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Abstract

The contribution of this thesis is the development of tractable computational meth-
ods for reducing the complexity of two classes of dynamical systems, finite alphabet
Hidden Markov Models and Jump Linear Systems with finite parameter space. The
reduction algorithms employ convex optimization and numerical linear algebra tools
and do not pose any structural requirements on the systems at hand.
In the Jump Linear Systems case, a distance metric based on randomization of the
parametric input is introduced. The main point of the reduction algorithm lies in the
formulation of two dissipation inequalities, which in conjunction with a suitably de-
fined storage function enable the derivation of low complexity models, whose fidelity
is controlled by a guaranteed upper bound on the stochastic L 2 gain of the approxi-
mation error. The developed reduction procedure can be interpreted as an extension
of the balanced truncation method to the broader class of Jump Linear Systems.
In the Hidden Markov Model case, Hidden Markov Models are identified with appro-
priate Jump Linear Systems that satisfy certain constraints on the coefficients of the
linear transformation. This correspondence enables the development of a two step
reduction procedure. In the first step, the image of the high dimensional Hidden
Markov Model in the space of Jump Linear Systems is simplified by means of the
aforementioned balanced truncation method. Subsequently, in the second step, the
constraints that reflect the Hidden Markov Model structure are imposed by solving
a low dimensional non convex optimization problem. Numerical simulation results
provide evidence that the proposed algorithm computes accurate reduced order Hid-
den Markov Models, while achieving a compression of the state space by orders of
magnitude.
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Chapter 1

Introduction

The concept of model reduction is pervasive in all areas, where system theoretic ideas

have been applied. The starting point is always some mathematical model, which

exhibits high degree of complexity. The typical task is to replace the original model

with a low complexity counterpart, while preserving all relevant information. What

constitutes relevant information is reflected in appropriately defined error measures,

which capture the fidelity of the reduced model. Model reduction algorithms are

being evaluated by their ability to provide provable a priori guarantees for the degree

of accuracy and the level of complexity reduction achieved by the low dimensional

model, as well as the algorithmic cost associated with them.

The balanced truncation algorithm, which originated in [22] provides an example of

a model reduction technique sucessfully employed in the context of Linear Time In-

variant Systems. Theoretical justification for its use was given by the derivation of

a priori bounds to the approximation error, [11]. The closely related optimal Hankel

norm reduction problem was solved in [13]. Since its inception the balanced trunca-

tion algorithm has been extended to more general classes of systems. In particular

multidimensional and uncertain systems, which are represented by means of Linear

Fractional Transformations, are handled in [9], the case of Linear Time-Varying Sys-

tems is addressed in [14].

In this thesis a balanced truncation algorithm is presented for a class of hybrid systems

that combine continuous and discrete variables, namely Jump Linear Systems, where



the parametric input varies over a finite set. Elements of that algorithm are used

in a reduction method developed subsequently for discrete-time, finite state, finite

alphabet Hidden Markov Models. It is remarkable that despite the widespread range

of applications of Hidden Markov Models, systematic reduction methods, which do

not pose any structural requirements, have been lacking so far. What follows is a

brief overview of these two classes of dynamical systems.

Hidden Markov Models (abbreviated HMM's) are one of the most basic and widespread

modeling tools for discrete-time stochastic processes that take values on a finite al-

phabet. One of the first references that make use of the concept of a HMM is [27],

where HMM's with discrete inputs were considered as models for noisy, finite state

communication channels. This class of models is commonly referred to as Probabilis-

tic Automata [24]. Another early encounter with HMM's can be found in [6]. That

work provided motivation for the subsequent investigation of the stochastic realiza-

tion problem. Given a finite valued, stationary process {Y(t)}, find necessary and

sufficient conditions for it to be equivalent, in the distributional sense, with a func-

tion of a Markov chain. Those conditions were derived in [15]. Finite state stochastic

processes were associated to algebraic modules and it was shown that the stochas-

tic realization problem is essentially a question of polyhedral convexity. The work

in [15] was translated in more transparent system theoretic terms in [25], however

both approaches are non constructive. A remedy to that was provided in [1], where

the employment of convergence results on infinite products of nonnegative matrices

led to a realization algorithm, which is based on asymptotic arguments and is semi-

constructive in nature. In that work it was assumed at the outset that the given

process has an HMM realization of unknown order. Conditions that are essentially

necessary and sufficient and are stated in terms of the given process {Y(t)} alone,

without making the a priori assumption that {Y(t)} has an HMM realization, were

derived recently in [31]. It is worth mentioning that the minimal stochastic realization

problem is open up to this date, in fact the simpler problem of minimal realization

of Linear Time Invariant Positive Systems lacks a complete solution too. A review

paper on this subject is [3].



Applications of HMM's are met across the spectrum of engineering and science in fields

as diverse as speech processing, computational biology and financial econometrics,

see for example [26], [17] and [5] respectively. Very often the cardinality of the state

space of the underlying Markov chain renders the use of a given HMM for statistical

inference or decision making purposes as infeasible, motivating the investigation of

possible algorithms that compress the state space without incurring much loss of

information. In [21] it was suggested that the concept of approximate lumpability

can be used in the context of model reduction of HMM's. Results on the approximate

factorization of nonnegative matrices were used in conjunction with approximate

realization of HMM's in [12].

Jump Linear Systems (abbreviated JLS's) are abstractions of hybrid systems, which

combine continuous and discrete dynamics. They form an extension of Linear Time

Invariant Systems, in the sense that the coefficients are functions of parameters. In

this work the case where the parameter space ranges over a finite set will be con-

sidered. The transition between the different modes of operation is controlled by an

exogenous parametric input. In the process of defining a distance metric between two

Jump Linear Systems it will be assumed that the parametric input is a sequence of

independently identically distributed random variables. The resulting system will be

refered to as an IID-JLS. There is a large body of literature in the fields of econo-

metrics and system theory pertaining to the class of JLS's, with randomly varying

parameters. One of the first references is [19], which investigated the continuous-time

Jump Linear Quadratic Control problem. Further results on this problem were ob-

tained in [29] and [32]. In particular, [29] considered the finite horizon setting and

a stochastic maximum principle approach is used, whereas in [32] dynamic program-

ming is employed and the infinite horizon case is treated as well. In many applications

it is reasonable to assume that the switching sequence forms a finite state Markov

chain and one speaks of Markov Jump Linear System (abbreviated MJLS). In the last

two decades a large collection of Linear System Theory results have been extended

to this class of systems, see for example [23] and the references therin.





