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ABSTRACT

New emerging modeling and simulation environments have the potential to
provide easy access to design models and simulations on the Internet, much as the World
Wide Web (WWW) has provided easy access to information. To support sharing,
integration and reuse of web-enabled applications (design models and simulations), a
search engine for functionally appropriate/similar models is needed.

There are ongoing efforts to develop ontological descriptions for web content and
simulation model functionality, where semantics of available services are explicitly
represented using a shared knowledge representation of concepts and rules. Simulation
publishers are responsible of semantically marking up the interfaces with such
ontological annotations. In contrast to such an approach, this work proposes a flexible,
implicit, pattern matching solution that does not require any extra annotations to
accompany the models, much as the way current web search engines operate.

A learning-through-association, similarity-based approach was developed. It uses
only pre-existing low-level information in web-enabled simulation interfaces-such as
model and parameters names, parameter units, parameter scale, input/output structure,
causality, and documentation - to synthesize templates that become archetypes for
functional concepts. Then, different interfaces are matched against templates and are
classified based on how they are similar to a certain template. Newly found functionally
similar interfaces can be merged into the original template, thereby both generalizing the
pattern for a functional role and strengthening the most critical aspects of the pattern.

This thesis also developed algorithms based on graph theory and pre-defined
heuristic attributes similarity metrics. The information from model interfaces is
represented using Attributed Relational Graphs (ARG), where nodes represent parameters
and arcs represent causality relationships. Templates are represented as Fuzzy Attributed
Relational Graphs, which are extended ARGs whose node attributes are fuzzy sets. Then,
a bipartite graph-matching algorithm is used to compare graphs and the similarity
between an interface and a template. Graph merging algorithm is also designed for
template generalization. A prototype implementation of proposed algorithms is developed
and applied to a suite of real-life engineering models. Results validate the hypothesis and
demonstrated the plausibility of the approach.
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Chapter 1

Introduction

1.1 Context

1.1.1 Vision for a World Wide Simulation Web

Since the last decade, new emergent modeling and simulation environments based on

the Internet infrastructure have been researched and developed by academic groups and

commercial companies, resulting in tools such as MIT's DOME (Distributed object-

based modeling environment) [1,2], Engineous' FIPER [3], and Phoenix Integration's

ModelCenter [4]. While each tool implements a different integration and solving

paradigm, they all provide an easy way to access distributed models or simulations and to

parametrically inter-related these models or simulations in an ad hoc fashion.

These tools provide enabling technologies for an envisioned World Wide Simulation

Web (WWSW) ---- a World Wide Web (WWW) of numerous web-enabled applications.

Web-enabled applications are parametric simulation models and simulations that are

accessible through WWW browsers and can interact with each other through a WWW

backbone (figure 1-1).



Figure 1-1: Applications (models and simulations) interact with each other through a WWW
backbone and are accessed through WWW browsers.

The WWSW builds a global community of individuals offering access to simulation

services related to their own specialties that can then be used for the rapid exploration of

design tradeoffs and global optimization [1, 5]. Engineers all over the world could

contribute to the content of the WWSW, allowing it to evolve and expand, as more

people use it to look for design information and test design scenarios, just as the WWW

evolved and greatly benefits everyday life today.

1.1.2 Web-enabled Applications

Web-enabled applications are simulation models accessible and interoperable through

the WWW. Typical web-enabled application has three layers. On the top there is the

GUI layer, usually web browsers, where users interact with the model. The second layer

is the interface layer. An interface can be seen as a window or view on a model or set of

models through which users can execute the model, similar to the concept of an interface

in object-oriented programming. Interfaces usually define inputs and outputs of the

affiliated model and are collections of various data types, ranging from simple numbers



to vectors, matrices, or any type of file (CAD, documents, images, etc.). Interfaces are

parametrically operable via appropriate Internet protocols. The third layer is the

underlying model layer, which the real model or simulation resides. This layer is

encapsulated and invisible to public access. Accessing models or simulations via

interfaces makes it possible for service providers to keep their knowledge and model

definitions in-house and control user access to proprietary information.

For example, figure 1-2 shows a web-enabled application of a "solar radiation" model.

Underlying simulation model is encapsulated and only interface layer is exposed.

Users interact with the model throug
thUe Aoe hog

Interface layer

I
Underlying model

Other apps interact with the model through the interface layer

Figure 1-2: Layers of a web-enabled application. The underlying model layer is protected from direct
access.

Web-enabled applications are similar to common web services in two aspects: they

provide certain computational capability as services; and they are operable through web

interfaces, where they interact with users or other applications via proper Internet-based

communications.

Br~Ekh~ia9~~
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1.2 Research Motivation

New emerging modelling and simulation environments have the potential to provide

easy access to models and simulations over the Internet, much as the World Wide Web

(WWW) has provided easy access to information. In a long term run, as more and more

participants contribute their models and simulations to the WWSW, the number of web-

enable applications on the WWSW will soon become massive. Therefore, just as it is now

essential to have search engines for finding web content, building a search engine to find

web-enable applications on the WWSW becomes a pressing need. Without search

engines, information on the WWW would be inaccessible and become useless.

Analogically, without proper search tools, these web-enable applications will be

impossible to locate and thus become useless.

In addition, the capability of finding appropriate web applications as integration

components also will be critical help to build integration models.

The motivation of this work is to design a non-traditional search engine that is

capable of search for functionally appropriate web-enabled applications. For example, an

automotive engineer searches for web-enabled applications regarding the kinematics and

dynamics of a quarter-car five-link suspension; an energy consultant searches for web-

enabled applications that can help him to evaluate the heat transfer rate of a new designed

solar collector.

There are two function-related aspects this thesis is interested: designed functional

purpose and computational functionality. Designed functional purpose refers to the "role"

of an application in integrated systems, such as "volume calculation", "amplifier", etc.

Computational functionality refers to the algorithms/equations of the underlying model.

4



For example: model "Length*Width=Area" is different from model "zRadius2=Area"; on

the other hand, two models based on "zRadius2=Area" would be consider same

computational functionality even one is implemented in MATLAB and the other is in C.

This thesis defines the term "functional role" to cover both aspects.

One may ask why a traditional keyword-type search engine is not pertinent to a

"functional role search" required in this thesis. Web-enabled applications are special

simulation models. Their full model definitions are encapsulated and only interfaces are

public available. Unlike web pages that are mostly natural language documents, web-

enabled interfaces contain rich, characteristic, structured information that reveals

functional role of underlying simulation models. This requires consideration of aspects

not addressed by traditional search engines, such as the exploitation of structural

information not pertinent to the search of natural language documents.

1.3 Problem Definition

How can we search for distributed web-applications with appropriate functional role

on the WWSW? Much as a common search engine operates, the envisioned function-

oriented search engine crawls the WWSW; processes each web interfaces; indexes each

interface according to the functional role.

The main challenge comes from using computer to identify the functional role of a

model or simulation from its low-level web interface information. The process of

identifying the functional role of a model or simulation can be seen as a process of

understanding the meaning of the model, or in other words, the process of inferring the

semantics of the model.



In general, two broad classes of approaches have been proposed in the literature. One

class adopts an ontological approach similar to the Semantic Web initiative [6], where

knowledge is shared using pre-defined ontologies, which are formal representations of

concepts and relationships pertaining to specific domains of discourse [7]. The

ontological approach explicitly associate low-level information with meta-data defined in

domain or upper ontologies, called "semantic mark-up". This meta-data can be used by

ontology-aware software application to make use of ontological matching, rule-based

and/or first-order logic based tools to perform reasoning tasks, including classification,

inference, etc., thus providing some sort of semantic processing of low-level information.

Semantic inference is accomplished using rule-based logics or ontological matching [e.g.

9-17, 37, 38].

The second class of approaches attempts to extend syntax search techniques by

discovering associations between high-level conceptual models (semantics) and the low-

level content information (syntax). These approaches are often referred to as pattern

matching based or similarity based. Typically, a query-by-example use-scenario is

adopted and candidates are evaluated based upon their similarity to the query example.

The semantic content of what is being searched for is implicitly captured in the syntactic

pattern of the example [e.g. 29-36].

One might think that the ontological approach seems to offer the greatest potential for

semantic inference. However, with consideration of the open usability issues with a

typical ontological approach (to be elaborated in Chapter 2), and given the distributed

infrastructure and size of the envisioned WWSW, we argue that the ontological approach



is not a good fit in this thesis context and choose to investigate towards a pattern-

matching based approach.

1.4 Proposed Solution Overview

The proposed concept is a learning-by-example, template matching approach for

identifying functionally appropriate web-enabled applications. A template is a synthetic

data structure created from syntactic information in web interfaces that serves as pattern

for the functional role of underlying simulation model. The solution method has three key

steps:

Step 1: A specific interface to a web-enabled application is manually selected as

representative of a functional role; the interface is elected as a template (reference pattern)

for that functional role.

Step 2: Interfaces to web-enabled applications with compatible functional roles

are identified through comparison to the template

Ste 3: When web-enabled applications are identified as functionally compatible,

their interfaces can be used to update the template, strengthening and generalizing the

pattern.

The base assumption for this approach to work is that there must be a strong

relationship between the structure of the low-level information at the interface level and

the functional role of a web service; and that it must be possible to identify structural

patterns sufficiently representative of functional roles. Moreover, since the association

between concepts representing functional roles and structural patterns at the interface



level is generated through human assertion, the strength and applicability of the approach

depends significantly on consistency of user behavior.

1.5 Thesis Structure

Chapter 1 provides an introduction to the context and the need for a non-traditional

search engine for WWSW. It also defines the problem and presents the contribution.

Chapter 2 reviews related work. Chapters 3 and 4 are dedicated to introducing the graph

representation of interfaces and templates, covering what syntactic information is

expected to be available within the model interfaces, how this information can be

represented using an ARG, and how a template pattern is created and represented using a

fuzzy ARG. In Chapter 5, the graph matching concept and the similarity measures and

algorithms are described, while Chapter 6 describes how templates are seeded and then

generalized as new, functionally similar simulation models are identified. Chapter 7

outlines a prototype implementation of the approach and discusses experiments

conducted to evaluate the proposed method. Test results are provided. The conclusion of

the thesis (Chapter 8) summarizes the thesis contributions and recommends future

research directions.



Chapter 2

Background

2.1 The Semantic Web

Attempting to associate a meaning (semantics) to low level information contained in

web page in a form understandable by computers is a very popular research in the WWW

research community, including the Semantic Web project [9] and projects stemmed from

it such as Semantic Grid [10], Semantic Web Service [11,12,13,14], Semantic search

engine [15,16,17], etc.

The methodology of the Semantic Web is to "marked up" web pages with semantic

information of their contents; these mark-ups are either machine-readable descriptions, or

just meta-tags. Software agents crawling the WWW can process these mark-ups, thereby

facilitating automated information gathering and research by computers.

The Semantic Web provides several stacks of mark-up languages, from as data-

centric, customizable Extensible Markup Language (XML), Resource Description

Framework (RDF) to Web Ontology Language (OWL). RDF is a simple data model for

referring to objects ("resources") and how they are related. Ontology adds more

vocabulary for describing properties and classes: among others, relations between classes,

cardinality (e.g. "exactly one"), equality, richer typing of properties and characteristics of



properties (e.g. symmetry), and enumerated classes. These languages are combined

together to describe the content of Web documents [9].

Since late 1990s, World Wide Web Consortium (W3C) has been propagating the

semantic web standards, markup languages and related processing tools to make

machines "understand" web page content and thus support linguistic queries. The

Semantic Web is said to have reached a significant size: A recent publication regarding

semantic search engine has reported that about 1.3 millions of Semantic Web documents

has been found on the WWW as of March 2006 [18]. Not surprisingly, most of these

documents are RDF-based documents, since the more concepts and classes used, more

reasoning power is required for processing software.

2.2 Ontological Approach

Information systems need to combine the precision of formal semantics with the

needs of cognitive transparency, as they incorporate increasingly sophisticated and

heterogeneous information content. The recent explosion of interest on ontologies is an

important component of this trend [19]. The ontological approach has been adopted to

facilitate knowledge sharing and management, information integration, database analysis

and design, information retrieval and extraction, object-oriented analysis, etc. [20]

Ontology has a long history in philosophy, in which it refers to the subject of

existence. The research of using ontologies as conceptual modeling techniques exists

before the Semantic Web initiative. A well cited definition of ontology in the computer

science area is Gruber's definition "specification of a conceptual classification", which

can be dated back to 1993 [21].



The ontological approach relies on explicitly representing semantics using ontologies,

shared knowledge representations of concept terms and rules. Information publisher is

responsible for annotating plain information with meta-data in the form of ontological

semantic markups that define the meaning of the contained information. Then, by using

rule-based semantic inference on semantic markups, computers can process and

automatically interpret the semantic meaning of information.

