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Abstract

Optimization under uncertainty is a central ingredient for analyzing and designing
systems with incomplete information. This thesis addresses uncertainty in optimiza-
tion, in a dynamic framework where information is revealed sequentially, and future
decisions are adaptable, i.e., they depend functionally on the information revealed in
the past. Such problems arise in applications where actions are repeated over a time
horizon (e.g., portfolio management, or dynamic scheduling problems), or that have
multiple planning stages (e.g., network design).

The first part of the thesis focuses on the robust optimization approach to systems
with uncertainty. Unlike the probability-driven stochastic programming approach, ro-
bust optimization is built on deterministic set-based formulations of uncertainty. This
thesis seeks to place Robust Optimization within a dynamic framework. In particular,
we introduce the notion of finite adaptability. Using geometric results, we charac-
terize the benefits of adaptability, and use these theoretical results to design efficient
algorithms for finding near-optimal protocols. Among the novel contributions of the
work are the capacity to accommodate discrete variables, and the development of a
hierarchy of adaptability.

The second part of the thesis takes a data-driven view to uncertainty. The cen-
tral questions are (a) how can we construct adaptability in multi-stage optimization
problems given only data, and (b) what feasibility guarantees can we provide. Multi-
stage Stochastic Optimization typically requires exponentially many data points. Ro-
bust Optimization, on the other hand, has a very limited ability to address multi-stage
optimization in an adaptable manner. We present a hybrid sample-based robust opti-
mization methodology for constructing adaptability in multi-stage optimization prob-
lems, that is both tractable and also flexible, offering a hierarchy of adaptability. We
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prove polynomial upper bounds on sample complexity. We further extend our results
to multi-stage problems with integer variables in the future stages. We illustrate the
ideas above on several problems in Network Design, and Portfolio Optimization.

The last part of the thesis focuses on an application of adaptability, in particular,
the ideas of finite adaptability from the first part of the thesis, to the problem of air
traffic control. The main problem is to sequentially schedule the departures, routes,
ground-holding, and air-holding, for every flight over the national air space (NAS).
The schedule seeks to minimize the aggregate delay incurred, while satisfying capac-
ity constraints that specify the maximum number of flights that can take off or land at
a particular airport, or fly over the same sector of the NAS at any given time. These
capacities are impacted by the weather conditions. Since we receive an initial weather
forecast, and then updates throughout the day, we naturally have a multistage opti-
mization problem, with sequentially revealed uncertainty. We show that finite adapt-
ability is natural, since the scheduling problem is inherently finite, and furthermore
the uncertainty set is low-dimensional. We illustrate both the applicability of finite
adaptability, and also its effectiveness, through several examples.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Professor of Operations Research
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Introduction

he focus of this dissertation is dynamic (multi-stage) optimization, affected by
uncertainty. Here, decisions are made sequentially over time, and the decision-
maker has access to partial (perhaps noisy) observations of the uncertainty at each
stage. The central theme of this thesis is the notion of adaptability: how do future
stage decisions depend on (in a functional sense) the past uncertainty. The central
questions we ask are: how adaptability is structured, how it impacts the tractability of
the formulation, and most importantly, how we may exploit the knowledge of future
stage adaptability, in order to implement a “better” first stage decision. In this sense,
the principle of optimality, fundamental to the framework of Dynamic Programming,
is central to the spirit of our approach. However, as we discuss in more detail below,
the functional or structural similarities with Dynamic Programming, end there.
In order to tie the meaning of adaptability, uncertainty, and multiple stages to
something concrete, let us consider the following basic formulation, to which we re-
turn again and again throughout this thesis. Consider then:

min: ¢'z+d y(w)+ F ya(wr,ws)

1.0.1
s.t.: Ao(wl, wg)w + A (wl, wg)yl (w1) + Ag(wl,w2)y1 (wl, wg) <b. ( )

This is a three stage optimization problem. There are three time periods, 7 = {1,2,3},
and a decision is implemented at each stage: x at time 1, y, at time 2, and y, at time 3.
The parameters w; and w, represent the uncertainty. The realization of these parame-
ters controls the final realization of the parameters defining the optimization problem.
The sequence of events is:

la. Decision & is implemented.

1b. Uncertainty parameter w is realized.

2a. Decision y; is implemented, after having observed = and w;.
2b. Uncertainty parameter wj is realized.

3. The final decision y; is implemented, after having observed z, y,, and w;,wz. If
the constraints are satisfied, the value of the problem is: ¢'@ +d "y, + f' ys.

15



16 CHAPTER 1. INTRODUCTION

Then the key definitions are:

* The future stage decisions are, in this case, decisions y,, and y,.

*+ What we refer to as adaptability throughout this dissertation, is the functional
dependence of the future stage decisions on past realizations of the uncertainty:
in this case, the functional dependence of y; on wy, and of y, on (w1,ws). This
can be constant (no adaptability), affine, quadratic, other nonlinear, piecewise
constant, etc.

* * * The uncertainty for this problem is (wj,ws). Together, these two parameters
completely specify the multistage optimization. Alone, parameter w; provides
partial information about the ultimate realization of the optimization problem.
How we model uncertainty is one of the central concerns of this thesis.

Adaptability, as defined in (1.0.1) above, is particularly important when we have
a system whose performance, as measured by the objective function and feasibility
of the constraints, is a joint function of all the decisions and the full uncertainty real-
ization. In (1.0.1), for instance, any statement about the feasibility of some first-stage
decision = must also take into account the future stage decisions, as well as the po-
tential realizations of the uncertainty, since the feasibility constraint links @ to all these
quantities. At a higher level, this is also the case, for example, in the Air Traffic Control
problem we consider in Chapter 5. In this problem, the departure time, landing time,
and flight path for commercial aircraft must be scheduled over time, so that the planes
do not exceed the capacity constraints at airports or intermediate sectors of the Na-
tional Air Space. The capacity constraints are impacted by the weather, and hence are
uncertain. We get increasingly accurate information about the evolution of the day’s
weather, as the day progresses. As flights must be scheduled throughout the day, this
is indeed a problem of sequential decision making, with sequentially revealed uncer-
tainty. The performance metric of interest to us is the overall cost incurred, in terms
of delay on the ground (ground holding) and in the air (air holding, and longer routes
selected). This performance function is a joint function of all the actions implemented,
in the sense that in isolation, the “goodness” of a single scheduling decision (aircraft
A sent along route R at time T) cannot be evaluated.

In such problems, the notion of a “good” first-stage action depends on the future
evolution of the system, i.e., the dynamics. This, in turn, depends on the nature of the
uncertainty affecting the systems at the different stages, and also on the adaptability:
how do future decisions depend on past realizations of the uncertainty. This thesis
centers around these two concepts: uncertainty, and adaptability.

The natural applicability of adaptability and multi-stage optimization formula-
tions extends far beyond applications to Air Traffic Control. Multi-stage optimiza-
tion problems become relevant in many disparate frameworks. Sequential decision-
making problems are natural in any scenario where decisions are made over time, and
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uncertainty is inherent in our imprecise forecasts about the future. In operations re-
search, future demand or supply, including future service and setup times, as well as
costs and profits, are examples where a single-stage approach must necessarily neglect
an integral component of the problem. In addition to repeated rounds of decision-
making indexed by time (as in a market environment), many processes naturally have
decisions that must be made on different time scales. Often provisioning or design de-
cisions are made prior to pricing, or scheduling decisions. This is the case in network
design problems. Issues of timing here play a fundamental role in the structural prop-
erties of the problem formulations. Notions of feedback and control in engineering
applications, from Internet congestion control, to two-stage manufacturing processes,
are all fundamentally tied to adaptability and uncertainty. These are the central themes
of this thesis.

Because of the widespread applicability, much work has been done in various com-
munities. Sequential decision making in an uncertain (especially a stochastically un-
certain) environment has traditionally been the subject addressed by Dynamic Pro-
gramming (e.g., in the well-known texts of [19], [11], [114]) and for the discrete state-
space setting, Markov Decision Processes (see, e.g., [109]). In the control theory con-
text, sequential decision-making where uncertainty is revealed sequentially falls under
the general heading of feedback control ([55], [67], [100]). Beyond high-level concep-
tual similarities, the approach in this thesis diverges from both the above views.

In single stage, deterministic optimization theory, the landscape of tractability (what
classes of problems admit solution by tractable algorithms) is characterized by the
geometric and topological notion of convexity. The success stories of Dynamic Pro-
gramming, however, are much more dependent upon special problem structure, and
the tractability of the solution is dependent on much finer structural properties. This
tractability is typically a brittle property, and operations innocuous in single-stage op-
timization, such as adding convex constraints, can destroy special structure. Indeed,
most problems addressed by Dynamic Programming are plagued by the well-known
Bellman’s Curse of Dimensionality, and finding an exact solution is often computa-
tionally hopeless. As a result, there has been considerable effort devoted to computing
approximate solutions (see, e.g., [20]).

This thesis is more properly seen as an attempt to place traditional single stage
optimization onto a dynamic framework, as opposed to seeking to make a contribution
to approximate dynamic programming. Indeed, the starting point for this work is the
single stage convex optimization problem.

B 1.1 Uncertainty and Adaptability

Our point of departure is the single stage convex optimization problem, affected by
uncertainty. In deterministic single stage optimization, the objective function, as well
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as the constraint functions, are known exactly to the decision-maker. In the context
of perfect and deterministic knowledge of every parameter defining the problem, any
multi-stage problem can be solved as a single stage problem without any loss of op-
timality. There is no information to be revealed, and thus all decisions can be fixed
deterministically up front. In the face of uncertainty, however, the notions of multiple
stages and adaptability become important. How we model the uncertainty, and how
we model adaptability of future stages on past uncertainty, and the interaction of these
two, is of central importance.

Models of Uncertainty

Throughout this thesis, we consider the setting where both the objective function and
the constraint functions may be subject to some level of uncertainty. The description of
the uncertainty that affects the constraint and objective functions, plays a crucial role in
the formulation of even the concept of an “optimal solution” in the non-deterministic
case. Even the notion of “feasibility” and what precisely one means by this, must be
revisited, in the context of uncertainty in the optimization.

There are primarily two paradigms for dealing with uncertainty. The first, with the
longer historical legacy, is that of stochastic optimization (see [81],[108], [35], and the
references therein). Here, the uncertainty is assumed to have a stochastic nature. An
explicit description of the stochastic uncertainty may or may not be available to the
decision-maker, but nevertheless, the behavior is stochastically driven by some distri-
bution. Uncertain constraints can then be recast as soft constraints where violation is
penalized; or, one may ask that the constraints be satisfied with high probability, as
in the so-called chance constraint framework. Further details of these models can be
found in Chapter 2.

Robust optimization ([125],[14], [15], [17], [26], [25],[28], [46], [71]) has attracted
much attention, particularly in the last decade, as an alternative modeling approach
to stochastic optimization. In the robust optimization paradigm, uncertainty is not as-
sumed to have an underlying distribution, but rather is chosen in a worst-case manner
(one can imagine a malicious adversary) from a bounded set (see Chapter 2 for more
details). The description of the set is known a priori to the decision-maker. We note
that this is not the same as the stochastic optimization viewpoint with the uniform dis-
tribution. Robust optimization is inherently an analysis of the worst-case realization
of the uncertainty, where “worst-case” is understood to be with respect to the given
bounded set of possible realizations. A question of central theoretical and also practi-
cal importance, is to understand when one formulation might have advantages over
another.

Despite the fact that the stochastic and robust optimization approaches often pro-
vide structurally different solutions to similar problems, there should be no deep cul-
tural divide between the two. Recent work, and this thesis is no exception, seeks to
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exploit the benefits of each, including both modeling advantages, and also tractabil-
ity advantages. This thesis examines multi-stage optimization problems under both
models for the uncertainty.

A question that is implicit in this work, is what are the basic primitives of particu-
lar formulations of optimization under uncertainty. Stochastic optimization takes as a
primitive the knowledge that a data-generating distribution exists, and some form of
explicit knowledge of, or access to, the distribution itself. This can range from an ana-
lytical expression of the distribution, to a black box that provides sample realizations
(and this may include historical realizations). In robust optimization, the primitives
amount to a specification of the uncertainty set (for a viewpoint that seeks to con-
nect data and uncertainty sets in an explicit manner through the machinery of risk
measures, see [41]). The structure of the uncertainty set, much like the structure of
the distribution in the stochastic optimization framework, largely determines both the
quality of the solution, and, importantly, the tractability of the formulation. Chapter 3
works within the robust optimization framework, where the uncertainty sets defining
the problem uncertainty are specified a priori and explicitly, to the decision-maker. In
Chapter 4, we take a different perspective, and assume that the decision-maker only
has access to a mechanism that can generate independent sample realizations of the
uncertainty. Possible extensions to the case where each sample comes at a cost, and
may in fact be noisy, are mentioned in Chapter 6. As further discussed in Chapter
4, there does not seem to be a clear understanding of any separation principle be-
tween estimation and optimization. Given a finite data sample, it is well known that
multivariate integration is hard in the sense that the sample complexity may be quite
large (see, e.g., [132]), and even approximating the volume from uniformly drawn
samples can be intractable without more sophisticated rapidly mixing Markov chain
techniques ([89], [83]) that require special problem structure. This all points to a need
for methods that use data directly in the optimization problem. This is the approach
of recent sample-based optimization approaches ([43],[51], [92]) and also the point of
view we take in Chapter 4. In these approaches, the samples are incorporated directly
in the optimization problem. In a sense, by incorporating the data directly into the
optimization problem, there is some implicit estimation of the distribution, but specif-
ically within the context of the optimization problem. In Chapter 4 and Chapter 6 we
show that in multi-stage optimization problems, the structure of future stage adapt-
ability plays an important role in this implicit estimation process. We believe that this
is an exciting, but barely explored area that deserves much more consideration.

Adaptability in Optimization

In a multi-stage model where uncertainty is revealed sequentially, the decision-maker
can naturally adjust future decisions to depend on the uncertainty realization revealed.
We model this using adaptability, that is, explicitly building in a dependence of future
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actions on the past realizations of the uncertainty. We see this in a functional expres-
sion in (1.0.1): adaptability refers to the nature of the functional dependence of y;, y,
on wi,wy. As we discuss in detail in the sequel, we can have affine adaptability (y;
are affine in w;) and similarly quadratic adaptability, or other forms of adaptability.
We refer to a static multi-stage problem as one without adaptability, i.e., where the
decision-maker commits to all the decisions up front at the first stage, and implements
them without recourse to the realization of the uncertainty in later stages. In the lan-
guage of control theory, we can think of this as the difference between a closed loop
system (we have adaptability to feedback) and an open loop system (no adaptability).

In this thesis we are concerned with different adaptability schemes. That is, we
consider different functional structures for the dependence of future decisions on past
uncertainty, including the benefit of adaptability, complexity, and algorithms for build-
ing it. At a high level, increasing the level of adaptability (notions such as the “level”
of adaptability are made precise below) typically benefits the decision-maker. There
are two effects here that are of interest. Certainly, future actions that are made in re-
sponse to revealed uncertainty must be at least as good as actions taken without any
knowledge of past uncertainty realizations; more subtle, is the effect on the first stage
decision. Regardless of the adaptability scheme used, the decision-maker has access
to the same information when it comes to implementing the first-stage decision. In
systems whose behavior is not separable, in the sense that performance is assessed af-
ter all actions are made, and all uncertainty is realized, the first-stage decision cannot
be evaluated in isolation of the future evolution of the system. In such situations, the
very “knowledge” that future stage decisions are adaptable and thus are functions of
the realized uncertainty, can change the structure of the first stage decision. In partic-
ular, in systems where feasibility is of primary concern, adaptability in future stages
allows the decision-maker to be less conservative in the first-stage action.

There are several themes here that are emphasized throughout the thesis. First,
is the benefit of adaptability comes in terms of the performance improvement ob-
tained in the later stages where in the adaptable framework there is a chance to use
information about the uncertainty revealed by the past realizations, as opposed to the
non-adaptable, or static case, where that information is not used. This perspective
emphasizes the value of information to the optimization. This theme is particularly
important in Chapter 3 where we consider finite schemes for adaptability, and thus
naturally have a hierarchy of increasing adaptability. Indeed, the starting point of this
work may be taken to be the single-stage uncertain optimization problem, where the
decision-maker has access to some side information (in a sense made precise in Chap-
ter 3) about the uncertainty before it is realized. In this context, then, the value of
adaptability is linked to the value of information in uncertain optimization.

The second important theme stressed above, is the value of adaptability not to the
performance of future stages of the optimization, but to the first stage: the improve-
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ment that the very knowledge of future adaptability makes possible for the first-stage
decision. In many applications, such as the Air Traffic Control scheduling application
we discuss in Chapter 5, or Portfolio Management ([13], [73],[60]) to name but two,
we are able to implement the optimization scheme in a folding horizon manner. Con-
sider a T-stage multi-stage optimization problem with some uncertainty realization
revealed at each stage. The folding horizon approach proceeds as follows: we solve the
multi-stage optimization problem with some (possibly none) level of adaptability, we
implement only the first stage solution, and then we re-solve the resulting (T' — 1)-
stage optimization, updated to reflect the revealed realization of the uncertainty. This
process continues through to the final stage.

We have defined several different approaches to a multi-stage optimization: (1) The
static approach, where all decisions are made at the initial stage and have no adaptabil-
ity to realizations of the uncertainty, and furthermore, all these initially computed ac-
tions are sequentially implemented; (2) The static folding horizon approach, where the
decision-maker computes the static solution, but only implements the first-stage deci-
sion, and then re-solves the static problem with the updated information at the next
stage; (3) The adaptable solution (with some adaptability scheme, i.e., some functional
form specified for the y;,(-)), and (4) The adaptable solution implemented in a folding
horizon framework, analogous to the static folding horizon scheme. While schemes
(3) and (4) are not well-defined without specifying precisely the type of adaptability
implemented, for the purpose of discussion let us assume that we are minimizing an
objective function, and let us refer to the value of the optimization of scheme () as Z;.
Then certainly the relations:

Z1 £ 25 < Zy,

and
Z1 L Z3 L Zy,

hold generically. But there is no ordering of Z; and Z3, as it depends on the application,
and also on the level of adaptability (of course, if we have arbitrarily rich adaptability,
then by definition Z3 = Z4). These ideas are made concrete in the following simple
example.

An Example: Static Solution, Folding Horizon, and Adaptability

We consider and work through a simple stylized example, to emphasize the differ-
ences between the four schemes of adaptability described above, and to obtain some
intuition about the inequality relations between the Z;.

We consider a simple portfolio optimization example. Suppose we have $1 to build
a portfolio with two stocks, and a third risk-free asset which we can think of as cash.
The objective is to maximize the expected value of the portfolio after T = 3 stages.
Let our decision at stage [ be the amount of stock j to buy or sell. The uncertainty
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here is the return on each of the two stocks at the end of the T (three) investment
periods. At the beginning of stage 2, the returns of the past period are known to the
investor, and similarly at the beginning of stage 3. At the beginning of stage 1, only
some uncertainty description of the returns is known to the decision-maker. For this
example, we model the uncertainty as probabilistic in nature, and suppose that the
objective is to maximize the expected value of the portfolio at the final stage. Letting
K' be the wealth at time I, K the initial wealth, ! the fraction of the portfolio invested
in asset ¢ at time t, and rf the return rate on asset i at time ¢, we have:

max: K'E [Z rlTa:;‘r]
i
s.t.: Kt =Kt (Z rf‘lmﬁ‘"l) , t=1,...,T
i

doat=1, t=1,..,T

i

The expectation is over the returns for each asset and for each period. This model
is nonlinear, but we use it only for the purpose of the current discussion. We take
up a similar problem in Chapter 4, which we formulate as a linear optimization, and
consider various different structures for uncertainty and adaptability.

We consider next three scenarios:

1. Independent returns: Suppose that the returns at period ¢, ¢’ are independent for
t # t'. In this case, it is not difficult to see that adaptability is of no use. Since
we know the statistics (not the realization) of the returns at each stage from the
beginning, and because of the independence assumption, we have no additional
useful information at time ¢ that we did not have at time ¢t — 1, or time t = 0.
Therefore we have:

Zy =2y =23 = Zy.

2. Dependent returns: Consider next the opposite extreme where the returns over
time are extremely correlated. Suppose that at the first stage, the returns on the
two stocks will be (r1,73) =€ {(1/2,1.2), (1.2,1/2)} with equal probability, and
then the future returns (r?,72) and (r3,73) are both equal to the first-stage re-
turns. Suppose that the risk-free asset (cash) has return equal to 1. Then the
solution for the no-adaptability (static) formulation will be to hold cash for all
three periods, since the expected payoff of either of the stocks is 0.85 for a single
period, and 0.9265 for three periods, and hence less than cash. The adaptable
solution, on the other hand, will be to invest everything in cash for the first time
period, and then in the subsequent two periods, to invest in the asset with the
guaranteed return of 1.2. It is clear, then, that Z; < Z4. What about Z5, the fold-
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ing horizon static solution? We see that the first-stage solution of the adaptable
solution coincides with the first-stage of the static solution. Therefore after the
first stage, the static-optimized portfolio is identical to the adaptable portfolio.
Furthermore, from here we can see that the static solution for the last two stages
of the optimization yields the same solution as the adaptable solution. Therefore
Zy = Zy = 1x1.2x1.2 = 1.44 in this example: the static folding horizon problem
is as good as the optimal adaptable solution.

3. Stage-to-stage Constraints: Consider now the above problem, again with the
same dependence of returns among stages, so that after the first stage the prof-
itable stock is identified. Consider the additional constraints that there is a trans-
action cost for selling or buying stocks. For the purposes of illustration, consider
the extreme situation of no transaction costs for trading stocks, but extremely
high transaction costs for converting to or from cash. The static solution again
places the entire portfolio in the risk-free asset, cash, for all periods. In the fold-
ing horizon approach, however, in the second and later stages, the static solution
no longer moves the assets in the portfolio to the profitable stock (recall that after
the first stage, the profitable stock is revealed, and thereafter yields a guaranteed
1.2 return) because of the prohibitive transaction costs. The adaptable strategy,
on the other hand, splits the portfolio among the two stocks, and in the second
and third period moves everything to the profitable stock. After the first period,
the value of the portfolio is 0.5 x (0.5+1.2) = 0.825, which after two more periods
in the profitable stock becomes: 0.825 x 1.44 = 1.224.

Remark 1.1

It turns out that the notion of independence is critical. There is also set-theoretic ex-
pression of independence, which is of central importance in adaptability formulations
within the context of robust optimization. This observation plays a key role in the
development of the material in Chapter 3.

Remark 1.2

In the final portion of the example above, we see that the static solution diverges from
the adaptable solution in the first stage. It makes a “mistake” from which it cannot re-
cover in future stages. We see in the body of this thesis that this intuitive phenomenon
is generic. Without adaptability, the static solution tends to make overly conservative
decisions in the first stage, from which it can then not subsequently recover in the
context of folding horizon.

A Second Example: Deterministic Uncertainty

In this example we illustrate the above concepts with a simple geometric example
under a deterministic uncertainty model. The model is simple, but we revisit it in
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Chapter 3 to gain intuition about finite adaptability in optimization. Consider a simple
budget allocation problem, where we seek to minimize a budget, z, subject to the
constraint that it is sufficient to fund two projects, where project ¢ requires resources at
leastw;, 7 =1, 2.
min: T
st.: T2+
Yi > Wy, 1= 1,2.

Suppose now that the individual project costs, wy,ws, are not known exactly. Nev-
ertheless, we must commit to the budget today, while the allocation of the funds to
the two projects can be postponed until the realization of the budget requirements for
each budget. Thus this is a two-stage problem, the first-stage decision is z, and the sec-
ond stage decisions are (y1, y¥2). The uncertainty is in the (suggestively named) vector
w = (w1, ws). For this example, we consider the robust optimization paradigm where
the uncertainty is deterministic and set-based. That is, we require that we satisfy the
inequality:
i 2 wi, t=12

for every realization of (w1, ws) in some uncertainty set 2. Consider two different
uncertainty sets {2:

P,
Py

{(wl9w2) : OSWI,(U2 S ]-a w1 +w2 S 1}

{(wl,wz) 1 0<w,we < 1}.

e e

These are pictured in Figure 1-1. For ;, the optimal static solution is z = 2, (y1,y2) =

Figure 1-1. This figure shows the two uncertainty sets 2; and 2, in the second example above. Anal-
ogously to the first example, Q; here corresponds to the “dependent” uncertainty case, while Q2 corre-
sponds to the “independent” case. As in the stochastic example, adaptability is of no benefit in the face
of independence.

(1, 1). The optimal adaptable solution, however, cuts the budget in half, as the solution
is: z = 1,(y1,y2) = (w1,ws). This is feasible since if (w1,w2) € Q;, then we have
wi+wsz < 1. Note that in this case, Z; = Z», thatis, the folding horizon approach cannot
reduce the objective function. This is because, similarly to the third part of the portfolio
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example above, the static solution has already forced the decision-maker to implement
a first-stage solution of z = 2, and since this determines the value of the optimization,
even with a folding horizon approach, the decision-maker cannot recover from the
pessimism (or overly conservative nature) of the first-stage static solution.

For (2, however, the picture is different. The optimal static solution is again z =
2, (y1,42) = (1,1), but now the optimal adaptable or dynamic solution becomes z =
2, (41, 2) = (w1,w2), and thus the costs coincide. In this case adaptability has nothing
to offer, and the reason is essentially the independence (in the geometric rather than
probabilistic sense) of w; and wy. This phenomenon turns out to be rather general, and
is discussed in further detail in Chapter 3. A

The Connection to Uncertain DP and MDP

It is worth briefly discussing the difference in perspective between the work of this dis-
sertation, and the line of research pursued in the context of uncertain DP and MDP for-
mulations. There has recently been an extension of the MDP and Dynamic Program-
ming framework to the case where the problem specification itself (e.g., the rewards,
or transition probabilities) has uncertainty. In [80], robust Dynamic programming is
considered, and under certain conditions, the author shows that one can recover the
familiar structural results of Dynamic Programming, in particular the recursion for
backward Dynamic Programming. In [96], the authors consider the case of MDP with
uncertain matrix transition probabilities, and are also able to recover many of the struc-
tural results of DP and MDPs. Finally, in [78], the authors consider an application of
parametric programming to robust optimization, and they then show that this can be
applied to the case of MDPs with uncertain rewards, and uncertain transition prob-
abilities. However, these approaches endow the uncertainty with an independence
property similar to the one illustrated in Figure 1-1. In the context of the DP and
MDP problems considered in those references, this independence property essentially
amounts to a condition that ensures that future actions do not benefit from explicitly
incorporating any functional dependence on past realizations of uncertainty. Thus,
this independence property is crucial to restore Markovianity to the problem, without
which in their formulations, obtaining tractable models does not seem possible. Ul-
timately, however, the contribution of those works is the derivation and application
of results in single-stage uncertain optimization, to DP and MDPs. The focus of this
dissertation, therefore, is complementary to these results; here our primary concern is
the adaptability of future stage decision on past realizations of the uncertainty.

B 1.2 Thesis Outline and Contributions

This thesis seeks tractable extensions of uncertain optimization to the multi-stage hori-
zon. Primarily, this is done by considering different models for the uncertainty af-
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fecting the problem, and for the adaptability. Indeed, the central theme of this the-
sis is structured adaptability. As is generally known, uncertainty and adaptability
can quickly render many problems intractable. Linear problems that have the nicest
tractability properties in their single-stage deterministic form, can be intractable (NP-
hard) even for two-stage formulations. A first explanation for this difficulty is that the
optimization is no longer over the space of decisions, but rather over the potentially
much larger space of policies. This is indeed a primary source of the added compu-
tational difficulty. However it does not tell the full story. As the following simple
example shows, even in a two-stage problem when the optimal adaptability (i.e., the
second stage decision variable as a function of the first-stage uncertainty) is explicitly
known to the decision-maker, and is linear in the uncertainty and hence not very high-
dimensional, the resulting problem may nevertheless be quite difficult. The complex-
ity is determined not just by the adaptability scheme, but also by its interaction with
the model for the uncertainty. The robust optimization paradigm results in a tractable
formulation whenever a particular subproblem is tractably solvable (we discuss this
in full detail in Chapter 2). In multi-stage problems, the structure of this subproblem
is affected by the structure of the adaptability, and the uncertainty set.

Example: Intractable Linear Adaptability
Consider the problem (see [12]):

min:
st.: T2y w (1.2.2)
Y= Qu,

where w is an uncertain parameter. In the robust optimization formulation, if the
uncertainty set for w is @ = {w : a; < w; < b;}, i.e., a box set, then one can easily see
that problem (1.2.2) is equivalent to the indefinite quadratic optimization over the box:

max: w'Quw
st.: wel

It is well-known (see, e.g., [69]) that maximizing an indefinite quadratic subject to box
constraints, is NP-hard. A

Thus this thesis focuses on the uncertainty affecting optimization problems, the adapt-
ability we build in to future stages, and the interaction of the two. This interaction
extends to multiple levels, in the sense that it affects tractability, feasibility, and perfor-
mance (i.e., value of the objective). Chapters 3 and 4 of this thesis consider different
structures for adaptability, under different models for the uncertainty. The focus is on
understanding when adaptability can benefit the decision-maker in the sense of both
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performance (value) and feasibility of the optimal solution, as well as tractability of
the optimization formulation.

Contributions of this Thesis

Here we summarize the primary contributions of this thesis.

L

IL

IIL

We propose a finite, hierarchical formulation for adaptability in two-stage linear
optimization problems under a deterministic formulation for uncertainty.

(a) This proposal allows us to accommodate integer second stage variables, the
first proposal (to the best of our knowledge) that allows this extension.

(b) Because of the inherent finiteness of this proposal, it presents the decision-
maker with a trade-off of increased adaptability versus the cost of comput-
ing and implementing this finite adaptability. This is of particular interest
in the case where the computed adaptability is actually implemented in the
later stages, as opposed to the folding horizon approach where a new solu-
tion may be computed at a later point in time.

We propose a sample-based approach to structuring a hierarchy of adaptability.
This moves us away from the deterministic paradigm, and more towards the
question of data driven optimization. A central question is how data is best used
in optimization.

(a) By using sampling techniques, we circumvent intractability issues, and de-
velop a framework for structuring a hierarchy of nonlinear adaptability.
This yields sample complexity that is polynomial in the size of the problem,
and polynomial in the number of stages of the problem. To our knowledge,
this is the first such proposal.

(b) This hierarchy of adaptability can also accommodate discrete variables.

(c) We provide sample complexity estimates, using some convexity driven re-
sults of [43], and also results from learning theory.

We consider an application of the ideas of this thesis, in particular those of Finite
Adaptability, to the problem of Air Traffic Control. We provide a formulation that
captures the dynamic nature of the problem, as well as the weather uncertainty.
As we illustrate in several examples, this is a natural application of adaptability.

B 1.2.1 Chapter 2: Background Material

The main foundations of this dissertation lie in robust optimization, stochastic opti-
mization, and Statistical Learning Theory. In this Chapter, we review some basic facts,
results, and techniques from these three areas. The results in this chapter are from the
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literature, and we give numerous references to point out what has been done, where,
and when. In addition to providing the background on which the remainder of the
thesis is based, this chapter serves to place the contents and contributions of this dis-
sertation in the proper context of existing research.

While we provide a review of robust and stochastic optimization, and also some
results of Statistical Learning Theory, we save the more specialized material review
for briefer sections in the chapters where these results are needed. The purpose of this
chapter, then, is to establish a common footing and context, upon which the rest of the
thesis is built.

We review some of the techniques and results of stochastic optimization. While
this thesis is more motivated from the perspective of robust optimization (including
Chapter 4 when we rely on probabilistic techniques), it is important to understand
not only the main problems and techniques of stochastic optimization, but also where
it has been successful, and where it has been less so, especially in contrast to robust
optimization. We review techniques of complete recourse, where uncertain constraints
are brought to the objective and penalized, and then the resulting objective becomes to
minimize the expected penalty incurred. We also introduce and then review the basic
results of Chance Constraints.

This motivates the review of some recent results that take a statistical learning the-
ory view of approximating Chance Constraints. We refer to these as sampling meth-
ods, and we review some of the recent literature in this area. This is particularly im-
portant for what is to come in Chapter 4. This also gives us an opportunity to review
some of the basic results that we use from Statistic Learning Theory. In this chapter,
we go over only the basics that we require, deferring some of the more notationally
intensive material to Appendix B.

B 1.2.2 Chapter 3: Finite Adaptability

This Chapter launches our consideration of the value of adaptability to multi-stage
optimization problems. In this chapter, we focus exclusively on the robust optimiza-
tion paradigm for dealing with uncertainty; that is, we assume that the uncertainty
has a deterministic set-based description. While some of the structural results do not
demand this specialization, for many of the algorithmic results we require the uncer-
tainty set to be polyhedral and defined by its extreme points (extensions are considered
in Chapter 4).

We consider adaptability functions that are piecewise constant. One of the pri-
mary motivations for this is the desire to develop an adaptability framework that can
accommodate discrete second-stage variables. In this case, the adaptability must be
piecewise constant.

We consider the case of adaptability with a small number of pieces. The main
theoretical challenge lies in partitioning the uncertainty set into these finitely many
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pieces. This turns out to be a difficult problem. We show that it is NP-hard to optimally
partition a set into even two pieces. Nevertheless, using duality, we are able to obtain
necessary conditions that any good partition must satisfy. We do this by exploiting
some geometric consequences of the robust optimization formulation. Because robust
optimization is inherently a “worst-case” approach, the decision-maker immunizes
the optimal solution against several worst-case scenarios that could never be realized
simultaneously. It turns out that for the case of linear optimization under uncertainty,
we can use duality to identity what these worst-case scenarios are. We then select
partitions that explicitly separate these “bad” scenarios.

Furthermore, in this chapter, we discuss the relationship of finite adaptability with
affine adaptability, a continuous adaptability scheme proposed initially under the name
of “linear decision rule” in the stochastic optimization literature (e.g., [110]) that has
more recently appeared again in [12] and [47]. We show that the two proposals are
complementary in the sense that neither dominates the other. We give an example
where affine adaptability is no better than having no adaptability, while finite adapt-
ability with just three pieces outperforms the no adaptability case considerably. Like-
wise, we give an example where regardless of the number of pieces of the finite adapt-
ability scheme, no improvement is obtained over the no adaptability case, while the
affine adaptability gives the optimal solution.

One of the difficulties in this chapter, is the failure of finite adaptability to readily
extend to multiple stages, without causing a combinatorial explosion in the number
of variables. Indeed, for the T-stage problem, even if a partition of the uncertainty
of each stage is provided (thus rendering the 2-stage problem trivial) the number of
variables is exponential in T'. A different framework is required, to be able to address
multi-stage problems, and at the same time providing a hierarchy of adaptability (as
opposed to a single level, as in the affine adaptability proposals) while maintaining
polynomial complexity in the number of stages. This is the focus of the next chapter.

B 1.2.3 Chapter 4: Adaptability via Sampling

This chapter marks a departure from the techniques and setup of Chapter 3 in that we
assume now that the uncertainty does have a stochastic nature. However, we assume
that we do not have access to this distribution, except for our ability to generate inde-
pendent and identically distributed samples from the distribution. Thus we treat the
uncertainty as generated from a black box. In addition to this change, our objective
is also different. Unlike many stochastic optimization formulations, we are not inter-
ested in minimizing the expected penalty. Rather, we seek a solution that guarantees
feasibility with high probability. In this, our approach is closer to the sampling work
of Calafiore and Campi ([43]) and de Farias and Van Roy ([51]).

There are two central observations that motivate the results in this chapter. First,
we observe that within the robust optimization framework, affine and higher order
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adaptability formulations (not to mention more general nonlinear adaptability) are
typically intractable precisely because of the solution to the subproblem (as explained
in Chapter 2). Yet for any particular realization of the uncertainty, this subproblem
reduces to a simple linear constraint. This continues to be true for any nonlinear map-
ping of the uncertainty, that leads to adaptability that is affine in the decision variables
(although not necessarily in the uncertainty parameter itself). Furthermore, by control-
ling the structure of these nonlinear functions, for example by imposing polynomial
structure of fixed degree on future stage adaptability, we are able to prove polynomial
upper bounds on the sample complexity required to provide particular reliability and
feasibility guarantees. Thus, by combining sampling ideas with structured adaptabil-
ity, we obtain a polynomial time method for structuring higher order adaptability in
multi-stage optimization.

We also show that these ideas extend to problems with integer variables in future
stages. Here, of course, the resulting problem remains discrete, so we cannot hope for
tractability guarantees. Nevertheless, we are able to provide feasibility and reliability
guarantees, and the number of variables increases in a controlled manner. This gives
a way to structure piecewise constant adaptability without explicitly constructing the
regions of the partitions, as was the focus of Chapter 3.

In this chapter, we also consider a more sophisticated treatment of some results
from statistical learning theory, and show that using more careful complexity measures
such as the so-called fat-shattering dimension, or more generally, covering numbers, it
is possible to obtain improved upper bounds on sample complexity. We also use this
machinery to introduce a robustness parameter with respect to the sampling process,
that itself has an explicit trade-off with the reliability and feasibility parameters in the
expression for the upper bounds on sample complexity.

Finally, we introduce a feasibility maximization problem, and show that in addi-
tion to the performance improvement obtained from introducing adaptability, there
can be feasibility improvements, perhaps contrary to what the upper bounds on sam-
ple complexity are able to predict. We support this with some simple examples from a
two-stage and three-stage network design problem. As we discuss further in Chapter
6, this suggests a Structured Risk Minimization approach to multistage optimization
under uncertainty.

B 1.2.4 Chapter 5: Air Traffic Control

In this chapter, we consider the application of our work on multistage optimization
and adaptability, to the problem of Air Traffic Control. In particular, we focus on the
application of the results from Chapter 3. The problem we consider here is the global
problem of scheduling all the flights that take place in the continental United States
in a 24 hour period. The decisions include how to assign ground delay and air de-
lay to each flight, and moreover what routes each flight should use from its departure
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airport to its destination. These decisions must be made with the goal of minimizing
a cost function which relates directly to the delays experienced by the flights. This
objective function takes into account the costs to the airports, airlines, and customers.
The resulting schedules and routes selected for each flight must respect the landing
and takeoff capacity constraints at each airport at each time segment, as well as the
capacity constraints over each sector of the National Air Space (NAS). All of these ca-
pacity constraints are impacted by the local weather conditions. At each time, we have
essentially precise knowledge of the weather at that time period, as well as a weather
forecast of the future weather, whose accuracy degrades with the distance from the
present time. Therefore we naturally have a multi-stage optimization problem with
sequentially revealed uncertainty. While there have been other approaches to build
in direct considerations of the evolution of the weather front (e.g., [30]) and also un-
certainty in the forecast (e.g., [97], [96]) this is to the best of our knowledge, the first
approach that attempts to exploit adaptability.

We build upon an integer linear optimization model proposed in [29]. The authors
there dealt with fixed capacity constraints. Here we build up two layers of complexity
beyond that. First, the capacity constraints change with time, as the weather front
evolves and moves through the country, and second, we treat the exact evolution of
the storm front as uncertain.

The resulting problem is a very large scale integer program. We implement a fi-
nite adaptability scheme, implemented as a folding horizon problem. While weather
uncertainty is not available directly, we argue that the effective uncertainty is low-
dimensional, and thus finite adaptability is a well-suited approach for dealing with
this problem, both in terms of tractability, and also in terms of its potential effective-
ness.

We present two examples that illustrate the benefit of using finite adaptability. We
compare the performance of a finite adaptability folding horizon implementation, at
several different levels of adaptability, with a pure (i.e., no adaptability) folding hori-
zon implementation with robustness, and also without any robustness.

We find that finite adaptability does considerably better than the pure static ro-
bust approach. There is another point illustrated by our computations: the value of
building in robustness. The solution produced by the nominal solution, i.e., where
no robustness considerations are made, but rather the decision-maker solves the prob-
lem placing 100% confidence in the weather forecast, can do quite well if the actual
weather trajectory follows closely what was forecast; however, even with small devia-
tions from this, the lack of robustness can lead to very expensive decisions in the later
stages, such as additional air holding.
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M 1.2.5 Chapter 6: Future Work and Conclusions

In this chapter, we conclude and present an overview of the dissertation, and the con-
tributions of the work. In addition to this, we provide an extensive discussion of direc-
tions for future work. There are several questions that work in this thesis raises, and
demand further attention. Chapter 3 leaves open the issue of developing efficient algo-
rithms with provable performance guarantees for special classes of problems. Given
the hardness results shown in Chapter 3 we cannot hope for general performance guar-
antees. However, obtaining improved algorithms for specific classes of problems is an
important direction for future work.