Chapter 2

Reduction of IID Jump Linear

Systems

In this chapter a model reduction method for IID-JLS's will be presented. The com-

plexity measure used is the order of the state space realization. The only assumption

posed on the original system is, that it is mean square stable. The main point of

the method is the formulation of two generalized dissipation inequalities, which in

conjunction with a suitably defined storage function enable the derivation of reduced

order models that come with a provable a priori upper bound on the stochastic L2

gain of the approximation error.

2.1 System Model

2.1.1 Markov Jump Linear System

Consider the following stochastic system denoted by £ :

x(t + 1) = A[9(t)]x(t) + B[9(t)]f(t),

y(t) = C[O(t)]x(t), te Z+.



As usual x(t) E R' is the state variable, f(t) E Rm is the control input and y(t) E Rp

is the output variable, where n, m, p are positive integers. The system matrices are

of conformable dimensions. The parametric input 9(t) controls the modal transitions

of the system and corresponds to the state of a Markov chain defined on a finite set

O = {1,..., N}, N E Z+, N > 1. The associated transition probability matrix is

denoted by P, and it is a row stochastic matrix. Let pij denote the entry in the i'th

row and j'th column of P, then pij = P[8(t + 1) = j I 8(t) = i]. The initial conditions

of the system are given by specifying x(0) E R' and 0(0) E R. The system £ is what

is called a discrete-time MJLS.

2.1.2 I.I.D. Jump Linear System

An IID-JLS has the same state space representation as a MJLS. The only difference

lies in the transition probability matrix. In the case of an IID-JLS all the rows are

equal, i.e. Pij = Pj, Vi, j E O.

2.2 Stability Concepts

There are several concepts of stability associated with stochastic systems, see [20] and

[18].

Definition 1. The system £ with f(t) = 0, Vt E Z+ is called mean square stable,

if for every initial condition x(0) E R ', 0(0) E E,

E[|x(t) 2] - 0 as t -+ oc.

Definition 2. The system L with f(t) = 0, V(t) E Z+ is called exponentially mean

square stable if for every initial condition x(0) E Rn , 9(0) E O, there exist real

constants 3 > 0 and p E (0, 1) such that

E[Ix(t)121] • pkix(0)12, t E Z+.



Definition 3. The system L with f(t) = 0, V(t) E Z+ is called stochastically stable

if for every initial condition x(0) E R n , 0(0) E 9,

i E[ x(t)I ] < 2
t=O

Similar to the case of Linear Time Invariant Systems, the above stability concepts

are equivalent.

Theorem 4. [23] The following statements are equivalent :

* (a) System L is mean square stable.

* (b) System L is exponentially mean square stable.

* (c) System £ is stochastically stable.

* (d) There exists a set of N positive definite matrices {G(i) > 0, G(i) E Rnn }ize,
such that:

G(i) - EpijA(i)'G(j)A(i) > 0, i E .
j=1

Proof. A proof of the above theorem can be found in [23]. EO

In the case of iid-JLS's the set of coupled Lyapunov equations simplifies to the single

equation
N

G - -pjA(j)'GA(j) > 0.
j=1

In the following only iid-JLS's will be considered.

2.3 Sensitivity Measure

Definition 5. The stochastic L2 gain of the system L is denoted by 7, and is

defined for x(0) = 0 by

sup E[ ly(t) 2]
f~ t=o

2 =



In the above definition the set S' corresponds to the unit sphere in the space of

square summable sequences of m-dimensional vectors.

Theorem 6. Given a system £, if there exists a quadratic function V : R n -+ [0, 00)

with V(O) = 0 satisfying :

N

y2 f(t) 2 + V(x(t)) 2 P I• C(i)x(t)12 + V(A(i)x(t) + B(i)f(t))], (2.1)
i=1

Vx(t) C R, Vf (t) E Rm

then the stochastic L 2 gain of £ does not exceed y > 0.

Proof. The above relation implies

21f (t)12 + E[V(x(t))] > E[ly(t) 2] + E[V(x(t + 1))], (2.2)

Vf(t) E Rm , Vt e Z+.

According to the definition set x(0) = 0 and sum relation (2.2) from t = 0 to t = T

obtaining
T T

E[E ly(t) 2] _ Y2 E If(t) 2 - E[V(x(T + 1))].
t=0 t=0

Since V is a nonnegative valued map, E[V(x(T + 1))] > 0 thus

T T

E[E y(t) 2] _ 72 E If(t)2.
t=O t=o

Restricting the input signal f to be on the unit sphere S2 gives

cc

E[ ly(t) 2] ! y2 Vf
t=O

and in particular 7y5 -y 2 completing the proof. O

The search for a quadratic storage function, that leads to finiteness of the stochastic

L 2 gain is guaranteed to succeed if the system is stochastically stable, in the sense

defined above.



Theorem 7. If the system L is mean square stable, then its stochastic L2 gain is

finite.

Proof. Let Q > 0 be an arbitrary positive definite matrix. Mean square stability

guarantees the existence of a positive definite matrix P > 0, such that

N

piA(i)'PA(i) - P = -Q < 0. (2.3)

Define V(x(t)) = x(t)'aPx(t) to be a quadratic function of the state, where P > 0

and a > 1 . Using the state equations one obtains the following relation, that is

equivalent to condition (2.1)

x(t)' f (t) 11 12 [ x(t) 0 Vx(t) E R, f(t) E Rm  (2.4)
SW 21 W22 f(t)

where

N

Wll = p•pi(A(i)'aPA(i) + C(i)'C(i)) - aP
i=1
N

W12 = -piA(i)'caPB(i)
i=1

w21 = Q'1 2
N

W22 = EpiB(i)'0aPB(i) - 2
i=1

Using the Schur complement idea one can conclude, that a sufficient set of conditions

for (2.4) to hold is

W11 < 0 (2.5)

W22 < W21Wl11W 12 (2.6)



Using (2.3), relation (2.5) can be rewritten as

N

E p2c(i)' c(i) - aQ < o
i=1

and there is always an a large enough so that it is satisfied. Setting

N

F1 = EpiB(i)'aPPB(i)
i=1

F2 = W21W-11W12

one can rewrite (2.6) as

F, - F2 < 721.

