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Abstract

In this paper, we introduce a framework for learning aggressive maneuvers using dy-
namic movement primitives (DMP) for helicopters. Our ultimate goal is to combine
these DMPs to generate new primitives and demonstrate them on a 3-DOF (3 Degrees
of Freedom) helicopter. An observed movement is approximated and regenerated us-
ing DMP methods. After learning the movement primitives, the partial contraction
theory is used to combine them. We imitate the aggressive maneuvers that are per-
formed by a human and use these primitives to achieve new maneuvers that can fly
over an obstacle. Experiments on the Quanser 3-DOF Helicopter demonstrate the
effectiveness of our proposed method. In addition, we linearly combine DMPs and
propose a new type of DMP. We also analyze Matsuoka's oscillator and Hopf oscillator
using contraction theory.
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Chapter 1

Introduction

The role of UAVs (Unmanned Aerial Vehicles) have gained significant importance in

the last decades. They have many advantages (agility, low surface area, ability to

work in constrained or dangerous places) compared to their conventional precedents.

However, a key question still remains: Are we really utilizing their full capacity?

In this thesis, we will use a novel approach that combines different fields to give a

qualitative answer to this question.

1.1 Thesis outline

We start with showing the background of our approach in Chapter 2.

Chapter 3 contains the analysis of the DMP algorithm using contraction theory.

The learning aspect of the algorithm is also studied in this chapter

Chapter 4 describes the method used in coupling the primitives.

Chapter 5 starts with describing the experimental setup and the controller that

are used on our application. Next, we describe the Simulations and the Experiments

step by step, starting from trajectory learning to the final tests.

Chapter 6 contains the analyzes of Matsuoka's and Hopf oscillator.

Chapter 7 contains the extensions of the DMP algorithm.

This thesis concludes with Chapter 8.
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Chapter 2

Research Approach

2.1 Background

We can classify the background into three fields that each has specific importance.

2.1.1 Biological Motivation

The animal nervous system is an expert in controlling the body to accomplish certain

movements despite environmental challenges. For example, a squirrel can climb a

tree very quickly despite the many dynamic constraints. We are still far away from

explaining how the nervous system controls motion, but there has been a number of

studies which lead us closed to the answer.

In the experiments [23], monkeys were used to carry out a movement of a forearm

to reach a visual target (See Fig. 2-1) and reward was given if they hold at this position

for one second. During this process, their forearm was fastened by an apparatus that

lets them extend their forearm in the horizontal plane without the sight of their

arm. Tests were performed before and after the medical surgery that deprives the

monkeys of a sensory input from their forearm. In both intact and the deafferented

monkeys, initial position of the arm changed before the beginning of the movement

(150-200 ms). However, in both cases, the forearm moved to the target precisely.

This experiment suggests that the movement can be achieved regardless of

17



the initial conditions and the control variable is the equilibrium point achieved by

agonist and antagonist muscles (See Fig. 2-2).

0

Figure 2-1: Monkey is seated on a chair and its arm is fastened to the splint. Targets

are located at 5 degrees intervals. In experiments, the monkey was not allowed to see

its arm. The room was darkened. [23]

It is also found that the success of the deafferented monkey is closely related

to the positions between the body and the arm apparatus. When they changed

the posture of the monkey, it was seen that deafferented monkey's approach to the

target was inaccurate, although the intact monkey achieved the same movement. This

experiment underscores the fact that performance is closely connected with

feedback control.

The same experimental setup was used again over monkeys to determine the

characteristic of the trajectory [24]. In one experiment, when the intact monkey

started to approach the target, a brief torque was applied to drive the elbow quickly to

the desired position. However, it was noted that the elbow returned to an intermediate

position between starting and the target point before turning back to the target

position (See Fig. 2-3). We can see that while returning back to intermediate location,

flexor muscles showed EMG (electromyographic) activity.

In another experiment which was performed in deafferented monkeys, the arm was

located at the target position and stabilized there using torque motor. The monkey

didn't expect a reward, because the target was not illuminated. In addition, the

18
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ARM MOVEMENTS MADE BY PELAFERENTED MONREY

Figure 2-2: Unloaded arm movements of the monkey . In every trial, the initial

position was different and monkey managed to reach the target position. [23]

monkey was insensible to the displacement because of the lack of sensory inputs. In

its new position, the target was illuminated. However, instead of staying in the current

position, the trained monkey moved its arm first to the location where its arm was

originally located and moved it back to the target location (See Fig. 2-4). The last

two experiments suggest that the movement called "virtual trajectory"~ is

composed of more than one equilibrium point and CNS (central nervous

system) uses this stability of lower level of the motor system to simplify

the generation of movement primitives [241

Experiments on frogs [30, 25] show us another clue to understand the movement

primitives. They microstimulated spinal cord and measured the forces at the ankle.

This process is repeated with ankle replaced at nine to 16 locations and it is observed

that collection of measured forces is always convergent to a single equilibrium point

(See Fig. 2-5).

In microstimulation of the spinal cord, the forces acting on the ankle is not sta-

tionary. It changes with time. It was also observed that snapshot of these force fields

converge into an equilibrium point (See Fig. 2-6) . These findings also suggest

that inverse kinematics plays a crucial role in determining the endpoint

19



Figure 2-3: Trajectories of the forearm and EMG data of the biceps observed from
intact monkeys. The bar below the trajectories indicates the duration of the distur-

bance. A shows the trajectory without disturbances. In B and C, the arm was driven

to the target early using external torque. The forearm moved to the position between
original and target locations. [24]

trajectory [31].

2.1.2 Imitation Learning

Confucius once said: "By three methods we may learn wisdom: first, by reflection,

which is noblest; second, by imitation, which is easiest; and third, by experience,

which is the most bitter. Imitation takes place when an agent learns a behavior

by observing the execution of that behavior by a teacher (Bakker-Kuniyoshi [10]).

Imitation is not inherent to humans and is also observed in animals. For example,

experiments show that kittens exposed to adult cats manipulate levers to retrieve

food much faster than the control group (Galef [27]).

There has been a number of applications of imitation learning in the field of

robotics. Studies on locomotion [4, 5, 33], humanoid robots [6, 7],[28], [26], and

human-robot interactions [32, 19] have used either imitation learning or movement

primitives. The emphasis on these studies is on primitive derivation and movement

classification [29]; combinations of the primitives [20, 15, 21, 22, 43, 41] and primitive

models [16, 18, 45, 41] in order to extract behaviors.