Chapter 4 proposes a feasibility maximization problem, and a tractable approxima-
tion of this problem. This avenue, along with the simulation data, suggests that one
could take a structural risk minimization approach for optimization. We discuss this
further in this chapter.



CHAPTER 2

Background

he purpose of this chapter is to give several sections of prerequisite material. The

aim is twofold. First, this chapter collects the main facts and results upon which
we build our results in the sequel. In addition to collecting here the main background
elements for the convenience of the reader, this chapter also serves the purpose of
building the proper context for what is to follow.

The majority of the results in this dissertation build upon the concepts of convexity
and duality. This theory we do not review, and instead refer the reader to several
fine textbooks on Linear Optimization [31], [116], Nonlinear Optimization [18], and
Convex Optimization [16], [39], [21].

The starting point for this background chapter is Robust Optimization. In Section
2.2 we primarily review the results of Ben-Tal and Nemirovski, as well as those of
Bertsimas and Sim. Robust Optimization takes a deterministic set-based view of un-
certainty in optimization. While this is inherently a worst-case view, the deterministic
formulation buys us tractability in a wide class of problems. In addition to this, there is
a philosophical point about the Robust modeling paradigm: it assumes no knowledge
of the underlying distribution. Indeed, it doesn’t even assume that the underlying
distribution exists (in the sense that there is a fixed distribution generating identically
distributed realizations of the uncertainty over time). In many applications, it is not
reasonable to assume the existence of an underlying distribution, let alone to hope for
any concrete knowledge of the distribution. This, therefore, is an additional motiva-
tion for the Robust Optimization point of view, in addition to tractability benefits, as
discussed below. In Section 2.3, we review some of the basic results of Stochastic Opti-
mization. In contrast to the Robust Optimization perspective, Stochastic Optimization
assumes an underlying stochastic nature to the uncertainty. In Section 2.4, we review
some recent sampling approaches to so-called chance constraints, and also some re-
lated results from statistical learning theory. Section 2.4.2 considers some sampling
approximations to chance constraint problems. These sampling techniques have relia-
bility and feasibility guarantees that one obtains from convexity considerations, as in
the work of [43]. It is also possible, as in [51] to obtain such guarantees from uniform
learnability results. The latter type of results motivate us to further consider some of
the results of Uniform Limit Theorems and Statistical Learning Theory, in Chapter 4.

33



34 CHAPTER 2. BACKGROUND

We review the necessary background here in Section 2.4.3.

B 2.1 Uncertain Optimization

The starting point for the work in this dissertation is the single stage optimization
problem. Since we consider for the most part linear optimization problems, we start
with just that:

min: c'z

st.: Ax<b

In the usual set-up, the parameters defining the optimization, namely (c, A,b), are
known deterministically. Since the objective function is linear, and the feasible set
convex, there will always be an optimal solution at a vertex of the feasible set. Thus
optimization naturally pushes the solution to the very boundary of the feasible set,
i.e., the boundary of feasibility. By its nature then, the solution is not designed to be
robust in perturbations in the feasible set. Indeed, as has been observed by Ben-Tal
and Nemirovski in [15], and documented by those authors in 90 problems from the
Netlib Library ([94]), even small perturbations of the problem can result in “optimal”
solutions that are over 100% infeasible with respect to some of the constraints. These
“optimal” solutions, then, are essentially meaningless, especially if the constraints in
the optimization model are in fact hard constraints that cannot be violated. In the
Stochastic Optimization community as well, it has long been observed (see, e.g., [82],
[32]) that replacing uncertain parameters with a single deterministic value (possibly
their mean value when the notion of mean is available) can lead to very poor solutions.

A reasonable solution, then, is to move away from the boundary of the nominal
feasible set towards the interior, trading off optimality for some sense of robustness.
The fundamental question is how to optimally choose this trade-off, and where to
move in the interior. This depends essentially upon how we model the error, and thus
what precisely we mean by performance and robustness to error.

There are essentially two paradigms for modeling uncertainty. In Stochastic Opti-
mization, the uncertainty is modeled as having a stochastic nature. The resulting opti-
mization problem has an objective function, and constraints, that have a probabilistic
interpretation. One therefore seeks to optimize in some appropriate probabilistic sense
(for example, we may optimize the expected value) subject to again some probabilistic
notion of constraint satisfaction.

The other approach is that of Robust Optimization. Here we model the uncertainty
in a deterministic set-based way. While in this thesis we consider probabilistic uncer-
tainty (Chapter 4), the foundation is in fact the Robust Optimization perspective. We
therefore review this first, and then move on to Stochastic Optimization.
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B 2.2 Robust Optimization

Consider the linear optimization written above, and suppose that the defining param-
eters (c, A, b) are uncertain. To reflect this, we write them explicitly as a function of
a parameter w representing the uncertainty. First we note that without loss of gen-
erality, we can always assume that the vectors ¢ and b are known deterministically,
and it is only the matrix A that is subject to uncertainty (this is true because we can
easily transform the system by, e.g., adding a variable to convert an objective function
into a constraint thus moving uncertainty in ¢ into the matrix A, and similarly for the
right hand side vector b). In the Robust Optimization framework, rather than assume
that the parameter w has a probabilistic description and behavior, instead we assume
that it can take values on some bounded set 2 that is known a priori to the decision-
maker. Then feasibility requires that a solution x be feasible to every realization in the
uncertainty set 2. Thus the optimization takes the form:

min: ¢'z

st.: Alwx<b Ywe. @22.1)

This deterministic view of the uncertainty essentially amounts to a worst-case view-
point. Such worst-case perspectives have been used widely in other fields. In the com-
puter science community, the worst-case approach has seen many applications (see,
e.g., [75]). In Control Theory as well, in the theory of Robust Control!, worst-case for-
mulations have been widely considered (e.g., [58], [144], [7], and references therein).
In Optimization, however, worst-case formulations have a more recent history. The
Robust Optimization formulation was first proposed by Soyster in 1973 ([125]). How-
ever, the attention Robust Optimization has attracted in the last decade, is really due
to the important work of Ben-Tal and Nemirovski ([15], [14], [17]) on Robust Linear
Optimization, Robust Quadratic Programming, and Robust Conic Programming, and
also by work of El Ghaoui et al. ({70], [71]) on Robust Least Squares and Robust SDP,
and then more recently by work of Bertsimas and Sim ([25], [26], [27], [28]).

Remark 2.1

There has also been some recent work on Robust Optimization models for non-convex
problems, such as those whose feasible set is described by a solution to a partial differ-
ential equation. See, for instance, [142],[143], for work on Robust Optimization applied
to a general Nonlinear Optimization context. This dissertation is more concerned with
sets with convex constraints, or convex constraints intersected with a discrete set like
the integers, or the corners of the hypercube. Therefore we do not consider work in
this vein, although it certainly deserves consideration.

'We note that the word Robust in Control does not necessarily imply a deterministic worst-case for-
mulation, where as in the Optimization literature, Robust Optimization has become synonymous with
the worst-case perspective
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Before we discuss the specific contributions of these results in more detail, we give the
following simple observation.

Lemma 2.1 Let the rows of the matrix A(w) be denoted by a;(w). If A has m rows, make
m copies of Q, so that Q¥ = Q. Then the optimization problem (2.2.1) is equivalent to the
following formulation:

min: c¢'z

st.: ay(wTe<b  Vw® e,
, 222)

(W™ T < b, V(™ e QM)

Remark 2.2
The i* constraint may only use some subset of the components of w. Let ©2; be the pro-
jection of Q2 onto those components. Then the effective uncertainty set can be regarded

as the rectangular set Q 2 1 X -+ - x Q. This idea is further developed in Chapter 3.

The Lemma gives a straightforward result, but it is nonetheless an observation that
is important for what is to follow. It says that the Robust Optimization formulation
cannot capture uncertainty that is not constraint-wise.

PROOF. Certainly any solution feasible for (2.2.2) is feasible for (2.2.1). Let zg de-
note the optimal solution to problem (2.2.1). If xy is not feasible for problem (2.2.2),
there must be some index 4, and w® € Q® such that a;(w®)Txp > b;. But this is
impossible since then A(w®zg < b is not satisfied. O

Now let us consider the solution of the Robust Optimization formulation, and thus
the tractability of the solution as well. It is convenient to consider the equivalent
constraint-wise formulation of the above lemma. Consider the i** uncertain constraint
(we drop the superscripts on w and Q2 since they are not necessary):

a;(w)x<b, Vwel (2.2.3)

Equivalently, we can replace this constraint by an equivalent maximization formula-
tion:
[ max: a;(w)’

< b;. 2.
st.: wenN ]_bl (2.2.4)

Note that so far the discussion is completely general. If we have a general constraint,
f(z,w) < 0, again the robust version of this can be written as the maximization prob-

e f@,w)
max: f(z,w
[ st.: we ] <0 225
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This inner maximization is what we refer to as the inner problem of the Robust Op-
timization formulation. The tractable solvability of any robust optimization formu-
lation, depends critically on the structure of this inner problem. Indeed, if for any
fixed w, the optimization problem is convex, i.e., the sub-level sets {z : f(z,w) < a}
are convex, then the tractability of the robust optimization is essentially determined by
the subproblem.? If we replace the maximization problem by its dual, by weak duality,
any feasible to the dual problem (which is a minimization) that satisfies the inequality
of the constraint, is an upper bound on the value of the maximization, and hence a
certificate that the point « is feasible. If the dual is a tractable convex problem, then
the overall problem we need to solve becomes convex, and hence tractable. The value
of this optimization problem provides a bound on the optimal value of the original
problem. If in addition, the inner problem can be expressed as a convex optimization
problem satisfying an appropriate constraint qualification so as to have no duality gap
(see, e.g., [21], [112]), then strong duality holds, there is therefore duality gap between
the maximization and its dual minimization problem, and hence we have an exact
reformulation of the original robust problem as a convex optimization.

This general use of duality as described above, is the driving force behind the re-
sults of Ben-Tal and Nemirovski, Bertsimas and Sim, and El Ghaoui et al. The struc-
ture of the uncertainty set, and also the function f(z,w), determines the structure of
the dual of the subproblem, and hence the structure of the explicit reformulation of the
robust problem. We briefly mention some of these structural results.

W 2.2.1 Polyhedral Uncertainty Set

The use of polyhedral uncertainty sets was used with great success in Bertsimas and
Sim, as in the case where the uncertainty affects the constraints in an affine manner, the
dual to the subproblem is again a linear program. In this case, the explicit reformula-
tion of a robust linear optimization, again becomes a linear optimization. To illustrate
this, let us consider uncertainty sets directly in terms of the uncertain matrix A (rather
than maintaining explicitly the uncertain parameter Q):

Qi = {ai . Diai < dz}
Now consider the problem:
min: c'x
s.t.: maX{aZ.EQi}aiT:c <b, i=1,...,m.

2If the sublevel sets are not convex, then the nominal problem (without uncertainty) is not convex,
and thus may itself be intractable.
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The dual of the subproblem can be written as:

. T
max: a; T ml:' p?rtli;
s.t.: D;a; <d; St zz:>:)—w

; > 0.

and therefore the robust linear optimization now becomes:

min: c'z

s.t.: pjd.igbi, i=1,...,m
p;rD,-:a:, i=1,...,m
p; >0, i=1,...,m.

Bertsimas and Sim ([26]) use this duality with a family of polyhedral sets that encode
a budget of uncertainty in terms of cardinality constraints. That is, the uncertainty sets
they consider control the number of parameters of the problem that are allowed to
vary from their nominal values. This budget of uncertainty helps control the trade-off
between the optimality of the solution, and its robustness to parameter perturbation.
In [24], the authors show that these cardinality constrained uncertainty sets can be
expressed as norm-bounded uncertainty sets.

The cardinality constrained uncertainty sets are as follows. Given an uncertain
matrix, A = (a;;), suppose that for row i, the entries a;; for j € J; C {1,...,n} are
subject to uncertainty. Furthermore, each component a;; is assumed to vary in some
interval about its nominal value, [a;; — @i, a:; + d;;]. Rather than protect against the
case when every parameter can deviate, as in the original model of Soyster ([125]), we
allow at most I'; coefficients to deviate. Thus in this sense, the positive number I';
denotes the budget of uncertainty for the ith constraint. 3 Given values I'y, . .., T,,, the
robust formulation becomes:

T

min: c'z

s.t.: zj GijT; + MaX{g,CJ;:|8;|=T;} ZjGS;' Gy <b; 1<i<m
—y; < x; <y 1<j<n (2.2.6)
l<z<u
y>0.

Then taking the dual of the inner maximization problem, one can show that the above
is equivalent to the following linear formulation, and therefore is tractable (and more-

3For the full details see [26].
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over is a linear optimization):
max: c'x

s.t. : Zj a;;r; + 2 + Zj pij < by Vi
zi +pij 2 G455 Vi, j
Y ST Y \¥
I<z<u
p2>0
y=0.

W 2.2.2 Ellipsoidal Uncertainty Set

Ben-Tal and Nemirovski, as well as El Ghaoui et al., consider ellipsoidal uncertainty
sets. One of the motivations for this is that the truncated normal distribution yields
ellipsoidal uncertainty sets, and therefore this gives a concrete physical intuition for
the meaning of the uncertainty sets. Here, the budget of uncertainty takes the form of
the size of the ellipsoidal sets, rather than the number of parameters allowed to vary.

In addition, now the subproblem is no longer a maximization over a polytope, but
rather over a quadratically defined set. Therefore we resort to quadratic optimization
duality rather than linear optimization duality. As a consequence, the resulting dual
problem is not linear. If the original problem is linear, the robust equivalent is a sec-
ond order cone (SOCP). Second order cone problems become Semidefinite programs
(SDP), and in general, robust SDPs do not have a reformulation as a tractable convex
optimization problem, when the uncertainty set is an intersection of ellipsoids.

We illustrate here only how to obtain the explicit reformulation of a robust quadratic
constraint, subject to simple ellipsoidal uncertainty? Here we follow Ben-Tal, Nemirovski
and Roos ([17]). Consider the quadratic constraint

' ATAz <20z +¢c, V(A,bc)eQ, (2.2.7)

where the uncertainty set Q is an ellipsoid about a nominal point (A°, 6%, ¢%):

L
= {(A, bc) == (A%1%, ") + ) wi (4, b, d) ;w2 < 1} :
=1

As in the previous section, a vector  is feasible for the robust constraint (2.2.7) if and
only if it is feasible for the constraint:

[ max: T ATAz—2b'z—c

<90
st.: (A,bc)eQ ]_0

*Here, simple ellipsoidal uncertainty means the uncertainty set is a single ellipsoid, as opposed to an
intersection of several ellipsoids.
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This is the maximization of a convex quadratic objective (when the variable is the
matrix A, 2" AT Az is quadratic and convex in A since zx ' is always semidefinite)
subject to a single quadratic constraint. It is well-known that while this problem is
not convex (we are maximizing a convex quadratic) it nonetheless enjoys a hidden
convexity property (for an early reference, see [40]) that allows it to be reformulated as
a (convex) semidefinite optimization problem. Related to this and also well-known, is
the so-called S-lemma (or S-procedure) in control [38]:

Lemma 2.2 (S-lemma) Let F and G be quadratic in x € R™:

F(z) = z' Pz+2plx+po,
Gx) = mTQa: + 2an: + qo,

where P, Q are symmetric matrices. Suppose further that there exists some xo such that
G(xo) > 0. Then
F(x)>0 Vze{z: Gx) >0},

if and only if there exists a scalar T > 0 such that
G(x)—-7F(z) >0, VzeR™

Note that the condition that there exist some xo such that G(xzp) > 0, is exactly a
Slater-type condition, and this guarantees that strong duality holds.

There are numerous restatements of this result in the literature. An equivalent re-
statement of this statement is that the first sum of squares relaxation of the quadratic
optimization, is exact (see [102]). Indeed, the global nonnegativity in the last statement
above, is equivalent to a positive semidefiniteness of the matrix defining the quadratic
function G(x) — 7F(x). This lemma is important in our context, because it essen-
tially gives the boundary between what we can solve exactly, and where solving the
subproblem becomes difficult. Indeed, if the uncertainty set is an intersection of ellip-
soids, then exact solution of the subproblem is NP-hard.® In Section 2.2.6 we review an
extension of the robust framework to multistage optimization. We see there that the
solution of the subproblem is precisely the tractability bottleneck, and the S-lemma
essentially marks the landscape of what can be solved exactly.

As an immediate corollary of the S-lemma, we then obtain a solution to our orig-
inal problem, of feasibility for the robustified quadratic constraint. It amounts to the
feasibility of an SDP. Therefore subject to mild regularity conditions (e.g., Slater’s con-
dition) strong duality holds, and therefore by using the dual to the SDP, we have a
convex exact reformulation of the subproblem in the Robust Optimization.

®Nevertheless, there are some approximation results available: [17].
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Corollary 2.3
Given a vector x, it is feasible to the robust constraint (2.2.7) if and only if there exists a scalar
T € R such that the following matrix inequality holds:

P +22TW — 7| i +2TH - L +aThE | (A%)T
et +z'b! T (Alz)"
: . : > 0.
3t +xTvt T (Alz)T
Az Az “ee Afx I

Thus in this section, as well as in the previous section, we have seen that the tractability
of the subproblem in Robust Optimization, depends on two factors: the nature of the
dependence of the parameters of the problem on the uncertainty (affine and quadratic
dependence, respectively, in the last two sections) and the structure of the uncertainty
set itself.

The next section briefly considers some of the extensions to more general classes of
convex problems.

B 2.2.3 Extensions to General Conic Robust Optimization

The Robust Counterpart to a general conic convex optimization problem is typically
nonconvex and intractable ([14]). This is implied by the results described above, since
conic problems include semidefinite optimization. Nevertheless, there are some ap-
proximate formulations of the general conic convex robust problem. We refer the in-
terested reader to the recent paper, [28].

W 2.2.4 Extensions to Discrete Robust Problems

There has also been some work extending the Robust Optimization framework to the
discrete setting. Primarily, we refer to the work of Bertsimas and Sim, in [25]. Philo-
sophically, this is of interest to us because a central motivation to the work in this
thesis, including our main application to Air Traffic Control in Chapter 5, is to build a
framework that can accommodate discrete variables.

B 2.2.5 Probability Guarantees

Thus far in our discussion of the development and result of Robust Optimization, we
have said nothing about distributions. Indeed, the formulation itself is free from prob-
ability theory. In a sense, this may account for the tractability advantages of Robust
Optimization over Stochastic models, at least in the case of the solvable setups dis-
cussed above.

Yet, as Ben-Tal and Nemirovski, and also Bertsimas and Sim show, given a particu-
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lar robustification scheme, it is possible to obtain probability bounds on the feasibility
of the solution, for different levels of noise, and under different distributional assump-
tions. It is important to stress that the actual solution is designed to be deterministi-
cally feasible to some level (and description) of uncertainty. One can then prove that
in fact this solution also has a certain level of probabilistic protection to uncertainty,
when the uncertainty has a stochastic description. Therefore in this sense, probabil-
ity is used only after the fact, to provide a probabilistic analysis of the solution. The
construction is entirely deterministic.

Consider the formulation of the robust linear problem, with polyhedral uncertainty
set given by the cardinality constraint and the budget of uncertainty for each row, i,
{T';}, as in the exposition above in Section 2.2.1. In [26], the authors consider a model
of uncertainty where each entry a;; of the uncertain matrix that is can vary from its
nominal value (and hence j € J;, as in (2.2.6)) is modeled as a random variable taking
values in a symmetric interval about its nominal value: [a;; — @5, a;; + @45]. Assume

. o . il
that the random variable 7;; = (d;; — as5)/ds; follows a symmetric distribution over
[—1,1. This distribution is assumed to be symmetric, but otherwise unknown. Then,
Bertsimas and Sim prove:

Proposition 2.4
For x* the optimal solution of (2.2.6), and S} C J; the worst-case set of varying parameters in

the robust optimization, then for any symmetric distribution of the matrix entries around their
nominal value:

1. The probability that the i*h constraint is violated is bounded as follows:

P Z&z‘jx; >b | <P Z YiiMj = s
J

Jjed;
where
L, ifj € S,
"Y" = &i‘lIﬂ er . *
Y sy fIELNS
and

* A *
r* = arg min a;-|x.|.
€S} I T|

2. We can further bound the probability bound above:

r?
P Z'Yij"h‘j >T; | <exp (—Q‘JH) :

Jj€Jd;

There are a number of results along these lines including [26],[28],[16], [15] and ref-
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erences therein. There are also results that have focused also on obtaining improved
a posteriori probability bounds when more information about the underlying distribu-
tion is available, such as the work in [46] and [47].

B 2.2.6 A Multistage Extension: Affine Adaptability

Thus far, the discussion on Robust Optimization has been limited to the single-stage
case. Indeed, multi-stage extensions for the Robust Optimization framework have
only recently started attracting the attention of the research community, and thus far
not much work has been done.

We briefly review one of the pioneering papers in this area, again due to Ben-Tal,
Nemirovski, along with two co-authors, Goryashko and Guslitzer: [12]. Here, the
authors consider multi-stage linear optimization, where the parameters of the problem
are affinely impacted by uncertainty, that takes values in a general ellipsoidal set.®

We consider an uncertain two-stage optimization problem, where the uncertainty
is treated within the Robust Optimization framework, and the second stage variables
are allowed to depend on the uncertainty, while the first-stage variables have no adapt-
ability to the uncertainty. The interpretation is the usual one: the uncertainty is real-
ized after the first-stage decisions must be implemented, but before the implementa-
tion of the second-stage decisions. Let « denote the first-stage decision, y the second-
stage decisions, and w the uncertainty vector. We note that we can without loss of
generality (e.g., by adding a variable if necessary) assume that the objective function
involves only the first-stage variables. Similarly, we assume that the objective function
and the right hand side vector are known deterministically. Then we have:

min: c'z

st.: Aw)r+ B(w)y(w)<b, VYwefl

For general adaptability, i.e, for arbitrary dependence of the second-stage decisions y
on w, this is equivalent to:
min: ¢’z

st.: zeK, (2.28)

where the feasible set K is given by
K2 {z|Vw e Q Iy st. A(w)z + B(w)y < b}.

The set K is convex, however the quantifier in the definition renders the resulting
optimization problem (2.2.8) NP-hard (in general). Indeed, recall the simple example

By general ellipsoidal set we mean a set that is the intersection of potentially many ellipsoids, as op-
posed to a simple ellipsoidal set. -
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(1.2.2) from Chapter 1:
min:
st.: 2>y w
Yy = Qu.

In this case, the set K is convex, and one-dimensional:

K = {z:2>w Qw, VweQ}

= [z, 00),

but computing the lower bound, z, of the interval is NP-hard.

Rather than allow arbitrary adaptability, the authors in [12] restrict the functional
form of the adaptability, to be affine in the uncertain parameters, i.e., in w. Of course,
from the example above, again this cannot buy tractability. However, for a large class
of problems, they are able to use a generalization of the S-lemma proved in [17], to
obtain approximate solutions. Consider, then, an affine scheme for adaptability:

y(w)=Qw+gq,

where now the decision variables for the second stage are given by the matrix Q and
the vector q. The two-stage optimization problem, then, becomes:

min: c¢'z

st.: Alw)r+ B(w)[Qw+4g]<b, VYweq.

But this is a single-stage problem, that is linear in the decision-variables, and quadratic
in the coefficients of the uncertainty.7 The subproblem, therefore, is:

max : a;(w)x + bi(w)[Qw +q] < b;
st.: wefl

This is the maximization of a possibly indefinite quadratic function (in w) subject to
a convex constraint 2. If  is defined by a single ellipse, then the S-lemma applies,
and the subproblem is tractable, as there is no duality gap because of the property of
hidden convexity (and Slater’s condition). In the case where (2 is a general ellipsoidal
set, Ben-Tal, Nemirovski and Roos show ([17]) that while there is in general a duality
gap, they can bound its size.

There are two main observations that are particularly motivating to us. First, we
see that the subproblem seems to be the tractability bottleneck, and within the robust
framework there does not seem to be much of a way around this, as long as P #

”The quadratic term is B(w)Qw, when B(-) is affine in w. If the dependence of B(-) on w is not affine,
then the subproblem is further complicated.
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NP. Second, the complexity of solving the subproblem is further complicated for
other classes of adaptability (not to mention broader classes of problems, such as those
with nonlinear dependence on the uncertainty), and as a result, this approach does
not permit the construction of a hierarchy of adaptability. We provide an example in
Chapter 3 where, issues of complexity aside, the affine adaptable formulation is no
better than the original static robust formulation. A central motivation in this thesis is
to build a hierarchy of adaptability, so that we can always have recourse to a higher
level of adaptability if the computational resources are available.

B 2.3 Stochastic Optimization

In this section, we switch gears to talk about the stochastic paradigm for modeling
uncertainty. Here, we assume that the uncertain parameter behaves according to a
probability distribution.

Stochastic Optimization has a long history, dating at least as far back as Dantzig’s
original paper [48]. Since then, much work has been done, in various aspects of
Stochastic Optimization. We refer the reader to several textbooks ([79] [35], [108], [81])
and the many references therein for a more comprehensive picture of Stochastic Opti-
mization.

In Robust Optimization, once the uncertainty set is specified, the constraints are
treated as hard constraints, and thus this approach does not leave room for further
modeling decisions: constraints must be satisfied for every realization of the uncer-
tainty. This is not the case for the stochastic framework. Here, important modeling
decisions include specifying the sense in which a solution is optimal, or feasible. In-
deed, consider a linear problem of the form:

min: c(w)'z
st.: A(w)z < b(w).

Since the objective function, c(w) is itself a random variable, two solutions z1, x; may
not be comparable, in the sense that one may not dominate the other with probability
1. A typical approach in Stochastic Optimization is to try to optimize in expectation,
often adding guarantees for downside risk, say, by attempting to place certain bounds
on the performance at tails of the distribution.

Let us consider the feasibility constraints, A(w)x < b(w). If we interpret the con-
straints as “hard” constraints, in the optimization sense, so that we assign value +oo
to the optimization problem if the constraints are violated, then any expectation op-
eration (or anything like it) necessarily reduces to demanding that the constraint be
satisfied with probability 1. But this is essentially a Robust Optimization constraint,
as the feasible set becomes the set of vectors x that satisfy the constraints determinis-
tically for every realization w € Q = supp(w), the support of the distribution.
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There are several ways to relax the constraint:
P(A(w)x < b(w)) = 1.

The first involves a notion known as recourse, and converting the single-stage Stochas-
tic Optimization into a two-stage problem. The second approach that is often used,
involves directly relaxing the probability of feasibility constraint, so that we enforce
feasibility with some probability (1 —¢€) (for € > 0), and then we place no restriction or
penalty on what happens outside a set of measure (1 — ¢). The constraint

P(A(w)x < b(w)) >1—c¢,

is called a chance constraint.
We discuss recourse first, and then we consider chance constraints.

B 2.3.1 Recourse in Stochastic Optimization

One way to avoid facing a hard constraint for every possible realization of the un-
certainty, is to interpret the constraint as a soft constraint, penalize its violation, and
subsequently seek to minimize the expected penalty. The motivation for this approach
comes from the observation that in many situations which we model with hard con-
straints, the constraints can be satisfied “at extra cost” if original planning proves in-
adequate. For instance, if a supplier fails to provision adequately to meet demand, it
may well be possible to buy extra provisions “at the last minute” in order to meet de-
mand. Of course, each unit purchased at the last minute, may have a price well above
the original production or supply cost.

Thus we transform a single stage problem into a two-stage problem. The second-
stage variables, then, correspond to the actions that must be implemented to mitigate
the unexpected realization of the uncertainty, and in order to make the first-stage de-
cisions feasible to the original problem. For example, a generic linear problem of the
form given above:

min: c(w)'x
st.: Alw)x > b(w)
would become:
min: c(w) z+d yw)
s.t.: Alw)z + y(w) > bw),

where y represents the second-stage decisions, and d the cost of the second stage vari-
ables. There are two aspects of this problem that are worth pointing out. First, note
that the matrix multiplying the second-stage function y is constant. This is known
as constant recourse. Second, note that as written, any first-stage decision « can be
made feasible under any possible realization of the uncertainty, by proper choice of
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the second-stage variable y. This is known as complete recourse, and it is a consequence
of the matrix multiplying y having full column rank. This is clearly the case, in this
case, since the matrix in question is just the identity matrix. We note that in our previ-
ous formulations of two-stage problems, we made no mention of constant, or complete
recourse. This point is important in the sequel. In Chapter 4, the probability of feasi-
bility of the first-stage decision is particularly important, and we consider the impact
of adaptability on the first-stage feasibility. With complete recourse, this quantity is
always equal to one.

Once we add the second stage variable, and thus remove issues of feasibility, we
are left with the minimization of the random quantity:

c(w) 'z +dT (b(w) - A(w)x).

Typically, we then seek to minimize the expectation of this quantity, and the problem
becomes:
min : Elc(w) "z + d" (b(w) — A(w)z)].

Computing expectations of continuous functions in high dimensions can be particu-
larly challenging. There are several approaches to computing expectations. One is to
do it by discretizing the expectation, approximating it by considering samples of the
distribution. But the complexity of this may be quite large (see, e.g., [132], [98]).

Because of this, much work has been done in obtaining approximations for the ex-
pectation of convex functions, since early in the history of Stochastic Optimization. For
example, [59], [86] obtain upper bounds on expectation of convex functions, and these
are applied to stochastic optimization in [87]. More recent work, including bounds
based on higher order moments of the distribution, and bounds approximating the
distribution, and bounds approximating the function to be integrated, include [84],
[36], [34], [91], and [54]. See the textbook [35] for more on such bounds, and their
application to Stochastic Optimization.

Another approach to approximating expectations is via Monte Carlo sampling
methods. The idea is that if we have access to samples from the distribution, we can
generate a finite approximation to the underlying distribution, with which we can ap-
proximate the expectations directly. Sampling methods are of central importance to
this thesis, particularly in Chapter 4. We discuss them further below in the context of
approximating Chance Constraints. The complexity of integration via sampling can
be prohibitively bad for two reasons: first, the number of samples required crucially
depends on the nature of the integrand, since an interesting result in sampling are
those uniform over some set of possible integrands. A uniform result over a set of
integrands whose regularity is not controlled, is of course impossible.?

8Consider, for instance, the hopeless task of obtaining a uniform bound on the number of samples re-
quired to approximate the integral of a piecewise constant function with an arbitrary (but finite) number
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B 2.3.2 Chance Constraints

Chance constraints, also called probabilistic constraints, present a rather natural relax-
ation for Stochastic Optimization. Moreover, it has long been known that a solution
that is feasible with probability (1 — €), can have performance dramatically better than
a solution that is feasible with probability 1. Indeed, in particular for situations where
the uncertain parameter has unbounded support, say, whenever we model the noise
as Gaussian, then demanding that a solution be feasible with probability 1 is overly
conservative and restrictive, and typically would result in an infeasible formulation.

Moreover, this approach is well-motivated in many applications, where we want
to guarantee performance or reliability of a system with high probability. Chance con-
straints are of course also motivated by work in statistics, stochastic processes, large
deviations, and reliability theory. The earliest work on chance constraints dates back
to work of Charnes et al. in [45] who considered such constraints in the context of the
management of heating oil production, and [44], and also in [90]. One of the more
significant contributions to this area of Stochastic Programming has been made by
Prékopa, who initiated the study of the general model of Stochastic Optimization us-
ing Chance Constraints (see [104],[105],[106] for the early work, [107] for a survey with
many useful references, and [108] for a textbook on Stochastic Optimization).

The challenge in dealing with Chance Constraints comes primarily from the fact
that the sets of e-feasibility of some constraint Az < b, defined as

X.-2{z:PAz < b)>1-¢},

are generally non-convex. In some very special (and limited cases) Chance Constraints
are convex, i.e., the sets X, are convex. In general, convexity requires log concavity
properties of the probability distribution. For constraints of the form given above,
more is required. As outlined in [107], if the distribution of w is such that the in-
duced distribution on A and b is jointly normal with some additional restrictions on
the covariance matrix ([107]), then X, is convex, for € > 1/2. These conditions are not
typically satisfied, however, and thus optimizing over the sets becomes a challenging
task.

There have been several approaches that aim at obtaining convex approximations
to the non-convex sets X;. The papers on Robust Optimization reviewed in this chap-
ter, give some convex approximations to the feasibility sets, as they show that deter-
ministic feasibility to a given uncertainty set can be shown to imply feasibility with
high probability, when the uncertainty is stochastically generated. A more direct ap-
proach appears in a paper of Nemirovski and Shapiro [93]. There, the authors con-
struct an approximation to the chance constraints using ideas from Large Deviations
and Bernstein approximation (see [53] for some of the background ideas involved in

of pieces.
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the work in this paper). The authors require some additional structural assumptions,
namely, the uncertainty must affect the parameters of the problem in an affine man-
ner. We see in Chapter 4 that this limits the application of such results, in particular
with respect to the application to multi-stage uncertain optimization problems with
more than two stages. Furthermore, the particular techniques in [93] require some di-
rect knowledge of the underlying distribution. We are interested in the case where our
only knowledge of the distribution comes indirectly through a (possibly noisy) sample
of data.

B 2.3.3 Multistage Stochastic Optimization

Many of the results stated thus far have also been extended to the multi-stage case.
However, the multi-stage case poses many problems that have not been adequately
addressed by the methods outlined above. Chance constraints, in particular, have
not been successfully extended to the case of multi-stage stochastic optimization with
more than two stages. One of the challenges in such formulations is enforcing the
causality constraints in the adaptability functions of different stages. This is necessary
in order to avoid overly optimistic formulations. This issue of causality is taken up
again in Chapter 4.

Many results for multi-stage problems exploit special structure in the problem, that
allows decomposition of the problem. The main idea is that in the presence of recourse
when we are minimizing expectations, the objective function involves a linear term
(in the case of Stochastic Linear Optimization) and then the expectation of the future
costs, which is a convex term. Many approaches seek to approximate the convex term
in the objective by means of supporting hyperplanes, building an outer linearization,
and then solving the optimization by Benders decomposition. See, for example, [124],
[33], and the references therein. These approaches, though, require special structure,
and furthermore they typically lead to very large scale optimization problems, and
therefore their applicability has limited scope.

Sampling approaches to the multistage stochastic optimization problem have been
shown to be exponential in the number of stages. This is further discussed in Chapter
4.

B 2.4 Sampling Results and Learning Theory

A particularly successful approach to Chance Constraints is that of sampling. Essen-
tially, the idea is to sample some number N of the constraints from the distribution,
and then find a solution that satisfies some fraction (typically all) of the sampled con-
straints. The sampling may in fact mean using data that are already available, such
as the past behavior of a system (e.g., the stock market), or it could actually involve
observing or simulating the system being modeled.
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A significant advantage of the general sampling approach is that it does not require
explicit knowledge of the underlying distribution. This is particularly appealing when
we have large scale systems, where the only possibility is to observe the system’s re-
sponse to certain inputs. These ideas grew out of the statistics and learning literature
(see below) and have also found application in Control (e.g., [139]).

First, we remark that there is a fundamental difference between approximating
chance constraints, and sampling to approximate integrals, such as the expectations of
the cost-to-go in the stochastic optimization approach with recourse, discussed above.
The main advantage when it comes to chance constraints, is that they are expectations
not of some arbitrary function, but of a very controlled function, namely, an indicator
function. Thus the modulus of the integrand is constrained to lie in [0,1] from the very
beginning.

The sampling approach to approximating chance constraints, then, replaces the set:

X & {z : P(A(w)z < b) > (1-¢)},
by the random (convex) set

A(w))z<b
XN(UJl,...,Q)N)-‘A—' Z . :
Alwn)x <b

The fundamental question is, for a given number of samples, NV, what can we say about
the relation between the deterministic set X;, and the random set Xy (w1, ...,wn)-

In addition to the probability of feasibility, ¢, we must also incorporate the probabil-
ity that the finite-length sample, Qy = {w1,...,wn}, is somehow not representative
of the underlying distribution. We can think of this as the probability that the data
sample generated is not typical of the true distribution, and instead looks like some
other distribution. We call this notion reliability, and it is denoted by 4. The nature of
the results that are of interest are so-called sample complexity results. These relate X,
and Xy (wy,...,wy), and they say: If we have N (g, §) samples, then with probability
atleast (1 - §), we have Xy C X.. Or we might ask for something weaker, namely that
with probability at least (1 — J), only our optimal solution, £* € Xy satisfies * € X,.

The central question is obtaining useful bounds on the sample complexity, N (e, §),
for values of the feasibility, ¢, and values for the reliability, 4.

B 2.4.1 A Lower Bound

Consider a problem simpler than the one we are proposing: suppose we want to test
the membership of a given and fixed vector xg, in X;. Consider the random variable
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defined on 2, given by
_ 07 If f(mOv w) S 01
Slw) = { 1, otherwise.

Consider iid copies of ¢, and the convergence of the empirical mean to the true mean.
Without knowledge of any further structure, this defines a Bernoulli process. Sanov’s
theorem on finite alphabets (see, e.g., [53]) gives us a Large Deviations Principle, and
thus exponential convergence of the measure to the deterministic dirac measure on the
mean. The rate function given by Sanov’s theorem is the relative entropy. By a Taylor
series expansion, we can easily check that the relative entropy, H (p|p+¢), has a leading
term that is quadratic in €, because the linear term drops out. On the other hand, near
the boundary, namely, near p = 1, the leading term is in fact linear.? Therefore this
(loose) argument shows that the sample complexity, N (e, §), will be related to O(1/¢)
and O(In(1/6)). Note that a straight application of Hoeffding’s inequality ([76]) does
not give us a lower bound, since the dependence of ¢ in Hoeffding’s inequality is
quadratic.’ Hoeffding’s inequality gives a large deviations result that is weaker than
Sanov’s theorem, and considerably weaker near the boundary.

We will see that we can achieve such a sample complexity behavior even for the
more difficult question of determining membership in X; for a value z* that depends
on the sample (recall that in the above, xy was chosen and fixed independently of the
sample), or even when we ask for uniform results over the entire feasible set Xy .

W 2.4.2 Calafiore and Campi: Convexity

In the previous section, we give an intuitive idea of the best we might hope to do, in a
general setting. In their paper [43], Calafiore and Campi show that they can essentially
attain that lower bound, but for a harder problem. Namely, they are interested in the
feasibility not of an a priori fixed and specified point zg, but rather of the point z*, that
minimizes the objective function subject to satisfying all of the sampled constraints. In
particular, this means that z* is a function of the sampled data, and this considerably
complicates the problem (we can no longer treat the samples of a random variable like
¢ above as independent).

Their result comes directly from convexity properties. We give the main ideas here,
and refer the interested reader to the paper [43] for the full details.

The result is quite powerful in its generality. Consider a single stage uncertain

%Essentially this is the difference between proper learning, and non-proper learning, as we discuss
further below.

Calafiore and Campi use Hoeffding’s inequality to give a sample complexity bound for a posteriori es-
timates on probability of feasibility; the inequality they derive themselves, however, seems to be stronger
because of its dependence only on 1/e. Furthermore, their result can easily (although there would be no
reason to do it this way) be adapted to provide a posteriori bounds, and thus one can obtain an O(1/¢)
result in that way as well.
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optimization problem:
min: c'z
st.: Po(flz,w)<0)>1-¢

TelX.
The assumptions in place are:
1. For any w € Q, the sets {x : f(x,w) < 0} are convex.
2. The deterministic constraint X is convex.

Their main result is:

Theorem 2.5 (Calafiore-Campi)
For the setup as above, if the N sampled constraints define a nonempty feasible (convex) set,
then if * is the optimal feasible solution, we have x* € X, with probability at least (1 — §), as

long as

1.1 1 1
>N =92n=-ln=+-Iln= )
N > N(g, 6) [ne ns+€ln5+n]

That is, with reliability at least (1 — 6), x* is feasible with probability at least (1 — €) to the
next sampled constraint.

The proof of this result relies exclusively on convexity properties. Each of the N sam-
ples, {w;}, of the uncertainty corresponds to a constraint, f(x, w;) < 0, and hence also
a convex set of feasible points,

X2z : f(z,w;) <O}

They call a constraint corresponding to w; a support constraint if removing that con-
straint alone, results in a new optimal solution « that is strictly better than x*.

A classical result of Helly says that for any arbitrary but finite collection of convex
sets in R™, if every collection of (n 4 1) sets has a nonempty intersection, then the
intersection of the entire finite family is nonempty.

