = 1 A (x, w) RL] = 0

3. For every x,z E {0, 1}*, and sufficiently long r E {0, 1}*, given
(viewp,, viewy, w) = Er(x, z), it holds that

STEPSEr(x,z) 5 p(IxJ, STEPSp, (viewp,))

We refer to an algorithm E as above as a precise emulator-extractor, or as an
emulator-extractor with precision p.

STATISTICALLY/COMPUTATIONALLY SOUND EMULATABLE PRECISE PROOFS

OF KNOWLEDGE. We obtain the notion of a statistically-sound emulatable precise
proof of knowledge by exchanging condition 1 in Definition 19 for the following
condition:

2'. There exists some negligible function (-.) such that for every x, z E
{0, 1}*,

Pr [(viewp, viewyv,w) - E.(x,z) :

OUTv(viewv) = 1 A (x, w) RL] • t(Ix)

We obtain the notion of a computationally-sound emulatable precise proof
of knowledge by furthermore adding the restriction that P' is a probabilistic
polynomial-time machine.

REMARK: We note that, besides the precise reconstruction requirement (which
is the principal difference), our definition differs also from that of [42] in that

CAPTURING KNOWLEDGE PRECISELY

the latter only requires reconstruction of the view of the Verifier. By requiring
reconstruction of the joint view of the Prover and the Verifier, we make it easier
to handle proofs of knowledge as a sub-protocol: Whenever, in a larger protocol,
algorithm A gives a proof of knowledge to B about x E L, we can syntactically
replace their views with the output of our extractor on inputs A and x, without
altering in any way their distributions. Furthermore, our extractor will return, on
the side, a valid witness for x E L, whenever the view of B is accepting.

5.4.1 ZIC for the Prover and Emulatable Proofs of Knowledge

In this section we show a natural relation between precise ZKC, precise proofs
of knowledge and emulatable precise proofs of knowledge. More precisely, we
present a lemma showing that precise proofs of knowledge protocols that are
precise ZKI for the Prover (i.e., the prover learns precisely nothing from the
verifier) are emulatable precise proofs of knowledge. This lemma will turn out
to be very useful to us since "natural" proofs of knowledge protocols (and in
particular the ones we consider) have the property of being precise ZKC for the
prover.

Definition 20 (Precise ZIC for the Prover). Let (P, V) be an interactive proof
(argument) system and p : N x N --- N a monotonically increasing function. We
say that (P, V) is ZK for the prover with precision p if, for every ITM P', there
exists a probabilistic algorithm S such that the following two conditions holds:

1. The following two ensembles are identical:

a) P.(x,z) -+ V .(x)},zE0,1

b) S.(x, z)IxzE{O,1}

2. For every x, z E {0, 1}*, and sufficiently long r E {0, 1}*

STEPSS,(x,z) _ p(xJ , STEPSp, (viewl [Sr (, z)])

REMARKS: We point out that the definition of "precise ZKC for the prover" differs
from the definition of "precise ZIC" in that we require the simulator to output
the joint view of both the prover and verifier. Note that this difference becomes
insubstantial if we assume that the verifier V reveals all its random coins in the
last round - then the view of V can be reconstructed from the view of the P' in
time that is proportional to the running time of P'. Although this assumption is
without loss of generality, we prefer to present the definition of "precise ZKC for
the prover" in its current form to emphasize the need for the simulator to output
also the view of the verifier.

Lemma 4. Let (P, V) be a perfectly-sound (statistically-sound/computationally-
sound) proof of knowledge with precision pl(n, t) for the witness relation

5.4. EMULATABLE PRECISE PROOFS OF KNOWLEDGE 63

RL. If (P, V) is ZKC for the prover with precision p2(n, t), then (P, V) is a
perfectly-sound (statistically-sound/computationally-sound) emulatable proof of
knowledge with precision 0(1) - [p (n, t) + p2(n, t)] for the witness relation RL.

Proof: For a given prover P', consider the "precise ZKC for the prover" simulator
S, and the extractor E. We construct an emulator-extractor E 2 for P'. E2 on input
x, z' proceeds as follows:

1. (viewp, viewv) <- S.(x,z).

2. w +- E.(viewp,).

3. Output ((viewpf, viewy), w).

It directly follows from the validity of S and E that the output of E2 is correctly
distributed, and that its precision is 0(1) - [p(n, t) + p2 (n, t)].

6
Existence of Precise ZK

In this chapter we present our main results regarding the existence of precise ZKC
proof and arguments.

It should be appreciated that without any trusted set-up assumptions, none of
the known zero-knowledge protocols and simulators satisfy our precise simulation
requirement. In particular, in Section 6.5, we show that precise zero-knowledge
proofs systems with black-box simulators only exists for "trivial" languages. (In
fact, our impossibility results is even stronger; we also rule out the possibility
of proof systems for languages in BPP where the running time of the honest
verifier is significantly smaller than the time needed to decide the language.) Since
all classical protocols and simulators are black-box this result shows that none
of these simulators satisfies our precise ZKC requirements (even for the weakest
notion of computationally precise ZAC). It can furthermore be verified that also
known non-black-box simulator techniques (due to Barak [2]) are insufficient. We
provide more details on such simulations in section A. 1.1

We however manage to prove the existence of Precise Z)C protocols in a
variety of settings under standard complexity assumptions. Namely, we prove
the following.

Theorem: Assume the existence of k (n)-round statistically-hiding commitments.
Then, every language in N/P has:

1. an w(k (n))-round computational ZFC proof with polynomial precision.

'Very briefly, the reason why the non black-box simulator of Barak [2] (and variants thereof)
is not precise arises from the fact that the simulator will always commit to the whole auxiliary tape
of the verifier (which might be very long), while the verifier with high probability might read only
a very small portion of it. That is, the running time of the simulator will always be "large", while
the verifier might run very fast with high probability. In fact, such a non-black box simulator is not
even sufficient to meet our notion of expected precise ZIC.

EXISTENCE OF PRECISE ZK

2. an w (k (n) log n)-round computational ZK proof with linear precision.

3. an k(n) + w(l1)-round statistical ZIC argument with polynomial precision.

4. an k((n) + w(log n) -round statistical ZIC argument with linear precision.

Furthermore, every language in IP has a computational ZKC proof with linear
precision.

Theorem: Assume the existence of one-way functions. Then there exist an w(1)-
round computational ZIC argument with polynomial precision for all languages
in A/P. There also exists an w(log n)-round computational ZKC argument with
linear precision for all languages in A/P.

We also prove that statistically precise Z/C proofs exist unconditionally for
some notable non-trivial languages. In particular,

Theorem: There exist an w(1)-round statistical ZKI proofs with polynomial
precision for Graph Non-isomorphism and Quadratic Non-residuosity. There also
exist w(log n) rounds statistical ZK: proofs with linear precision for Graph Non-
isomorphism and Quadratic Non-residuosity.

The last result can be generalized to provide statistically precise ZKI proofs
for a restricted version of the Statistical Difference problem, SD1/ 2 [55, 46].
(The general, i.e., non-restricted, Statistical Difference problem is complete for
statistical ZK [55])

OUR NEW SIMULATION TECHNIQUE. To prove our positive results, while
avoiding our impossibility ones, we rely on a simulation that counts the number
of steps taken by a verifier, and times out the verifier when it runs for too long.
Notice that both these operations entail a non-black box simulation, even if in a
minimal sense.

On a very high level (and grotesquely oversimplified) the idea behind our
simulation technique is to let the simulator learn (in a very weak sense) the
running-time distribution of the verifier, and then exploit it to perform a precise
simulation. The main obstacle that arises is that the "learning"-phase must be
done very efficiently, i.e., the simulator cannot take (much) more time than the
verifier it is sampling.

OVERVIEW. In Section 6.1 we provide an overview of our construction paradigm.
Sections 6.2, 6.3, 6.4 are devoted to the actual constructions. In Section 6.5 we
demonstrate our black-box lower bounds.

EXISTENCE OF PRECISE ZK

6.1 A Common Paradigm

Our constructions of precise (statistical or computational) ZIC (proof/argument)
protocols (with polynomial or linear precision) essentially proceed in two steps:
first, we construct a witness-indistinguishable (WIT) [23] precise proof of knowl-
edge, and then use it to yield a corresponding precise ZK protocol. All main
technical difficulties arise in the first step. The second one can sometimes be
obtained as easily as by replacing a standard proof of knowledge, in a prior ZK:
construction, with our precise one.

We actually obtain our precise proofs of knowledge in an essentially uniform
way. We start by showing some key knowledge precision lemmas. Each such
lemma shows that a WI proof of knowledge (P, V), when repeated a sufficient
number of times m, yields a WI precise proof of knowledge, as long as (P, V)
satisfies special soundness [15]. 2 (Different lemmas state that different number of
repetitions yield different levels of precision-the higher the number the better the
precision.) Following the original work of Richardson and Kilian [53], (see also
[40, 52]), repetition of a special-sound proof of knowledge provides the extractor
the ability to compute a valid witness in polynomial time, even in a presence
of multiple concurrent executions. In our application, we do not have to worry
about concurrency, but must instead provide a much tighter running time for the
extractor: "polynomial time" is not good enough.

On a high-level our extractor proceeds as follows on input a view of the prover
P'. Initially, the extractor feeds the view to P' and lets P' run undisturbed (letting
him take as much time as he pleases) in each of the m sub-protocols. While doing
this, the extractor keeps track of the number of computational steps P' takes in
each of the sub protocols. Soon after, the extractor will attempt to compute a
witness by rewinding each of the m sub-protocols a fixed (i.e., independent of
the prover P' and in particular its running time) number of times. Moreover, our
extractor aborts each such rewinding as soon as P's running time exceeds its
running time in the first execution of that very sub-protocol. When we succeed in
extracting a witness in this fashion, we automatically guarantee that the running
time of the extractor is close to that of P' in its first execution, and thus close
to the running-time P' on the view received as input. The added difficulty of
our approach, however, consists in proving that such constrained extraction will
essentially always succeed.

6.2 Knowledge Precision Lemmas

We provide four different "knowledge precision" lemmas showing how to trans-
form standard proof of knowledge protocols with certain specific features into
precise proofs of knowledge. All our transformations are very simple and follow

2Despite the name, the quite standard property that a valid witness can be readily
computed from any two executions having the same first message but different second
messages.

6.2. KNOWLEDGE PRECISION LEMMAS

the same paradigm: an "atomic" standard proof of knowledge (with specific
properties) is repeated sequentially an appropriate number of time.

More precisely, we show that,

1. w(1) sequential repetitions of, so called, special-sound proofs of knowledge
constitute statistically-sound proofs of knowledge with polynomial preci-
sion.

2. w(log n) sequential repetitions of, so called, special-sound proofs of knowl-
edge with linear extraction constitute statistically-sound proofs of knowl-
edge with linear precision.

3. w(1) sequential repetitions of, so called, computationally special-sound
proofs of knowledge constitute computationally-sound proofs of knowledge
with polynomial precision.

4. w(log n) sequential repetitions of, so called, computationally special-sound
proofs of knowledge with linear extraction constitute computationally-
sound proofs of knowledge with linear precision.

We furthermore show that WI of the underlying atomic proof of knowledge
protocols is preserved under all of the above transformations (this follows easily
since the transformation only consists of sequential repetition of the underlying
protocol and since WI is closed under composition [23]).