The Semantic Web initiative has stimulated multi-disciplinary efforts in

representation language, domain and upper ontologies, and supporting tools for editing,

analysis and reasoning ontologies. The ontological approach now has expanded from

pure conceptual modeling to both ontology modeling and ontology engineering.

Applications can be found include enterprise integration, natural language translation,

biomedical, mechanical engineering, standardization of product knowledge, electronic

commerce, geographic information systems, legal information systems, biological

information systems, and software engineering [20].

2.3 Open Issues with the Ontological Approach

Although ontologies and the ontological approach have been very popular in

academic and commercial projects, there are a number of open usability challenges that

may have implications for their breath and size of application:

First, it can be difficult to translate a domain of knowledge into a formal knowledge

representation-expertise in both formal knowledge representation and the given domain

is required. Once defined, users of the ontology must have sufficient understanding of the

formal representation to correctly define the additional meta-information that



accompanies their models. Usually the annotation process needs much manual work.

Even with the use of helpful knowledge acquisition tools, this step adds overhead to the

process of publishing simulation models [22].

Second, simulation models providers and requesters are heterogeneous participants. It

can be difficult to establish a common shared ontology standard. This is the same issue

the Semantic Web project is facing. Many projects has made a hypothesis that

communication would be easier if everyone describe things in the same way, and a

particular brand of unifying description will therefore be broadly and swiftly adopted.

However, since meta-data describes a worldview, incompatibility is an inevitable by-

product of vigorous argument [23].

Often ontologies are developed locally and additional work is needed to alignment

them. This ontology alignment problem requires that mappings are made between the

different representations, but automating the process of specifying such correspondences

remains a key challenge [24, 25].

Third, it is not clear how frameworks based on ontologies will react to subsequent

changes or extensions with time and usage. In some cases, modifications might take as

much effort as rebuilding a whole new knowledge base.

The ontological approach is expected to be work well in the following context: the

domain to be organized needs to be small corpus, formal categories, stable entities,

restricted entities, and clear edges; the participants need to be authoritative source of

judgment, coordinated users or expert users [26]. Given the problem in this thesis, the

WWSW is going to be large corpus, no global authority, and unstable entities; and



participants could be uncoordinated and amateur users. This is our primary consideration

while seeking alternative directions.

2.4 Pattern Matching Approach

Pattern matching is the act of checking for the presence of the constituents of a given

pattern. In contrast to pattern recognition, the pattern is specified. Such a pattern concerns

conventionally either sequences or structures. Pattern matching is used to check that

things have the desired structure, to find relevant structure, to retrieve the aligning parts,

and to substitute the matching part with something else [27]. For example, regular

expression method is a kind of pattern matching method that used in textual matching

(string matching). Another example application area is the content-based image retrieval

area. Content-based image retrieval uses the visual contents of an image such as color,

shape, texture, and spatial layout to represent and index the image [28, 29, 30]. These

visual contents together form certain patterns, Then, by using similarity matching

algorithms to match syntactic patterns, computers can infer whether different items are

semantically related, therefore, classifying image components and objects with similar

content patterns; Other applications include character recognition [31,32], geographic

information identification [33], 3D object recognition [34,35,36], etc.

The pattern matching approach utilizes the much less structured syntactic information

that is readily available, thereby avoiding the challenges associated with fixed knowledge

frameworks, but at the cost of giving up an explicit representation of the content's

meaning. Therefore, pattern matching approach could face the so called "semantic gap"

challenge [39]. Semantic gap is defined as a mismatch between higher-level abstraction

(what is the real knowledge) to low-level information (what is really being implemented)

13



[40]. When adopting this approach, one should assure that patterns in the syntactic

information are sufficient correlated to the high level content being searched.

2.5 Comparison Between Two Approaches

Table 2-1 concludes this chapter with a comparison between the two approaches

briefly reviewed above.

Table 2-1: Comparison between pattern matching and ontological approaches

Approach Pattern matching approach Ontological approach

Goal Content-based search and Semantic search and retrieval
retrieval

Methodology Infer the content semantics Annotate syntax with explicit,
from syntax/structural pattern formal knowledge description
similarities

Search on Low level information Meta-data mark-ups

Inference based Pattern matching Rule/based and/or first logic,
on Ontological matching.

Pros * No extra manual * Explicit, crisp definition of
annotation of meta-data concepts and their

* No need to worry about relationships
creating/modifying an * Rule-based reasoning
ontology (classification, inference,

etc.)

Cons * Semantics is not explicitly * Difficult to create
known know* Difficult to modify

* Relies on sufficient
discriminating power of the * Difficult annotation
patterns * Difficult ontology

* Relies on strength of the alignment
relationship between
patterns and concepts * Challenges of logic-based

reasoning



Chapter 3

Representing Interfaces of Parametric
Simulation models

3.1 Introduction

In order to build a computer data model representing functional related pattern, we

need to decide what information in interface definitions are potentially important

associated with functional roles. Several researchers have worked on how to represent

behavior and function in engineering design [41-45]. For example, Szykman [41,42] uses

function and flow model to represent an artifact based on domain-specific taxonomies.

Mocko [45] characterizes a simulation as an executable behavioral model with

assumptions, context, inaccuracy and interface description such as parameters, variables,

and constants. This work requires a full definition of the model.

However, unlike design databases or design repositories that are usually shared within

a company, emerging distributed simulation environments envisioned in this work are for

heterogeneous service providers. It is assumed that service providers may in fact wish to

keep their knowledge/model definition locally and only expose executable interfaces to

users. Therefore, instead of developing generic formal functional and behavioral

representation for computational services, the goal was to identify a minimum subset of

information that needs to be available within a computational service interface for it to be

15



useable, independent of how the simulation environment enabling the service is

implemented.

3.2 Identifying Function-related Information From
Interfaces

What information is available in interfaces? Could it provide clues about functional

roles? A study was completed to identify what syntactic information would likely be

available within simulation models interfaces that could be relevant to functional roles.

Several existing systems, including traditional web service pages that provide executable

web interfaces to models and simulations were surveyed.

Interfaces of web-enabled applications studied in thesis typically include contain

operable parameters. Minimal information to make interface useable includes: a list of

input and output parameters by name; which parameters are inputs or outputs; the data

type of each parameter; and the units of the parameters. In some cases, causal

dependency information between inputs and outputs, configuration information, and

documentation were also available. These types of information are relatively ad-hoc and

vary from service to service.

Some attributes are considered important information since they may provide clues to

the functional role of the underlying application and help to discriminate between web-

enabled applications. Figure 3-1 shows how input/output, dimension, unit, data type,

name, and causality are important function-related information that can help to

discriminate applications.



In/Out (input/output): important because it defines how the model Dimension ((LIM[M, ..): important because it helps to discriminate
operates between physical variables

Application C Application

C
A Application

B

(a)

Unit (km, nm, ...): for compatible dimensions, units help to
discriminate between models for different scale domains

Volume A mr3  Mass C rg
Application

Density B mg/mm

Volume A r3  Mass k
Application

Density B kg/n 3

(c)

Name ("volume", "vol",...): important because it captures implicit
naming habits and conventions.

A C
Application

"diameter " iati
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.height"

Volume A •k Mass C

Application
Density B

(b)

Data type (real, integer, .. ): important because it captures the
representational intent of the model developer.

real A real, C
Application

real S

boolean A o bolean C
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(d)

Causality: determines whether a parameter directly or indirectly
affects another; important because it highlights the main cause-
effect streams within a model.

A Q_: ;
B _ý7 E•atn1

Figure 3-1 Attributes can provide clues to functional roles of the underlying model; help to
discriminate between web-enabled applications



3.3 A Minimal Subset Derived From Interface
Definitions

Based on the analysis before, a minimal set of interface definition was defined from

common syntactic definition of a model interface, independent of how the simulation

environment is implemented.

Definition 3-1: A minimal subset of interface definition is a set of definition that

contains minimal information with which an interface is usable.

In this context, a minimal subset of interface definition extracted from the syntactic

information of an interface, independent of how is it represented, is expected to contain:

* Basic information: such as interface name, location etc.

* Input and output parameters: Each parameter in an interface has associated

attributes such as a name, units, dimensions, data type, and whether they are an input

or output.

Table 3-1 The parameter attributes set

Attribute Description of the attributes

Name: The name of the parameter. It could be a symbol, or a self-

explaining term, such as "zr ", "g", or "fiber Poisson ratio", etc.

This attribute is consider a string variable.

Dimension: The functional dimension of a parameter, complies with the

definition used in dimensional analysis [46]. E.g. basic

dimensions include length "L", mass "M", time "t", current "I",

etc.

Unit: The unit in Metric or English systems. For example, the metric



Data Type:

Input/Output:

unit of "g" is "m/s'".

There are some special cases when a parameter is unitless:

1) A parameter may be dimensionless. A dimensionless parameter

is has no physical unit associated with it. It has a dimension of "1".

Such a number is typically defined as a product or ratio of

quantities which have units of identical dimension [47], such as

Reynolds Number or radians.

2) A parameter is not a quantitative variable, therefore it is unit-

less, e.g. a Boolean parameter, true or false;

3) A parameter contains no unit because model builders did not

bother specify the units of the model parameters.

The data representation used for a parameter, e.g. real, integer,

Boolean, String, Matrix, Vector, etc.

Engineers learn how to use data type to fulfill their modeling

purpose, e.g. they might want to use a "real" parameter when

involving accurate calculation; might want to use a "integer" to

model the total day number of one year, etc. Therefore, data type is

chosen in the parameter attribute set.

Whether this parameter is an input parameter or an output

parameter. Independent variables that are changed by users are

considered as inputs. Driven variables that are changed by the

simulation and exposed in an interface are considered outputs.

Data Type:Input/Output:



* Causal relationship: dependency information between inputs and outputs. This

information is available in the DOME interface standard. Since the prototype system

uses mainly DOME interfaces for testing and doing experiments, we include this

information in the minimal subset of interface definition. However, it is not

guaranteed to be commonly available for other format of interfaces and thus the

approach may exploit this information when available but should not require it.

In some cases, detailed interface description, configuration and documentation (in

natural language) are also available. These types of information are relatively ad-hoc and

vary from service to service. Since this additional information was not reliably present, it

was not included in the minimum subset of information expected in interfaces definitions.

3.4 Examples

This section uses some examples to show the minimal subset defined applies to real

world web-enable applications, including one DOME interfaces and two web-service

interfaces.

Example 1: A DOME Interface

Figure 3-2 is another example DOME interface. The simulation model supporting this

interface is a MATLAB model for calculating the dynamics of a quarter-car suspension

model. In DOME WWSW, the MATLAB model is encapsulated and wrapped as a

DOME service provider. Geometry, mass, stiffness, and damping variables are inputs to

the model. The model output is vertical acceleration.
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Figure 3-2 A DOME interface of quarter car suspension simulation

The minimal information subset extracted from this interface definition is listed

below: Basic information is shown in Table 3-2. Input and output parameters are listed in

Table 3-3, and causality information is shown in Figure 3-3 and 3-4.

Table 3-2 Basic information of example DOME interface

Name: "quarter car suspension interface"
Location cadlab20:8080/Public/Quarter car

suspension/quarterCarSuspensionInterface
Description NULL

Table 3-3 Input and output parameters of example DOME interface

length name: "leaf spring length"
dimension: [L]
unit: m
data type: real
in/out: input

thickness name: "leaf spring
thickness"
dimension: [L]
unit: m
data type: real
in/out: input

quarter name: "quarter vehicle
vehicle mass"

dimension: [ M]

width name: "leaf spring width"
dimension: [L]
unit: m
data te: real
in/out: input

suspension name: "suspension mass"
dimension: [M]
unit: kg
data tye: real
in/out: input

tire name: "tire stiffness"
dimension: [MT 2 ]
unit: N/m
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unit: kg data type: real
data type: real in/out: input
in/out: input

damping name: "damping
coefficient coefficient"

dimension: [MT -1 ]
unit: N.s/m
data type: real
in/out: input

J$rtofo pu;'

accelerationname: "maximum
acceleration"
dimension: [MT 2]
unit: m/s

2

data type: real
in/out: output

Similarly, the causality information can be visualized using a design structure matrix

(Figure 3-3), or a directed graph (Figure 3-4). All inputs parameters affect the single

output parameter "maximum acceleration".

Figure 3-3 Dependency information for example DOME interface



Figure 3-4 Dependency information for example DOME interface

Example 2: Common Web Service Interfaces

The minimum subset of information is generic and not limited to being mined from

DOME interfaces only. It can also be extracted from traditional web service pages that

provide executable interfaces to parametric models.

The following example is a web service page of a cutting power consumption

evaluation model [48]. If the interface definition is the region marked in red within

Figure 3-5, one can follow extract similar minimum subset of information to represent

this model interface, is shown in table 3-4 and 3-5.