In this work, we use a novel approach that segments a DMP [17] into two primitives

20



and combine them consecutively in different initial conditions to generate aggressive

maneuvers. Our approach is designed in view of the experiments on frogs and monkeys

which suggest that we are faced with an inverse-kinematics algorithm that adapts to

the environment and changes in a sequence of equilibrium points irrespective of the

initial conditions. The equilibrium points in our algorithm have not necessarily time

bounds and we take the original maneuvers from human-piloted flight data.

21
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Figure 2-4: Trajectories and the EMG data of the forearm movements of the deaf-

ferented monkey. Before the target illustration, torque is applied to drive the arm to

the target location. When the target is activated, the arm returned back to a posi-

tion between original and target position. The upper horizontal bar and the lower

horizontal bars indicate duration of servo action and the target light respectively.

The continuous lines show arm position and the dashed lines demonstrates torque.

B=biceps, T=triceps. [24]
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Figure 2-5: Force fields created by microstimulation . A= Convergence force

fields(CFF) around the frog's leg, B= CFF taken from deafferented frog, C= Force

fields extracted the region of motoneurons, D= CFF taken by microstimulation of a

spinal cord at 40 Hz for 300 ms, Center= Transverse section of the spinal cord. [30]
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Figure 2-6: Snapshots of the equilibrium points following the microstimulation. [25]
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Chapter 3

Analysis of DMP

This section outlines the analysis of the DMP algorithm [17] which we later combine

using contraction theory.

3.1 DMP Algorithm

DMP is a trajectory generation algorithm which interpolates between the start and

end points of a path based on learning. We use the preferred path of the human

operator as the learning criterion. The system can be represented by

ri = az(#2(g - y) - z) (3.1)

(3.2)ry = z + f,

where y, y and # characterize the desired trajectory. Hence, the canonical system is

given by

rV = a(,8z(g - x) - v) (3.3)

(3.4)rX v,

where g is the desired end point. Assuming that the f-function is zero, system

will converge to g exponentially. The goal of the DMP algorithm is to modify this

25



exponential path. Therefore, the f-function makes the system non-linear and allows

us to generate different trajectories between the origin and the g point.

The f-function is a normalized mixture of Gaussians functions which approximates

the final trajectory, i.e. it has the general form

where

ZN Tiif(X, ,g) = -h, 

Ti = exp{ -hi (x/g - ci)2}.

(3.5)

(3.6)

3.2 Rhythmic DMPs

The DMP algorithm can also be extended to the rhythmic movements [47] by changing

the canonical system with the following:

r = 1 (3.7)

r- = -ap(r - ro) (3.8)

where q corresponds to x in Eq. 3.3 as

system, control policy:

a temporal variable. Similar to the discrete

ri = &()3(ym - y) - z)

y = z + f

(N QiTi
f(x, v, g) = 'hN i

V= exp{hi(cos(O - ci) - 1)}

where ym is a basis point for learning and D = [r cos(), r sin(#)]T.

26
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3.3 Learning of primitives using DMPs

Learning aspect of the algorithm comes into play with the computation of the weights

(wi) of the Gaussians. Weights are derived from Eq.3.1 and Eq.3.2 using the training

trajectory Ydemo and ydemo as variables . Once the parameters of the f-function are

learned, then DMP can simply be used to generate the original trajectory. In DMP,

spatial and temporal shifts are achieved by adjusting the g and T respectively and

DMP functions as shown below.

" Spatial adjustments: Recall that a function (f) is said to be linear if it has the

property:

f(ax + OX) = af(x) + Of(y) f : RM - R' (3.13)

where x, y . Rm  a, f E R. In spatial adjustments, the first system [Eq.(3.1),

Eq.(3.2)] can be seen as a linear system. It is due to the fact that variable v in

f-function is only multiplied by time-varying constant. From linearity, output

(y) is a scaled version of the input (g).

" Temporal adjustments: The second system [(Eq.(3.3) Eq.(3.4)] is linear and

responses against the adjustments of r proportionally . Hence, the multiplier

of variable v in f-function is still a time-varying constant which is temporally

scaled by r. From superposition, we can say that temporal adjustment of the

whole system can be achieved by changing the variable T.

These arguments can also be extended to the rhythmic DMP for modulations.

3.4 Analysis of DMP Using Contraction Theory

Consider a system

d 6z1  F1  0 Jz1 (3.14)

dt LZ2 F 2 1 F 2 2  6z2 _

27



where zi and z2 represent the first and the second system of DMP respectively. It

can be seen that the second system is contracting without any coupling term and

bounded F216zi represents exponentially decaying disturbance. Similar to F11 , F2 2 is

contracting in the second equation. Hence, there is a hierarchy among the contracting

systems and the whole system globally exponentially converges to a single trajectory.

Hierarchical contraction can also be seen in rhythmic DMPs, since the derivatives of

x = r cos() and y = r sin(o) are contracting.

Although the system will eventually contract to the g point, there will be a time

delay due to the hierarchy between second and the first system. We can decrease this

delay by increasing the number of weights in our equation.

Stability of the DMPs can easily be analyzed. Once the original trajectory is

mapped into the DMP, the system behaves linearly for a given input as shown before.

Moreover, contraction property guarantees the convergence to a single trajectory. In

this perspective, it is easy to show that learning the trajectories is not constrained

by the stationary goal points that do not have a velocity compound.

28



Chapter 4

Coupling of DMPs Using

Contraction Theory

In this section, we use partial contraction theory [14] to couple DMPs.

4.1 One-way Coupling

One-way coupling configuration of contraction theory allows a system to converge to

its coupled pair smoothly. Theory for the one way coupling states the following:

L1 = f(Xi, t) (4.1)

'2= f(X 2 , t) + u(Xi) - u(X 2 ) (4.2)

In a given system, if f - u is contracting, then X 2 -- x1 from any initial condition.

A typical example for one way coupling is an observer design. While the first

system represents the real plant and the second system represents the mathematical

model of the first system. The states of the second system will converge to the states

of the first system and result in the robust estimation of the real system states.

However, for our experiments, we interpret contraction as to imitate the transition

between two states. It will be shown in chapter V how the end of one trajectory

becomes the initial condition of the second trajectory and contraction accomplishes

29
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Figure 4-1: One-way Figure 4-2: One-way

coupling for a regular coupling for a rhythmic
DMP DMP

the smooth transition.

In DMPs, we couple the two systems using the following equations:

1 = gi - Y1 - 1 + f (yi) (4.3)

Q2 = 92 - Y2 - V2 + u(yl) - u(y 2) (4.4)

u(xi) = gi + f(Xi) (4.5)

ZNEiwiv (4.6)
f(x, v,g) = * 4

Ti = exp{-hi(x/g - Ci)2 (4.7)

A toy example of the equations listed above can be seen in Fig. 4-1 and Fig. 4-2.

