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Abstract

Filamentous bacteriophage (M13) are excellent biological build block due to their
multiple peptide display system including type 8 (complete peptide display at pVIII) and type
83 (complete peptide display at both pVlll and pIll) display systems. Unlike the phagemid
systems, the advantage of these systems is that we can get homogenous peptide display on
pVIII resulting in uniform placement of selected molecules as well as defined length and
width. In this thesis, type 8 and type 83 phage were constructed and used as biological
scaffolds to meet the following four specific aims. First, the self-assembly of engineered
M13 bacteriophage as a template for Co-Pt crystals was demonstreated. An phage library
with an octapeptide library on the major coat protein (pVIII) was used for selection of
binders to cobalt ions. Fibrous structures with directionally ordered phage were obtained
by interaction with cobalt ions. Co-Pt alloys were synthesized on the fibrous scaffold, and
their magnetic properties were characterized. The mineralization showed organized
nanoparticles on fibrous bundles with superparamagnetic properties. Second, an in vitro
molecular selection method in non-biological conditions for inorganic synthesis was
introduced. A phage display peptide library which is resistant to ethanol was constructed and
used for selection against titania in 90% ethanol. The selected peptide, with a conserved basic
amino acid sequence, promotes nanoparticle formation (- 60 nm) during titania synthesis by
the traditional sol-gel method. Third, storage of proteins in smectically aligned phage film
was demonstrated. 03-galactosidase and a green fluorescent protein variant were stored in the
phage film with increased stability. In addition, streptavidin conjugated phycoerythrin were
aligned in a SI phage film, in which streptavidin binding peptides are displayed at the end of
the phage particles. The alignment showed increased fluorescent intensity of phycoerythrin
molecules. Finally, the potential of type 8 and type 83 phage as a nano-structural scaffold
were studied for device application. An Au binding peptide was selected using type 8 phage
library. Self-assembly of gold particles on phage was observed. In addition, type 83 phage
which display both streptavidin binding peptide at pIll and Au binding peptide at pVIII were
constructed for complex assembly of both Au nanoparticles and streptavidin conjugated
nanoparticles. Genetically engineered bacteriophage show promise for application including
biologically compatible materials and functional bio-inorganic hybrid materials
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CHAPTER 1: Introduction

1.1. Thesis Objectives

Precise recognition and self-assembly of biological components are required in cells

for their structure and proper function, such as actin filaments, microtubules, and chromatin.

The biological recognition is mediated by the electrostatic, hydrophobic, hydrogen bonding,

and Van Der Waals interaction. Due to the high specificity on interaction that translates to

the nanoscales, biological molecules are potential building blocks for nucleation and self-

assembly of inorganic materials. The 'bottom-up' biomimetic fabrication with biological

templates, such as DNA,[1] amphiphilic peptides,[2] and artificial proteins,[3] has been

introduced for supramolecular architectures. The research objective of this thesis is to apply

engineered type 8 (completely modified pVIII with selected peptides) and type 83 (both

completely modified pVIII and pIll) bacteriophage display systems as a biological scaffold.

Unlike the phagemid systems, the advantage of these systems is that we can get

homogenous display on pVIII resulting in the nucleation of inorganic crystals with uniform

placement as well as defined length and width. Phage particles can be aligned by

controlling the flow in a particular direction due to its rod-like shape. In addition, the

alignment can also be controlled by the concentration of phage particles. Cross-binder to

pVIII could increase local concentration of phage particles and cause directionally



ordered alignment. The self-assembled phage particles can potentially be applied as

advanced biological building block and can be used to align inorganic and biological

materials. The pVIII modification is known to affect the stability of phage in aqueous

and non-aqueous solutions. By increasing the stability of phage particles in non-aqueous

solutions, it could be possible to select peptides in these types of solutions.

Therefore, I constructed genetically engineered type 8 and type 83 phage, and I used

these as biological scaffolds to meet the following specific aims: (1) cobalt ion mediated

self-assembly of genetically engineered bacteriophage for biomimetic Co-Pt hybrid

material. (2) phage displayed peptide selection for TiO2 in a non-biological environment.

(3) Alignment and storage of biological molecules in phage film and (4) Assembly of

inorganic nanoparticles using genetically engineered bacteriophage.

1.2. Bacteriophage as Template of Inorganics.

Virus such as tobacco mosaic virus (TMV) [4] and cowpea chlorotic mottle virus

(CCMV) [5] were used as biological nanoscale scaffolds to nucleate inorganics. This

nucleation was due to regular surface pattern of charged amino acid residues, such as

glutamate, aspartate, arginine, and lysine. However, peptides, which are selected for

inorganic compounds using phage display peptide library,[6] were used successfully for

nucleation and growth control of the inorganic nanoparticles in aqueous solution at room

temperature.[7, 8] Filamentous bacteriophage (fl, fd, and M13) is excellent biological

building block itself due to its multiple peptide display system (Figure 1) and its

controllable length. Wild-type filamentous bacteriophage is approximately 930 nm in length

18



and - 6 nm in diameter. The phage surface is consisted of five capsid proteins (pIIl, pVI,

pVII, pVIII, and pIV). pIII (approximately 5 molecules) is commonly used to display

foreign molecules (natural peptide, random peptides, protein, and protein domains).

UMl I /III\ /11\II1\\
Wld Typo Typ" 3 TypO 8+8 Type 8 Typ 83

Figure 1. M13 phage display systems. Type 3 or type 8 phage can be obtained
by genetically engineering of N-terminal region of gene III (gIII) or gene VIII
(gVIII). Type 8+8 phage contains restricted amount of modified pVIII by
introducing phagemid with genetically engineered gVIII. For type 83 phage,
both gIII and gVIII are modified.

pVIII (approximately 2700 molecules) is major capsid protein, and needed to form

the cylinder-like structure which surrounds its single strand DNA (ssDNA). The length of

the phage is proportional to the integrated ssDNA during assembly of phage particles, and

can be controlled to be about 50 nm by engineering of intergenic region (IR) of phage

ssDNA [9]; the IR contain the replication origin ((+) and (-) strands) and packing signal (PS)

for integration of the ssDNA to phage particles.

:·-



Type 8+8 M13 bacteriophage (Fig. 1) was used as templates for synthesis of

inorganic nanowire of metals, semiconductors and magnetic materials [10-12]. The random

display of the selected peptide (7-12 amino acids) on pVIII (type 8+8 phage) produces the

randomly distribution of inorganic crystals and irregular shape of the nanowire.

·. Interaction with
AII.U Rure.

1111! I-.1'! A

Repeat
Interaction

AA G T

Binding
Sequence

C
Automated

DNA
3eqecu

Specific Binding
to Surface

SI

Figure 2. Biopanning with Type 8 phage library. Inorganic target surface is
immersed into solution containing type 8 phage library, washed away the excess
phage, and eluted using 0.2M Glycine-HCI (pH 2.2). The eluted phage is amplified,
and the process is repeated several times to find the tightest binders. The number of
plaques can be titered, and each plaques is amplified and sequenced to determine
the selected peptide sequence.

An octapeptide type 8 phage display systems has been used for selection to small

molecules (dioxin), display of antigenic epitopes (ConA), and selection of chloroform

Type 8 Phage
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pH
Elution
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resistant phage.[13] The distance between the peptides on pVIII is approximately 27A.

However, prior to this work the homogenous peptide display system on pVIII or both pllI

and pVIll has not been used as biological scaffold for inorganic materials.

The octamer peptides for inorganics can be selected against inorganic wafer or

powder after 4-5 round biopanning in TBST (50 mM Tris-HCI (pH 7.5), 150 mM NaC1,

0.1% (v/v) Tween-20) with pH elution (pH 2.2, 0.2M Glycine-HC1). The sequence of

the peptide can be confirmed by sequencing of isolated ssDNA, as illustrated in Figure

2.

1.3. Directional Alignment of Phage Particles.

Rod-like molecules will form liquid crystal (LC) structures depending on their

concentration and applied force, such as electrical and fluidic force. The nematic liquid

crystalline characterized by uni-directional orientation is often observed in solution of rod-

like molecules. The mono-disperse (in length) rod-like molecules provide more preference

of smectic phase, in which the rod-like molecules organize themselves into layers roughly

perpendicular for the oriented direction of the molecules, than poly-disperse rod-like

molecules [14]. The LC phase of the mono-disperse bacteriophage particles are changed by

increasing the concentration through nematic, smectic A, and smectic C phase sequentially

(Figure 3).[15, 16] The LC phase structures are vary in the phage-based films due to the

variation of the concentration during the fabrication by drying; the smectic phase is

observed at the edge of the dried film, and the phenomenon can be explained well by the

"coffee ring effects", in which the replenishment from the interior to the edge during the



evaporation of liquid drops causes outward flow and more concentrated materials to the

edge than center.[17] In addition, the directional orientation of the rod-like molecules can

be obtained by flowing the molecules. The long axis of the rod-like molecules prefers to be

parallel to the direction of the flow, and the degree of the directional orientation can be

increased by the increase of the flow rate [18]. The genetically engineered type 3

bacteriophage can be used for alignment of its target molecules (inorganic, organic, and

biological nanosized molecules) by forming the semetic LC phase.[19]

a

Figure 3. Liquid crystal phases of phage. (a) nematic, (b) smectic A, and (c)
smectic C phase, where the axis of the rod-like molecules are tilted.