VftWumý 01k v S APV*E
VAhýiPjsHI 001~E ngpte lrýV

wr , s ý4 I ,.&j- #,* P t')

!a-T 0*B4-)L t~.fz

Vic O i U

n

cl 4 ia

Figure 3-5 A web page that contains an executable interface of a cutting power consumption
calculation model

Table 3-4 Basic information of example cutting power consumption interface

Name: "cutting power in turning (Ne')"
Location: http://www.mitsubishicarbide.com/mmc/en/product/

technical information/information/formula4.htm

Interface
Definition

Where:
Ne (kW): Actual cutting power
ap (mm): Depth of cut
f (mm/rev): Feed per revolution
vc (m/min): Cutting speed
Ks (kg/mm2): Specific cutting force
h: Machine coefficient

Description n turning:
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Table 3-5 Input and output parameters of example cutting power consumption interface

Depth of name: "ap"
cut dimension: [L]

unit: mm
data type: real
in/out: input

Cutting name: "vc"
speed dimension: [LT 1]

unit: m/min
data type: real
in/out: input

Machine name: "h"
coefficient dimension: []

unit: no unit
data type: real
in/out: input

Actual
cutting
power

Feed per name: "f'
revolution dimension: [LR "]

unit: mm/rev
data type: real
in/out: input

Specific name: "Ks"
cutting dimension: [ML 2]

force unit: kg/mm2

data type: real
in/out: input

name: "Ne"
dimension: [ML 2T3 ]
unit kW
data type: real
in/out: output

Figure 3-6 is another example web service page taken from an online process

simulation toolkit [49]. The procedure calculates a gas compressibility factor. The

minimal information set for this interface is in table 3-6 and 3-7.

COPYfight l1 lgg-2103ý, Process Assocates of Arrierica Al. .Pights Reserved.

Figure 3-6 A web page that contains an executable interface of process tools
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Table 3-6 Basic information of example gas compressibility factor interface

Name: "Gas Compressibility Factor"
Location: http://www.processassociates.com/process/property/z factor.htm
Description This procedure calculates the compressibility factor of a real gas

using the Redlich Kwong equation of state.

Table 3-7 Input and output parameters of example gas compressibility factor interface

Operating name: 'Operating pressure"
pressure dimension: [ML 2T ]

unit: psi
data type: real
in/out: input

Critical name: "Critical pressure"
pressure dimension: [ML2TF]

uRnit: psi
data type: real
in/out: output

Operating name: "Operating temperature
temperature dimension: [K]

unit: °F
data type: real
in/out: input

Critical name: "Critical temperature"
temperature dimension: [K]

unit: 'F
data type: real
in/out: output

It should be mentioned that, unlike DOME interfaces, causality information is not

available in the web service pages definition. For example in figure 3-5, since the full

equation is given, we can manually figure out the causality information. In a more

general case like example in figure 3-6, where the full definition of the model is not

available causality information cannot be used.

As a summary, this section has proposed a minimum subset of syntactic information

that one can expect to extract from model interfaces available as services in a WWSW.

This information will be used as a basis for pattern matching in attempt to infer

functional roles.
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Chapter 4

Graph-based Interface and Template
Representation

4.1 Introduction

In chapter 3, a minimal subset of information that can be derived from model

interfaces was proposed. In this work, we use the concept of graph similarity, graph

distance, and graph matching as a basis for the novel approaches we've developed for

classification tasks instead of using restrictive vector models.

Graphs are important and effective mathematical tools to represent relationship and

structural information. It's been widely adopted in many different problems, including

sorting, compression, traffic/flow analysis, resource allocation, pattern recognition, etc.

Modeling data as graphs is extremely desirable in many applications since these graphs

can retain more information than sets or vectors of simple feature primitives [51]. In

addition, the well-studies mathematic framework of graph theory provides many

punished algorithm to draw upon, such as graph similarity techniques have been applied

to pattern recognition fields, such as image recognition [29,30,50], map recognition [33],

handwriting recognition [31,32], 3D shape recognition [34,35,36], etc.



In this chapter, an attributed relational graph (ARG) is proposed as a data

representation for representing interface and template. Attributed relational graphs1 are

introduced in work by Tsai and Fu in 1979 [32]. It is a relational data structure that

consists of nodes and a set of arcs that represent the relation between the nodes.

Attributed relational graphs have been broadly used as a data representation for pattern

recognition applications. Usually, nodes represent objects or parts of objects and arcs are

used to represent relationships between corresponding nodes.

With an interface ARG representation defined, the representation for a template,

which represents a set of similar interfaces, can be considered. A template is a synthetic

data structure that stores patterns found in an interface initially and generalized by

associating with more similar interfaces. Therefore, a template can be designed an

aggregated graph model that represents a set of similar ARGs.

There are two broad classes of graph representations for a set of ARGs. One broad

class is based on probability. Random graph is a graph generated by some random

process [52]. Wong et.al. [53] first adopted Random ARG model for pattern recognition.

A random graph is an ARG where the vertex/arc attributes have random variables as their

values. Due to the computational complexity associated with high-order joint probability

analysis, random graphs typically assume that all random variables are mutually

independent and are thus simplified to first order probability distributions.

The other class of graph models for representing a set of similar ARGs is based on

fuzzy theory. Fuzzy set theory is introduced by Dr. Lotfi Zadeh of UC/Berkeley in

1 In broad literature, the term "Attributed Relational Graph" is interchangeable with the term "Attribute
Graph".
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1965[54]. A fuzzy set is a set whose elements are characterized by a membership

function u that is associated with each element indicating the degree of membership

value of this member to the set. The value normally is a real value between the interval [0,

1].

Chan and Cheung [31] first proposed a fuzzy attributed relational graph (fuzzy ARG)

model to represent objects in Chinese characters recognition. Krishnapuram et.al. used

fuzzy ARG model to represent image in image retrieval [29,30]. In a fuzzy ARG,

node/edge attributes use fuzzy sets as their values. Fuzzy attributed graphs incorporate

vagueness by associating node and edge attributes with fuzzy sets, whose value measures

degrees to which objects satisfy imprecisely defined properties. By generating a degree of

class membership for an object instead of dichotomous classification, fuzzy methods

provide a way to estimate missing or incomplete knowledge [29].

Although the mathematical operations based on fuzzy set theory may look similar to

those for probabilistic ARGs, the two approaches differ in terms of their purpose.

Sometimes, information in the form of frequency histograms or other probability curves

is even used as the basis to construct a membership function for attributes in fuzzy ARGs.

However, it should be remembered that membership functions are NOT necessarily

probabilities [55].

A fuzzy AGR is the representation chosen in the work because:

* In this context, templates represent functional concept is learned (or generalized)

from several example interfaces. The functional concept may have vagueness due

to incomplete knowledge.



* Random graphs rely on large training sets to determine probability distributions

for each attributes value. As fuzzy sets are usually intended to model human's

cognitive states so they can be determined from either simple small-sample or

sophisticated elicitation procedures. Given the limited training set available in our

case a fuzzy ARG is more appropriate.

This chapter will first introduce the design of an ARG model for interface, because

once interface ARG representation is defined, it serves towards a basis for representing a

template. Then the design of an ARG model for template is present. Examples for

interface graph and template graph are provided.

4.2 Graph Representation of Interfaces

Based on the minimal subset defined in Chapter 3, the graph represent of an interface

is formally defined below:

Definition 4-4(a): an interface node can be formalized as:

n = {Xnae Xunil, Xda, Xd ,n 5x I , where x represents the state of the name

attribute for that particular node, and so forth.

Definition 4-1(b): An interface are ai connects the node nj to the node nk and it is

denoted by a = n k ), n ) . Arcs do not contain any attribute.

Definition 4-1(c): An interface graph is a directed graph:

g nna2,n,; aU,- -,a,-.- ,a}, where {n,n 2,1..ni,..,n,,} is a set of

attributed nodes (vertices) and {a 2 a2 ,...aj,...aj is a set of arcs (edges).



In definition 4-1, the input and output parameters are represent as graph nodes, and

parameter attribute set (name, unit, dimension, data type and whether they are inputs or

outputs2) are presented as the node attribute set. The causality information is represented

as graph arcs (when this information is available). The direction of an arc between two

nodes shows which node drives which. Arcs can be an empty set 0. When there is no arc,

the graph is simply a set of disjointed attributed nodes. The basic information such as

interface name, location is left out graph representation as auxiliary information of the

graph model.

Figure 4-1 provides an example of the graph representation. This is an interface with

underlying model calculating a block volume and cost interface from box's dimensions

and material unit cost. The light grey nodes are inputs and dark grey nodes are outputs.

Inputs are connected to outputs via directed arcs. Arcs are only present when causal

information is available.

2 Please refer to table 3-1
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Figure 4-1 Interface graph of a block volume and cost interface

4.3 Graph Representation of Templates

A template is a fuzzy ARG represents a set of similar interfaces. To make the graph

matching process less complicated, the template fuzzy ARG is designed so that the basic

ARG structure stays the same with interface ARG:

* Template ARG contains attributed nodes with same fixed attributes of name, unit,

dimension, data type and whether they are inputs or outputs; same as interface

ARG's fixed node attribute set.

* Template ARG contains un-attributed arcs, used to represent causal relationships

between nodes (when this information is available). The direction of an arc

between two nodes shows which node drives which.



Meanwhile, a template needs to be able to continuously aggregate new information

from example interfaces. The aggregating mechanism used in this work is based on

merging equivalent nodes and arcs, which is explained in Chapter 6. Based on the

aggregating mechanism, a template ARG extends from the basis of interface ARG:

* Template ARG's nodes and arcs are weighted: the weight of a node/arc is

determined by how frequently the given node or arc is seen in exemplar ARGs.

Frequently observed nodes or arcs are considered more significant.

* The value of each template ARG's node attribute is a fuzzy set variable, whose

members are possible values learnt from examples and associated with a

frequency number. The fuzzy set provides a thesaurus of example attributes

values.

Based on the above description, a template graph can be formally defined.

Definition 4-3(b): A template arc ai connects a template node Nj to the node Nk

Definition 4-2: A fuzzy set variable (of node attribute) is defined as:

X = }xI ,x2 i - , where xi indicates the ith state of the variable x and 0,

indicates the number of times such state was asserted (number of occurrences).

Definition 4-3(a): A template node is defined as:

N = {Xnatne I X dim , X Unif , X dt~pe , X m1u }, where X name represents the fuzzy set

variable of the name attribute for that particular node, and so forth.



and it is denoted by a = (N, Nk ) , Arcs do not contain any attribute.

Figure 4-2 provides an example of a fuzzy ARG template graph. This template graph

is an initial template seeded from the single example interface shown in Figure 4-1. All

the frequency numbers are marked in red color in the graph. The frequency number in the

bottom left of a node designates the weight of that node; and the frequency number on an

arc designates the weight of that arc. In the initial template graph, every node and arc has

an initial frequency of 1. Each node attribute is a fuzzy set variable. The initial member

of the fuzzy set variable is learned from the interface. For example, the unit attribute

value of the template node "hole diameter" is the fuzzy set cmI'j, the member "cm" in

that fuzzy set is learned from the unit of original interface node "hole diameter", and the

frequency number associate with that member is 1.

Definition 4-3(c): A template graph is defined as:

G N ,, ,a ..,a a where Ni is a template

node defined in Definition 4-3(a); a1 is a template arc defined in Definition 4-3(b).
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Figure 4-2 Template graph example: a template graph seeded from interface graph shown in 4-1

Figure 4-3 is another example of template graph. This template graph represents a

functional role as "cutting power consumption evaluator". It is learned from two similar

example interfaces. As we can see, some nodes/arcs have a weight of 2, e.g. "Di", "Fs",

"PS", and etc, indicating they are common elements both examples have and are merged

during aggregation process. They may be more significant information in the pattern.

Some nodes/arcs have a weight of 1, such as "k", indicating they didn't find equivalent

elements during aggregation and are consider less important. During the aggregation

process, frequency numbers associated with fuzzy set variables are changed as well. The

dimen
unit:
data t
in/out:



method for updating frequency information as part of the template adaptation process will

be described in Chapter 6.
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Figure 4-3 Template graph example: a generalized template graph representing functional role
"cutting power consumption evaluator"

,,



Chapter 5

Similarity Graph Matching Algorithms

5.1 Introduction

Chapter 4 defined an Attributed relational graph (ARG) model for representing

interfaces and templates. By adopting a graph-based representation for use in pattern

matching between templates and interface, determining functional role similarity

becomes a graph matching task between an interface graph (ARG) and a template graph

(fuzzy ARG).

Standard problems of graph matching include graph distance (a numeric measure of

dissimilarity between graphs, edit distance [32, 60, 61], maximum common

graph/minimum common graph [58], relaxation model [33], etc); exact graph matching

(graph/sub-graph isomorphism [56]) and inexact matching (error-correcting [57],

common sub-graph [58], fuzzy graph matching [59], etc.). A detailed review can be

found in [51, 62].