The above condition can always be satisfied by taking y large enough. Thus, there

exists an a > 1 and a y > 0 such that V(x(t)) = x(t)'aPx(t) satisfies the dissipation

inequality (2.1), leading to finiteness of the stochastic L2 gain of L. O

A standing assumption in this work is that the give iid-JLS is mean square stable

system.

2.4 Error system

Reduced order model candidates are denoted by Z. It is required that the reduced

model has the same JLS structure and that parametric input ranges over the same

set E. The state space equations for the reduced model are given by :

2(t + 1) = A[t(t)]i(t) + B[3(t)]f(t),

S(t) = C[O(t)].-(t), tE Z,,

where 2(t) E RW and i < n.

In order to quantify the fidelity of 4, an error system 8 is introduced, whose inputs

are the common inputs f(t), 0(t) of L and £ and whose output is the difference of



their outputs, namely e(t) = y(t) - ^(t).

Figure 2-1: Error System E

The goal of the reduction process is to produce models of lower complexity it < n.

that, loosely speaking, satisfy ye • /3 , where / is a "small", a priori computable,

real number. What constitutes a reasonable choice for / depends on how stringent

are the performance requirements for a given system.

2.5 Dissipation Inequalities

The reduction method relies on the computation of P > 0, Q > 0 for a given mean

square stable system L such that the following set of dissipation inequalities is satis-

fied:

N

Ix(t)I 2 Zpi(IA(i)x2p + IC(i)x 2), (2.7)
i=1

Vx(t) R,
N

Ix(t)I + f(t) 2 > Zpi(JA(i)x(t) + B(i)f (t) ), (2.8)
i=1

Vx(t) E R n, I Vf(t) E R m

In the above relations the notation Iz(t)2p = z(t)'Pz(t) is used. There is a natural

interpretation of (2.7), (2.8) in the case where N = 1, so that £ reduces to an LTI

system. If the system matrices {A(1), B(1), C(1)} constitute a minimal realization of



£, then equation (2.7) is satisfied with equality using P = Wo, and (2.8) is satisfied

with equality using Q = W -1 , where Wo, W, are the observability and controllability

Gramians of the system respectively. They satisfy the Lyapunov equations

Wo = A(1)'WoA(1) + C(1)'C(1)

Wc = A(1)WcA(1)' + B(1)B(1)'

In the case where N > 1, the following two lemmas provide interpretations for P and

Q.
Lemma 8. Let T E Z+ and consider the unforced { f (O),..., f(T)) = {0,... ,0)

response of £ to the initial condition x(O) E R n . For an arbitrary To E Z+ , such

that To < T one has
T

E[|y(t) 2] 5 E[x(To)l.
t=To

Proof. The dissipation inequality (2.7) implies in the unforced case

E[Ix(t + 1)|] + E[Iy(t) 2] < EIx(t) p ,

Sum the above relation from t = To to t = T to obtain

T

E[zI(T + 1)1 ] + 1 E[ly(t) 2] 5 E[Ix(To)lj].
k=To

Then, noticing that E[x (T + 1)Q ] _ 0 leads to the desired result. O

Lemma 9. Let T E Z+ and consider the evolution of L that starts at rest x(O) = 0.

Then, for an arbitrary input sequence {f(O),..., f(T)} one has

T

I f(t)l2 > E[Ix(T + 1)& ], Vf(t) E Rm, t {(1...T}
t=O

Proof. The dissipation inequality (2.8) gives in this case

E[Ix(t + 1)& ] 5 E[|x(t)l] + f(t) 1 2, Vf(t) Rm.

24



Sum the above relation from t = 0 to t = T and note that x(0) = 0 to obtain the

desired result. O]

2.6 Reduction by state truncation

What follows now is a straigtforward extension of the concept of state truncation,

well known for LTI systems, to the JLS's case. One starts out with a state space

model of L

x(t + 1) = A[O(t)]x(t) + B[O(t)]f(t), (2.9)

y(t) = C[9(t)]x(t), t Z+,

and applies an invertible coordinate transformation

x(t) = T.(t)

that puts the "most important" states in the first components of the transformed

state vector i(t) . This transformation gives a new state space representation of L

ý(t + 1) = A[9(t)]J(t) + B[(t)]f (t),

y(t) = C[0(t)]4(t), t E Z+.

The state vector 2(t) is then partitioned as

(t) : M(t)

where the state vector il (t) corresponds to the states that are to be retained and .2 (t)

to the states that are to be removed. With appropriate partitioning of the system



matrices the state space representation of L becomes

xl(t + 1) = Afll[9(t)]£1(t) + Al2[8(t)]x2(t) 2 [•l[(t)]f(t),

j2 (t + 1) = A21[o(t)](t(t) + A 22 [ I (t 2(t) + B2 [2(t)]f(t),

y(t) = C1[9(t)li](t) + C2 [0(t)l 2 (t), t E Z+.

The dynamic system that one obtains by truncating the last r variables, i.e. 22(t) E

R' , is equivalent to a system whose state variables are constrained in a proper

subspace Sn,- of the original state space, where Sn-, = {z E R" I z(i) = 0, n-r+1 <

i < n}, that is naturally isomorphic to Rn - r. Thus the state vector 2(t) of the reduced

system £ will be of the form 2(T) = (-1(t), 0)' E Sn,_ C R " .

2.7 Upper bound to the approximation error

In this section it will be shown, how to reduce the order of a given mean square stable

system £ by means of state truncation and obtain an upper bound on the stochastic

L 2 gain of the resulting error system S.

Theorem 10. Consider a mean square stable system £ of order n. Consider also the

positive definite matrix W, such that

W = El E2,

where

E2 = /1 Iri ED ... E)3 sIr,, Z rk = r.
k=1

Suppose that the matrix P = W satisfies (2.7) and Q = W - 1 satisfies (2.8). Let 1

be the reduced order model obtained by truncating the last r states of L. Then, the

stochastic L2 gain of the error system 8 is bounded from above by twice the sum of

the distinct entries on the diagonal of E2 "

"E _ 2(31 + .. + .P) (2.10)



Proof. Using the matrix

Er =]

the state space model of L can be written as

,(t + 1) = (In - Er)(A[O(t)]&(t) + B[O(t)]f(t)), (2.11)

Y(t) = C[O(t)]£(t), t E Z+.