Essentially as a result of this, they show that given any problem of the above form,
with X C R", there can be at most n support constraints.!! Then the intuition of the
result, is as follows. Consider (N +1) constraints, and let * denote the optimal feasible
solution. The optimal feasible solution *" to the first N constraints will be infeasible
to the (N + 1)* constraint only if the (N + 1) constraint is a support constraint for

"Note that the notion of a support constraint is different from that of a tight constraint. Certainty we
can have arbitrarily many tight constraints in R", and indeed we have more than n for any degenerate
solution of a linear optimization problem. In the presence of degeneracy, however, there are no support
constraints, since if any single constraint is removed, because of the degeneracy, the optimal solution does
not change.
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z*. Since there are at most n of these, and then by symmetry, the probability of this is
at most /(N + 1). This should give the idea of where the (1/¢) term comes from. The
full proof is more involved, and draws on some techniques from [66].

Convexity Is Necessary

We remark that the lower bound of the previous section, made no assumption what-
soever about convexity. Thus, we can think of convexity as the added price, here, that
we pay in order to strengthen the result of the lower bound from an a priori specified
point o, to the optimal solution z* that depends on the sampled constraints.

We give a brief example here that shows that in the absence of convexity, we may
not have sample complexity results that are independent of the size of the uncer-
tainty set. Indeed, note that the sample complexity result given above, is dimension-
dependent as there is a factor of n. This is also evident from the ideas behind the
proof, since the maximum number of support constraints is equal to the dimension of
the space. However, the dimension of the uncertainty set, {2, does not play any role in
the expression for the sample complexity.

Then, let M be some very large positive integer, much larger than any number N
of points we can feasibly sample. Pick some real number w € [0, 1], and use it to define
the robust feasible set C, as follows: Let w; € {0,1} denote the it* digit in the dyadic
expansion of w. Then define C to be those numbers in [0, 1] that match the dyadic
expansion of w in the first M digits:

Cé{z rzi=w, 1<i< M}
Now define the feasible set to be:

A 0<y<lifzeC,
Xtrue = {((L‘, y) : =¥= N }

y = 0 for all other z.

Let m be uniformly distributed on {1, 2,..., M}, and define the sets

C(my,...,mg) {z: Zm; =wm;, 1<i<k}

A 0Ly <Ll ifz e C(my,...,myg),
X, ome) = {(:c, v : y = 0 for all other z. '
The sampled optimization problem, then, given sample (m, ..., my), is:
max: y

st.: (z,y) € X(my,...,my).

If N << M, then the probability that the next sample drawn, my1, is one of those
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already sampled, is N/M = 0, and thus the probability that the optimal solution to the
sampled problem, (z*,y*), is feasible, is 1/2.

Remark 2.3

Finally, we mention here that while in spirit the Calafiore and Campi result is meant to
be a robustness result, it nevertheless does not explicitly incorporate any robustness.
We show in a later chapter, that if one solves a robust sampled robust problem (as
opposed to an exact sampled robust problem) then there is room to improve upon the
sample complexity estimates, as well as to introduce some new meaningful parameters
(in addition to 0 and € which we have here) into the problem.

B 2.4.3 Uniform Learning Results

In the past section we considered sampling complexity results driven by convexity
considerations. In this section we review some results from the theory of statistical
learning and uniform limit theorems, which we use substantially in Chapter 4. Statis-
tical learning theory is a deep field with connections to statistics ([134],[135]) probabil-
ity and functional analysis ([57], [136], [103]) and computer science ([4], [5], [115]), and
we can only give a very brief introduction here, but we refer the interested reader to
the references given above, and the wealth of references contained therein.

We focus our discussion on the classification problem, as this will be of most use to
us later. The classification problem, defined on an input space X, is as follows:

1. There is an unknown classification rule!? that maps points of the input space
deterministically to a pointin {0, 1}:

htrue - {0, 1}

2. There is an unknown distribution, u, on (2.

3. We have a fixed set (possibly infinite) of classifiers, H, that may or may not con-
tain the true classifier hrye.

4. The Goal: Select a classifier h € ‘H to minimize the so-called classification error,
i.e., the measure of miss-classified points:

Error(h) 2 p{w € Q1 h(w) # herue(w) }-
5. Input: The input to the problem is the so-called training data, a collection of

correctly labeled points: {(w1,41),- .., (wn,yn)}, where w; € Q, and y; € {0, 1}.
The assumption is that each point, w;, is generated independently at random

12Eor now we assume that a deterministic classifier that has zero error in fact does exist.
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from the underlying distribution p. This is the only information the decision-
maker has about the distribution, p.

A central question that arises on the way to trying to compute an optimal classifier,
is that of the quality of the data: If a classifier A € H has empirical error (also called
training error) p on the training data, what can we say about its true error? In the case
where hye € ‘H, which is the proper learning setup, there is always at least one & € H
that has zero training error. Therefore we can take p = 0, and the question becomes: If
a classifier has zero training error, what can we say about its true error.

Since the input space, {2, is continuous, and the collection of classifiers potentially
infinite, it is too much to expect that based on a finite amount of data, we can always
compute the exactly correct classifier. Thus we must be satisfied with trying to com-
pute an e-optimal classifier, i.e., a classifier i € H such that Error(h) < .

In addition to this, however, our finite data sample may be a “bad” sample, i.e,, it
may not be representative of the distribution, thus not giving us enough information to
select a good classifier. This is known as the reliability of the data. We thus further relax
our criterion, so that a particular procedure for selecting a classifier i € M is called a
learning algorithm if when given enough data, then with probability at least (1 — §) it
produces a classifier that has error at most ¢. This is the so-called PAC framework, of
Probably Approximately Correct learning ([133]).

A natural algorithm to choose, is one that selects a classifier that has zero error on
the training data. Then, in the context of the discussion above, the central question
in analyzing this algorithm becomes: Given Q and H, and reliability and error pa-
rameters ¢ and ¢, how big must be the number, N, of samples, to guarantee that with
probability at least (1 — 6), any h € H that has zero training error (i.e., perfectly clas-
sifies the training data) will have error at most £. The minimum such number, which
we denote by N(g, d), is called the sample complexity. Note that there is no mention of
the distribution, x. The sample complexity, then, guarantees a statement that holds for
any distribution, p.

The sample complexity is determined by the richness, or complexity, of the set of
classifiers, H. If, for instance, the classifier set H contains all possible mappings of 2 to
{0,1},ie, if H = 2%, it is clear that there is no hope of a finite sample complexity, since
for any N, there will always be a classifier that matches the true classifier perfectly
on the data sample, but nowhere else. For any nonatomic measure 4, the error the
classifier will be equal to 1.

For finite collections of classifiers, the complexity is controlled, and we can obtain
sample complexity estimates in a straightforward manner, using tools like the union
bound, and Hoeffding’s inequality. For infinite classifiers, we need some measure of
the complexity of the class. This is accomplished by the notion of the growth function.
Given a set of m points, (w1, ...,wry) € O™, define Iy (w1, . .., wy) to be the number



56 CHAPTER 2. BACKGROUND

of distinct labellings of these points by the classifiers in H. Then define:

A
Iy(m) = max Iy (wi, ... wmn).

(w1,..-,wm )EQ™
We have the following fundamental theorem about proper learning (see, e.g., [4]):

Theorem 2.6

Given any € > 0, and any classifier h € 'H that has zero training error on a data sample of size
m, where m > 8/¢, then

P(Error(h) > €) < 2IT3(2m)275™/2,

Immediately we see that this error goes to zero with the number of samples, m, only if
the growth function is not exponential in m.

VC Dimension and the Growth Function

The growth function can be upper bounded by a combinatorial quantity known as the
VC dimension. This is a combinatorial measure of the complexity of the class H.

Definition 2.1

The VC dimension of a set of classifiers, H, is the maximum number, m, of points w1, . .., Wy, €
Q)™ that can be shattered. A set of points is said to be shattered by H if for every a € {0,1}™,
there exists some hq € H such that

ha(wi, -, wn) = (ha(wr), ..., Awn)) = a.

Therefore,
VC(H) = max{m : IIy(m) =2}

Furthermore, by a result known as Sauer’s lemma (see, e.g., [37]), the growth function
can be bounded by a polynomial of the VC dimension. Thus, the growth function if
polynomial if and only if the VC dimension is finite. Therefore finiteness of the VC
dimension exactly characterizes the cases when sample complexity, N (g, 6), is finite.

In Chapter 4, we use these learnability results for families of classifiers with finite
VC dimension. We go on to consider some related problems in learning, in partic-
ular, learning with a margin, and this allows us to consider more refined notions of
complexity. We defer further discussion of this to Appendix B.

B 2.5 Summary of the Current State of the Art

Having reviewed many old and recent results, in this section we provide a summary
of the state of the art of the results available with respect to uncertainty, adaptability,
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and multi-stage optimization, in particular how it applies to our own framework.
1. Robust Optimization:

(@) There has been little work in adaptability, and in the extension of the Robust
Optimization framework to multistage optimization problems.

(b) There seems to be no work that can accommodate discrete variables in sec-
ond and later stages.

(c) No work creates a hierarchy of adaptability, so that we can choose to in-
crease the level of adaptability at the expense of greater computational re-
sources.

2. Stochastic optimization:

(@) Minimizing Expectation: This seems to be difficult. Results from informa-
tion complexity indicate that the sample complexity of integration may be
much greater than for testing feasibility. Furthermore, the complexity of
integration in higher dimensions may well be prohibitive.

(b) Recourse: There do not seem to be many results that extend to non-constant
recourse. Also, much of the work done focuses on the case of complete
recourse. Effectively this means that feasibility is guaranteed at the second
stage, and thus considering the probability of feasibility of the first-stage
variables is not an issue.

(c) Chance constraints: For special structure, in particular, affine impact of the
uncertainty on the problem parameters, there are approximation techniques
([93]), but these do not seem to extend to more general problems where the
uncertainty affects the parameters in a nonlinear fashion.

(d) Sampling chance constraints: There are importance-sampling techniques
(I92]) with logarithmic dependence on the error, ¢, but again these require
affine dependence on the uncertainty, and furthermore make certain con-
centration assumptions on the underlying distributions. They do not seem
to extend to more general problems.

(e) Sampling chance constraints: The results of Campi and Calafiore ([43]) and
de Farias and Van Roy ([50]) meet the lower bounds for sample complexity.
Moreover the results of ([43]) make very few assumptions on the distribu-
tion. However, there is no extension to multi-stage problems.






CHAPTER 3

Finite Adaptability for Linear
Optimization

he essence of adaptability, and therefore of this thesis, is the functional depen-

dence of future stage decisions on past realizations of the uncertainty. Under the
static robust optimization paradigm for linear optimization with deterministic param-
eter uncertainty, a decision maker selects a single robust solution in order to immunize
the solution from parameter uncertainty, and future stage decisions are all determined
at the initial time. In this chapter, we maintain the robust noise model, but consider
a departure from the static paradigm, allowing the decision-maker some limited, fi-
nite adaptability. Here, the decision-maker can obtain some additional information
about the uncertainty before committing to a decision. The central problem we ad-
dress is optimally structuring this adaptability, and understanding its marginal value.
We propose a hierarchy of increasing adaptability that bridges the gap between the
static robust formulation, and the fully adaptable formulation. We study the geom-
etry, complexity, formulations, algorithms, examples and computational results for
finite adaptability. In contrast to the model of affine adaptability proposed in [12], our
proposed framework can accommodate discrete variables. In terms of performance for
continuous linear optimization, the two frameworks are complementary, in the sense
that we provide examples that the proposed framework provides stronger solutions
and vice versa.

B 3.1 Introduction

Optimization under uncertainty has long been at the frontier of both theoretical and
computational research. Stochastic optimization (see [35],[108], [118], [120], and ref-
erences therein) explicitly incorporates a probabilistic description of the uncertainty,
often relaxing hard constraints by penalizing infeasibility ([113]), or by using so-called
chance constraints ([107]). Stochastic Optimization methods, including chance con-
straints are discussed in more detail in Chapter 2. In the last decade, much work has
been done in robust optimization. Here, the decision-maker makes no probabilistic as-

59
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sumptions, but rather seeks deterministic protection to some bounded level of uncer-
tainty. Recent work has considered the case of linear, semidefinite, and general conic
optimization, as well as discrete robust optimization; see, e.g., [14],[15], [25], [26], [71].
In multi-stage optimization problems, the uncertainty is revealed sequentially, and
hence may be partially known at the time when some decisions are made (see [49],
[108], [120] and Chapter 2 for further discussion of this in the Stochastic Optimization
formulation of uncertainty). The focus of this chapter is on two-stage optimization
models, where the uncertainty follows the robust paradigm, i.e., it is set-based and

deterministic:
min: ¢ «+d y(w)

st.: A(w)z + B(w)yw) <b, Ywe. (3.1.1)

We investigate the class of piecewise constant adaptability functions for y(w). For
much of this chapter, we simplify the setting by focusing only on the second stage
problem, assuming that the first stage variable x has already been fixed and imple-
mented. Thus, by adding an additional variable if necessary, the second stage problem
is:

min: d'y(w)

st.: Bw)ylw)<b, Vwe. (3-12)

Remark 3.1

While our central motivation is the two-stage optimization model (and extensions to
multi-stage problems), it is also interesting to consider the second stage problem in
isolation, as a single stage problem. In this context, piecewise constant adaptability to
the uncertainty, w, is equivalent to a formulation where the decision-maker receives
some advance partial information about the realization of the uncertainty, namely, the
uncertainty realization will lie in some given region of a partition of the uncertainty
set (). ‘

For deterministic uncertainty models, the landscape of solution concepts has two
extreme cases. On the one side, we have the static robust formulation where the
decision-maker has no adaptability to, or information about, the realization of the
uncertainty. As discussed in Chapter 2, this typically yields overly conservative, or
pessimistic, solutions.

On the other extreme is the formulation with complete adaptability, where the
decision-maker has arbitrary adaptability to the exact realization of the uncertainty
and then selects an optimal solution accordingly.! This set-up is overly optimistic for

'In the context of a single-stage problem, this corresponds to have complete knowledge of the ex-
act realization of the uncertainty, as opposed to some coarse model for the advance information. As
we comment throughout the chapter, while we focus on the two-stage model, the interpretation of the
adaptability we introduce, in the one-stage model, is exactly one corresponding to a finite amount of
information revealed to the decision-maker.
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several reasons. Exact observations of the uncertainty are rarely possible. Moreover,
even if in principle feasible, computing the optimal arbitrarily adaptable second stage
function is typically an intractable problem. Furthermore, even implementing such
complete adaptability in practice may be too expensive, since effectively it requires
complete flexibility in the second stage, and hence in itself may be undesirable. This
motivates us to consider the middle ground.

Contributions and Chapter Outline

In a departure from the static robust optimization paradigm, we consider a set-up
where the decision-maker may (perhaps at some cost) be able to select some finite
number, k, of contingency plans for the second stage solution, (y;, .. ., y;), as opposed
to a single robust solution, yz. The central topic of this chapter is to understand the
structure, properties and value of this finite adaptability.

Our goals in this chapter are as follows:

(1) To provide a model of adaptability that addresses the conservativeness of the
static robust formulation in the case of the second stage of a two-stage optimiza-
tion problem, viewed as a single-stage optimization. We then apply this to multi-
stage optimization.

(2) To develop a hierarchy of adaptability that bridges the gap between the static
robust and completely adaptable formulations, as the level, k, of adaptability
increases.

(3) To investigate how to optimally structure the adaptability (i.e., how to choose
the contingency plans) for small k. Furthermore, we want to understand the
complexity of solving the problem optimally.

(4) In addition to structural properties and theoretical characterizations of the opti-
mal adaptability structure, we would like practical algorithms that perform well
in computational examples.

Point by point, we believe the above goals are important for the following reasons.
(1) While there exist proposals for adaptability, to the best of our knowledge none
are structured specifically to address the fact that the static robust formulation cannot
model non-convexity in the uncertainty set, or non-constraintwise uncertainty ([15]).
(2) Also, as far as we know, there exist no adaptability proposals that allow a variable
degree of adaptability, specifically with the ability to cover the middle ground between
the static robust and completely adaptable formulations. (3) The completely adaptable
formulation is known to be NP-hard to solve in general ([12]) as are other adaptability
proposals ([12], [127],[6]), as well as various approaches to Stochastic Programming
and chance constraints ([108]). It is important, then, to try to understand how much is
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possible, and the complexity of achieving it. (4) Given the inherent difficulty of these
problems, efficient practical algorithms are of high importance.

In Section 3.2, we provide the basic setup of our adaptability proposal, and we
define the problem of selecting k£ contingency plans. Because of its inherent discrete
nature, this proposal can accommodate discrete variables. To the best of our knowl-
edge, this is the first proposal for adaptability that can reasonably deal with discrete
variables. In Section 3.3, we give a geometric interpretation of the conservativeness of
the static robust formulation. We provide a geometric characterization of when finite
adaptability can improve the static robust solution by 7, for any (possibly large) cho-
sen 17 > 0. We obtain necessary conditions that any finite adaptability scheme must
satisfy in order to improve the static robust solution by at least . The full collection of
these conditions also constitutes a sufficient condition for n improvement.

In Section 3.4, we consider an exact formulation of the k-adaptability problem. In
the general case, we show it can be formulated as a bilinear optimization problem.
For the special case of right hand side uncertainty, we show that the bilinear optimiza-
tion becomes a discrete optimization problem and we provide an integer optimization
formulation for the k¥ = 2 contingency plan problem. In Section 3.5, we consider the
complexity of optimally computing k-adaptability, and we show that structuring the
k = 2 adaptability optimally, is NP-hard in the minimum of the dimension of the un-
certainty, the dimension of the problem, and the number of constraints affected. In
particular, we show that if the minimum of these three quantities is small, then opti-
mally structuring 2-adaptability is theoretically tractable.

In Section 3.6, we consider an example in detail, illustrating several of the subtleties
of the geometric characterizations of Section 3.3. Here, we also compare k-adaptability
to the affine adaptability proposal of [12]). Following that work, there has been re-
newed interest in adaptability (e.g., [6],[60],{46],[127]). Our work differs from continu-
ous adaptability proposals in several important ways. First, our model offers a natural
hierarchy of increasing adaptability. Second, the intrinsic discrete aspect of the adapt-
ability proposal makes this suitable for any situation where it may not make sense to
require information about infinitesimal changes in the data. Indeed, only coarse ob-
servations may be available. In addition, especially from a control viewpoint, infinite
(and thus infinitesimal) adjustability as required by the affine adaptability framework,
may not be feasible, or even desirable. We provide an example where affine adaptabil-
ity is no better than the static robust solution, while finite adaptability with 3 contin-
gency plans significantly improves the solution.

In Section 3.7, we provide a heuristic algorithm based on the qualitative prescrip-
tions of Section 3.3. This algorithm is also suitable for solving problems with dis-
crete variables, where if the original discrete static robust problem is computationally
tractable, so is our algorithm. Section 3.8 provides several computational examples,
continuous and discrete, illustrating the efficient algorithm of Section 3.7. First in Sec-
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tion 3.8.1, we discuss an application to Air Traffic Control. This application is further
considered in Chapter 5 (see also [23]), but we introduce it here to illustrate applicabil-
ity of the proposed approach, and as an opportunity to discuss when we expect finite
adaptability to be appropriate for large scale applications. Finally, in Section 3.8.2 and
Section 3.8.3, we consider a large collection of randomly generated scheduling prob-
lems in an effort to obtain some appreciation in the generic case, for the benefit of the
first few levels of the adaptability hierarchy.

B 3.2 Definitions

We consider linear optimization problems with deterministic uncertainty in the coef-
ficients, where the uncertainty set is polyhedral. Uncertainty in the right hand side or
in the objective function can be modeled by uncertainty in the matrix (see, e.g., [25]).
In Section 3.2.1, we define the static robust formulation, the completely adaptable for-
mulation, and our finite adaptability formulation. In Section 3.2.2, we focus on the
second-stage problem, and write it as a single-stage problem with adaptability. While
our central focus is the two-stage model, we consider this simpler problem.

M 3.2.1 Static Robustness, Complete and Finite Adaptability

The general two-stage problem we consider, and wish to approximate, is the one with
complete adaptability, that can be formulated as:
; T T
A [min: c'z+d ylw)
CompAdapt((t) = [ st.: Aw)z+Bwyw)<b, vweqn | ©2%

min: c'z+d'y
= max
we | st.: Alw)z+B(w)y<b

Note that only the matrices A and B have an explicit dependence on the uncertain
parameter, w, while the vectors c,d, and b are taken to be deterministically and ex-
actly known. As discussed in Chapter 2, this assumption can be made without loss
of generality, since by means of simple transformations we can bring an arbitrary (i.e.,
uncertain objective function or right hand side vector b) problem into one of the above
form. Here we have made no assumption about the nature of the adaptability of the
second stage function, y(w), and thus we label this the completely adaptable case. We
assume throughout this chapter that the parameters of the problem (that is, the matri-
ces A and B) depend affinely on the uncertain parameter w.

On the other end of the spectrum from the completely adaptable formulation, is
the static robust formulation, where the second stage variables have no dependence
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on w: . -

. A|min: c'z+d'y

Static(Q2) = st.: Aw)z+ Bw)y(w)<b Vwe ]

We assume throughout that the static robust problem (3.2.4) is feasible. In particular,

this implies that the nominal problem is feasible for (A(w), B(w)) for every w € Q.
Therefore both Static(P) and CompAdapt(P) are finite.

In the k-adaptability problem, the decision-maker chooses k second-stage solu-
tions, {y,- ..,y }, and then commits to one of them only after seeing the realization
of the uncertainty. At least one of the k solutions must be feasible regardless of the
realization of the uncertainty:

(3.2.4)

[ min: c'x+max{d y,,...,d y;} ]
([ A(w)x + B(w)y, >b )
or
A(w)x + B(w)y, > b
A 2
Adapt(Q) = st.: < or p Ywe (3:25)

or

| | Awe+ By b _

This is a disjunctive optimization problem with infinitely many constraints. In Section
3.4, we formulate this as a (finite) bilinear optimization problem.

If we think of the collection of k second stage vectors, (y,,...,¥y;) as contingency
plans, where each is implemented depending on the realization of the uncertainty,
then the k-adaptability problem becomes a k-partition problem. The decision-maker
selects a partition of the uncertainty set 2 into k (possibly non-disjoint) regions: =
Q1 U - - - U Q. We can reformulate the optimal k-adaptability problem in (3.2.5) as

min: ¢’ +max{d'y,,...,d y;}
st.: Az+By, >b V(A,B)e,

Adapt,(Q) = Q=QIIILLJ1HUQk

: (3.2.6)
Ax+ By, >b, V(A ,B)ec
We state and prove this equivalence formally.

Proposition 3.1

The formulations (3.2.5) and (3.2.6) are equivalent in the following sense: If (yy,-..,Yx)

is a feasible solution to (3.2.5), there is a partition (3 U --- U Q) so that (R U --- U

Qk), (Y1, - - -, Yi)) is a feasible solution for (3.2.6). Conversely, if ((21U- - -UQ), (&, Y1, - - -, Yi))
is a feasible solution for (3.2.6), then (x,y,, . . ., Yi) 15 a feasible solution for (3.2.5).
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PROOF. If (x,y,,-..,y;) is a feasible solution to (3.2.5), then define ; = {w €
R : A(w)x + B(w)y; > b}, for 1 < i < k. By assumption, (z,y;,...,Y;) is feasi-
ble for (3.2.5), and hence @ = ©Q, U --- U Q. Therefore, the {;} indeed constitute a
partition, and ((Q2; U --- U Q), (@, Y1, ...,Ys)) is feasible for (3.2.6). Conversely, let
((QU---Uk), (x,y1,--.,y;)) be a feasible solution for (3.2.6). Then, for any w € Q,
we must have w € €; for some 1 < i < k, by definition. But then A(w)x+ B(w)y, > b,

and (z,¥;,. .., Yy;) is feasible for (3.2.5). O

Throughout this chapter we refer equivalently to either k contingency plans, or k-
partitions, for the k-adaptability problem. The inequalities Static(P) > Adapt,(P) >
CompAdapt(P) hold in general.

In the area of multi-stage optimization, there has been significant effort to model
the sequential nature of the uncertainty, specifically modeling the fact that some vari-
ables may be chosen with (partial) knowledge of the uncertainty. This is often known
as recourse ([49],[108]). In [12], the authors consider a multi-stage problem with de-
terministic uncertainty, where the variables in stage t are affine functions of the uncer-
tainty revealed up to time ¢. We henceforth refer to this model as affine adaptability. The
affine adaptability approximation to (3.2.3) is

Affine(P) 2

min: c¢'z+d y(w) ] (327)

st.: A(w)z+ B(w)y(w)>b, VYwe
where y(w) is an affine function of the uncertain parameter, w:

y(w) = Qw +q,

as discussed in Chapter 2. The authors show that computing affine adaptability is in
general NP-hard, although in some cases it can be well approximated tractably.

We show by example that our finite adaptability proposal is not comparable to
affine adaptability, in the sense that in some cases affine adaptability fails where finite
adaptability succeeds, and vice versa. Unlike affine adaptability, we provide a full hi-
erarchy of levels of adaptability. Furthermore, all levels of the hierarchy require only
finite adaptability, and coarse observations. On the other hand, affine adaptability,
while restricted compared to complete adaptability, nevertheless requires exact obser-
vation of the uncertainty. Furthermore, the recourse decision-variables are infinitely,
and hence infinitesimally, adjustable.

B 3.2.2 The Second-Stage Optimization

While the central motivation of this thesis, and this chapter, is the multi-stage opti-
mization problem, and in this chapter in particular, the two-stage optimization prob-
lem, we focus explicitly on the second stage problem. We formulate the second stage
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optimization problem as a single stage optimization problem with adaptability. This
corresponds to single-stage problem we have once the first-stage variable, x, has been
fixed. For notational simplicity, we use the same notation, and thus write b for the
right hand side, rather than writing

b(w) = (b— A(w)z),

and then adding additional variables so as to rewrite this in terms of yet another de-
terministic right hand side vector b.

Thus, in this single-stage context, our definitions from Section 3.2.1 have the fol-
lowing representations. The static robust problem is:

. . T
Static(Q?) 2 [ min: dy ]

st.: Bw)y>b, Ywe

The completely adaptable formulation is now:

[ min: d'y(w) ]
st.: Bw)ylw)>b, Ywe

e

CompAdapt(Q)

~ max min: d'y
T weh | st.: Bwy>b |’
And finally, the k-adaptability formulation is:

min: max{d y,,...,d y;}
st.: [Bw)y; >b or B(w)y, >b or -+ or B(w)y, >b] YweQ

o

Adapt,(2)

min : max{dTyl, . 7dT'yk}
' st.: Blwy, >b, Ywe
min .
Q=07 U---UQk

B(w)y, > b, VYwe

We remark again here, that in this single stage formulation, the k-adaptability formula-
tion can also have the interpretation of the decision-maker obtaining side-information
about the uncertainty, before it is fully revealed. That is, we can equivalently consider
the problem where the decision-maker selects the partition of (2 into k regions, and
then receives advance information that the uncertainty realization will fall in region 1,
1<i<k.
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B 3.3 A Geometric Perspective

The problem we consider in this section is the second-stage formulation given above:

min: d'y
st.: Bw)y<b Ywel.

We assume throughout, that there are m constraints, and y € R™. It is convenient for
some of our geometric results to re-parameterize the uncertainty set £ in terms of the
actual matrices, B(w), rather than the space of the uncertain parameter, Q2. Then we
define:

PE{B=BWw): wel.

Thus, for example, the static problem now becomes:

(3.3.8)

. . T
Static(P) 2 [ min: d'y ] ,

st.: By>b, VYBecP

We assume throughout, that the uncertainty set P is a polytope. We consider both the
case where P is given as a convex hull of its extreme points, and where it is given as
the intersection of half-spaces. Some results are more convenient to present in the case
of the convex hull representation.

In this section, we provide a geometric view of the gap between the completely
adaptable and static robust formulations, and also of the way in which finite adaptabil-
ity bridges this gap. The key intuition is that the static robust formulation is inherently
unable to model non-constraintwise uncertainty and, as is explained below, effectively
replaces any given uncertainty set P, with a potentially much larger uncertainty set.

We then use this geometric interpretation to obtain necessary conditions that any
k-partition must satisfy in order to improve the static robust solution value by at least
n, for any chosen value 7.

H 3.3.1 The Geometric Gap

Since we consider matrix uncertainty, the elements of P are m x n matrices, B = (b;;),
1 <i<mand1 < j < n Given any uncertainty region P, let m;(P) denote the
projection of P onto the components corresponding to the I** constraint of (3.3.8), i.e.,
this is the projection onto the I* row of the matrix:

m(P) = {(bu, - .-, bin) : (Bi) € P,by; = byj,1 < j < n}.
Then, we define:

P)r 2 conv(mP) x conv(maP) X - -- x conv(mwy,P). (3.3.9)
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The set (P)r is the smallest hypercube (in the above sense) that contains the set P. In
this chapter we focus on polyhedral uncertainty sets, which are thus already convex.
We consider the application of the ideas presented here to non-convex uncertainty sets
elsewhere. See Figure 3-1 for a very simple illustration of this definition.

Lemma 3.2 For P and (P)r defined as above, we have
(a) Static(P) = Static((P)g) and Static(P) = CompAdapt((P)r).

(b) For P =Py U---U Py the optimal k-partition of the uncertainty set,

Adapt,(P) = CompAdapt((P1)rU--- U (Pr)r)-

(c) There is a sequence of partitions {Py1 U Pra U - - - U Py } so that

(Pri)rRU---U(Prk)r — P, k — oo.

The first part of the lemma says that the static robust formulation cannot capture non-
convexity in the uncertainty set, nor can it model correlation across different con-
straints. Furthermore, it says that this is exactly the reason for the gap between the
static robust formulation, and the completely adaptable formulation. The second part
of the lemma explains from a geometric perspective why, and how, the adaptive so-
lution improves the static robust cost. The third part gives a geometric interpretation
of how finite adaptability bridges the gap between the static robust and completely
adaptable formulations.

PROOF. (a) This assertion follows from duality theory (also, see [15]).

(b) Given a partition P, U - - - U Py, the optimal k contingency plans (y, ..., y;) are to
take y; as the static robust solution to the problem with restricted uncertainty set P;.
Therefore by part (@), d"y; = Static(P;) = CompAdapt((P;)r). The worst-case value
is then:

max d'y; = ax CompAdapt((P;)r) = CompAdapt((P1)rU - U (Pr)r)-

(o) It suffices to consider any sequence of partitions where the maximum diameter of
any region goes to zero as k — co. As the diameter of any region goes to zero, the
smallest hypercube (in the sense of (3.3.9)) also shrinks to a point. |
Example: To illustrate this geometric concept, consider the constraints {b11y1 < 1, bagy2 <
1}, where the uncertainty set is P = {(b11,b22) : 0 < b1,b2 < 1,b1 + by < 1} (and
bi2 = b1 = 0). The set P can be identified with the simplex in R2. The set (P)g, then,
is the unit square. The sets P, (P)r, and various partitions, are illustrated in Figure
3-1. A
We would like to conclude from Lemma 3.2 that k-adaptability bridges the gap be-
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() () © (@

Figure 3-1. This figure illustrates the definition in (3.3.9), and Lemma 3.2. Let P = {(b11, b12, bo1, ba2) :
0 < b1, b22 < 1,b11 + bg2 < 1,b12 = b1 = 0}. We identify P with a subset of the plane. The unshaded
triangle in Figure (a) illustrates the set P = {(b11,b22) : 0 < b11,b22 < 1,b11 + ba2 < 1}. The set (P)r
is the entire square, and the shaded part is the difference, (P)r \ P. Figures (b),(c), and (d) show three
successively finer partitions, illustrating how (Px1)r U -+ - U (Pkk)r — P.

tween the static robust and completely adaptable values, i.e., Adapt; (P) — CompAdapt(P)
as k increases. With an additional continuity assumption, the proposition below as-
serts that this is in fact the case.

Continuity Assumption: For any € > 0, for any B € P, there exists 6 > 0 and a point y,
feasible for B and within € of optimality, such that V B' € P with d(B, B’) < 6, y is also
feasible for B’.

The Continuity Assumption is relatively mild. It asks that if two matrices are in-
finitesimally close (here d(-,-) is the usual notion of distance) then there should be
a point that is almost optimal for both. Therefore, any problem that has an almost-
optimal solution in the strict interior of the feasibility set, satisfies the Continuity As-
sumption. If the Continuity Assumption does not hold, then note that any optimiza-
tion model requires exact (completely noiseless) observation of B in order to approach
optimality.

Proposition 3.3

If the Continuity Assumption holds, then for any sequence of partitions of the uncertainty set,
{P = (Pr1)rY--- U (Pr)r)}32,, with the diameter of the largest set going to zero, the
value of the adaptable solution approaches the completely adaptable value. In particular,

klim Adapt, (P) = CompAdapt(P).
~00

PROOF. Using Lemma 3.2 parts (b) and (c), the proposition says that as long as the
Continuity Assumption holds, then

[(Pr1)RU- - -U(Prk)r — P] => [CompAdapt((Px1)rU- - ‘U(Prk)r) — CompAdapt(P)).

Indeed, given any ¢ > 0, for every B € P, consider the §(B)-neighborhood around B
as given by the Continuity Assumption. These neighborhoods form an open cover of
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P. Since P is compact, we can select a finite subcover. Let the partition P = P1U- - -UPy
be (the closure of) such a subcover. Then, by the Continuity Assumption, Static(P;) <
CompAdapt(P;)+e. By definition, CompAdapt(P;) < max; CompAdapt(P;) = CompAdapt(P).
We have shown that there exists a single sequence of partitions for which the cor-
responding adaptable solution value approaches the value of complete adaptability.
This implies that Adapt,(P) — CompAdapt(P). Then recalling that the value of a
linear optimization problem is continuous in the parameters, the proof is complete, as
any sequence of partitions with diameter going to zero, eventually is a refinement of
(a perturbation of) any given finite partition. We give an example in Section 3.6 that
shows that the Continuity Assumption cannot be removed. a

W 3.3.2 Necessary Conditions for 7-Improvement

In Section 3.3.1, we use duality to show that the static robust problem and the k-
adaptability problem are each equivalent to a completely adaptable problem with a
larger uncertainty set. This uncertainty set is smaller in the case of the k-adaptability
problem, than in the static robust problem. In this section, we characterize how much
smaller this effective uncertainty set must be, in order to guarantee a given level of
improvement from the static robust value. We show that the points of the larger un-
certainty set that must be eliminated to obtain a given improvement level, each cor-
respond to necessary conditions that a partition must satisfy in order to guarantee
improvement. Furthermore, collectively these necessary conditions turn out to be suf-
ficient.

Thus in this section we use the geometric characterization of the previous section
to essentially characterize the set of partitions that achieve a particular level of im-
provement over the static robust solution.

Lemma 3.2 says that Static(P) = CompAdapt((P)r). Therefore, there must exist
some B ¢ (P)g for which the nominal problem min : {d"y : By > b} has value equal
to the static robust optimal value of (3.3.8). Let B denote all such matrices. In fact, we
show that for any 7 > 0, there exists a set A, C (P)g such that if d"y < Static(P) — 1,
then y does not satisfy By > b, for any B € A,. We show below that the sets B and
A, are the images under a computable map, of a polytope associated with the dual
of the static robust problem. In Proposition 3.4 we show that these sets are related
to whether a given partition can achieve n-improvement over the static robust value.
In Proposition 3.6 we then show that each point of these sets maps to a necessary
condition which any n-improving partition must satisfy.

Proposition 3.4

() The sets B and A,, are the images under a computable map, of a polytope associated with
the dual of the static robust problem.

(b) Adaptability with k contingency plans corresponding to the partition P = Pr U --- U Py



SECTION 3.3. A GEOMETRIC PERSPECTIVE 71

improves the cost by more than n if and only if
((P)RU---U(Pe)r) N Ay =0.

Here, A, denotes the closure of the set A,,.
(c) There is some k < oo for which k optimally chosen contingency plans can improve the cost
by at least n if and only if P N A, = .

For the proof, we first describe a polytope associated to the dual of the robust problem,
and we give the map that yields the sets B and .A4,, proving (a). Then we prove parts
(b) and (c) of the proposition using the results of Lemma 3.5 below.

We consider the case where the uncertainty is given as the convex hull of a glven
set of extreme points: P = conv{B!,..., BK}. The robust optimization problem has
the particularly convenient form,

min: d'y
st.: Bly>b, 1<i<K. (3:3.10)
For any n > 0, we consider the infeasible problem
min: 0
st.: Bly>b, 1<i<K (3.3.11)

d"y < Static(P) — 7.

The dual of (3.3.11) is feasible, and hence unbounded. Let C,,(P) be the closure of the
set of directions of dual unboundedness of (3.3.11):

A (py +--- + pg) T b > Static(P) — g
C7I=CU(P)= (ph"'apK) : PIBI-F-}-p}BK:d
Dy,---»Pk 2 0

Note the dependence on the uncertainty set P. We suppress this when the uncertainty
set is clear from the context. Co = Co(P) is the set of dual optimal solutions to (3.3.10).
For (py,...,px) € Cy, let p;; denote the j* component of p,. Let (B*); denote the jt*
row of the matrix B*. Construct a matrix B whose 5** row is given by

0, 1f2 Pij = 0
B = (BY: + ... (BX).
(B); p1;(B’); +Z p+ pi;(B ),’ otherwise. (3.3.12)
i Pij

Therefore, each nonzero row of B is a convex combination of the corresponding rows
of the B® matrices. Let B be any matrix in (P)p that coincides with B on all its non-
Zero rows.
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Lemma 3.5 For B defined as above,

min: d'y

N > i — 1. .

[ st.: By>b ] > Static(P) —n (33.13)

If n = 0, and if yg is an optimal solution for the robust problem (3.3.10), then yg is also an
optimal solution for the nominal problem with the matrix B.

PROOF. The proof follows by duality. We first consider the case = 0. The dual to the
nominal problem min : {d"y : By > b} is givenby max: {¢"b : ¢' B = d,q > 0}.
We construct a solution q to this dual, and show that its objective value is equal to
d'yp, thus implying q is optimal. For (py, ..., px) € Co, define the vector g by g; =
P15 +p2j + - - - + pk;j- The vector g is nonnegative, and in addition, forany 1 < r < n,
we also have:

NE
IS

(qTé)r =

s,
Il
[N

1 iy
: pij) (E_,P-z; Zpij(B )]r)

1 2

[
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—

I i
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1\B' + -+ pgBX)_

|
é\/\&:-
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Similarly,
q'b=(p,+ - +pg) b=d yp

Therefore, q as constructed is an optimal (and feasible) solution to the dual of (3.3.13),
with objective value the same as the dual to the original robust problem (3.3.10). Since
YR is certainly feasible for problem (3.3.13), it must then also be optimal. A similar
argument holds for n > 0. O
We can now prove Proposition 3.4.
PROOF. (a) The collection of such B obtained as images of points in Cy and C,, respec-
tively, under the map given in (3.3.12) make up the sets B and A,. Lemma 3.5 shows
that these sets indeed have the required properties.
(b) The value of the k-adaptable solution corresponding to the partition P; U--- U Py
is

1I§I‘ia,%tk{statlc(Pd)}.

By Lemma 3.2, Static(Py) = Static((Pa)r)- If (P1)rU- - -U(Pr)g)NA, # 0, then we can
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find some B € (Pz)rN Ay, for some 1 < d < k, and also we can find matrices B; € A,
with B; — B. By Lemma 3.5, the nominal problem with matrix B must have value at
least Static(P) — n, for every . The optimal value of a linear optimization problem is
continuous in its parameters. Therefore, the value of the nominal problem with matrix
B must also be at least Static(P) — 7. The value of Static(P3) can be no more than the
value of the nominal problem with matrix B, and hence Static(P;) > Static(P) — 7,
which means that the improvement cannot be greater than 7.

Conversely, if the partition does not improve the value by more than 7, then there
must exist some 1 < d < k such that Static(Py) > Static(P) — n. This implies that
Cy(Pa) is non-empty. Any point of C,(P;) then maps via (3.3.12) to some B € A, N
(Pa)r, and the intersection is non-empty, as required.

(c) If A, NP # 0, then the point of intersection will always belong to some element of
any partition, and hence no partition can satisfy the condition of part (b). Conversely,
if the intersection is empty, then since both P and A, are closed, and P is compact, the
minimum distance
inf d(B,B),
BeP,Be A,
is attained, and therefore is strictly positive. Then by Lemma 3.2 part (c), there must
exist some partition of P that satisfies the empty intersection property of condition (b)
above. O

We now use the characterization of Proposition 3.4 to obtain necessary conditions
that any 7-improving partition must satisfy. To this end, let a; denote the convex-
combination coefficients used to construct the j** row of B above for all non-zero

rows, so that .
a; = =< (p1j,P2j> - - -, PKj) -
Zipij

Using these coefficients, we define matrices Q,, ..., Q,, € P by

K

Q;= Z(O‘j)z‘B

i=1

Consider now any partition of the uncertainty set, P = P; U --- U Py. If for some
1<d<k wehave{Q,,...,Q,} C PsythenB ¢ (Pa)r- Therefore, (Pg)r N Ay, # 0,
and thus by Proposition 3.4, the proposed partition cannot improve the static robust
cost by more than 7. Therefore, the set of matrices {Q;,...,Q,,} of P constitutes a
necessary condition that any n-improving partition of P must satisfy: a partition of P
can improve the solution more than 7 only if it splits the set {Q,,...,Q,,}- Indeed,
something more general is true.
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Proposition 3.6
(a) Consider any element B obtained from a point of C,, according to (3.3.12). Let us assume
that the first v rows of the matrix B are nonzero. Let Q; = ;1 (B;) denote the set of matrices
in P whose ith row equals the i*" row of B, 1 < i < r. Then a partition P = Py U--- U Py
can achieve an improvement of more than n only if for any region Py, 1 < d < k, there exists
some 1 <1 < r,such that

PanQi=0.