In this setting, Y2 is the first trajectory primitive, which contracts to y, - the second

trajectory primitive.

One-way coupling has many advantages over its precedents. In [41], trajectories

are achieved by stretching temporal and spatial components of the system and there

is a direct relation between initial and end points. Moreover, there are discontinuities

in terms of derivatives of the trajectory at the transition regions between primitives.

Giese [42] solves the problem of discontinuities by first taking the derivatives of the

original trajectories, then combining the derivatives, and finally integrating them

30
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again using initial conditions. However, this method adversely affects the accuracy

of the trajectories. Hence, our method improves on [41] and [42] by generating more

accurate trajectories independent of initial points. We summarize the advantages for

using dynamical systems as control policies as follows:

" It is easy to incorporate perturbations to dynamical systems.

" It is easy to represent the primitives.

" Convergence to to the goal position is guaranteed due to the attractor dynamics.

" It is easy to modify for different tasks.

" At the transition regions, discontinuities are avoided using initial conditions for

the derivatives.

" Partial contraction theory forces the coupling from any initial condition.

Also in [17], the system is driven between stationary points. However, biological

experiments suggest that we are faced with a "virtual trajectory" composed of equi-

librium points that has velocity compounds. For this reason, we showed that we can

achieve this property by combining nonconstant points.
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Chapter 5

Experiments on Helicopter

In this section we apply the motion primitives on the helicopter.

5.1 Experimental Setup and Controller

5.1.1 3 DOF Helicopter

We used Quanser Helicopter (see Figure 5-1) in our experiments. The helicopter is

an under-actuated and minimum-phase system having two propellers at the end of

the arm. Two DC motor are mounted below the propellers to create the forces which

drive propellers. The motors' axes are parallel and their thrust is vertical to the

propellers. We have three degrees of freedom (DOF): pitch (vertical movement of

the propellers), roll (circular movement around the axis of the propellers) and travel

(movement around the vertical base) in contrast with conventional helicopters with

six degrees of freedom.

5.1.2 System Dynamics

In system model[8], origin of our coordinate system is at the bearing and slip-ring

assembly. The combinations of our actuators form the collective (T,,1 = TL + TR) and

cyclic (Ty, = TL - TR) forces and they are used as inputs in our system. The pitch

and roll motions are controlled by collective and cyclic thrust respectively. Motion in

33



Figure 5-1: Transverse momentum distributions. [8]

L

Figure 5-2: Schematic of the 3DOF helicopter.[8]

Left

Right
- 5 L

Figure 5-3: Top view. [8]

travel angle is controlled by the components of thrust. Positive roll results in positive

change of angle. The schematics of helicopter are shown in Figures 5-2 and 5-3

Let J_, Jyy, and Jz denote the moment of inertia of our system dynamics. For

simplicity, we ignore the products of inertia terms. Then, the equations of motion

are as follows (cf. Ishutkina [8]):

JyyJ

= (TL + TR)L cos(9) sin() - (TL - TR)lh sin(0) sin - Drag

= -Mglosin(9+ Oo) + (TL + TR)Lcos(#)

= -mgy sin(O) + (TL - TR)lh

(5.1)

34



" M is the total mass of the helicopter assembly

" rn is the mass of the rotor assembly

" L is the length of the main beam from the slip-ring pivot to the rotor assembly

" 1h is the distance from the rotor pivot to each of the propellers

* Drag = { p( L)2 (So + SO sin(#))L

" So and SO are the effective drag coefficients times the reference area and p is

the density of air

Since the power to the actuators are given by the voltages, a thrust to voltage

relationship has been empirically determined and implemented using a lookup table.

Figure5-4[9]

2

0.5

0

-05

-4 -3 -2 -1

Figure 5-4: Motor Volt to Thrust Relationship.

5.1.3 Feedback Linearization

As shown in the above section the system is described by equations which are non-

linear in the states, but nonlinear in terms of control inputs. In practice, we want to

design a tracking controller [11] for a 3DOF helicopter which can track the trajecto-

ries in elevation and travel. To use the techniques of input-output linearization [12]

and design a tracking controller while avoiding singularities, we reduce the system

model to dominant terms:

35
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Table 5. 1: Parameter Values
Parameter Value Unit Description

M 1.15 kg mass of the rotor assembly
M 3.57 kg mass of the whole setup
MO 0.031 kg effective mass at hover
L 0.66 m length from pivot point to the heli body
la 0.177 m length from pivot point to the rotor

JXX 0.0344 kgm 2  moment of inertia about x-axis

Jyy 1.0197 kgm2 moment of inertia about y-axis

Jzz 1.0349 kgm 2  moment of inertia about z-axis

JYZ -0.0018 kgM 2  product of inertia

JZY -0.0018 kgm 2  product of inertia
R 0.1 m radius of the rotor

9 9.8 M/s 2  gravitational constant
1 _ 0.004 m length of pendulum for roll axis
l 0.014 m length of pendulum for pitch axis

- -Mgl6  o L
& = sin(9 + -O)+ Lcos(#)Tcol

= Tccmg- sin( )

- L
= cos()sin(#)Tcoi

(5.2)

(5.3)

(5.4)

To achieve tracking tasks we derive the equivalent input:

V = Yd - 2Ai - A2i

with x = [OO)] and z = x - Xd being the tracking error. Since, Eq.5.3 is decoupled

from the other two equations and one can use dynamic inversion to write:

Vo - cosin(9 + Oo)

cicos(0)

c4 cos(O)sin(o)
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we can solve for appropriate kd through

tan(#) =VP
(Vo - cosin(9 + 0))c4 cos(O)

where c's substitute for the appropriate constants from the dynamic equations. Once

the corresponding #d has been found, /d and qd are set to zero and V0 is calculated:

Finally, we find

TC - V c3sin(#)
cyc - C2

TC01 = VP - c5Teyesin(0)sin(0)
c4 cos(O)sin()

To use feedback linearization control law, it is necessary to measure all the states

of the system. Since only the angles of 3DOF helicopter are measured, we have

applied a derivative and a low pass filter to collect the derivatives of the states. Once

implemented in Simulink via S-functions, the controller described above is robust and

has excellent tracking characteristics.

5.2 Trajectory Generation

In our experimental setup, we used an operator with a joystick to create aggressive

trajectories to pass an obstacle. However, generating aggressive trajectories with the

joystick is a difficult task even for the operator. Therefore, we designed an augmented

control for the joystick to enhance the performance of the helicopter. In particular,

we used "up" and "down" movements of the joystick to increase or decrease the T,,,

that is applied to the actuators. For the "right" and "left" movements of the joystick,
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we preferred to control the roll angle using PD control.