The following signals will shorten the subsequent notation.

z(t) = z(t) + (t),
((t) = t) - (t)

h[0(t)] = A[O(t)] (t) + B[(t)]f (t), 9(t) E O.

The proof will proceed by successive truncation of the last rs, rs-l,..., rl states.

Let 4£ denote the reduced system obtained by truncating the last r, states and

£E the corresponding error system between 4, and L. The state variable of 4. is

2(t) (" ) E Sn-r, C Rn and one can verify that the following relations hold:

z(t + 1)(S) = A[O(t)]z(t)(s) + 2B[O(t)]f(t) - Ersh[O(t)] ( ) ,

6(t + 1)(s) = A[O(t)]6(t)() + E,,h[O(t)]("),

e(t)(8) = C[O(t)]6(t)(s), t E Z+,

where

z(t)(s) = x(t) + (t)(5),

e(t)(c) = x(t) - y(t) (> )

e(t)(s) = y(t) -y(t) ( ).



In a first step it will be shown that

Ye8 • 23sd (2.12)

In order to prove (2.12) it is sufficient to find a storage function V : R n x R n -- R+,

such that V(O, 0) = 0 and :

(2.13)

Vx(t) E R n , Vi(t)(S) E Sn-r_, Vf(t) Rm ,

where

j(t)(S)

x(t + 1)

N

= 4) f(t)) 2 - Zpi C(i) 6(t)(8)| 2 - AV,
i=1

= x(t) - () •

= piV(x(t + 1),2(t +
i= B(i)f

= A(i)x(t) + B(i)f(t)

2(t)"' = (In - Er,,)(A(i)>(t)(S) + B(i)f(t))

Note that the above set of relations essentially imply

0 < 4pI f(t) 2 +

- E[ E(t)(")12 + V(X(t + 1), X(t + 1)(")) - V(x(t), X(t)())],

Vf(t) E R m

and thus (2.12). A quadratic storage function candidate is given by :

V(x(t), 2(t)( )) = O z(t)() 2 1 + (t)(s) 12

In order to verify (2.13) one needs to compute the expected increment of the storage

W (x(t), ý(t)(),f(t)) > 0,

S(x(t),I(t) (1) , f(t))

1)• )) - V(x(t), 2(t)(5))



function along system trajectories.

AV
N

= pi A(i)6(t) (s) + Er+h(i)() 2 +
i=1

pi Z Ipi A(i)z(t)(' ) + 2B(i)f(t) - E,+h(i)(") 12 +

_021Z(t)(s)2- I6(t)(s)I1.

Expanding the individual term in the above expressions, one obtains

N

AV = Ep~IA(i)6(t)()12 _(t) (s)2 +

N

+02 EPi A(i)z(t) () + 2B(i) f (t)

N

+ 205 E i A| Er., h (i) (s) 12

-20s -pi(Erh(i)(S))'(A(i)z(t)(S ) + 2B(i)f(t) - A(i)5(t)(S)).
i=1

Applying the dissipation inequality (2.7) on the first two terms of (2.14) gives

N

1() (t ) 2)1 < PIC(i () (t ) 2.
N

E p A(i)6(t)() 12 -

Using the dissipation inequality (2.8), the second line in (2.14) becomes

N

ý3 EPiA(i)z(t)(') + 2Bf (t)|2.- - < z(t)(s) 2--1 • 4053f(t) 2.

For the last term of (2.14) note that

A(i)z(t)(") + 2Bif(t) - A(i)6(t)( ) = 2h(i)(s),

(2.14)

2 _ Z(t)(s ) 2



and that E 2 = Era. Using the above relations we obtain

N

AV < - ZpilC(i)j(t) (")2 +40 f(t) 2 -
i=1

N

20s, pi Erssh(i)(s) 2.

i=-1

Substitute the above inequality in (2.14) to obtain

N

yk( (t), M (t)( ), f(t)) 220, piI Erh(i)() 2 > 0,
i=l

Vi(t) (" ) E S,-r,,, Vf Rm

completing the first part of the proof. Let W, be a submatrix of W corresponding to

the retained states.

Ws = El Z il,3 D... /()sIrs.

Note that

the sense

W, satisfies the generalized dissipation inequalities corresponding to C,, in

I(t)(s) 2W,p i(|A(i)2(t)(' () 12  + C(i)._(t) ( s21()

i=1
w C)• snra,,

N

APi(IA(i)&(t) () + B(i) f w,) < j2(t)(B)w + 2f(t)2 ,
i=1

VA(t) (" ) E S-,,r, Vf e R m .

Thus, if the last r,8 1 states from G, are truncated and if one denotes the resulting

system G,_1 and the corresponding error system between g,, G,_1 by 8,_1 then by

repeating the above argument

T,_! • 2/s-1

Similarly,

7, 5 20j je {s,s-1,...,1}.



The desired result (2.10) is obtained by observing that

e(t) = ~(t)(1) .. + e(t)(s) and applying the triangle inequality on stochastic L 2

gains. E[

2.8 Obtaining diagonal W

The previous theorem assumes, that there exists a W = E1 Z E2, E 2 diagonal, such

that W/ = P satisfies (2.7) and Q = W - 1 satisfies (2.8). In this section it will be

shown that under the standing assumption of mean square stability, one can obtain

in fact a diagonal matrix W with the desired properties. Mean square stability is

equivalent with the existence of P > 0, such that

N

ZpjA(i)'PA(i) - P < 0. (2.15)
i=1

Relation (2.7) is equivalent to

N N

pA(i)'PA(i) - P < - P•C(i)'C(i). (2.16)
i=-i i=1

By virtue of the above two relations, if one sets P = aP and takes a > 0 large enough,

the dissipation inequality (2.7) can always be satisfied by some positive definite matrix