(b) Collectively, these necessary conditions are also sufficient.

PROOF. (a) Suppose that there exists a region P of the partition, for which no such
index 7 exists, and we have P; N Q; # 0 for 1 < i < r. Then we can find matrices
Q.,...,Q,, such that Q; € P; N Q;. By definition, the i*» row of matrix Q; coincides
with the it" row of B. Therefore, B € (P4)r- Now the proof of necessity follows from
Proposition 3.4.
(b) Suppose that a partition P = P; U - - - U Py, satisfies the full list of necessary con-
ditions corresponding to all elements of 5,, yet the corresponding value of Adapt,(P)
does not achieve the guaranteed improvement, i.e., Adapt,(P) = Static(P) — n/ >
Static(P) — n, for some ' < 7). Then, by the structure of the finite adaptability problem
there must be one region of the partition, say Py, such that Adapt,(P) = Static(Py).
Then C,,(P;) is non-empty. Given any point of C,(P;), we can then construct B and the
corresponding unsatisfied necessary condition {Qy, ..., Q,}. Expressing the extreme
points of P, as a convex combination of extreme points of P, this unsatisfied necessary
condition corresponds to a point in C,,(P), a contradiction. O
Therefore, we can map any point of C;, to a necessary condition that any partition
improving the solution of the static robust problem by at least 7, must satisfy. In Sec-
tion 3.5, we show that computing the optimal partition into two (equivalently, comput-
ing the best two contingency plans) is NP-hard. In Section 3.7, we provide an efficient,
but possibly sub-optimal algorithm for the 2F-partition problem. However, this algo-
rithm does not offer any theoretical guarantee that more progress cannot be made with
another choice of partition. While in general a particular partition must satisfy the full
(infinite) set of necessary conditions to guarantee that it improves the static robust so-
lution by at least 7, a small list of necessary conditions may provide a short certificate
that there does not exist a partition with k& < &/, that achieves n-improvement. In
Section 3.6, we provide a simple example of this phenomenon. Indeed, in this exam-
Ple, a finite (and small) set of necessary conditions reveals the limits, and structure of
2,3,4,5-adaptability.
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B 3.4 Exact Formulations

In this section we give exact and finite formulations of the optimal 2-adaptability prob-
lem. First, we consider the general matrix-uncertainty case, and we show that the
infinite-constraint disjunctive optimization problem (3.2.5) can be formulated as a bi-
linear problem. Next, we specialize to the case of right hand side uncertainty. Here
we show that we can formulate the problem as a {0, 1} linear integer optimization
problem.

B 3.4.1 A Bilinear Formulation

Thus far we have considered a geometric point of view. Here we follow an alge-
braic development. In (3.2.5) we formulated the k-adaptability problem as an infinite-
constraint disjunctive program:

min: max{d'y;,...,d y;}

st.: [By,>b or By, >b or --- or Byy>b] VBecP. (34.14)

We reformulate this problem as a (finite) bilinear optimization problem. In general,
bilinear problems are hard to solve but much work has been done algorithmically (see
[65],1122],[123] and references therein) toward their solution. For notational conve-
nience, we consider the case k = 2, but the extension to the general case is straightfor-
ward. Also, for this section as well, we focus on the case where the uncertainty set P
is given as a convex hull of its extreme points: P = conv{B!,..., BK}.

Proposition 3.7
The optimal 2-adaptability value, and the optimal two contingency plans, are given by the
solution to the following bilinear optimization:

min: max{d'y;,d" y,}
st.: pi [(Blyy)i — b + (1— py) [(Blyp); — 5] 20, V1<ij<m, VI<KI<K
0<p; <1, V1<i,j<m.
(34.15)

Recall that m is the number of rows of B. We can interpret the variables p;; essentially
as a mixing of the constraints. For any {u;;}, the pair (y;,y2) = (yg, Yg) is feasible.
Indeed, fixing p;; = 1 for all (i, j) leaves y, unrestricted, and the resulting constraints
on y, recover the original static robust problem. Thus, the problem is to find the opti-
mal mixing weights.

PROOF. We show that a pair (y;,y,) is a feasible solution to problem (3.4.14) if and
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only if there exist weights p1;; € [0,1], 1 <4, j < m, such that
iy [(Bly)i =) + (1= ) [(Blya) - b)) 20, v1<ij<m, VI<ISK

First consider the “if” direction. Suppose that the pair (y, y,) is not a feasible solution
to problem (3.4.14). Then there exists 1 < 7, 7 < m and B € P such that

(By;)i —bi <0 and (By,); —b; <0.

Since B € P, we must have B = Z{i L B!, for a convex combination given by A. For
any p;; € [0,1] we have:

i {Z N(Blyy)i — bl} + (1 — pij) [Z Ai(B'yy); by} <0
l

l

= Y N [Hij {(Bl?h)i - bi} + (1 — pij) {(Blyz)j - bj}] <0.
I

This follows since > ; \; = 1. But then there must be some index I* for which the
corresponding term in the sum is negative, i.e.,

i {(Bl*yl)i - bz} + (1 = pij) {(Bl*?h)j - bj} <0.

For the converse, let (y;, y,) be a feasible solution to problem (3.4.14). We show there
exist weights p;; € [0,1] satisfying the required inequalities. By assumption, for any
B € P, either [By, > b], or [By, > b]. In particular, for any 1 < 4,j < m, the value
of the following optimization over P is finite and non-positive (recall that y;, y, are
fixed).

max: €

st.: (Byp)i+e<b
(B?!z) +e<b;
BeP.

Writing P = {3, B! : 3, = 1, X, > 0}, and taking the dual using dual variables
u, v for the two inequality constraints, and w for the normalization constraint in A, we
have:
min: pb; +vb; —w
st.: pw(Bly) +v(Blyy); —w>0, V1<I<K
p+rv=1
v > 0.
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By strong duality, this problem is feasible, and its optimal value is non-positive. In
particular, the following system is feasible:

pbi +vb; < w

w(B'y1)i +v(Blyy); > w
p+r=1

u,v >0

and therefore there exists p € [0, 1], and w such that
pbi + (1 — p)b; < w < p(B'yy)i +v(Blyy);, V1I<KILK.

Grouping the terms on one side of the inequality, we have that there exists a weight
p € [0, 1] such that

b [(Byi—b] + (1 - [(Blya)— 4] 20, Vi<i<K.
|

N 3.4.2 Right Hand Side Uncertainty

While matrix uncertainty subsumes right hand side (RHS) uncertainty, we now focus
exclusively on RHS-uncertainty. In many cases of practical interest, the uncertainty
is indeed in the right hand side; for instance, demand uncertainty, capacity uncer-
tainty, or supply uncertainty, are all modeled through RHS-robustness. We show that
through a reformulation of the problem, finding the optimal two contingency plans, or
equivalently, finding the best partition of the uncertainty set into two, can be cast as a
discrete optimization problem. For the case where P has the structure of a simplex, we
obtain a mixed integer LP with {0, 1}-variables. The static robust problem and linear
optimization formulation are given by:

min: d'y min: d'y
st.: By>b, VbeP |=| st.: By>bg
Fy>f Fy>f

where bp is the point whose i** coordinate is the maximization over P in the i** coor-

dinate direction. We can associate the smallest hypercube containing P (as we defined
in (3.3.9)) with the single point bg: (P)gr = {b : b < bg} as lower bounds do not affect
the optimization. As with the general static robust problem (3.3.8) 2-adaptability im-
proves the static robust cost by considering pairs of hypercubes containing P, rather
than just a single hypercube. We formalize this in the following.
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Definition 3.1

We say that a pair of points (by, b) covers the set P if for any b € P we have b < by or
b < be. We denote by C(P) the set of all pairs (by, ba) that cover the set P:

C(P) 2 {(by,by) : Vb & P wehaveb < by, orb < bs}.
Next, we define the problem:

z(by,b2) = min: max{d'y,,d y,}
s.t.: Byl > b1
By, > b,
Dy, >d, [=1,2

Thus, we can rewrite the problem of obtaining the best split of the uncertainty set, as
the optimization of the convex function z3(b1, b2) over the set C(P):

min : 22(b1, bg)

st.: (b1,b2) € C(P). (3.4.16)

Let (b1, b2) € C(P) be any pair that covers P, and let bg be as above. For any b € P,
by definition, we must have b < b; or b < by. Therefore, for any coordinate index
i, we must have (b1); > (br):, or (bz); > (bg):. Therefore, the pair (by, b2) induces
a separation of the coordinates, S = {7 : (b1); > (br);}. Given a partition (S, 5¢) of
the coordinates, i.e., S C {1,...,m}, there are elements of C(P) that induce this same
partition. We define this set, and denote it by C(P, S):

C(P,S) 2 {(b1,be) €C(P) : (br)s = (bR)i,Yi€ S, (ba); = (br);,Vi € 5.

The union of the sets C(P, S) for all S, gives us back the subset of C(P) that always
contains the optimal solution. We can characterize the sets C(P, S) using a linear opti-
mization approach.

Lemma 3.8 For any fixed set S C {1,...,n}, the set C(P, S) is given as the set of all pairs
(b1, ba) with

[ G fieS, [ Ga) iese
(br)i = {u,-, otherwise, and  (by); = Aj otherwise.

The values {u;} must satisfy 0 < u; < (br)i. The values {\;} must be such that:

[ max: e]b
Ai > max s.t.: (b)J > W
jes be?P
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PROOF. Fix values for b;. We must take (bs); = (bg); for every j € S If the lemma
does not hold, there must exist some i € Sand j € 5% aswellasa b € P, b(j) > p;
(with pj < (br);), and for which A; < b;. Now take b € P with (b); = (bg); > p;.
Taking § > 0 small enough, we see that for b = (1 — 6)b + b, we have b € P by
convexity of P, but b £ by, and b £ by. Therefore, the pair (b, b2) cannot cover P, and
the lemma is proved. O

In an important special case, the sets C(P, S) are polyhedral.

Proposition 3.9
Let P be a generalized simplex, that is, let P be the convex hull of scaled unit vectors:

P = conv{(ie1, (2€2, ..., (mem},

where e; is the standard i** unit basis vector, and the (; are positive scalars. Then, for any
S C{L,...,m} the set C(P, S) is convex and polyhedral, given by:

(b1)i = (br)i = ¢ Vie S
C(P,S) =4 (by, by) : (B2); = (br); = ¢; Vjese
(b2)i > G — (é—]) (b1); Vie$, jes°

PROOF. The proof follows Lemma 3.8. Take S = {1,...,k}. Forany i € S,

max : e;-rb
(b2)i > max | st.: (b)j > (b1);
] (s
beP
If (b); > (b1);, then the inner maximum is ¢; — (%) (b1);, attained at the point

Y . i~k
O,...,O,Ci — <Z_—- (bl)j,(),...,0,9,...,0,(b1)j,0,‘..,01 e P.
~ ‘Jr ” mtk

k

O
In particular, this tells us that if we can compute the optimal vertex partition S*, then
computing the optimal pair (b1,b2) € C(P, $*) amounts to minimizing a linear pro-
gram. The set $* is related to the necessary conditions obtained in Section 3.3.2, as
it expresses a level of knowledge about which extreme points of the uncertainty set
must be in separate regions of any good partition. From Proposition 3.9, we have the
following.
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Proposition 3.10
In the case where P is a (generalized) simplex, the optimal split and corresponding contingency
plans, may be computed as the solution to the following {0, 1} mixed integer linear program.

min: max{d'y,,d y,}

s.t.: By1 > b1
By, > by
Fy >f 1=1,2
(b1)i = ((br)i)2i Vi (3.4.17)
(b2); = ((br);)(1 — ;) vj
(b2): + (85) (B0); > (br): Vi
0 < (b1)s, (b2)i < (bRr): Vi
Z; € {0, 1} Vi.

B 3.5 Complexity

In this section, we consider the complexity of k-adaptability. We show that even in the
restricted case of right hand side uncertainty, in fact even in the special case where P
has the form of a generalized simplex, computing the optimal partition of P into two
sets, P = Py U Py, is NP-hard. In particular, using the terminology of Section 3.4.2, we
show that computing the optimal set S* is hard. However, the NP-hardness is in the
minimum of the dimension of the uncertainty, the dimension of the problem, and the
number of constraints affected. After we establish NP-hardness for the general case,
we show that if any of the three quantities: dimension of the uncertainty, dimension
of the problem, number of uncertain constraints, is fixed, then computing the optimal
2-adaptability is theoretically tractable.

Proposition 3.11
Obtaining the optimal split P = Py U P, is in general NP-hard.

In particular, computing 2-adaptability is NP-hard. We obtain our hardness result
using a reduction from PARTITION, which is NP-complete ([69],[85]). We show that if
we can find the optimal split of an uncertainty set, then we can solve any PARTITION
problem.

PROOF. The data for the PARTITION problem are the positive numbers vy, . . ., vp,. The
problem is to minimize | ;. ¢ i — e e vj| Over subsets S. Given any such collection
of numbers, consider the polytope P = conv{ejv1, ..., envm}, where the e; form the
standard basis for R™. Thus, P is the simplex in R™, but with general intercepts ;.
Consider the static robust optimization problem:

min: Y .

st.: Iy>b, VbeP. (3.5.18)
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Suppose the optimal partition is P = P; U P,. Let b; be the (componentwise) smallest
point that covers Py, and b, the smallest point covering P;. Then the pair (by, ba)
covers all of P, i.e., (b1, b2) € C(P), and from the decomposition C(P) = (JgC(P, S),
we must have (by, b2) € C(P, S) for some set S. Without loss of generality, we assume
that § = {1, ...,k}, sothat (b1); = (bg)i =v; for1 <i <k, and (bz)j = (bR)j = vj for
k +1 < j < m. Thus, we can write the two points as

b1 = (111,'02,...,’vk,/\k_,.l,...,)\m)
b2 = (ulap'21"'7;u'kvvk+l7"',’um)7

where 0 < A; <wvj for k +1 < j < m. In this case, by Lemma 3.8 we must have

70 (51 !
max vy — | —— ) Ag41,V1 — | —— } Apg2, -1 — | — | Am
Vk+1 Vk+2 Um
Uk Vi Uk
pk > max {'Uk - <-—) Akt1, Vg — (——) Ak425 - -0, Uk — (—) )‘m}-
Vk+1 V42 Um

Since we claim that the pair (b;, b2) corresponds to the optimal partition of P, we can
take the inequalities above to be satisfied by equality, i.e., we take the p; to be as small
as possible. Therefore, once the {};} are fixed, so are the {§;}, and the pair (b;, bs) is
determined.

Now we compute the value of the free parameters (Ag11, ..., Ap,) that determine
the pair (b1, bz). For the specific form of the optimization problem we consider, given a
split P1 UP; where P is covered by b; and P; by b, the optimization takes the simple
form:

min: max< (>, 1(1) A D §2)
st.: y“)i(l’n ! ) ( ! )} =max{<Z(b1)i>7(Z(b2)")}'

y? > by '

v

M1

[ 2

Therefore, if the partition is optimal, we must have (3_,(b1);) = (3;(b2):). Thus, we
have

ViAo Uk et oo Am = iy A ke F Vg1 + o+ U (3.5.19)

We have (m — k) parameters that are not specified. The maximizations above that
determine the y; give (m ~ k — 1) equations. Then Eq. (3.5.19) gives the final equation
to determine our parameters uniquely. From the maximizations defining {u;}, we
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have

Vs Vs

’l)j—( J))\k_H-:'UJ'—( J )Ak+i'a 1<j<k, 1<ii<m-k.
Vk+i Vi

Solving in terms of A, the above equations yield A\x4; = (’%1) Am, 1<i<m—k-

1. Substituting this back into Eq. (3.5.19), we obtain an equation in the single variable
Am:

Vhp1+ -+ A A
TR REREETE (—’iﬂ———ﬂ) = (v1 - ”‘Em) ot (vk - vk;ﬂ) (kg1 4+ A+Um),

Um 'm m

which gives:

v .o . e
)\m (L—t_#) = ('Uk+1+- . +’Um) S Ak—Hﬁ = vt(f}i-!-—:-—.{— +:- Um) y 1< < m—k.
m o m

Using these values of {1}, we find that the optimal value () of the optimization is
given by

() = v+ F v+ Mg+t Ay
(vi+-- o)+ Fvm)+ kg1 + -+ ) (Vk1 + 0+ V)

('01+---+’Um)
_ (@t o)+ @ o o) = (01 0 Ok o+ V)
o (vi 4+ vm) )

The first term in the numerator, and also the denominator, are invariant under choice
of partition. Thus, if this is indeed the optimal solution to the optimization (3.5.18), as
we assume, then the second term in the numerator must be maximized. Thus, we see
that minimizing (3.5.18) is equivalent to maximizing the product (3", s vi) (Z jese 'Uj)
over § C {1,...,m}. This is equivalent to the PARTITION problem. O

Note that in this example, the dimension of the uncertainty, the dimension of the prob-
lem, and the number of constraints affected by the uncertainty are all equal. Next we
show that if any one of these three quantities is fixed, then computing the optimal
2-adaptability is theoretically tractable.

Proposition 3.12
We consider the static robust problem

min: d'y
st.: By>b, VBe?P
Fy>f.
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Let P = conv{By,..., By} be an uncertainty set that allows for efficient solution of the
robustified linear optimization problem (note that N need not necessarily be small). Let d =
min{ N, dim(P)} be the real dimension of P, let n denote the number of optimization variables,
and let m be the number of rows of B, i.e., the number of uncertain constraints. Define k =
min{d, n, m}. Then, we can compute the c-optimal 2-adaptability generated by a hyperplane
partition, in time O (poly(d,n, m,1/e)e"). In particular, if k is constant, then hyperplane
generated 2-adaptability can be computed efficiently.

PROOF. There are three possibilities: « is defined by d, n, or m. In the case where d
or n are fixed, then the result follows immediately, since we can find the best partition,
or the best two solutions {y,,y,} by brute force discretization of the uncertainty set,
or the feasible set, respectively. Indeed, the only interesting case is when d and n
are possibly large, but m is a constant. In this case, however, we have the result of
Proposition 3.7, which says:

min: max{d y;,d" y,}
st 0 pi [(Byy)i — b + (1 — pij) [(By2); — 6] 20, V1<4,j<m, VBeP
0<pij<1, V1<ij<m.

For any fixed values of {1}, the resulting problem is a static robust problem with
uncertainty set P, and hence by our assumption, it can be solved efficiently. Now if m
is small, we discretize the possible set of {1;;}, and search over this set by brute force.
This completes the proof. a

While in principle this result says that for x small the problem is tractable, in large
scale applications we require more than theoretical tractability. We describe one such
example in Section 3.8.1. In Section 3.7, we seek to give tractable algorithms that will
be practically implementable in applications.

B 3.6 An Extended Example

In this section we consider a detailed example. Through this example, we aim to illus-
trate several points and aspects of the theory developed in Section 3.3 above:

1. Propositions 3.4 and 3.6 tell us how to map C,, to A, and then to obtain necessary
conditions for n-improvement. Here we illustrate this process.

2. A small set of necessary conditions (obtained as in Propositions 3.4 and 3.6) may
reveal the limits of k-adaptability for some k.

3. While in general not sufficient to guarantee 7-improvement, a small set of neces-
sary conditions may even suffice to reveal the optimal structure of k-adaptability
for some k.
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4. Finite adaptability may improve the solution considerably, even when affine
adaptability fails, i.e., even when affine adaptability is no better than the static
robust solution.

5. The Continuity Assumption may not be removed from Proposition 3.3. Without
it, (uncountably) infinite adaptability may be required for even arbitrarily small
improvement from the static robust solution.

6. The closure of the sets B and A, in Proposition 3.4 cannot be relaxed.

We consider an example with one-dimensional uncertainty set.

min: y+y2+ys

1 0 01 1 11
s.t.: ByZ(l) VBEconv{Bl,Bz}=conv{(1 1 1),(0 0 1)}
1 250 § 30
Y1,Y2,y3 2 0.
(3.6.20)

The unique optimal solutionis y p = (10/7,10/7, 1), with corresponding value Static(P) =
27/7. The completely adaptable value is CompAdapt(P) = 3. The dual to the robust
problem (3.6.20) is
max: (p+q)'h
st.: p'Bl+q"'B%*<d
P,q=0.

There are two extreme dual optimal solutions: p,q = (0,0,10/7),(0,1,10/7), and
p,q = (1,0,10/7), (0,0,10/7). We illustrate point (1) above by mapping these two
points to the corresponding necessary conditions. Each of these maps to a unique ma-
trix B. Recall that, considering the it* component of p, and the i** component of g, we
obtain the i*" row of the matrix:

A 1

(pzan)"_')( )z it

(pi - (BY)i + i - (B?)y),

for all i such that p; + ¢; # 0. For the first extreme dual optimal solution, this condition
is met for ¢ = 2, 3, and thus we have:

(p2r12) — ~—(0-(1,1,1)+1-(0,0,1)) = (0,0,1)

0+1
1
(p3aq3)

10/7 + 10/7
= %(1/2, 1/5,0) + %(1/5, 1/2,0) = (7/20,7/20,0).

[(10/7) - (1/2,1/5,0) + (10/7) - (1/5,1/2,0)]
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For the second extreme dual optimal solution, the nonzero rows are ¢ = 1,3, and we
get:

L) — 1—J1r_0(1 £0,0,1) +0- (1,1, 1)) = (0,0, 1)

(p3,g3) — 51/7 [(10/7)-(1/2,1/5,0) + (10/7) - (1/5,1/2,0)] = (7/20,7/20,0).
Next, according to Proposition 3.6, we consider the set of matrices in P that share one
of the nonzero rows of B;, and similarly for B,. These are specified by the convex
combination coefficients that form the non-zero rows. The two convex combinations
for the first dual solution are formed by the coefficients az = (0, 1) and a3 = (1/2,1/2).
The second dual solution has convex combination coefficients a; = (1,0) and a3 =
(1/2,1/2). Therefore, any strictly improving partition must be such that no single re-
gion contains both matrices { B%, 1 B! + 1 B?}, nor the two matrices {B', 1 B! + 1 B*}.
Evidently, no such partition into 2 (convex) regions exists. Therefore 2-adaptability
cannot satisfy these two necessary conditions, and thus (in this example) is no better
than the static robust solution of (3.6.20). This illustrates point (2) above: the necessary
conditions corresponding to the two extreme points of Cy are alone sufficient to prove
that 2-adaptability is no better than the static robust solution.

Next we consider the more general case C, and A,. We consider a few different
values of n: m; = (27/7) — 3.8, 2 = (27/7) — 3.2, and 73 = (27/7) — 2.9. We generate
the extreme points (p, g) of Cy,;, and the points of B;, to which they map. The polytope
Cn, has 12 extreme points?. These yield four non-redundant necessary conditions:

M ={B?8B! + 11B?}; N, ={B, 1B+ B%},
Nz ={%B'+8B? {B'+1B%}; Ny={8B'+ 4B’ }B'+}B%.

While there exists no partition into only two regions that can simultaneously satisfy
these four necessary conditions, the three-region split [0,1] = [0,1/6] U [1/6,5/6] U
[5/6,1] does satisfy N7 — Ny; we can check that none of the sets A;, 1 < i < 4, are
contained within any single region of the proposed partition. In fact, this partition
decreases the cost by 0.4672 > 7;. The polytope Cy, has 12 vertices. The non-redundant
constraints generated by points of B,, corresponding to the extreme points of C,,, are

MoDgE B MoERELSE)
N3= 1—00'B +mB,§B +§B }; M= EﬁB +mB,-2-B +§'B }

’These computations were done using the software CDD by Komei Fukuda
[68]. This is an implementation of the double description method. See also
http:/ /www.cs.mcgill.ca/ fukuda/soft/cddman/node2.himl for further details.
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It is easy to check that these four necessary conditions are not simultaneously satisfi-
able by any partition with only three (convex) regions. Indeed, at least 5 are required.
This is another illustration of point (2) from above: a small set of four necessary con-
ditions suffices to prove that 3-adaptability cannot improve the static robust solution
by more than 7, = (27/7) — 3.2.

The smallest n at which the necessary conditions corresponding to the extreme
points of C;, provide a certificate that at least 5 regions are required for any partition to
achieve an n-improvement or greater, is 7 ~ 27/7 — 3.2770 = 0.5801. This illustrates
point (3) above: examining values of 1 € [0, 7)], the four necessary conditions implied
by the extreme points of C,, are sufficient to reveal that two-adaptability is no better
than the static robust solution, and in addition, they reveal the limit of 3-adaptability.
Furthermore, they reveal the optimal 3-partition to be: [0, 1] = [0, AJU[A, 1-AJU[1-A, 1],
for A ~ 0.797.

Finally, let us consider n3 = (27/7) — 2.9. In this case, we are asking for more
improvement than even the completely adaptable formulation could provide (recall
CompAdapt(P) = 3). In short, such improvement is not possible within our frame-
work of a deterministic adversary. Proposition 3.4 tells us how the polytope Cy, and
the set B,), witness this impossibility. The polytope C,, has 31 vertices. It is enough to
consider one of these vertices in particular: v = (9/10,1/10,9/5), (0, 0,0). The corre-
sponding necessary condition is: ' = {B', B!, B'}. Evidently, no number of parti-
tions can ever satisfy this necessary condition. Indeed, this is precisely what Proposi-
tion 3.4 says: if progress 7 is not possible, it must be because A, N P # §.

Next we illustrate point (4), by showing that for the problem (3.6.20) above, the
affine adaptability proposal of Ben-Tal et al. ([12]) is no better than the static robust
formulation, even though 3-adaptability significantly improves the static robust solu-
tion, and thus outperforms affine adaptability. In Figure 3-2 on the left, we have the
actual optimal solutions for the completely adaptable problem. For every A € [0, 1],
the decision-maker has an optimal response, y(A) = (y1(A), y2(A),y3())). The fig-
ure on the right illustrates the optimal completely adaptable cost as a function of A,
as well as the optimal static robust cost (the line at the top) and then the cost when
the decision-maker selects 3 and 5 contingency plans, respectively. CompAdapt(P) is
given by

CompAdapt(P) = max: y1(A) +y2(A) + y3(A)
st.: Ael0,1]

We can see from the figure that indeed this value is 3.

Next, consider the optimal affine adaptability. In (3.2.7) we define affine adapt-
ability for the two stage problem, however we can easily apply this to single stage
optimization by allowing all the decision-variables to depend affinely on the uncer-
tainty. Here the uncertainty is one-dimensional, parameterized by A € [0, 1], so we let
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Figure 3-2. The figure on the left illustrates the optimal response policy for the decision-maker. The
optimal response function is far from linear. In the figure to the right the lowest curve is the value of the
nominal LP as a function of the realization of the uncertainty. The next three lines, Zs, Z3, Z, illustrate
the value of 5,3-adaptability, and the static robust value, respectively. The static robust value coincides
with the value of affine adaptability.

y*E()\) denote the optimal affine solution. The third component, y3% () must satisfy:
y3#(0),y3%(1) > 1. Therefore, by linearity, we must have y3E(\) > 1 forall X € [0,1].
Furthermore, for A = 1/2, we must also have

E B, o0 171 i L .z

—| = - - | = - >

s (Gt + ) + 5 (G0 + guta) = 1

which implies, in particular, that y2(1/2) +438(1/2) > @. The cost obtained by affine
adaptability is

Affine(P) = max: y¥(\)+ y%ff()\) + y%ﬁ()\)
st.: Ae0,1].

This is at least the value at A = 1/2. But this is: y3(1/2) + 5% (1/2) + y3%(1/2) >
20/7 + 1 = 27/7, which is the static robust value. Therefore, in this case, affine adapt-
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ability is no better than the static robust value. On the other hand, as illustrated in
Figure 3-2, 3-adaptability is sufficient to significantly improve the cost to the decision-
maker, and 5-adaptability is better still. Moreover, since this problem satisfies the Con-
tinuity Assumption, by Proposition 3.3, Adapt,(P) — CompAdapt(P) as k increases,
so we can further improve the cost with more adaptability. Thus, we illustrate point
(4) from above. A

Next we illustrate points (5) and (6) above by presenting a modification of the pre-
vious example. Consider:

min: yo '
ay as v 1
s.t.: b 1)2 -1
01 bf (yz 0 (3.621)
11 101
(0 )ee{( 3 5) (5 4))
by b 3 73 —5 3

The static robust solution to (3.6.21) is yz = (10/7,10/7), and hence Static(P) = 10/7.
On the other hand, for any realization of the uncertain matrix,

1 1 1 1

ay ag 5 g 7 5
=\ 2 5 +1_/\( 5 2 >’

(bl b2> (—% —é) =D 5

the solution (y1,y2) = (5 — 3, 0) is feasible, and hence optimal for the nominal prob-
lem. The optimal response function in this case is affine. Here, CompAdapt(P) = 0,
and the gap is 10/7. Consider now any partition of the uncertainty set (i.e., the in-
terval [0, 1]) into finitely (or even countably many) regions. At least one region of the
partition must contain more than one point of the interval, otherwise we would have
uncountably many regions. Let P denote this region, with A\; < A both elements of
P. The static robust problem over this set P, is lower bounded by

min : Yo

st : [Al(_%% _%%)Hl—)\l)(_%% _%%ﬂ(gy;)z(—ll)

As A1 # )g, the point yz = (10/7,10/7) is the only point in the feasible region, and
thus it must also be optimal; hence the value is not improved from 10/7. Note, more-
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over, that this example violates the Continuity Assumption: for any two (even in-
finitesimally close) realizations of the uncertainty, the only common feasible point is
ygr = (10/7,10/7), which is not within € of optimality for any ¢ < 10/7. Thus, we illus-
trate point (5), and show that the Continuity Assumption may not be removed from
Proposition 3.3. Recall that Proposition 3.4 says that finite adaptability can strictly im-
prove the solution if and only if P N B = . Here, we can indeed check that PN B = 0.
However, the set of dual optimal solutions to (3.6.21) is unbounded, and the set B is
not closed. With some work, we can check that, e.g.,

L1

2 5 _
(- Y)es

0 1

Thus, the conclusion of Proposition 3.4 holds, and in particular, as we point out in (6)
above, taking the closure of A, cannot be relaxed. A

[N
=

We take up this example again in Chapter 4. There, we pursue a different hierar-
chy of adaptability, and we show that with quartic polynomial adaptability, or with
piecewise affine adaptability, one can recover the optimal solution.

B 3.7 Heuristic Algorithms

In Section 3.4, we have formulated the k-adaptability problem as a bilinear optimiza-
tion problem, which, in general, is difficult to solve. Moreover, in Section 3.5 we have
established that even the 2-adaptability problem is NP-hard to solve. There, we give a
sufficient condition for theoretical tractability. However, this sufficient condition may
not apply, and in any case, in large scale optimization problems such as the one dis-
cussed in Section 3.8.1, we seek practically efficient and implementable solutions. In
this section, we propose a heuristic tractable algorithm. We restrict ourselves to an
infinite class of partitions from which selecting the optimal partition can be done effi-
ciently.

The algorithm is motivated by the results of Section 3.3. There, the necessary con-
ditions we derive say that good partitions divide points of P which must be separated.
We try to do exactly that. The algorithm is based on the following observation.

Lemma 3.13 Consider the set of partitions P = Py U'P given by a hyperplane division of P.
If the orientation (i.e., the normal vector) of the hyperplane is given, then selecting the optimal
partitioning hyperplane with this normal can be done efficiently.

PROOF. Consider the one-dimensional subspace parallel to the given normal. Param-
eterize the set of hyperplanes with given normal by their point of intersection, ¢t € R,
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with this subspace (the location of intersection completely specifies the hyperplane).
Let P = Py (t) U Pa(t) be the resulting partition for any value of ¢, and let z(t) denote
the value of the resulting 2-adaptability problem. Then 2(t) is quasi-convex in t, for
if t; < ty < t3, then either Pi(t1) C Pi(t2) € Pi(t3), or Pi(ty) 2 Pi(ta) 2 Pi(ts),
and vice versa for P,(t). Therefore, the values of Static(P;(t)) are either increasing, or

decreasing, and vice versa for Static(Pz(t)). Quasi-convexity then follows, concluding
the proof. O

Algorithm 1: Let P = conv{B!,..., BK}.

1. For every pair (i,5), 1 < i # j < K, let v;; = B’ — B* be the unique vector they
define.

2. Consider the family of hyperplanes with normal v;;.

3. Solve the quasi-convex problem, and let H;; be the hyperplane that defines the
optimal hyperplane partition of P within this family.

4. Select the optimal pair (3, j) and the corresponding optimal hyperplane partition
of P.

This algorithm can be applied iteratively as a heuristic approach to computing 2¢-
adaptability. In Section 3.8, we implement this algorithm to compute 2,4-adaptability.

Section 3.3.2 provides an approach to strengthen the above algorithm. The algo-
rithm selects the optimal hyperplane from the set of hyperplanes that have normal
vector defined by a pair of extreme points of P. By adding explicitly more points that
are in the interior of P, we enlarge the space of hyperplanes over which the algorithm
searches. In Section 3.3.2, we illustrate a procedure for obtaining necessary conditions
that any “good” partition must satisfy. These conditions essentially contain require-
ments that certain collections of points of P should not be contained within any single
region of the partition. By including (a partial set of) the points corresponding to a list
of necessary conditions, we guarantee that the set of partitions considered include par-
titions that meet the necessary conditions. In effect, this gives a structured approach
to increasing the size of the family of partitions considered.

Algorithm 2: Let the uncertainty set be given by inequalities: P = {B : ajvec(B) <
1, 1 <4 < N}, where vec(B) is vector consisting of the rows of B.

1. For every defining facet a; of P, let v be the unique normal vector.

2. Consider the family of hyperplanes with normal v.

3. Solve the quasi-convex problem, and let H; be the hyperplane that defines the
optimal hyperplane partition of P within this family.
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4. Select the optimal index ¢ and the corresponding optimal hyperplane partition
of P.

B 3.8 Computational Examples

In this section, we report on the performance of the heuristic algorithm of Section 3.7.
First, we discuss the problem of Air Traffic Control. We discuss why finite adaptabil-
ity may be an appropriate framework for adaptability, both in terms of theoretical and
practical considerations. The full details of the model, and the numerical computations
are in Chapter 5. To illustrate the main idea and the applicability of finite adaptability,
we consider a network flow problem with uncertain capacity constraints, to model a
very small air traffic control problem. Next, in Section 3.8.2, we consider a minimum
cost robust scheduling problem with integer constraints. These randomly generated
examples are meant to illustrate the applicability of k-adaptability, and some types of
problems that can be considered. In the final part of this section, 3.8.3, we explore a
large collection of randomly generated instances of the scheduling problem without
integer constraints. We consider different problem size, and types and level of uncer-
tainty, in an effort to obtain some appreciation in the generic case, for the benefit of the
first few levels of the adaptability hierarchy, and for the behavior of the algorithm of
Section 3.7.

W 3.8.1 An Example from Air Traffic Control

The cost of the delay to the airline industry is staggering, to the point where passen-
ger safety and industry growth threaten to become competing objectives ([30]). Over
70% of delay is caused by convective weather, as weather patterns reduce the takeoff
and landing capacity of airports, as well as the capacity of air traffic corridors. The air
traffic control and scheduling problem, including managing ground holding times, dy-
namic rerouting, air holding times, and aircraft and crew continuation, is a large-scale,
multi-stage optimization problem with sequentially revealed uncertainty, namely, the
weather update and forecast. Because the uncertainty generated by the weather is
primarily in the capacity constraints, the uncertainty is largely non-constraintwise. In
particular, a static robust formulation cannot capture correlation among the capacity
constraints. Therefore, a naive robust implementation for the uncertainty in the ca-
pacity constraints results in a significantly overly-conservative formulation. In [23],
we approach this problem using finite adaptability. A key feature of the problem is
the fact that even the deterministic formulation (i.e., with perfect forecast) has millions
of variables and constraints. There are 30-50 thousand commercial flights that take
off and land daily in the United States, and the numbers for European Air Space are
similar. Thus, practical computational considerations are of highest importance. In
addition, integrality constraints enter naturally; therefore any framework for adapt-
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ability must be able to accommodate integer constraints, without a significant increase
in the size of the resulting problem. For small &, k-adaptability does not increase the
size of the problem beyond our computational means. Furthermore, we can treat in-
teger constraints. The computational complexity of k-adaptability lies largely in the
partitioning of the uncertainty set. We believe that this particular large-scale applica-
tion is an example that illustrates well the applicability of finite adaptability, because
of the nature of the uncertainty.

Indeed, the 0-60 minute forecast of the weather is essentially deterministic as far
as the impact on capacity is concerned. Moreover, the nature of the capacity-affecting
weather uncertainty is particularly suitable for application of finite adaptability, be-
cause the uncertainty in longer term weather prediction, say, 0-6 hours, can be mod-
eled successfully using low-dimensional uncertainty sets. While the capacity vector is
potentially very high dimensional (roughly it is equal in size to the number of airports
and air traffic sectors) the weather uncertainty that drives the capacity uncertainty gen-
erates an uncertainty set where the resulting capacities are highly correlated. Current
weather prediction capabilities are very successful at identifying the existence, and
general trajectory of a storm system large enough to significantly affect capacity. If a
storm front follows a projected path, but moves more quickly or slowly than originally
forecast, the effect on the entire capacity vector is highly correlated, since multiple sec-
tors are affected by the same storm system. Similarly, if a single storm front breaks
into two or three smaller storms, the vector of capacities changes in a tightly corre-
lated fashion. It is precisely because of this correlation that the robust formulation is
overly conservative, while k-adaptability with small k can offer significant gains.

Of particular importance for the finite adaptability approach, is that the low dimen-
sionality of the capacity uncertainty is independent of the number of planes, routes,
airports of origin and destination; in particular, the dimensionality of the uncertainty
does not scale with the size of the problem. Thus, while the problem itself is naturally
very high dimensional, the positive complexity results of Proposition 3.12 promise a
tractable problem. More important that this theoretical guarantee, however, is the fact
that empirically, the heuristic algorithm of Section 3.7 seems to perform well in practi-
cal problems of realistic size. For more details on the characteristics of the weather un-
certainty, and tools for weather prediction, we refer the reader to [111] and references
therein. For more information on the particular robust models, and full numerical de-
tails about the problem, we refer the interested reader to Chapter 5, and also [23]. For
further background on the problem, and for other approaches to the air traffic control
problem, see, e.g., [30], [95], [99], and references therein.

For the purpose of illustrating the application, and the behavior of the algorithm of
Section 3.7, we consider a small example of a network flow problem subject to capac-
ity uncertainty, which is modeled as RHS-uncertainty. The idea comes from a model
of air traffic control where capacity is affected by an arriving storm front as discussed
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above. The exact time and location where a storm front affects an air traffic corridor
are subject to some uncertainty. In Figure 3-3 we show a simple network. The edges

Figure 3-3. Here we show a small network illustrating a potential application of k-adaptability to net-
work flows.

denote air traffic corridors, whose capacity in clear weather conditions is 20. The cor-
ridors represented by edges 1,4,8 and 2,5,9 correspond to the more direct routes, and
the cost of using each edge is nominally set to 1. The edges 3,5,7, however, represent a
geographically much longer path that involves possibly rerouting or delaying aircraft
with other origin and destination, and hence their cost is set to 6. The decision-maker
(the air traffic controller) must schedule 30 units of flow (airplanes) from the source, s,
to the sink, ¢, without exceeding the capacity of any link. Suppose that in the consid-
ered time-frame, the capacity of the central corridor marked with a solid line remains
unaffected (as it is geographically distant from the top and bottom paths) while the
capacity of the exterior corridors may be decreased due to convective weather. We
consider an uncertainty region described by four extreme points, each representing
some capacity degradation. The first extreme point represents loss of 24% of capacity
in edge 1 and 28% in edge 8, the next 6% in edge 1 and 22% in 4, the third 36% in edge
2 and 44% in 5, and the fourth 11% in edge 5 and 12% in 9. In the completely adaptable
formulation where the decision-maker has exact information about the precise impact
of the storm, the flight controller can reroute flights so as to completely avoid incurring
any additional cost due to the storm. Under the static robust formulation, however,
the threatening storm increases the cost by over 49%. The 2-adaptability computed by
our heuristic algorithm outperforms the static robust cost by over 36%. Thus, under
2-adaptability, the cost of the storm is at most 13% above the clear-weather cost, down
from 49%.