In the original maneuver, the obstacle's distance and the highest point are in the

coordinates where L and 0 angles are 220 and 60 respectively and the helicopter starts

with coordinates where ) = 28, 0 = 317 and # = -17 (see Figure 5-5).

350

Elevation

300_ Pitch
Travel

250-

200-

150-

100 /

50-

-50 /

-100 II

0 5 10 15 20 25
Time (sec)

Figure 5-5: Original maneuver achieved by an operator

5.3 Trajectory Learning

To fly over different obstacles, the acquired primitive is segmented into two primitives

at the highest pitch angle. Figures 5-6 and Fig. 5-7 show the results of DMP algorithm

for the pitch angle. Since the Quanser Helicopter has 3-DOF, for any given trajectory,

we use DMP to approximate paths on roll and travel components as well. In Fig.
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5-6, the top left graph is a result for the pitch angle, where green line represents the

operator input for the trajectory and the blue line represents the fitting that the DMP

computes. Other figures show the time evolution of the DMP parameters. It can also

be seen that the generated trajectories capture the operator's driving characteristics.
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Figure 5-6: Trajectory generation for the first primitive - pitch

5.4 Synchronization of primitives

The two primitives created in the previous sections are defined as trajectories between

certain start and end points. However, the end point of the first trajectory does not

necessarily matches with the starting point of the second trajectory. We use the

contraction theory to force the first trajectory to converge to the second trajectory.
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Figure 5-7: Trajectory generation for the second primitive - pitch

However, since we want to use the contraction as a transition between two trajectories,

coupling is enabled towards the end of first primitive. Figure 5-8 shows how the two

trajectories evolve in time. In the first primitive, the goal positions of L and 0 angles

are changed to 1500 and 500 respectively, where original angles are 0 = 2200 and

0 = 600. In the second primitive, the goal position of the 0 angle is changed from

317' to 3000. Solid line shows the travel, dashed line shows roll, and dash-dot line

shows the pitch angles while the vertical dotted line indicates the switching time from

the first primitive to the second one. It can be seen that the trajectories fit each other

smoothly at the transition points.
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Final Trajectory

200 400 600 8M ) 1000
tlme(sec) x 100

1210 1400 1600 1800

Figure 5-8: Time evolution of primitive-1 and primitive-2 merged.

5.5 Experiments on the Helicopter

Tracking performance of our helicopter with respect to the desired trajectory is shown

in Figure 5-9. It can be seen that the helicopter followed the desired (0 and 9)

angles almost perfectly. The trajectory of the roll angle is different than the desired

since we control two parameters (V) and 9) and the goal positions of the DMPs are

different. However, it can be seen that they follow the same pattern. The last

part of the roll trajectory manifests an oscillation which can be prevented by roll

control, since the other parameters are almost constant. The tracking performance

can further be improved by applying discrete nonlinear observers to get better velocity

and acceleration values. Figure 5-10 shows snapshots of the maneuver.
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Figure 5-9 Tracking performance of the helicopter
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Figure 5-10: Snapshots of the obstacle avoidance maneuver.
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Chapter 6

Analysis of Oscillators Using

Contraction Theory

In biological systems, various types of oscillations and rhythmic movements can be

observed. Studies on these behaviors suggest that spinal cord possesses central pattern

generators (CPGs) to have such a property [49]. In this perspective, there are several

types of CPG models in the literature. The purpose of this chapter is to analyze two

of them (the Hopf oscillator and Matsuoka's oscillator) using contraction theory.

6.1 Hopf Oscillator

In [46], Ijspeert design a generic central pattern generator (CPG) that can adapt

to given periodic signals. In the model, he represents the periodic function as a

combination of Hopf oscillators like fourier series and each oscillator's frequency and

amplitude are learned using Hebbian learning (See Fig.6-1). Here, we will analyze

the Hopf oscillators after learning. The system can be represented by

y=7(p - r 2 )x - Wy (6.1)

-y =7(t - r2)y + WX (6.2)
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where r Vx 2 + y 2 and w is the coupling term which is defined through learning.

LTO2

Figure 6-1: General structure of the adaptive central pattern generators.[1]

First, we assume that we have a system without coupling:

S= 7(- r 2 )x

p = -(p - r2 )y

(6.3)

(6.4)

In polar coordinates, the system becomes

r = Y(p - r 2 )r (6.5)

From Lyapunov, it is easy to show that r converges to ,/7 and the jacobian of

system:

Of
ar = p - 3r2 (6.6)

Since r2 -+ P, the system is contracting as shown in Fig. 1.

The jacobian in cartesian coordinates is also contracting. The equations of oscil-

lator are as follows
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Figure 6-2: Time evolution of r with initial conditions 4 and 10

= '-y(pL - 3X2 _ y 2 )Ox

= 7(p - 3y 2 - 92)
ay

Since 2 + y2 -+ /u, our equations contract and eventually become

af-= -2yx 2

Of
Oy

(6.7)

(6.8)

Theorem 1 if we couple Eq. 6.3 and Eq. 6.4 as it is done in Hopf oscillators, then x

and y will converge to each other exponentially with a phase difference 7r/2 regardless

of initial conditions.

Proof: It can be shown with the same method used in [14]. Given initial conditions
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x(0) and y(O), we define

Of . f
g(x, y, t)= - -- wy= --- wx (6.9)

Ox Oy

and construct the auxiliary system

Of
= -- +g(x, y, t) (6.10)

This system is contracting since the function 2 is contracting and all solutions of zaz

converges into a single trajectory. Since z = x and z = y = xj are two particular

solutions, this implies that x and y synchronize with phase difference 7r/2.

Even after coupling, we still preserve the Eq. (6.6) in polar coordinates and the

system contracts. Hence, we can apply partial contraction theory for different tasks.

In particular, we will use one-way synchronization and rotational transformation (see

Keehong [52]) to lock the oscillators with phase differences as it is done in [51]. The

equations can be represented by

:4 = y( 2 - r )xi (6.11)

y1 = _Y(p - r2)y 1  (6.12)

2= 7(t - r2)x 2 - O(x 2 - cos(9)xi + sin(9)yl) (6.13)

V2 =7(P - r2)y2 - O(Y2 - sin(6)x1 - cos(9)yi) (6.14)

where ri = x +y?, i = 1, 2 and 6 is the phase difference desired between oscillators.

The example of phase-locking can be seen in Fig.6-3.