Before we state our lemmas we start by formally specifying what we mean
by "sequential repetition". Given a function m, we say that the m-sequential
repetition of (P, V) is an interactive proof system (P, V) defined as follows: on
common input x E {0, 1}n, (P, V) proceeds in m(n) phases, each on them
consisting of an execution of the interactive proof (P, V) on common input x
(each time with independent random coins). V' finally accepts if V accepted in
all m(n) executions of (P, V).

6.2.1 Statistical Knowledge Precision Lemmas

We start by recalling the notion of special-sound proofs [15]. (Looking ahead,
we mention that the protocol of Blum is known to be special-sound.) Intuitively,
a three-round public-coin interactive proof is said to be special-sound, if a valid
witness to the statement x can be readily computed from any two accepting proof-
transcripts of x which have the same first message but different second messages.
More generally, a k-round public-coin interactive proof is said to be special-sound
if the k- 1'st round is a verifier-round i (i.e., a round where the verifier is supposed
to send a message) and a valid witness to the statement x can be readily computed
from any two accepting proof-transcripts of x which have the same first k - 2
messages but different k - 1'st message.

We proceed to a formal definition. We start by introducing some notation. Let
S= (mi, .., m), T2 (m, .., m) be transcripts of a k-round protocol. We

EXISTENCE OF PRECISE ZK

say that T1 and T2 are consistent if the first k - 2 messages are the same, but the
k - 1'st message is different, i.e, m1 = m2 for j < k - 1 and m_1, $ m_ 1.3 3k_

Let ACCEPTV denote the predicate that on input a statement x and a k-round
transcript of messages T = mi, m2, .., mk outputs 1 if and only if V accepts in
that transcript (recall that our definition of public-coin protocols requires that the
verifier determines whether to accept or not by applying a deterministic predicate
to the transcript of all messages in the interaction.).

Definition 21 (Special-sound Proof). Let (P, V) be a k-round public-coin inter-
active proof for the language L .AE P with witness relation RL. We say that
the protocol (P, V) is special sound with respect to RL, if the k - 1'st-round
of (P, V) is a verifier-round and there exits a polynomial-time extractor machine
X, such that for all x E L and all consistent transcripts T1, T2 it holds that if
ACCEPTV(x, T1) = 1, ACCEPTV(x, T1) = 1 then X(T, T2 ,x) E RL(X).

In the sequel we often employ the expression verifier challenge (or simply
challenge) to denote the message sent by the verifier in the k - 1'st round.

We will require the use of special-sound proofs for which extraction can be
performed "very" efficiently. We say that (P, V) is special-sound with linear
extraction, if the predicate ACCEPTV can be computed in linear time (in its inputs
length) and the extractor X in definition 21 has a linear running time.

REMARK: Note that every special-sound proof can be turned into a special-
sound proof with linear precision by "harmless" padding - the prover can always
prepend a "dummy" string to its first message. Furthermore, note that this padding
preserves properties such as WZ of the original protocol.

It can be seen that all special-sound interactive proofs are proofs of knowledge
[15, 16]. We here show that appropriate sequential repetition of a special-sound
proof results in an precise proof of knowledge.

Linear precision using w(log n) rounds

We show that w(log n) sequential repetitions of a special-sound proof with linear
extraction, yields a statistically-sound proof of knowledge with linear precision.
More precisely, if assuming that a Turing machine can emulate another Turing
machine at no cost, then this extraction will take at most 2t + poly(n) steps, on
input a view where the prover takes t steps.

Lemma 5 (Statistical Knowledge Precision Lemma -Linear Precision). Let (P, V)
be a special-sound proof system with linear extraction for the language L, with
witness relation RL. Let m(n) = w(log n), and let (P, V) denote the m-
sequential repetition of (P, V). Then (P, V) is a statistically-sound proof of
knowledge with linear precision, for the language L with witness relation RL.
If, furthermore (P, V) is (statistical/perfect) WI, then (P, V) is so as well.

Proof: Let 1 = l(n) denote the length of the verifier challenge in an execution
of (P, V) on common input x E {0, 1}n . We describe an extractor E that uses

6.2. KNOWLEDGE PRECISION LEMMAS

"almost" black-box access to the malicious prover P'. On a high-level, E on
input a view viewp, of an execution on common input x performs the following
two steps:

1. In the first step E feeds the view viewp, to P' while recording the number
of computational steps required by P' to answer each query.

2. In the second step E uses the running-time statistics collected in the first
step to attempt extracting a witness. This is done by rewinding P' a fixed
number of times for each verifier challenge (in fact once will be sufficient),
but in each rewinding cutting the execution of P' whenever P' exceeds
the actual number of computational steps used by P' to answer the same
challenge in the view viewp,.

Note that both of the above step require a non-black box use of P' (even if in a
quite minimal sense). In particular, we use the code of P' to learn the number of
computational steps that P' uses to answer each challenge. 3

We proceed to a more formal description of E. E proceeds as follows on input
a view viewp, of an execution on common input x.

1. E checks (by applying the predicate ACCEPT) if the verifier V rejects any
of the m proofs in the view view' . If so, it halts outputting 1.

2. Let (rl, r2, .. , rm) denote the verifier challenges in each of the m sequential
repetitions of the atomic protocol (P, V), in the view p. E starts by feeding
the view viewp, to P', while at the same time keeping track of the number
of computational steps that P' requires to answer each challenge ri. Let
ti denote the number of computational steps used by P' to answer the i'th
challenge (i.e., the challenge ri of the i'th atomic protocol)

3. For each repetition i { 1, .., m} of the atomic protocol, E performs the
following extraction procedure.

a) E rewinds P' to the point where the i'th challenge is supposed to be
sent. (This results in the same state as if restarting P' and feeding it
the viewp, up until the message ri is supposed to be sent.)

b) E feeds P' a new truly random challenge ri +•- {0, 1}', and lets P'
run for at most ti steps to compute an answer.

c) If an accepting answer has been obtained within ti steps, and if
the new challenge r' is different from ri, E computes a witness w
by applying the special-soundness extractor X to the two obtained
accepting transcripts (since now two consistent and accepting tran-
scripts of the atomic protocol (P, V), have been obtained) and halts
outputting w.

3As far as we know this is the first non black-box reduction that uses the code of the adversary
to actually "learn" something about the adversary. Previous non-black box reductions (c.f. [2]) only
use the code of the adversary in order to "diagonalize" against it.

EXISTENCE OF PRECISE ZK

4. If the extraction did not succeed in any of the m repetitions of the atomic
protocol, E outputs I.

RUNNING TIME OF E. Let ti denote the number of computational steps required
by P' to provide an answer to the challenge in the i'th atomic protocol, in the
view viewp,. Furthermore, let t denote the total running time of P' in the same
view. Since for each atomic protocol i, E only rewinds P' once, and this time cuts
the execution after ti steps, it follows that attempted extraction from all m atomic
protocols requires running P' for at most

m

t + E t < 2t
i=1

steps. Since we assume that emulation of a Turing Machine by another Turing
Machine can be done with only linear overhead, and since (by the special-
soundness with linear extraction property) both checking if a transcript is accept-
ing, and extracting a witness from two accepting transcripts, can be done it time
proportional to the length of the transcript, we conclude that the running time of
E is a linear function of t.

SUCCESS PROBABILITY OF E. We show that the probability that the extraction
procedure fails, on input a uniformly chosen view of P', viewp, of an execution
between P'(z) and V on common input x E {0, 1}n , is a negligible function in n,
for any z {0, 1}1*.

Towards this goal we first analyze the probability that extraction fails for a
singe instance of the atomic protocol. We assume without loss of generality that
P' is a deterministic machine (this is w.l.o.g. since P' could always obtain its
random tape as part of its auxiliary input z).

Consider any i E [m]. We start by introducing some notation:

1. Given any view view p, let viewip, denote the prefix of the view up until
the point where P' is about to receive its i'th challenge.

2. Given any view viewp,, let steps(viewp,, a) denote the number of steps
P' takes to correctly answer the i'th challenge, when first feed the view
viewS,,, and then the i'th challenge a; if the answer by P' is incorrect (i.e.,
if the proof is rejecting) we set steps(viewp,, a) = oo

Note that extraction (by E, on input a view viewp,) from the i'th atomic protocol
only fails if either of the following happens, letting ri denote the i'th challenge in
viewp,, and ri the new challenge sent by E:

1. ri -= r

2. steps(view ,,ri) < steps(viewi ,,r/)

6.2. KNOWLEDGE PRECISION LEMMAS

We start by noting that only for a fraction

21
= 2-I

221

of challenges ri, r' E {0, 1}1, it holds that ri = r'. Secondly, note that for any
pair of challenges a, b E {0, 1}1, a $ b and any prefix view v it holds that if
extraction fails when ri = a, r' = b, and viewS,, = v, then extraction will succeed
when ri = b, r' = a, and view', = v. Thus, any pair of challenges (a, b)
has a "companion" pair (b, a) such that at most one of the pairs will result in a
failed extraction. Furthermore, any two pairs (a, b), (c, d) that are not each others
companion, have disjoint companion pairs. We conclude that for any prefix view
v, the number of pairs (a, b) E {0, 1121, such that extraction succeeds if ri = a,
r = b and view,, = v is

221 - 21

2

It thus holds that the fraction of pairs (a, b) E {0, 1}21, such extraction fails if
ri = a, ri = b and view, = v is

221 - (221 - 21)/2 1 2-1-1
221 2

Since for any two pairs (a,b), (c,d) E {0, 1}21, and any prefix view v, the
probability (over a random input view viewp, and the internal random coins of
E) that ri = a, r' = b and view',, = v (where ri denotes the i'th challenge in
viewp,, and ri the new challenge sent by E) is the same as the probability that
ri = c, ri = d, and viewS,, = v we have that the probability that extraction fails
from the i'th executions is

1 +21-1
2

We proceed to show that the overall failure probability of attempted extraction
from all executions i E [m] is negligible. Note that by the definition of (P, V)
it holds that the distribution of the i'th challenge ri sent by V is independent of
the messages sent by V in prior executions. It also holds that the distribution of
the new challenge ri sent by E is independent of all previously sent challenges,
as well as the view it receives. We conclude that the failure probability for any
execution i is independent of the failure probability of all other executions. Thus,
the overall failure probability is bounded by

- 2-1-1) (3) w(logn)

WITNESS INDISTINGUISHABILITY. It follows directly from the fact that WZ is
closed under sequential composition [23] that (P', V') is WZ if (P, V) is so. N

EXISTENCE OF PRECISE ZK

Polynomial precision using w(1) rounds

We proceed to show that w(1) sequential repetitions of a special-sound proof (with
negligible soundness error) yields a statistically-sound proof of knowledge with
precision p(n, t) where p is a polynomial in both n and t. More precisely, if
assuming that a Turing machine can emulate another Turing machine at no cost,
then this extraction will take at most nt + poly(n) steps on input a view where the
prover takes t steps. If, furthermore, the special-sound proof has the property that
any prover is required to take at least Ixl steps to make the verifier accept a proof
of x (e.g., it needs to communicate at least Jxi bits) it additionally holds that the
resulting protocol is ZIC with polynomial precision.