H 3.8.2 Robust Scheduling: Integer Constraints

Suppose we have m products, and each product can be completed partially or fully at
one of n stations, and the stations work on many products simultaneously so that no
product blocks another. Thus the decision variables, y;, are for how long to operate
station j. The matrix B = {b;;} gives the rate of completion of product i at station j.
Running station j for one hour we incur a cost c;. To minimize the cost subject to the
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constraint that the work on all products is completed, we solve:

min : 35, ¢y
s.t.: Z?:l bijyj >1, 1<i<m
y; 20, 1<j<n

In the static robust version of the problem, the rate matrix B is only known to lie in
some set P. How much can we reduce our cost if we can formulate 2 (in general k)
schedules rather than just one? Particularly in the case where we have to make binary
decisions about which stations to use, there may be some cost in having k contingency
plans prepared, as opposed to just one. It is therefore natural to seek to understand
the value of k-adaptability, so the optimal trade-off may be selected.

In Section 3.8.3, we generate a large ensemble of these problems, varying the size
and the generation procedure, and we report average results. Here, we consider only
one instance from one of the families below, and impose binary constraints, so that
each station must be either on or off: y; € {0,1}.

The heuristic algorithms proposed in Section 3.7 are tractable because of the quasi-
convexity of the search for the optimal dividing hyperplane and by the limited set
of normal directions considered. Both these factors are independent of the continu-
ous or discrete nature of the underlying problem. Indeed, all that is required for the
algorithms is a method to solve the static robust problem.

We consider an instance with 6 products and 6 stations, where the uncertainty set
is the convex hull of six randomly generated rate matrices. Without the integer con-
straints, the value of the static robust problem is 3.2697, and the completely adaptable
value is bounded below by 2.8485. The value of the 2-adaptability solution is 3.1610,
and for 4-adaptability the value is 3.0978. Thus, 2-adaptability covers 25.8% of the
gap, and 4-adaptability covers just over 40% of the gap. As we see from the results
of the next section, these numbers are typical in our ensemble. When we add integer
constraints, the static robust cost is 5, i.e., 5 stations must be turned on. The completely
adaptable value is 4. The 2-adaptability solution also improves the static robust cost,
lowering it to 4. Thus, in this case a single split of the uncertainty region reduces the
cost as much as the full completely adaptable formulation.

M 3.8.3 Robust Scheduling

We consider a large collection of randomly generated instances of the scheduling prob-
lem above, without integer constraints. First, we suppose that the extreme points of
P are generated uniformly at random, their elements drawn iid from a uniform distri-
bution. Next, we consider another random instance generation procedure, where the
extreme points of P come from a specific degrading of some number of products. That
is, we may have nominal values {b;;}, but in actuality some collection (typically small)
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of the m products may take longer to complete on each machine, than indicated by the
nominal values. Here each extreme point of P would be constructed from the nominal
matrix B, degraded at some small number of rows. We generate random instances of
this problem by generating a nominal matrix B, and then degrading each row individ-
ually. This corresponds to choosing robustness that protects against a single product
being problematic and requiring more time at the stations.

We are interested in several figures of merit. We consider the gap between the static
robust problem and complete adaptability. As we have remarked above, we note that
complete adaptability is typically difficult to compute exactly ([12]). Therefore for all
the computations in this section, we compute upper bounds on the gap between the
static robust and the completely adaptable values. Thus, we present lower bounds on
the benefit of adaptability and the performance of the heuristic algorithm. We obtain
upper bounds on the gap by approximating the completely adaptable value by ran-
dom sampling. We sample 500 points independently and uniformly at random from
the uncertainty set. Since the truly worst case may not be close to one of these sampled
points, the completely adaptable value may in fact be worse than reported, thus mak-
ing the gap smaller. Thus our random approximation gives a conservative bound on
the true gap. Next, we compute the extent to which 2- and 4-adaptability, as computed
by the algorithm of Section 3.7, close this gap.

We summarize the computational examples by reporting the size of the instances
and some statistics of the simulations. In each category, every number represents the
average of 50 independently generated problem instances of size as shown. These re-
sults are contained in Table 3.1. There, we give the average, minimum, and maximum
gap between the static robust and the completely adaptable values. We give this as a
fraction of the static robust value, that is, GAP = (Static(P)—CompAdapt(P))/ Static(P).
Then we report the average percentage of this gap covered by 2-adaptability and 4-
adaptability, as computed by the heuristic algorithm.

The table illustrates several properties of the gap, and of adaptability. We have
considered several examples where we fix the number of products and the number of
stations (i.e., we fix the size of the matrices) and then vary the size of the uncertainty
set, i.e., the number of extreme points. In all such examples, we see that the average
gap increases as the level of the uncertainty grows. Indeed, this is as one would expect.
Furthermore, we see that the quality of 2,4-adaptability decreases as the size of the
uncertainty set grows. Again this is as one would expect, as we are keeping the amount
of adaptability, and the problem dimension constant, while increasing the number of
extreme points of the uncertainty set. For the 6 x 6 matrices, 4-adaptability covers, on
average, over 70% of the gap. That is, with only 4 contingency plans, on average we do
over 70% as well as the best possible attainable by any amount of adaptability. When
we double the size of P, the average performance of 2-adaptability drops from over
63% to just over 42%, while the performance of 4-adaptability drops from over 70% to
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| Matrix Size | Size of P | Avg Gap % [ 2-Adapt % | 4-Adapt % |

6 x6 K=3 10.10 63.22 70.70

6 x6 K=6 14.75 42.72 52.33

6 x6 K=8 18.45 39.15 47.42
10 x 10 K=3 10.12 50.67 63.29
10 x 10 K=5 14.22 38.58 49.36
10 x 10 K =10 18.27 31.17 40.18
15 x 25 K=3 8.06 39.27 54.53
15 x 25 K=5 10.73 25.12 35.52
15 x 25 K=7 13.15 18.21 26.84

Table 3.1. The matrices in these instances were generated independently. The first group of two columns
identifies the size of the problem, where by matrix size we mean the “number of products by number of
stations,” and by size of P we indicate the number of extreme points. We note that the average gap
between the static and adaptable formulations increases with the size of the uncertainty set P. Also, the
benefit of 2,4-adaptability decreases as the size of the set P increases.

about 52%. A similar phenomenon occurs in the other examples as well.

We also report the results of the computations for the case where the uncertainty
set P corresponds to the case where at most one product is degraded. That is, we form
P by degrading each row of a matrix B individually. The results from this random

generation procedure are comparable to the first procedure. The results are reported
in Table 3.2.

| Matrix Size | Size of P | Avg Gap % | 2-Adapt % | 4-Adapt %

3x6 K=3 9.08 70.61 78.36
6x6 K=6 14.24 54.62 66.34
3x20 K=3 10.61 28.67 45.16
5% 20 K=5 15.90 33.78 47.60
10 x 20 K =10 21.17 22.35 31.50
3x25 K=3 10.92 52.94 65.16

5 x 25 K=5 15.81 32.83 45.90

3 x50 K=3 10.66 44.04 59.06

Table 3.2. The matrices in these instances were generated with dependent matrices, as explained above.
In this example again we note the same trends as for the first example: The gap between the static and
the adaptable increases with the size of the uncertainty set, and the value of 2,4-adaptability is better for
low-dimensional uncertainty sets than for high-dimensional uncertainty.
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B 3.9 Conclusion

We have proposed a notion of finite adaptability. This corresponds to choosing a finite
number of contingency plans, as opposed to a single static robust solution. We have
shown that this is equivalent to partitioning the uncertainty space, and receiving ahead
of time coarse information about the realization of the uncertainty, corresponding to
one of the chosen partitions.

The structure of this adaptability is designed to reduce the geometric gap between
P and (P) g, which is exactly the reason the static robust solution may be conservative.
In this chapter, we have focused on exploiting non-constraintwise uncertainty. We
consider elsewhere the value of adaptability in the face of non-convex uncertainty sets.
This notion of finite adaptability establishes a hierarchy of adaptability that bridges the
gap between the static robust formulation, and the completely adaptable formulation.
Thus, we introduce the concept of the value of adaptability. We believe that the finite-
ness of the proposal, as well as the hierarchy of increasing adaptability, are central
to the chapter. The finiteness of the adaptability is appropriate in many application
areas where infinite adjustability, and infinitesimal sensitivity, are either impossible
due to the constraints of the problem, or undesirable because of the structure of the
optimization, i.e., the cost. In addition to this, the inherent finiteness, and hence dis-
crete nature of the proposal, makes it suitable to address adaptability problems with
discrete variables. We expect that this benefit should extend to problems with non-
convex constraints.

In problems where adaptability, or information is the scarce resource, the hierarchy
of finite adaptability provides an opportunity to trade off the benefits of increased
adaptability, versus its cost.

On the other hand, as we demonstrate, obtaining optimal partitions of the un-
certainty space can be hard. Thus, there is a need for efficient algorithms. We have
proposed a tractable algorithm for adaptability. Numerical evidence indicates that its
behavior is good.






CHAPTER 4

Adaptability vi‘a Sampling: Integer
and Higher Order Models

I n the last chapter, we considered a finite scheme for adaptability, explicitly con-
structing the regions for the piecewise constant adaptability functions. The focus
was primarily on two stage models. Indeed, the finite nature of the adaptability seems
to have inherent a combinatorial explosion in the number of stages, for multi-stage
problems. Here we are interested in two-stage models as well, but we explicitly con-
sider extensions to the multi-stage case as well. As in Chapter 3, we are interested in
structuring a hierarchy of adaptability, bridging the gap between the static approach
on the one extreme, and the fully adaptable approach on the other. The main contribu-
tion of this chapter is a polynomial time scheme for structuring such a hierarchy, that
is also polynomial in the number of stages in the model.

We consider both continuous and discrete models for adaptability. Affine adapt-
ability, as described in Chapter 2, was introduced in [12], and is a continuous model for
adaptability that extends to multiple stages without a combinatorial explosion in the
number of variables. Yet that framework does not provide a hierarchy of adaptability.
Finite adaptability, as proposed in Chapter 3, does provide such a hierarchy, but does
not extend well to multiple stages. Both of these two approaches take a Robust Opti-
mization view of the uncertainty, assuming a deterministic set-based model. Here, we
take a different approach, and assume that the behavior of the uncertainty is governed
by an underlying distribution. Furthermore, we assume that we have black-box access
to this distribution, i.e., we can sample from it, but otherwise we may know nothing
further. This conceptual framework is similar to some work from the Stochastic Opti-
mization literature, and in our context is closest to the recent work in [43]. We show
that if we accept a reliability probability (1 — §), and relax our feasibility requirement
to being feasible with probability at least (1 — €), then we can construct higher order
adaptability (affine, quadratic, and so on) simply by solving LPs. In addition, we pro-
pose a method for adaptability where the second stage variables are integral. On the
way to proving probabilistic guarantees for this sampling-based proposal, we provide
an extension of the results of [43] to the case of integer constraints. Qur results make
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no assumption of complete, or constant recourse. Furthermore, for a fixed € and §, and
a fixed order of adaptability, our results yield a polynomial time approach for multi-
stage sampling. That is, the number of samples required grows polynomially in the
number of stages.

B 4.1 Introduction

The main focus of this chapter is on adaptability for multistage linear optimization
problems, and also linear optimization problems with integer constraints. As we have
done throughout the thesis, we consider multistage optimization problems with pa-
rameter uncertainty, where the uncertainty is realized sequentially, and therefore, fu-
ture stage decisions are allowed to depend on the past realizations of the uncertainty.
We consider a problem that has K + 1 stages; we denote by x the first stage variable
(the decision to be implemented now), and y,, the decision to be implemented at stage
1<k +1< K +1. The uncertainty z = (wy,...,wk) is revealed in stages, so that at
stage k + 1, the decision-maker sees the vector 2z 2 (w1,...,wk). Thus the problem
we consider is of the form:

min: ¢'z+ YK dTy;(z)
st.: A(2)z+ Zf_{._l Ai(2)y;(z:) < b,

We note, in particular, that the stage k£ + 1 decision y,(z) is a function of the uncer-
tainty revealed up to that time. In general, the parameters of the problem (i.e., the
matrices) may depend on the full realization of the uncertainty, and so may not be
completely (deterministically) known to the decision-maker until the final stage. The
dependence, therefore, reflects the causality of the decision-making sequence. Note
further that we have not made any independence assumptions on the uncertainty re-
vealed at different times i and ;.
We also pay specific attention to the two-stage model:

min: ¢'z+d y(w)
st.: A(w)z+ B(w)y(w) <b.

B 4.2 A Brief Review & Our Contributions

Multistage formulations of optimization under uncertainty have a rich history in the
research literature, and have attracted attention of researchers in a broad area of disci-
plines, including stochastic optimization, control, computer science, and many others.
Chapter 2 contains a more thorough exposition of what has been done, and the perti-
nent references.

In this section, our aim is to provide only a brief overview of some of the different
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approaches to the multi-stage problem, and a few details about the results that are
relevant to the material of this chapter. We mention only the high-level ideas, both
with the intention of broadly introducing what has been done in the past, and also to
contextualize the results of the present chapter.

B 4.2.1 Robust Optimization

Robust Optimization has been a central theme of this thesis, and it is reviewed in
depth in Chapter 2. For the purposes of this chapter, there are several aspects that bear
further mentioning.

Recall that in Robust Optimization, we take a deterministic set-based view of un-
certainty. A generic formulation, then, is:

min: ¢'z

st.: flz,w)<0 VYweQ, (421)

where 2 is the uncertainty set.
The success of Robust Optimization is due to the tractability of this formulation for
a large and useful class of problems, including LP and SOCP. This tractability of the
single stage formulation, has not been successfully extended to the multi-stage case.
Consider the robust formulation of two-stage linear optimization:

mn: ¢c'z+d'y
st.: Aw)z+ B(w)y(w)<b, Vwe.

When y(w) is an arbitrary function of w, the problem becomes:
min: ¢’z + max,en J(T,w),

where we can think of J as the realization of the cost-to-go function when the first-
stage decision is  and the uncertainty realization is w. Thus we have:

A | min: dTy
J(z,w) = [ st.: Bwy < (b- A(w)z) J '

Evaluation of max{J(x,w) |w € Q} is typically intractable, because J(x,w) is not con-
cave in the optimization argument, w.

The approach we follow in this chapter is to restrict the second stage function y(w)
to have particular functional structure. The first approach along these lines within the
Robust Optimization paradigm is due to Ben-Tal et al. ([12]). They restrict the function
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y(w) to be an affine function of the uncertainty: y(w) = Qw + q. Thus they have:

min: c¢'z

st.: A(w)+ B(w)[Qw+gq|, Ywe Q.

This reduces the problem to a single-stage robust optimization problem. Recall that the
tractability of a single stage robust optimization problem, depends on the tractability
of the family of constraints

flz,w) <0, Vweq,

which are equivalent to what we have called the inner problem:

[ S0 ) o

st.: well

For affine adaptability, we have an inner problem for every constraint, i. Here the

" inner problem becomes:

1

max : A;{w)z + Bi(w)[Qw + ¢]
st.: we.

This is an indefinite quadratic optimization problem, and thus is nonconvex. In gen-
eral, this problem is NP-hard, with the notable exception the case where Q is an ellipse
(see Chapter 2). In [12], the authors use some previous results from [17] to obtain
approximation results.

In addition to issues of computational complexity, a central question is the benefit
of employing a particular adaptability scheme. As we have pointed out by example
in Chapter 3, even in simple problems such as low-dimensional linear problems with
linear dependence on the uncertainty, and with simple (e.g., one-dimensional) uncer-
tainty sets, affine adaptability may fail (i.e., may be no better than the no adaptability
case). Indeed, we saw a one-stage version of this phenomenon in Chapter 3, in Section
3.6. There, the example served as an illustration of when affine adaptability can fail, yet
finite adaptability can significantly improve the solution. It is precisely in such a case
when we need a hierarchy of adaptability, as presented in Chapter 3, or as presented
here now. In Chapter 3 we saw that we can approach the optimal completely adapt-
able solution by finite adaptability, but doing so requires increasing without bound the
number of regions in the partition. We carry this example again through this chapter,
illustrating the benefit of nonlinear adaptability, and also piecewise affine adaptabil-
ity. We are able to formulate such families of adaptability because of our sampling
approach. We reproduce the example from Chapter 3, here in the context of a two-
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stage problem:
min: <«
st.: 7> y1(w) +y2(w) + y3(w) (4.2.2)
B(w)y() > 1, Vw € [0,1] B
xr,Yy Z 07

where B(w) = wB; + (1 — w)Bs, and

111 00 1
Bi=|0 01 Bi=|111
le, gl 1 1
3 50 i

The optimal second stage solution y(w) is plotted in Figure 4-1, illustrating that it is
very nonlinear. To the best of our knowledge, there has not been any other continuous
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Figure 4-1. This figure gives a plot of optimal second stage solutions, as a function of the realization
of the uncertainty. The figure shows that even in a simple example, the optimal solutions can be very

non-linear.

proposal for adaptability, that may improve on the affine model. A primary reason
for this is that since the affine model already presents tractability problems because of
the resulting quadratic dependence on the uncertainty, higher order models, or other
continuous nonlinear models for adaptability would only exacerbate this problem. We
revisit this example in Section 4.3.2, where we show that quadratic adaptability nearly
closes the gap between the static and dynamic formulations. We also show that higher
order polynomial adaptability closes the gap completely, as does a piecewise affine
adaptability with only two pieces.
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W 4.2.2 Stochastic Optimization

As discussed at greater length in Chapter 2, the Stochastic Optimization paradigm
explicitly takes into account the probabilistic nature of the uncertain constraints (we
refer the reader to the textbooks [81],[108], [35], and the references therein). Unlike
the focus of Robust Optimization which is typically feasibility two-stage stochastic
problem assumes complete recourse. That is, the assumption is made that for any
first-stage decision «, and any possible realization of the uncertainty, w, there exists
some second stage decision y such that the pair (z,y) is feasible for the particular
realization, w. Therefore the issue becomes one of minimizing the expected cost, and
thus a typical formulation is:

min: f(x) 2 Ey[F(z,w)]
st.: zeX.

Analytic solutions require us to be able to express the objective function f(z) in closed
form. This is rarely possible. A common way out, then, is to approximate the expecta-
tion via some version of Monte Carlo sampling (see, e.g., [117], [88]). In [119], Shapiro
considers the sample average approximation method, and shows that the “total num-
ber of scenarios needed to solve the true problem with a reasonable accuracy grows
exponentially with increase of the number of stages.” In fact, even for a constant num-
ber of stages, the bounds he gives for the sample complexity given a particular error
parameter ¢ and reliability parameter § are not necessarily polynomial in the descrip-
tion length of the problem. This is because his bounds involve a parameter capturing
the variability of the function F', and this may not be polynomial. Recently, in [126] the
authors showed that for a fairly broad class of multi-stage problems, the Sample Aver-
age Approximation algorithm converges in polynomial time for any fixed number of
stages. Nevertheless, the sample complexity does grow exponentially in the number
of stages of the problem.!

Indeed, the fundamental issue with respect to multi-stage problems, appears to be
how we can evaluate the quality (or even feasibility, for problems without complete
recourse) of a first stage solution z, in a K-stage problem. In a two-stage problem,
a straightforward approach might be to simply sample realizations w(® of the uncer-
tainty, and for each w(®) compute a second stage variable y*) to optimally complete
the (fixed) first-stage solution . Consider, however, a three-stage problem:

min: c¢'z+ y(wi)+ v(wr,ws)
st.: A(wi,w2)® + B(wy,ws)y(w1) + Cwr,ws)v(wy,ws) < b.

!See Chapter 2 for further discussion of sampling results for Stochastic Optimization, and integration
via Monte Carlo sampling.
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Given x, we cannot simply generate a collection of samples {(wgl), wg)), e (ng), ng) )}

and seek a pair (y), v(®) for each (wgi), wéi)). Indeed, such an approach does not pre-
serve the causality structure of the three-stage problem, as now both y and v are ef-
fectively functions of the second and third stage uncertainty realizations. Essentially
the result of Shapiro shows that this problem forces an exponential explosion in the
number of samples required, since for each realization of the second stage uncertainty,
w1, we must take an independent collection of samples of the third stage uncertainty,

wa.

B 4.2.3 Chance Constraints and Sampling

Robust Optimization provides tractable results, but only for a limited class of con-
vex problems. Intractability stems in part from the worst-case view, which creates the
inner problem that proves to be the (computational resource) bottleneck. Stochastic
Optimization also presents complexity issues, requiring the solution of challenging
nonconvex constraints, and difficult-to-compute integrations. The difficult integra-
tions stem directly from an attempt to compute expected values of the cost-to-go func-
tions, to use language of dynamic programming. There is a middle road, however,
that avoids both the tractability pitfalls of worst-case interpretation of constraints, and
expected value performance measure.

Chance constraints require the uncertain constraints to be satisfied with some (high)
probability at least (1 —¢). It has long been observed in stochastic programming, that a
solution that is feasible with high probability, can dramatically outperform a solution
that is required to be feasible with probability one. This is a primary motivation for
the so-called chance constraint, where given a stochastic constraints f(x,w) < 0, we
write

Ip(f(m’w) < 0) >1l-e

Such constraints are typically nonconvex, and thus difficult to deal with directly ([104],[107])
except for some special classes of distribution, and form of the constraints. This is dis-
cussed further in Chapter 2.

Analogously to the Monte Carlo approach to integration, Monte Carlo sampling
again becomes of interest here. The main focus, however, is feasibility, as opposed to
an expectation minimization, as in the standard stochastic programming setup. Fea-
sibility evaluation essentially amounts to integration of an indicator function. For
this reason, variability parameters of the integrand — something that, as discussed
above, has presented difficulties for sample-based multi-stage stochastic optimization
approximations —- does not appear to be an issue.

The basic approach is to consider the sampled robust problem (SRP), where the
chance constraint is replaced by the sampled version of that constraint, and so we
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replace the true feasible set

X £ (= |P(f(z,w) <0) 2 1-¢},
by the sampled feasible set

fl,wD) <0,
Av=1(z: :
fla,w™M) <0

The central question related to the sampling approach, is to understand the sample
complexity, i.e., the number of samples N required, so that an element x € Xy, is in
X, with at least some reliability (1 — ).

This approach relaxes the notion of robust feasibility, requiring the optimal solution
to be feasible only to the finite collection of samples seen. Furthermore, the optimality
criterion is not one of expected value, but rather a worst-case criterion. Thus we can
think of this as a relaxation of the robust framework.

We are particularly interested in the work of Calafiore and Campi ([43]) and de
Farias and Van Roy ([51]). The authors assume that the uncertain data are generated by
some (possibly unknown) distribution. Subject to certain convexity constraints, they
show that if one samples N (6, €) constraints, then with probability at least (1 — §), the
solution z* to the resulting deterministic problem will be feasible to the next sampled
constraint with probability at least (1 — ). The main result of [43] is to show that
choosing

1.1 1.1
>2n-In-+=-In~ 2.
N(6,s)_2[n61n6+51n5+n], 4.2.3)

is sufficient to obtain the above reliability and feasibility guarantees. The result of de
Farias and Van Roy ([51]) is similar, although it relies on results from learning theory,
rather than convexity properties of R", as is discussed in detail in the sequel.

The sample complexity results have been specialized, and the sample complexity
greatly improved for particular special classes of problems, in [92] and [62]. There,
they consider linear optimization problems with affine dependence on the uncertainty
parameters, and subject to some additional conditions, they prove sample complexity
bounds independent of the dimension, and logarithmic in ¢~!. However, such an ap-
proach is restricted to affine dependence on the uncertainty, and in particular cannot
handle problems such as the two-stage example given above. As we see below, higher
order models for continuous and discrete adaptability can be reformulated as linear
optimization problems where the parameters depend in a nonconvex (and in the inte-
ger case noncontinuous) manner on the uncertainty. Therefore the results of [92] and
[62] do not apply to our situation.

Moreover, in [92] and [62], the authors apply their results to two stage problems,
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but because of the affineness requirements, they only consider two-stage problems
with constant recourse. This is the case when the second stage matrix, B in our nota-
tion, is constant and known in advance. In this chapter we consider the more general
setting where the recourse matrix is not fixed.

B 4.2.4 Other Directions

The work done in Stochastic Optimization goes far beyond the works that we are able
to mention here. We bring up only the modern versions of the results that are most
important to contextualize and support the work in this chapter. One additional re-
cent advance that is worth noting and commenting on, is that of Dean, Goemans, and
Vondrék (see, e.g., [52],[72]). In [52], the authors consider the stochastic knapsack
problem with deterministic item values, but sizes that are instantiated only after the
item is placed in the knapsack. Remarkably, they are able to show that there exists a
nonadaptive algorithm that performs within a factor of four of the optimal adaptive
algorithm. This work differs in primarily two ways from what we consider here. First,
feasibility is the main focus of our work, and thus the constraints are treated as hard,
and cannot be violated. As is typical in optimization, violation incurs an infinite cost.
In contrast, in the knapsack formulation, once the knapsack is full or overflows, the
game ends, and the optimizer retains the current value of the knapsack. The bounds
they obtain would not be possible in a more restrictive framework. In addition to
this, the main focus there is on the gap between the adaptive policies, and entirely
non-adaptive policies.

For many applications, however, a receding horizon approach is in fact practical,
and in many cases such approaches have been used with very favorable results. We
are here most interested in the comparison of the quality of only the first-stage solution
obtained through different levels of adaptability. It is unclear from the analysis in [52]
and [72], that there even is a gap between the receding-horizon non-adaptive policy,
and the optimal adaptive policy.

Indeed, the difficult aspect of adaptability is capturing the fact that we have adapt-
ability in future stages, in our computation for an optimal, or good, first-stage decision.

B 4.2.5 Outline and Contributions

The central topic of this chapter is to use sampling techniques to structure adaptability,
in multi-stage, and in particular in two-stage optimization problems.

We take advantage of the fact that by sampling constraints, one entirely side-steps
any difficulty with non-linear dependence of the constraints on the uncertain parame-
ters (as further explained below). The only requirement is that we are able to sample
from the distribution. The price to pay, of course, is that rather than deterministic fea-
sibility to the uncertainty, we have to accept a reliability parameter §, and a probability
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of infeasibility e.
Specifically, our contributions in this chapter and the chapter outline are as follows:

(1) Finite Adaptability: In [22] we introduced a finite hierarchical model for adapt-

)

®)

ability, termed Finite Adaptability, that provided a geometric approach to struc-
turing piecewise constant second-stage solutions. This proposal presented a hi-
erarchy of adaptability, and because of its inherent finiteness, was able to ac-
commodate discrete variables in the second stage. The approach was limited
to polyhedral uncertainty sets specified by their extreme points. Here we show
that by sampling the uncertainty set, we can greatly increase the class of uncer-
tainty sets that the finite adaptability approach can address. This is the subject of
Section 4.3.1.

Nonlinear and Higher Order Adaptability: In [12], the authors propose the no-
tion of affine adaptability for multi-stage linear optimization problems. As dis-
cussed in Chapter 2, the resulting problem is NP-hard, but they use some past
results ([17]) to develop approximate approaches via Semidefinite Optimization.
The difficulty they face is due entirely to the fact that if the second stage vari-
able is an affine function of the uncertainty, the resulting robust optimization
problem takes on a quadratic dependence on the uncertainty. This results in an
intractable inner problem (see Chapter 2). By using the sampling techniques of
[43] we are able to circumvent this problem. This allows us to structure not only
affine, but also nonlinear models of adaptability, such as quadratic and, if we
care to do so, higher order polynomial adaptability, all by solving deterministic
linear optimization problems. This involves a feature map, that maps the uncer-
tainty in potentially a nonlinear manner, to a possibly higher dimensional space.
Affine and polynomial adaptability are just two instances of this general proce-
dure, and in fact Finite Adaptability introduced in Chapter 3 can also be viewed
in this light. This gives us an important outlet when affine adaptability fails.
As illustrated in [22], even for simple and low-dimensional linear optimization
problems, the affine adaptability paradigm may be no better than the original
robust approach. In Section 4.3.2 we give the proposed sampled approach, along
with computational examples of its effectiveness.

Integer Adaptability: A significant shortcoming of the affine adaptability frame-
work of [12], and indeed any continuous-adaptability proposal, is its inability to
address any problem with integer constraints on the second-stage variables. In
such a case, the adaptability must necessarily be piecewise constant. The finite
adaptability proposal of [22] had such a setup in mind, and developed a frame-
work for piecewise constant adaptability with a very small number of pieces.
The focus there was on the explicit construction of the partition of the uncer-
tainty set, into a small number of pieces. Here, we take a different approach
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made possible by sampling the uncertainty. Rather than structuring the pieces
of the adaptability explicitly, we develop a new proposal that allows for an ex-
ponential number of pieces to be implicitly constructed.

Along the way, we prove an extension to the results of [43], to the case of convex
sampled constraints, and nonconvex, specifically integer, constraints imposed in
addition.

The framework for the integer adaptability, as well as the proof of this result, is
the subject of Section 4.3.3.

(4) Multistage Optimization Under Uncertainty: We consider here extensions to the
case of many stages. Here, sampling approaches in the past have proven inef-
fective, as the schemes proposed require a number of samples that grows ex-
ponentially in the number of stages. We circumvent this problem by restricting
ourselves to structured adaptability functions, and then using the sampling ideas
of [43]. To the best of our knowledge, this is the first proposal that offers a hier-
archy of higher order adaptability, that does not require complete recourse, and
furthermore is applicable to the multi-stage optimization, yet does not suffer an
exponential explosion of the complexity, in the number of stages.

(5) InSection 4.5, we consider the reliability, and probability of feasibility, uniformly
over the set of all points that are feasible for the sampled problem. We introduce a
notion of robustness into the sampling procedure. This allows us to avoid relying
on the VC-dimension to obtain bounds on the sample complexity. It allows us
to use much finer complexity measures, such as covering numbers, and also fat
shattering dimension. The finer complexity measures can be particularly useful
in the context of the rich class of adaptability introduced in Section 4.3.2.

In addition, the new notion of robustness in the samples, allows us to introduce
a third parameter into the sample complexity. Thus, rather than sample com-
plexity that is only a function of the reliability, 4, and the feasibility level ¢, we
now are able to trade-off with a robustness parameter 7. This further allows us
to control the growth of the number of samples we require to obtain feasibility
and reliability guarantees.

(6) Finally, in Section 4.6, we offer more extensive computational examples of our
approach, and we compare it with other proposals for adaptability. We consider
two specific applications. First, in Section 4.6.1, we consider a network design
problem. We use this to not only compare the benefit in terms of cost of adapt-
ability over the static robust formulation, but in addition we formulate the prob-
lem of maximizing robustness subject to resource constraints, and here too we
demonstrate the advantages of using adaptability. Then in Section 4.6.2, we con-
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sider a multistage portfolio optimization considered by Ben-Tal, Margalit, and
Nemirovski ([13]).

B 4.3 A Proposal: Sampling Structured Adaptability

In this section we propose a sample-based approach to structured adaptability. Both
the sampling aspect, and the structured nature of the proposal, are important to our
results.

The sampling itself, accomplishes a simplification of the uncertainty set. We show
in Section 4.3.1 that while the convex hull of the sampled points may make up only an
exponentially small fraction of the volume, nevertheless we maintain strong feasibil-
ity guarantees, and in addition, the central benefit is that we work with a much more
tractable uncertainty set description, namely, one given by extreme points. In Section
4.3.1, we show that such a description is crucial to the efficient computation of certain
parameters, in particular, the worst-case uncertainty realization point of a single-stage
robust optimization problem. We use this observation to broaden the scope and appli-
cability of finite adaptability, as considered in Chapter 3.

Even more significantly, sampling uncertainty realizations eliminates non-linearities
in the way the parameter uncertainty enters into the problem. By sampling a finite set
of realizations of the uncertainty parameter, w, we explicitly include each sampled con-
straint individually in the optimization. Therefore a potentially non-linear uncertain
inequality f(z,w) < 0 which must be satisfied for all realizations of w in a continuous
set (3, we deal with individual constraints f(z,w®) < 0. Thus effectively, the impact
of the uncertainty becomes affine. As usual for sampling methods, this simplification
comes at the expense of a nonzero probability of error, and of infeasibility; that is, we
introduce the reliability and feasibility parameters (e, §); another expense, naturally, is
the increase in the number of inequalities. Bounding this increase is of central impor-
tance.

This sampling approach allows us to consider higher order and non-linear adapt-
ability models. In turn, this structure we introduce, allows us to control the number of
variables, and reduce multistage problems into single stage problems with only poly-
nomially many variables. This should be contrasted to the exponential growth of the
number of variables and samples required, in other multistage approaches (see [119],
[120]).

Since this reduces the problem to an explicit finite dimensional single stage prob-
lem, we are able to apply other tools we have developed. In particular, employing
ideas of finite adaptability, we are able to structure piecewise polynomial adaptability.

In addition to simplifying polynomial nonlinearities and allowing us to structure
higher order continuous adaptability models, the same approach allows us to deal
with much more nonlinear functions: rounding functions. This observation allows us
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to implement rounding functions, and thus structure adaptability with integral second
(and later) stage variables, by solving integer linear optimization problems. This is the
topic of Section 4.3.3.

B 4.3.1 Finite Adaptability

For convex robust optimization problems with component-wise uncertainty, it is well-
known that there is a single realization of the uncertainty, w* € (2, such that the nom-
inal problem with realization w* is equivalent to the full robust problem, in the sense
that the robust solution is feasible and optimal for both. When the uncertainty is not
component-wise, then this point w* may not lie in (2, but it does lie in the smallest
hypercube containing 2, (this is pursued in greater detail in Chapter 3, and [22]). Let
Q; denote the projection of {2 onto the components corresponding to the i** constraint,
that is, the components that affect the i** constraint of the optimization. Then the hy-
percube is defined as

(QrEQ x - x O,

where m is the number of constraints.

Computing these points w* € (Q2)g is important for understanding why the static
solution (i.e., where y(w) = y has no adaptability to the realized uncertainty) is conser-
vative with respect to the optimal adaptable solution. In particular, it is very important
for obtaining guidance in structuring finite adaptability, in the sense of the content of
Chapter 3.

Computing these points w* is typically difficult. Indeed, it is at least as difficult
as solving an inverse optimization subject to an additional feasibility constraint, but
where we are inverting with respect to the matrix:

1. Given vectors c, b, the optimal target point «*, and a set of matrices {A(w) : w €
(Q)r};

2. Find w* € (Q)g such that:

min: ¢'x

st.: AwH)z <b,
has optimal solution z*.

Typically, inverse optimization problems are solved by considering the dual problem,
and the optimality conditions for linear optimization. For inverse optimization prob-
lems with respect to the objective function (or the right hand side vector) this becomes
a simple feasibility problem. In the case of matrix inversion, however, the problem be-
comes difficult, because of the bilinearity of the resulting feasibility problem (we must
simultaneously search for a matrix A(w), and also for a dual variable that appears in
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a product with A(w). As the following example shows, the resulting bilinear problem
cannot be easily solved, as the feasible set of points w* for which the given solution z*
is indeed optimal, may be nonconvex.

An Example: Inverse set may be nonconvex:

We consider the example (4.2.2). It is not difficult to show that, according to the defi-
nition above, the two matrices:

1 1 1 0 0 1

Di=| 0 0 1 Dy=|1 1 1],
AN S I 7 9
20 20 20 20

both satisfy Dy, Dy € (Q2)r, and the point z* = (10/7,10/7,1) is optimal for both
nominal problems. However the nominal problem with a matrix from the convex hull
of {D1, D} need not have * as an optimal solution. For instance, D = (D, + D3)/2
has optimal solution = (10/7,10/7,0). [ ]

However, the problem of computing w* € (Q)r is tractable (and straightforward)
when 2 is given as a convex hull of extreme points.

The sampling approach gives us a technique to compute some of the points w*, and
thus allows us to extend the partitioning tools of Chapter 3 (and [22]) to more general
uncertainty sets, including, for instance, norm-bounded sets.

B 4.3.2 Nonlinear Adaptability: Feature Space

Here we use sampling to structure higher order adaptability, and also to consider
piecewise-continuous models for adaptability. The general robust adaptable problem
is: :

min: c¢'x

st.: Alw)x + B(w)y(w)<b, YweQ.
Sampling and Higher Order Adaptability
In the affine adaptability framework of [12], the second stage variable y is allowed an
affine dependence on the uncertainty w, thus we have:
Y(w)=Quw +gq.
Thus the affine adaptability problem becomes:
T

min: c¢'x

s.t. : A(w)m + B(w) [Qw + q] <b, Vwe. 4.3.4)
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This is now a single stage linear optimization problem with uncertain parameters,
where the uncertainty takes values in precisely the same set (2 as in the original prob-
lem. The decision variables are now (x, @, q). The fundamental difference with the
single stage problems solved in [15], and [26], is that the uncertainty, while it takes
values in the original uncertainty set 2, affects the problem parameters in a nonlinear
(quadratic, here) manner. This takes us outside the realm where the tractability results
of Robust Optimization hold. Indeed, as shown in [12], in general this problem is NP-
hard. For higher order adaptability, for instance, quadratic adaptability, the problem
is further exacerbated. In the quadratic adaptability case, we have:

y(w) = Qyw + Qw +q,

where w is the vector of all pairwise products u;u;. Then the resulting problem is a
single stage robust linear optimization, but where now the parameters have a cubic
dependence on the uncertainty. In [12], the authors propose an SDP approximation
scheme for affine adaptability, using an approximate S-lemma proved in [17]. For
quadratic and higher order adaptability, there is not even a proposal that attempts to
address this problem.

The theme of this chapter is that if we are willing to accept reliability probability
(1—9), and feasibility probability (1 — €), then we can effectively circumvent the com-
putational intractability arising from nonlinear dependence of the parameters on the
uncertainty.

Thus, for affine adaptability, rather than attempting to solve a hard subproblem
exactly, or solving it approximately via SDP (as in [12]), instead we sample Q according
to the distribution P N times independently, to obtain samples {w®),...,w®™)}, and
then solve the sampled robust problem:

min: c'z
(SRPY) st.: A(w(l))a:.+ BwW) [QuM +4¢] <b
A(wM)z + B(wM) [Qw(N) +q]<b

Letting w, denote the vector of all r-fold products of the {u;} (so that, e.g., w; = w),
this procedure allows us to structure higher order adaptability in precisely the same
manner. Thus, for degree-r-adaptability, we have adaptability function:

Y(w)=Q,w, + Q,_ w1+ + Quwz + Qw +q.

Then, the sampled robust problem is again simply an LP, where the variables are z
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and the coefficient matrices Q;, g:

min: ¢'x

s.t.: A(w )il? + B( 1)) [21—2 W (1) + Qlw(l) + q] <b
(SRPY) :

AWMz 4+ B(wM) [ZLz Q™ + Q™ + q] =b

Indeed, by the linearity of polynomials in their coefficients, we have the straightfor-
ward result:

Proposition 4.1
We can obtain the optimal adaptability function of order r, for the sampled robust LP, by solving
a linear optimization problem with polynomially increased number of variables.

In Section 4.4 we show that given any reliability parameter § > 0, and feasibility pa-
rameter € > 0, the sample complexity N (4, €) required to guarantee feasibility within
the given parameters, of the sampled solution with degree r adaptability, is polyno-
mial in € and 4. Furthermore, for the two-stage problem, this sample complexity is
independent of the degree r of the adaptability.

A Nonlinear View

The central fact that we exploit is that using samples frees us from dealing with non-
linearities in the uncertainty parameter w. Indeed, this, along with the fact that our
adaptability is ultimately linear in the decision variables, allows us to structure non-
linear adaptability by solving linear optimization problems. The higher order polyno-
mial adaptability above illustrates this principle, but we can view such adaptability in
a more general light. Consider again the sampled robust optlrmzatxon problem, given
samples Qy = {w),...,wM}:

min: c'x
st.: AwD)z + BwW)y(w®) <b
A(w™z + Bw™M)y(w™) < b,

In this formulation, the adaptable function y is some function: y : R™ — R"2.
We propose the following approach to structuring nonlinear adaptability for multi-
stage optimization. Suppose we have w € R™ for some m. Now consider any function

F:R™ - R".

The only requirement we place on F is that it is, in some appropriate sense, easy to
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compute. Note that the dimension of the image space, r, may be larger or smaller than
m. Now consider the optimization problem:

min: c¢'x

st.: AWz + BlwW)y(Fw) <b

A@™)e + B®)y(Fw™)) <b.