P. Relation (2.8) is equivalent to

S N N
-Q + E pjA(i)'QA(i) E piA(i)'QB(i)

i=1 i=1 N < 0 (2.17)
E pB(i)'QA(i) -I + E piB(i)'QB(i)
i=1 i= 1

Note that, if one sets y = 1, C(i) = 0, Vi E {1,...,N}, and Q = cP with a > 0 ,

the above relation becomes equivalent to (2.4). Let P satisfy (2.15) and set Q = aP

with a > 0. Condition (2.5) is equivalent to mean square stability and thus feasible



:for all positive values of a. Condition (2.6) can be rewritten as

N

SpiB(i)'QB(i) - W21 1WjW1 1 2 < I-
i=1

Both terms on the left hand side of the above relation scale linearly with a. Thus, by

taking the positive parameter a to be small enough one can also satisfy (2.8) with the

choice of Q = aP . To this point one has obtained P > 0 and Q > 0 such that (2.7)

and (2.8) are feasible. What remains then, is to compute a transformation matrix T

that diagonalizes the product P)-l. In that case TP 1-'T - 1 = 142 > 0 and (2.7) is

satisfied by W and (2.8) by W - 1, justifying the assumption of the previous theorem

in regards to VW.

2.9 Lack of unique solutions to the dissipation in-

equalities

In general LMI's may have multiple solutions, and thus there is no unique solution

to (2.7) and (2.8). However the dissipation inequality (2.7) and its equivalent form

(2.16) possess a unique minimal solution, which can be computed by solving the linear

algebraic equation :
N

5pi(A(i)'PA(i) + C(i)'C(i)) = P
i=-i

When it comes to relation (2.8) or its equivalent form (2.17) the situation is different.

For N = 1, the inverse of the controllability grammian corresponds to a maximal

solution of (2.17). In the case of a JLS, where N > 1, there is no maximal solution

though. For example, let N = 2 and

Qi = arg maxtrace(R(i)Q), i {1, 2} (2.18)
Q>o



subject to (2.17), where R(i) > 0,i E {1,2}. If there was a maximal solution to

(2.17), then one should have

Q1 = Q2 (2.19)

The following system shows that (2.19) is not satisfied. Let

1 0 0.2 0.0
R(1) A , A (1)

0 0 0.3 0.5
0 0 0.3 0.3

R(2) , A(2) ,
0 1 0.2 0.2

0.4 1
B(1) = B(2) 0.2 q1  q2

0.2 2

Solving the optimization problem (2.18) subject to (2.17) gives

[ 17.4 -16.7 [ 14.9 -16.01
-16.7 21.3 J -16.0 24.9

The lack of a maximal solution to (2.17), is to some extent unfortunate, since the di-

agonal entries of E2 that appear in (2.10) are monotonic in P and Q-1. A reasonable

remedy is to compute a positive definite matrix Q such that trace(P-1 Q) is max-

imized subject to the constraint (2.17). The motivation for this objective function

comes from the fact that
N

trace(p 1 Q) = SE
i=1

and thus the smaller eigenvalues of W are more heavily penalized in this optimization

criterion, which is desirable given the nature of the error bound (2.10).



2.10 A numerical example

'The reduction method will be demonstrated on a simple example that involves a

system L with 2 modes, 2 states, 1 input and 1 output having the system matrices :

A(1) p+a 0+ A(2) 0 -a C 0
0 )-a 0 13+4

where / and ao are positive parameters.

B(1) = B(2) = B == (1)' = C(2)' = C'.

Note that the above system is worst case stable if and only if

/+ a <i.

The parametric input is randomized by setting q, = q2 = .2 System £ is mean square

stable if and only if

o2 + a 2 <1.

As expected the requirement of stochastic stability relaxes the constraints on the

parameters a, 3. Let

W = max 0
0 Amin]

and set = 0.7. The ratio A• is depicted in the following figure as a function of a.Amin

Given the nature of the error bound, one can expect, that the larger the eigenvalue

ratio of W the better the quality of the reduction. Note that as a converges to 0, L

converges to a first order linear time-invariant system. Truncating one state from L

leads to a reduced system £, that turns out to be a linear time invariant system with

a single pole at /. The response of the two systems to a step input for a particular

realization of the parametric input is depicted in the following figure for /3 = 0.7 and
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Figure 2-2: Ratio Amax of the eigenvalues of W.
Amin

a = 0.1.

Figure 2-3: Response of L and £ to a step input

E

..





Chapter 3

Model Reduction of Hidden

Markov Models

This chapter presents a two step model reduction algorithm for discrete-time, finite

state, finite alphabet Hidden Markov Models. The complexity measure used is the

cardinality of the state space of the underlying Markov chain. In the first step,

Hidden Markov Models are associated with a certain class of stochastic Jump Linear

Systems, namely the ones where the parametric input is a sequence of independent

identically distributed random variables. The image of the high dimensional Hidden

Markov Model in this class of stochastic Jump Linear Systems is simplified by means

of a balanced truncation algorithm, which was developed in the previous chapter.

Subsequently, the reduced order stochastic Jump Linear System is modified, so that

it meets the constraints of an image of a Hidden Markov Model of the same order.

This is achieved by solving a low dimensional non convex optimization problem.

Numerical simulation results provide evidence that the proposed algorithm computes

accurate reduced order Hidden Markov Models, while achieving a compression of the

state space by orders of magnitude.



3.1 Definitions

Let Y be a nonempty, finite set, which will be called the alphabet. The elements of

Y will be refered to as letters. A monoid Y*, is formed, refered to as the language,

consisting of all finite sequences of elements of Y, as well as the empty set, which

is denoted by 0. The finite sequences of letters will be called words or strings. The

required law of composition is the concatenation operation between strings and the

identity element is the empty set 0. Let v be a word, its length will be denoted by

v , the empty string 0 has length 0. The set of all strings of length k E Z+ is denoted

by Yk. The concatenation of v and u is written as vu, and vu = Iv| + Jul . Strings

are read from right to left, in the sense that in the expression vu, u is followed by v.

This convention will lead to a less cluttered notation in subsequent parts.

3.1.1 Hidden Markov Models

Hidden Markov Models can be defined in many equivalent ways. Throughout the

paper the definition introduced in the context of realization theory of HMM's will

be used, see for instance [25],[1],[31]. Consider {Y(t)} a discrete-time, stationary

stochastic process over some fixed probability space {f, .F, P}, with values on a finite

set Y = {1,..., N}, N Z+, N > 2. The "future" of the process after time t is

denoted by Yt+ = {...,Y(t + 2),Y(t + 1)}. At time t the "past and present" of

the process are denoted by Yt- = {Y(t),Y(t - 1),...}. Let v = vk... Vl E Y* the

notation Yt+ := v stands for the event {w E Q Y(t + k) = vk,.. ,Y(t + 1) = v-}.