1.4. Three Dimensional Self-Assembly of Biological Molecules.

The biological molecules, especially peptides, have been used as building block for

self-assembly due to their biological characteristics such as ligand recognition,



biocompatibility, and biodegradability. For example, the pH dependent interaction of the

helical peptides were used as a dendrimer scaffold [20] and cross-linker for reversible

hydrogels [21, 22], which is a network of hydrophilic polymers with water as dispersion

medium. The proper intramolecular folding of the peptides affects the peptide interaction

and supramolecular structures [23]. The environment (pH, Temperature, light, and ligands)

sensitive hydorgels with biological or non-biological copolymers has been studied due to

their potential in various application such as biosensors, drug delivery, and bioseparation

[24]. Temperature dependent solubility and pH dependent ionization condition of the

copolymers affect the hydrogel structure (swelling-shrinking transitions). In addition, the

hydrogel by combination of antibody and antigen immobilized polymer chains was reported

to response the free antigen reversibly [25]. However, the synthesis of the desire peptides

using automated Fmoc solid phase peptide synthesis and recombinant DNA techniques

require a lot of cost and effort. The filamentous bacteriophage can be amplified easily by

infection to its host, E. coli, and the desired peptide can be displayed on their coat proteins,

pVIII and pill. Therefore, self-assembly of type 8 or type 83 phage can be eligible and

applicable for fabrication of bio-inorganic hybrid materials.

1.5. Sol-Gel Method for TiO2 Particle and Phage Stability.

Several chemical methods were introduced to make ceramic nanoparticle synthesis,

including reverse micelles method, low-temperature wet-chemical synthesis with a salt

precursor, and Sol-gel technique.[26-29] The role of the sol-gel processing has been



growing rapidly in hybrid organic-inorganic materials [30]. The process commonly used for

fabrication of' metal oxides via the colloidal particle (sol, 1 nm - 1 gim), through the

hydrolysis of the metal alkoxides and condensation in alcoholic solution, and gelation of the

sols. TiO2 is the most widely studied material by the process with titanium alkoxides, such

as titanium(IV) ethoxide (Ti(OC2H5)4). Size and shape controls of TiO2 have been

obtained successfully by sol-gel method with chemical additives.[27-29] Rate of the

hydrolysis is important, and the slower hydrolysis typically leads to more unique properties.

For this reason, the sols are produced in alcoholic solution, and the choice of the solvents is

important; higher alkoxy group size lead to decrease of the hydrolysis due to steric

hindrance [31]. The sol-gel processing in reverse microenulsion was used for the size

controlled inorganic nanoparticles, and its crystallization by drying and calcination [32].

These harsh conditions lead to limitation for biological applications. Natural polypeptide

from diatom cell walls, which contain controlled production of nano-structured silica, has

been used to catalyze the formation of silica at neutral pH without alcohols [33] and to

encapsulate enzyme in the biomimetic silica support [34]. The shape controls of silica using

the synthetic block copolypeptides was reported [35]. However, the phage-displayed

peptide library has not been used to select peptide for shape controls.

The infectivity of filamentous phage particles is related to the stability of the

assembled pVIII molecules and the conformational change of the pIII sub-domains.

Although phage particles demonstrate great chemical [36] and thermal [37] stability, certain

organic solvents cause morphological change from chloroform and dissolution of the phage

from alcohols. Type 8 phage library has been used to select chloroform resistant phage[38].



However, the infectivity in alcohols is inversely dependent upon alcohol hydrophobicity.

Phage particles are not stable in approximately 60% of ethanol (30min, 200C), and the

infectivity is not changed in the pH range of 5.0-9.0 [39].

Due tio the harsh condition of the general sol-gel synthesis, the phage-displayed

peptide library could not be used to select peptide which can bind to precipitated inorganics

during this synthesis. Therefore, it is worth studying a new method to select a peptide for

inorganics in non-aqueous solution using the type 3 phage library which can survive in the

non-aqueous solution.

1.6. Background on Inorganic Nano-materials.

The controlled size of inorganic materials can lead to different chemical and

physical properties in nanoscopic dimensions (quantum confinement effects), and the

nanoscales materials show intermediate behavior between that of bulk material and

molecules.

In semiconductor crystals, the change of the size affects bandgap which is the

energy to excite an electron from the valence band to the conduction band, and the

excitation involves a loosely bound electron-hole pair known as excitons. Exciton Bohr

radius, or the size of an exciton in a bulk crystal, is used to estimate the dimension for the

quantum-confinement effects in semiconductor materials. When the size of the

semiconductor nanocrystals approaches the exciton Bohr radius, the effective bandgap is

increased, and blue-shift of optical transition is observed. The range of the exciton Bohr

radii are from 2.2 nm (ZnS) to 7.5 nm (CdTe) in II-VI semiconductors, and from 11 nm



(InP) to 60 nm(InSb) in III-V semiconductors [31, 40]. The exciton Bohr radius of bulk

CdSe is 5.6 nm. In addition, the bandgap variation can also affected by shape of

semiconductor crystals [41]. The bandgap of rod shape crystals was known to be decreased

with increasing length/diameter ratio [40, 41].

In magnetic materials, the size of magnetic domain usually decreases to minimize

the total effe:ctive magnetic moment in macroscopic magnetic materials, and energy

requirement for domain wall formation limits the decrease of domain size. This infers that

the nanoparticles which are smaller than the minimum domain size have single-domain.

Due to higher coercivity in single-domain than multi-domain, the coercivity is dependent on

the size of particles. The minimum domain sizes are known to range from 10 to 100 nm. If

the size of a ferromagnetic nanoparticle is too small (1-10 nm), the particle exhibits a

behavior similar to paramagnetism at temperature below Curie temperature [31, 42].

In ceramics, acid-base reaction on metal oxide surface have been known to be

potentially applicable as catalysts for a variety of important chemical reactions. Several

oxides (including MgO, CaO, A120 3, SiO 2 and ZnO) have been used in chemical

applications due to their properties to absorb a variety of organic molecules. Also,

photocatalytic effects of TiO2 have been known and widely studied.[26] Because of the

high surface area to volume ratio of nanoscle materials, ceramic nanomaterials should have

great reactivity on their surface, and their properties can be chemically applicable for

catalysts.



CHAPTER 2: Cobalt Ions Mediated Self-Assembly of

Genetically Engineered Bacteriophage for Biomimetic Co-Pt

Hybrid Materials

2.1. Abstract

Biological scaffolds are used for the synthesis of inorganic materials due to their

ability to self-assemble and nucleate crystal formation. We report the self-assembly of

engineered Mvi13 bacteriophage as template for Co-Pt crystals. An M13 phage library

with an octapeptide library on the major coat protein (pVIII) was used for selection of

binders to cobalt ions. Fibrous structures with directionally ordered M13 phage were

obtained by interaction with cobalt ions. Co-Pt alloys were synthesized on the fibrous

scaffold, and their magnetic properties were characterized. The mineralization showed

organized nanoparticles on fibrous bundles. This approach using the phage pVIII library

allows for genetic selection that both induces assembly of the phage and directs

mineralization of the selected inorganic material.



2.2. Introduction

Precise recognition and self-assembly are required for the proper structure and

function of biological components. Due to their ability to interact with high specificity on

the nanoscale level, biological molecules are potential building blocks for 'bottom up'

fabrication of supramolecular architectures. In nature, matrices of biological

macromolecules form mechanical frameworks in biomineralization systems, such as

collagen (bone),[43, 44] silicatein (silica sponges),[45, 46] cellulose (plant silica), 13-chitin

(crab cuticle, mollusk-shells),[47, 48] and lustrin A (mollusk-shells).[49] However, the use

of biological macromolecules for biomineralization in vitro is more limited due to the

ability to synthesis and purify the complex macromolecules required for the controlled

synthesis of the material.

Peptides that have specificity for inorganic compounds have been selected using

peptide libraries,[6] and used successfully for the nucleation and growth control of the

inorganic nanoparticles in aqueous solution at room temperature.[7, 8] Filamentous

bacteriophage (fl, fd, and M13) are excellent biological building blocks due to their

controllable length and ability to display multiple peptides. The wild-type filamentous

bacteriophage is approximately 930 nm in length and 6 nm in diameter. The phage surface

consists of five capsid proteins (pII, pVI, pVII, pVIII, and pIX). The pill protein is

expressed in five copies at the end of the phage, and is commonly used to display foreign

molecules, such as natural peptides, random peptides, proteins, and protein domains. The

major coat protein, pVIII, is expressed in 2700 copies per phage and forms the cylindrical



structure that surrounds the viral single stranded DNA (ssDNA). Type 8 phage display

systems have been introduced, in which the pVIII proteins have been modified to display

selected octapeptides. The peptides are displayed at distances approximately 2.7 nanometers

from one another and have included antigenic epitopes (ConA), peptide that specifically

bind to small molecules (dioxin), and those that confer chloroform resistance.[13] The

homogenous type 8 phage have defined lengths and could be used as genetically

programmed biological scaffolds for inorganic materials.

Cobalt Ion

Type 8 phage Anti-Co2

library phage S

(NH4)Pt

NSBH4

elf-assembly
Nucleation

and growth of
CoPt

Figure 4. A schematic diagram illustrating formation of Co-Pt hybrid material
using a self-assembled phage framework (orange dots = cobalt ions, black dots
= Co-Pt).

Nanophase Co-Pt alloys have been studied extensively in the past as a magnetic

material, due to the high magnetocrystalline anisotropy, - 5 x 107 ergs/cm3 for face-



centered tetragonal (fct) phase. Here, we used the genetically engineered type 8 phage

library to select phage that displayed peptides with affinity for the cobalt ion. The selected

type 8 phage were then used to form the biological mechanical framework for a bio-

inorganic (CoPt) hybrid material by cobalt ion mediated self-assembly (Figure 4).

2.3. Materials and Methods

2.3.1. Materials. All chemicals were obtained from Sigma Aldrich unless otherwise noted.

M I3KE phage vector, Pst I, BamH I, and Klenow fragment (3'--+ 5' exo) were purchased

from New England Biolabs (NEB). Oligonucleotides were from Integrated DNA

Technologies. XLI-Blue Electroporation Competent Cells was obtained from Stratagene.