A majority of published works, including the first paper on graph "isomorphism" by

Ullman in 1976[56], are algorithms for un-attributed graphs. The graph matching

problems for un-attributed graph focus on matching graphs based on their topological

structure. Matching ARG graphs, on the other hand, is different from topological



matching. The focus of ARG graph matching is an inexact matching that gauges

attributes consistency and overcomes structural errors. The isomorphism between two

ARGs means the corresponding matching pairs of vertices and arcs must have consistent

attribute values.

In this work, the topological information in this work (arcs) specify how inputs and

outputs are connected to each other based on causality information, which is often not

well-suited for determining alignment. For example, causality information will not

always be available and, therefore, the graph would become several disjointed nodes.

Further, even if causality information is available, many different functional roles might

have identical causal structure, and the same functional role can have many different

causal structures.
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data W ;e real unit: nls 2  unei:
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(a) graph representation for interface V1I*R (b) graph representation for interface F=m*a

Figure 5-1 An example of topologically identical ARGs with completely different functional roles

For example, a simple example of topologically identical ARGs with completely

different functional roles is shown in Figure 5-1. The left side interface calculates electric

potential difference (V) from the current (I) and the resistance(R) by the Ohm's law

V4I*R. The right side interface calculates force (F) from mass (m) and acceleration (a)



by the Newton's law of motion F=m*a. The interface graph is topologically the same,

but their functional roles are completely different.

Thus, graph matching algorithms based on topological structure are not suited to this

work. Instead, a graph matching method emphasizing node alignment is proposed since

the ARG model defined in this work only contains attributed nodes and un-attributed arcs.

For the sake of explanation, we introduce the nomenclature used in this chapter first.

Table 5-1 Nomenclature

x A single value variable, x=xo

n Interface node n = { Xnam1,, x~, Xdimd, x, Xinout

g Interface graph

X Fuzzy set variable X = ({xc,x2 0,", Xi · ,'Xn

i(O) Membership function of a fuzzy set

DFrequency, number of occurrences

N Template node, N = {X name X , X unit, X do, X mout

G Template graph

s( ) Similarity function

s (Xa, Xb ) The similarity between two variable xa and xb

s(x, X) The similarity between a single-value variable x and a fuzzy set
variable X

s(n, N) The similarity between an interface node and a template node

s(g, G) The similarity between an interface graph and a template graph

5.2 Similarity measures



Graph similarity is a numeric measure of similarity between graphs, usually between

[0, 1]. It provides a mapping from a qualitative "alikeness" concept to numeric values,

the higher the value, the more similar the graphs are. This thesis developed a graph

similarity measure that is an aggregation of node attributes similarity. Both interface

ARGs and template ARGs contain fixed node attributes set. Similarity measures for each

node attribute are presented first.

5.2.1 Similarity Measure for Each Node Attribute

5.2.1.1 Similarity for Name Attributes

Names are treated as strings and thus existing string similarity metrics can be adopted.

There are many published string similarity metrics, such as Levenshtein distance (defined

as the minimum number of operations needed to transform one string into the other [63]);

cosine similarity measure; Jaro metrics proposed by Jaro[65] and later refined by

Winkler[66](defined based on the number and order of the common characters between

two strings), etc. A comparison of common string metrics can be found in [67]. Among

the surveyed algorithms, the Jaro-Winkler algorithm is reported to yield best matching

result.

In this work, a pubic domain algorithm library [68] is applied to match names. The

algorithm tokenizes name into a vector of terms and use Jaro-Winlker similarity metric

[66] (which is based on the number and order of common characters) to compare

similarity between terms; then the token-by-token similarity score is aggregated using

TFIDF(Term Frequency Inverse Document Frequency) algorithm[64]. TFIDF is

typically considered a weighing mechanism. The importance of a word to a document



increase proportionally to the number of appears in the document but is offset by how

common the word is in all of the documents in the collection or corpus.

The hybrid Jaro-Winkler with TFIDF similarity function replace the exact token

matches used in TFIDF with approximate token matches based on the Jaro-Winkler

scheme. For further reading on Jaro-Winkler with TFIDF similarity metric please refer to

[67].

5.2.1.2 Similarity for Dimension Attributes

The functional dimension of a parameter, as defined in Table 3-1, complies with the

definition used in dimensional analysis [46]. Basic dimensions include length "L", mass

"M", time "T", etc. Fundamental dimensions can be derived from units. For example,

length unit "m" has a dimension of [L]; power unit "kW" has a dimension of [ML2T -3];

and force unit "N" has a dimension of [MLT 2].

Similarity function for dimension is binary. Similarity is 0 for incompatible

dimensions or 1 for compatible dimensions. The rationale behind a crisp dimensional

similarity metric is that if two dimensions are not the same, they are incompatible.

5.2.1.3 Similarity for Unit Attributes

Unit similarity is determined after verifying fundamental dimensional compatibility

(e.g. length). With dimensional compatibility is ensured, unit similarity is determined by

comparing differences in the scale of the units. The rationale behind considering the scale

difference in units is that when a parameter has a unit of "kmn" (kilometer), it is not likely

to have the same functional role as another parameter with a unit of "nm" (nanometer).



A unit is first converted to corresponding base unit (SI base unit and derived unit) of

the same dimension. Then scale factor can be calculated as the scale difference of a unit

to the base unit based on a unit conversion measure [69]. For example, the base unit for

length is m. Thus a unit attribute of km would be converted to 1000 m. Therefore, the

scale factor of km is 1000.

Equation 5-1: Given two units, unit a and unit b, we defined a heuristic similarity

function to calculate their similarity:

( I 0 different dim. (Equation
s(xn axunit b= 0.51 og(sF(x,,, aSs F(xrn, b)) compatible dim. (Equation 5-1)

In equation 5-1, SF( ) denotes the function calculates the scale factor of a given unit.

The heuristic similarity function map the logarithmic scale factor difference of two units

into a [0, 1] range.

For example: given the two units "kW" and "hp",

* Step 1: Check dimensions, both units have a dimension of [ML2T-3].

* Step 2: Since the base unit here is "W", scale factors are calculated as:

SF(kW)=1000; SF(hp)=735.4988

* Ste 3: and finally using equation 5-1, the similarity between "kW" and "hp" is

calculated as: s("kW","hp")= (0. 5 )IIog( 1000) -l
og(735.4988)| = 0.911

Unit similarity is conditional upon dimensional compatibility. It is likely that a

parameter does not have a unit, either because it is dimensionless, or because the model

creator didn't bother to define the unit. In such a case, the unit similarity is zero.

5.2.1.4 Similarity for Data Type Attributes
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The data types considered in this work are: real, integer, boolean, string, matrix, and

vector. To determine the similarity between those data types, a survey was conducted by

interviewing 8 modelers, who are research assistants and faculty at MIT. The resulting

data type similarity table is shown in Table 5-2. This heuristic similarity table provides a

elementary reference for this work to estimate the similarity between different data types.

Table 5-2 Data type similarities table

Real Integer Boolean String Matrix Vector
Real 1 0.666667 0.233333 0.125 0.275 0.283333
Integer 0.666667 1 0.433333 0.125 0.275 0.283333
Boolean 0.233333 0.433333 1 0.208333 0.125 0.133333
Strng 0.125 0.125 0.208333 1 0.041667 0.058333
Matrix 0.275 0.275 0.125 0.041667 1 0.75
Vector 0.283333 0.283333 0.133333 0.058333 0.75 1

Given two data type xdtype, a, and Xdtypeb, the similarity S(Xdtypea ,Xd(peb ) can be found in

table 5-2. For example: the similarity between a "real" data type and a "real" data type

is 1. The similarity between a "real" data type and a "integer" data type is 0.67.

5.2.1.5 Similarity for Input/Output Attributes

The in/out attribute defines the role of the parameter in an interface. The rationale

behind an in/out similarity metric is that if two parameters under comparison are both

inputs and both outputs, they may be compatible. If not, they are considered to be

incompatible. Thus, the Similarity function for the in/out attribute is binary. A score of 0

is assigned to incompatible input/output attributes while 1 is assigned to compatible

input/output attributes.

Equation 5-2: Given two data type xi,,o, a, and xiout b, the similarity s(x.ou. a, Xiou b

is calculated as:



Sif Xinoua = Xinout b inputs
s xnouaxiout b = Xinout a Xinout b E Outputs0 otherwise

(Equation 5-2)

For example: s("input","input") = 1, and s("input","output")= 0.

5.2.2 Similarity between a single attribute value and a fuzzy
set attribute variable

When a parameter's node in an interface graph is compared to a node in a template

graph, one must compare the interface's single attribute values to the fuzzy set of

possible attribute values associated with a template parameter's node.

Let an interface single attribute variable be x, where x=xo. Xo is a state3 of variable x;

let a template fuzzy set attribute variable as X, where X = {xl ,x 2 0, ...,xi* ... xo, and

xi indicates the ith state of the variable X and Oi is the number of occurrence associated

with each state.

Equation 5-3: The similarity of a single state xo of a variable x, and the template

variable X (using number of occurrences) is calculated as:

n

S-.s(xo,xJ)
S (Xo, X) = n-- x, eX

i=1

(Equation 5-3)

For example, we are evaluating the similarity between an interface unit attribute value

"hp", and a template unit attribute value fuzzy set {kW', W' }. Using the unit attribute

3 states may be referred to as "values" if the variable is numeric.
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similarity function defined in 5.2.3, the similarity between "hp" and "kW" and that of

"hp" and "W" are calculated first.

Given: x= hp; X= {kW ,W'I}, using equation 5-1:

s(hp,kW) = (0.5)13 -2
8661 = 0.911; s(hp, W) = (0.5)12.8661 = 0.1371

Then, the overall interface parameter-template parameter unit similarity score is the

weighted sum of these values.

Therefore, the overall similarity between the interface value "hp" and the template

value {kW , W1 } can be calculated using Equation 5-3:

s(h lkW1 W1 ) s(hp,kW) * l + s(hp,W)* 1 0.91*1+0.137*1 = 052

5.2.3 Similarity between an interface node and a template
node

Similarity between an attributed interface parameter (node) and a fuzzy attributed

template parameter (node) is calculated based on attributes similarities.

Equation 5-4: Let an interface node be n, where n = {Xzame e, xdim x unit , Xdpe Xinout }; let

a template node by N,where N = {Xname, Xdim, Xn,,,I Xdvpe X inou,}, the similarity between

n and N is calculated as:

wname S(Xnane, • X.a.e) + w~, s(xk , Xu, ,,)+ w~ (x ), sX(x, Xd)= 1, s(x5,o0 ,, Xjo,) = 1;

s(n,N) = Wname + Wt + WYpe

0 otherwise.
(Equation 5-4)

, , ,
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In Equation 5-4, Wname, Wunit, and Wdtype are pre-defined weights for name, unit, and

data attributes. Initially all the weights are set to unity. Methods for automatically tuning

these weights are discussed in future work in chapter 8.

For example, table 5-3 provides an example of comparison of an interface node "w"

side-by-side with a template node "Wc".

Table 5-3 Comparison of an interface node and a template node

An interface node "w" A template node "Wc"

dimension: ([ML2T]) dimension ([ML2T'3]2}

unit: (hp) ut (kWW 1)
data type: (real) data tpe (real })
in/out: (output} in/out (output 2)

Step 1: Using Equation 5-3 and attribute similarity measures defined in 5.2.1, we

calculate the similarity for each attribute:

SName: s(w", "W"'1,"Pow",})=s("wW"). +s("w","Pow")- = 0.43

* Dimension: s 2T- 3 {[ L2T-3 f} = s([ML2T- 3 L2T- 3 = 1

1 _1_shp,_k__+_shp,_W 1 1
Unit:s(hp ,{kW1Wl}) s(hp,kW)+s(hp,W) = 0.91 *-+ 0.137 * = 0.52

2 2 2

* Data type: s(real, {real2 }) = s(real, real) * = 1



* Input/output: s(output, {output2 } = s(output,output) * 2=1

Step 2: After obtaining all attribute similarities, node pair similarity is then evaluated

by combining the attribute pair similarities using Equation 5-4.

Given all the weights are equal, The similarity between the two nodes can be

0.43+0.52+1calculated as: s(n, N) = 0.43 + 0.52 +1 = 0.65.
3

5.2.4 Graph Similarity Measure: Similarity between an
Interface Graph and a Template Graph

The similarity measure that determines the degree of overall match between an

interface graph and a template graph is calculated by the weighted sum of aligned node

similarity.

Given an interface graph g, g = {n, n2,, nj ; a, a2 ,,ak} . And a template graph

G, G = A N,.., NjN ,'",N "";N a ,a2 ,...,a~ ,...,am}. Notice the template nodes size

n and arcs size m could be different from interface nodes sizej and arcs size k.