Consider now .another discrete-time, stationary stochastic process X(t)} with values

on X = {s 1 , ... , s}, where n E Z,,n > 2. The joint process {X(t), Y(t)} is a

discrete-time, stationary, finite state, finite alphabet HMM of order n if {X(t), Y(t)}

is a Markov process and given arbitrary strings a E X* and v E Y*, the following

"splitting property" holds

P (Xt+ = a, Y = v X, , Y) =
P(Xt = a, Yt+ = v X(t)).



The above definition insures that {X(t)} is by itself a Markov chain of order n,

meaning

P(X + = o|lxt) = P(X + = OrX(t)).

It also insures that {Y(t)} is a probabilistic function of the Markov chain {X(t)} in

the sense that

P(Y + = vlIX,Yt-) = P(Y + = vlX(t)).

The process {X(t)} will be refered to as the state process, which is hidden from the

observer and the observable process {Y(t)} will be refered to as the output process.

The output process is characterized by the concept of the probability function, which

is not to be confused with a probability measure. The probability function p : Y* - R

is defined as

p(v) = P(Yt+ = v), Vv E Y*, Vt E Z.

Note that since the process is stationary, the value of p(v) in the above definition does

not depend on t. It can be readily verified, that the probability function satisfies the

properties:

p(O) = 1 (3.1)

p(v) E [0, 1], Vv E Y*, (3.2)

p(v) = Z p(vu), VvEY*,kEZ+. (3.3)
uEYk

A HMM H E HF will be identified with an ordered quadruple (X, en, M, 7r). The first

quantity is the finite state space. The next three quantities en E Rlxn, M : Y -

R IXr E R'nxl encode the statistical description of H. In particular the row vector

of n one's is denoted by en. The map M has the probabilistic interpretation

M(k)ij = P(X(t + 1) = i, Y(t + 1) = kjX(t) = j)

Vi,j E X,Vk E Y, Vt E Z+.



Let I7 denote the state transition matrix of the Markov process {X(t)}, then clearly

II = E M(k).
keY

The stationary distribution of X(t) is denoted by r E R' satisfying -1 = =-. Using

the notation above one can derive that for an arbitrary string v = VkVk-l ... vl, where

k E Z+, k > 1, the following recursive relation holds

pH(V) = eM(vk) ... M(vl)w.

One can think of the map M being extended by means of a homomorphism from the

output alphabet Y to the whole language Y* and write M(v) = M(vk) ... M(vl).

The elements of the matrix M(v) have the probabilistic interpretation

M(v)ij = P(X(t + Iv|) = i, Yt+ = vIX(t ) = j)

Vi,j E X, Vv Y*, Vt E Z+.

Finally there is a minor technical assumption posed to all the HMM's under consider-

ation in this work. It is assumed that Ek E Z : p(v) < 1Vv E yk. This assumption

excludes a possible deterministic evolution of the HMM at hand and guarantees also

existence of a positive definite matrix P > 0, which satisfies the Linear Matrix In-

equality (abbreviated LMI)

S M'(y)PM(y) - P < 0. (3.4)
yEY

3.1.2 Generalized Automata

The concept of a Generalized Automaton was introduced in [30]. A Generalized

Automaton over the finite alphabet Y of order n is defined as an ordered quadruple

(X, c, A, b), where c E Rlxn, A: Y - R n xl ,, b E Rnlx and X == {si,...,s)} is a

finite set of states. Let v = v.. . V E Y*, where k E Z+, k > 2, the domain of A is



extended from Y to Y* by defining

A(0) = In

A(vk...Vl) = A(vk)...A(vl)

where I, denotes the identity matrix in Rnxn

As already mentioned Generalized Automata (abbreviated GA) are equivalent

to recognizable FPS in IYI noncommuting indeterminates with real coefficients, a

concept that has been frequently used in the study of formal languages in theoretical

computer science, see for instance [4], [10]. In the context of system theory, they

have appeared in connection with realization problems of multi-linear, state-affine

and uncertain systems, see [16], [28], [2] respectively.

Associated to every Generalized Automaton G is a map from the language to the

real numbers, called the word function qG : Y* - R where

qG(v) = cA(v)b, Vv E Y*.

The set of all possible values of the map qG(Y*) will be refered to also as the coeffi-

cients of G.

3.2 Model Reduction Algorithm

Given is a HMM H = (X, en, M, 7I) over the alphabet Y of order n E Z+, n > 3,

which also satisfies the technical assumption (3.4). The model reduction algorithm

envisioned for the class of HMM's under consideration consists of the solution to the

following two problems.



3.2.1 Problem Statements

Problem A

Given is a Generalized Automaton G = (X, c, A, b) over the alphabet Y of order

n E Z+, n n> 3, such that VQ > 0, FP > 0 where P and Q E R x"' satisfying

S A'(y)PA(y) - P = Q. (3.5)
yEY

Required is an algorithm that produces for any h3 Z+, where 2 < ~ < n, a Gener-

alized Automaton G = (X, c, A, b) over the alphabet Y of order h that satisfies

(qG(v) - q <(v))2 <
VEY*

where 6i is an a priori computable error bound.

Note that the above statement is relevant since, H C g, so that every HMM can

be identified with a Generalized Automaton of the same order. Condition (3.5) is a

translation of (3.4) in terms of the structural parameters of a Generalized Automaton.

Problem B

Given the Generalized Automaton G of the above problem statement find an algo-

rithm that computes a HMM HI of order fi that minimizes the distance measure

VEY*

3.2.2 Reduction Algorithm

Solution to Problem A

The following correspondence between g and £, where 9 = Y, is established. The

Generalized Automaton G = (X, c, A, b) that satisfies (3.5) is mapped to the iid-JLS



.L that has the state space realization

x(t + 1) = NA[O(t)]z(t) + bf(t),

y(t) = cz(t), te Z+,

and

P(0(t) = i) = qi = N i E O.