Chelating Sepharose Fast Flow gel was purchased form Amersham Biosciences. 2-40%

TBE polyacrylamide gel was from Invitrogen. dNTP was purchased form Promega. Tris

buffered saline (TBS) solution (pH 7.5) was prepared in house from NaCl (Mallinckodt

Chemicals) and Tris base (Roche).

2.3.2. Type 8 phage library. The M I3KE phage vector was modified by making a cloning

site for pVIII display (Appendix A). A Pst I restriction site was made by mutating T to A at

position 1372, a BamH I site was made by mutating C to G at positon 1381, and the Pst I

site at position 6246 was deleted by mutating T to A at position 6250. The site-directed

mutagenesis was done using overlap extension PCR. A dsDNA library was then prepared

and cloned into the resulting modified phage vector, named M13SK, using Pst I and BamH

I. To obtain the dsDNA library, partial library duplexes were formed by annealing of



extension primer (5'- GATGCTGTCTTTCGCTGCAG-3') with oligonucleotides (3'-

ACGACAGAAAGCGA CGTCnm(nnm)6nnCCTAGGAACATC ATC-5', where n = A, T,

C, or G and m = A or C). The partial library duplexes were incubated with Klenow

fragment (3'- 5' exo-) (10 U/pl) and dNTP at 37*C for 30min. The Klenow fragment was

inactivated by heating (750C for 20 minutes), and the mixture was digested with Pst I and

BamH I. The digested DNA was gel purified (2-40% TBE polyacrylamide gel), ligated into

M13SK, and transfected to XL1-Blue Electroporation Competent Cells using a

MicroPulser TM (Biorad) (Figure 5). The library was titered according to manufacturer

directions and sequenced (MIT Biopolymers Laboratory) before amplification.

Ext ion Primer : b-Ex.lllblray
5'- G ATG CTG TCT TTC GCT OCA G-3'

3'-AC GAC AGA AAG CGA COT Cnm (nnm)6 nnC CTA GGA ACA TCA TC-5'

Pol. dNTP
Pst I BamiN I

5'- G ATG CTG TCT TTC CT GCA GOnn (mnm)6 nnG GAT CCT TGT AGT AG-3
3'- C TAC GAC AGA AAG CGA CGT Cnm (nnm)6 mC CTA OGA ACA TCA TO-5'

M L S F A(-1) A X' ()8q X' E P A K A

Digestion
n =G,CAorT ointo M3SK
m=T or G Psat I BaH I

MI13SK P i

Figure 5. Scheme for construction of type 8 phage library in MI3SK.
Schematic shows the restriction sits for cloning DNA library into M13SK. X =
any randomized amino acids.



2.3.3. Biopanning against Co ion. The selection of type 8 phage with affinity towards Co2+

was performed by incubating the type 8 phage library (-1010 pfu) with Co2+ immobilized

on 200 plA of Chelating Sepharose Fast Flow gel in TBS buffer (pH 7.5) with 0.15% tween-

20. The bound phage were washed 10 times with the incubation buffer and then eluted with

50mM histidine. The fourth elution was amplified for the next round of biopanning. After

the fourth round, the eluted phage was amplified, and the sequence was conformed.

2.3.4. Synthesis of Co-Pt on phage templates. The anti-Co2+ phage (1 x 108 pfu/gl) was

incubated with 3.75 mM cobalt(II) chloride hexahydrate (CoC12-6H 20) in TBS buffer (pH

7.5) for 30 min. The mixture was then incubated with ammonium tetrachloroplatinate

((NH 4)2PtCI4, 1.25 mM final concentration) at room temperature for 30 minutes before

being reduced with sodium borohydride (NaBH 4, 1.25 mM final concentration).

2.3.5. Characterization. Polarized optical microscopy (Olympus) was used for optical

microscopy and cross-polarized optical microscopy (CPOM) images. Transmission electron

microscopy (TEM) and high-resolution TEM (HRTEM) images were obtained using JEOL

200CX and JEOL 2010 TEMs (JEOL), respectively, at an accelerating voltage of 200 kV.

Energy dispersive spectroscopy (EDS) and chemical element mapping data were taken

using an HB603 Scanning TEM (STEM) at 250 kV. Scanning electron microscopy (SEM)

images were obtained using a JEOL 6320FV field-emission SEM at IkV after dialysis,

freeze-drying, and gold sputter coating. Magnetic properties were characterized using a DC

super conducting quantum interference device magnetometer (DC SQUID) (Quantum



Design). The effective magnetic anisotropy energy density (Keff) can be estimated by

Neel's theory,[50]

25kBT, = KVf (1)

where kB is the Boltzmann constant and V is an average volume of particles. The

true magnetic moment at a particular temperature above TB was calculated by fitting the

magnetization curve (Figure 4c) to the Langevin function,[51, 52]

M = M, coth( jt{ j kT
kT pH(2)

where It is the true magnetic moment of each nanoparticle, Ms is the saturation

magnetization, T is the absolute temperature, and H is the applied magnetic field.

2.4. Results and Discussion

After four rounds of biopanning against Co2+ using the type 8 phage library, a

dominant Co 2+ binding phage displaying the octapeptide, EPGHDAVP, was selected. The

peptide sequence contained a well known metal binding motif, EXXH, which can be found

within active sites of metalloproteins, an especially diverse class of diiron proteins. The

active sites consist of four-helix bundle coordinated by metal ions.[53, 54]



There are some metal-binding motifs which coordinate well for high affinity to

metal cations, including zinc-finger motifs. High content of the metal binding amino

acids (D, E, H, and C) could be expected. However, the preference of amino acids in the

type 8 phage library was tested by comparing the observed percent of each amino acid

to expected percent ((number of DNA codons for an amino acid / total number of DNA

codons) x 100) from sequence analysis of 50 randomly chosen clones (Table 1).

Cysteine and lysine residues in the library were not observed, and basic amino acids are

not preferable compared to acidic amino acids. That may due to preference of basic

amino acids at C-terminal and acidic amino acids at N-terminal of pVIII proteins for

electrostatic stability.2 The aromatic residues (Phe, Tyr, and Trp) were not observed

frequently, compared to the expected value. The library shows higher percentage of

glycine and proline, which have effects on the flexibility and the conformation of

peptide backbone. The bias is presumably due to the compatibility of electrostatic and

structural change with phage major coat protein assembly. For rational design, we tried

to display EEEEEE, CCCCCC, or HHHHHH at N-terminal of pVIII, but the repeated

amino acid sequence were not compatible for phage assembly and stability. For this

reason, the selected peptide sequence using type 8 phage library could satisfy both the

affinity to Co2+ and the structural compatibility to pVIII proteins.



Table 1. Percentage of amino acids in type 8 phage library

Amino acids Observed % Expected %
Arg, Lys, His 3.2 15.6

Asp, Glu 15.4 6.3
Ser, Thr 21.5 15.6

Ala, Val, Leu, lie 23.6 25.0
Gin, Asn 5.3 9.4

Phe, Tyr, Trp 3.3 9.4
Gly, Pro 24.8 12.5

* Expected percent = (number of DNA codons for an amino acid / total number of DNA
codons) x 100

The selected type 8 phage, named anti-Co 2+, was used for Co2+ mediated self-

assembly of phage. CoC12 (3.75 mM in TBS pH 7.5) was incubated with 1 x 10 pfu/pl anti-

C2+ or wild-type (M13KE) phage. Phage bundles were observed in the sample containing

the anti-Co2+ phage after 30 min (Figure 6a, center) but were absent in the samples

containing wild-type phage (left) and no phage (right). CPOM revealed birefringence in the

phage bundle (Figure 6d) indicating the bundle formation with directional order. A

transmission electron micrograph of the bundles positively stained with uranyl acetate (1%)

showed a sponge-like texture (Figure 6c), in which the direction of bundle is parallel to the

long axis of the phage particles. The directional order of the rod-like molecules has been

shown to be dependent on their concentration and the force applied.[55] In these

experiments, the addition of cobalt ions stimulated the formation of bundles with directional

ordering at phage concentrations much lower (-108 pfu/pl) than that required for liquid



crystalline (LC) formation (-1012 pfu/•l).[19] The directional ordering could be due to

increased local concentration of phage and induced interactions between phage particles.

Figure 6. (a) Photograph of cobalt mediated fibrils in solution using wild-type
(left), anti-Co2+ (center), and no phage (right). (b) Optical microscopy image
and (c) TEM image of the fibrils (from center sample). Inset: directional
placement of phage particle along the bundle (d) Cross-POM image of (b).

Co-Pt nanoparticles were then synthesized on the phage bundles by adding

(NH 4)2PtCI4 to the solutions and reducing them with NaBH4. Mineralization of Co-Pt was

observed on the darkened fibrous networks of anti-Co2+ phage (Figure 7a, center) but not in

the solutions containing wild-type phage (left) and no phage (right). Aggregated Co-Pt was



observed without phage (Figure 8a). Wild-type phage did not form the fibrous structure in

the presence of cobalt ions (Figure 8b), and an aggregate of black precipitation was

observed in the vial. The presence of Co and Pt was confirmed by using EDS. Structures

with the composition (COO. 35Pt0.65) were observed with anti-Co2+ phage, whereas structures

with composition (Co0. 25Pto. 75) were observed with wild-type or no phage. The difference

could be due to different local concentration of cobalt near surface of the phage particles.