Let p be a pair of all aligned node pairs; and p denotes an aligned node pair of np, and

Np,, where np is a node from g, and Np is a node from G. The total number of aligned node

pairs is designated as #Pairs in equation 5-5, with # Pairs 5 min(j, n).

Equation 5-5: The similarity between g and G is calculated as:

#Pairs

E GN Ps(n, , N,)
s(g, G) n= (Equation 5-5)

NPi
n=



where pi is the ih pair of aligned node pair. ON is the number of occurrences of the

template node Np, within the template graph.

The denominator in equation 5-5 is a normalization factor. The total aligned node

pairs similarity is normalized to the total weighted sum of number of occurrences of

template nodes. This normalization factor is introduced so that the similarity score will be

in the range of [0, 1] and solve the problem of comparing similarity measures computed

on graph pairs with different number of nodes.

Example of calculating graph similarity will be given in Section 5.4.

5.3 Graph Alignment Algorithm

5.3.1 Introduction

The desired graph matching algorithm in this thesis context should be flexible enough

to handle different size and topology graphs, which falls into the in-exact graph matching

category. Traditional in-exact graph matching algorithms such as graph editing distance

methods have been adopted to matching ARGs graphs, e.g. Chan & Cheung [31], Eshera

& Fu [60, 61]. However, since topological graph matching is a NP-problem, graph

editing based graph matching algorithm can be computational expensive and scales

poorly to larger graphs.

In this thesis, the graph matching problem is simplified as node alignment problem.

This assumption is made based on that the ARG model used to represent interface and

template is designed to encode the majority information in nodes, not in arcs, for a good

reason. Arcs are optional when causality information is not given. Therefore, the

topology information in these ARGs is not a primary concern as opposed to [31, 60, 61]



where the arcs are important since they encode rich relationship information. The

simplification relieves the potential computational cost, especially for matching graphs

large in size. However, since the simplification only provides approximate solution to the

graph matching, post-processing is needed to refine or validate the matching.

Based on the above simplification, a maximal, bipartite matching algorithm based on

similarity of node attributes using predefined fuzzy similarity measures is developed.

5.3.2 Brief Review of Bipartite Matching

In the mathematical field of graph theory, a bipartite graph is a special graph where a

set of vertices can be divided into two disjoint sets such that no two vertices of the same

set share an edge [74]. Bipartite matching is a process that utilizes the bipartite graph

model to modeling matching problem, especially assignment problems (e.g. job

allocation problem, stable marriage problem). Bipartite matching method for ARG graphs

has been seen in published work on the 3-D image recognition [34, 50].

Mathematically, given a bipartite graph G= (V, E), a bipartite matching M of G is

defined as subset of E, such that no vertex in V is incident to more than one edge [73].

Typical solutions to bipartite matching are maximum cardinality matching (where the

solution gives a maximum sized matching), and maximal matching (where no additional

edges can be added into the solution given the already mapped nodes and arcs).

Maximum cardinality matching is well used in matching unweighted graphs. Maximal

matching is more suitable for weighted graph matching.



Figure 5-2 gives a bipartite matching example. The edges of the graph is ordered,

therefore it is a weighted bipartite matching problem. A primitive greedy algorithm [71]

can yield fast solution of a maximal matching.

1 2 3

10 9 8

(a)
a bipartite

1 2 3 4

10 9 8 7

(c)
Step 1: picking
remove (1,9), (1
(5,6)

4 5

7 6

E(G) = {(1, 6), (1, 9), (1, 10), (2, 7), (2, 8), (2, 9),
(2, 10), (3, 7), (3, 8), (4, 6), (4, 7), (4, 8),
(5, 6)}

(b)
graph G Edges are orderd

1 2 3 4 5

6 10 9 8 7 6 10 8 610 9 8 7 6

(d) (e)
(1,6), Step 2: picking (2,7), Step 3: pick (3,8), remove
,10), (4,6), remove (2,8), (2,9), (2,10), (4,8). no edge left.

(3,7),(4,7). Output: M: (1,6), (2,7), (3,8),
This is a maximal matching:
IM-3

Figure 5-2: A bipartite matching example (adopted from [71])

The matching obtained by the greedy algorithm is a maximal matching, as shown in

Figure 5-4(e). The matching M { (1,6), (2,7), (3,8) }has a cardinality of 3.

Polynomial algorithms exist for bipartite matching since cycles are impossible in

bipartite graphs. Standard algorithms for bipartite matching are based on network flow,

using a simple transformation to convert a bipartite graph into an equivalent flow graph,

such as Ford-Fulkerson method [73], Hopcroft and Karp method [73], etc. More effective

algorithms such as Hungarian method [70] adopt the augmenting path idea to construct

matching.



5.3.3 Algorithm Overview

The entire process of calculating graph similarity via graph alignment is depicted in

Figure 5-2.

Step I - - - - Step 2 - - - -' Step 3 - - - -", Step 4

Figure 5-3 Flow chart of the graph matching and similarity calculation process.

A maximal bipartite matching algorithm is used to align compatible nodes based upon

both node attributes similarity and arc information. The aligned template and interface

nodes are used to compute an overall similarity score between the interface graph and the

template graph.

Pseudo code is provided in Algorithm 5-1:



5.3.4 Generate a Bipartite Graph for Node Alignment

The algorithm begins with creating node pairs between the interface graph and

template graph. For each node pair, similarity is evaluated based on the method presented

in Section 5.3.2. Node pairs with similarity scores of 0-indicating they are not

compatible-are eliminated. This step obtains a ranked list of all possible matching node

pairs.

Then a weighted bipartite graph can be created from all map-able node pairs.

Naturally, this bipartite graph is partitioned into two independent set of nodes: interface

graph nodes and template nodes.

Figure 5-4 shows an example: an interface graph shown in Figure 5-4(b) is compared

with a template graph shown in Figure 5-4(a). Assume we've calculated the node pair

wise similarity as defined in Table 5-4.

Algorithm 5-1: Overall graph matching algorithm

Input an interface graph (ARG), a template graph (Fuzzy ARG)

1 Calculate node pair-wise similarities

2 Create a bipartite graph from non-zero-similarity node pairs, and use
maximal bipartite matching algorithm to align nodes

3 Check arc compatibility

4 Calculate overall graph similarity

Output: a matching M, a similarity score
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(a) template graph G (b) interface graph g

Figure 5-4 (a) (b) Matching a template graph and an interface graph

Table 5-4: node pair similarity

Template Node Interface Node Similarity
a 1 0.3
a w 0.2
a h 0.2
b 1 0.4
b w 0.3
b h 0.1
h 1 0.2
V Vol 0.9

Based on the result of Table 5-4, corresponding bipartite graph for align the two

graph can be generated. The template nodes go to the left list of the bipartite graph and

interface nodes go the right list of the bipartite graph. For each row in the node pair

similarity table, create a link (edge) on the bipartite graph between corresponding

template node and interface node. The bipartite graph created for the purpose of node

alignment is shown in figure 5-4(c).
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Figure 5-4 (c) Bipartite graph creation for matching an interface graph and a template graph

Generated bipartite graph is shown in Figure 5-4(c). The nodes in the interface graph

are brown and are the right side set of nodes in the bipartite graph. The nodes in the

template graph are blue and are the left side set of nodes in the corresponding bipartite

graph. The edges in the bipartite graph designate the consistency between interface nodes

and template nodes. For example: edge (a, 1) connecting left side node "1" with right side

node "a", indicate that interface node "1" is compatible with template node "a", with a

similarity score of 0.3.

5.3.5 Node Alignment Based on Bipartite Matching

Once the weighted bipartite graph is constructed, finding an optimal node alignment

between original interface graph and template graph is a maximal bipartite matching task.

In this work, a greedy bipartite matching method [71] similar to the example presented in

presented in figure 5-2 was adopted to yield quick solution. Since the edges of the
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bipartite graph represent node pair-wise similarities, they can be ordered from highest

similarity score to lowest similarity scores. The greedy bipartite matching method will

always try to pick an edge with highest similarity score possible.

A detailed algorithm description of the method is listed below as Algorithm 5-2.

For example, Figure 5-5 shows a maximal matching solution obtained by greedy

bipartite matching algorithm 5-2 on the bipartite graph created in Figure 5-4. Given an

order for the edges, a maximal matching can be found by always picking the highest

ranked edge available. In our case, the edges are node pair-wise similarities; therefore,

they can be ordered from highest similarity score to lowest similarity scores.

Algorithm 5-2: Greedy bipartite matching

Input: an ordered list of node pairs, (edges E of the bipartite graph)

M = 0;
While E(G)!= 0:

Pick the first ee G
M= MU {e}
Remove e and all other edges in E(G) that are adjacent to e

Repeat;

Output: a matching M



Bipartite graph

0u.74

nodes . nde

(a) A maximal matching of the weighted (b) Node alignment for the graph matching

bipartite graph in figure 5-4(c). task in figurer 5-4 (a) and (b)

Figure 5-5 Using bipartite matching to obtain node alignment

5.3.6 Refining Node Alignment by Aligning Arcs

The result of bipartite matching algorithm provides a node alignment based on node

pair-wise similarities. Since the designed algorithm only uses nodes information to create

the bipartite graph, the structural information (arcs) are completely ignored during

matching, the solution could be error-prone if the structural information plays a

significant role in graph matching.

A possible improvement to address this problem could be to embed arc information

as additional node attributes. This approach has been proposed by Kim in 1991 [34],

,,,,
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where discrete relaxation technique incorporated into bipartite matching algorithms to

"absorb" arc information during node alignment.

In this work, as a primary refinement, we proposed to check the arc consistency of

initial node alignment, and dump those node pairs without matching neighboring arcs.

Given a node alignment obtained from bipartite matching, algorithm 5-3 further checks if

there are any matching arcs based on the node alignment. This procedure is important

since it will reinforce any structural alignment that might exist.

A "virtual" arc is an indirect linkage between two nodes. It indicates an indirect

causal relationship between the two nodes. The reason why indirect linkage between

nodes is considered is because two interfaces with same functional role might be

implemented differently or exposes intermediate parameters.

Figure 5-6 gives an example scenario of the importance of "virtual" arcs. The

template shown in figure 5-5 (a) is a box volume calculator template, with length, width,

and height as inputs and volume as the output. Interfaces shown in figure 5-5(b) and (c)

are both volume calculators. In figure 5-6 (b), we can see 4 the real arcs connecting node

Algorithm 5-3: Refine node alignment

Input: a node-wise alignment M between template graph T and interface graph G,

For each node pair with connecting arcs

o Check if there is any real arc can be aligned;

o Check if there is any "virtual" arc can be aligned.

Removing those node pairs that don't belong to any aligned are or virtual arc
from M

Output: refined node-wise alignment M'



L and A, node W and A, node A and V, and node H and V. Moreover, there are also 2

"virtual" arcs connecting node L and V, node Wand V.

Length

Volume w

Height

L

H

Wdth

(a) Template graph (b) Interface graph I (c) Interface graph II

Figure 5-6 An example scenario of the importance of "virtual" arcs

The interface graph in (c) can be easily matched with the template graph in (a) since

they have the same topology. Interface graph in (b) contains an intermediate parameter A

(the area). Without considering the hidden linkage, the only direct arc matched is the arc

H to V. Although there is no direct arc between L to V and W to V in interface graph in

(b), there exist "virtual" arcs connecting them. Thus, nodes L and W will also be included

in the graph alignment, contributing to the overall similarity.

5.4 A Template-Interface Matching Example

This section provides a complete example, matching an interface to an existing

template (Figure 5-7).



d ~
Nd'~1 ~

C vi

jiji

EC'

CNC

iVi
a5n

-4,

.i

ic

I~ud~



The template is the "cutting power consumption evaluator" template discussed in

Chapter 4. The template graph is shown in Figure 4-3. The interface is a cutting power

model that estimates power using cutting force and cutting velocity ( W, = Fx V, )

The graph matching algorithm begins with creating node pairs between the two

graphs and evaluates the similarities for each node pair. Table 5-5 shows the ranked

matching node pair list.

Table 5-5 All non-zero similarity node pairs ranked according to the similarity scores.

Template Interface Similarity
Nodes Nodes Score
[P,, Es,] Ps 0.94

[Di] Di 0.92
[We, Pow] w 0.85

[DO] d 0.82
[D2] d 0.82
[D2] D1  0.75
[Di] f 0.59
[D2] f 0.58
[F,] Vc 0.44

Then, we can apply the bipartite matching algorithm 5-2 to found out an initial node

alignment (figure 5-8).

Bipartite graph Bipartite graph

TOWpk*
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Figure 5-8 Bipartite matching process of the matching task presented in figure 5-7.
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Table 5-6 shows the aligned node pairs list. Notice that the interface node s is not

aligned with any template node and the template node k is not aligned with any interface

node. They do not appear in Table 5-6 for this reason.

Table 5-6 Aligned node pairs with the similarity scores.