6.2 Matsuoka's Oscillators

In [44], Matsuoka design mutual inhibition networks represented by a continuous-

variable neuron model to generate oscillations (see details for [44]). The system can

be represented by
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frme(sec)

25

Figure 6-3: One-way coupling with a phase difference 7r/4

il = -U1 - Wy 2 - 3v1 + uO

7 2 = -u 2 - Wy 1 - OV 2 + UO

T 1 = -Vi + Yi

TV 2 = -V 2 + Y2

(6.15)

(6.16)

(6.17)

(6.18)

yj = f(uj) f(uj) = max(0, uj) (i = 1, 2)

U0 > 0

where ui is the inner state of the neuron; yj is the output of the neuron; vi is the

self inhibition variable; uo is the external output; w is the coupling constant; r is

the time constant. Since the system contains non-smooth functions (yi) in it, we will

investigate the Matsuoka's oscillators in four regions as it is done in [50].

(i) For ui > 0 and u2 > 0, we can derive the equations below:
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T 1 = -ij 1 - (-r,6 1 + vj) - w(TZi 2 + v2) - OV 1 + uO

r62 = - 2 - (T71 2 + v2) - w(T;1 + VI) - ,v2 + uo

From Eq. (6.19) and Eq. (6.20), we have

r(i + )= -(T + I + TW)(i + '2) - (0+ 1 + w)(vi + v 2)+ 2uo

and also

lil +d 2 = -(ui + U 2) - W(ui + U 2) - 0(v1 + v2) + uo

(6.19)

(6.20)

(6.21)

(6.22)

From the equations above, it is easy to say that variables ui + u2 and v 1 + v 2 will

converge to equilibrium points, if the constants that multiplies the variables are pos-

itive. However, there are two solutions in terms of u's and v's. For u's, first solution

is ui = 0, u 2 = 0 and the second one, which is of our interest, is Ui = -u 2 . To have

the second solution, our system should be unstable. Therefore, eigenvalue analysis is

done to have proper variables. From analyzes, it is found that one of the conditions

listed below should be accomplished.

f < w - 1, 3 < -w - 1, w < -1 -- 1 or w > 1+
T7

(ii) For ui > 0 and U2 < 0, we can derive the equations below:

r?1 = -(r + 1) 1 - (0 + 1)vi + uo

TV 2 = -V2

From ODE analysis, It is found that v, -- and v2 -+ 0. Then our equations

50



for ''s become

+uor1i= - - UO+U0
/+1

rzi2 = -U2 - WU 1 + UO

Therefore, u1 - u and u2 -- I3w -

(iii) For ui > 0 and u2 < 0 , solution is a symmetric version of the region (ii).

(iv) For ui < 0 and u2 < 0, we can derive the equations below:

7i1 = -Ui - 3V 1 + Uo (6.23)

(6.24)2 = -U 2 - Ov 2 + Uo

T1i = -Vi

r7 2 = -V2

(6.25)

(6.26)

From ODE analysis, it can be concluded that v 1 , v 2 - 0 and U1 , u2 -- uo.

Theorem 2 System has periodic oscillations if and only if

# > w - 1 and w > 1 + 1/r

Proof: Region(ii), region(iii) and region(iv) contract (see Fig. 6-4 and Fig.6-5) and

converge to a virtual equilibrium point in region(i), if we have the following conditions:

/ > -1 and w > 1 + 1/r. In oscillations, there should be a continuous chain reaction

among regions. To achieve such a property, parameters of the region(i) should have

at least one of these conditions: < w - ,3< -w - 1, w <-1 - or w > I +
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Therefore, overall conditions for parameters are 3 > w - l and w > I + l/T. Since

the system converges to a specific trajectory in the contracting regions , dynamic

system in region(i) itself also generates a specific trajectory because of the same

initial conditions. Moreover, in region (i) variables are forced to change signs . They

have symmetry and receive the phase difference among each other as well.

0 5 10 15 20 25

Figure 6-4: Contraction in region (ii), initial conditions of ui and u2

-2,3 to -1,1 respectively
are changed from

Remark:

As compared to two neurons, intuitively, we can derive the similar conditions

for three-neuron ring in [44]. In this case, anti-synchronization in region (i) ,where

u1 , u2 , U3 > 0, can be achieved (see Fig.6-6) given proper parameters. If we force the

other regions to converge to the region(i) with adjusted parameters then the desired

variables can synchronize with a phase difference as shown in Fig.6-7.
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Figure 6-5: Contraction in region (iii), initial conditions of u's are changed from -2

to -4

-4

-1

0 5 10 15

Figure 6-6: variables in region(i)
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Figure 6-7: Three oscillators
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Chapter 7

Extensions of DMP

7.1 Dynamical System with First-Order Filters

DMP algorithm can be improved by replacing the first system with the equations

shown below:

r9 + aly = a1 x

1
+ a2 x = a2g + -f

a,

(7.1)

(7.2)

which is equivalent of

7r + (a, + ra2 )p + aja2y = aja2g + f (7.3)

By introducing two first-order filters, we can guarantee the stability of the system

against time varying parameters like r(t) or g(t) . Since the system is linear without

f-function (Eq.3.11), we can achieve learning and modulation properties of DMP

using the f in either Eq.(7.1) or Eq.(7.2). For further applications we will use this

model to generate primitives for time-varying goal points.
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7.2 Two-way Synchronization of DMPs

Experiments on frog's spinal cord [30, 25, 48] suggest that movement primitives can

be generated from linear combinations of vectorial force fields which lead the limb of

a frog to the virtual equilibrium points. In [48], it is also pointed out that vectorial

summation of two force fields with different equilibrium points generate a new force

field whose equilibrium point is at intermediate location of the original equilibrium

points. In this perspective, we will synchronize DMPs to generate a new primitive

whose trajectory is a linear combination of synchronized trajectories. Consider a

system

#i = f(yi, t) + K(u(y 2 ) - u(yi)) (7.4)

Y2 = f(y2, t) + K(u(yi) - u(y 2)) K > 0 (7.5)

Where yi and Y2 represent the first and the second primitive respectively. From par-

tial contraction theory, we can say that y, and Y2 converge together exponentially, if

f - 2Ku is contracting. Since DMPs are already contracting, we can achieve synchro-

nization using contracting inputs. In Fig.7-1, new primitive is a linear combination

of sine and cosine primitives.
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Figure 7-1: Synchronization of sine and cosine primitives
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Chapter 8

Conclusion

In this thesis, we use a novel approach, inspired by biological experiments, which

uses control primitives to imitate the data taken from human-performed obstacle

avoidance maneuver. In our model, DMP computes the trajectory dynamics so that

we can generate complex primitive trajectories for given different start and end points,

while one-way coupling ensures smooth transition between primitives at the (possible

unstable) equilibrium point. We demonstrate our algorithm with an experiment. We

generate a complex, aggressive maneuver, which our helicopter could follow within a

given error bound with a desired speed. We will conduct future research on different

combinations of primitives using partial contraction theory.
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Appendix A

Contraction Theory

The basic theorem of contraction analysis [13] can be stated as

Theorem 1 (Contraction) Consider the deterministic system

= f(x, t) (A.1)

where f is a smooth nonlinear function. If there exist a uniformly invertible matrix

associated generalized Jacobian matrix

afF = (E + e-)e-1
1x

(A.2)

is uniformly negative definite, then all system trajectories converge exponentially to

a single trajectory, with convergence rate IAmax|, where AmaxiS the largest eigenvalue

of the symmetric part of F. The system is said to be contracting.