Lemma 6 (Statistical Knowledge Precision Lemma - Polynomial Precision). Let
(P, V) be a special-sound proof system for the language L, with witness relation
RL. Let m(n) = w(1), and let (P, V) denote the m-sequential repetition of
(P, V). If in the execution of (P, V) on common input x the length of the verifier
challenge is w(log(lxl), and V always rejects unless it receives less than ixl bits
from the prover, then (P, V) is a statistically-sound proof of knowledge with
polynomial precision, for the language L with witness relation RL. If, furthermore
(P, V) is (statistical/perfect) WI, then (P, f) is so as well.

Proof: Let 1 = l(n) denote the length of the verifier challenge in an execution of
(P, V) on common input x E {0, 1}n . Again, we describe an extractor E that uses
almost black-box access to the malicious prover P'. The extractor E proceeds in
exactly the same way as the extractor in the proof of Lemma 5, with the only
exception that for each repetition i of the atomic protocol (P, V), E rewinds P'
n times (instead of only once) each time feeding it a new truly random challenge
r• , for j E [n].

For convenience, we repeat a full description of E. E proceeds as follows on
input a view viewp, of an execution on common input x E {0, 1}n.

1. E checks (by applying the predicate ACCEPT) if the verifier V rejects any
of the m proofs in the view view' . If so, it halts outputting 1.

2. Let (rl, r2, .., rm) denote the verifier challenges in each of the m sequential
repetitions of the atomic protocol (P, V), in the viewp,. E starts by feeding
the view viewp, to P', while at the same time keeping track of the number
of computational steps that P' requires to answer each challenge ri. Let
ti denote the number of computational steps used by P' to answer the i'th
challenge (i.e., the challenge ri of the i'th atomic protocol)

3. For each repetition i E {1, .., m} of the atomic protocol, E iterates the
following extraction procedure n times.

a) E rewinds P' to the point where the i'th challenge is supposed to be
sent.

b) In the j'th iteration, E feeds P' a new truly random challenge r 'j)
+

{0, 1}1, and lets P' run for at most ti steps to compute an answer.

6.2. KNOWLEDGE PRECISION LEMMAS

c) If an accepting answer has been obtained within ti steps, and if the
new challenge rj) is different from ri, E computes a witness w
by applying the special-soundness extractor X to the two obtained
accepting transcripts (since now two consistent and accepting tran-
scripts of the atomic protocol (P, V), have been obtained) and halts
outputting w.

4. If the extraction did not succeed in any of the m repetitions of the atomic
protocol, E outputs I.

RUNNING TIME OF E. Let ti denote the number of computational steps required
by P' to provide an answer to the challenge in the i'th atomic protocol, in the view
viewp,. Furthermore, let t denote the total running time of P' in the same view.
Since for each atomic protocol i, E only rewinds P' n times, and each time cuts
the execution after ti steps, it follows that attempted extraction from all m atomic
protocols requires running P' for at most

m

t + uZti < (n + 1)t
i=1

steps. Since we assume that emulation of a Turing Machine by another Turing
Machine can be done with only linear overhead, and since both checking if a
transcript of (P, V) is accepting, and extracting a witness from two consistent
accepting transcripts of (P, V), can be done it time that is polynomial to the length
of the transcript, we conclude that the running time of E is at most

nt + poly(n)

Finally since P' must communicate at least n bits in order to convince V we
conclude that t > n, and thus the running-time of E is a polynomial function of t.

SUCCESS PROBABILITY OF E. We show that the probability that the extraction
procedure fails, on input a uniformly chosen view of P', viewp, of an execution
between P'(z) and V on common input x E {0, 1}n , is a negligible function in n,
for any z E {0, 1}*.

As in the proof of Lemma 5 it suffices to analyze the probability that extraction
fails for a singe instance of the atomic protocol. Again, we assume without loss
of generality that P' is a deterministic machine.

Consider any i E [m]. We use the same notation as in the proof of Lemma
5: Given any view viewp,, let view,, denote the prefix of the view up until the
point where P' is about to receive its i'th challenge. Given any view view p, let
steps(viewp,, a) denote the number of steps P' takes to correctly answer the i'th
challenge, when first feed the view view,,, and then the i'th challenge a.

Note that extraction (by E, on input a view viewp,) from the i'th atomic
protocol only fails if either of the following happens (letting ri denote the i'th
challenge in viewp,, and r j) the j'th new challenge sent by E):

EXISTENCE OF PRECISE ZK

1. ri =) for all j E [n]

2. steps(view p,, ri) < steps(viewzp,, r) for all j E [n]

We start by noting that the fraction of distinct challenges ri E {0, 1}', (r, .., rt) E

{O, 1}1 t, is

21 - 1 21 - 2 21 - n

21 21 - 21
1 2 n

(1- -)(1- ,) ... •)>21 21 21

(1n-)n = (1 -)n = 1- l(n)
21 n (1)

where /t is a negligible function in n. In the sequel we therefore focus only on
distinct sets of challenges ri E {O, 1 ', (r,, r (n)) {0, 1}nt.We show that
extraction fails only for a fraction i of such challenges.

Towards this goals, we define an equivalence class over distinct sets of
challenges:

* (a,(a('), .., a(n))) and (b, (b(1), .., b(n)) are said to be in the same class if

a = b, and (a(), .., a(n)) is a permutation of (b(), .., b(n))

Note that for all challenges (a, (a('), .., a(n))) and (b, (b(1), .. ,b(n))) which are

in the same class and any prefix view v it holds that if extraction fails (succeeds
resp.) when r = a, r) = a() for j E [n], and viewp, = v, then extraction

also fails (succeeds resp.) when ri = b, r = b) for j E [n], and view , = v.
We conclude that either all challenges (a, a) that belong to a class will result in a
successful extraction, or all of them will result in a failed extraction. Furthermore,
note that the number of elements in every class is the same.

Now, note that for every class4 (a,a(1), .., a(n))) and every prefix view v

such extraction fails when ri = a, r) = a() for j E [n], and viewp, = v,
there exists n other distinct classes for which extraction will succeed, namely

(Note that all the above classes indeed are distinct since we only consider
challenges a, (a(1), .., a(n) that are all distinct.) Thus, every class has n "com-
panion" classes such that at most one of them will result in a failed extraction.
Furthermore, it holds that any two distinct classes that are not each others
companions have disjoint companion classes; this follows from the fact if
two classes (a, (a(1), .. , a(n)) and (b, (b(), .. , b(n))) have the same companion

(c,(c('),..,c(n))). then the unordered set {b,b(1),..,b (n)} must be equal to

4We slightly abuse of notation and denote the class by an element that belongs to it.

6.2. KNOWLEDGE PRECISION LEMMAS

the unordered set {a,a('),..,a(")}, which means that (a, (a(1), ..,a(n)) and

(b, (b), .. , b(n))) are each others companions.

We conclude that for any prefix view v, the fraction of distinct challenges
a, (a(1), .., a(n)) for which extraction fails if ri = a, r() = a(j) for j E [n] and
view'p, = v is

1
n+l

This in turn means that the fraction of all challenges for which extraction fails
is

1 - (1 -p(n))1- I=
n+1

1 p(n) 1
+ p((n) I - + Mu(n)n+l n+l n+l

As in the proof of lemma 5, we conclude that the probability (over a random
input view viewp, and the internal random coins of E) that extraction fails in i'th
execution

1
n+l

Again, as in the proof of lemma 5, this implies that the overall failure probability
is bounded by

(1 m 2 w(l)
n+1 (n+1)

which is negligible in n.

WITNESS INDISTINGUISHABILITY. As in the proof of lemma 5 it directly follows
that (P', V') is WZ if (P, V) is so. M

6.2.2 Computational Knowledge Precision Lemmas

We show how to obtain precise computational proofs of knowledge by sequential
repetition of a so called computationally special-sound proof. (Looking ahead,
we mention that the protocol of Blum when instantiated with statistically hiding
commitments is known to be computationally special-sound.)

We start by formally defining computational special-soundness. Recall
the definitions of ACCEPT, consistency from Section 6.2.1. Furthermore, let
CONSISTENT denote the predicate that on input two transcripts outputs 1 if and
only if the transcripts are consistent.

Definition 22 (Computationally Special-sound Proofs). Let (P, V) be a k-round
public-coin interactive proof for the language L E A/P with witness relation
RL. We say that the protocol (P, V) is computationally special-sound with
respect to RL, if the k - 1'st-round of (P, V) is a verifier-round and there exits a

EXISTENCE OF PRECISE ZK

polynomial-time extractor machine X, and a negligible function L, such that for
all probabilistic polynomial-time machine G

ACCEPTV(2, T1) = 1
ACCEPTV(X, T2) = 1

CONSISTENT(T1 ,T2)= 1
X(x, T1,T 2) ý RL(X)

If, furthermore, the predicate ACCEPTv can be computed in linear time and X has
a linear running time, we say that (P, V) is computationally special-sound with
linear extraction.

We show the following lemmas:

Lemma 7 (Computational Knowledge Precision Lemma - Linear Precision). Let
(P, V) be a computationally special-sound proof system with linear extraction for
the language L, with witness relation RL. Let m(n) = w(log n), and let (P, V)
denote the m-sequential repetition of (P, V). Then (P, V) is a computationally-
sound proof of knowledge with linear precision, for the language L with witness
relation RL. If, furthermore (P, V) is (statistical/perfect) WI, then (P, V) is so
as well.

Lemma 8 (Computational Knowledge Precision Lemma - Polynomial Precision).
Let (P, V) be a computational special-sound proof system for the language L,
with witness relation RL. Let m(n) = w(1), and let (P, V) denote the m-
sequential repetition of (P, V). If in the execution of (P, V) on common input x
the length of the verifier challenge is w(log x I), then (P, V) is a computationally-
sound proof of knowledge with polynomial precision, for the language L with
witness relation RL. If, furthermore (P, V) is (statistical/perfect) WI, then
(P, r) is so as well.

Proof of Lemma 7 and Lemma 8: Both lemmas follow essentially directly from
the proofs of Lemma 6 and Lemma 5. The only point that needs to be addresses
it that the special-soundness extractor only is require to function properly when
it receives transcripts that have been generated by a polynomial-time machine.
Furthermore, this extractor might also fails (with some small probability).

However, since the definition of computationally-sound precise proofs of
knowledge only consider computationally-bounded malicious provers P' it fol-
lows that also the extractors constructed in Lemma 6 and Lemma 5 are polynomial-
time. We conclude that the probability that the special-soundness extractor fails to
output a valid witness on input two consistent and accepting transcripts that have
been generated by the extractors of Lemma 6 and Lemma 5 is negligible. By the
union-bound we thus get that the total failure probability also is negligible. This
concludes the proof of Lemma 7 and Lemma 8. M

6.3 Constructions of WI Precise Proofs of Knowledge

We provide constructions of WI precise proof of of knowledge for all languages
in .AP by combining our knowledge precision lemmas with known WI proof of

6.3. CONSTRUCTIONS OF WI PRECISE PROOFS OF KNOWLEDGE

knowledge protocols.

6.3.1 WZ Precise Proofs of Knowledge

By combining Lemma 6 and Lemma 5 with the Blum's proof system for
Hamiltonicity [9] (relying on [38] and [48]), we obtain:

Theorem 11. Assume the existence of one-way functions. Then, there exists an
(efficient-prover) w(1)-round WZ statistically-sound proof of knowledge for fNP
with polynomial precision. There also exists an (efficient-prover) w(log n)-round
WI statistically-sound proof of knowledge for NP with linear precision.