Template Interface Similarity Template Node
Node Node Score Weight
[Di] D, 0.92 2

[Ps, Es,] PS 0.94 2
[D2] d 0.82 2

[We, Pow] w 0.85 2
[Fs] Vc 0.44 2

After the aligned node pairs are determined, algorithm 5-3 refines the node alignment

via finding real and virtual arc alignment. 4 aligns arcs that have been found are shown in

Table 5-7. No virtual arcs are found in this case. Therefore, all five aligned nodes will

contribute to the overall graph alignment.

Table 5-7 Aligned arcs

Template Are Interface Arc
[Ps, Es,]--[We, Pow] Ps--w
[Di]-- -- [Wc, Pow] DO--w

[D2].---[Wr, Pow] d--w
[Fs]----[Wc, Pow] Vc--w

Figure 5-9 shows the matching result of the template graph and the interface graph in

figure 5-7. Overall, five aligned nodes and four aligned arcs are found in the graph

matching process.



Figure 5-9 Aligned template and interface

Finally, the graph similarity score can be computed using Equation 5-5:

S = (0.92x2+ 0.94x2 + 0.85x2+0.82x2 + 0.44x2) = 0.72
2+2+2+2+2+1

The similarity score by itself does not have meaning since it is a relative measure.

However, when comparing a list of interface graphs to an existing template, the similarity

scores will provide a ranking for how those interfaces are similar to the functional

template.



Chapter 6

Template Creation and Generalization

6.1 Introduction

A template is a synthetic data structure that used to represent patterns associated with

a particular functional role. When a functional role is known for a given web-enabled

application, or simulation model, its interface may be asserted as representative for such

functional role. Assertion, which is always by a person, gives origin to a template - a

reference pattern for the known functional role.

This thesis proposed a fuzzy template concept. Initially, the template is initialized

with a single example interface. By aggregating similar model interfaces into one

template, we can obtain a more generalized template that emphasizes desired patterns

while still including less frequent but relevant patterns, and de-emphasizing less relevant

artifacts that may have been present in an exemplar but did not pertain to the functional

role of interest. Since a template represents certain functional role that is not explicitly

defined and associated with a set of similar example interfaces. It can be seen as a fuzzy

functional concept. Each example interfaces can be seen as members of the fuzzy set,

and the degree of membership is the similarity score between each example interface and

the template.



The template graph representation is formally presented in Chapter 4 section 3. The

template graph is a weighted fuzzy ARG, where nodes and arcs themselves are weighted

with frequency numbers, and node attribute values are fuzzy sets. The advantage of the

representation is that allows a template to generalize patterns capturing information found

in several instances of functionally similar models.

This chapter will explain the aggregating mechanism: how to create an initial

template seeding and how to subsequently aggregate new information (or learning).

Currently, the decision of when to create and generalize templates for a given functional

role will be made by a user. The possibility of using incremental clustering approaches to

provide some feedback to assist the user in such decisions is discussed future work

section of chapter 8.

6.2 Seeding a Template

Initially, when a user asserts a model interface to be an example of a certain

functional role, information from that interface is used to initiate a template. Figure 6-1 is

an example of seeding an initial template from an example interface. The template graph

is a fuzzy ARG that looks much like the original interface ARG, except that nodes, node

attributes, and arcs are associated with frequency information. Since the seeded template

is based on only one example, all frequency information in the template has the value of

1.
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Figure 6-1 Seeding an initial template (right) from an example interface (left).

A template also contains auxiliary information such as descriptions of the functional

role it represents, such as "power consumption model of a cylindrical turning process" as

shown in figure 6-1. Also, version history is kept for each template about the exemplars

that have been used to create the template.

6.3 Generalizing a Template

After a template is seeded, it can be adapted or generalized using information from

other interfaces with a similar functional role. In order to aggregate new information into

a template, a graph merging algorithm for Fuzzy ARGs based on node alignment was

developed.
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Graph merging begins by matching the template graph with the graph of the

functionally similar interface that is to be added to the template. Details of the similarity-

based matching process were presented in Chapter 5. The graph matching algorithm

aligns equivalent nodes between the two graphs and determines which node-arc-node

pairs are equivalent. Based on the alignment, equivalent nodes and arcs are merged

together. Then the values from new interface attribute are added into attribute fuzzy value

sets in the template and all frequency numbers are updated as appropriate. Figure 6-2

illustrates how the information from a node in the interface is merged into a

corresponding template node

Orig.template node + New interface node => Updated template node

m {fW"} am: Pow NW { W", Pow')
dimeMion ([ ML-T1 } W fmsion: [ ML2T-j diension: { [ MLT-2' }

datat : {(real) datat e:real d ata, e: {(reaP)
i1ut: {output)z}  itbut: output init: {output'}

Figure 6-2 Merging equivalent nodes during template generalization.

In Fig. 6-2, an interface node named "Pow" (middle) is merged into the original

template node "Wc" (left), yielding updated template node "We" (right). During the

merging, for each node attribute, the interface value is added into corresponding template

fuzzy set. If the fuzzy set already contains a member equal to the interface attribute's

value, the frequency of that member is increased by 1. Otherwise, the interface value is

added into the template fuzzy set as a new member with frequency of 1. For example,

when updating the unit attribute, the new interface unit is "W", which is not contained in

the template unit fuzzy set {kW' }. Therefore, "W" is added as a new member with a

frequency number of 1. The updated unit fuzzy set is {W ,kW' 1}. For the data type



attributes, since the new interface value "real" is already contained in the template data

type fuzzy set {real I }, one simply increases its frequency by 1. The updated fuzzy set

then is {real2 }. Finally, the frequency number for the node is increased to 2.

After merging equivalent nodes, equivalent arcs can be merged based on the

alignment of node-arc-node pairs. Arc merging is simpler since arcs do not have

attributes. Thus, if an arc in the new interface matches an arc in the template, the template

arc's frequency number is increased by 1.

Equivalent nodes and arcs are merged together as indicated by increased frequency

numbers, thereby strengthening their presence in the template. Non-aligned interface

nodes and arcs are also added into the template graph with a frequency number of 1.

Figure 6-3 illustrates the template generalization process. The original template is the

cutting power template from Fig. 6-1. Now a second, functionally equivalent but

differently implemented service with the same functional role. This second interface is

used to calculate cutting power consumption during turning process, but is implemented

differently using the mathematical model W =E, x MMR. shown in Fig. 6-3 (a). The

original template is shown in Fig. 6-3 (b), and the updated aggregated template with new

information is shown in Fig. 6-3(c).
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Chapter 7

Validation and Results

7.1 Prototype System Design
7.1.1 Search Engine Framework

A traditional search engine usually contains software agent ("crawler") that can

crawls the WWW and indexes web pages, storing the indexed information in databases.

Users usually go to the homepage of a search engine web site, type in a keyword, and the

search engine will apply string-matching algorithms to indexed documents and

computing a ranked list of results and display them in a webpage. The ranking

mechanism would involve complicate link analysis, frequency counting, and elementary

structural analysis such as weighted title words, such as Google search engine [75].

A function-based search engine would work similar ways. But the similarity analysis

and ranking will be performed in the graph theoretical framework developed in this thesis.

Figure 8.1 shows the framework design of the expected search engine, combining both

indexing and searching (left) and pattern management part. The search engine contains

several key modules:

* Crawler: responsible of crawling numerous simulation interfaces on the WWSW

to collect information;



* Indexer: based on the result of pattern management module, index interfaces and

store them in the collections;

* Searcher: understand the query and search in the collections; display search

results;

* Pattern matching module: converting interface into graph models; conducting

similarity matching between interface graphs and pattern graphs.

* Pattern management module: interact with human experts to create or manage

templates.
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Figure 7-1 Search engine framework design (parts marked within the thick red dotted lines are
implemented in the thesis)

In figure 7-1, parts marked within the thick red dotted lines are implemented in thesis

as a prototype system to validate the concept of similarity-based template-matching

method.
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7.1.2 Modules of the Prototype System

A prototype system was developed in pure JAVA. There are four core modules and

one testing module. The core modules include:

* Data structure: classes for graph representation, such as directed graph, attributed

node, ARG, fuzzy ARG, and other basic data structure classes.

* Graph matching: algorithms for creating bipartite graphs, bipartite matching using the

greedy bipartite matching algorithm and the Hungarian algorithm, and ranking

algorithm for result,

* Similarity analysis: similarity measure defined for attributes, nodes, arcs and graphs.

Several open source Java APIs have been embedded in this module. An open-source

Java-based package of approximate string-matching techniques ( SecondString [68] )

is used for name similarity analysis. UCUM [69], a unit conversion Java toolkit

whose syntax for units of measures is based on the standard ISO 2955, is used for unit

conversion during the unit similarity analysis. Besides attribute similarities,

algorithms for calculating node pair-wise similarity and overall graph similarity are

also implemented in this module.

* Framework: this module contains 1) utility classes be called by search agent that

processes interfaces files, load and save to disks, indexing, searching and etc; 2)

template management classes for saving, loading templates.3) GUI classes for

visualization graphs.

Based on prototype system, a GUI tool for similarity assessment between a template

and an interface is also developed (figure 7-2). The GUI tool loads a template and an



interface from hard drive; displays their graphs and detailed nodes attributes information;

and compares the graphs to assess the similarity.

Figure 7-2 A GUI tool for similarity assessment.

In figure 7-2, panes on the left side show information of the template graph - in both

textual format and visualized format. Panes on the right side show information of the

interface graph. Comparison results including graph alignment and similarity score are

displayed on bottom pane of the GUI.

The source code has been compiled with Java 1.4.2 JDK and all the experiments are

performed on a 1.6 GHz Dell 600m Inspiron with 1 G RAM.



7.2 Validation and Results
7.2.1 Goal

A series of tests on real-world models and applications have been conducted in the

thesis. The goal is to validate the similarity matching approach and the template

generalization idea.

7.2.2 Metrics to Evaluate Results

To obtain quantitative evaluation of performance, the quantities precision p and recall

r are introduced (figure 7-3). Precision and recall are basic measures in the field of

information retrieval field. Precision indicates the proportion of relevant document to all

the documents retrieved; Recall is the proportion of relevant documents that are retrieved,

out of all relevant documents available [76].

#releant disxovered
#All relevant Relevant Discovered

#relevant di s over•d • -

A+C

Figure 7-3 Definition of precision and recall
Precision can be seen as an indicator of matching accuracy, while recall indicates the

matching completeness.

7.2.3 Test Data Set

The test dataset consists of 57 different web-enabled interfaces belonging to models

from an online energy-related modeling toolkit "Alternative Energy Toolkit" [77]

(http://cadl'ab.mit.edu/altenergy).



Table 7-1 57 Interfaces and their underlying models

1 load profile Interface
2 extraterrestrial radiation estimates Interface
3 monthly boiler fuel cost - complete Interface
4 solar time Interface
5 boler sizing -complete Interface
6 annual boiler fuel cost - complete Interface
7 Sunrise-sunset local standard times Interface
8 daly roof-wall cooling energy - complete Interface
9 fenestration heat gains - complete Interface

10 daly transmission heating energy - complete Interface
11 PV operation - simple Interface
12 cooling-heating degree-hours - complete Interface
13 flat panel collector - complete Interface
14 inverter operation with input losses Interface
15 inverter operation with loss coefficients Interface
16 ventilation heat loss -complete Interface
17 PV module LCEA - complete Interface
18 Operation parameters of PV with MPP tracker Interface
19 Operation parameters of PV without MPP tracker Interface
20 lead-acid battery - complete Interface
21 daly infiltration heating energy - complete Interface
22 simplified diesel generator energy analysis ?complete Interface
23 air-conditioner electricity - complete Interface
24 fenestration cooling load - complete Interface
25 PV controller - complete Interface
26 engine-generator life-cycle costing - complete Interface
27 complete solar-time-based Interface
28 local standard time Interface
29 profile of intemrnal cooling loads Interface
30 global irradiance on inclined surface Interface
31 global irradiance on inclined surface -with anisotroplc reflections Interface
32 outdoor air temperature - complete Interface
33 solar altitude and azimuth Interface
34 ourdoor air temperature - complete Interface
35 profile of solar radiation on tited surface - complete Interface
36 incident angle profile Interface
37 PV load breakdown - complete Interface
38 NPV saving - complete Interface
39 simplified PV module energy analysis ?complete Interface
40 roof-wall conduction cooling load - complete Interface
41 electricity and energy emission - complete Interface
42 transmission heat losses - complete Interface
43 Complete solar angles Interface
44 daly fenestration cooling energy - complete Interface
45 PV Lie-cycle costing - complete Interface
46 daly internal cooling energy Interface
47 CO2 emission - complete Interface
48 daily ventilation heating energy - complete Interface
49 top heat loss - complete Interface
50 PV operation - complete Interface
51 Solar Declination Interface
52 sunrise-sunset solar times Interface
53 service water heating -complete Interface
54 infiltration heat losses -complete Interface
55 sol-air cooling-heating degree-hours - complete Interface
56 solar Declination Interface
57 sunrise-sunset local standard times Interface

Electricity load profile
Extraterrestrial radiation
Fuel cost
sun-earth geometric relationship
Boiler sizing
Fuel cost
solar angle
Roof & wall cooling energy
24-hr profiles of fenestration heat gain
Transmission heating energy
PV array operation
Degree-hours
Efficiency of flat panel collector
Inverter operation
Inverter operation
Ventilation heat loss
PV module life-cycle energy analysis
PV module operational characteristics
PV module operational characteristics
PV system lead-acid battery
Infiltration heating energy
Diesel generator energy analysis
AC electricity load
24-hr profiles of fenestration cooling loads
PV system controller operation
Engine-generator system life-cycle costing
sun-earth geometric relationship
sun-earth geometric relationship
24-hr profiles of internal cooling loads
Global irradiance on inclined surface
Global irradiance on inclined surface
sol-air temperature-Matlab
sun-earth geometric relationship
sol-air temperature
Solar radiation on inclined surface
Solar radiation on inclined surface
PV system load breakdown
Net-present-value of saving
PV module energy analysis
cooling load
NOx, SO2, CO2 emissions from fuel consumption
Transmission heat loss
solar angle
Fenestration cooling energy
PV system life-cycle costing
daily internal cooling energy
CO2 emission from electricity generating systems
Ventilation heating energy
Top heat loss of flat panel collector
PV array operation
solar angle
sun-earth geometric relationship
server water heating
Infiltration heat loss
sol-air cooling-heating degree-hours
sun-earth geometric relationship
sun-earth geometric relationship



The underlying models (totally 39) cover common concepts in energy transfer, power

generation/consumption, energy cost, HVAC, heat transfer, and environmental impact of

energy technologies. These models and interfaces are implemented in DOME.