The hybrid COO.35Pto.65 phage material was dialyzed and freeze-dried, and its micro-scale

texture was examined by SEM (Figure 7b). Crystal growth on the oriented phage fibrils was

characterized by using TEM (Figure 7c, d). The stripe patterns observed on the bundles are

-6 nm in width, close to the diameter of a phage particle. The selected area electron

diffraction (SAED) pattern shows the fundamental ring pattern of fcc CoPt.[56] A

HRTEM image (Figure 7e) shows the lattice fringe of the nanoparticles, indicating their

crystalline nature. The lattice spacing of the crystal is - 0.214 nm, which is in good

agreement with the estimated values of 0.219 nm for [1ll] facet of fcc Co0.3 5Pt0.65 by

Vegard's law.[57] The average particle size from the HRTEM is 2.3 nm (SD = 0.23 nm)

(Figure 7f).
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Figure 7. Synthesis of Co-Pt nanoparticles on fibrous phage template. (a)
Solution after nucleation and growth of Co-Pt with wild-type (left), anti-Co 2+
(center), and no phage (right). (b) SEM image of the anti-Co 2+ sample after
freeze-drying. (c) TEM image of the anti-Co2+ sample. (d) TEM image showing
bundled phage. Inset: SAED pattern of Co-Pt. (e) HRTEM of individual Co-Pt
nanoparticles showing lattice fringes and a lattice spacing (inset). (f)
Distribution of particle diameters form TEM images (average particle size = 2.3
nm).



Figure 8. TEM image of Co-Pt without phage (a) and with wild-type phage (b).

M13 bacteriophage with partial peptide display on pVIII (type 8+8 phage) have

previously been used as templates for synthesizing inorganic nanowires of

semiconductors[58] and magnetic materials.[l1, 59] The random display of the selected

peptide (7-12 amino acids) on pVIII in these reports produces the random variable in

packing density of modified pVIII coat proteins along the phage and makes it difficult to

always obtain identical structure. Unlike the type 8+8 systems, we obtained clearly defined

inorganic placement on phage particles in the bundle structure. Individual phage with

CoO.35Pto.65 nanoparticles can be visualized with regular thickness of the inorganic layer.

STEM and EDS mapping were used for the chemical analysis of the Coo. 35Pto. 65

hybrid material. Consistent atomic ratios of Co-Pt was observed (Figure 9a), showing

regular composition along the fibrous phage template. Elemental mapping of Co and Pt



(Figure 9b, c) on a fibrous phage template suggested that the nanocrystals on the template

are alloys of Co and Pt.

Figure 9. (a) STEM image of Co-Pt nanoparticles prepared on the fibrous
phage bundle. Atomic ratios of Co and Pt on fibrous structure are shown. (b)
Co and (c) Pt map showing distribution of Co and Pt.

The magnetic properties of the hybrid material were measured with DC SQUID.

The zero-field-cooling (ZFC) and field-cooling (FC) magnetization (M) were monitored as

a function of temperature (Figure 10). The ZFC mode was carried out by cooling to 5 K in a

zero field and then heated up to 300 K in a 100 Oe field. Field cooling magnetization was

achieved by cooling to 5 K and heating up to 300 K in the present of a 100 Oe field. The

observed blocking temperature (TB), which is the characteristic temperature with maximum

ZFC magnetization, was 50 K. Typical superparamagnetic behavior of single domain

nanoparticles was observed, showing divergence of the ZFC and FC curves below TB and

coincidence of the curves over TB. From the measured T8 and average particle size, the

estimated Kff is 2.7 x 10' ergs/cm 3 which is high compared to the value for fcc Co0. 35Pt0.65



film (- 7 x 106 ergs/cm3 )[60] and close to the value for the ordered fct phase of CoPt (-5 x

107 ergs/cm 3). The high Kf can be explained by surface effects on magnetic anisotropy.[61]

Based on a report of size-dependent magnetic properties of cobalt nanoparticles that

showed a decrease of TB by increasing of cobalt nanoparticle size, the diameter of

cobalt nanoparticles would be expected to be - 6 nm when the TB is 50.[26] The

estimated particle size is not in agreement with our measured data (- 2.3 nm) using

TEM. Therefore, I believe the hybrid material is not a mixture of cobalt nanoparticles

and platinum nanoparticles, but an alloy.
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Figure 10. ZFC (solid rectangle) and FC (open circle) magnetization as a
function of temperature. Sample was cooled with (FC) or without (ZFC)
magnetic field (100 Oe) to 5K, and then heated up to 300K.
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In addition, typical superparamagnetic behavior was observed from field dependent

magnetization at 5K and 300K (Figure 11). Coercivity and remanence were zero above TB,

whereas an asymmetric hysteretic feature was observed below TB (coercivity = 782 Oe),

suggesting the presence of the exchange anisotropy, which is observed at the interface of

ferromagnetic and antiferromagnetic materials.[62] Thus, it is possible that an

antiferromagnetic oxide layer could be present. We also believe that the interaction between

the nanoparticles and the phage matrix can contribute to the asymmetric hysteresis

behavior. The magnetization curve at 300K was well fitted to the Langevin function (Figure

12). The magnetic moment per CoPt particles was calculated to be 4008 pB (Bohr

magneton).

)

Field (KOe)

Figure 11. Magnetization versus applied magnetic field at 5K (solid rectangle)
and 300K (open circle).
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Figure 12. Fit for the Langevin function at 300K (red line).

2.5. Conclusions

In this chapter, I have described the selection of genetically modified type 8 phage

particles having affinity to a metal ion and the metal-ion mediated bundle formation of

these particles at low phage concentrations. The sponge-like morphology of phage bundles

was used as a template to nucleate Co-Pt nanoparticles which are both regularly located on

the phage structure and show a narrow size distribution. The hybrid material showed typical

superparamagnetic properties with high anisotropy. We believe that the introduced method

can be used for other inorganic materials, such as metals and semiconductors. The further

modification of the pVIII display library to include modified gene III and gene IX will

allow for additional peptides to be displayed on the phage capsid to simultaneously

organize multiple types of inorganic materials.



CHAPTER 3: Phage Displayed Peptide Selection for TiO2 in a

Non-Biological Environment.

3.1. Abstract

Peptide assisted mineralization in mild conditions has been utilized to impose

morphological and size control of inorganic nano-crystals. Herein, I introduce an in vitro

molecular selection method in non-biological conditions for inorganic synthesis. A phage

display peptide library which is resistant to ethanol was constructed and used for selection

against titania in 90% ethanol. The selected peptide, with a conserved basic amino acid

sequence, promotes nanoparticles (- 60 nm) during titania synthesis by the traditional sol-

gel method. This de novo method could be applicable for bio-mineralization in other non-

biological conditions.



3.2. Introduction

Biological macromolecules, such as proteins and polysaccharides, are known to

control the morphology of inorganic crystals. This control is imposed by limitation of

spatial boundaries and inhibition of crystal growth at particular crystal planes, at which

metal binding active sites have a preferred structural arrangement to the ordered metal

ions.[63] Peptides for inorganic recognition have been successfully selected using peptide

display technology [6, 64] and have been used for biomimetic synthesis and assembly of

inorganic nanoparticles.[65] Bacteriophage, E-coli, and yeast peptide display systems have

been introduced for the in vitro evolutionary methods in physiological environments.[66]

However, the systems can not be used in non-biological conditions due to cellular stress and

structural instabilities.

The synthesis of inorganic nanoparticles in non-aqueous solution by the sol-gel

technique is the preferred and widely used method for metal oxide synthesis. The role of

sol-gel processing has grown rapidly in hybrid organic-inorganic materials [67]. The

process commonly used for fabrication of metal oxides is the hydrolysis of metal alkoxides

and condensation in alcoholic solution via the colloidal particle. The rate of the reaction

process is an important parameter in determining the properties of the final product, and can

be controlled by the choice of solvent.[26] Sol-gel processing through reverse

microemulsion was introduced for size controlled inorganic oxide nanoparticles and

crystallization by drying and calcinations. [32] These harsh conditions lead to a distinct

limitation for biological applications.



The morphological control of silica has been studied using natural polypeptides

from diatom cell walls [33, 34] as well as synthetic block copolypeptides [35] at neutral pH.

Biological systems including proteins [68] and fungus [69] have also been used for titania

synthesis in mild conditions. However, phage-displayed peptide library has not been used to

select peptides for growth controls in non-biological environments.

The infectivity of filamentous phage particles is related to the stability of the

assembled pVIII major coat proteins and the conformational change of the pill sub-domains.

Although phage particles demonstrate great chemical [36] and thermal [37] stability,

filamentous bacteriophage is not stable in non-aqueous solvents for extended periods of

time. For example, chloroform is kwon to cause morphological changes in phage particles.

[38] A type 8 phage library, which contains random peptides at the N-terminal of the pVIII

coat proteins, has been used to select chloroform resistant phage. The increased stability

could be due to the altered surface properties created by displaying peptides on the exterior

of phage.[38] Also, phage particles are known to be unstable in approximately 60% ethanol

(30 min, 20'C). The infectivity in alcohols is inversely dependent upon alcohol

hydrophobicity and is not affected by pH in a range of 5.0-9.0. [39]

For peptide assisted growth control of inorganics in non-aqueous solution, the

peptide should be selected in the solution that will be used for inorganic synthesis. Due to

the harsh conditions of the general sol-gel synthesis, the phage-displayed peptide library

could not be used to select peptides which can bind to the surfaces of inorganics. We

introduce a new method for peptide selection against inorganics using the type 3 phage

library which can survive in non-biological solvents. TiO 2 was used as an example due to



the technological applicability of its photo-catalytic properties. [70] For this purpose, we

first selected type 8 phage which can survive in 90% ethanol. We then make a type 3 phage

library using the surviving type 8 phage to select peptides against TiO2 substrate (Figure 13).

The novel selection method was tested for peptide mediated inorganic growth control in

non-aqueous solution by using chemically synthesized peptide.
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Figure 13. A schematic diagram for peptide selection in ethanol. Phage which
can survive in ethanol are selected by incubation in 90% ethanol and
amplification of surviving phage three times. A pIll library is made by genetic
engineering of the surviving phage, and used to select against TiO2 substrate in
90% ethanol. After four rounds of the biopanning process, the selected phage
are characterized by sequencing of the phage DNA.