Proof:

POLYNOMIAL PRECISION CASE. Recall that Blum's proof system for Hamil-
tonicity [9] is a special-sound proof (in fact it was the first special-sound proof
system known for NP). Since the proof system is ZIC, it is also WI [23].
Furthermore, since WZ is closed under parallel composition [23], the parallelized
version of Blum's protocol (i.e., the protocol resulting from running n parallel
copies of the protocol) is also a WIZ special-sound proof, which additionally
has the property that the length of the verifier challenge in a proof of statements
x E {0, 1}n , is Qt(n). Furthermore, it trivially holds due to the construction of the
protocol that the verifier will always reject if the prover communicates less than
n bits. The first part of the theorem is obtained by combining the above proof
system with lemma 6.

LINEAR PRECISION CASE. It can be seen that, if using an appropriate
representation of of graphs, Blum's Hamiltonicity protocol is special-sound with
linear extraction. The second part of the theorem is obtain by combining this proof
system with lemma 5. 0

6.3.2 Statistical-WZ Precise Proofs of Knowledge

By instead combining Lemma 7 and 8 with a statistical ZKC variant Blum's
Hamiltonicity protocol (obtained by instantiating the commitments in Blum's
protocol with statistically hiding commitment), we instead obtain:

Theorem 12. Assume the existence of k(n)-round statistically-hiding commit-
ments. Then, there exists an (efficient-prover) w(k(n))-round statistical-WI
computationally-sound proof of knowledge for NP with polynomial preci-
sion. There also exists an (efficient-prover) w(k(n) log n)-round statistical-WI
computationally-sound proof of knowledge for NP with linear precision.

Proof: We start by observing that Blum's protocol when instantiated with
statistically-hiding commitments is both

1. computationally special-sound, and

2. statistically WZ

EXISTENCE OF PRECISE ZK

The rest of the proof is concluded in the same way as the proof of Theorem 11.
I

6.3.3 Emulatable Precise Proofs of Knowledge

Since all the above-constructed WI precise proofs of knowledge protocols are
public-coin, it directly follows that they are ZIC for the prover with precision
p(n, t) = O(t). The following theorems then follow from Theorem 1 I and 12 by
applying Lemma 4.

Theorem 13. Assume the existence of one-way functions. Then, there exists
an (efficient-prover) w(1)-round WI statistically-sound emulatable proof of
knowledge for NP with polynomial precision. There also exists an (efficient-
prover) w(log n)-round WI statistically-sound emulatable proof of knowledge
for NP with linear precision.

Theorem 14. Assume the existence of k(n)-round statistically-hiding commit-
ments. Then, there exists an (efficient-prover) w(k(n))-round statistical-WI
computationally-sound emulatable proof of knowledge for A/P with polynomial
precision. There also exists an (efficient-prover) w(k(n) log n)-round statistical-
WZ computationally-sound emulatable proof of knowledge for NP with linear
precision.

6.4 Constructions of Precise ZK

In this section we provide our constructions of Precise ZIC protocols. We
construct the following Precise ZKC protocols.

1. Statistically Precise ZIC Arguments for NAP (assuming statistically hiding
commitments).

2. Computationally Precise ZKC Arguments for A/P (assuming one-way
function).

3. Computationally Precise ZKC Proofs for A/P (assuming statistically hiding
commitments).

4. Computationally Precise ZIC Proofs for IP (assuming statistically hiding
commitments).

5. Unconditional Statistically Precise ZIC Proofs for specific languages such
as Graph Non-Isomorphism.

6.4.1 Precise ZK: Arguments for NP

We start by showing the following theorem :

6.4. CONSTRUCTIONS OF PRECISE ZK

Theorem 15. Assume the existence of k(n)-round statistically-hiding commit-
ments. Then, there exists an (efficient-prover) k(n) + w(1)-round statistically
precise ZKC argument with polynomial precision for every language in AFP. There
also exists an (efficient-prover) k(n) + w(log n)-round statistically precise ZKI
argument with linear precision for every language in nT'.

Proof: We begin by constructing a ZKC argument with polynomial precision. This
protocol is then modified to obtain a ZKC argument with linear precision.

ZKI ARGUMENTS WITH POLYNOMIAL PRECISION. Recall the protocol of Feige-
Shamir. Their protocol proceeds in the following two stages, on common input a
statement x E {0, 1}n :

1. In Stage 1, the Verifier picks two random strings ri, r2 E {0, 1}n , and sends
their image cl = f(r), C2 = f(r 2) through a one-way function f to the
Prover. The Verifier furthermore provides a WZ proof of knowledge of the
fact that cl and c2 have been constructed properly (i.e., that they are in the
image set of f).

2. In Stage 2, the Prover provides a statistical-WI proof of knowledge of the
fact that either x is in the language, or (at least) one of Cl and c2 are in the
image set of f.

We obtain a statistical ZKI argument PolyPreciseStatZKArg with precision p(n, t),
where p is a polynomial in both n and t, by simply replacing the WI proofs
of knowledge used in Stage 1 of the protocol, with a WI emulatable proof of
knowledge with polynomial precision. If furthermore, the resulting protocol has
the property that V always reject before Stage 2 is reached unless the prover
has communicated less than Jxf bits (this for instance directly holds if w.l.o.g.
choosing a length preserving one-way function), the protocol has polynomial
precision.

More precisely, let f : {0, 1}n -- {0, 1}n be a one-way function and
let the witness relation RL', where ((x, x2), (yl, y2)) E RL' if f(Xl) = yl
or f(x 2) = Y2, characterize the language L'. Let the language L E AP'.
Protocol StatPolyPreciseZKArg for proving that x E L is depicted in Figure
6.1. Note that the protocol relies on the existence of one-way functions,
statistically-hiding commitments and a WZ emulatable proof of knowledge
with polynomial precision. However, since the existence of statistically-hiding
commitments, implies the existence of one-way functions, and since by Theorem
13, one-way functions imply the existence of an w(1)-round WZ emulatable
proof of knowledge with polynomial precision, we only require the existence
of statistically-hiding commitments. We conclude that the resulting protocol has
round complexity k(n) + w(1).

Proposition 3. Protocol StatPolyPreciseZKArg is a statistical ZKC argument with
polynomial precision.

Proof: Soundness and Completeness of the protocol follows directly from the
proof of Feige and Shamir [24] as protocol StatPolyPreciseZKArg is a particular

EXISTENCE OF PRECISE ZK

Figure 6.1: Statistical Z/C argument for M'P with polynomial precision

instantiation of their protocol. Let us turn to the precise ZIC property. The
simulator S for V' proceeds as follows:

1. The simulator S internally incorporates V' and follows the honest prover
strategy during the initial commit sent by V'. If V' send an invalid message
during the commitment, S halts outputting the view generated for V'

2. Let E denote the precise emulator-extractor for residual verifier V' after V'
has committed to f (recall that V' acts as a prover in Stage I of the protocol).

3. S runs the emulator-extractor E, obtaining a triplet (viewl, view2 , w' =

(ri, r')), where viewl denotes the view of V' (since V' is acting as a
prover).

4. If view2 contains a rejecting view, or if w' 0 R'(cl, c2), S outputs view1

and halts.

5. Otherwise, S performs the following steps:

a) S invokes an "internal" copy of V'.

b) S feeds the view view1 to V'.

PROTOCOL StatPolyPreciseZKArg

Common Input: an instance x of a language L with witness relation RL.

Auxiliary Input for Prover: a witness w, such that (x, w) E RL (x).

Stage 1:

V uniformly chooses rl, r2 E {0, 1}n .

V - P: cl = f (ri), c2 = f(r2).

V * P: a WI statistically-sound emulatable proof of knowledge with
polynomial precision of the statement

either there exists a value ri s.t cl = f(rl)
or there exists a value r2 s.t c2 = f(r 2)

The proof of knowledge is with respect to the witness relation R'L

Stage 2:

P • V: a statistical-WI argument of knowledge of the statement

either there exists values r', r' s.t either cl = f(r() or c2 = f(r').
orx E L

The argument of knowledge is with respect to the witness relation
RLVL' (C1, C '2) (r r, w) (r,r) RL'(C1,C2)Vw e RL(X)}.

6.4. CONSTRUCTIONS OF PRECISE ZK

c) S then interacts with V' following the honest prover strategy in Stage
2 of the protocol, using w' = (ri, r') as witness.

d) S finally outputs the view of V' and halts.

RUNNING-TIME OF S. Let v denote the view output by S. We show that the
running time of S is polynomial in the running time of V' on the view v. First
note that since E is an emulator-extractor with polynomial precision for V', it
follows that the time invested by S to generate stage 1 of the view v is polynomial
in the running time of V' when feed stage 1 of v. Secondly, since stage 2 of the
view v, is generated by S emulating the honest prover strategy (using witness w')
in an interaction with V', it follows that time invested by S in order to generate
stage 2 of v, is the time needed to emulate V' in stage 2 of the view v plus the time
needed to generate the honest prover messages, which is a polynomial in in jxJ.
Finally, since S only proceeds to generate stage 2 of the view if stage 1 has been
successfully completed, it holds that V' must have communicated at least zIx bits
(in order to send the strings cl, c2), which concludes that the total time invested
by S to generate both stage 1 and stage 2 of v is polynomial in the running time
of V' on the view v.

INDISTINGUISHABILITY OF THE SIMULATION. We show that for the following
ensembles are statistically close over L

* {VIEW2 [P.(x, y) V.(x, z)] I}eL,YERL(x),ZE{O,1}*

* S.(x, z)1XELYERL(X)zEJO,1}*

Towards this goal, consider the following "intermediate" simulator S' that
receives a witness y to the statement x. S', on input x, y (and auxiliary input
z), proceeds just like S in order to generate Stage 1 of the view, but proceeds as
the honest prover in order to generate Stage 2 of the view. Indistinguishability of
the simulation by S follows from the following two claims:

Claim 1. The following ensembles are statistically close over L

* VIEW 2 [P*(x, y) V*(, Xz)1 }XELYERL(X),ZEEO ,1*

* S(x, (y, z))}XELYER(X)ZE{ol}*

Proof: Assume that E always output a witness w' E R' (x) if the view output
is accepting. Under this (unjustified) assumption if follows from the perfect
emulation condition on E that the view of V' in a real interaction is identical to
the output of S'. However, by the precise statistically-sound proof of knowledge
property of Stage I it follows that the probability that E fails in outputting a
witness is negligible. We conclude that the ensembles in the statement of Claim I
are statistically close. I

EXISTENCE OF PRECISE ZK

Claim 2. The following ensembles are statistically close over L

S{S.(X, z)}EL,yERL(x),zE{O,1}*

* {S:(x(l' z)) }EL,YERL(x),ze{o,11*

Proof: The claim follows directly from the statistical-WI property5 of Stage 2
of the protocol, and from the fact that the only difference between S and S' is
the choice of the witness used in Stage 2 of the protocol. For completeness, we
provide a proof.

Assume for contradiction that the claim is false, i.e., that there exists a
deterministic verifier V' (we assume w.l.o.g that V' is deterministic, as it can
always receive it random-tape as auxiliary input), a polynomial g(n), and a
distinguisher D such that for infinitely many x E L there exists y E RL (), z E
{ 0, 11* such that

IPr v -- S.(x, z) : D(x, z, v) -= 1] - Pr [v -- S.(x, (y, z)) : D(x, z, v)= 1
1

- g(Ix)

Fix generic x, y, z for which this happens. Since S' proceeds exactly as S in Stage
1 of the protocol, there must thus exists a partial view v1 for V', of only Stage 1
of the protocol, such that D also distinguishes the output of S and S' conditioned
on the event that S and S' feed V' the view v1 as part of its Stage 1 view.