Now, the second stage function y is a map: y : R™ — R"2. If we restrict y to be an
affine map, then the sampled problem becomes a linear optimization problem. A few
comments are in order.

1. For affine adaptability, the function F is the identity.

2. For polynomial adaptability, the map F is the nonlinear moment map, mapping
from a vector w = (wy,...,wn) to the vector of monomials of bounded degree:
w = (WY)jal<a-

3. Finite adaptability as well can be viewed in this light: given a partition Q@ =
Q1 U g, of the uncertainty set, the function F becomes a piecewise constant
function on that partition. Note that in this Chapter 3, the effort is to perform an
optimization over a restricted class of such functions F. Here, on the other hand,
F is fixed, and we optimize with respect to the affine function y(-).

To use the language of approximate dynamic programming, the mapping F' can be
thought of as mapping to a feature space. Choosing a good mapping F, i.e., choosing
the right features, is an important and difficult task. As mentioned above, Chapter
3 addresses this problem in a very limited context. This is essentially the issue of
choosing a proper model for the adaptability. In addition to providing a hierarchy
of adaptability, the flexibility of this approach offers the opportunity to capture addi-
tional outside information the decision-maker may have about the problem. That is,
this is not the issue of choosing what degree polynomial to use, but rather of much
richer question of what class of nonlinear feature functions F are appropriate for the
problem at hand. In particular when faced with the choice of several feature functions
F € F, sample complexity bounds becomes very important. In Sections 4.4 and 4.5,
we discuss sample complexity. Particularly in Section 4.5, we consider sample com-
plexity bounds related directly to the complexity of the class of adaptability functions.
In the scheme proposed above, where y is restricted to be affine on the image of F, it
is the feature function F' that determines the complexity of the class of the adaptabil-
ity functions, and hence controls the bounds on sample complexity. The possibility of
also “training” and performing some search of a limited class of functions is also of
interest. This line of research is pursued elsewhere (but see Chapter 6).
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The extension to the multi-stage case is straightforward. Given K-stage uncer-
tainty, z = (w1,...,wk) € R™M*+" ™k and z; = (wy,...,w,) € R™M++m and a
K-stage problem

min: ¢'x+ Z,{il dT'yi(zi)
st.: A(z)x + 2K, Ai(z)y;(z:) < b,

then the adaptability is defined by K nonlinear functions:

Fi:R™ - R"
Fy : Rmitm2 _, Rr2

Fy : RMi++mk _, RTK

Then we show that the sample complexity will be polynomial in the numbers (r1, . . ., k).
That is, the dimension of the mappings F; effectively determines the sample complex-
ity. In particular, if F; are given by the moment maps of fixed degree d, then the di-
mensions 7 grow in a polynomial fashion, and hence the degree k adaptability has
polynomial sample complexity in the number of stages to the problem. In Section 4.5,
we propose a modified sampled problem that allows us to give more sophisticated
sample complexity bounds that can be independent of the dimension of the mappings
F;, but instead depend on other regularity properties.

Piecewise-continuous Adaptability

Once we form the sampled problem, we have a robust optimization problem where
the uncertainty set is given by extreme points; the extreme points are the sampled un-
certainty points. Therefore we have the required structure for the results developed in
Chapter 3. Applying the results of Chapter 3, we can obtain a partition of the uncer-
tainty set (2, and then structure affine, higher order, or other nonlinear adaptability on
each region of the partition, thus yielding piecewise polynomial adaptability.
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Some Illustrative Examples

We now consider a small example. Larger-scale examples are considered in Section
4.6.

min: z

st.: z2y1+y2+ys

1 0 0 1 111
Byz(l) VBEconv{Bl,B2}=conv{(1 1 1),(0 01
1 EEVATE
Y1,¥2,y3 2 0.
(4.3.5)

The static value is 27/7, obtained by the solution z = 27/7, y = (10/7,10/7,1). The
optimal affine adaptable solution coincides with the static solution. By sampling uni-
formly from the unit interval [0, 1] (the uncertainty set) we compute the sampled ver-
sion of both affine adaptability, and also quadratic adaptability and higher order adapt-
ability (up to sextic). We see from the plots in Figure 4-2 that the affine adaptability
indeed approaches the static value, while quadratic adaptability is almost as good as
the optimal adaptable value, and this further illustrates the quick convergence for this
simple example. Cubic adaptability seems to perform similarly as quadratic adapt-
ability, but by the time we get to quartic adaptability, the solution achieves the same
value as the optimal adaptable solution. In Figure 4-4 we plot the optimal quadratic
solutions in the figure on the left, and, to illustrate the hierarchy of adaptability, we
plot the sextic solutions on the right (like the quartic solution, the sextic achieves the
optimal cost).

We can also consider partitioning the set, and then employing a continuous adapt-
ability scheme on each partition. For this simple example, while affine adaptability is
unable to improve the solution, piecewise affine adaptability with only two pieces, is
enough to obtain the optimal adaptable value. The graph of the piecewise constant
solution is given in Figure 4-3.

The key point we illustrate here is that sampling allows us to work harder to ob-
tain better solutions when affine adaptability fails. Previously, we could not resort to
working harder in order to improve the adaptability.

H 4.3.3 Integer Adaptability

In this section, we use the sampling techniques to address the situation where the
second stage variables y(w) must be integral.

We prove a simple extension to the sample complexity result of Calafiore and
Campi in Section 4.4.1. We apply that sampling result here, to the case of integer



118 CHAPTER 4. ADAPTABILITY VIA SAMPLING

Convergence Rates for Adaptability
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Figure 4-2. This figure illustrates the difference, in particular the improvement, between affine adapt-
ability and quadratic adaptability, and also higher orders of adaptability, for the sampled version of the
problem in Example 4.3.5. Note that beyond quartic adaptability, we recover the optimal solution.

adaptability for the second stage variables. We consider the problem:

min: c'x
st.: Alw)x+ B(w)y(w) > b, Yw€Q,

reX,yeZr.

Similar to the affine adaptability scheme with sampling that we use above, we now
introduce the following integer adaptability scheme:

y(w) =QJw] +gq,

where [w] indicates the component-wise ceiling function, so for instance [(0.2,2.1,1.9)] =
(1,3,2). Then the sampled problem we solve is:

min: ¢'x

st.: AWz + Bwh) [Q[wV] +4q] > b

A(wMz + B(w™) [Q[w™M] +q] > b
reX

Qij €EZ, Vi,j

qez™
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Piecewise Affine Solution
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Figure 4-3. This figure gives the piecewise affine adaptable second stage solutions. The affine scheme
alone is no better than the static robust. For polynomial adaptability, we need at least quartic adaptability
to approach the optimal value. By partitioning into two regions, however, we achieve the optimal value
with affine adaptability in each region of the partition. For higher dimensional problems, therefore,
partitioning could lead to potentially large reductions in the number of variables. What constitutes a
good partition for piecewise affine adaptability is a challenging issue that will be addressed elsewhere
(see Chapter 6.

We note that as in the affine adaptability case, the number of variables has increased
from 2n to 2n + n2. However the number of variables is fixed, and independent of the
number of samples V. In particular, this means that we have a sampled linear integer
problem, and therefore the results we prove below in Section 4.4.1 apply directly.

We remark that the ceiling function we use is highly nonlinear, and it would pose
severe computational tractability issues were we not exploiting the power of sampling.
Indeed, as stressed before, sampling the constraints allows us to circumvent any issues
arising from the manner in which the uncertainty affects the problem parameters (as
long as it is easily computable, which it certainly is here).

As in the results of Section 4.3.2, we can in a completely analogous way consider
higher order adaptability.

Remark 4.1

We have used here the least-integer function to map from 2 to Z™. In fact we can use
any function here. The key that allows us to obtain a computationally tractable scheme
is that this function is fixed a priori, and then on top of that we chose the integer matrix

Q.
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Figure 4-4. This figure plots the optimal quadratic and sextic adaptable solutions as a function of the
realized uncertainty. The figure on the left represents the optimal quadratic solutions, and the figure
on the right, the optimal sextic solutions. Comparing to Figure 4-1, we see how the adaptability here
tries to match the nonlinear optimal adaptability shown there. Of course, for problems with higher
dimensional uncertainty, sextic adaptability would require a very large number of additional variables,
and thus would typically not be practical.

B 4.4 Sample Complexity Results |

In this section, we focus on the sample complexity required to ensure feasibility of the
optimal solution to the sampled robust problem. We consider the feasibility of the full
multi-stage solution, and also the feasibility of the first-stage solution. The latter is the
quantity of interest in the receding or folding horizon approach.

B 4.4.1 Integer Extension to Calafiore and Campi

Here we consider the sample complexity of obtaining (e, ) guarantees for the case of
integer variables, as in the framework introduced in Section 4.3.3.

First, we need to extend the results of Calafiore and Campi, to deal with the case of
integer variables. We care about linear optimization problems with integer constraints:

min: ¢’z
st.: Py(A(w)x <b)>1-—c¢,
reX.

We are interested in the case where the deterministic set constraint € X, may include
constraints such as z; € N, or z; € Z.
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We note that the proof technique of [43] does not immediately extend to our sit-
uation. In the convex continuous case, the key part of the proof relies on showing
that the number of support constraints is at most n. In the face of integer constraints,
this may no longer be true. Indeed, the following example shows that we can have
exponentially many support constraints.

Example: Let X = {0,1}". Let the constraint set be finite, and consist of constraints
a.x < 1, such that this constraint slices off corner a € {0, 1}" off of the hypercube
[0,1]". Consider now the problem:

max: Iy+---+ 2y
st.: agx <1
re k.

Consider the situation where all (2™ — 1) constraints a, for every a € {0,1}"\ {0} have
been sampled. Then, the optimal integer solution is z}, = 0. If any one of the 2" — 1
constraints a,& < 1is removed, the optimal solution becomes z},, = a. Therefore this

problem indeed has (2" — 1) support constraints. A

Proposition 4.2
Given &,& > 0. Consider the uncertain optimization problem whose robust formulation is:

T

mn: c'zx
(RP) st.: Alw)x<b, we
TEeX.

Let P be the distribution of w in ). Further, consider the sampled robust problem:

T

min: c¢'x
st.: AlwMz<b
(SRPV) :
AwMz < b
TEX.

Let N > N(6,¢€), where this is the same sample complexity function of [43] as given above in
Eq. (4.2.3). If z},, is an optimal (integer) solution to SRPYN, then with probability at least
(1 — 29), it satisfies

Po(A(w)z;, <b)>1-2e.

mt =

PROOF. While we cannot mimic the proof itself of [43] due to the possibly exponential
number of support constraints, we can in fact use the result. Let X{¥ denote the feasible
set of the sampled problem without the constraints X, so that the true feasible set is

XY N X. The set X} is polyhedral, and in particular, it is convex. Now let =¥, be
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an optimal integer solution to the sampled problem SRPY. If this happens to be an
extreme point of X}, then the results of [43] apply directly and we are done. If not,
then there must be two points x1,z2 € XY that are extreme points, and A € (0,1),
such that ¥, = Az; + (1 — A)x2. Now, by direct application of the results of [43], with
probability at least (1 — §),

Pw(A(w)wl < b) 2 1- &,
and also with probability (1 — 9),
Po(A(w)xs <b)>1-—c.

If =¥, is infeasible for some constraint, then by convexity, at least one of z;, €3 must
also be infeasible. Therefore the following inclusion holds:

{lweQ: Azl £b} C{we: Az £b} U {wel: A,z £ b},

and therefore we have

P, (Auxh, < b) 1 -Pu(AuTiy £ b)

> 1-P(Apx1 £bor A,zs £ b)
> 1-[P(Auzy £ b) +P(Auz2 £ b))
> 1-2¢,
by the union bound. a

Remark 4.2
The result we prove is much more general than simply the case where X contains
integer constraints, but for our purposes this is all we require.

B 4.4.2 Sample Complexity for Two-Stage Problems: Projection

In this section we consider the feasibility only of the first stage decision, x. This is
in contrast to what we do in the subsequent section on multistage problems. The
motivation is the receding horizon formulation. There, we are interested only in the
quality (feasibility) of the first-stage variables.
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Theorem 4.3
Consider an arbitrary stochastically uncertain two-stage linear program:

min: ¢'z+d yw)

st.: A(w)z + B(w)y(w) <b. (4.4.6)

Let y(-) be a second stage adaptability function drawn from an arbitrary class of functions,
Y. Then, given a collection of N samples Qn = {w®, ..., w™} drawn iid according to the
underlying distribution p, and if (z*,y*(-)) € X x Y is an optimal solution with respect to
these N samples,® then with probability (1 — 8), =* is feasible to the next sample drawn with
probability at least (1 — €), as long as we have:

A 1.1 1.1
= >9n=~In-+-In= .
N N(6,e)_2[n€1n6+eln5+n]

PROOF.  Even though the results of Calafiore and Campi ([43]) say nothing about
multistage optimization problems, we can directly apply their results here. Define the
function:

0, if there exists a vector y such that (z, y) is feasible for w,
flx,w) = -
1, otherwise.
Then the set {z : f(x,w) < 0} is polyhedral, as it is the projection of a polyhedral set,
and thus it is indeed convex for all w € Q. Therefore we can rewrite the problem in
(4.4.6) as
min: c'z
st.: flz,w) <0, VweQ,

and then by sampling w, we obtain the required probabilistic guarantees. Note that by
the convexity of f, their sample complexity bound holds without considering the ad-
ditional variables introduced in the second stage. This is crucial for obtaining sample
complexity bounds independent of the nature or degree of the complexity. a

B 4.4.3 Sample Complexity for Multistage Problems

In the previous section, we are able to show that if we care only about the feasibility of
a projection of the variables onto the first-stage decisions, then the sample complexity
required to provide particular (g, §) feasibility and reliability guarantees, can be taken
independent of the complexity of the second stage adaptability. We are unable to ex-
tend a similar line of analysis to the multistage case. The essential reason for this is
that in the multistage case, we must be careful to preserve the causality. Namely, in a
three stage problem with variables (x,y;,¥,), and uncertainty (w;,ws2), by definition

?An optimal solution is one that is feasible to all the samples, and minimizes the objective function.
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y; may be taken to be a function of w but not of ¢, while y, may have unrestricted
dependence. If we try to generalize the result above directly, we would write down
the function f defining feasibility of x as follows:

0, if there exists vectors y,, y, such that (x, y,, y,) is feasible for (w, £).
f(m’ w, E) = .
1, otherwise.

In the two-stage example, we are able to avoid the complexity of the second stage func-
tion because we can form a convex function f, defined based on a single sample. In
the three-stage cases such as the above, formulations considering only a single sample
do not respect the required causality; namely, in the function f above, y, is implicitly
a function of the second stage uncertainty w,.

Thus it seems that the dimension and adaptability-free sample complexity results
obtained in the previous section for two-stage problems, cannot be directly replicated
in the multistage case. At least, it seems not in a straightforward manner.

Instead, we go down a different avenue. We show here that by fixing the structure
of the adaptability using a feature function F, we are able to reduce to a single-stage
problem where the number of samples required in order to obtain the (g, §) reliability-
feasibility guarantees, is controlled by the choice of function F. In particular, F is the
map to degree-d monomials, that is, if we consider degree-d polynomial adaptability
for a K-stage problem and (at most) n variables at each stage, the sample complexity
will be bounded by a polynomial in: (n, K, (1/¢), log (1/4)).

Theorem 4.4
Consider a K-stage stochastic linear optimization problem:

min: ¢'z+ YK dTy(z)

1=

st.: A(z)x+ Y5, Ai(z)y(z:) < b,

where z = (w1, ..., wk), and zx = (w1, . ..,wy). Furthermore, let the adaptability functions
y;(-) be restricted to be polynomial of degree d in their respective arqument, z;. Let n and | be
the number of variables and dimension of the uncertainty vectors w, respectively. Then if we
sample:

1
NeNEnLdes)>2 k(") mly tnly k(T
d Je € € ¢ d
then with probability at least (1 — 6), the optimal solution we obtain from solving the sampled
linear optimization, (z*,y1(:),..., Yk (-)), is feasible with probability at least (1 — ).

PROOF. Once we fix the functional form (i.e., d-degree polynomial) of the adaptabil-
ity functions y;(-), the K-stage problem reduces to a single stage linear optimization
with stochastic uncertainty. Then the remainder of the proof follows directly from the
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proof of Calafiore and Campi ([43]), and by counting variables. Indeed, we have an
explicit linear program with a finite number of variables, and thus we can appeal to
their results on sample complexity. Note that we crucially use the structured aspect of
the adaptability, in order to maintain a number of variables that is independent of the
number of samples. Also, the a priori specified structure allow us to avoid requiring
exponentially many samples, while also respecting the causality constraints. a

We remark that one may essentially follow the reasoning in [119] to show that such
a result is not possible in this generality, for arbitrary adaptability.

B 4.5 Sample Complexity Results Il

In this last section, our complexity results were based on convex optimization consid-
erations such as support constraints, as first developed by Calafiore and Campi. The
complexity bounds obtained by such methods are tied to the dimensionality of the
adaptability. It is possible, however, to limit the complexity of the adaptability in ways
not directly linked to the dimensionality of the parameter space defining the possible
adaptability functions. Adding regularization constraints, and controlling the size of
the coefficients, for instance, may allow us to obtain good bounds on the sample com-
plexity, even for classes of adaptability with very many parameters.® In this section,
we seek more general complexity results of this nature. Therefore we move away from
the Calafiore and Campi approach, and consider a learning theory approach.

Remark 4.3 :

As an additional consequence of using results from learning theory, the complexity
bounds now provide feasibility and reliability guarantees that are uniform over the
set of points feasible to the samples drawn, Q. Such uniform results are typically
stronger than what is required. However, we see that for linear families of adaptability,
such as those that we consider, they come at little extra cost, compared to what is
required to obtain feasibility and reliability guarantees for only the optimal point of
the solution. In addition, such uniform results may themselves be of interest. For
instance, in [78], the authors develop a parametric programming scheme that maps
the Pareto frontier of robustness and performance. Doing this in a sampling context
would require some uniform guarantees of feasibility.

Using this kind of learning theory setup in optimization, was first proposed in de
Farias and Van Roy [51], in the context of single stage linear programs designed to
solve a reduced version of the approximate linear program coming from a Markov
Decision Problem.

3In the classification and regression context, this is quite common. See, e.g., [115],[64], and references
therein.
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In addition to obtaining refined sample complexity estimates, the main contribu-
tion of this section is the introduction of an additional parameter, that allows us to
trade off sample complexity for robustness.

Let us first consider the generic case, where our feasible set is defined by the con-
straints f(x,w) < 0, for w € Q, and w is a random parameter. While we may not have
an explicit expression for the distribution of w, as in the previous section, we assume
that we are able to generate iid samples of w. We note that the case where we have
access only to samples that are “approximately” generated by the correct distribution,
is a generalization that can be addressed without much trouble (see, for instance, [61]).

Define the set of uncertainty realizations w € Q for which a given point z is feasi-
ble: 5

Ce = {w| f(z,w) < O}

LetC = {Cz : © € X} then denote the collection of these sets. Consider N samples,
w ..., w™), drawn independently and at random, from the generating distribution.
As we have done above, let Xy C X denote the resulting set of feasible elements. Then
the lowest probability of feasibility of any point € X, can be expressed as:

inf P(C%).
(Co - WD) (Ce)

That is, this is the lowest measure set, C,, that happens to contain all of the sampled
points, w € Qy. The larger the collection of sets {Cz} is, the more likely it is that
there will be a set that contains the sampled points, that has low measure. This is

illustrated in Figure 4-5 below. The size of the collection of sets {Cz} is controlled by
some measure of complexity of the classes.

_J

Figure 4-5. This figure illustrates the connection between the complexity of the sets Cz, and the proba-
bility of error. In the figure on the left, the sets C; are restricted to be hyperplanes. Any hyperplane that
contains all the points on one side, must necessarily also contain most of the probability mass. On the
figure on the right, we see that if the set C; comes from a much richer class with nonlinear boundaries,
then a set that contains all the sampled points may contain a much smaller fraction of the mass of the
distribution.

Recall from Chapter 2, that one measure of the complexity of a set of functions,
or sets, is the so-called VC-dimension. We can use this in a direct way to bound the
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quantity of interest. A simple result from learning theory (see, e.g., [4]), but appearing
for the first time (to the best of our knowledge) in the optimization literature in [51],
gives us the following:

Proposition 4.5
If we sample N (g, 6) times with

N(e, 6) > 4 (Vcln2+lng>,
€ € 0

where Vi denotes the VC-dimension of the class C, then with probability at least (1 — &), we
have
inf P(Cp) >1—-c¢
{Cz w0 eCy}

Naturally, the usefulness of this result depends on how the VC-dimension, V¢ of C
scales. In [51], the authors considered only functions f(x, w) affine in w and in . Such
functions can be written as f(z,w) = a(w)x + b(w), and hence for such functions, the
sets C can be written as:

Ce={we N : ((a(w),bw)),(x,1)) <0},

which in turn can be written (using the adjoint of a and b) as affine functions of w, and
thus are half-spaces. The family of these half-spaces is parameterized (linearly) by the
values of x, and therefore their VC-dimension is at most n = dim(z) (this is an old
result; see, e.g., [56]).

But now let us consider again our structured adaptability, where we have higher
order adaptability functions. Then for the two-stage linear optimization problem, we
can find a sample complexity bound that is valid for the worst-case feasible z, yet
is not far off the guarantee we derive in the previous section that holds only for the
optimizing points z*.

Our framework of nonlinear adaptability, controls the nonlinearity through the
use of the feature function F'. Because the decision-variables are the coefficients of the
linear map from the feature space, i.e., the image of the function F, we can again use
the VC-dimension results for hyperplanes. Thus we have:

Proposition 4.6
Consider a two-stage linear optimization problem, with affine dependence on the uncertainty,
and feature function any* function F : R™ — R®, and second stage adaptability affine in the

*Again by “any” we have the implicit requirement that evaluations of this function can be performed
cheaply enough so as not to affect the computational complexity of the problem.
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feature space:

min: c'x

st.: A(w)z + B(w)y(F(w)) <b.
Then as long as

N(e,6) > = (vz;lnlz- +1n3) ,
€ € 0
where V¢ is the VC-dimension of the class of sets C, then with probability at least (1 — §),

inf P(Crpyiy) > 1—e¢,
{Cla,y(y) WP ECZ,y( )} (=y())

Moreover, since y is affine, we have: V¢ < s.
For the case of polynomial adaptability, we have:

Corollary 4.7

If F maps to the space of monomials of degree at most d, and hence we have structured polyno-
mial adaptability of degree at most d, then the above reliability and feasibility guarantees hold
for the given sample complexity, where now

n+r
Ve = 1.
C n+(7_+1)+

PROOF. The sets C(q4(.)) are defined as subsets of {2, much like the single stage case.
We give the definition for a single constraint:

Clz,y() 2 {we: Aj(w)x + Bj(w)y(F(w)) < b;}.

By our construction, our adaptability need not be affine in w, but it is, however, affine
in F(w), and thus we can write the set C(z,y())- s we did in the single-stage case, as
a half-space in the feature space (the image of F)), parameterized in an affine manner
by the values of the first-stage decisions z, and the coefficients y. The result of the
proposition then follows.

For the corollary, the proof follows from the fact that the sets C(g4.y) are half-
spaces in the (finite dimensional) feature (or kernel) space defined by the (non-homogeneous)
polynomial kernel of degree (r + 1). The VC-dimension of this set is as given (see, e.g.,

[42]). a

We note that the VC-dimension of this class is quite close to the actual dimension of the
problem, and therefore again, as in the linear case, these bounds very closely match the
sample complexity bounds that guarantee only the feasibility of the optimizing point
(x*,y*(-)). Indeed, this is the case because, roughly speaking, the VC-dimension of
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families affinely parameterized (such as polynomials) is closely related to the dimen-
sion of the space in which the parameters live. In this sense, for the class of nonlinear
adaptability functions we consider in our framework, the price we pay for the added
strength of uniform feasibility guarantees, is essentially zero.

The bounds we have seen thus far, then, including the ones obtained by convexity
considerations, as well as the uniform bounds, essentially use the dimension of the pa-
rameter space of the adaptability functions as a proxy for the complexity of the adapt-
ability. This dimension translates directly into the sample complexity bounds. There
are, however, other ways to control the complexity of a class of functions, that are not
dependent on the dimension. Indeed, many notions of regularity, such as smoothness,
slow variation, and parameter size, are able to control the complexity of a function
class despite potentially large (in some cases infinite) dimension. The nonlinear map-
ping F introduced in Section 4.3.2 controls the dimension of the parameter space. In
addition to this, we can regularize the space of adaptability functions by, for instance,
controlling the size of the coefficients. We need, therefore, complexity measures that
reflect such additional regularity properties, and are not just a function of the dimen-
sion. For this purpose, we introduce some more refined notions of complexity. In the
process, we introduce an additional parameter that relates to how close we allow the
sampled constraints to be violated.

Fat Shattering and Covering Numbers

The main quantity we want to bound, is

inf P(Cg).
{Cm:u(*')ga,lgsN} ( m)

This quantity depends on a notion of the complexity of the class of sets C. The more
complex the class, the more likely there that a set with low probability will happen to
contain all the samples (w(Y), ..., w).

The VC-dimension of a particular class of sets or functions, is a combinatorial quan-
tity that is convenient to use in that it provides universal upper bounds on the com-
plexity of the class. While it can be useful, in general it is quite loose as a measure
of complexity, and thus the bounds obtained by using it are also quite loose. Fur-
thermore, particularly for linearly parameterized classes of functions, such as those
that are important in our context (namely, maps from the image space of the non-
linear mapping F) VC-dimension does not capture certain regularity properties that
may in fact limit the complexity. Indeed, there are many classes of functions which
have infinite VC-dimension, yet whose complexity can be controlled in terms of other
quantities. There are other notions of complexity, such as covering numbers, and other
combinatorial dimensions, that are more refined measures of complexity than the VC-
dimension. Using these allows us to exercise more careful control of the upper bounds,
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and thus obtain more useful bounds, that also introduce new parameters of interest.

There is a large body of work related to covering numbers, both in learning theory,
and also in functional analysis. See, for example, [5], [57], [136], and references therein.
The purpose of this section is twofold: to illustrate that more sophisticated complexity
estimates can provide better bounds than VC-dimension, and also to show that work-
ing directly with scale sensitive quantities like covering numbers, or the so-called fat
shattering dimension ([1]), allow the introduction of new parameters that have use-
ful interpretations directly in terms of the sampled robust optimization problem. We
postpone a more thorough discussion of this area, and also of some more results, to
Appendix B.

Here, we restrict ourselves, then, to only a brief discussion involving a refined
complexity measure known as the fat shattering dimension of a class F of functions, and
denoted by: fatz(vy). It is defined as follows:

Definition 4.1

The fat shattering dimension of a class of R-valued functions F mapping Q fo R, is denoted
by fatr () and it is defined as follows. Let Q = {w®, ..., w ™M} C Q,and v > 0. Then the
subset Q is y-shattered by the functions F if it is shattered with a margin v, i.e., if there are
numbers v, ..., 7N such that for any subset S C {1,..., N}, there is some function fs € F
such that

fsw® > r,+~4 Vies
fs(w®) < ri—vy Vigs.

The parameter ~ defines the coarseness of the complexity measure. Because the quantity fat z(vy)
depends on this additional parameter, the fat-shattering dimension is a scale-sensitive dimen-
sion.

Sampling and Robust Optimization

We can now apply the above ideas to our present context. The above results suggest
that there is much to be gained from using sample complexity results involving finer
complexity estimates obtained from covering numbers and fat shattering dimension.
We define the class of functions:

FE (folw) & fz,w) : = € X).

Following the notation introduced above, let fat (y) denote the fat shattering dimen-
sion of F with scale parameter y. We refer to this scale parameter -y as a margin pa-
rameter. The margin will take a concrete interpretation in the next definition, and also
in the results below.



SECTION 4.5. SAMPLE COMPLEXITY RESULTS I 131

Definition 4.2
Given a parameter -y, and samples Qn = {w, ... 0w}, we define the feasible set with
respect to the sample, and the margin parameter -y, as

fle,w) <0, Vw e By(wm)
T :
fl@,w) <0, VYw € B,(w™)

>

Xy (7)

where B.,(w) denotes the y-ball about the point w € Q.

For the multi-stage problem with decision variables (x,y,(-),...,yx(-)), we denote
the corresponding set of solutions feasible to this robustified sampled problem, by
XYn(7).

Recall from Chapter 2, and also from the illustration in Figure 4-5, that VC-dimension,
given by the number of points a family of sets (or functions) can shatter, provides
a bound on the minimum probability a set must have, if it contains all the points
sampled, i.e., if it contains Q. Consider the definition of X () given above. This
corresponds to the family of all sets that not only contain the points w®) € Qy, but
rather contain the 7-balls around each of those points. We see below, that just as the
VC-dimension controls the minimum weight of a set containing all sampled points
w® e Qp, the fat shattering dimension controls the minimum probability of the
smaller family of sets that contains all y-balls about each sampled point. To get an
intuitive idea of why the fat-shattering dimension should be no larger than the VC-
dimension, consider Figure 4-6.

a0

Mg

Figure 4-6. This figure shows that it is more difficult to shatter a set of y-balls, than it is to shatter a
set of points. This is particularly important when the balls and points are restricted to lie in a compact
set, as then the regularity of the separating surfaces, meaning their curvature and smoothness, play an
important role.

\ T J
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Proposition 4.8
Consider a two-stage linear optimization problem, and structured adaptability function y(w):

min: ¢'x

st.: A(w)z+ B(w)y(w) <b.

Let Qp denote N random samples of w, and let XY n(7y) denote the set defined above, of pairs
of solutions feasible for the robustified sampled. Then with probability at least (1 — &),

sup P(A(w)z + B(w)y(w) —b>0)<e,
{(y()EXYN(M}

as long as the number of samples N = N (¢, §, ) satisfies

4 12 2\
> - - -
N(g,6,v) > - (V,,ln . +ln6),

where V., denotes the fat shattering dimension of the collection of sets
Clopn = (w €Q - Aw)z + Bw)y(w) ~b <0},

PROOF. We defer the proof to Appendix B. We note that while we present the 2-stage
case, the K-stage case is not appreciably different. ' O

Because generally the fat shattering dimension can be significantly sharper (i.e.,
lower) than the VC-dimension, the above proposition offers the potential of greatly
improved sample complexity estimates. In particular, the fat-shattering dimension
can be controlled by regularity conditions that are indepenident of the dimension of
the function space, i.e., by the number of free parameters. For example, from [5] we
have:

Proposition 4.9

If we have a two-stage linear optimization problem where the uncertain matrices A(w), B(w)
have affine dependence on w, and if we restrict ourselves to continuous functions of bounded
variation, with total variation at most TV, then we have:

eno+[2])

Covering numbers and fat shattering dimension complexity measures are scale sen-
sitive. That is, both produce a complexity measure with respect to a parameter; for
covering numbers, this parameter is the size of the covering balls, and for fat shatter-
ing it is precisely the  in the definition. Indeed, in addition to the improved sample
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complexity bounds of the proposition above, the new ingredient which has not ap-
peared before, is an additional notion of robustness which we are building in to the
process. That is, we build an optimization problem over the feasible set X (7). Each
point in this set is not just feasible to the N sampled points Q, but in fact it is, by
definition, feasible for every point in a y-ball about each sampled point w(®). As the
bounds of Proposition 4.9 show, this robustness can play a roll in reducing the sample
complexity. Indeed, the fact that y explicitly appears in the sample complexity bounds,
underscores the fact that there is a trade-off not only between the sample complexity,
and then the reliability and feasibility parameters, ¢ and 4, but that this notion of ro-
bustness parameterized by 7, is also a factor.

In spirit, this bears a similarity to the approach of Nemirovski and Shapiro ([92]),
where in order to obtain improved sample complexity bounds, they sample from a
“worse” distribution, i.e., one that puts more weight on less favorable realizations of
the uncertainty. Here, in order to improve our sample complexity estimates, we sam-
ple from the correct distribution, but impose a harsher condition on the sample feasi-
ble solution. In symbols, rather than computing sample complexity bounds required
to control the quantity:

inf P(Crayiy) > 1—¢,
{C(z,y(.)) :w(i)ec(:n,y(.))} (z,y(-)

we control the quantity:

inf P(Crzy)) = 1-¢.
(Cloan By Cayin} ¥

While the introduction of this additional parameter may reduce sample complexity
dramatically, we have not yet addressed how its introduction affects the solvability of
the sampled robust problem. Indeed, where as in the original sampled proposal we
must solve a problem with NV constraints, as formulated, we now must solve a problem
with N robustified constraints, where the robust set is the Cartesian product of the -
balls about the sampled points. As a consequence of the S-lemma, we immediately
have:

Proposition 4.10
For the case of affine adaptability, the resulting robust sampled problem can be solved efficiently
and exactly, via SDP.

PROOF. The proof is immediate. If the adaptability function is affine, then the inner
problem is an optimization of a (possibly indefinite) quadratic function, subject to a
single ellipsoidal constraint (the «-ball). Therefore, by the S-lemma and by hidden
convexity, (see, e.g., [39], [10], and the discussion in Chapter 2), this can be reformu-
lated exactly as a Semidefinite Optimization. O
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This avenue has two immediate drawbacks. First, our original sampling proposal
had the distinct advantage that it involved solving only linear optimization problems.
Semidefinite optimization, while still convex, is, practically speaking, of a different
order of tractability than linear optimization. Furthermore, as the above proposition
indicates, the use of the S-lemma is limited to affine adaptability. We would have no
such recourse for the case of higher order models for adaptability.

For continuous adaptability models (that is, when the nonlinear mapping F' is con-
tinuous) such as polynomial adaptability models, we can circumvent this problem by
using the continuity to translate the margin in the w-space, to a margin in the output
space, or space of the inequalities. If the function f(x,w) is Lipschitz continuous in w,
and uniformly so with respect to € X, then we can translate the robustness parame-
ter designating the size of the balls around each sampled point, into a margin that has
a much more physical, intuitive, and in fact computable definition and meaning.5 In
particular, we will show that as long as we have this continuity property, then we can
use the improved fat shattering results of Proposition 4.8, while still solving only linear
optimization problems. And this continues to be true for case of general polynomial
adaptability, and not just affine adaptability.

We define the sets

CLE{w : fl@,w) < ~n}.

Here, we can interpret the parameter 7 as being a measure of safety, or the distance
from violation of a constraint. Then, the quantity we want to understand is:

inf  IP(Cg).
{z:weC}

Note that we are taking the infimum over all « such that all the samples w(®) are con-
tained in the sets CZ, but then are considering the measure of the larger set C5. The
following result is immediate.

Lemma 4.11 Assume that the function f(x,w) is Lipschitz continuous, uniformly in x, with
constant L. Then, in particular, this means:

llw — W'l < n = |f(2,w) - f(&,w)| <nL,

and therefore,
’
w € Cl = W' € Cy,

as long as we have y > nL.

%In fact, the Lipschitz constant need not be uniform over z, since we can instead use the local Lipschitz
constant. This greatly expands the class of functions we can consider. Furthermore, using local Lipschitz
constants more properly captures the sensitivity of the constraint in question to the uncertainty sampled.



SECTION 4.6. COMPUTATIONAL EXAMPLES 135

Therefore we are able to translate the robustness parameter, 7, into a covering param-
eter. Specifically, we have:

w € C) = By(w) C Cy.
Therefore, analogously to Proposition 4.8, we now have:

Proposition 4.12

Assume the setup of Proposition 4.8, and assume further that the functions f(x,y(-),w) are
Lipschitz continuous in w, uniformly in (x,y) € XY. Let Qx denote N random samples of
w. Then, with probability at least (1 — 9),

sup  IP(Cp)>1-¢
{(@y():wWec)

as long as the number of samples N = N (g, 6, y) satisfies:

4 12 2
> = Zimi).
N(e, é,7) > 6 (Vﬂn . +In 5)

B 4.6 Computational Examples

Here we give several examples to illustrate both the procedures described above, and
also to demonstrate numerically their effectiveness. We are particularly interested in
examples that illustrate the benefit to the first-stage decisions. Indeed, for multistage
problems, the robust optimization formulation may (and in fact ought to) be imple-
mented in a receding horizon manner. For practical scenarios and problems where
re-optimization, and the receding horizon approach can be viably implemented, the
value of adaptability must be judged in the improved quality (in terms of both objec-
tive function, and robustness) of the first-stage decisions. As we have remarked in the
introduction, this focus is somewhat different from other work in adaptability, e.g., in
[52] and [72].

B 4.6.1 Network Design

We consider first a network design problem:

mn: ¢ x+d'y

st.: Fy>b
0<y<=z
0<z<u.
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Here, the first stage variables z are the capacity of each arc in the network. The second
stage variables y are the flow variables, i.e., how much flow there is on each arc. The
constraint F'y > b gives the flow constraints that say that the amount flowing into any
node minus the flow out of that node, must be at least equal (not necessarily strictly
equal) to the demand at that node.

We consider the situation where the demand at each node is uncertain. We consider
the following network model:

Figure 4-7. This figure shows the topology of the network we consider in Example 1.

The supply is essentially infinite at the source node. Nominally, the demand is
set to zero at all intermediate nodes, and at 5 for the sink node. However, this vector
of demands is not known exactly. We consider a simple random model, where the
demand vector varies according to an additive normal perturbation about the nominal
values. The Gaussian perturbations at each node may be correlated.

We compare the cases where the second stage variables have no dependence on
the uncertainty, and when they have affine dependence, and finally when they have
quadratic dependence on the uncertainty. We also consider the case of complete adapt-
ability. Because in this section we focus on the two-stage case, by the projection results,
the sample complexity is controlled. In particular, the upper bounds are no worse than
for affine or quadratic adaptability. We consider later a three-stage network design
problem, where this is no longer the case.

We find that, as one would expect, the completely adaptable model greatly outper-
forms the static case. However, the affine and quadratic models seem to perform no
worse than the completely adaptable model.

Numerical Results

We report numerical results from the following experiments:

1. We generate 20 samples of the uncertainty: in this case, the demand at each node.
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This is generated according to two different distributions:

(@) In the first, we generate the data uniformly at random from the scaled sim-
plex. In this case, the data always sum to the scaling level of the simplex.

(b) We also generate the demand at each node from iid samples of a uniform
random variable. In this case, the samples are uncorrelated. We adjust the
support of the uniform random variable so that the two methods produce a
demand vector with the same mean.

2. We solve using: static robust (no adaptability), affine adaptability, quadratic
adaptability, complete adaptability.

3. All numbers represent averages over 50 trials.

Random Trial | Static Robust | Aff. Adapt | Quad. Adapt | Comp. Adapt
(a): 8= 3129 294.2 294.2 294.2
(b): 8= 309.7 298.1 298.1 298.1
(a): =5 534.2 430.9 430.9 430.9
(b):8=5 507.8 448.9 448.9 448.9
(a): =10 785.7 598.5 598.5 598.5
(b):8=10 757.0 601.1 601.1 601.1
(a): =15 1070.5 777.0 777.0 777.0
(b): 8=15 1005.0 825.8 825.8 . 825.8
(a): B=20 1339.5 949.7 949.7 949.7
(b): 8=20 1254.4 1004.1 1004.1 1004.1

Table 4.1. This table shows values for the two-stage network design problem, generated for the two
different sources of uncertainty detailed above, for different normalization constants, and for the static,
affinely adaptable, as well as the quadratic and complete adaptability cases. Here, 3 is the normalization
parameter. The entries indexed by (a) denote uncertainty generated according to the first procedure (and
thus are correlated) while those marked with (b) are generated according to the second procedure (and
hence are independent).

It is helpful to see some of the numbers comparing the static and affine adaptability
in a graph. In Figure 4-8, we plot the ratio of the value of the static robust solution,
to the value of the affine adaptable solution, for the case where the uncertain demand
is generated from the scaled simplex. Thus the sum of the demand vectors is always
equal to the normalization constant. We plot this ratio as we increase this normaliza-
tion.

Note that by drawing the demand realizations at each node, from the scaled sim-
plex, the demand uncertainties become correlated, since their sum is fixed a priori. As
discussed at length in this thesis, a failure of the robust framework is that it is unable
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to capture correlations across constraints. Thus we would expect the ratio between the
adaptable and the robust to be greater in the case of correlated data, than for the case
of independent data. We plot both curves in Figure 4-9, where we see that the data
indeed bear out this general claim.