3.3. Materials and Methods

33.1. Selection of ethanol resistant phage using pVIII Phage library. Type 8 phage is

prepared as describe at chapter 2.[71] To select the phage which can survive in 90% ethanol,
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the type 8 library was incubated in 90% ethanol (19% TBS, pH = 7.5) for 20 min at room

temperature, and survived phage was amplified for 4.5 hours before next round of selection.

After third round of the selection, the survived phage was titled, and sequence of peptide

was confirmed (MIT Biopolymers Laboratory).

3.3.2. Infectivity assay in ethanol. -2 x 1010 pfu/ml of ethanol resistant phage and wild-

type phage in 0.1 ml of 50%, 70%, and 90% ethanol was incubated for 10, 20, 30 min and I

hour. At the end of incubations, the samples were diluted 100-fold with TBS in order to

stop the incubation and ensure proper titering. The concentration of phage solution was

confirmed by following general titering methods.

3.3.3. Ethanol resistant pIII phage library. To make the pIIll library of the surviving type

8 phage, the library oligonucleotide 3'-GGGCCCATGGAAAGATAAGAG

TGAGA(NNM) 8CCACCACCAAGCCGGCTTTGTAC-5' was annealed with the

extension primer (5'-CATGCCCGGGT ACCTTTCTATTCTC-3'), and the extended

duplex was obtained by incubation of the annealing reaction with Klenow fragment (10

U/dtl). N is one of four bases and M is one of A and C. The duplex and dsDNA of the

surviving type 8 phage was digested with Acc65 I and Eag I, and ligated after gel-

purification (8% nondenaturing polyacrylamide gel and 1% agarose gel respectively)

(Figure 14). The library was titered, after transfection into XLI-Blue Electroporation

Competent Cells using a MicroPulser (Biorad). The complexity of the pIII library was 108

109 pfu from the titering.
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Figure 14. Scheme for construction of ethanol resistant pIII phage library.
dsDNA of ethanol resistant phage with "EGVSNPAM" insert at N-terminal of
pVIII are modified to have octamer peptide library with Gly-Gly-Gly linker at
N-terminal of pIIIll. (X = random amino acids)

3.3.4. Biopanning against TiO2. The phage displayed pIII library was incubated with a

TiO 2 wafer (rutile, 110) (Wafer World Inc.) in 90% ethanol (10% TBS, pH = 7.5). To

elute the bound phage, the solution was boiled with 100 l1 of Tri buffer (pH = 8) for 10

minutes, and the ssDNA of the phage was isolated. The pIll and pVIII regions of the

isolated ssDNA was amplified by using PCR with primers 5'-M13SK-1351 (5'-

GATGCTGTCTTTCGCTGCA-3') and 3'-M13KE-2 (5'-GACAGGAGGTTGAG

GCAG-3') (length of PCR product = 926 base pairs). The amplified region was used to

EGVNPA



make new pill library by digestion with Pst I and Eag I, ligation and transfection. After the

fourth round of the selection, the selected peptide sequence was determined.

3.3.5. Synthesis of TiO2 with the selected peptide. Titanium(IV) ethoxide (Ti(OC2Hs) 4)

(Aldrich) in ethanol was added to 90% ethanol (10% TBS, pH = 7.5) with and without KI

peptide, which was chemically synthesized (MIT Biopolymers Laboratory). The final

concentration of peptide and Ti were about 50 IjM. The mixtures were incubated at room

temperature for 24 hours.

3.3.6. Characterization. Transmission electron microscopy (TEM) and high resolution

TEM (HRTEM) images were obtained using JEOL 2000FX and JEOL 2010 TEMs (JEOL)

respectively at an accelerating voltage of 200 kV. Element line-scanning was taken using

JEOL 2010FX TEM in scanning mode. Scanning electron microscopy (SEM) images was

obtained using a JEOL 6320FV field-emission SEM at lkV after Au coating (50A

thickness). X-ray photoelectron spectroscopy (XPS) spectra were recorded using a Kratos

AXIS Ultra System (MIT, center of material science and engineering) with

monochromatized AlKa radiation at 150 W. Samples were prepared by drying TiO2

particles on gold substrates. Electron binding energies were calibrated using gold 4f (84.00

eV) as a reference. Passing energy for survey and high-resolution spectra were 160 and 10

eV respectively. CasaXPS software was used for curve fitting. Peak areas were divided by

the corresponding elemental sensitivity factor [72] to calculate atomic ratio.



3.4. Results and discussion

Phage which can survive in ethanol were selected after three rounds of biopanning

in 90% ethanol. Characterization of the displayed peptides reveal a predominant sequence

(36/49) with conserved Glu, Asn, and Met amino acids, which can act as hydrogen bonding

donors or acceptors (Figure 15 a). Pro and Gly in the sequences could affect structural

flexibility for increased stability of phage particles. The first amino acid in the pVIII

peptide library can be 5 amino acid (Ala, Val, Asp, Glu, and Gly), and Glutamic acid

are preferred in wild-type phage. It is possible that the first Glutamic acid could be due

to intrinsic preference. However, when sequences of the pVIII library were tested by

sequencing of 41 phage plaques, the first amino acid were Ala (nineteen), Val (five),

Asp (two), Glu (five), Gly (ten). Therefore, I could not exclude a possible contribution

of Glu for structural stability in 90% ethanol.

Structural stability was studied indirectly by monitoring changes of infectivity in a

series of ethanol concentrations and incubation times (Figure 15b). Both wild type and the

selected phage showed conserved infectivity during incubation in 50% ethanol for I hours.

The infectivity of wild-type phage was decreased rapidly in 70% ethanol, and no phage

particles were observed after incubation in 90% ethanol for 10 min. The infectivity of wild-

type phage agreed with a previous phage stability study.[39] Ethanol resistant phage

showed similar infectivity in both 70% and 90% ethanol. 100-fold decreases were observed

after 20 min incubation in 90% ethanol. The ethanol resistant phage showed much higher

stability than wild-type, and the phage is applicable for ethanol resistant pill phage library.
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Figure 15. Ethanol resistant phage. (a) pVIII displayed peptide sequences with
numbers of observed sequences (left panel), (b) infectivity of predominant
resistant phage in series of different time and percent of ethanol.



The pII phage library in which random octapeptide library with Gly-Gly-Gly

linker was constructed using the ethanol resistant phage and used for selection in 90%

ethanol against a TiO2 wafer (110, rutile). After three rounds of biopanning, conserved

sequences of peptides were observed with positively charged amino acids (Arg, Lys, and

His) (Figure 16). Peptides selected under physiological conditions against metal oxides

(SiO 2, ZnO, CaCO 3, Cr20 3, and Fe20 3) often contain basic amino acids,[65] and

electrostatic interactions are believed to be major binding force.[73] Because the dielectric

constant of 90% ethanol (10% water) (29.03) is lower than that of water (80.37) at 20 C,[74]

electrostatic interaction in 90% ethanol could 2.77 times stronger than those in water due to

their reciprocally proportional relationship.

K5 RSVA H MRL
K16 H T L P R D K R
K18 R G H M Y T TH
K4 R L T I D R T A
K10 K SSSQ R L P
K1 MRQ L E R A S
K19 EKTGVRT L
K11 ERERPPRM
K8 GARHQ P W R
K2 V P T R N T I K

Figure 16. Selected peptide sequence in 90% ethanol against TiO 2 crystal.
Conserved basic amino acids (red); Arginine (R), Lysine (K), and Histidine
(H). Peptides were named by sequenced order (left panel).



The KI peptide was used to study the effects of the peptide during hydrolysis and

condensation of titanium ethoxide. The TEM image in Figure 17a shows particle formation

with about 60 nm, whereas the well controlled individual particles were not observed

without the peptide. Figure 18 show that particles without the peptide are various in size

and are linked together to become a network which can be observed easily by traditional

sol-gel method.[75] Electron diffraction (inset) pattern exhibits rings with d spaces of 3.51,

2.35, and 1.92 A corresponding to (101), (004), and (200) respectively (anatase phase,

JCPDS 21-1272). Lattice images were obtained using HRTEM show that a particle is

mixture of amorphous and nanocrystalline TiO 2. of anatase of anatase (Figure 17b). The

presences of peptides bound to TiO 2 particles were confirmed by line-scan using STEM

(Figure 17c), showing Ti, 0, and S elements. The high intensity of O and the presence of S

suggest incorporation of peptides in the particles. The particles were washed with 90%

ethanol (10% water) and precipitated by centrifugation at 18000 rcf for 10 min. The

precipitant was Au coated with 50A thickness and characterized by SEM (Figure 17d).

Particle size determined by SEM agrees with the size determined by TEM.



Figure 17. TiO 2 paticles with K1 peptide. (a)TEM image with diffraction
(inset), (b) HRTEM showing (101) and (004) facets, (c) line-scan using STEM
for elements of Ti (red), O (green), S (blue), (d) SEM image of precipitated
particles.

Figure 18. TEM image of TiO2 without K peptide showing irregular
particles which is linked together.



Element composition and oxidation states of the particles were analyzed by XPS. A

survey of elements (Figure 19) shows the presence of Ti, O, C and N in both the precipitant

with and without the peptide, whereas S 2s and 2p peaks were observed only with peptide,

supporting that the particles is mixture of TiO2 and peptide. From high resolution XPS

(Figure 20), Ti 2pl/2 (458.9 eV) and Ti 2p3/2 (464.7 eV) spins with 5.8 peak separation

indicate that most Ti are in +4 oxidation state.[76] The peaks were observed in both the

sample with and without peptides. The high oxidation states could be due to preference of

hydrolysis of Ti(OC2 H5)4 which is about five orders higher than Si(OC2H5)4. [26] High

resolution oxygen (is) spectra for the sample with the K1 peptide (Figure 21a) show three

major peaks at 530.4, 532.2, and 533.4 eV attributed to oxygen in metal oxide, surface

hydroxyl, and adsorbed water or organic components respectively.[77] These assignments

for the sample without the peptide (Figure 20b) were made for oxygen at similar positions

(530.6, 531.9, and 533.1 eV). The ratio of oxide oxygen to titanium were near the

theoretical value of 2.0 in both samples with and without the peptide (1.90 and 1.88

respectively). The relative amount of surface hydroxyl to titanium was decreased from 4.78

to 2.58 by addition of the peptide, suggesting interaction of oxide with peptide. Electrostatic

interaction could contribute to stabilize oxide and reduce the chance for hydroxylation.