It can be shown conversely that the existence of a uniformly positive definite metric

M(x, t) = e(x, t)TE(x, t) (A.3)

with respect to which the system is contracting is also a necessary condition for

global exponential convergence of trajectories. Furthermore, all transformations E
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corresponding to the same Mlead to the same eigenvalues for the symmetric part F,

of F, and thus to the same contraction rate |AmaxI-

In the linear time-invariant case, a system is globally contracting if and only if it

is strictly stable, with F simply being a normal Jordan form of the system and Othe

coordinate transformation to that form.

Contraction analysis can also be derived for discrete-time systems and for classes

of hybrid systems.

A simple yet powerful extension to contraction theory is the concept of partial

contraction, which was introduced in [14].

Theorem 2 (Partial contraction) Consider a nonlinear system of the form

k = f(x, x, t)

and assume that the auxiliary system

= f(y, x, t)

zs contracting with respect to y. If a particular solution of the auxiliary y-system

verifies a specific smooth property, then all trajectories of the original x-system verify

this property exponentially. The original system is said to be partially contracting.

Indeed, the virtual, observer-like y-system has two particular solutions, namely

y(t) = x(t) for all t > 0 and the solution with the specific property. Since all

trajectories of the y-system converge exponentially to a single trajectory, this implies

that x(t) verifies the specific property exponentially.
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Appendix B

Simulink Diagram

Figures show the Simulink block diagrams used in our hardware.

X, des Tcol

X, states Tcyc

Controller

Tool

Coll: T1+T2 \mt Left (1)

Sat I

Diff: T1-T2 *vft Right (2)

Sat 2

Convert to volts

T rye

Hell 3D

Figure B-1: Simulink block diagram of the feedback linearization controller
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Figure B-2: Simulink block diagram of a joystick
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Figure B-3: Roll controller in the joystick simulink diagram

65



66



Appendix C

Codes of Trajectory Generator S

function

* traj-generator.C

* The calling syntax is:

* INPUTS:

* OUTPUT

* COMMENTS:

% I want to thank Selcuk Bayraktar and Mariya A. Ishutkina for their

contributions. This code is modified over their previous work.

#define SFUNCTIONLEVEL 2 #define SFUNCTIONNAME traj-generator

#include "simstruc.h" #include <stdlib.h> #include <stdio.h>

#include <math.h>
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/* #define Time 0 #define GlobalOn 0

//#define ARRAYSIZE 1797

/ *=== = == = = == ==*

* S-function methods *

/* Function: mdlInitializeSizes

* Abstract:

* The sizes information is used by Simulink to determine the S-function

* block's characteristics (number of inputs, outputs, states, etc.).

static void mdlInitializeSizes(SimStruct *S) {

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

/* Return if number of expected != number of actual parameters */

return;

}

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 2)) return;

ssSetInputPortWidth(S, 0, 1);

ssSetInputPortWidth(S, 1, 1);
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ssSetInputPortDirectFeedThrough(S, 0, 1);

ssSetInputPortDirectFeedThrough(S, 1, 1);

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 10);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

ssSetOptions(S, SSOPTIONEXCEPTIONFREECODE);

}

/* Function: mdlInitializeSampleTimes

* Abstract:

* This function is used to specify the sample time(s) for your

* S-function. You must register the same number of sample times as

* specified in ssSetNumSampleTimes.

static void mdlInitializeSampleTimes(SimStruct *S) {

ssSetSampleTime(S, 0, INHERITEDSAMPLETIME);

ssSetOffsetTime(S,0,FIXEDINMINORSTEPOFFSET);

} /* static void mdlInitializeSampleTimes(SimStruct *S) {

ssSetSampleTime(S, 0, STEPSIZE); /* 0.01 is the sample time used in
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the simulation */ /* ssSetOffsetTime(S, 0, 0.0); /* use

descrete sample

/* }

#undef MDLINITIALIZECONDITIONS /* Change to #undef/define to

remove function */ #if defined(MDLINITIALIZECONDITIONS) /*

Function: mdlInitializeConditions

* Abstract:

* In this function, you should initialize the continuous and discrete

* states for your S-function block. The initial states are placed

* in the state vector, ssGetContStates(S) or ssGetRealDiscStates(S).

* You can also perform any other initialization activities that your

* S-function may require. Note, this routine will be called at the

* start of simulation and if it is present in an enabled subsystem

* configured to reset states, it will be call when the enabled subsystem

* restarts execution to reset the states.

static void mdlInitializeConditions(SimStruct *S) { } #endif /*

MDLINITIALIZECONDITIONS */

#define MDLSTART /* Change to #undef to remove function */ #if

defined(MDLSTART) /* Function: mdlStart

* Abstract:

* This function is called once at start of model execution. If you
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* have states that should be initialized once, this is the place

* to do it.

static void mdlStart(SimStruct *S) {

// controller-engaged = 0;

} #endif /* MDLSTART */

/* Function: mdlOutputs

* Abstract:

* In this function, you compute the outputs of your S-function

* block. Generally outputs are placed in the output vector, ssGetY(S).

static void mdlOutputs(SimStruct *S, intT tid) {

const intT ARRAYSIZE=1700;

/* inputs */

InputRealPtrsType uOPtrs = ssGetInputPortRealSignalPtrs(S,0);

InputRealPtrsType ulPtrs = ssGetInputPortRealSignalPtrs(S,1);

/* Time */

/* Controller*/

static realT pitch-inputl[1700] ={25.4039, 25.4039, 25.4039,

static realT pitch-input2[1700] ={0.0000, 0.0000, -0.0000, ..

static realT pitch-input3[1700] ={0.0000, -0.0000, ... };

static realT rollinputl[1700] ={0.4395, 0.4395, 0.4395, ... };

static realT rollinput2[1700] ={0.0000, 0.0000, 0.0030, ... ;

static realT roll-input3[1700] ={0.0000, 0.2997, 0.5955,...};
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static realT travelinputl[1700] ={-82.9989, -82.9989,...};

static realT travelinput2[1700] ={0.0000, 0.0000,...};

static realT travelinput3[1700] ={0.0000, -0.0003, ...};

realT Timecurrent = *uOPtrs[0];

int_T times=0;