Adaptable Cost vs Static Cost

1.35

11

Ratio of Static Cost to Adaptable Cost

1.05

1 L 1 1 1 1 1 L 1 L

2 4 6 8 10 12 14 16 18 20
Normalization Bound on Total Demand

Figure 4-8. This figure gives the ratio of the static robust to the affine adaptable case (for this problem
affine is as good as the completely adaptable case) when the demand at each node is chosen at random
from a uniform distribution on the simplex scaled by 3. Thus the sum total demand is always equal to 3.
The horizontal axis of the graph gives the value of this 3. We see that the ratio between the static and the
affine grows, as 3 increases.

Maximizing Robustness for a Fixed Budget

In the optimization formulation of the above adaptability models, the objective is not
feasibility, but rather to minimize the cost. We can also ask, for a fixed first-stage bud-
get, how the feasibility of the first-stage solution changes as we introduce adaptability
in the second stage (in general, in future stages).

The upper bounds on sample complexity discussed above, give bounds on the the
sample complexity that are directly related to the complexity of the adaptability func-
tions. Indeed, for the problems formulated, if the size of the sample Qy is fixed, then
the (9, ¢) guarantees we obtain become weaker as the complexity of adaptability in-
creases. We use the network design example introduced in this section, in order to
further examine the interplay of feasibility and adaptability. We show that, counter
to the intuition provided by the sample complexity bounds, adaptability can in fact
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Benefit of Adaptability with Dependent and Independent Demand Data
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Normalization Bound on Total Demand

Figure 4-9. This figure illustrates the increased benefits of adaptability in the presence of correlation in
the data. Here, we compare the ratio of the static robust case, and affine adaptability, in two scenarios:
first, when the demand at each node is chosen from the scaled simplex, and second, when each demand
is chosen independently and at random, from a range [0, 3]. Here, § is chosen so that the expected total
demand equals the expected total demand in the normalized case, namely, the expected total demand
should equal 8. We see that the ratio between the static and adaptable cases is larger when the data have
this correlation.

provide increased feasibility of the first-stage decisions, at a lower first-stage cost than
the static solution trained on the same sample set Q. The intuition is that without
adaptability, the optimization problem fails to capture important correlation informa-
tion of the data. That is, as discussed above (and more extensively in [22]), the static
robust formulation effectively replaces the uncertainty set with the smallest hypercube
that contains it. As we demonstrate by example below, this can lead to a misallocation
of resources, causing the decision-maker to add protection where it is unnecessary.
Adaptability allows correlations in the data to be captured and exploited, and thus
the resulting first-stage decisions can be much more robust and feasible. On the other
hand, if the number of samples is fixed, then increasing the adaptability can lead to es-
sentially over-fitting, thus deteriorating the robustness and feasibility of the first-stage
decision. This calls for a Structural Risk Minimization approach to optimization. We
take up a full discussion of this issue elsewhere, and for now we settle for a brief dis-
cussion, and some illustrative examples.
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Given a multistage optimization problem

min: ¢ a:+E dTy,(zz
st.: Az )a:+2,=1A (2)yi(zi) < b,

the problem we would like to solve is then as follows:
Feasibility Maximization

1. Given a fixed data sample Qn = {z1,..., 25}, assumed to be drawn iid from the
generating distribution;

2. Given a budget 3, on the first stage cost;

3. Find:
max : P(x is feasible)

st.: ez < 51
A2z + T, Ai(2)y;(z:) < b.

Adding a restriction to future stage actions is also possible under precisely the same
framework. For the remainder of the discussion and the examples, we consider only a
bound on the first-stage costs.

~ The objective function, i.e. the probability of feasibility, is difficult to handle. It
is not clear how to even formulate this problem exactly as a finite dimensional opti-
mization problem. Indeed, as posed, the problem is not well defined, since the true
distribution of the uncertainty is unknown to us. The only information we have is
the samples, and thus the objective function must have an interpretation either with
respect to some reliability parameters (e, d), or as a worst-case result over the set of
distributions that satisfy some level of consistency with the data sample, Q.

The issue of proper definition aside, the objective function is typically non-convex,
regardless of its definition, and this renders any optimization problem of this form
difficult to solve. Indeed, even empirical evaluation of the objective function is difficult
and not well-defined if we have more than two stages in the optimization.

Instead, then, we propose a robustness maximization formulation, that makes sense
for a limited class of problems where the there is a physical meaning associated to scal-
ing the uncertainty by a positive scaler. We consider the following formulation:

max: s
st.: ¢c'z< B 4.6.7)
A(z)z+ K Ai(2)y;i(zi) <b, Yw € sQp.

Here, sQn = {sw®), ..., sw™} denotes the given set of samples, scaled by the param-
eter s. The optimization given in (4.6.7) can be easily solved by bisection, by computing
the solution to a small number of feasibility problems.
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We have yet to say anything about the nature of the adaptability of the future stage
decision. It is clear that as written, for a fixed and specified sample {2, increasing the
adaptability increases the value of the optimization, that is, our proxy for robustness
and feasibility increases. This does not mean, however, that the first stage decision is
truly more robust, or feasible. Since the number of samples is fixed to be IV, increas-
ing the level of adaptability decreases the (4,¢) guarantees we get from the sample
complexity results in the first part of this chapter. Thus, there must be a trade-off
between the increased value of the above optimization problem in (4.6.7), and the re-
duced feasibility guarantees. Intuitively, the trade-off is between more flexibility in the
adaptability to capture correlations in the data, versus over-fitting due too high a level
of adaptability for the given level N of samples. A full discussion of these trade-offs
and the connection to SRM is discussed elsewhere.

We next give some examples of this phenomenon, in the context of a three-stage
network design problem. Consider the network design problem, with the same net-
work topology and uncertainty, as given above. But now consider the three-stage
problem, where in the first stage the decision-maker builds a capacity for each link,
and then assigns the flow (not violating the capacity constraints) to satisfy the de-
mand at each node for the second and third constraint. In the adaptable case, the flow
for the second stage may be a function of the realization of the first demand vector.
Similarly, the third stage flow vector may be a function of both the first and the second
flow vectors. The, setting x as the capacity vector, y as the second stage flow vector,
and v the third stage flow vector, problem then, is:

mn: ¢ x+dy+flo

s.t.: Fyzb1
Fv > b? — (b' — Fy)
0<y<cz
0<{v<z—y
0<z<u.

We consider the the static robust and dynamic formulations. In Figure 4-10, we
draw the the capacity assigned in the first stage of the optimization problem. The
thickness of links is meant to give a pictorial representation of the level of capacity
assigned. A missing link signifies that the solution assigned zero capacity to that link.
Indeed, we see that the robust solution actually removes several links from the net-
work, i.e., assigns them zero capacity. The adaptable solution, meanwhile, assigns
nonzero capacity to every link of the network. It is not difficult to see that this behav-
ior of the robust solution is generic. This is a first indication that adaptability may in
certain cases increase the robustness of the first-stage solution.

Next, we consider the approximation to the feasibility maximization problem given
above, where we maximize the robustness level s subject to a fixed budget for the first
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Figure 4-10. This figure gives a pictorial representation of the static and dynamic (i.e., robust, and adapt-
able) first-stage solution for the network described at the beginning of this section. The figure on the
left represents the first stage solution for the robust formulation, and the figure on the right gives the
adaptable solution. Note that indeed, the adaptable solution is more robust.

stage. We let the budget vary from the cost of the optimal adaptable solution as its
lower bound, up to the cost of the optimal robust solution. There is only a static fea-
sible solution at the upper bound of this interval. Because of this, the problem we
solve gives us lower bounds to the feasibility improvement one obtains by introduc-
ing adaptability. This is because there is a single feasible solution to the robust for-
mulation, and therefore the structure of the objective function does not affect the op-
timization. On the other hand, for the case of the adaptable solution, the problem we
formulate may not produce the optimal (in the sense of feasibility) adaptable solution.

We obtain an adaptable solution by further approximating the formulation given in
(4.6.7), by solving the adaptable problem on the same sample set as the static problem,
and then scaling up the first stage solution, until it uses up the full level of allowable
budget.

Then, for each solution obtained, we empirically check its feasibility. In the two-
stage formulation, checking feasibility of a first-stage solution is simple, since this re-
quires only generating demand realizations and checking for flows that satisfy those
demands, while respecting the capacity constraints imposed by the first-stage solu-
tion. In the three stage problem, we must simulate the remaining two stages. That is,
we must solve a sampled two-stage problem. For each first-stage solution, x, we then
test its feasibility as follows:

1. Generate a second stage demand vector, b'.
2. Generate N, third stage demand vectors, b3, ..., bk

3. We call z feasible if there exists a single flow vector y, and N flow vectors
v1,...,vy, such that the pair (y, v;) is feasible for the demand vectors (b, b?).

4. Repeat this procedure and compute the fraction of feasible outcomes for the first-
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stage solution, .

This gives us an empirical feasibility for a particular first-stage capacity solution z.
We then repeat this entire procedure, generating different first-stage solutions x, and
finally averaging to obtain results for the feasibility.

In the results reported in the graphs below, we use a data sample of size 50 in order
to train the adaptability functions and obtain a first-stage capacity vector. Then, for a
given capacity vector, we generate a single second stage demand, and Ny = 25 third-
stage demand vectors in order to test the feasibility of the now fixed capacity vector.
We repeat this procedure for the same capacity testing vector 100 times and compute
an empirical feasibility percentage. We then repeat this entire procedure, generating
new training data and a new capacity vector, and thus new feasibility statistics, 50
times. The average of these 50 numbers represents the empirical feasibility of a partic-
ular adaptability scheme.

The adaptability scheme we use is affine for the second stage, and affine for the
third stage.®

The graphs are generated as follows:

1. Solve the static robust problem, and the affine problem. Let Dsatic denote the
cost of the static, and Dagmne the cost of the affine/affine implementations, and let
Tstatic and T,mne denote the respective first-stage solutions.

2. Test the feasibility, according to the procedure outlined above, of static, and also
A - Taftine, fOr A € [1, Dagine/ Detatic)- Thus for A equal to the right endpoint, the
scaled-up affine solution A - Z,gine has the same cost (i.e., uses the same budget)
as the static solution, Tgatic.

We vary A from 1 to Dygine/ Dstatic in 20 steps. Furthermore, we test feasibility not only
against noise drawn from a distribution identical to the one generating the training
data, but also against amplified distributions with more noise.

In Figure 4-11 we plot the empirical feasibility when we test the first stage solutions
of the static robust, and the scaled affine adaptable solution, against noise generated
by the same distribution, and the same strength as the noise generating the samples
used to construct the static and affine solutions.

In Figure 4-12 we test feasibility against stronger noise, amplified by 110% of the
noise generating the samples we use to construct the first-stage solutions. In Figure
4-13, we have the same, but the noise is now amplified by 130%. Finally, in Figure 4-14
the noise is amplified by 150%. We see that while the empirical feasibility decreases as
the noise level increases (as one would expect) the scaled adaptable solution greatly
~ exceeds the performance of the static robust solution at the extreme where the two

SWe tried also using quadratic first second, third, and both second and third stages, but did not find
any improvement over the affine/affine scheme. Therefore we report here only the affine/affine results.
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Figure 4-11. This figure gives the empirical feasibility for the static and affinely adaptable solutions for
the three-stage network design problem described above. The horizontal axis represents the budget avail-
able for the adaptable solution, as a percentage of the minimum budget required to make the adaptable
problem feasible. The scaling occurs in 20 steps, and these are indicated on the horizontal axis. Thus
at the right-most point, the static robust, and affine adaptable first-stage solutions use the same level
of resources. The vertical axis represents empirical feasibility, based on the procedure explained above.
The feasibility of the affine adaptable solution, as expected, increases as the solution is scaled. It quickly
surpasses the feasibility level of the static robust solution, and converges to essentially 100% feasibility.

solutions use the same level of first-stage resources, i.e., when we have: ¢' zsaic =

T
C ZTaffine-

Finally, for the sake of comparison, we show the levels of feasibility for the ampli-
fied noise on the same graph, in Figure 4-15. This particular comparison particularly
illustrates the feasibility advantages of adaptability. For the case of 150% amplified
noise, the static solution exhibits very poor robustness to the noise. It is more often
infeasible than feasible. The scaled affine solution, on the other hand, greatly out-
performs it. Indeed, with the exception of the case of unamplified noise, the adaptable
solution dominates the feasibility of the static robust solution throughout the full range
of the scaling. This is significant, because at the left endpoint of the scaling, namely,
at no scaling, the adaptable solution minimizes the first stage cost subject to satisfying
only the sampled constraints, with no effort to build in further adaptability. Neverthe-
less, it exhibits significantly better feasibility than the static robust solution.
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Figure 4-12. This figure gives the empirical feasibility for the static and affinely adaptable solutions for
the three-stage network design problem when the noise is amplified by 110%.

W 4.6.2 A Multistage Portfolio Problem

Here we consider a multistage portfolio problem. Our starting point is the formulation
of Ben-Tal, Margalit, and Nemirovski in [13]. For other papers with robust optimiza-
tion approaches to portfolio optimization, see [73], [60], and references therein.

We give only a brief overview of their development, skipping quickly to the for-
mulation itself. For the full details and motivation, see [13]. The basic problem is to
maximize the value of a portfolio of n assets, plus cash (an (n + 1)* asset) after L in-
vestment stages. At each stage the decision-maker decides the amount to sell or buy
for each commodity, and he faces a transaction cost as a percentage of the total sale or
purchase. The returns for each commodity for each future period are uncertain, except
for the returns for cash which, without loss of generality, and following [13], we treat
as having certain return. Let z! denote the amount of asset i held at stage I, y! the
amount of asset i sold at stage [, zé the amount bought, and ré the period [ return. Let
ut reflect the transaction cost of selling asset i at stage [, and v/ that of selling. Then the
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Figure 4-13. This figure gives the empirical feasibility for the case where we have 130% noise amplifica-
tion. At the right endpoint, the scaled adaptable solution is almost 100% feasible, while the static robust
solution is feasible less than 25% of the time. The cost of the two capacity solutions is the same at the
right endpoint of the graph.

portfolio maximization problem becomes a linear optimization:

n+l L. .L
2 l’”i T
sibei :ci = i1l

max :
i —yg-{—zzl-, T et 0 = il

11 -1
Tyt =TrpiZi + e (L= byt — T8 (1 + )4
yh2b ok >0, Wi, V.

B

(4.6.8)

One of the interesting contributions of [13], is an equivalent reformulation of this linear
optimization, so that in the robustified version, there is in fact some adaptability to the
realization of the returns in previous stages. To some extent, this allows us to take
advantage of correlations in the uncertain returns across the different assets, but also
over time.
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Figure 4-14. Here, the noise is amplified by 150%, in the same framework as the other figures above.
Note here that the static robust solution is essentially useless for this level of noise, as it is almost always
infeasible. The scaled adaptable solution, however, approaches 80% feasibility at the right endpoint of
its scaling. Thus the gap between the feasibility for the scaled affine, and the static robust first-stage
solutions, is over 80%, while the cost of the two solutions is the same.

the above formulation becomes equivalent to (again, for the full details and conse-
quences of the reformulation we refer the reader to [13])

w
w < Zn+1 RL+1
g=¢"-n +cl

ff;+1 §n+1 +a 77 blCl
&2>0
nt >0
o e

Relaxing the two equalities to inequalities, we obtain an equivalent formulation, which
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Figure 4-15. In this figure we show the comparison of the feasibility graphs for different amplifications
of the testing noise.

is the nominal problem we consider:

max: w
st.r ow— Z?:f RiLﬂfiL <0
g-¢gtent-¢ <o
gn—gh—an+bi¢t <0 (4.6.9)
£&>0
>0
G=0

Note that now the optimization variables are not the concrete decisions of how much
of asset i to buy or sell at period I. Instead, the decision variables specify the policy.
That is, on realization r = (rﬁ) of the uncertainty, the policy at time /, for 1 <[ < L is
given by:

l 0 1—1\ gl
i = (ri--r )
l 0 -1y, 1
% = (rg.rg m
l 0 I—1\ ~L
zi = (rg--ri )G

While this formulation, then, is adaptable, we nevertheless refer to it as the “static”
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solution in our computational experiment.

In this reformulation, the uncertainty in the returns affects the vectors {a'} and
{b'}. Thus this is a problem with uncertain matrix coefficients. The model of uncer-
tainty, and thus the structure of the uncertainty sets used in the robust formulation
of [13], assumes that the returns are correlated across assets, but not correlated from
one stage to the next. Considering the nominal formulation 4.6.9 above, we see that
this effectively enforces a rectangularity condition on the uncertainty sets. That is, the
independence assumption amounts to constraint-wise uncertainty, since the uncertain
returns for stage [ appear in the single constraint

51114-1 - 65;11 —alnt +bl¢t <0,

and therefore different constraints are affected by different levels of uncertainty. It
has been pointed in various places (e.g., [12], [22]) and indeed it is a straightforward
exercise in duality, that in the face of rectangular (in this sense) uncertainty sets, adapt-
ability cannot improve the robust solution, in the context of robust optimization, that
is, in the context of a worst-case approach. Therefore, unless we change the notion
of feasibility in [13] from a worst-case approach, to something else (like an expected
penalty minimization approach) then it seems that adaptability such as the adaptabil-
ity they use, or other more flexible models, cannot improve the solutions there. Thus,
since they assume that the returns are independent from stage to stage, the conser-
vatism of the robust solution is not because of the lack of adaptability with respect to
the stochastic optimization formulation, but rather because robust optimization pre-
pares for the worst-case scenario, while stochastic optimization tries to take care of
the “average” case. Not surprisingly, on average cases (not to be confused with “on
average”) the stochastic optimization formulation (when computable to begin with)
should outperform the robust. Because of the receding horizon approach, and because
the correlations among returns in a single stage are captured by the reformulation of
the LP (i.e., from (4.6.8) to (4.6.9)), the receding horizon robust approach compares
very favorably to the stochastic programming approach, even on average cases. In
large part, however, we believe that this is due to the imposed independence of the
returns from one stage to the next. Removing this assumption, one expects to see con-
siderable advantages to adaptability. It is precisely this scenario that we consider here.

A Stylized Example

Before we consider a generalization of the statistical model adopted in [13] to gener-
ate data randomly, we consider a particular (rather stylized) example that illustrates
the potential benefits of introducing adaptability beyond what is contained in the for-
mulation of [13], and also the potential benefit of higher order models for adaptability
beyond the affine case. We consider first a 4 stage model with 2 risky assets, and a risk-
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free asset (cash). Suppose that the assets are negatively correlated with each other, and
furthermore the returns of a single asset are negatively correlated over time. This lim-
ited universe may accurately model certain collections of goods. But to illustrate the
point, we consider an extreme situation, where one good does extremely well, and the
other very very poorly. Since there are two goods, we have two data points:

In this case, the static solution (the solution without further adaptability) puts every-
thing into the risk-free asset. Meanwhile, the affine as well as the quadratic are able to
exploit the pattern, and do dramatically better. The results are given in Table 4.2.

Let us next consider an extension of this example, to the case of three assets plus
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I | Static | Affine | Quadratic |
2pt Example: 3 24 24

3pt Example: | 4.0 128.0 128.0
6pt Example: | 4.0 | 64.32 64.32

Table 4.2. For the two point and three point example, the affine formulation is sufficient to track the
asset with the strong growth. This is no longer true for the six point example. Here we see that quadratic
adaptability outperforms the static and the affine adaptability formulations.

Statistical Model

The key difference between the results here, and what has been done before, is that
we assume there is a dependence between the stage-to-stage returns. Our stochastic
model for the returns is:

Inrg = QiT[/se+0vl], 1=0,...,L,i=1,...,m

lnrf1+1 = K, [=0,...,L,

where {v?, ... v%} are each k-dimensional Gaussian random vectors, and together are
jointly Gaussian, but not independent. In particular, this means that the vectors {a'}
and {b'}, will be dependent across different values of I, i.e., different stages. Also,
e=(1,...,1) e R¥, and Q; € Ri, k,0 € Ry are given constants. We choose these
parameters, as motivated by the work in [13], in order to have stock returns that exceed
the safe return on cash, but whose variance is large enough so that the actual return has
a sufficiently large probability of being less than the return to cash. For the full details
and motivation, we refer the reader to [13]. For the case of three assets, in addition to
cash, we choose the parameters so that we have returns as given below in Table 4.3.

[ | Asset1 | Asset2 [ Asset3 | Cash |

Avg Return: | 1.0929 | 1.1135 | 1.140 1.02
Std. Dev: 0.0582 | 0.0865 | 0.1269 | 0.0000

Table 4.3. This table gives the values for the stock returns. Cash is a safe asset, and thus guarantees return
7.25%. The three stocks have average return below the return of cash, but they have a corresponding
increase in volatility. Note that the higher the average return, the higher the standard deviation on the
return.

In addition, we consider experiments where now we no longer have a risk-free
asset. This is designed to test the behavior of the adaptability models, when it is not
possible to put all the holdings in cash, thus avoiding all risk. The statistic of these
returns are given in Table 4.4.

We have an additional parameter, o, governing the correlation between stages. The
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0 | Asset1 | Asset2 | Asset3 | Cash |

Avg Return: | 1.0895 | 1.1068 | 1.260 | 1.1456
Std. Dev: 0.0558 | 0.0760 | 0.1086 | 0.1266

Table 4.4. This table gives the values for the stock returns when cash is no longer a safe asset. Again, the
variances of the returns are chosen so that the higher the average return, the higher the corresponding
variance.

correlation matrix is designed to look like:

I o &% o3I o*I
ol I ol oI oI
o’ ol I ol %I
o3l oI ol I ol
o'l o’ o?I ol I

Thus the correlation is controlled by a single parameter, o, and the correlation between
stages [ and ! dies off like a/'~*l.

Numerical Experiments

The numerical experiments test the robust approach against the adaptable approach,
where we use affine and quadratic adaptability. The robust, affine, and quadratic mod-
els are all solved using the same set of samples. This allows us to fairly compare all
three approaches. The sampling and receding horizon procedure we implement is as
follows:

1. Let L be the number of stages.
2. Generate N samples of the L-stage uncertainty.

3. Solve the resulting LPs to obtain the robust, affine adaptable, and quadratically
adaptable solutions for all L stages, feasible to the generated samples. Fix the so-
lution policies computed (recall that even what we call the static robust solution
here, in fact has some adaptability).

4. Generate 5,000 new sample paths for the L stages. Implement the computed
solutions, and compute the returns.
Numerical Results
The first experiment is run as follows.

1. We have a model with 2 trading periods, and 4 assets, with a fourth asset repre-
senting risk-free cash. The returns are as given above in Table 4.3.
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2. The initial portfolio at time zero contains one unit (or dollar) uniformly dis-
tributed across the four assets in the portfolio (that is, the three stocks and cash).

3. We consider 9 different levels of correlation between the stages: o = 0.8, to o =
—0.8, in increments of 0.2.

4. For each fixed a, we generate N = 300 samples, i.e., 300 independent and iden-
tically distributed data points, for the returns. These are our training data. We
use these to obtain a solution for the static (robust) solution. We also generate
the policies for:

(a) Affine adaptability: Here the investing decisions at time ¢ may depend in
an affine manner on all returns realized before time ¢.

(b) Quadratic adaptability: Here the decisions may depend on the past returns,
in a quadratic fashion.

(c) Integer Affine adaptability: Here, we let F be the map F : r — (r,7), where
#; is equal to 1 if the ith return exceeded the return of the risk-free asset,
cash, and is equal to zero otherwise.

(d) Integer Quadratic adaptability: Here F' is given by the composition of two
maps: first, let F be the map F' : r — (r,#), where #; is equal to 1 if the
ith return exceeded the return of the risk-free asset, cash, and is equal to
zero otherwise. Then, take F; to be the map returning the quadratic values
of the new vector. Then F is given as the composition of these two maps:
F=FyoH.

5. With the policies generated, we next generate 5,000 new data points, and com-
pute the average performance of each policy over these 5,000 points.

6. The above process is repeated 50 times for each value of the correlation coeffi-
cient o, and then the results are averaged. This is designed to reduce the vari-
ability that could arise from a particularly good or bad initial training data set.

Note that we are interested in the performance of the adaptability schemes not
on the training data, but on the 5,000 new data points that are generated, and tested
against the adaptability scheme computed by means of the training data. Table 4.5
reports the results of this computation.

We repeat the above experiment with the second distribution for the returns, as
given above, where now the fourth asset is not risk-free, but rather the most volatile of
all. In this case, we observe a different performance. We report the results in Table 4.6.

There are some common themes in the data presented in Table 4.5 and Table 4.6.
In both cases, with and without the risk-free asset, the quadratic adaptability seems
to have the best returns over the four models of adaptability we use, even when all
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l Affine | Quadratic | Affine Int | Quadratic Int ||
a=2038 0.1002 0.1233 0.1092 0.1009
a=0.6 0.1296 0.1365 0.1258 0.1280
a=04 0.0796 0.0749 0.0738 0.0797
a=0.2 0.0874 0.0920 0.0873 0.0875
a=00 0.0884 0.0849 0.0862 0.0878
a=-0.2 | 0.0350 0.0311 0.0319 0.0343
a=-0.41] 0.0233 0.0213 0.0232 0.0224
a=-0.6 | -0.0074 -0.0054 -0.0087 -0.0076
a=—0.8 | -0.0093 -0.0053 -0.0119 -0.0112

Table 4.5. This table gives the difference in returns from the static policy, for the 2-stage portfolio problem
for different levels of correlation, ranging from 0.8 to —0.8. This is the case where there is a risk-free low
return asset (cash). We have the difference from the static robust returns for the affine, the quadratic, the
integer affine, and the integer quadratic adaptability policies.

( | Affine | Quadratic | Affine Int | Quadratic Int
a=0..8 -0.0839 -0.0662 -0.0734 -0.0714
a=0..6 -0.0593 -0.0440 -0.0496 -0.0570
a=04 -0.0483 -0.0310 -0.0419 -0.0436
a=0.2 -0.0504 | -0.0407 -0.0372 -0.0488
a=100 -0.0238 -0.0147 -0.0263 -0.0237
a=-021-0.0057 0.0099 -0.0060 0.0015
a=-0.4 | -0.0057 0.0018 -0.0097 -0.0020
a= —0.6 | -0.0086 0.0055 -0.0100 -0.0017
a = —0.8 | -0.0052 0.0065 -0.0079 0.0004

Table 4.6. This table gives the difference in returns from the static policy, for the 2-stage portfolio problem
for different levels of correlation, ranging from 0.8 to —0.8. In this case, the fourth asset is not risk free,
but rather is the riskiest asset in the portfolio. As in Table 4.5, we have the difference in returns (with
respect to the static robust policy) for the affine, the quadratic, the integer affine, and the integer quadratic
adaptability policies.

four schemes are outperformed by the static robust model. In the presence of the low-
return risk-free asset, in particular for positive correlations over time, the adaptability
we introduce seems to improve the returns, over the static robust scheme. For high
correlations, the static robust model places most of the portfolio in the risk-free asset.
As aresult, itis overly conservative, and as is revealed in the computations we present.
For negative correlations, the advantages of adaptability seem to vanish, and in fact
the static robust formulation slightly outperforms the other models.

Finally, we report the performance of the same experiment detailed above, but with
4 stages, instead of just two. The results are contained in Table 4.7. The advantages of
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increased adaptability in the case of high correlation across stages is more pronounced
in the 4-stage case. However, the apparent disadvantage in the negative correlation
regime is also more apparent. We believe that this illustrates the potential of over-
fitting when the number of samples is not sufficiently large.

| Affine | Quadratic | Affine Int | Quadratic Int
a=10.75 0.2520 0.2438 0.2509 0.2514
a=0.25 -0.0056 0.0011 -0.0126 -0.0069
a=—0.25 | -0.0672 -0.0902 -0.0816 -0.0715
a=-0.75 | -0.0314 -0.0475 -0.0406 -0.0307

Table 4.7. This table gives the difference in returns from the static policy, for the 4-stage portfolio prob-
lem for different levels of positive correlation. We have the returns for the static robust, the affine, the
quadratic, the integer affine, and the integer quadratic adaptability policies.

B 4.7 Conclusions

In this chapter we considered sampling approaches to designing structured adaptabil-
ity for multi-stage problems. Sampling the uncertainty rather than solving a robust
problem, replaces the worst-case with respect to a continuous uncertainty set, by a
worst-case with respect to a finite set consisting of the samples. That is, we replace 2
by Q. The benefit is that we circumvent the difficulty of solving the inner problem
of robust optimization, as this is typically intractable. Solving the inner problem over
the finite set Q is done simply by enumerating the points of . The price we pay is
that the solution is no longer deterministically feasible, as in the Robust Optimization
case. Rather, the robustness of the solution is defined by a reliability parameter 4, and
a feasibility parameter ¢. The meaning of (g, 9), is that with probability at least (1 — ¢),
the solution obtained is feasible with probability at least (1 — ¢).

The second element of this chapter is the fact that we impose structure on the
adaptability. The multi-stage adaptability is defined by nonlinear feature functions,
F;. The sample complexity required to guarantee a particular (e, §) pair, is affine in the
sum of the dimension of the image of the mappings F;. In particular, for well-behaved
functions F;, such as polynomial maps, the sample complexity is polynomial in the
number of stages of the problem.

In addition, we consider computing bounds on sample complexity from two dif-
ferent perspectives: the convex optimization perspective, introduced by Calafiore and
Campi, and then the approach motivated by results in statistical learning theory. The
former approach is quite elegant, and when applicable, it provides very strong results.
However, it is an analysis that ultimately counts the dimension of the parameter space
defining the adaptability. We have considerable control over the adaptability functions
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we choose. In particular, this control extends well beyond merely the dimensionality
of the space. The learning theory approach allows us to capture additional regularity
aspects of the adaptability functions. We believe that this can prove to be important,
especially as more interesting feature functions F, or even families of feature functions,
JF, are employed.

The section containing our computational results, further points to some directions
worth further exploration. The section on feasibility maximization, illustrates through
the 3-stage network design problem, that adaptability manages to exploit structure
in the problem in a way that the static robust approach does not. Thus, at least for
the case of the network design problem, the adaptable solution seems to have better
feasibility properties than the static robust solution, even though the upper bounds on
sample complexity do not predict this. We believe this avenue deserves considerably
more attention.



CHAPTER 5

Air Traffic Control: A Robust
Adaptable Approach

his chapter considers the problem of air traffic control. We consider the global
problem of scheduling ground delays, air delays, as well as dynamic route selec-
tion, subject to take off and landing capacity constraints on airports, as well as sector
capacity constraints for sectors over the National Air Space (NAS). There are primar-
ily two conceptual contributions: First, we consider uncertainty in the dynamically
changing weather conditions, with the goal of building a schedule that is robust to
this uncertainty. Second, we model the problem as one of sequential decision-making,
thus placing the robust scheduling problem on a dynamic footing. While the weather
impacted capacity uncertainty is naturally a high-dimensional object, we demonstrate
that it can be well-approximated by a very low dimensional representation. We then
exploit this low-dimensionality, adding what we term finite adaptability to the formu-
lation, capturing important aspects of the uncertainty in a dynamic and adaptable
framework.
We test the framework developed here on two single multi-sector, multi-airplane,
single-airport problems, and thereby demonstrate the potential advantages of a finite
adaptability approach.

B 5.1 Introduction

The Airline industry in the United States makes up a huge part of the economy. Its rev-
enue is in the hundred of billions of dollars, annually, and it transports close to 2 bil-
lion passengers. The impact on the international economy cannot be underestimated.
There are many disparate challenges facing the Air Transport Industry. Many of these
have been very successfully addressed by sophisticated optimization and other oper-
ations research tools developed by the community. For an excellent survey of appli-
cations of techniques of Operations Research in the Air Transport Industry see the re-
view paper [9]. Indeed, many problems, such as aircraft and crew schedule planning
(including fleet assignment, crew scheduling, maintenance routing, etc) and airline

157



158 CHAPTER 5. AIR TRAFFIC CONTROL: A ROBUST ADAPTABLE APPROACH

revenue management to name but two important areas, successfully implement so-
phisticated tools to manage uncertainty and large scale scheduling problems in some
optimal sense (again, see [9]).

In the area of Air Traffic Management at the level of the global Air Traffic Con-
trol problem (as opposed to, say, gate scheduling, or slot assignment for takeoff and
landing) the state of the art, i.e., what is currently implemented, lacks any appreciable
degree of automation or assistance from optimization problems. Air Traffic Control of
flights over the National Air Space (NAS) is accomplished by a hierarchical control sys-
tem. At the top of the hierarchy is a single Air Traffic Control System Command Center
(ATCSCC) that disseminates information and flow directives to 22 Air Route Traffic
Control Centers (ARTCC), and each one of these control centers is further divided
into approximately 20 sectors. In each such sector, there are Air Traffic Controllers,
that maintain responsibility for each individual plane in their respective sector, and
perform hand-offs with controllers from adjacent sectors when a plane crosses over
from one sector to another. The total number of air traffic controllers over the NAS
are around 20,000. The air traffic controllers are responsible for ensuring that planes
maintain appropriate distance from each other, and that the capacity of their sector is
not exceeded. The capacity of a sector is impacted by the weather conditions, and can
be reduced significantly, even to zero, in the presence of severe weather conditions.

The air traffic controllers, responsible for up to about 25-30 flights each at any given
time, and they instruct each flight to make small, local changes in altitude, speed, and
direction. If a particular sector faces congestion, either due to too much incoming
traffic, or adverse weather conditions that decrease the capacity of the sector, the air
traffic controllers report this information up the hierarchy to the Air Route Traffic Con-
trol Centers, who can then send it further up the hierarchy to the Air Traffic Control
System Command Center. It is thus higher up in the air traffic control hierarchy that
more global decisions, such as assigning ground holds, or air holds, or redirection of
flights, is decided.

This hierarchical system, while centralized, does not use a global optimization
framework to synthesize the updated weather information with the location and tra-
jectories of planes in the air and on the ground waiting to take off. Sector capacities
are maintained by what amounts to essentially local modifications of the clear-weather
schedule, scaling down and ramping up air traffic in a local manner in response to
changes in sector capacities.

The focus of this paper is to address exactly this: the problem of Air Traffic Man-
agement (ATM), specifically the issue of managing delays due to dynamic weather
conditions. The motivation is twofold, based first on the increasing costs of delays to
the industry, and second, based on the recent advances in optimization under uncer-
tainty.

The level of delays, as well as the cost of these delays to the airline industry, has
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been growing at a steady rate in the last decades. In the last half of the past decade, the
average delay of US flights increased by almost 20%. The number of cancelled flights
increased by over 65%. Meanwhile, the number of flights and passengers per year are
forecasted to increase at a steady rate of around 4-5% annually ([9]). Such increases
in traffic may cause even more severe increases in delay. A study by the European
Organization for the Safety of Air Navigation (EUROCONTROL) Experimental Centre
predicts a 26% increase in delay for a corresponding 5% increase in air traffic.

Given that the cost of delays to the airlines, airports, and consumers are measured
in the billions, annually, severe increases in delays could well impede further growth
of the airline industry.

In this paper we propose a mathematical framework for the dynamic schedul-
ing problem of Air Traffic Control, impacted by uncertain weather. In large-scale
scheduling problems, obtaining solutions with good performance requires capturing
the global effects of local scheduling changes. Air Traffic Control is no exception, since
delays propagate in many ways, and furthermore avoiding bottleneck phenomena
such as gridlocked airports requires a more global view, that does not localize the
problem by considering only a small subset of the aircraft to be scheduled. In this
sense, our work is quite different in focus and scope from work such as [97] and [95].

To the best of our knowledge, this is the first optimization-based proposal that is
designed to be able to handle such a global view, incorporating a significant fraction
of the 30,000 daily flights over the NAS, that takes a dynamic viewpoint. Indeed, we
believe that the central contribution of our proposal lies in two new features of the
proposal: we focus on both robustness of the schedule to uncertainties in the weather
forecast, and also adaptability. The ATM scheduling problem is a dynamic one: de-
cisions are made sequentially over time, while weather information is updated, and
thus the uncertainty is partially realized over time.

Therefore we apply the tools of robustness and adaptability developed in the first
chapters of this thesis. In particular, we focus on finite adaptability as a tool to in-
troduce adaptability in a manner that controls the number of variables, and can also
accommodate the natural discrete aspect of the scheduling problem.

M 5.2 Summary and Literature Review

There are many facets of the Air Traffic Management problem, ranging from local as-
pects, such as gate assignment, crew scheduling, contention for takeoff or landing slots
that may often take a decentralized and game theoretic nature, as airlines compete for
scarce resources (e.g., [130],[129], and also [77], [137]). The point of departure for the
work of this chapter, is the formulation of Bertsimas and Stock in [29]. There, the
authors formulate a linear integer programming approach to scheduling ground hold-
ing, and air holding so as to minimize delay costs. While they do not consider the fact
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that capacities change stochastically, nevertheless the basic model they develop is our
point of departure, and in our computational experiments proves particularly capable
of handling large-scale instances of the problem. We discuss the specifics of [29] and
the relation to our work here, in Section 5.4.

In response to reduced capacities over certain sectors of the NAS, air traffic con-
trollers can redirect flights, delay them in the air, or delay them on the ground. Ground
holding costs are considerably less than the cost of holding a plane in the air, as this
typically results in significantly increased fuel costs, as well as other costs, measured
in passenger time and crew wages. There has been considerable effort devoted to
the ground holding problem. The ground holding problem is further subclassified
into the single airport ground holding problem, and the multi-airport ground holding
problem. There have been several approaches for solving the ground holding prob-
lem. For example, [101] considers a finite perturbation analysis approach to the this
problem. In [141] and [140], the authors consider an optimization-based scheme for the
ground holding problem in a single airport, and in a network of airports. The work
in [29] which essentially serves as our starting point, is more general, in that it con-
siders routing, path selection and air-holding, as well as intermediate sector capacity
constraints.

Recently, the authors in [97] and [95] have taken a Robust Markov Decision-Process
approach to modeling the Air Traffic Management problem. This is an appealing ap-
proach, as it allows the modeling of the multi-stage nature of the problem, as well
as the inherent uncertainty in the weather. However, the MDP approach makes some
“rectangularity” assumptions, which effectively means that future stage decisions need
have no adaptability on past realizations of the uncertainty. Thus that formulation is
different in spirit from what we propose here. Furthermore, one of the central motiva-
tions of our approach, is the desire to obtain an algorithm applicable to a very large-
scale problem. It is not clear that the MDP approach is appropriate for very large scale
formulations, although the results presented in the referenced papers indeed seem to
handle the smaller instances well.

The general formulation of air traffic control via on-line flight scheduling using
optimization, dates back to [99]. Since then, there has been considerable work done,
see for instance, [9], [3], [8], and [30], and references therein.

The new elements proposed here are robustness, and adaptability. That is, we
explicitly model uncertainty in the weather forecasts, and then the subsequent adapt-
ability to that uncertainty.

B 5.3 Weather and Uncertainty

The current system for Air Traffic Control over the United States, is supported by sev-
eral weather prediction tools for the major terminals, the minor terminals, and for the
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en route sectors. For a taxonomy of these, we refer the reader to the study produced
by Lincoln Laboratory on their Corridor Integrated Weather System ([111]).

B 5.4 The Model

The framework for our model begins with the work in [29]. This marked the first at-
tempt to formulate in an optimization framework, the scheduling problem, including
ground holding, air delay, and also route selection. While we incorporate both ro-
bustness and adaptability in our model, we start from fundamentally the same model.
That is, the restriction of our optimization model to no adaptability and without un-
certainty, gives back the model of [29]. Our model, then, is as follows:

B 5.4.1 The Formulation: The Nominal Praoblem

In this section, we give the formulation of the scheduling problem without adaptability
or robustness. We address those extensions in Sections 5.4.3 and 5.4.4, respectively.

We consider a set of time periods: 7 = {1,..., T}, flights: = {1,..., F}, airports:
K = {1,...,K}, continued flights: C = {(f’,f) : f iscontinued by f, f, f' € F}.
Putting data of the problem are the following:

P; = the collection of paths available for flight f € F.

N¢(p) = number of sectors traversed by flight f taking path p € P;.

P(f,i,p) = the i sector of path p of flight f.

Py = {P(f,i,p) : 1 <i< Ny(p)}

Di(t) = the departure capacity of airport k at time ¢.

Ar(t) = the arrival capacity of airport k at time ¢. |

S;(t) = the capacity of sector j of the NAS at time ¢.
dy = thescheduled departure time of flight f € F.
ry = thescheduled arrival time of flight f € F.
sy = the time required to prepare aircraft completing flight f € F.
¢} = ground holding cost for flight f € F.
¢ = airholding cost for flight f € F.
ly; = minimum time for flight f to traverse sector j.
Tf’; = time window when flight f can be in sector j.