These results support the preference of basic amino acids in selected peptide against metal

oxides.[65] The additional peak at 531.3 (Figure 21a, green) which appeared with KI is

considered to be the amide-O species from the peptide.[78]
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3.5. Conclusion

In this chapter, I describe the selection of ethanol resistant phage using a type 8

phage library and the subsequent construction of a pIII peptide library by genetic

engineering of the resistant phage to select a binder to TiO 2 in ethanol environment (90%

ethanol). The selected peptide was synthesized and shows to impose morphological control

during TiO 2 synthesis. The peptide assisted synthesis results in spherical particles in which

interaction of peptide and TiO2 was observed by XPS. Sol-gel chemistry is widely used for

synthesis of oxide materials in alcoholic conditions. This method could have applications in

bio-mediated inorganic growth for materials in non-biological solvents.
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CHAPTER 4: Alignment and Storage of Biological Molecules

in Phage Film.

4.1. Abstract

Filamentous bacteriophage can form liquid crystalline films in high concentration due

to their rod-like shape. Here I report the storage of proteins in smectically aligned phage films.

f3-galactosidase and a green fluorescent protein variant were successfully stored in the phage

film with increased stability. In addition, streptavidin conjugated phycoerythrin was aligned

in SI phage films, in which a streptavidin binding peptide is displayed at the end of phage

particles. Alignment, with increased fluorescent intensity of phycoerythrin, was achieved.

Proteins stored in phage film could have applications in biologically functional materials and

biosensors.



4.2. Introduction

In order to maintain their biological activity, enzymes and protein drugs must

sustain their three-dimensional structure. Degradation of protein structure occurs easily

during dehydration and storage. Carbohydrates, including sucrose, lactose and trehalose,

have been extensively studied as excipients for stabilizing membranes, proteins and cells

upon dehydration, and are widely used for biological materials in pharmaceutical

industry.[79, 80] Long-term storage of proteins in biocompatible and biodegradable

polymers is challenging due to their applicable opportunities in the treatment of disease by

sustained release. Poly(lactide-co-glycolide)(PLG) is an example of stabilization of a

protein by encapsulation. [81]

Filamentous bacteriophage can form well-controlled liquid-crystalline (LC) phases

due to their rod-like shape. The self-assembly of nanoparticles in LC phase films of

genetically engineered phage has been demonstrated.[15, 16] The phage film could be used

for biocompatible functional materials due to their multiple peptide display systems. Here I

report a new protein storage method with ordering in phage film.

In order to show enzyme stability in viral films, j3-galactosidase was used, which

has been widely used as a reporter enzyme. Sucrose/glucose, which has been shown to

preserve the structure and function of biological systems during dehydration and subsequent

storage, was used to enhance the stability of enzyme. Green fluorescent protein variant

(GFPuv) was used to visualize the functional and structural stability of proteins in the viral

film. GFPuv is known to emit green light (maximum emission wavelength at 509 nm) when

it is in stable structures. Streptavidin conjugated phycoerythrin and anti-streptavidin phage



were used to demonstrate alignment of biological molecules along with their stability

(Figure 22).
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Figure 22. Scheme for alignment of streptavidin conjugated phycoerythrin in smectic

phage film. Streptavidin can bind to an end of a phage particle which displays
streptavidin binding peptides at N-terminal of pIll.

4.3. Materials and Methods

4.3.1. P-galactosidase stability in phage film

P-galactosidase in phosphate buffered saline (PBS) solution (pH 7.0, concentration:

potassium phosphate: 10 mM , NaCl: 0.3 M) was mixed with stock solutions of glucose,

sucrose, and M13 phage to the final concentration: 0.5mg/ml P-galactosidase, 5mg/ml

glucose, 50mg/ml sucrose, and 1.25mg/ml phage. Aliquots (20 [tl) of the solution were

pipetted to 1.5ml Eppendorf tubes, dried in a dessicator for two days, and stored at room

temperature in darkness. To measure activity of 3-galactosidase, the dried viral films were



suspended in 500 tl of PBS solution (pH 7.0). 100 gl of the suspension and 700 pl of o-

nitrophenyl galactoside (ONPG) (1.5x10-2 M) were combined in a disposable cuvette. The

enzyme activities (units) were obtained by monitoring an increase of absorbance of o-

nitrophenol (ONP) at 420nm for 10 min at 30 sec intervals. One unit of activity was defined

as the amount of enzyme that can catalyze the transformation of I lmol of ONPG into ONP

in 1 min at 250 C (pH 7.0).

4.3.2. GFPuv stability in phage film

The DNA encoding GFPuv (Clontech) was amplified by PCR and subcloned into

pFLAG-CTC vector (Sigma) for the expression of GFPuv-FLAG in Escherichia coli.

Whole cell extract was prepared, and the expressed GFPuv-FLAG was purified using an

anti-FLAG M2 affinity gel column (Sigma). The mixture of GFPuv-FLAG, phage, and

glucose/sucrose (1:10 w/w) was prepared with the final concentration: 100 pg/ml GFPuv-

FLAG, 5 mg/ml phage, and 5 mg/ml glucose, and 50 mg/ml sucrose. 10 gll of the mixture

was dispensed on a glass slide, and dried in a desiccator for a day. GFPuv-FLAG stability

was visualized by using confocal fluorescence microscopy. Additionally, the dependence

of concentration change of glucose/sucrose was monitored at 2.5 and 25 mg/ml respectively.

4.3.2. Alignment and stability of phycoerythrin in phage film

To fabricate phage films with aligned phycoerythrin, as an example biological

molecule, 200tl of the Anti-streptavidin type 3 phage (S1 phage) suspension (-6 mg mL-1,

1.9 x 10-7 M in Tris-HCl saline buffered solution (pH 7.5) was mixed with 200 pl of 0.05



mg mL"' (1.7 x 10-7 M in Tris-HCI saline buffered solution (pH 7.5), 5% (w/v) sucrose,

0.5% (w/v) glucose) of R-phycoerythrin-streptavidin (MW: 292,800) (Molecular Probes).

The mixture (400 IL) in 0.6 mL microcentrifuge tube was dried in a dessicator for two

weeks to make bulk phage film. I jil of the mixture was cast and dried on the glass substrate

for cast film fabrication. The bulk and cast film textures were studied with POM and

confocal fluorescence microscopy (Leica SP2 AOBS). The molar and weight concentration

of phage suspensions were measured using a UV-vis spectrophotometer (extinction

coefficient: 1.2 x 108 M-'cm'-1 at 268 nm). Fluoimager (Amersham Pharmacia) was used to

analyze fluorescent intensity of the cast film.

4.4. Results and discussion

The recovered activities of P-galactosidase in the viral film with glucose/sucrose

during storage at room temperature were much more preserved than without the

carbohydrates (Figure 23). The activities of control samples which were dried in a

desiccator without phage and carbohydrates, were dramatically decreased. The phage and

glucose/sucrose did not affect the enzyme activity in the suspension before the drying of the

film or after suspending the viral film using PBS solution. No significant difference was

observed for P-galactosidase activities between freeze-dried and air-dried samples in a

desiccator during storage at room temperature.
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Figure 23. Effect of glucose/sucrose and phage on J-galactosidase activity
during storage at room temperature. Day 0 represents the recovered activity
after drying in desiccator.

Confocal fluorescent microscopy of GFPuv images showed that GFPuv proteins in

the viral film were still active so as to emit the green fluorescent light, when excited at 361

nm. The result showed that the addition of glucose and sucrose helped to form more

homogeneous viral films as well as to avoid deformation of the film structure during the

film fabrication process. The strong fluorescent image of GFPuv (Figure 24a) indicated that

the structure and function of the GFPuv were stored in tact after the complete evaporation

of the solvent. Deformation of the film was clearly observed with low or without content of

glucose / sucrose (Figure 24b and c). The protein stability in phage films is mostly

dependant on glucose / sucrose content.



Figure 24. Confocal microscopy images of fluorescent GFPuv in the viral
film after one day from their fabrication with same GFPuv and phage
concentration and with variation of concentration of glucose / sucrose; (A)
5mg/ml / 50mg/ml, (B) 2.5mg/ml / 25mg/ml, and (C) without glucose and
sucrose.

To prepare smectic ordered phycoerythrin-phage film, anti-streptavidin M13 phage

(-6 mg mLU', 1.9 x 10-7 M in TBS pH 7.5), streptavidin conjugated phycoerythrin (1.7 x

10-7 M in TBS pH 7.5), and sucrose (5%, w/v) were mixed in microcentrifuge tube (0.5 mL),

and the suspension was dried in a dessicator for two weeks. The fabricated film is slightly

pink in color (emission of phycoerythrin at 578 nm) and transparent (Figure 25a). The

optical characterization using POM revealed a -5 gm dark-gray periodic horizontal striped

patterns (Figure 25b), and the bright and dark patterns are switched depending on the angle

between polarizer and analyzer. The uniform equidistant line pattern is caused by chiral

smectic C order [82]. The fluorescence properties of phycoerythrin are observed using

fluorescence microscopy (Figure 25c), suggesting stable structure of phycoerythrin during

fabrication of the film. One micrometer fluorescent striped patterns, which corresponds to

65



the length of phage (-1 gm), were observed using confocal fluorescence microscopy, and

the clear striped patterns confirms proper binding of streptavidin conjugated phycoerythrin

to the end of the phage (pill) (Figure 25d).