Note that L is mean square stable, by virtue of the assumption (3.5). By applying

the aforementioned balanced truncation algorithm for iid-JLS's one gets the reduced

system L of order hi with the state space realization

±(t + 1) = vA[O(t)]i(t) + bf (t),

((t) = t), t Z+.

The distance in terms of the stochastic L2 gain between the two systems satisfies the

bound

de(L, t) < 2(01 + +..+ fP) = /

The reduced order iid-JLS L is mapped back to the Generalized Automaton G

(X, ý, A, b) of order ht. A topological equivalence is established between 9 and L by

means of the above correspondence and by inducing the following metric on 9

dg(G, G) := dc(L, L).

Automatically one gets then

dg (G,G) < /c

This is a stronger bound than the one required in problem statement A. Let x(0) = 0

and apply the input f = (1, 0, 0,...) to the error system I between L and L. One

obtains then

(qG(v) - qG(v))2 = E[5 e(t)2].
vCY* t=0O



The above equation and the definition of the stochastic L2 gain lead directly to the

inequality

(qG (v) - q (v))2 < dg (G, G)2
VEY*

and consequently to

(qG (v) - q(v))2 <
vEY*

By virtue of the relation above, problem statement A is considered solved.

Solution to p)roblem B

The word function of the reduced order Generalized Automaton G approximates the

probability function of the original HMM H within an a priori computable error

bound. However, qg does not necessarily satisfy relations (3.1)-(3.3). In fact, even

in the special case when the structural parameters of a Generalized Automaton have

integer entries, checking nonnegativity of qb is an undecidable problem [7]. For the

case of a single letter alphabet NP-hardness complexity results may be found in [8].

These circumstances motivate the search for a HMM H = (X, ei, M, i) over the

alphabet Y of order ii that minimizes the objective

S(pP (v) - qb (v)) 2 . (3.6)
vEY*

The constraints that are satisfied by the structural parameters of H are:

Ri > OVie X, (3.7)

M (k) > 0 Vi,j e X,,Vk E Y, (3.8)

eE = es [M(k)], (3.9)
keY

F = [M(k)] '. (3.10)
kEY

One can introduce the error system between G and Hi, which is a Generalized Au-



tomaton G of order fi = 2i, where

A(k) = M(k) 0  VkYA , VkEY
0 A(k)

The objective function can then be written as

S(pf (v) - q (v)) 2 = b'W2
vEY*

where W, satisfies the Lyapunov like equation

W = ' E + [A'(k) WA(k)].
kcY

The above problem is a non convex optimization problem that is being solved by

means of a gradient flow algorithm. As it is typical with non convex formulations

there are no guarantees of convergence to the global minimum, however numerical

simulation results have been encouraging as far as the approximation error incurred in

this step is concerned. It is worth mentioning that one can consider stronger metrics

than (3.6). For instance let Wb be defined as

Wb= b b' + [A(k)WbA'(k)],
keY

then one could attempt to minimize the objective

trace[WcWb],

instead of (3.6). This direction is worth exploring, especially the tradeoff associated

with the increase of the computational cost, due to the solution of an additional

Lyapunov like equation at each iteration step.



Another possible problem formulation is to eliminate the first reduction step and

minimize directly the objective

S (ph(v) - PH(v))
vEY*

Note that in such a situation the error system between H and H is a Generalized

Automaton G of order hi = P + n. As n increases the solution of such a non convex

optimization problem becomes intractable. The main advantage of the first reduction

step is that in typical applications very accurate approximations of the original HMM

in the space of GA can be found with i <« n.

3.3 A numerical example of the method

Denote by Sn the set of all possible permutations of the set {1,... , n E Z+. Let

a E Sn and denote by r, the corresponding permutation matrix. Set n = 100 and pick

a a E S, at random. Define the matrix E = F, + eA , where E = 0.02 and A E Rnxn

Each entry of A is drawn from a uniform distribution on the unit interval, [0, 1]. Let

w = e,E and form the diagonal matrix D with Dii = wi 1,i E {1,..., n}. One can

verify that the matrix H = E D is column stochastic, thus it can be considered as

the transition matrix of a Markov chain evolving on X = {sl,..., s,. Note also

that P(HII > 0) = 1,Vi,j E {1,..., n}, due to the way that II was generated, thus

the stationary distribution corresponding to H is unique. Consider the stationary

Markov process {X(t)} on X with transition matrix II and obtain a stationary HMM

H over Y = {0, 1} by defining the output process as a deterministic function of

the state process. In particular Y(t) = 0 if X(t) E {s,..., ss0} and Y(t) = 1 if

X(t) E {s 51,... ,S00o} . The HMM H generated following the procedure described

above is used to demonstrate the reduction algorithm. The first figure depicts the

eigenvalues of the matrix W, that controls the error bound between H and G. Overall

there is an evident decay in the eigenvalues of W. The HMM H is truncated to a

Generalized Automaton G that has fi = 5 states. The language Y* is countable



eigenvalues of W
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Figure 3-1: Eigenvalues of W, logarithmic scale on y axis

and one can impose for example the first-lexical order on it, fl : Z+ , Y*, where

fl(1) = 0, fl(2) = 0, fl(3) = 1, fl(4) = 00, and so on. The next figure depicts the

word-function of the error system between H and G, i.e. the function pH(v)-qg(v) for

all strings up to length 10. The strings in the x-axis of the above graph are arranged

x 10- 4

7i111 it 1P I I ý ' I I I

500 1000
stnngs up to length 10

1500 2000

Figure 3-2: Word function of error system between H and G

according to the aforementioned first-lexical order. The calculated a posteriori bound

sup Vy* qg - PH < 5.5 x 10- 4 confirms that the word-function of qG provides a good

approximation of PH. Now ( is turned into a HMM H by solving the low dimensional

t

*Akk

-

I I II

lI I ,
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non convex optimization problem B. The last figure depicts the word-function of

the error system between the high dimensional HMM H of order 100 and the low

dimensional HMM IH of order 5, for all strings up to length 10, again the first-lexical

order was used in the x-axis. The a posteriori bound sup,,y. |pH - PHI < 9.3 x 10- 3

shows that the reduction algorithm performed adequately in this particular example,

achieving a compression by a factor of 20.
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Chapter 4

Reduction of Nearly Decomposable

Hidden Markov Models

In this chapter the concept of aggregation, clustering, of the state space is investigated

as means of reducing the complexity of HMM's. One of the main uses of clustering

has been in the computation of the asymptotic distribution of subsets of the states

of large scale Markov chains. Existing ideas will be extended to the HMM case.