Note that the partial view v1 defines an instance x' E L V L' that V' expects
to hear a proof of, and that the only difference between the executions of S and S'
given the view v1 is the choice of witness used in the proof. We have thus reached
a contradiction to the WZ property of Stage 2 of the protocol. I

I

ZKI ARGUMENTS WITH LINEAR PRECISION. We proceed to construct an
argument system that is ZIC with linear precision. We obtain the new argument
system, called StatLinPreciseZKArg, by modifying the previously constructed
one, StatPolyPreciseZKArg, in the following ways:

1. In Stage 1 of the protocol, V start by sending the string 1w(Ix l) , where
W(I x) denotes the number of computation steps required by P to complete
stage 2 of the protocol on input x, given any witness w'. (The prover directly
aborts the proof if V sends a string that is shorter.) This message serves
as a "zero-knowledge proof" that the malicious verifier has performed
roughly as much computation as the honest verifier. (Since we require
that simulation is linear in the running time of the malicious verifier, it is
imperative that we can simulate also verifiers that run much faster than then

5We here rely on the fact that the statistical-WZ- property holds also for unbounded verifiers.

6.4. CONSTRUCTIONS OF PRECISE ZK

honest verifier. This additional message makes it possible to simulate also
such verifiers.)

2. In Stage 1 of the protocol, P and V engage in a WI statistically-sound
proof of knowledge with linear precision (instead of one with polynomial
precision).

More precisely, let f be a one-way function and let RL, L' be defined as above.
Let the language L E KAP. Protocol StatLinPreciseZKArg for proving that x E L
is depicted in Figure 6.2. Since by Theorem 13 the existence of one-way functions
(which are implied by the existence of statistically hiding commitments) implies
the existence of an w(log n)-round WZ emulatable proof of knowledge with linear
precision, the resulting protocol has round complexity k(n) + w (log n).

PROTOCOL StatLinPreciseZKArg

Common Input: an instance x of a language L with witness relation RL.

Auxiliary Input for Prover: a witness w, such that (x, w) E RL(x).

Stage 1:

Let W(xzl) denotes (an upper bound) on the number of computational steps
required by P to complete stage 2 of the protocol on input x, given any
witness w'.

V -* P: 1w(Ix l)

P verifies that V sent a string of length 1W(Ix l). (If not, it aborts.)

V uniformly chooses rl, r2 E {0, 1}n .

V -+ P: c1 = f(rl), c2 = f(r 2).
V -+ P: a WI statistically-sound proof of knowledge with linear precision

of the statement

either there exists a value rl s.t cl = f(rl)

or there exists a value r2 s.t c2 = f(r 2)

The proof of knowledge is with respect to the witness relation R',

Stage 2:

P - V: a statistical-WI argument of knowledge of the statement

either there exists values r', r' s.t either Cl = f(r') or c2 = f(r2).

orx E L
The argument of knowledge is with respect to the witness relation
RLVL'(C1, 2,X) = (r, ,rw)l(r',rr') c RL' (Cl, 2) Vw RL(X)}.

Figure 6.2: Statistical ZIC argument for NAF with linear precision

EXISTENCE OF PRECISE ZK

Proposition 4. Protocol LinPreciseStatZKArg is a statistical Z/C argument with
polynomial precision.

Proof: Soundness and Completeness of the protocol follows directly as in the
proof of Claim 3. To argue the ZIC with linear precision property consider the
same simulator S as in the proof of Claim 3. It directly follows (using the proof of
Claim 3) that the output of S is "correctly" distributed. It only remains to analyze
the running time of S.

RUNNING-TIME OF S. As in the proof of Claim 3), let v denote the view output
by S. Since E is an emulator-extractor with linear precision for V', it follows that
the time invested by S to generate stage 1 of the view v is linear in the running
time of V' when feed stage 1 of v. Furthermore, note that if V' "completed" stage
1 of the protocol then V' must have spent at least W(IxI) computation steps.

As in the proof of Claim 3), since stage 2 of the view v, is generated by S
emulating the honest prover strategy (using witness w' extracted in Stage 1) in
an interaction with V', it follows that the time invested by S in order to generate
stage 2 of v, is the time needed to emulate V' in stage 2 of the view v plus the time
needed to generate the honest prover messages. By our assumption that a Turing
machine can be emulated at only linear overhead, it follows that the first term is a
linear function of the running time of V' in stage 2 of v. The second quantity is
(by definition) W(lzl), which is smaller than the total running time of V' on the
view v. We conclude that the total time invested by S to generate both stage 1 and
stage 2 of v is linear in the running time of V' on the view v. I

This concludes the proof of Theorem 15. E

Computationally Precise ZIC Arguments from Any One-way Function

Just as in the protocol of Feige and Shamir [24], it follows that if replacing
the statistical-WI proof of knowledge in stage 2 of the protocols StatPolyPre-
ciseZKArg, StatLinPreciseZKArg with a computational-WI proof of knowledge,
we instead obtain computational precise ZKC argument. Since constant-round
computational-WI" proof of knowledge can be based on the sole assumption of
the existence of one-way functions [23, 29, 48, 38], we thus obtain:

Theorem 16. Assume the existence of one-way functions. Then, there exists an
(efficient-prover) w(1)-round precise computational ZKI argument with polyno-
mial precision, for every language in AFT'. There also exists an (efficient-prover)
w(logn)-round precise computational ZIC argument with linear precision, for
every language in AFTP.

Proof: The proof essentially follows from the proof of Theorem 15. If relying on
the same simulator S as in the proof of Theorem 15, the only point that needs to be
addressed is the proof of the indistinguishability of the simulation. In particular,
since Stage 2 of the protocol is only computational WI (instead of statistical WI)
Claim 2 no longer holds; however, it follows using exactly the same argument
that the following claim holds instead, which is sufficient to conclude that the

6.4. CONSTRUCTIONS OF PRECISE ZK

simulation is computationally indistinguishable from the view of the verifier in a
true interaction with a prover.

Claim 3. The following ensembles are computationally indistinguishable over L

" {S0(X, z)}xEL,yeRL(x),zE{o,1}*

* IS'(x, (y, Z))}xELyER(X)zE{Q1}*

6.4.2 Precise ZIC Proofs for NAP

We show:

Theorem 17. Assume the existence of k(n)-round statistically hiding commit-
ments. Then, there exists an (efficient-prover) w(k(n))-round precise computa-
tional ZKC proof with polynomial precision, for every language in TNP. There
also exists an (efficient-prover) w(k(n) log n)-round precise computational ZKC
proof with linear precision, for every language in N/P.

Proof: We start by constructing a ZKC proof with polynomial precision.

ZK) PROOFS WITH POLYNOMIAL PRECISION. Recall the ZIC proof system
for (GRAPH3COL) of Goldreich and Kahan [28]. Their protocol proceeds in
two stages. In the first stage the verifier commits, using a statistically hiding
commitment, to n pairs of edges in the graph. In the second stage, the prover and
the verifier execute n parallel (and using independent random coins) instances of
GMW's (GRAPH3COL) protocol, with the exception that the verifier does not pick
random challenges, but instead reveals the edges it committed to in the first stage.

We modify their protocol as follows: In the first stage of the protocol,
we additionally let the verifier provide a statistical-WI computationally-sound
emulatable precise proof of knowledge of the values it has committed. (This
modification can be seen as a generalization of the protocol of [52, 54].) To obtain
a precision p(n, t) that is polynomial in only t, we furthermore require that the
verifier must communicate at least IxI bits in order to successfully complete stage
1.

More precisely, let the language L E FNP. Our protocol for proving that
x E L is called CompPolyPreciseZKProof and is depicted in Figure 6.3.

Note that the protocol relies on the existence of statistically-hiding commit-
ment, statistically-binding commitment and a statistically-WI computationally-
sound emulatable proof of knowledge with polynomial precision. However,
since the existence of statistically-hiding commitments, implies the existence
of one-way functions, which in turns implies the existence of (constant-round)
statistically-binding commitments, and and since by Theorem 14, the existence of
a k(n)-round statistically-hiding commitment implies the existence of a w(k(n))
round statistical-W-Z computationally-sound emulatable proof of knowledge

EXISTENCE OF PRECISE ZK

with polynomial precision, we only require the existence of statistically-hiding
commitments. We conclude that the resulting protocol has round complexity
w(k(n)).

Figure 6.3: Computational ZKC Proof for A/P with Polynomial Precision

Proposition 5. Protocol CompPolyPreciseZKProof is a computational ZK: proof
with polynomial precision.

Proof: Note that CompPolyPreciseZKProof is a particular instantiation of the
protocol of Goldreich and Kahan [28]. This follows since, by the statistical WI
property of the proof in Stage 1 of PolyPreciseZKProof, it holds that the whole of
Stage 1 is a statistically-hiding commitment. 6 Thus, Soundness and Completeness

6If this was not the case there would exists at least one transcript of the commitment COM,
such that the WI proof of knowledge protocol reveals (to an unbounded receiver) what value the
transcript is a commitment to. This, however, contradicts the statistical-WI property of the proof
of knowledge protocol.

PROTOCOL CompPolyPreciseZKProof

Common Input: an instance x of a language L with witness relation RL.

Auxiliary Input for Prover: a witness w, such that (x, w) E RL (X).

Stage 1:

V uniformly chooses T = rl, r2, ., n {0, 1}i , s {0, 1}poly (n)

V -- P: c = COM(T; s), where COM is a statistically hiding commitment,
which has the property that the committer must communicate at least
m, bits in order to commit to m strings.

V - P: a statistical-WI computationally-sound proof of knowledge with
polynomial precision of the statement

there exists values 7', s' s.t c = COM('; s')
The proof of knowledge is with respect to the witness relation R' (c) =
{(v, s)jC = COM(v; s)}.

Stage 2:

P • V: P and V engage in n parallel executions of the GMW's (3-round)
Graph 3-Coloring protocol, where V uses the strings rl, .., r, as its
challenges:

1. P -+ V: n (random) first messages of the GMW proof system for
the statement x.

2. V - P: V decommits to 7 = rl, .., rn.
3. P - V: For i = 1..n, P computes the answer (i.e., the 3'rd

message of the GMW proof system) to the challenge ri and sends
all the answers to V.

6.4. CONSTRUCTIONS OF PRECISE ZK

of CompPolyPreciseZKProof follows directly from the proof of Goldreich and
Kahan [28]. Let us turn to the precise ZKC property. For a given malicious verifier
V', let E denote the precise extractor for V' (recall that V' acts as a prover in
Stage 1 of the protocol). The simulator S for V' proceeds as follows:

1. S runs the emulator-extractor E, obtaining a triplet (view1 , view2, w =
(-', s')), where viewl denotes the view of V' (since V' is acting as a prover).

2. If view2 contains a rejecting view, or if w' ý R' (x), S outputs viewi and
halts.

3. Otherwise, S perform the following steps:

a) Just as in [28], S generates a "random-looking" execution (ml, T', m2)
of the "parallelized" GMW protocol, where the verifier query f' = T.
(This property of the GMW protocol is sometimes called special
honest-verifier ZKC.) 7

b) S feeds the view viewl to V'.

c) S feeds m, to V'.

d) If V' decommits to T, S feeds m2 to V', outputs the view of V' and
halts.

e) If V' fails to decommit, S outputs the view of V' and halts.

f) If V' succeeds in decommit to a different value than 7, S output fail
and halts.