2CM

- 1pm

Figure 25. (a) Photograph of phycoerythrin-phage film, (b) POM image of
phycoerythrin-phage film (scale bar: 100 gm), (c) fluorescence image of
phycoerythrin-phage film, and (d) phycoerythrin-phage film on glass slide,
showing one micrometer striped patterns (scale bar: 10 glm)

Fluorescence intensity of the phycoerythrin was measured by using fluorimager to

study protein stability indirectly (Figure 26). The fluorescence intensity decreased after

drying in a deciccator without glucose/sucrose. Alignment of phycoerythrin with S phage



prevents degradation of phycoerythrin during the drying process, but not during long term

storage. The carbohydrates conserve about 40% of aligned phycoerythrin activity in the

phage film during long periods of storage times. Most biological structures will collapse

under air-drying conditions due to surface tension forces. It may possible that the

alignment in LC phase of S1 phage reduce a chance of exposure to water and air

interfaces.
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Figure 26. Effect of glucose/sucrose and phage on aligned phycoerythrin
during storage at room temperature. Day 0 represents the recovered activity
after drying in desiccator.
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4.5. Conclusion

The protein stability in the phage film was enhanced with the glucose/sucrose as a

stabilizer, compared to that of the phage film without the stabilizers. Randomly dispersed 3-

galactosidase and GFPuv were successfully stored in wild-type phage film with functional

and structural stability. Phycoerythrin was aligned and stored within smectically ordered SI

phage. The alignment could reduce degradation of protein during the drying process.

Because the surfaces of phage particles can be modified by displaying desired peptides, the

phage film could be applicable for biologically functional materials and biosensors.

The dried phage film fabrication method could be used generally to store other

proteins or enzymes with little change of their functions and structures. Furthermore, other

stabilizers (such as glycerol and polyethylene glycol)[83] are expected to improve the

enzyme stability in viral films.



CHAPTER 5: Assembly of Inorganic Nanoparticles using

Genetically Engineered Bacteriophage

5.1. Abstract

Bacteriophage can be potential biological building blocks and templates for alignment

and self-assembly of biological and inorganic molecules, because their surface can be

genetically engineered to display foreign peptides. Here, pllI and pVIII coat proteins of phage

particles were engineered, and their applicability as a nano-structural scaffold were studied. A

gold binding peptide was selected by using a type 8 phage library. Self-assembly of gold

particles on phage was observed. In addition, type 83 phage which display both streptavidin

binding peptide at pIll and Au binding peptide at pVIIl were constructed for multiple self-

assembly of streptavidin conjugated nanoparticles and Au nanoparticles in two-dimensional

architectures. Genetically engineered phage could be applied to ordering complex bio-

inorganic nanomaterials.



5.2. Introduction

Biological molecules such as DNA and peptide have been targetted for bottom-up

self-assembly of nanoscale structures, which require precise and specific interaction for

their right placement. Peptides displayed on bacteria, tobaccomosaic virus (TMV), the

cowpea chlorotic mottle virus (CCMV), and the cowpea mosaic virus, have been used for

synthesis and self-assembly of inorganic nanoparticles.[84] M13 bacteriophage, a

filamentous bacteriophage, is a potential biological building bock for self-assembly of

inorganic nanoparticles, because their major coat proteins (pill, pVIII, and pIX) can be

genetically engineered to display desired peptides.

M 13 bacteriophage consists of -2700 copies of pVIII for their cylindrical body, and

5 copies of pill and pIX are placed at each end of the bacteriophage. Type 3 phage libraries

which display peptides at the N-terminal of the pIII protein is the most widely used system

to select a binder to biological and inorganic molecules. The selection against inorganic

surfaces was successfully demonstrated for peptide mediated inorganic synthesis and

growth controls.[6, 8]. Also, Type 8+8 phage systems, in which peptides are displayed

partially at N-terminal of pVIII proteins, have been used for inorganic nano wire

synthesis.[l 1] In this system, infection of helper phage in bacteria which contain an

engineered phagemid is required. It is hard to obtain mono-disperse phage particles in

length, because the length of phage is dependent on the packed DNA sized during assembly

of phage particles on the bacterial membrane.



A type 8 phage system, which displays octamer peptides at the N-terminal of all

pVIII proteins was introduced for selection against proteins and small molecules.[13]

Unlike the phagemid systems, the advantage of this system is that we can get homogenous

display on the pVIII resulting in the nucleation of inorganic crystals with uniform

placement as well as defined length and width. In addition to engineering the pVIII, the pIII

can be completely modified (type 83 system) (Figure 1).
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Figure 27. Scheme for the type 83 phage for assembly of Au nanoparticle on pVIII
and streptavidin conjugated CdSe nanoparticles on pIIl.
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The research objective of this chapter is to apply engineered type 8 and type 83

bacteriophage display systems as a biological scaffold for assembly of both Au and CdSe

nanoparticles. Type 8 phage and type 3 phage were used for selection against Au and

streptavidin respectively, and Type 83 phage which display peptides both pVIll for Au and

pIIll for streptavidin were constructed for assembly of both Au nanoparticles and

streptavidin conjugated CdSe nanoparticles (Figure 27).

5.3. Materials and methods

5.3.1. Biopanning against Au surface by collaboration with Chung-Yi Chiang

A type 8 phage library was constructed as described in chapter 2. The library was

incubated in TBST (TBS, pH = 7.7 + (v/v) Tween-20) on a Au surface and unbounded

phage were washed off. Au binders were eluted by incubation in 100 il of 0.2 M Glycine-

HCI (pH = 2.2), and the solution was neutralized with 150 ptl of IM Tris-HCI (pH= 9.1).

The eluted phage was amplified for the next round of biopanning. After the fourth round of

biopanning, the sequences of the selected phage from randomly chosen plaques were

determined

5.3.2. pIII modification of p8#9 phage

To combine the type 8 phage and type 3 streptavidin binding phage, the region from

position 1358 to 2277 of the engineered MI3KE vector, which contains the streptavidin



binding peptide (WDPYSHLLQHPQ), was amplified using PCR with primer 5'-

MI 3KEmu-p8 (5'-CTGTCTTTCGCTGCAGAGGGTGAGGATCCCGCAAAAGC-3') and

3'-Ml3KE-2 (5'-CACCGTTCATCTGTCCTC-3'). The PCR product includes mutation

sites (underline parts of 5'-M 13KEmu-p8) to generate Pst I and BamH I restriction sites for

pVIII cloning. The PCR products were digested with Bam H I and Eag I, and ligated into

isolated dsDNA of p8#9 phage. The N-terminal pIll and pVIII sequences of the type 83

phage, named #9S I phage, were confirmed. Details about construction of type 83 phage are

described in appendix B.

5.3.3. Assembly of Au nanoparticles on p8#9 phage by collaboration with Chung-Yi

Chiang and Yu Huang

10 1 l of p8#9 phage (-108 pfu/ gl) were mixed with 100 I l of Au nanoparticle (5

nm) suspension (5.0 x 10'3 particles/mL, Ted Pella). After 2-3 minutes of incubation,

TEM samples were prepared. Wild-type phage (M13KE) and p8#17 phage (a minor

peptide selected from the type 8 library) were used as control. After uranyl-acetate-

staining (1% uranyl-acetate), the control phage were observed by TEM.

5.3.4. Fabrication of nano-architectures by collaboration with Chung-Yi Chiang and

Yu Huang

10 jl of #9S1 phage (109 pfu/ jil) were mixed with 5 il of streptavidin

conjugated Au nanoparticles (15 nm) and 70 jil of TBST with 0.1% bovine serum

albumin (BSA, Amersham Biosciences). The mixture was agitated for about ihour for



binding of the S1 peptide and streptavidin. Then, 10 pl of the mixture was incubated

with 100 pl of Au nanoparticle suspension (Ted Pella) for binding of Au nanoparticles

to the pVIII of #9S1. In addition, streptavidin conjugated Au nanoparticles were

replaced with streptavidin conjugated CdSe quantum dot (15 nm) (Quantum Dot) for

hetero-nanoparticle structures.

5.4. Results and discussion

After the fourth round of biopanning against the Au surface with the type 8 phage

library, the prevalent phage (19 of 20 randomly chosen clones), which is named p8#9,

contains the serine rich peptide sequence, Val-Ser-Gly-Ser-Ser-Pro-Asp-Ser (VSGSSPDS).

The selected serine rich sequence is similar to other previously selected Au-binding

peptides in which serine and threonine are prevalent [85]. Formation of Au wires by

incubation of Au nanoparticles (- 5 nm) with p8#9 phage was observed using TEM.

The suspension of Au nanoparticles with control phage (wild-type and p8#17 phage)

remained clear, as did the suspension of Au nanoparticles without phage (blank control

sample) (Figure 28a). The mixture of p8#9 phage and Au nanoparticles result in

precipitation (high-lighted by the arrow). Au nanoparticles in the blank control and control

phage samples were randomly dispersed (Figure 28b-c). Any regular placement of Au

nanoparticles on control phage was not observed (Figure 28c and d), whereas Au

nanoparticle on p8#9 phage were assembled and densely packed (Figure 28e). The 1 gim

length and 10 nm thickness are consistent with the size of the M13 bacteriophage. The



enlarged image (inset of Figure 28e) shows alignment of Au nanoparticles on a phage

particle, forming a wire-like structure.