4.1 Nearly Decomposable Hidden Markov Model

As in the previous chapter the point of departure is a stationary discrete-time, finite

state, finite alphabet HMM H = (X, e,, M, M ) over the alphabet Y of order n E

Z+, n > 3. However, in the nearly decomposable case, each transition matrix has

almost block diagonal structure.

M(y) = M*() +

M*(y) = 0
O

CA(y),
0 0

0

o MK(y)
, yE Y,



where E denotes a coupling factor that appears once the entries of A are normalized

IAi(y)lI 1 Vi,j E {1, ..., n}, y E Y and K denotes the number of clusters.

The concept of a nearly decomposable HMM is compatible with the notion of a nearly

decomposable Markov chain, which are Markov chains with almost block diagonal

transition matrix. Nearly decomposable Markov chains where introduced as means

for modeling stochastic systems whose dynamics exhibit multiple scales. The behavior

of such systems can be analyzed in stages. In a first stage one considers each cluster

that corresponds to a respective block independently until a partial equilibrium is

achieved. In a second stage each cluster is considered as a single aggregated entity

and interactions between aggregates lead to the steady state distribution for the

system as a whole. The reduction procedure for nearly decomposable HMM's employs

aggregation of the state space, otherwise known as clustering.

4.2 State Aggregation

The state space X is partitioned in i = K disjoint clusters. The new state space of

aggregated states is X = {S1,, 2 3, ..., S3 I where

1. Si CX ie {1, ...,I },

2. S~ S = 0 if i # j

3. U Si = X.
i=1

Next the aggregation operator L: Rn -- RW where

Li = I if sj E Si,
0 otherwise

is introduced. Let

r(t) = P[X(t) = s1] ... P[X(t) = s,]



denote the instantenous probability distribution of the underlying Markov chain of

the original model and represpectively

-(t)= P [) (t)=S1] .. P [ (t) = S

the corresponding quantity for the aggregated model, then it holds

(t) = L ir(t) E P[X(t) =Si], ..., P[X(t)= si]
LsieS1 iieS

Let Ajm(t) denote the conditional probability of the state sj in cluster Sm at time

instant t i.e.,

Fm(t)

the entries of ii(t), the aggregated transition probability matrix at instant t are given

by

,mk (t)= V Ajm(t) 3 Pji (4.1)
j : sjECS i : sieSk

the evolution of the probability distribution for the aggregated system is given by

- (t + 1) = fI(t) (t) (4.2)

Note that the Markovian property is preserved, the chain is time inhomogenous

though. Computation of the exact value of fI(t) requires at each instant a disag-

gregation step in order to obtain the values of the conditional distributions Ajm(t) in

every cluster •m. From a computational standpoint this is equivalent with working

with the original system, thus exact calculation of the aggregation matrix does not

bear any benifit. For a given aggregation operator L we define the compact set of

stochastic matrices HL where

IIL = { : •= kjm i ; ,jm { [o, 1]0 }
j:SjeSm i:siESk



An equivalent way to equation (4.2) for describing the evolution of the probability

distribution of the aggregated system is given by:

S(t + 1) = fI(t) I(t - 1) ... If (1) (0) (4.3)

where I1(t) E ITL. A low order approximation of the original system by a homogenous

Markov chain requires a selection of a fixed matrix fI where fI E IIL. This is equivalent

with fixing the values of conditional probabilities in each cluster Vt E ZT. The

approximate dynamics on the aggregated state space will be described by:

e*(t + 1) = lIIr*(t)

The vector t* (t) is regarded as an approximation to the exact probability distribution

#r(t) on the aggregated state space.

4.3 Reduction Algorithm

When it comes to reducing the dimensionality of a nearly decomposable HMM whith

n states one can readily obtain a reduced order model by considering an aggregated

state space induced by the block diagonal structure of the transition matrices. The

conditional probabilities in each cluster are fixed to the values corresponding to the

asymptotic distribution of the original Markov chain. The following example demon-

strates the method. Consider the HMM H that has 8 states and a binary output

alphabet Y =- {0, 1}. The transition matrix of the underlying Markov chain has

nearly decomposable structure :

nIl 1 Ul12 U 13

I 112= 1 1122 123

1-31 1132 1133



0.85

1I11 = 0.1 C

0.1

0.0009
1H12 = 0

0.0003

5 10- 5

113 = 5 10- 5

0

H21 S5 10- 4

0.7
r-22

0.399

0
123 - 0.0001

0

r131 = 3 10- 5

0

0

132 = 4 10- 5

0

0.6
I133 = 0.1

0.1999

0 0.149

).65 0.249

0.8 0.0996

0
0.0009

0

0 5 10-5

0 5 10- 5

4 10- 4  0

4 10- 4  0 1
0 4 10- 4

0.2995

0.6

0.0001 O0
0 0

5 10- 5  0

0 3 10- 5

5 10- 5  0

5 10- 5

0

5 10- 5

0.2499 0.15

0.8 0.0999

0.25 0.55



The above stochastic matrix II is irreducible and nearly decomposable, thus it can be

written in the form H = II* + cA with c = 0.001 and

PF* 0 0

P* 0 P2* 0
o o P3

0.85 0 0.15

II= 0.10 0.65 0.25

0.10 0.80 0.10

0.70 0.30

0.40 0.60

0.60 0.25 0.15
II= 0.10 0.80 0.10

0.20 0.25 0.55

The matrix A is ommited since it is not relevant to the subsequent calculations. The

observations are related to the states by means of a deterministic output function. In

particular P[Y(t + 1) = 0 X(t) = i] = 1,i E {sl, s2, s 3} and P[Y(t + 1) = OIX(t) =

i] = 1, i E {s4, s5, s6, S7, ss8. In accordance to the block structure of P* a suitable

partition of the state space consists of 2 clusters, S = {S1, S2} with S1 = {1, 2, 3} ,

S2 = {4, 5, 6, 7, 8} . The following figure depicts the word function of the error system

for all strings up to length 10.
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