RUNNING-TIME OF S. Let v denote the view output by S. We show that the
running time of S is polynomial in the running time of V' in the view v. First note
that since E is an extractor with polynomial precision for V', it follows that the
time invested by S to generate stage 1 of the view v is polynomial in the running
time of V' when feed stage 1 of v. Secondly, since stage 2 of the view v, is
generated by S by emulating the honest prover strategy (using the knowledge of
the verifier query T) in an interaction with V', it follows that time invested by S
in order to generate stage 2 of v, is the time needed to emulate V' in stage 2 of
the view v plus the time needed to generate the honest prover messages, which
is a polynomial in in zIx. Finally, since S only proceeds to generate stage 2 of
the view if stage I has been successfully completed, it holds that V' must have
communicated at least lxI bits, which concludes that the total time invested by S
to generate both stage 1 and stage 2 of v is polynomial in the running time of V'
on the view v.

INDISTINGUISHABILITY OF THE SIMULATION. We show that the following
ensembles are computationally indistinguishable over L.

7Note that this is possible since it is easy to commit to a coloring such that the two vertices on
a particular (predetermined) edge have different colors.

EXISTENCE OF PRECISE ZK

* VIEW 2 [P.e(x, y) 4-4 Vo(X, z)] XELYERL(X)ZE10,1

f{S(x Lz) }XELyERL(X),ZE{O,1{*

Towards this goal, consider the following "intermediate" simulator S' that
receives a witness y to the statement x. S', on input x, y (and auxiliary input
z), proceeds just like S in order to generate Stage 1 of the view, but proceeds as
the honest prover in order to generate Stage 2 of the view. The indistinguishability
of the simulation by S follows from the following two claims:

Claim 4. The following ensembles are statistically close over L

* {VIEW 2 [P.(x, y) +-+ V.'(x, Z)I }EL,yERL(X),ZE{0,1

* S(x, (y, z)) XELYERL(X),ZE{0,1}*

Proof: The proof is essentially identical to the proof of claim I; the only
difference is that the proof of knowledge protocol in stage 1 is now only
computationally-sound.

Assume that E always output a witness w' E R' (x) if the view output
is accepting. Under this (unjustified) assumption if follows from the perfect
emulation condition on E that view of V' in a real interaction is identical to the
output of S'. However, by the precise computationally-sound proof of knowledge
property of Stage 1 it follows that the probability that E fails in outputting a
witness is negligible. (Note that we here rely on the fact that V' is a polynomial-
time machine). We conclude that the ensembles in the statement of Claim 4 are
statistically close. I

Claim 5. The following ensembles are computationally indistinguishable over L

* {S.(x, z)}ELYERL(X),zE{0,1})

" ,- (X(YZ))}xEL,yeRL(X),zE{O,1,*

Proof Sketch: To prove claim 5, consider an additional hybrid simulator S" that
on input x, (y, z) proceeds as follows:

1. S" first runs S.(x, z).

2. If S outputs fail, S" halts outputting fail.

3. Otherwise, it runs S.(x, (y, z)) and outputs whatever S' outputs.

We start by noting that it follows directly from the computational-binding property
of the commitment scheme used in Stage 1, that the output of S' is statistically
close to the output of S". It also follows from the special honest-verifier
ZIC property of the GMW protocol that the output of S.(x, z), conditioned

6.4. CONSTRUCTIONS OF PRECISE ZK

of not being fail, and the output of Sl'(x, (y, z)), conditioned of not being
fail are computationally indistinguishable. We conclude that S.(x, z) and

S~'(x, (y, z)) are computationally indistinguishable, which implies that S.(x, z)
and S (x, (y, z)) also are computationally indistinguishable. I

ZKA PROOFS WITH LINEAR PRECISION. As for the case of ZK: arguments
(see Proposition 4), we obtain a ZKC proof for NP with linear precision, called
Protocol CompLinPreciseZKProof by modifying Stage 1 of protocol CompPoly-
PreciseZKProof in the following two ways:

1. V start by sending the string 1W(IxI), where W(Izl) denotes the number of
computation steps required by S to perform a simulation of Stage 2 of the
protocol. (The prover directly aborts the proof if V sends a string that is
shorter.)

2. P and V then engage in a statistical-WI computationally-sound proof of
knowledge with linear precision (instead of one with polynomial precision).

Since by Theorem 14 the existence of k(n)-round statistically hiding commit-
ments implies the existence of an w(k(n)logn)-round statistically-WI
computationally-sound emulatable proof of knowledge with linear precision, the
resulting protocol has round complexity w(k(n) log n).

It follows exactly as in the proof of Proposition 4 that Protocol CompLin-
PreciseZKProof is computational ZIC with linear precision. This concludes the
proof of Theorem 17. M

6.4.3 Everything Provable is Provable in Precise ZIC

We extend the results from the previous section to show that every language that
has an interactive proof also has a ZIC proof with linear precision.

Theorem 18. Assume the existence of statistically hiding commitments. Then,
every language in IP has a computational ZIC proof with linear precision.

Proof Sketch: Recall that [8] show that every language having an interactive
proof also has a computational ZIC proof. In fact, they provide a transformation
from an interactive proofs for a language L, to a ZK proof for the same language
by relying on any ZIC proof for NP (such as the GMW protocol); see Section
3.2.2 for more details. We note that if instead relying on a precise ZIC protocol
for NP in their transformation, the resulting protocol will be ZK with precision
p(n, t) where p is a polynomial in both n and t. If furthermore V on common
input x is required to communicate at least lxi bits as part of its first message, the
protocol is Z/C with polynomial precision.

As in Proposition 4, we obtain a ZIC proof with linear precision, by relying on
a ZK proof with linear precision in the transformation of [8], and by additionally
letting the verifier V start by sending the string 1W(Ixl), where W(Ixl) denotes

EXISTENCE OF PRECISE ZK

the number of computation steps required by S to perform a simulation of the
first stage of the protocol (i.e., the "encrypted" interactive proof).8 (The prover
directly aborts the proof if V sends a string that is shorter.) 1

6.4.4 Existence of Statistically Precise ZKC Proofs

We provide unconditional constructions of precise statistical ZIC proofs for
certain specific languages. We here exemplify our approach by showing a precise
ZKC proof for Graph Non-Isomorphism. Roughly speaking, our construction
proceeds in the following steps:

1. We first recast (a variant, due to Benaloh [3], of) Goldreich, Micali and
Wigderson's protocol [29] for Graph Non-Isomorphism as an instance of
the Feige-Shamir protocol.

2. We then essentially rely on the same construction paradigm as in our previ-
ous (conditional) constructions; namely, we use our knowledge precision
lemmas to transform a special-sound proof of knowledge into a precise
proof of knowledge, and then use the precise proof of knowledge protocol
as a sub-protocol to obtain a precise ZKC proof.

Unconditional WZ Precise Proof of Knowledge for a Specific Language

We provide an example of a statistical-WI statistically-sound precise proof of
knowledge for a specific language. As mentioned above, this protocol will then be
used in order to construct a precise ZIC proof for GRAPHNONISO.

Consider the language 10 F2GRAPHISO of triplets of graphs Go, G1, H, such
that H isomorphic to either Go or G1, and the corresponding witness relation
RIOF2GRAPHISO which describes the two isomorphism. We show how to construct
a 3-round special-sound WZ proof for RIOF2GRAPHISO with soundness ½. The
protocol (which is a variant of a protocol implicit in [29] and the protocol of
Benaloh [3]) is depicted in Figure 6.4.

Proposition 6. Protocol lof2GraphlsoProof is a special-sound statistical-WI
proof for 10F2GRAPHISO with witness relation RIoF2GRAPHISO.

Proof: Soundness and Completeness follow directly using the same proof as in
[29]. Statistical-WI follows from the fact that protocol lof2GraphlsoProof is
honest-verifier perfect zero-knowledge (see [29]), or can be directly argued. I

By using parallel repetition and an appropriate representation of the graphs,
we thus obtain:

Proposition 7. There exists a 3-round statistical-WZ special-sound proof sys-
tem (P, V) with linear extraction for 1OF2GRAPHISO with witness relation
RIOF2GRAPHISO. Furthermore, the verifier query in (P, V) for a statement x E
{0, 1}n is of length Qf(n).

8Note that although the prover strategy is not necessarily efficient, the simulator is. Thus,
W(Ixl) is always a polynomial.

6.4. CONSTRUCTIONS OF PRECISE ZK

Figure 6.4: Statistically Precise ZKI proof for 10F2GRAPHISO

By combining Proposition 7 with Lemma 6 and Lemma 5 we obtain:

Theorem 19. There exists an w(1)-round statistical-WI statistically-sound proof
of knowledge for 1oF2GRAPHISO with polynomial precision. There also exists
an w(log n)-round statistical-WI statistically-sound proof of knowledge for
1OF2GRAPHISO with linear precision.

Since the above-constructed WI precise proofs of knowledge protocols are
public-coin, it directly follows that they are ZKC for the prover with precision
p(n,t) = O(t). The following theorem then follows from Theorem 19 by
applying Lemma 4.

Theorem 20. There exists an w(1)-round statistical-WZ statistically-sound emu-
latable proof of knowledge for 10F2GRAPHISO with polynomial precision. There
also exists an w(log n)-round statistical-WI statistically-sound emulatable proof
of knowledge for 1OF2GRAPHISO with linear precision.

Statistically Precise ZK Proof for Graph Non-Iso

Let GRAPHNONISO denote the language of non-isomorphic graphs.

Theorem 21. There exists an w(1)-round statistical ZIC proof for GRAPHNONISO
with polynomial precision. There also exists an w(logn)-round statistical ZKC
proof of knowledge for GRAPHNONISO with linear precision.

Proof: Let 1OF2GRAPHISO and R1OF2GRAPHISO be defined as in Section 6.4.4.
Consider the protocol depicted in Figure 6.5 for proving that x E GRAPHNONISO.
(Note that this protocol does not necessarily have an efficient prover strategy. This
is potentially unavoidable, as GRAPHNONISO might not be in AFP.)

PROTOCOL lof2GraphlsoProof

Common Input: an instance Go, G1, H of the language 10F2GRAPHISO.

Auxiliary Input for Prover: a witness w, such that ((Go, G1, H), w) E
R 1 F2GRAPHISO ().

P uniformly selects a bit i, and lets C, be a random isomorphic copy of Go
and C1•_ be a random isomorphic copy of G1.

P V V: Co, C1.

V -, P: a random bit b.

P V:

1. If b = 0, P sends the permutation from Ct, C_-i to Go, G1.
2. If b = 1, P sends the permutation from H to of Ci, C1, .

V checks the validity of the permutations received.

EXISTENCE OF PRECISE ZK

Figure 6.5: Statistically Precise ZIC proof for GRAPHNONISO

The following claim concludes the first part of the theorem.

Proposition 8. Protocol PreciseZKGraphNonlso is a statistical ZIC proof for
GRAPHNONISO with polynomial precision.