/*realT pitch pitch-inputl[times]; realT pitch_d

pitch-input2[times]; realT pitch-dd pitch.input3[times]; realT

travel travel-inputl[times]; real-T travel-d travel-input2[times];

realT traveldd travel-input3[times]; realT roll

roll-inputl[times]; real-T roll-d roll-input2[times]; realT roll-dd

roll-input3[times]; */

realT GlobalOn = *ulPtrs[0]; static realT Timel =0;

/* outputs */

realT *yO = ssGetoutputPortRealSignal(S,0); /* xdesired states */

/* code starts here */

if ((GlobalOn >= 1.0))

{// if GlobalOn

realT Time=Timecurrent-Timel;
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times=Time/0.01;

if (times>1700)

{

yO[O] =28.5/57.

yO[l] =0;

yO[2] =0;

yO[3] =10/57.29

yO[4] =0;

yO[5] =0;

yO[6] =300/57.2

yO[7] =0;

yO[8] =0;

yO[9] =0;

}

else

{

y0[0] =pitch-inE

yO[1] =pitch-inp

yO[ 2] =pitch-inp

yO[3] =roll-inpu

yO[4] =roll-inpu

yO[5] =roll-inpu

yO[6] =travel-in

yO[7] =travelin

yO[8] =travelin

yO[9] =0;

}

29;

utl[times]/57.29;

ut2[times]/57.29;

ut3[times]/57.29;

tl[times]/57.29;

t2[times]/57.29;

t3[times]/57.29;

puti[times]/57.29;

put2[times]/57.29;

put3[times]/57.29;
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//if (travel-inputl>0)

// yO[9]=2;

}// if GlobalOn

else

{// if GlobalOn

Timel = Timecurrent; /* Define a variable to reset the time when you

change the controller*/

yO[0] = 0.4434;

yO[l] = 0.0;

yO[2 ] = 0.0;

yO[ 3 ] = 0.0;

yO[4 ] = 0.0;

yO[5] = 0.0;

yO[6] = -1.449;

yO[ 7 ] = 0;

yO[ 8 ] = 0;

yO[9] = 0;

}// if GlobalOn

#undef MDLUPDATE /* Change to #undef/define to remove function */

#if defined(MDLUPDATE) /* Function: mdlUpdate

* Abstract:

* This function is called once for every major integration time step.
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* Discrete states are typically updated here, but this function is useful

* for performing any tasks that should only take place once per

* integration step.

static void mdlUpdate(SimStruct *S, intT tid) { } #endif /*

MDLUPDATE */

#undef MDLDERIVATIVES /* Change to #undef to remove function */

#if defined(MDLDERIVATIVES) /* Function: mdlDerivatives

* Abstract:

* In this function, you compute the S-function block's derivatives.

* The derivatives are placed in the derivative vector, ssGetdX(S).

static void mdlDerivatives(SimStruct *S) { } #endif /*

MDLDERIVATIVES */

/* Function: mdlTerminate

* Abstract:

* In this function, you should perform any actions that are necessary

* at the termination of a simulation. For example, if memory was

* allocated in mdlStart, this is the place to free it.

static void mdlTerminate(SimStruct *S) { }
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/ *=== = = = = = = = == = = = = = = = == = = = = = = = = *

* See sfuntmpl.doc for the optional S-function methods *

/ *=============================---------*

* Required S-function trailer *

#ifdef MATLABMEXFILE /* Is this file being compiled as a

MEX-file? */ #include "simulink.c" /* MEX-file interface

mechanism */ #else #include "cg.sfun.h" /* Code generation

registration function */ #endif

76



Bibliography

[1] A.Y. Ng, Daishi Harada and Shankar Sastry. Autonomous Helicopter Flight via

Reinforcement Learning. In Neural Information Processing Systems 16, 2004

[2] J. Bagnell and J. Schneider. Autonomous Helicopter Control using Reinforcement

Learning Policy Search Methods. In International Conf. Robotics and Automation.

IEEE, 2001.

[3] T. Schouwenaars, B. Mettler, E. Feron, and J. How. Hybrid architecture for full-

envelope autonomous rotorcraft guidance. In American Helicopter Society 59th

Annual Forum, 2003.

[4] G. Taga, Y. Yamaguchi, H. Shimizu. Self-organized Control of Bipedal Locomo-

tion by Neural Oscillators in Unpredictable Environment. In Biological Cybernet-

ics, 1991.

[5] G. Taga. A Model of Neuro-musculo-skelatal System for Human Locomotion. In

Biological Cybernetics, 1995.

[6] S. Schaal, D. Sternad, and C. Atkeson, One Handed Juggling : A Dynamical

Approach to a Rhytmic Movement Task. In Journal of Motor Behaviour, 1996.

[7] J. A. Ijspert, J. Nakanishi, and S. Schaal. Learning Rhythmic Movements by

Demonstration Using Nonlinear Oscillators. In International Conf. Robotics and

Automation. IEEE, 2000.

[8] M. Ishutkina. Design and implimentation of a supervisory safety controller for a

3DOF helicopter. Master's thesis, Massachusetts Institute of Technology, 2004.

77



[9] S. Bayraktar. Aggressive Landing Maneuvers for Unmanned Aerial Vehicles. Mas-

ter's thesis, Massachusetts Institute of Technology, 2004.

[10] P. Bakker and Y. Kuniyoshi. Robot See, Robot Do: An Overview of Robot

Imitation. AISB'96 Workshop on Learning in Robots and Animals, 1996.

[11] S. Bayraktar, M. Ishutkina. Nonlinear Control of a 3 DOF Helicopter. 2.152,

Nonlinear Control System Design, Project Report, 2004.

[12] J.J. Slotine and W. Li. Applied Nonlinear Control, Prentice-Hall, 1991.

[13] W. Lohmiller, J.J. Slotine. On Contraction Analysis for Nonlinear Systems. Au-

tomatica 34(6), 1998.

[14] W. Wang, J.J. Slotine. On Partial Contraction Analysis for Coupled Nonlinear

Oscillators. Biological Cybernetics, 2004.

[15] W. Lohmiller, J.J.E. Slotine. Applications of Contraction Analysis. Proc. of the

36th CDC San Diego, CA, 1997.

[16] S. Schaal, J. Peters, J. Nakanishi, A. Ijspeert. Control, planning, learning, and

imitation with dynamic movement primitives. IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, 2003.