The decision variables specify if a particular flight f € F has arrived at the i*" sector
along path p by time ¢. If it has, then the decision variable is set to 1: w}f, = 1. Other-

wise we set w}’; = 0. We can impose continuity of the flight paths, as well as constraints
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enforcing the planes in fact land, so as to give proper physical meaning to these vari-
ables. We can also use these variables to express the amount of ground-holding, and
air-holding (air delay) time, thus allowing us to express the cost:

1. Ground Cost: We can express the total time a particular flight f € F is ground-

held as: A
gf = z t(w wft 1)
teTf pePy k=P(f,1,p)

2. Air Holding Cost: The air-holding cost of a flight finF can be expressed as:

A k k
af = > Hwpy —wpi 1) =77~ 97
teTF pEPs k=P(f,N;(p).p)

3. Therefore the total cost of a particular schedule is then:

> {95 +cas}.

feF

Next we have the constraints:

1. Capacity constraints for the departures at airport & at time ¢, capacity constraints
for the arrivals, and capacity constraints for each sector of the NAS, at each time
interval ¢:

X Pk (wzé’ Wl 1) SDilt) keKteT,pePs
2f. P(f,N;(p),p)= k(wft wfz; ) SA@l) VkeK,teT,pePy
22 5:P(fi.0)=3" P(f,i+Lp)=4" Ji<Nj(p) (wft wf,t—l) < S(t) VkeK,teT,peP;.

2. Connectivity between sectors: Vf € F,t € TJZ,p € Py, j = P(f,i,p),7 =P(f,i+

1ap)7i<Nf(p): )
wj,t+lf w}g <0.

3. Continuity between airports for continued flights: V(f’,f) € C,t € Tf,p €

Py, k= P(f,1,p) = P(f', Ny¢(p), p):

kp kp
We — wf,’t_sf, <0.

4. Connectivity in time: Vf € F,p € Py,j € Py, t € T}:

wh — w2



SECTION 5.4. THE MODEL 163

5. Finally, we have the integrality constraints:

wft € {0,1}.

The nominal optimization problem is defined by minimizing the cost function above,
subject to the above constraints.

Size of the Nominal Formulation

The size of the nominal formulation (that is, as given above, without robustness or
adaptability) depends on the number of time periods, sectors, and flights considered.
Recall that F is the set of all flights considered, C the flights that are continued, £
the airports, and 7 the set of time periods. Let N denote the set of sectors in the air
space considered. Then, the number of variables in the nominal problem can be upper

bounded by
710 (s, 1) < s, ).

The number of constraints can be upper bounded by

j
2ACITI +IN+ 247 x (o, 1131) (w500 )+ (pa, 1T71).

To give a feeling for the size of the formulation, consider that if we have 15,000 flights,
and each flight is allowed up to 2 hours delay on the ground, and one hour delay in
the air, and our time periods are 5 minute intervals, then since the number of sectors
traversed is typically around 20, the upper bound for the variables becomes:

15,000 x 36 x 20 = 10, 800, 800,
while the number of constraints is bounded by
2 x 15,000 x 36 = 21, 600, 000.1

As we discuss in further detail below, several approximation techniques aid in the re-
duction of the size of the variables. Nevertheless, a problem of this size pushes the
limits of computational and memory resources available today. Stochastic optimiza-
tion methods, including the sampling results presented in Chapter 4 face the imme-
diate challenge that expanding the number of constraints by a factor of, say, 300, as
would be required by a sampling approach to the uncertainty with only 300 samples
(let alone a sample size proportional to the number of variables, as in all the sample
complexity bounds given) would put the problem well beyond the capacity of current

!This is the largest term in the upper bound for the number of constraints.
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computing.

Instead, we use a robust approach, with finite adaptability, with a very small num-
ber of partitions. As explained further below, this allows us to provide feasibility guar-
antees while controlling the proliferation of variables, and at the same time giving a

formulation that does not destroy the (empirically) strong integrality properties of the
nominal formulation.

B 5.4.2 Sectors, Schedules, and Weather

The primitives for our dynamic optimization problem are the scheduled flights, mean-
ing the published time table of the scheduled departure and arrival times, and depar-
ture and arrival coordinates, as well as the actual structure of the national air space,
including the topology of the sectors, and the allowable paths from any given location
to another. In addition to this, the weather forecast for the next 2 hours, as well as the
current weather conditions, must be specified. In fact, the input to the optimization
must be the sector capacities, which must be determined as a function of the current
weather conditions in a given sector. While the FAA has established guidelines for de-
termining the safe number of planes over a particular sector, these are far from being
able to determine the capacity of each sector. In practice, it seems that the individual
air traffic controllers locally determine capacity, based on experience, as opposed to
clearly quantifiable guidelines ([63], [111]). The capacity of each sector at each time
period was determined in an operational manner, by tracking flights over different
weather scenarios over each given sector. Since weather impacted sector capacities are
the scarce resource, obtaining accurate estimates that can be used by the optimization
to produce trustworthy scheduling recommendations, is of high importance. The com-
putational experiments we present in Section 5.5 on the benefit of finite adaptability,
do not rely on capacity obtained from the real weather data.

# 5.4.3 The Robust Problem

The primary source of uncertainty which we address, is due to the weather, and its
impact on the sector capacities at a given time. Therefore we have uncertainty affect-
ing the right hand side vector of the nominal optimization problem constructed above,
and the constraints affected by the uncertainty are the ones reflecting the capacity con-
straints. The uncertainty in the capacity is captured in the robust formulation by re-
placing the nominal capacity vector (across both time and sectors) by an uncertainty
set. This uncertainty set reflects the uncertainty in the weather forecast. The nominal
capacity vector, (D(t), A(t), S(t)), defines a trajectory over time in the capacity space,
and we can think of the full trajectory as a point in the time-capacity space, that is,
a point in RITXIKI+KI+ISD - The uncertainty set is a subset of this high-dimensional
space: 2 C RITIX(UKI+IKI+ISD) | Considering the uncertainty set as a subset of this space,
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Figure 5-1. This figure shows the color-coded sector blockage, with the weather generating the blockage
superimposed over the sector map. This illustrates the fact that sector capacity can offer only an at times
coarse quantization of the true impact of the weather.

allows us to capture the correlations in the weather across both time, and sectors. As
we further discuss in Section 5.4.4, modeling and exploiting these correlations is im-
portant for obtaining a robust formulation that is not too conservative. The constraints
affected by the uncertainty are:

k; k:
Zf:P(f,Nf(p),p)=k(wé) = wift_l) S Ak(t) Vk € ’C,t S T,p € Pf
Y £:P(fip)=it Uit L) =i i< (o) (Wft — Wie1) < Sk(t) VkeK,teT,pePy.

In a single-stage model, the robust version of these constraints now becomes:
k k
Zf:P(f,l,p):k(wé) — wiﬁ_l) < Di(t) VekeK,teT,pePs
P P

Zf:P(f,Nf(p),p)=k(w£t == wf’t_l) S Ak(t) vk € K:,t € T,p € Pf

k
Y - P(ip)=it PUitLp)=iti<N; () (Wit — Wre1) < Sk(?)
VkeK,teT,pe Py

V(D(t), A(t), S(t)) € Q.
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Because of the worst-case nature of the robust formulation, this reduces to:

- k k *
Y rp(ap=kWh — Wi ) < Di(t) VkeK,teT,pePs
L 5P(f N o)) =k (WFE — wl{ﬁ—l) < A;(t) VkeK,teT,peP;s
D £:P(f,i.p)=3"\P(f,i+1.p)=3"i<N; (p) (w?f —wf ) <Sit) VkeK,teT,pePy,

where we have:

Di(t) £ min{Dy(t) : (D(t), A(t), 8(2)) € 0}
Apt) £ min{Au(t) : (D), A),S(t)) € 2}
Si(t) 2 min{Si(t) : (D(¥), A(t), S®)) € Q}.

- In the robust formulation, therefore, the correlation information captured by the full
uncertainty set (2 is lost. We remark that this is not an artifact of the formulation
that could be alleviated by a change of variables similar to the portfolio optimization
problem of [13] discussed in Chapter 4. It is, rather, an intrinsic consequence of the
physical problem. The solution to any robust formulation is a schedule over time, i.e., a
trajectory for all the aircraft, that does not violate any of the sector capacity constraints
for any sector, at any point in time, for any realization of (D(t), A(t), S(t)) € Q. Any
single trajectory that satisfies this, will be feasible to the robust constraints given above.

The nature of the weather uncertainty that actually impacts sector capacities is im-
portant for our robust formulation, and our subsequent development of an adaptable
model. We discuss this in the next section.

B 5.4.4 Adaptability

We assume that current weather conditions, i.e., the instantaneous capacities of ev-
ery sector, are known deterministically. The weather forecast’s accuracy decreases,
however, as we move out in time. For our purposes, the important question is to un-
derstand the nature of the uncertainty in the weather prediction. Our belief that finite
adaptability, as developed in Chapter 3 is an appropriate adaptability model for the
Air Traffic Control problem, is based on the claim that while the capacity uncertainty
is high dimensional, in the sense that there are over 500 sectors whose capacity is af-
fected by the uncertainty, in fact there are only a few parameters of uncertainty, that
control the real impact of the weather on air traffic control. Local weather variations
are independent of each other, and indeed variations in very localized weather do
make up a full high dimensional uncertainty set. However, these local weather varia-
tions are not the weather phenomena that severely impact air traffic. Thus we focus on
large storm fronts, that have the capability of disrupting the flow of the air traffic over
the NAS. These weather fronts typically are accurately predicted hours in advance.
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The uncertainty in such strong storm fronts comes in the actual time of arrival, and
also in small perturbations in location, direction, and intensity. That is to say, there
is indeed a small parameter set that successfully captures the main uncertainty in the
weather forecasts of storm fronts big enough to impact air traffic.

Consider now the vector of capacity constraints. We have a constraint for every
sector of the NAS, as well as one representing takeoff and landing for each of the air-
ports. The uncertainty set represents the variation in the capacity vector, and therefore
it is a subset of RM, for M equal to the dimension of the capacity vector, and thus
M =~ 500. However, if the main uncertainty in the weather is captured by the few
parameters mentioned above (arrival time, intensity, direction and location) this ef-
fectively means that the variation in the vector of sector capacity constraints is very
tightly correlated. In a sense, the uncertainty set is effectively very low dimensional,
and not a full M-dimensional set. However, this correlation is across constraints. In
the context of the discussion of uncertainty sets in Chapter 3, the uncertainty set is far
from being rectangular. Therefore the pure static robust approach is unable to take
advantage of this correlation.

Figure 5-2. This figure gives a pictorial representation of three weather fronts over the NAS. The arrows
represent the forecasted direction of travel of the weather fronts. While this forecast may not be exact, the
central claim on which we base our modeling choice for adaptability, is that the main factors of inaccuracy
in the prediction will be in the speed of the storm fronts, and perhaps of their exact direction. Therefore
the uncertainty in the capacities of the underlying sectors, will be very tightly correlated. If the storm
front arrives 30 minutes ahead of the forecasted schedule, the capacity of a very large number of the
sectors will vary in a tightly correlated manner.

Let us now recall our results from Chapter 3. There we saw that when the di-
mension of the uncertainty set is small, finite adaptability is theoretically tractable.
Furthermore, we saw in our simulations, that for low-dimensional uncertainty sets, fi-
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nite adaptability can cover a significant percentage of the gap between static and fully
adaptable formulations, with only a small number of regions in the partition.

It is further important to stress that the air traffic control problem is inherently
an integer optimization problem, since the decisions involve indivisible quantities
(planes). Furthermore, while the aggregate traffic is quite heavy, with over 30,000
commercial flights per day, there are many routes where the number of planes at any
given time are very low. Therefore, there does not seem to be a reason to believe that
a continuous approximation of the planes would lead to anything that is in fact easily
implementable.

Finite adaptability, however, is specifically designed to handle multistage problems
with discrete variables.

We have outlined, therefore, three aspects of the problem that lead us to imple-
ment finite adaptability. First, the problem has {0, 1} variables, and therefore continu-
ous adaptability schemes are simply not applicable. Second, the effective uncertainty
set is low-dimensional, and therefore from our results in Chapter 3, the finite adapt-
ability problem is theoretically tractable, and furthermore we expect it to be able to
improve the static solution with only a few partitions. Finally, the starting point is a
very large scale nominal problem. The large scale nature essentially limits the class of
approaches one can take. A sampling approach, for instance, seems impractical, since
even the most optimistic numbers for the sample complexity seem to drive the number
of constraints into the billions.

It is precisely because of these three aspects of the problem that we implement
finite adaptability.

B 5.5 Computational Results: Two Scenarios

In this section, we give two examples that illustrate the applicability of our formulation
above, and the advantages of finite adaptability. Both examples represent two-stage
problems, with multiple planes traversing several sectors to arrive at a single airport.
First, we consider the utopic set-up. Here, the decision-maker knows the realization
of the weather in advance of making any decisions. This is not implementable, be-
cause it requires advance knowledge of the weather. It represents an upper bound on
the best performance any adaptability scheme could achieve. After this we consider
four schemes which are implementable. First, we consider a nominal approach, ie.,
one without any adaptability, but rather where the first stage solution is constructed
assuming the weather follows a (single) deterministic trajectory. Then we consider the
robust approach, where a single solution with no adaptability is designed to be robust
to the possible uncertainty in the weather forecast. Finally, we consider two levels of
finite adaptability: 2-adaptability and 4-adaptability.
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W 5.5.1 Example 1: Ground Holding

In this example we illustrate how finite adaptability can significantly decrease the im-
pact of a storm on a single-airport landing problem. Here, we consider a major airport
such as JFK international airport in New York, that accepts heavy traffic from airports
to the West, like Chicago, San Francisco, and Los Angeles, and also from airports to
the South, such as Dulles, National, and Atlanta. We consider the situation where
the weather forecast predicts that the capacity of the approach to JFK will be severely
impacted by an approaching storm. Because of timing uncertainty, it is not known ex-
actly when the storm will affect the western, and when the southern approaches. The
general picture of this phenomenon is illustrated in Figure 5-3. There are some num-
ber of planes scheduled to land in JFK around the time the bad weather is forecast to
impact the capacities of the final approach to JFK. The central scheduler must decide
whether to keep JFK-bound planes on the ground at their airport of origin, or send
them further along their route.

Figure 5-3. This figure gives the scenario we consider in the first Air Traffic Control example. We have
planes arriving at a single hub such as JFK in NYC. Planes arrive to JFK from the West, and also from
the South. The uncertainty in the weather is expressed in the dashed lines. This is meant to illustrate
that while the forecast predicts the presence of a disruptive storm, there is uncertainty in the exact time
the impact will be felt in the air corridors. In this example, the uncertainty produces increased ground
holding in the robust model, and increased air holding in the adaptable model.

We make the following simplifications, so that we can present a clear experiment
that illustrates the benefits of adaptability. We consider a three hour interval. We
assume that the storm is scheduled to impact the capacity of the sectors in the approach
to JFK, in the second hour of our horizon, and that regardless of when it moves over a
particular sector, the impact does not last more than 30 minutes. We assume that there
are 50 planes approaching from the West, and 50 planes approaching from the South.
If these planes are not held on the ground, or in the air, they arrive at JFK in two hours.
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Each plane may be held either on the ground, or in the air, or both, for a total delay not
exceeding 60 minutes. Therefore all 50 planes from the West, and 50 planes from the
South, will have landed by the end of the three hour window under consideration. The
simplified picture is presented in Figure 5-4. Here, the rectangular nodes represent the
airports, and the self-link ground holding. The intermediate circular nodes represent
a location one hour from JFK, in a geographical region whose capacity is unaffected
by the storm. The self-link here represents air holding. The final hexagonal node
represents the destination airport, JFK. The links from the two circular nodes to the
final hexagonal node are the capacitated links.

\\ / S
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Figure 5-4. This figure gives the simplified version for the scenario we consider in the first Air Traffic
Control example. We model the planes originating from the West, as scheduled to depart at the same
time from a single airport, and similarly for the planes arriving to JFK from the South. The hexagonal
node represents JFK airport. The two circular nodes represent the intermediate sectors where the planes
may air hold, if the storm has reduced capacity to the point that they cannot proceed to the final hexag-
onal node. The two rectangular nodes represent the initial airports, and the self-loops represent ground
holding.

We discretize time into 10-minute intervals. We assume that the impact of the
storm lasts 30 minutes. The uncertainty is in the timing of the storm, and the order
in which it will affect the capacity of the southward and westward approaches. There
is essentially a single continuous parameter here, controls the timing of the storm,
and whether the most severe capacity impact hits the approach from the south be-
fore, after, or at the same time as it hits the approach from the west. Because we are
discretizing time into 10 minute intervals, there are four possible realizations of the
weather-impacted capacities in the second hour of our horizon. These four scenarios
are as follows. We give the capacity in terms of the number of planes per 10-minute
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interval:

) [ West: 15 15 15 5 5 5

| South: 5 5 5 156 15 15

@) [ West: 15 15 5 5 5 15

| South: 15 5 5 5 15 15

3)  West: 15 5 5 5 15 15

| South: 15 15 5 5 5 15

(a) West: 5 5 5 156 15 15

South: 15 15 15 5 5 5

We compare several different adaptability schemes. In the utopic set-up, the decision-
maker knows even before the first stage decision is implemented, which of the four
potential weather scenarios will be realized. Because of the advance knowledge re-
quirement, this is not implementable. Rather, it provides a bound on the best possible
performance.

Next, we consider a nominal, no-robustness scheme. Here, the decision-maker
simply assumes that the realization will be one of the four predicted scenarios (we
choose the first).2 The first stage decision is implemented. Then, the true realization
is revealed, and the decision-maker must act accordingly in the second stage. If the
realization turns out to be the first uncertainty realization, then the decision-maker
gets lucky, and the final cost matches that of the utopic solution. If this is not the case,
however, the final cost may be considerably worse: in fact it is, as we see below.

Next, we consider robust adaptability formulations. First, we consider the static
scheme. Here, the decision-maker chooses a single solution that is feasible for any
allowable realization of the weather. Next we consider the 2-adaptable solution, and
the 4-adaptable solution. Recall from Chapter 3, that for k-adaptability, the decision-
maker selects a decision to implement in the first stage, and k decisions to implement
in the second stage. Thus, for the 2-adaptable solution, the decision-maker computes
two potential schedules for the second stage, so that at least one of them will be fea-
sible, regardless of the realization of the weather. This is in contrast to the static for-
mulation, where the decision-maker must choose a single plan that is feasible for all
possible weather realizations.

The cost is computed from the total amount of ground holding and the total amount
of air holding. Each 10-minute interval that a single flight is delayed on the ground,
contributes 10 units to the cost. Each 10-minute interval of air-delay contributes 20
units.

Note that the structure of the static and utopic solutions is qualitatively different

ZSince the decision-maker assume that the weather evolution is perfectly known, there is no advantage
to using any adaptability in computing the first-stage decision.
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Il Delay Cost | Ground Holding | Air Holding ||
Utopic: 2,050 205 0
Static: 3,900 390 0
2-Adaptable: 3,300 170 80
4-Adaptable: 2,900 130 80

Table 5.1. In this table we give the results for the cost of total delay, as well as the total ground-holding
time, and air-holding time, for the utopic, robust, 2-adaptable, and 4-adaptable schemes, for the Air
Traffic Control example described in Section 5.5.1. The ground- and air-holding time is given as the

number of 10 minute segments incurred by each flight (so if a single flight is delayed by 40 minutes, it
contributes 4 to this count).

than the adaptable solutions. In the adaptable solutions, the adaptability allows the
decision-maker to take a “more optimistic” first-stage solution, that is, to send more
planes in the air. This ultimately results in a larger air-holding cost, but considerably
decreased ground-holding. It is this gain that leads to a reduced overall cost.

Next, we give the delay cost for the nominal problem, where the decision-maker
ignores robustness, assumes that the first potential weather realization above is in fact
the true realization, and implements the corresponding optimal first-stage solution.
In Table 5.2, we give the cost depending on what the actual realization turns out to
be. Note that if the second weather scenario above is the true realization, then the
corresponding cost of the nominal solution is 2,950, which exceeds the 4-adaptable
solution cost. If the third scenario is the true realization, then the cost of the nominal
solution is 3,950, which is more than the static robust formulation, and considerably
higher than the cost of the 2-adaptable and 4-adaptable solutions. Finally, if the true
realization happens to be the fourth scenario, then the cost of the nominal solution is
4,750, which is much higher than the cost of the robust, 2-adaptable, or 4-adaptable
solutions.

I | Realization 1 | Realization 2 | Realization 3 | Realization 4
[Nominal Cost: | 2,050 | 2950 | 3950 4,750

Table 5.2. In this table we give the results for the cost of total delay for each scenario, when the first-stage
solution is chosen without robustness considerations, assumning that the first realization is in fact the true
realization.

B 5.5.2 Example 2: Route Selection

The example in this section is similar to the example in Section 5.5.1, but here we
illustrate the benefit of adaptability in making good flight selection decisions in the
early stages.
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In this set-up, flights from a single origin must be assigned not only ground holding
and air holding, but also a particular route to their final destination. The general setup
is depicted in Figure 5-5. There, we consider the situation where flights arrive at a
single airport from a single direction. Any particular flight in general may have several
different opportunities to select a path to its destination. The general phenomenon
we wish to capture is when adaptability allows less pessimistic routes to be selected,
even in the presence of potentially bad weather. The basic set-up is that there is a
conservative route, that completely avoids the storm front. However, if the storm
front is not particularly intense, typically planes are able to find a way through the
storm, that is not apparent from earlier forecasts (see, e.g., the schedules and actual
trajectories as shown in detail in the various studies contained in [111]).

Figure 5-5. This figure gives the scenario we consider in the second Air Traffic Control example. It
models the situation where planes arrive from a common direction, towards a single destination airport,
e.g., JFK. The weather uncertainty in this case affects the capacity of some of the routes towards JFK.
The approaching planes have the option of flying towards the storm in the hope that they will find some
way around or through the storm, or to divert their path early on, making absolutely certain to avoid the
footprint of the storm front. This latter alternative is represented by the longer paths that arch well above
the center of the figure.

As for our first example, we model this set-up with a simplified model. Consider
Figure 5-6. We assume that all the planes originate at the same airport node. This is the
square node at the left of the figure. At this point, a plane has three choices: to ground
hold, to continue straight to the nearest circle-node, or or to follow the path to the
highest circle-node. This path represents the conservative path that seeks to entirely
avoid the storm. Note now, that if the decision-maker selects to go forward, following
the shorter path, then there is another point where a directional decision must be made,
either to follow the top branch, or the bottom branch. We model a storm that has some
partial affect on both of these branches. There is some uncertainty, however, in the
timing of when the storm affects which branch.

Similarly to the previous example, we consider a three hour horizon, and assume
that the weather impacts the capacity of the two inner branches at some point during



174 CHAPTER 5. AIR TRAFFIC CONTROL: A ROBUST ADAPTABLE APPROACH

the second hour. Again we use a single parameter uncertainty set, essentially the same
as the one used in the previous example. Again we consider storms whose impact in a
particular sector can be at most 30 minutes. In this case, then, we obtain the same four
weather realization scenarios as before.

v
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Figure 5-6. This figure gives the simplified version of the scenario we consider in the second Air Traffic
Control example. We model the planes arriving from the West as though they arrive from a single airport,
in this figure represented by the square node at the left of the figure. The path through the circular node at
the top of the figure represents the conservative path that entirely circumvents the storm. The hexagonal
node again represents the common destination airport, JFK.

Now, in addition to reporting the ground- and air-holding, we are interested in the
number of planes that are sent along the conservative route that entirely avoids the
weather front, and the number that take the shorter, or more optimistic path through
the storm. We consider 35 planes. As in the previous example, ground holding costs
10 units per plane, per 10 minute interval, and air holding 20 units. In addition to this,
we incur a cost of 10 units for each plane traveling on the first edge of the conservative
path, and 10 units for the second edge of that path.

In this example, finite adaptability not only improves the static solution signifi-
cantly, but in fact it is able to attain the performance of the utopic solution. In the
utopic, and 2-, and 4-adaptable solutions, no planes are directed to the conservative
path that seeks to fly well out of the footprint of the storm. The static robust solution
needs to send 5 out of the 35 flights along this path, and still requires twice the ground
holding used by the adaptable solutions.

B 5.6 Conclusions

This chapter considered the problem of scheduling ground delay, air delay, and rout-
ing for the global air traffic management problem. The two new ingredients we intro-
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| Delay Cost | Ground Holding | Air Holding | C-Route |
Utopic: 150 15 0 0
Static: 400 30 0 5
2-Adaptable: 150 15 0 0
4-Adaptable: 150 15 0 0

Table 5.3. In this table we give the results for the cost of total delay, as well as the total ground-holding
time, air-holding time, and number of flights directed along the most conservative path, for the utopic,
robust, 2-adaptable, and 4-adaptable schemes, for the Air Traffic Control example described in Section
5.5.2. As in Table 5.1, the ground- and air-holding time is given as the number of 10 minute segments
incurred by each flight (so if a single flight is delayed by 40 minutes, it contributes 4 to this count).

duce are the uncertainty in the weather, and and the sequential aspect of the weather
forecast. Our proposal builds in robustness to the scheduling problem. By using fi-
nite adaptability, we are able to build in adaptability of future scheduling decisions to
updates in the weather forecast. Our computational examples, while relatively small-
scale compared to the full-size problem we wish to solve, nevertheless illustrate that
robustness is needed in the fact of weather uncertainty, and importantly, that adapt-
ability can greatly mitigate the conservative aspect of adding robustness.

We used the ideas of finite adaptability developed in Chapter 3. The main mo-
tivation for this was two-fold: first, because of the integral nature of the scheduling
decisions, continuous adaptability schemes such as affine adaptability, do not seem
to be applicable. Second, because of the large-scale nature of the nominal problem,
there is no room to increase the number of variables or constraints by any appreciable
level. Finite adaptability is appropriate on both counts. It is able to accommodate the
discrete nature of the variable, and also the number of variables and constraints can
be controlled. This is particularly true because of the low-dimensional nature of the
uncertainty set; indeed, this is what makes finite adaptability particularly attractive
for this application.






CHAPTER 6

Conclusions and Future Work

daptability of future decisions on past realizations of the uncertainty, is the cen-

tral theme of this dissertation. The central ingredients in a multistage optimiza-
tion problem with parameter uncertainty, is the model for the uncertainty, and the
model for the adaptability. As we have shown in this thesis, the interaction of these
two ingredients is of utmost importance, for obtaining effective and efficient algo-
rithms.

In the first part of this thesis (Chapter 3), we considered a robust noise model.
Motivated by the need to accommodate discrete variables, we developed a piecewise
constant approach which we called Finite Adaptability. The main features of our pro-
posal are that it can, as designed, accommodate discrete variables, and that it presents
a hierarchy of adaptability. Under certain circumstances, such as when the dimension
of the uncertainty is small, or the dimension of the problem is small, or the number of
constraints affected by uncertainty is small, we prove tractability results. Even in the
general case when all three of these do not hold, we are able to derive necessary condi-
tions that can guide us in choosing good partitions, based on geometric considerations
of duality.

The second part of this thesis takes a different approach to uncertainty, assuming
that it is stochastic. Here, the assumed stochastic nature of the uncertainty not only
specifies the problem for us, but also serves as the judge of “how good” our final
solution is. Here we show that by controlling the structure of the adaptability, we
are able to control the number of samples required for multi-stage optimization. In
particular, we are able to obtain polynomial bounds on the sample complexity, for
arbitrary number of stages.

One of the fundamental themes of this thesis has been an attempt to strike a bal-
ance between performance and tractability. Robust Optimization has recently received
a surge of attention, precisely because of its appealing tractability properties in a fairly
wide class of convex optimization problems. Apparently, this tractability does not
seem to immediately extend to the multi-stage setting. Nevertheless, we believe that
tractability considerations should continue to be a strong guide to direct future re-
search.

A second important theme of this thesis has been the idea that successfully balanc-
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ing tractability and performance, requires managing the two main elements, uncer-
tainty and adaptability, within the framework of the optimization problem at hand. It
is our belief that this strongly argues for a unified treatment of statistics and optimiza-
tion. Indeed, the adaptability of future stage decisions on past uncertainty gets to the
core of optimization, estimation, and learning.

This thesis represents ultimately our initial efforts to address these issues. In the
remainder of this chapter, we outline what we believe to be some important open
questions and directions, towards continuing this work, along the two main themes
outlined in the paragraphs above.

B 6.1 Robust Optimization

The primitives of the robust optimization noise model, are the uncertainty sets them-
selves, as these define the uncertainty of the problem. The question of where these
sets arise, or how they should be chosen, is hardly touched upon in this thesis. While
there has been some work on constructing uncertainty sets from data (see [41]), this
important question is still largely unexplored. This is particularly true in the case of
multistage problems and adaptability. Throughout this thesis, we have not addressed
the possibility that the uncertainty sets may themselves depend on the action taken.
This is an important setup, as it seems quite plausible that different implemented ac-
tions could very well expose the system to different sets of uncertainty.

This further points to the concept of some structured uncertainty. In this thesis, and
more generally in the robust optimization literature, the focus has been on parameter
uncertainty that is essentially full dimensional (or perhaps restricted to lie in some
subspace). The dynamic nature of multistage optimization makes the consideration of
more complicated structural forms of uncertainty an important (and unexplored) area
of research.

B 6.2 Dealing With Data

The work in Chapter 4 incorporates the data directly into the optimization. That is,
there is no separate estimation phase, where one uses some procedure to extract an es-
timate of some parameters from a data sample, independently from the optimization,
and then in turn uses these parameter estimates to solve an optimization. The high-
level point is an obvious one, namely, there is no separation between estimation and
optimization, meaning that given a data sample, any estimate of parameters should
not be done in a vacuum, but rather the estimation procedure should depend on the
optimization problem. We have avoided this altogether, by simply using the data di-
rectly in the optimization. We pay a price, however, in that the proposed method does
not scale: the effort required to solve a problem is related in an albeit polynomial, but



SECTION 6.3. THE FEATURE FUNCTIONS AND REGULARIZATION 179

nonetheless nonfavorable way on the size of the data sample. A procedure that, say,
retains only an unbiased estimate of the first two moments of the data, and then uses
those estimates to solve an optimization problem, does not suffer from this depen-
dence on the size of the data sample, since the optimization problem solved depends
only on the two moment estimates.

Designing the estimation procedures, as well as the collected statistics themselves,
within the context of the optimization problem to be solved, seems like an important
question. This is particularly important in view of the cost of incorporating all the data
directly into the optimization. While the sample complexity bounds are indeed poly-
nomial, they can in practice increase the size of a problem unacceptably. Indeed, even
1,000 samples takes an easily solvable linear optimization with, say, 500 inequalities,
and produces a very large scale problem with half a million constraints.

B 6.3 The Feature Functions and Regularization

In Chapter 4, we considered adaptability defined by maps to potentially high dimen-
sional feature spaces. The possibility of using the covering number and fat-shattering
approach of Section 4.5, in conjunction with regularization, may free us from using the
dimensionality of the feature mappings as a proxy for the complexity, instead permit-
ting the use of other notions of regularity. While potentially appealing to use maps
to much higher dimensional spaces (potentially even to infinite dimensional spaces,
as is common in the Reproducing Kernel Hilbert Space (RKHS) literature in classifica-
tion (e.g., [64], [115])) this seems to lead to a formulation where both the number of
constraints, and variables are dependent on the number of samples. If there are effi-
cient column and constraint generating approaches to such problems, the door would
be open to pursuing a richer class of mappings, without having to explicitly specify
the finite dimensional image of the feature mapping F. In the absence of such proce-
dures, however, it seems that choosing good low-dimensional functions, F, is of ut-
most importance, since the dimensionality controls the number of variables, and thus
indirectly, the sample complexity and therefore the number of constraints as well.

B 6.4 Structural Risk Minimization

The sample complexity bounds of Chapter 4 quantify how the reliability and feasibility
guarantees degrade when, for a fixed number, N, of samples, we increase the level, or
complexity of the adaptability. Recall from that chapter, that the level of adaptability
is essentially encoded into the dimension of the image of the feature functions F.

As the empirical results in that chapter suggest, however, the sample complexity
bounds do not tell the full story, as far as feasibility goes. Indeed, the results there
indicate that while higher levels of adaptability may have worse sample-complexity
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based performance guarantees, nevertheless the solutions produced may have better
feasibility properties than solutions generated by lower levels of adaptability. The idea
is that adaptability may allow the optimization to exploit structure in the uncertainty
data. We illustrate this further by means of a very simple network design problem.
Consider the tandem 3-node network shown in Figure 6-1.

Lo Lo L

d; dy ds

Figure 6-1. This figure shows a tandem network with three nodes. We consider the two-stage network
design problem, with demand uncertainty at the second, third, and fourth nodes.

As in Section 4.6.1 in Chapter 4, we assume there is uncertainty in the demand. In
this case, let us assume a simple model for the uncertainty: suppose that the samples
of the three demand vectors, (d;, d2, d3) are drawn uniformly and at random from the

simplex:
B

If the number, N, of samples is large, the optimal static robust policy will be to dis-
tribute the capacity to the three edges as in Figure 6-2.
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Figure 6-2. This figure shows the static solution to the tandem network with three nodes.

Given the same budget for a first-stage solution, namely, 6 capacity units, the op-
timal allocation, given the structure of the uncertainty set, is evenly: (ci,c2,¢3) =
(2,2,2). Indeed, in this case, the solution will be deterministically feasible to noise
from the same source, that is amplified 100%. Note that the static solution will be
feasible to this amplified noise with probability no more than 50%.

The principle of Structural Risk Minimization (see, e.g., [138], [121], and references
therein, for SRM in the context of statistical learning) seeks to balance the benefits of
increased adaptability in future stages, against the possibility of over-fitting, since the
number of sample points available is taken to be fixed. The bounds for the sample
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complexity control the risk of over-fitting. What we are missing from this picture, yet
is apparent empirically from our examples, is an expression for the benefits of adapt-
ability for feasibility of the first stage decision. A natural candidate for performance
on the training data is the empirical feasibility of the solution. Certainly, empirical
feasibility increases as adaptability increases. The sample complexity also increases,
however. Therefore given a fixed number, N, of samples, as the level of adaptability
increases, the empirical error decreases, but the guarantees that this empirical error is
a close approximation of the true level of feasibility, deteriorate. In a nutshell, the prin-
ciple of structural risk minimization require the balance of the improved performance
on the training error, i.e., the improved empirical feasibility in our case, with the dete-
riorating bounds on the closeness of the empirical feasibility to the true feasibility. The
first term improves with increasing adaptability, while the second deteriorates.

The difficulty in this case, is that it is intractable in general to compute the empir-
ical feasibility in the context of optimization. That is, given uncertainty realizations
wl [ wW), if there is no solution feasible to all these realizations simultaneously,
it is in general N P-hard to compute a solution that is feasible to the maximum num-
ber of these. Nevertheless, it seems like an interesting and worthwhile endeavor to
try to obtain natural and meaningful bounds on these quantities. This would serve
as an a priori guide as to what level of adaptability might be appropriate for different
applications.






CHAPTER A

Simulation and Computation Details

In this appendix we give the details of the computations and simulations performed
in Chapters 3, 4, and 5.

All the computations were performed using Matlab [128], AMPL and CPLEX [2],
and also the package CPLEXINT [131], which provides a very convenient interface be-
tween Matlab and CPLEX. All computations in all chapters were run on a PC Pentium
IV with a 2.4 Ghz processor, and 1 Gb RAM.
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CHAPTER B

Scale Sensitive Complexity

T nthis appendix, we give some additional background on learning with real-valued
functions (as opposed to {0, 1}-valued functions). This allows us to complete the
proof of Proposition 4.8 from Chapter 4.

H B.1 Function Complexity Background

In the background section of Chapter 2, we introduced the complexity of a class of
sets, C, as given by the growth function. Recall that the growth function measures the
maximum cardinality of different ways a collection of m vectors can be classified by
the binary classifier rules specified by the sets C' € C.

If we view the sets C € C as indicator functions,

1, fweC
0, otherwise

Ic(z) = {

then the growth function computes the maximum cardinality of the image of m points,
under the collection of indicator functions corresponding to the sets C € C.

This measure of complexity of the set of indicator functions is also useful for un-
derstanding the complexity of a set of continuous functions. For continuous functions,
however, it no longer makes sense to consider the cardinality of the image, since the
image will typically be continuous. Instead, we replace the cardinality with the notion
of a covering number. There has been extensive work done on covering numbers in
Functional Analysis, and learning theory. We refer the reader to [57], [136], [74], and
references therein, and provide only a brief discussion here.

Given a subset S of Euclidean space with metric d, the y-covering number of S
with respect to d, denoted by N (v, S, d), is the smallest number of points, sy,..., sk,
such that any point in S is at most a distance y from some s;. For indicator functions,
we considered the cardinality of the image of a collection of points, w®,...,w(™),
under all possible indicator functions in our set. Now consider a class F of continuous
functions. Here we consider all possible mappings of the points w(Y, ..., w(™ under
all functions f € F, and instead of the cardinality of this set (which is typically infinite)
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we ask for the covering number. In symbols, we consider:

Flow, ..wm) = {F@D),..., f@™)) : f € F} CR™,

and then the covering number of the set F|(,a) _,m))- Now we can define:

Definition B.1
The covering number of a function class F, for a given m and +y, is the maximum size of the cov-
ering number, N (7, F| (), w(m)), 4), where we take the maximum over all (W, ..., wm) e

Q™, and where d denotes the a metric, typically the Euclidean or co-metric.

Note that this is exactly parallel to the development of the growth function. The main
difference, however, is the additional parameter, 7. Unlike the growth function, the
covering number depends on this parameter -y, and therefore is called a scale-sensitive
dimension.

The growth function controls the probability of error in empirical error minimiza-
tion algorithms for classification. For classification by indicator functions, a point is
either correctly or incorrectly classified. When we use real-valued functions, however,
we classify according to some threshold, say, if the real-valued label attached to a point
is above or below 1/2, the corresponding point is then labeled +1 or 0, respectively.
But then the notion of “how close” a correctly classified point is to misclassification,
becomes meaningful. This closeness is called the margin. Scale-sensitive measures
control the probability of error for algorithms using real-valued functions, that use a
margin definition for the error. Thus, for a y-margin criterion for the error, a point is
considered misclassified if its real-valued label is within v of the threshold point, 1/2.

Again this allows us to compute an empirical error of a particular real-valued func-
tion classifier, and then to use uniform convergence results to obtain bounds on how
far the true error is from the empirical error. The difference is in the definition of the
empirical error, as now it explicitly involves the margin.

For more on learning with real-valued classifiers, we refer the reader to Part II of

(51

B B.2 A Sample Complexity Result

In this section prove Proposition 4.8. The proposition considers the robust sampled
learning problem, where feasibility no longer requires feasibility to the sampled points
in Qp, but instead requires the more stringent condition of feasibility for every real-
ization of the uncertainty within a distance -y of every sampled point in Q5. Recall the
statement of the proposition.
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Proposition B.1
Consider a two-stage linear optimization problem, and structured adaptability function y(w):

min: c¢'x

st.: Aw)x+ B(w)y(w) <b.

Let Qy denote N random samples of w, and let XY n(7y) denote the set defined above, of pairs
of solutions feasible for the robustified sampled. Then with probability at least (1 — 0),

sup P(A(w)z + B(w)y(w) — b > 0) <¢,
{(=u())eXYn (1}

as long as the number of samples N = N (g, 6, y) satisfies

4 12 . 2
> - —_— —
N(e,6,7) 2 - (v:,m ~ +1n5),

where V., denotes the fat shattering dimension of the collection of sets
Coay ={weQ: AWz + B(w)y(w) —b <0}

PROOF. The main difference between this result, and Proposition 4.5, is that the feasi-
ble set has been reduced because of the stricter feasibility requirement, and the VC di-
mension in the sample complexity, has been replaced by the fat-shattering dimension
of the family of sets, C(z, 5,(.))." The fat-shattering dimension is traditionally defined for
sets of functions. The extension to families of sets is natural in our context. Indeed,
given a family of sets, C, define the family of [—1, 1]-valued functions as follows:

Fe & {fo() = [min(d(-, ©), 1) — min(d(-, C°),1)] : C € C}.

Then the fat-shattering dimension of F¢ measures exactly the ability of the class of sets
in C to separate not single points as is the definition for the VC-dimension, but y-balls,
as illustrated in Figure 4-6 in Chapter 4. This is because by construction, the functions
in the family have Lipschitz constant equal to 1, and hence the margin in the input, i.e.,
with respect to w, is equal to the margin in the output space, -1, 1]. From this point,
and from the fact that we assume that the set

A(w)x + B(w)y(w) —b<0, Yw e B, (wh)

, A .

Aw)x + B(w)y(w) - b < O; Yw € B, (wM)

!The notational extensions for multiple stage adaptability are tedious, but straightforward.
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is non-empty, the proof follows from standard learning theory results. For the details,
we refer the reader to [4], Theorem 8.3.1. O
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