Proof: Soundness and Completeness of the protocol follows as in [29]. ZKC
with polynomial precision follows directly from the statistically-sound emulatable
proof of knowledge with polynomial precision property of Stage 1. n

In order to obtain a ZIC proof with linear precision we proceed in exactly the
same way as in the proof of Theorem 15. M

Other Unconditional Statistically Precise ZKC Proofs

The same approach as above can directly be applied to Goldwasser, Micali
and Rackoff's [33] protocol for Quadratic Non-Residuosity, QNR. Furthermore,
by instead relying on a protocol of Micciancio, Ong, Sahai, and Vadhan [45]
(extending [52] and [46]) we can obtain statistical precise ZKC proof with
polynomial and linear precision for all problems in SD 1/2 [46, 55]. (The general,
i.e., non-restricted, Statistical Difference problem is complete for statistical ZKC
[55]). We note that although GRAPHNONISO and QNR actually reduces to
SD1/2, the protocol resulting from relying on the protocol of [45] require a "large"
round-complexity and non-efficient provers, whereas our direct approach avoids
this.

PROTOCOL PreciseZKGraphNonlso

Common Input: an instance Go, G1 of the language GRAPHNONISO.

Stage 1:

V uniformly chooses a bit i and let H be a random isomorphic copy of Gi.

V -- P: H.

V +-+ P: V provides a statistically-WI statistically-sound emulatable
proof of knowledge, with polynomial precision, that Go, G1, H E
1OF2GRAPHISO. The proof of knowledge is with respect to the
witness relation R1OF2GRAPHISO.

Stage 2:

P --+ V: The bit i' such that H is isomorphic to Gia.

V accepts if i' = i.

6.5. BLACK-BOX LOWER BOUNDS

6.5 Black-Box Lower Bounds

We show that only ZKI proof/argument systems for 'trivial" languages can have
black-box simulators with precision p(n, t), where p is a polynomial in both n and
t. Intuitively, this lower bound follows from the following observations:

* A black-box simulator S for a zero-knowledge proof of a non-trivial
language must rewind the verifier at least once (otherwise the simulator
could be used as a cheating prover).

* Since the simulator only uses the verifier as a black-box it is oblivious
of the running time of the verifier on the view output. Furthermore, it
is oblivious of the running time of the verifier in the rewound execution.
Therefore, if the malicious verifier decides how long to run based on (in a
randomized way) the queries that the simulator sends, we can with relatively
high probability end up in a situation where the simulator outputs a view in
which the verifier runs very fast, but the running time of the verifier in the
rewound execution is long.

We proceed to a formal treatment relying on the above intuition.

6.5.1 Definition of Black-Box Precise ZIC

Our definition of black-box precise ZIC is a straight-forward restriction of the
definition of precise ZK to only allow for black-box simulators, in analogy with
the definition of black-box ZKC (see Definition 15 in Section 3.1 .1). For simplicity
(and since we are proving a lower), we only state the definition for the weakest
form of precise ZKC, namely computational precise ZiC. In fact, to make the
lower-bound even stronger we present a definition where we only require that
with overwhelming probability, the running-time of the simulator is related to that
of the verifier.

Definition 23 (Weak Precise Black-box ZI). Let (P, V) be an interactive proof
(argument) system for the language L E NP with the witness relation RL, and
let and p : N x N -+ N be a monotonically increasing function. We say that
(P, V) is weak computational black-box ZIC with precision p(n, t) if there exists
a probabilistic oracle machine S such that for every probabilistic polynomial-time
interactive machine V', the following two conditions hold:

1. The following two ensembles are computationally indistinguishable over L.

* VIEW 2 [P.(x, y) +-+ Vr(x, z)I EL,yERL(x),z,r{O,1

* Sv (Xz) (x); JIxEL,yERL(x),z,rE{0,1 }*

2. There exists a negligible function, such that for every x E L and every
z, r E 0O, 1}* it holds that

Pr [sTEPssvý,Xjz) p(IXI, STEPSv,(S.v(xz)())] 1 - (n)

EXISTENCE OF PRECISE ZK

(We emphasize that in the above expression the two occurrences of S. refer
to the same random variable.)

6.5.2 The Lower Bound

We prove the following theorem:

Theorem 22. Let (P, V) be an m-round weak black-box computational ZIC
interactive proof (or argument) with precision p(n, t) E poly(n, t) for the
language L. Then,

L E BPTIME[O(p(n, TIMEV(f)))]

Before proceeding to the proof, we make the following remarks:

1. First, note that Theorem 22 shows that only languages in BPP have black-
box zero-knowledge proofs with polynomial precision. However, recall that
precise zero-knowledge proofs with linear precision might be interesting
also for languages in BPP or P. Concerning such proof systems, Theorem
22 states that the honest verifier of the zero-knowledge proof (argument)
system needs to perform "essentially" as much computation as is needed to
decide the language, completely trivializing the proof system.

2. Also, note that Theorem 22 is "tight" in the sense that if we relax the
restriction on polynomial precision, then black-box simulation can be
useful. In particular, Pass' interactive arguments for ./P [51] (which are
based on the existence of one-way functions with sub-exponential hardness)
are black-box zero-knowledge with quasi-polynomial precision. 9

Proof of Theorem 22: Suppose, for contradiction, that there exists an m-round
(where m = m(n)) interactive argument (P, V), that has a black-box simulator
S with precision p(n, t). Consider the malicious verifier V' defined below. V'
proceeds just as V, except for the following differences:

1. V' receives as auxiliary input the description of an (m + 1)-wise indepen-
dent hash function H : {0, 1}t(n) --- {, 1}n , where 1(n) denotes an upper-
bound on the length of a transcript of the protocol (P, V).

2. Let T(n) be a polynomial in n, soon to be determined. Each time V' is
given a query, V' applies H to the partial transcript up until this query
(including the query) to generate a random number s. Based on this ran-

domness, V' decides to, with probability 1/m "pause" for (p(n, T(n))) 2

steps before proceeding as V, and otherwise directly proceeds as V.
More precisely, if the first log m positions of s are zero, then V' runs

9Those protocols are ZIC with precision p(n, t) = O(npoly• •
o
g +t). As an additional interesting

feature they are constant-round, whereas we don't know if constant-round zero-knowledge protocols
with polynomial precision can be constructed.

6.5. BLACK-BOX LOWER BOUNDS

(p(n, T(n)))2 dummy instructions and then proceeds to do what V would.
Otherwise it directly does what V would do.

The polynomial T(n) used above is defined as the upperbound on the time
invested by V', except for the "pauses" (i.e., T(n) is essentially TIMEV plus
the time needed to evaluate the hasfunction H, m times). Note that in case
V' does not "pause" in a view, its running time is thus trivially bounded by
T(n).

We show that unless L E BPTIME[O(p(n, TIMEv(n)))] there exist some non-
negligible function g(n) such that with probability at least g(n), Sv' outputs a

view in which V' runs at most T(n) steps but which took S at least p(n, T(n)))

steps to generate. Towards this goal we start by showing the following claim.

Claim 6. Unless L E BPTIME[O(p(n, TIMEV(n)))], there exists some non-
negligible function g(n) such that with probability at least g(n), SV' queries V'
on a message m' that is not part of the view output by S.

Proof: Assume, for contradiction, that S, with overwhelming probability (i.e.,
with probability 1 - p(n), where [is a negligible function), only queries V' on
messages that are part of the view output by S. We show how this implies that S
combined with V can be used to decide the language. More precisely, consider
the deciding machine D defined as follows. On input an instance x, D performs
the following steps:

1. D picks a random tape r for V, and executes view +- Sýv(x,z)(x). If S
attempts to perform more than p(n, TIMEv (n)) computational steps, halt
outputting I.

2. Unless D has already halted, it finally outputs OUTv (view) (i.e., it outputs
1 if and only if V accepts in the view view.)

We start by noting that the running-time of D on input an instance x E {0, 1}n
is O(p(n, TIMEV(n))). We proceed to show that D decides L. First note that
it directly follows from the validity of S that D outputs I only with negligible
probability. (Recall that D only outputs I when S attempts to take more than
O(p(n, TIMEV(n))) steps. Since the running-time of V is upper-bounded by
TIMEV(n) this thus only happens with negligible probability). In the sequel of
the analysis we therefore disregard this rare event.

* Given an instance x E L, it follows directly from the ZK: and completeness
properties of (P, V) that, except with negligible probability, Sýv,(xz) (x)
outputs a view in which V accepts; we conclude that D.(x) --+ 1 except
with negligible probability.

* Given an instance x 0 L it instead holds that except with negligible
probability, S outputs a view in which V rejects. If this was not the case
S could be used as a cheating prover. This follows since S only queries

EXISTENCE OF PRECISE ZK

the verifier on a message that is not part of the view output, with negligibly
small probability.

More precisely, assume for contradiction that S'V (x,z) (x) outputs a view in
which V accepts with non-negligible probability. We construct a cheating
prover P' as follows.

1. P' internally runs S.(x).

2. Whenever S makes a query to its oracle, P' checks that S has not
previously asked the same query (or a subset of it). If it has not (i.e.,
if it is a new query) P' externally forwards the prover messages in the
query.

We start by noting that as long as S only asks queries that are consistent
with a single execution of (P, V), the view of S in the emulation by P'
is identical to the view of S when interacting with V'. Since, except with
negligible probability, S in an execution with V' only asks questions that
are consistent with a single execution of (P, V), it holds that also in the
emulation by P', S, except with negligible probability, only asks questions
that are consistent with a single execution of (P, V). We conclude that the
view of S in the emulation by P' is statistically close to the view of S
when interacting with V', which implies that the success probability of P'
is non-negligible. This contradicts the Soundness of (P, V).

I

Relying on Claim 6 we show the following claim, which concludes the proof
of Theorem 22.

Claim 7. There exists some auxiliary input z for V' such that the probability that

S takes more than (p(n, T(n))) computation steps in order to generate a view v

in which the running time of V'(z) is T(n), is

o(g(n)i(1 -) 0((n)

Proof: We show that for a random choice of an (m + 1)-wise independent hash

function H, it holds that the probability that S invests at least (p(n, T(n))) 2

computation steps S in order to output a view in which the running time of V'(H)
is T(n), is

O(g(n) (1 - 1)m

By an averaging argument, this concludes that there exists at least one auxiliary
input z = H satisfying the conditions of the claim.

Note that due to the construction of V' it holds that for any fixed view of V,
the probability (over the choice of the hash function H) that the running time of
V' is at most T(n) steps is

1
(1-)mm

6.5. BLACK-BOX LOWER BOUNDS

This follows since V' uses the (m + 1)-wise independent hash function to decide
whether to "pause" or not, and from the fact that V' only applies this function m
times.

By Claim 6 it holds that with probability g(n), S feeds a query to V' that is
not part of the view v output. Since this query (by definition) is different to the
queries in the view, it holds that with (independent) probability

1
m

V' will run in time p(n, T(n))2 when feed this query. (Here, independence
follows since V' uses an (m + 1)-independent hash function, and since we are
only applying this function on m + 1 different points). We conclude that with
probability

O (g(n)-(1 - I)m)

Stakes time (p(n, T(n)))2 in order to generate a view in which V' takes at most

T(n) steps. M

EXTENSION TO PRECISE PROOFS OF KNOWLEDGE. We note that (assuming the
existence of one-way function) our black-box lower bound also extends to rule out
the existence of •WZ precise proofs of knowledge for NR'. This follows from the
fact that (assuming the existence of one-way functions) we show how to construct
precise ZIC arguments for N/P given a WI precise proof of knowledge for N'P.