The interfaces and its underlying models are listed in table 7-1. On average, these

interfaces contain about 10-15 input/output parameters; while the larger interfaces

involve over 60 parameters.

In order to evaluate the search result, these 57 interfaces were manually categorized

into 10 categories by a human expert, shown in Table 7-2. The manually categorization is

performed by the creator (models builder) of the "Alternative energy toolkit". The

classification is assumed to reflect crisper and vague concepts. For better visualization,

each category is marked with a unique color.

Table 7-2: 57 interfaces are manually categorized into 10 categories.

16, 24, 29, 40,42, 54
i#10



7.2.4 Test 1: Test Similarity Matching Approach
7.2.4.1 Goal

The first experiment was designed to validate the similarity matching approach. The

experiment checks whether similar interfaces found by the algorithm are useful and

functionally similar (or relevant) according to a human experts' opinion.

7.2.4.2 Scenario

The testing scenario is described below:

1. Make templates from single interfaces. For each individual interface, create an

initial template. This initial template can be seen as a replication of the original

interface. Therefore, searching using an initial template is equivalent to searching

with a single an exemplar interface. All templates are indexed the same number as

its exemplar interface. For example, template created from interface # 4 is

indexed as template # 4.

2. Compute similarity for all 57 interfaces.

3. Keep matches with similarity score >= 0.1, this is to add a cut-off threshold to the

result.

4. Calculate r andp for each retrieved set.

5. Average r andp for all templates belonging to the same functional role.

7.2.4.3 Results

The search results are given in figure 7-4: categories with higher recalls tend to has

lower precisions.
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Enviromnent
Economic

Energy
Load demand

100.00%
74.34%
31.00%0
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Solar radiation 36.89%0
Surrounding condition 50. 00%
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Photo-wltaic 93.75%/
Solar thermal 50. 00%
Building heat transfer 75.51%

100.00%
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71.81%
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54.22%

18.06%

60-36%

Figure 7-4 Average precision and recall of single-interface templates

The detailed search result is visualized in figure 7-5. Templates and interfaces

belonging to a same category have the same category color. For example, the first two

rows are search results of templates 41 and 47 belonging to category #1 (Environment),

marked in brown color. Similar interfaces found for that template are listed row-wise in

the result columns based on relative similarity score from high to low. For example, in

the first row, similar interfaces found for template 41 are interface 41 and interface 47,

with interface 41 being more similar to the template than interface 47.

Figure 7-5 shows that for most templates, similar interfaces found by the algorithm

are in the same category - meaning the algorithm search result emulates human expert's

categorization. Also the top ranked interface in search result of each template is the

original interface generated that template--- as a validation of trivial case of graph

matching algorithm.



Figure 7-5 Visualization of single-interface templates search result

The algorithm execution speed was also noted. The experiment involved a total of

32494 graph comparisons and required 8.9 seconds on a 1.6GHz Dell 600M Inspiron with

IG RAM.

This test demonstrates the efficacy of heuristic fuzzy similarity functions and

matching algorithms. However, there are some categories that have more discrepant than

others categories. For example, the two templates belonging to category "solar thermal"

didn't find same-category interfaces except the interfaces that were used to create the

template. We studied these interfaces and found that they were functionally equivalent in

terms of input and output parameters characteristics:

43249=57*57

78



o Interface 13 belongs to a model that calculates the fin efficiency, collector

efficiency and useful heat transfer of flat-panel collector, based on the geometries

of the collector, operation condition, and the working fluid properties.

o Interface 49 belongs to a model that calculates a flat-panel collector's top heat loss

by takes into account both convective and radiative losses, and requires a number

of input parameters, including the absorbing plate's temperature, area and

emissivity, the number of covers and their emissivity, the collector's tilt angle, and

the ambient temperature [78].

After consulting with the expert who categorized the interfaces his opinion was that,

although the two models are not functionally similar, they were both relevant interfaces

to dealing with two different solar thermal problems involving flat-panel collectors.

This highlights an interesting issue - the ambiguity of the meaning of "similar". In

this work, this ambiguity is addressed by fuzziness incorporated in the template design. A

template represents a fuzzy concept of functional role, reflected by a discrete set of

exemplar interfaces with similar functional purposes. The observation leads to the next

experiment, which can be seen as a validation of the template generalization idea.

7.2.5 Test 2: Test Template Generalization Idea
7.2.5.1 Goal

The second test is to validate the template generalization scenario: whether a

generalized template generated by graph merging method is capable of better retrieving a

wider set of functionally relevant interfaces.



A generalized template represents a fuzzy functional concept that is learned from a

set of functionally equivalent/similar interface exemplars. In this experiment, we assert

that multiple interfaces from each manually defined category together represent a fuzzy

functional concept, such as "emission", "solar radiation", "building heat transfer", etc.

Then, a template is generated by merging these interfaces.

7.2.5.2 Scenario

The testing scenario is described below:

1. Make generalized templates with all the interfaces for a given functional role. The

maximum generalized template is generated using graph merging algorithm

explained in Chapter 6. The first interface of each category is used to initialize the

template. Then, the rest interfaces of this category are merged into the initial

template. For example, a template of category #1 "Emission" is initialized from

interface 41; and generalized by merging interface 47.

2. Compute similarity for all 57 interfaces.

3. Keep matches with similarity score >= 0.1, this is to add a cut-off threshold to the

result.

4. Calculate r and p for each retrieved set.

5. Average r andp for all templates belonging to the same functional role.

7.2.5.3 Results

The maximum generalized templates search results are given in figure 7-6, where we

can see as recall reaches 100%, precision tends to go down (but not in all cases).



5 # Solar radiatio 

%

#6 Surroumding condition
#7 Systemcoponent
#8 Photovoltaic
#9 Solar thermal
#10 Building heat transfer

100.00% 57.14%
100.00% 38.46%
100.00% 36.36%
100.00% 33.33%
100.00% 58.33%

Figure 7-6 Average precision and recall for generalized templates

A visualization of the detailed search result is shown in figure 7-7. We again use

color to distinguish between different manual categories. Each row listed interface from

"best match" to "less match".

Genei4lized Template Seamch Result
Best pnstch Leml match

#5 SoIm radiation 27 43 35 7 31 33 57 30 28 36 4 52 2 51 56

•s IggggggggTgggIg

a1 MI~ilM~ililB / II I

Figure 7-7 Visualization of generalized templates search result

One would expect all in each category to be found because each template contains all

the information about the category. The result in Figure 7-3 demonstrates that generalized

template of each category can retrieve all the interfaces belonging to that same category.

For a category # 5 (Solar radiation), the result has 0 miss-categorized results. The result

in Figure 7-3 validates that a generalized template can retrieve more functionally similar



interfaces. Future more, the model interfaces from the same category are top hits; it

demonstrates that the right patterns are emphasized.

7.2.6 Test 3: Recall and Precision as a Function of The
Template's Degree of Generalization

7.2.6.1 Goal

The goal of the third test is to explore the recall and precision changes as a function

of the template's degree of generalization.

7.2.6.2 Scenario

The testing scenario is described below:

1. Make templates from increasing numbers of interfaces belonging to the same

functional role.

2. Compute similarity for all 57 interfaces.

3. Keep matches with similarity score >= 0.1, this is to add a cut-off threshold to the

result.

4. Calculate r andp for each retrieved set.

7.2.6.3 Results

The recall and precision for searching using templates with incremental number of

interfaces is shown in table 7-3 and figure 7-8.

Table 7-3 Recall and precision for search using templates with incremental number of interfaces

Functional Role #1 Real Precsion
Environment 47 I100.00% 100.00%

47+41 100.00% 10Environment000%
47+41 100.00% 100.00%



Functional Role #2 Recall Precision

3 83.33% 71.43%
3+26 66.67% 100.00%
3+26+6 66.67% 57.14%

Cost 3+26+6+45 83.33% 71.43%
3+26+6+45+38 83.33% 62.50%
3+26+6+45+38+23 (all) 100.00% 66.67%

Functional Role # 3 Recall Precision

8 20.00% 100.00%
8+39 40.00% 50.00%
8+39+22 50.00% 55.56%
8+39+22+44 70.00% 58.33%
8+39+22+44+21 90.00% 60.00%

Energy 8+39+22+44+21+53 100.00% 52.63%

8+39+22+44+21+53+48 100.00% 47.62%

8+39+22+44+21+53+48+46 100.00% 55.56%
8+39+22+44+21+53+48+46+10 90.00% 60.00%

8+39+22+44+21+53+48+46+10+17 100.00% 66.67%
Functional Role #4 Recall Precision

1 100.00% 33.33%
Load Demand 37 100.00% 22.22%

1+37 100.00% 11.76%
Functional Role #5 Recall Precision

27 53.33% 100.00%
27+43 66.70% 100.00%

Solar radition 27+43+35 100.00% 100.00%
27+43+35+30 100.00% 100.00%
all 100.00% 100.00%

Functional Role #6 Recall Precision
12 50.00% 100.00%
32 50.00% 40.00%

surrounding condition 32 50.00% 40.00%
12+32 100.00% 57.14%
12+32+55+34 100.00% 57.14%

Functional Role #7 Recall Precision
14 60.00% 42.86%
14+5 60.00% 42.86%
14+20 100.00% 38.46%

system component 14+20+25 100.00% 50.00%
14+20+25+5 100.00% 41.67%
14+20+25+5+15 100.00% 35.71%

Functional Role # 8 Recall Precision
11 100.00% 66.67%

S11+18 100.00% 26.67%Photovoltaic
11+18+19 100.00% 30.77%
11+18+19+50 100.00% 36.36%

Functional Role # 9 1 Recall Precision

Solar thermal 13 50.00% 25.00%
13+49Solar thermal 100.00% 22.22%
13+49 100.00% 22.22%



9 42.86% 50.00%
9+16 85.71% 50.00%
9+16+29 85.71% 66.67%Building heat transfer
9+16+29+42 100.00% 58.33%
9+16+29+42+40 100.00% 58.33%
all 100.00% 58.33%
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Figure 7-8 Recall and Precision as a function of the template's degree of generalization

By analyzing the result, we can see that: recall has a general trend to reach 100%, but

the precision doesn't have a general trend; however in many cases the precision tends to

increase up to a level and then fall.

7.2.7 Test 4: Compare With Keyword-based Text Search
7.2.7.1 Goal

The goal of the fourth test is to compare the performance of the proposed similarity-

matching based search with keyword-based text search. The primary focus is to compare

the accuracy (precision) and completeness (recall) of the search.

The text search tool used in the comparison is an open source package called Apache

Lucene [79]. Lucene is a text search engine API, high-performance, and cross-platform.

It is the guts of a search engine; we have the flexibility of writing our own code for UI

and the processing of selecting and parsing input data files to pump them into a search

engine.
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As a baseline, the Lucene search is programmed to search on parameter names and

interface names based on keywords only. No fuzzy association or synonym association

has been implemented.

7.2.7.2 Scenario

The testing scenario is described below:

* Index the interface names and parameter names of all 57 interfaces by

processing interface definitions files.

* Use selected keywords for each functional role to pull result out for the

Lucene search.