[17] A.J. Ijspeert, J. Nakanishi, S. Schaal. Movement imitation with nonlinear dy-

namical systems in humanoid robots. ICRA, 2002.

[18] F.A. Mussa-Ivaldi, S.A. Solla. Neural primitives for motion control. IEEE Jour-

nal of Oceanic Engineering, 2004.

[19] M.N. Nicolescu, M. Mataric. Task learning through imitation and human-

robot interaction. Proceedings of the second international joint conference on Au-

tonomous agents and multiagent systems, 2003.

[20] S. Nakaoka, A. Nakazawa, K. Yokoi, K. Ikeuchi. Generating whole body motions

for a biped humanoid robot from captured human dances. ICRA, 2003.

78



[21] R.R. Burridge, A.A. Rizzi, D.E. Koditschek. Sequential composition of dynami-

cally dexterous robot behaviors. International Journal of Robotics Research, 1999.

[22] T. Inamura, I. Toshima, Y. Nakamura. Acquisition and embodiment of motion

elements in closed mimesis loop. ICRA,2002.

[23] A. Polit, E. Bizzi. Characteristic of Motor Programs Underlying Arm Movements

in Monkeys.Journal of Neurophsiology, 1979.

[24] E. Bizzi, F.A. Mussa-Ivaldi, N. Hogan. Regulation of multi-joint arm posture

and movement. Progress in Brain Research, Vol. 64, 1986.

[25] F.A. Mussa-Ivaldi, S. Giszter, E. Bizzi. Motor Space Coding in the Central Ner-

vous System. Cold Spring Harb Symp Quant Biol Vol. 55., 1990.

[26] L. Berthouze, P. Bakker and Y. Kuniyoshi. Learning of Oculo-Motor Control: a

Prelude to Robotic Imitation. Proc. IROS, 1996.

[27] B.G. Galef. Imitation in animals: History, definition and interpretation of data

from the psychological laboratory. Social Learning: Psychological and Biological

Perspectives, 1988.

[28] A. Billard, M. J. Mataric. Learning human arm movements by imitation: evalua-

tion of a biologically inspired connectionist architecture. Robotics and Autonomous

Systems

[29] A. Fod, M.J Mataric, O.D. Jenkins. Automated Derivation of Primitives for

Movement Classification. Autonomous Robots, 2002.

[30] E. Bizzi, F.A. Mussa-Ivaldi, S. Giszter. Computations underlying the execution

of movement: a biological perpective. Science 253, 1991.

[31] F.A. Mussa-Ivaldi, E. Bizzi. Motor learning Through the Combination of Prim-

itives. Philosophical Transactions of the Royal Society B: Biological Sciences,

2000.

79



[32] F.A. Mussa-Ivaldi, J.L. Platton. Robots can teach people how to move their arm.

ICRA, 2000.

[33] A. Billard, A.J. Ijspeert. Biologically inpired neural controllers for motor con-

trol in a quadruped robot. IEEE-INNS-ENNS International Joint Conference on

Neural Networks, Volume 6, 2000.

[34] E. Frazzoli, M.A. Dahleh, E. Feron. Maneuver-based motion planning for non-

linear systems with symmetries. IEEE Trans. on Robotics, 2005.

[35] V. Gavrilets, E. Frazzoli, B. Mettler, M. Piedmonte, E. Feron. Aggressive ma-

neuvering of small autonomous helicopters: a human centered approach. Interna-

tiaonal Journal of Robotics Research, 2001.

[36] V. Gavrilets, I. Martinos, B. Mettler, E. Feron . Control logic for automated aer-

obatic flight of a miniature helicopter. AIAA Guidance, Navigation, and Control

Conference and Exhibit, Monterey, California, 2002.

[37] R. Mahony, R. Lozano. (Almost) Exact path tracking control for an autonomous

helicopter in hover manoeuvres. ICRA, 2000.

[38] 0. Shakernia, Y. Ma, T. J. Koo, S. Sastry. Asian Journal of Control, 1(3):128-

145, 1999.

[39] D.H. Shim, H.J. Kim, S. Sastry. Control system design for rotorcraft-based un-

manned aerial vehicles using time-domain system identification. Proceedings of the

2000 IEEE International Conference on Control Applications, 2000.

[40] B. Mettler, E. Bachelder. Combining on- and offline optimization techniques for

efficient autonomous vehicle's trajectory planning. AIAA Guidance, Navigation,

and Control Conference and Exhibit, 2005.

[41] W. Ilg, G.H. Bakir, J. Mezger, M.A. Giese. On the representation, learning

and transfer fo spatio-temporal movement characteristics. International Journal

of Humanoid Robotics, 2004.

80



[42] J. Mezger, W. Ilg, M.A. Giese. Trajectory synthesis by hierarchial spatio-

temporal correspondence: comparison of different methods. Proceedings of the

2nd symposium on Applied perception in graphics and visualization, 2005.

[43] L. Sentis, 0. Khatib. Synthesis of whole-body behaviors through hierarchial con-

trol of behavioral primitives. International Journal of Humanoid Robotics, 2005.

[44] K. Matsuoka. Sustained oscillations generated by mutually inhibiting with adap-

tation. In Biolagical Cybernetics, 1985.

[45] F. A. Mussa-Ivaldi. Nonlinear force fields: a distributed system of control primi-

tives for representing an learning movements. IEEE International Symposium on

Computational Intelligence in Robotics and Automation, 1997.

[46] L. Righetti, J. Buchli, A.J. Ijspeert. From dynamic hebbian learning for oscil-

lators to adaptive central pattern generators. In Proceedings of the Third Inter-

national Symposium on Adaptive Motion in Animals and Machines AMAM2005,

2005.

[47] A. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learn-

ing motor primitives. In in Advances in Neural Information Processing Systems

15, 2003.

[48] F.A. Mussa-Ivaldi, S.F. Giszter, and E. Bizzi. Linear combinations of primitives

in vertebrate motor control. In Proceedings of the National Academy of Sciences,

1994.

[49] S. Grillner. Locomotion in vertebrates: central mechanisms and reflex interac-

tion. In Physiolaogical Reviews ,1975.

[50] A.M. Arsenio. On stability and tuning of neural oscillators: application to rhyt-

mic control of a humanoid robot. In Neural Networks, 2004.

[51] L. Righetti and A.J. Ijspeert. Programmable central pattern generators: an ap-

plication to biped locomotion. In Proceedings of the 2006 IEEE International

Conference on Robotics and Automation, 2006.

81



[52] K. Seo, J.J. Slotine. Models for global syncronization in fish and salanader lo-

comotion. In Nonlinear Systems Laboratory Report (MIT), 2006.

82