Al
Appendix

A.1 Known Non Black-box Simulators are Not Precise

In this section we review why known non black-box simulation techniques, due to
Barak [2], result in a non-precise simulation. We start by reviewing Barak's ZIC
protocol and then turn to discuss its simulator.

REVIEW OF BARAK'S PROTOCOL. The protocol of Barak requires the use of
Universal Arguments [5], which are a variant of CS-proofs introduced by Micali
[43]. Such proofs systems are used in order to provide "efficient" proofs to
statements of the form y = (M, x, t), where y is considered to be a true statement
if M is a non-deterministic machine that accepts x within t steps.

Let UARG be a Universal Argument. Let T : N -- N be a "nice" function
that satisfies T(k) - kw(1). A high-level overview of Barak's protocol is depicted
in Figure A.1.

As shown in [2], Barak's protocol is computationally sound, under appropriate
assumptions on the hash function h (either by assuming that h is collision
resistant against circuits of size w(T(n)), or by assuming that h is constructed
by combing a specific tree-hashing approach with any standard collision resistant
hash function [5]).

SIMULATION OF BARAK'S PROTOCOL. Given access to the verifier's code
(or, equivalently, to the verifier's next message function), the protocol can be
simulated without making use of rewinding: To perform simulation, the simulator
commits to the verifier's next-message function (instead of committing to zeros).
The verifier's next message function is then a program whose output, on input c is
r; this provides the simulator with a valid "fake" witness to use in Stage 2 of the
protocol.

THE SIMULATION IS NOT PRECISE. It is easy to see that the above simulation
is not precise: Consider a verifier V' that has a very long auxiliary input tape, but

A.1. KNOWN NON BLACK-BOX SIMULATORS ARE NOT PRECISE

Figure A.1: Barak's Non Black-Box ZK Argument for NiP

most of the time only accesses a small portion of it. The simulator will always
commit to the whole description of V' (including the whole auxiliary input tape)
and will thus always take long time, while V' might run fast a large portion of
the time. (In fact, the running-time of the simulator, will be polynomial in the
worst-case running-time of the verifier, whereas we require that it is polynomial
in the actual time of the verifier - as such this simulator even has "bad" expected
precision).

PROTOCOL BarakZK

Common Input: an instance x of a language L with witness relation RL.

Auxiliary Input for Prover: a witness w, such that (x, w) E RL.

Stage 0:

V -P: Send h R 7-Tk.

Stage 1:

P -* V: Send c = Com(0k).

V - P: Send r E {0,1}Ixl.

Stage 2: (Proof Body)

P +- V : A WI UARG proving the OR of the following two statements:

1. There exists w {0, 1}poly(Ix l) so that RL(x, w) = 1.
2. c is a commitment to a hash using the function h, of the program

1I, such that II(c) = r within T(Ixl) steps.

Bibliography

[1] W. Aiello, J. Histad. Statistical Zero-Knowledge Languages can be Recog-
nized in Two Rounds. JCSS. Vol. 42(3), pages 327-345, 1991

[2] B. Barak. How to go Beyond the Black-Box Simulation Barrier. In 42nd
FOCS, pages 106-115, 2001.

[3] J.D. Benaloh. Cryptographic Capsules: A disjunctive primitive for interac-
tive protocols. In Crypto86, Springer LNCS 263, pages 213-222, 1987.

[4] L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system,
and a hierarchy of complexity classes. JCSS, Vol. 36, pages 254-276, 1988.

[5] B. Barak and 0. Goldreich. Universal Arguments and their Applications.
17th CCC, pages 194-203, 2002.

[6] B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extrac-
tion. In 34th STOC, pages 484-493, 2002.

[7] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the
Error in Computationally Sound Protocols? In 38th FOCS, pages 374-383,
1997.

[8] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Histad, J. Kilian ,S. Micali
and P. Rogaway. Everything provable is provable in zero-knowledge. In
Crypto88, Springer LNCS 0403, pages 37-56, 1988.

[9] M. Blum. How to prove a Theorem So No One Else Can Claim It. Proc. of
the International Congress of Mathematicians, Berkeley, California, USA,
pages 1444-1451, 1986.

[10] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and
Its Applications. In 20th STOC, pages 103-112, 1988

[11] G. Brassard, D. Chaum and C. Cr6peau. Minimum Disclosure Proofs of
Knowledge. JCSS, Vol. 37, No. 2, pages 156-189, 1988. Preliminary version
by Brassard and Crepeau in 27th FOCS, 1986.

[12] M. Blum, A. De Santis, S. Micali, and G. Persiano. Noninteractive zero-
knowledge. SIAM J. Computing, 20(6): 1084-1118, 1991.

[13] R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 34th STOC, pages 494-503, 2002.

100

101

[14] D. Chaum and H. van Antwerpen. Undeniable Signatures. In Crypto89,
Springer LNCS 435, pages. 212-216, 1989.

[15] R. Cramer, I. Damgird and B. Schoenmakers. Proofs of Partial Knowledge
and Simplified Design of Witness Hiding Protocols. In Crypto94, Springer
LNCS 839, pages. 174-187, 1994.

[16] I. Damgird. Efficient Concurrent Zero-Knowledge in the Auxiliary String
Model. In EuroCryptOO, Springer LNCS 1807, pages 418-430, 2000.

[17] Y. Dodis and S. Micali. Parallel Reducibility for Information-Theoretically
Secure Computation, In Crypto00, Springer LNCS 1880 74-92, 2000.

[18] I. Damgird, T. Pedersen and B. Pfitzmann. On the Existence of Statistically
Hiding Bit Commitment Schemes and Fail-Stop Signatures. In Crypto93,
Springer-Verlag LNCS Vol. 773, pages 250-265, 1993. G. Di Crescenzo
and R. Ostrovsky. On Concurrent Zero-Knowledge

[19] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In 30th
STOC, pages 409-418, 1998.

[20] U. Feige. Ph.D. thesis, Alternative Models for Zero Knowledge Interactive
Proofs. Weizmann Institute of Science, 1990.

[21] U. Feige, D. Lapidot and A. Shamir. Multiple Noninteractive Zero Knowl-
edge Proofs under General Assumptions. Siam Jour on Computing 1999,
Vol. 29(1), pages 1-28.

[22] U. Feige, A. Fiat and A. Shamir. Zero Knowledge Proofs of Identity. Journal
of Cryptology, Vol. 1, pages 77-94, 1988.

[23] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding
Protocols. In 22nd STOC, pages 416-426, 1990.

[24] U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in Two
Rounds. In Crypto89, Springer LNCS 435, pages. 526-544, 1989.

[25] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Crypto86, Springer LNCS 263,
pages 181-187, 1987.

[26] M. Fischer, S. Micali, and C. Rackoff. A Secure Protocol for the Oblivious
Transfer. Journal of Cryptology, 9(3): 191-195, 1996.

[27] 0. Goldreich. Foundations of Cryptography - Basic Tools. Cambridge
University Press, 2001.

[28] 0. Goldreich and A. Kahan. How to Construct Constant-Round Zero-
Knowledge Proof Systems for NP. Jour of Cryptology, Vol. 9, No. 2, pages
167-189, 1996.

BIBLIOGRAPHY

[29] 0. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing
But Their Validity or All Languages in NP Have Zero-Knowledge Proof
Systems. JACM, Vol. 38(1), pp. 691-729, 1991.

[30] 0. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge
Proof Systems. Jour. of Cryptology, Vol. 7, No. 1, pages 1-32, 1994.

[31] S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No 2,
pages 270-299, 1984.

[32] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof-systems. In STOC 85, pages 291-304, 1985.

[33] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of
Interactive Proof Systems. SIAM Jour. on Computing, Vol. 18(1), pp. 186-
208, 1989.

[34] S. Goldwasser, S. Micali and R.L. Rivest. A Digital Signature Scheme Se-
cure Against Adaptive Chosen Message Attacks. SIAM Jour on Computing,
Vol. 17, No. 2, pp. 281-308, 1988.

[35] S. Goldwasser, M. Sipser. Private Coins versus Public Coins in Interactive
Proof Systems. In 18'th STOC, pages 59-68, 1986.

[36] S. Halevi and S. Micali. Conservative Proofs of Knowledge. MIT/LCS/TM-
578, May 1998.

[37] S. Halevi and S. Micali. Practical and Provably-Secure Commitment
Schemes from Collision-Free Hashing. In Crypto96, Springer LNCS 1109,
pages 201-215, 1996.

[38] J. HAstad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of
Pseudorandom Generator from any One-Way Function. SIAM Jour on
Computing, Vol. 28 (4), pages 1364-1396, 1999.

[39] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In
24th STOC, pages 723-732, 1992.

[40] J. Kilian and E. Petrank. Concurrent and Resettable Zero-Knowledge in
Poly-logarithmic Rounds. In 33rd STOC, pages 560-569, 2001.

[41] J. Katz and Y. Lindell. Handling Expected Polynomial-Time Strategies in
Simulation-Based Security Proofs. In 2nd TCC, Springer-Verlag (LNCS
3378), pages 128-149, 2005.

[42] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party
Computation. In CryptoOl, Springer LNCS 2139, pages 171-189, 2001.

[43] S. Micali. CS Proofs. SIAM Jour on Computing, Vol. 30 (4), pages 1253-
1298, 2000.

102

103

[44] S. Micali and R. Pass. Local Zero Knowledge. In 38th STOC, 2006.

[45] D. Micciancio, S. Ong, A. Sahai, S. Vadhan. Concurrent Zero Knowledge
without Complexity Assumptions. In 3st TCC, pages 1-20, 2006.

[46] D. Micciancio, S. Vadhan. Statistical zero-knowledge proofs with efficient
provers: lattice problems and more. In Crypto03. Springer LNCS 2729,
pages. 282-298, 2003.

[47] S. Micali and P. Rogaway. Secure computation. Unpublished manuscript,
1992. Preliminary version in Crypto91, Springer (LNCS 576), pages 392-
404, 1991.

[48] M. Naor. Bit Commitment using Pseudorandomness. Jour. of Cryptology,
Vol. 4, pages 151-158, 1991.

[49] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Perfect Zero-
Knowledge Arguments for NP Using any One-Way Permutation. Jour of
Cryptology, Vol. 11, pages 87-108, 1998.

[50] Y. Oren. On the Cunning Power of Cheating Verifiers: Some Observations
about Zero-Knowledge Proofs. In 28th FOCS, pages 462-471, 1987.

[51] R. Pass. Simulation in Quasi-polynomial Time and its Application to
Protocol Composition. In EuroCrypt03, Springer LNCS 2656, pages 160-
176, 2003.

[52] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-Knowledge with
Logarithmic Round Complexity. In 43rd FOCS, pages 366-375, 2002.

[53] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-
Knowledge Proofs. In EuroCrypt99, Springer LNCS 1592, pages 415-431,
1999.

[54] A. Rosen. A note on constant-round zero-knowledge proofs for NP. In 1st
TCC, pages 191-2002, 2004.

[55] A. Sahai and S. Vadhan. A complete problem for statistical zero knowledge.
J. ACM, 50(2):196-249, 2003.

[56] A. Shamir. IP = PSPACE. In 31st FOCS, pages 11-15, 1990.

[57] M. Tompa, H. Woll. Random Self-Reducibility and Zero Knowledge Inter-
active Proofs of Possession of Information. In 28th FOCS, pages 472-482,
1987.

[58] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, MIT,
1999.