* Calculate r andp for each retrieved set.

It's tricky to find a reasonable keyword to pull result out for the Lucene search. The

keywords used are shown in the table 7-4. Sometimes the name of the functional role

won't get any result, such as # 6 ("surrounding conditions"); "air" is used instead.

7.2.7.3 Results

Table 7-4 Recall and precision of the keyword-based search for each category

# 1 Emission "emission" 2 2 100% 100.00%
# 2 Economic "cost" 6 6 100% 100.00%
# 3 Energy "energy" 15 9 100% 60.00%
# 4 Load demand load" 10 2 100% 20.00%

"solar" 23 13 86.70% 56.52%
"sloar radiation' 4 1 67% 25.00%

# 6 Surrounding condition using "air" 10 3 75% 30.00%

# 7 System component keyword "system" 2 0 0% 0.00%
S "component" 0

# 8 Photovoltaic "PV" 11 4 100% 36.36%

# 9 Solar thermal "thermal" 2 1 50% 50.00%
# "solar thermal" 0

# 10 Building heat transfer "buiding" 4 1 12.50% 25.00%
1 "heat transfer" 3 0 0.00% 0.00%



We compare the recalls and precisions in above result with the result from searching

with generalized template (second test) in table 7-5. In addition, figure 7-9 (a) and (b)

plot the recall and precision comparison as category bar charts.

In general, graph-based search has a better overall recall and precision than keyword

based search. Keyword based search can't obtain 100% recall in all categories. And the

precision is lower than graph-based search in many categories. In some categories (where

the functional role name is rather abstract, e.g. system component), the keyword based

search didn't get any result.

Table 7-5 Comparison of recall and precision of the keyword-based search for each category
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7.3 Additional test on a synthesized dataset: a cutting
power consumption test suite

7.3.1 Test Data Set

A small cutting model test suite (shown in Table 7-5) of 15 interfaces is synthesized

to represent a number of challenging identification and discrimination cases. The test

suite is made from three different types of model interfaces for cutting power

consumption models for different machining processes. Interfaces in the test suite are

sub-categorized by their types: "Type 1", "Type 2" and "Type 3", as shown in Table 7-6

column-wise.

The set is designed so that Type 1 and 2 interfaces have the same core modeling

approach but, due to causality differences, have slightly different functional roles in terms

of inputs and outputs. Type 3 interfaces have similar functional inputs and output to the

Type 1 interfaces, but they were implemented using different core models. Thus, type 1

and type 3 are functionally almost equivalent types; while type 2 are different from type 1

and 3 from a functional standpoint, even though the similarity between type 1 and type 2

is a little higher than the similarity between type 1 and type 3, as type 1 and type 3 share

a similar core modeling approach.

Table 7-6 Cutting power consumption test suite [80]

Cutting processes Type 1 Type 2 Type 3
Wc =FxV W =FxV Wc = E x MMR
V, = nMD V, is given
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7.3.2 Goal and Scenarios

The goal of this experiment is to test how well the similarity matching algorithm was

able to:

o Discriminate among similar groups of interfaces.

o Show that type 1 and 3 are more similar than type 1 and 2 - since type 1 and 3

are functionally equivalent.

o Show that type 2 and 1 are more similar than type 2 and 3-since type 1 and 2

have the same core modeling approach

Similar to the single-interface template experiment scenario described in section 2.1,

a single-interface template is created from each interface and compared to all interfaces

in the suite. In this case study, we utilize a different visualization of result from previous

experiments, because we want to visualize the relative similarity scores of each interface

as well.

7.3.3 Results



As shown in figure 7-10, when a longitudinal turning power consumption interface of

Type I was used as a template to match against the entire test suite, the algorithm

retrieves all the interfaces back and rank Type 1 interfaces the top group, followed by

Type 3 interfaces, and then Type 2 interfaces were ranked as the third group. Figure 7-11

is a column chart visualization of the result in figure 7-10, where one can visualize the

differences among relative similarity scores. The chart clearly shows that Type 1

interfaces more similar to Type 3 than to Type 2.

Find similar model interfaces for template < longitudinal turning power consumption typel>

Rank Interface Name Relative Similarity Score

#1 longitudinal turning power consumption typel 100.00%
#2 plunge milling (enlarge a hole) power consumption typel 97.50%
#3 radial turning power consumption typel 95.06%
#4 face milling power consumption typel 92.62%
#5 plunge milling (drill a hole) power consumption typel 80.89%
#6 longitudinal turning power consumption type3 79.60%
#7 plunge milling (enlarge a hole) power consumption type3 77.10%
#8 radial turning power consumption type3 74.66%
#9 face milling power consumption type3 72.22%
#10 plunge milling (drill a hole) power consumption type3 61.45%
#11 plunge milling (enlarge a hole) power consumption type2 56.45%
#12 longitudinal turning power consumption type2 37.35%
#13 radial turning power consumption type2 37.35%
#14 face milling power consumption type2 37.35%
#15 plunge milling (drill a hole) power consumption type2 23.12%

Figure 7-10 Ranked result of matching a "longitudinal turning process a type 1" template to the
whole test suite



100%

00%

40%.U 70%

3. 60%

50%'I 40%

10%

0%
1 2 3 4 5 6 7 8 9 10 1112 13 1415

Rank

I a longitudinal tumring power consumption type
2 0 plunge milling (enlarge a hole) power consumption typel I
3 0 radial tumrning power consumption type 1 Type 1
4 0 faoe milling power consumption typel
5 plunge milling (drill a hole)power consumption typel

- lUlllILIllLUIUII IIj pVWI lARllUJIllUUlIl l~5l3 I
7 U plunge milling (enlarge a hole) power consumption type3
8 0 radial turning power consumption type3 Tpe 3: U faze milling power consumption type3

l njunn i mi ing Q 2 halQl h•au unm itr mainrnr1ian n•al

11 plunge milling (enlarge a hole) power consumption type2
12 Mlonitudinal turning power consumption type2
13 0 radial turning power consumption type2 Type
14 fa1e milling power consumption type2
15 W plunge milling (drill a hole) power consumption type2

Figure 7-11 olumn chartvisualizatio: Ranked reult ofImatc in a"loniuia unn rcs

Figure 7-11 Column chart visualization: Ranked result of matching a "longitudinal turning process
a type 1" template to the whole test suite

Similarly, the test is repeated using a longitudinal turning power consumption

interface of Type 2 to match against the entire test suite. The result is given in Figure 7-

12 and 7-13. The algorithm retrieves all the interfaces back and ranks Type 2 interfaces

as the top group, followed by Type 1 interfaces, and then Type 3 interfaces are ranked the

third group. The chart in Figure 7-13 shows that Type 2 interfaces are more similar to

Type 1 than to Type 3.



Find similar model interfaces for template < longitudinal turning power consumption type 2> :

Rank Interface Name

#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
#15

Relative Similarity Score

longitudinal turning power consumption type2
radial turning power consumption type2
plunge milling (enlarge a hole) power consumption type2
face milling power consumption type2
plunge milling (drill a hole) power consumption type2
radial turning power consumption typel
face milling power consumption typel
plunge milling (drill a hole) power consumption typel
longitudinal turning power consumption typel
plunge milling (enlarge a hole) power consumption typel
radial turning power consumption type3
face milling power consumption type3
plunge milling (drill a hole) power consumption type3
longitudinal turning power consumption type3
plunge milling (enlarge a hole) power consumption type3

100.00%
88.89%
74.48%
53.89%
53.89%
26.52%
26.52%
26.52%
24.90%
24.90%
18.95%
18. 9 5 %
18.95%
17.32%
17.32%

Figure 7-12 Ranked result of matching a "longitudinal turning process a type 2" template to the
whole test suite
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process a type 2" template to the whole test suite

The experiment results show that the algorithm is able to discriminate between

different sub-categories; and correctly determines that similarities between Type 1 and 3

are greater than those between Type 1 and 2; and similarities between Type 2 and 1 are

greater than those between Type 2 and 3.
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Chapter 8

Conclusions and Future work

8.1 Conclusions

New emerging Internet-based simulation environments including the DOME have

provided enabling technologies for a World-Wide-Simulation Web (WWSW) - a

World-Wide-Web (WWW) of web-enabled applications. The motivation of this work is

to design a non-traditional search engine that is capable of searching for functionally

appropriate web-enabled applications. As prior art, we studied ontological approach and

pattern matching approach and discussed their strengths and limitations. We believe that

there are a number of usability issues that will prevent the widespread, practical adoption

of the ontological approach.

Alternatively, this work proposes a flexible, implicit, pattern matching solution that

does not require extra annotations of the models, much as the way current web search

engines operate. In this work, a hypothesis is made that interface structural pattern is

sufficiently representative of functional roles of the underlying model. This work, for the

first time, studied pre-existing low-level information in interfaces and proposed a

minimal subset of information that are relevant to the functional role of underlying

simulation models. Then, this minimal subset is used to synthesize templates. Templates



are synthetic data structures representing functional roles. When searching for web

applications with a desired functional role, the template representing that functional role

is used as an exemplar query and functionally similar interfaces are identified based on

result of similarity matching. Additionally, newly found functionally equivalent

interfaces can be merged into the original template, thereby both generalizing the pattern

for a functional role and strengthening the most critical aspects of the pattern.

A prototype system was implemented in JAVA and applied to a suite of real-life

engineering models to validate the approach.

The results demonstrated the plausibility of the approach:

* The hypothesis that functional roles of web-enabled applications can be

related to structural interface information holds well.

* The proposed combination of pattern-based similarity measurement and

template generalization works well in retrieving functionally comparable web-

applications.

* The proposed approach outperforms text-based search tools in functional

search.

8.2 Contributions

The contribution of this thesis is a structural pattern recognition approach that

recognizes functionally similar web-enabled applications based on available interface

definitions; and, through implementation and testing on real-life engineering models,

demonstrated the plausibility of the approach.



This thesis also developed algorithms based on graph theory and pre-defined heuristic

attribute similarity metrics. The traditional method used in pattern matching applications

is the vector-space model with similarity measure defined by Euclidean space. This thesis

use the concept of graph similarity, graph distance, and graph matching as a basis for the

novel approach we've developed for classification tasks instead of using restrictive vector

models. The graph representation and algorithms provide flexibility and improve

performance of the machine learning process.

Graph similarity has been largely studied in the graph matching field. A number of

applications can be found in pattern recognition literature. However, to our best

knowledge, there is no graph matching applications that deal with content-based

categorization and classification of web-enabled applications, web services or parametric

simulation models.

This thesis work provides an alternative solution for automatic interpretation of

functional roles of simulation models by discover associations between content semantics

and structural/syntactic patterns of available information. Although the work has been

primarily tested on the DOME WWSW, the approach can be applied to other emergent

environments. It can also be extended to facilitate function-oriented search capability for

common web services on WWW, such as integrate with the UDDI (Universal

Description, Discovery and Integration) [8].

8.3 Future Work

The experiments conducted in this thesis show promising results. However, there are

some open issues that require further investigation. Recommended future work has two



primary directions. The first direction is to improve performance and accuracy of the

graph matching method. One possible area of research is investigating performance

sensitivity to changes in similarity metrics. This can be done by adding user feedbacks

[81] to dynamically tune and improve the heuristic similarity functions. Users might

classify the systems matching results into relevant and irrelevant groups, and the system

to adjust node attributes weights in the heuristic similarity functions to improve

correspondence.

Another recommendation is to refine the bipartite matching algorithm. The greedy

algorithm used in this work has limitations. The solution (local optimal) is not unique

There is no mechanism to found out all local optimal matching and compare them. One

way to improve this is to adopt the Hungarian method [70] for finding optimal solution to

weighted bipartite matching. The Hungarian method is to solve bipartite matching by

finding augmenting path. The computational cost can be higher: O(n3) in the worse case

as opposed to O(n2) of the greedy algorithm.

Meanwhile, another drawback of current bipartite matching is that by only

considering node attribute similarity, structural information (arcs) is ignored during the

initial node alignment. Although subsequent checks are made to validate structural

compatibility, the current approach still could be error-prone. A possible improvement to

address this problem could be to embed arc information as additional node attributes [34].

The second major direction for further research is additional study of template

learning, generalization, and adaptation. One recommended future work is investigating

performance with different template growth mechanisms, and how to control the learning



process. These include studying when a template should stop the generalization and

adaptation process, and how to prune irrelevant information from well-adapted templates.

Conceptually, a template represents a fuzzy functional role of which we may not have

complete knowledge. Currently, the decision of when to create and adapt a template for a

functional role is done manually. Manual assertions might be subjective and introduce

unfavorable noise to the template. Future research may be conducted on the potential

adoption of incremental clustering approach [82] to provide some feedback to assist the

user assertion. Incremental clustering method calculates the entropy of interfaces

belonging to a template's cluster, to see if the updated template yield better similarity

distribution in the cluster or not.
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