Figure 28. (a) the suspension of Au nanoparticles with and without phage. Blank
control sample contains Au nanoparticles alone, and wild-type and p8#17 phage are
used as control. p8#9 phage is the selected Au binding phage. TEM image of blank
control sample (b), wild-type (c), p8#17 (d), and p8#9 (e) phage. Wild-type and
p8#17 phage were stained by using uranyl-acetate (1%).



Figure 29. TEM images of various nanoarchitectures templated by #9S1 phage. (a
and b) Assembly of Au nanoparticles (5 nm) at pVIII and streptavidin conjugated
Au nanoparticles (15 nm) at pIll. (c) CdSe quantum dot (15 nm) at pIII and Au
nanoparticles at pVIII. (d and e) example of complex structure in which streptavidin
conjugated Au nanoparticle (15 nm) are bridge two or three phage particles.

Streptavidin-conjugated Au nanoparticles (15 nm) and Au nanoparticles (5 nm)

were incubated with #9SI, which display both Au binding peptide at pVIII and streptavidin

binding peptide at pill. Specific placement of Au nanoparticles at pill (15nm Au particles)

and pVIII (5 nm Au particles) was observed (Figure 29a and b). Streptavidin conjugated Au



nanoparticles were replaced with streptavidin conjugated CdSe (15 nm) to confirm that this

novel method can be extended to other materials. Figure 29c shows the CdSe nanoparticle

bound to pill, but not at pVIIl. Because more than one streptavidin (tetrameric (4 x 13 kDa)

protein) can be conjugated to nanoparticles, complex structure could be expected by

bridging phage particles. Linearly and Y-shaped structures are shown in Figure 29d and e as

examples.

5.5. Conclusion

A type 8 phage library was successfully applied for selection against Au surface to

assemble Au nanoparticles on the selected phage. The assembly results in densely aligned

Au nanoparticles, forming wire-like structures. In addition, Type 83 phage which display

both Au binging peptide at pVIII and streptavidin binding peptide at pVIII were constructed

and applied for programmable assembly of Au nanoparticles and streptavidin conjugated

particles (Au and CdSe). This rational approach could be easily extended to bottom-up

assembly of other nanoscale materials. In addition to pill and pVIII, pIX proteins can be

modified to display peptides. Therefore further genetic engineering of phage could

challenge assembly with more complex geometries using phage as a nanoscale template and

building block.



CHAPTER 6: Summary and Conclusions

Surface display of peptides on phage enables the assembly of foreign molecules

on their cylindrical body (pVIII) and tip (pIII) due to interaction between the peptides

and the target molecules. Genetically engineered type 8 and type 83 phage were

constructed and used for application in biotechnology and inorganic nanotechnology in

this thesis, chapters 2 through 5: (chapter 2) cobalt ion mediated self-assembly of

genetically engineered bacteriophage for biomimetic Co-Pt hybrid material, (chapter 3))

phage displayed peptide selection for TiO 2 in a non-biological environment. (chapter 4)

Alignment and storage of biological molecules in phage films, and (chapter 5)

Assembly of inorganic nanoparticles using genetically engineered bacteriophage.

In chapter 2, genetically modified type 8 phage particles having affinity to

cobalt ions were selected and used for the metal-ion mediated bundle at low phage

concentrations. The phage bundles with a sponge-like morphology were used as a

template to nucleate Co-Pt nanoparticles. The nanoparticles were regularly located on

the phage structure with a narrow size distribution. The hybrid bio-inorganic material

showed superparamagnetic properties with high anisotropy.



In chapter 3, Ethanol resistant phage were selected using a type 8 phage library.

Then, a pIII peptide library was constructed by genetic engineering of the ethanol

resistant phage to select a binder to TiO2 in ethanol environment (90% ethanol). The

selected peptide was used for growth control of TiO2 during general sol-gel synthesis,

resulting in the formation of individual spherical particles (- 60 nm) without gelation

process.

In chapter 4, j3-galactosidase and GFPuv were successfully stored in smectically

ordered phage films. Carbohydrates (glucose/sucrose) were used as a stabilizer to increase

stability of the protein in the film. Type 3 phage, which displays SI peptide (streptavidin

binding peptide), was employed for alignment of streptavidin conjugated phycoerythrin in

phage films. The alignment could be helpful to distribute the phycoerythrin regularly

through the film. Also, it is possible that the alignment reduces degradation of proteins

during the drying process.

Finally in chapter 5, Au nanoparticles were assembled on type 8 phage which

display Au binding peptide at pVIlI. Densely aligned Au nanoparticles on a phage particle

formed wire-like structures. In addition, Type 83 phage which display both Au binging

peptide at pVIII and streptavidin binding peptide at pVII were applied for assembly of both

Au nanoparticles and streptavidin conjugated particles (Au and CdSe) at different positions

on the phage particles.

Genetic engineering of bacteriophage by displaying peptides or proteins (at pill,

pVIII, and pIX) could have tremendous application in biotechnology, nanotechnology, and

material science. Because the length of filamentous bacteriophage can be adjusted in



addition to peptide display, bacteriophage could provide a tunable nanoscale biological

building block. For further development in biomimetic inorganic nanomaterials, the

mechanism of interactions between biological molecules (DNA, peptide, and proteins) and

inorganic surfaces should be elucidated. Nucleation of inorganics on biological matrix was

known to be controlled by supersaturation level of inorganic precursors and reduction of

interfacial energy between the matrix and water.[63] High binding affinity of biological

matrix to inorganic precursors could increase local concentration of the precursors near the

matrix. Binding affinity to the precursors could affect on interfacial energy. Effects of

binding affinities on local concentration near the matrix and the interfacial energy for

biomineralization could be interesting studies near future. Biocompatible and biologically

degradable functional materials using genetically engineered phage could be one of the

potential applications. I believe that the genetically engineered phage will be studied and

applied more for innovative materials with excellent properties due to their multiple peptide

display systems.



Appendix A: construction for M13SK

M13SK phage vector (Figure Al) was constructed for genetic engineering of both

pIII and pVIII by modifying M13KE phage vector (NEB) as described previously.[13] T at

position 1372 and C at position 1381 was mutated to A and G respectively by using overlap

extension PCR.

Region from position 1179 to 1395 was amplified with primers 5'-M13KE-1179

(5'-GCTTGGTATAATCGCTGG-3') and 3'-Ml3KEmu-p8 (5'-GCTTTTGCGGGATC

CTCACCC TCTGCAGCGAAAGACAG-3'). Region from position 1358 to 2277 was also

amplified with primers 5'-Ml3KEmu-p8 (5'-CTG TCT TTC GCT GCA GAG GGT GAG

GAT CCC GCA AAA GC-3') and 3'-MI3KE-2 (5'-GAC AGG AGG TTG AGG CAG-3').

The amplified product of region from position 1179 to 2277 were obtained by performing

additional PCR reaction with mixture of the two PCR products, 5'-M13KE- 1179, and 3'-

MI3KE-2 (Figure A2). The final PCR product and MI3KE vector was digested by BspH I

and Acc65 I, and ligated into MI3KE vector. After transfection using XLI-Blue

supercompetent cells (Stratagen), 100 gl of the cells were plated with 3ml of agaros top.

Plaques were selected and sequenced to confirm the mutation. the Pst I site at position 6246

was deleted by mutating T to A at position 6250 by using same method. One PCR product

were obtained with primer 5'-M13KE-5785 (5'-GTG GAC TCT TGT TCC AAA CTG-3')

and 3'-MI3KEmu-6250 (5'-CAG TGA ATT CGA GGA CCA GCA GGC ATG CAA GCT

TG-3'), and the other PCR product were obtained with primer 5'-MI3KEmu-6250 (5'-CAA

GCT TGC ATG CCT GCT GGT CCT CGA ATT CAC TG-3') and3'-M13KE-7175 (5'-



CAA TAA AGC CTC AGA GCA TAA AGC-3'). The two region was extended and

amplified with primer 5'-Ml3KE-5785 and 3'-M13KE-7175. The PCR product was

digested with Hind III and Bgl II, and ligated into digested dsDNA of the mutant M13KE

vector which contain mutation at pVIII sites.

Pst I 'acZ a

M.C.

MI3SK

Son

9t I

BamH I

pill

Acc65 I
Eag I

Figure Al. Restriction site map of M13SK. M13KE vector was modified. Pst I
and BamHI sites were added, and Pst I at Multi cloning site was deleted.



BspH I
I

Acc65 I
I

,L
5'-M13KE-1179

-- I-3'-M3KEmu-p8

5-M1 3KEmu-p

3'-M13KE-2

5'-M3KE-1 179

3'-M13KE-2

Figure A2. Overlap extension PCR for pVIII cloning sites. Two individual
PCR products with mutation sites were obtained. The two PCR products were
extended and amplified with 5'-M13KE-1179 and 3'-M13KE-2 primers.

III



Appendix B: construction of type 83 phage

The region from position 1358 to 2277 of the type 3 dsDNA, which contains

selected peptide sequence at pill, was amplified using PCR with primer 5'-M13KEmu-p8

(5'-CTGTCTTTCGCTGCAGAGGGTGAGGATCCCGCAAAAGC-3') and 3'-M 3KE-2

(5'-CACCGTTCATCTGTCCTC-3'). Pst I and BamH I restriction sites for pVIII cloning

can be generated, because 5'-Ml3KEmu-p8 primer contains mutation sites for the

restriction sites. Table B I show the details of the PCR reaction.

Table BI. PCR of type 3 phage for construction of type 83 phage

ddH 20

10X Pfu PCR buffer

2.5 mM dNTPs

5'-M13KEmu-p8 (10 p.M)

3'-M13KE-2 (10 RpM)

Pfu polymerase (2.5 U/gp)

dsDNAor ssDNA of type 3 phage (10 nm/gpl)

75 ýpl

10 pl1

8 pl

2 pl

2 pl

2 pl1

1 pl

* Annealing temperature = 50 C, extension time = 1 min

The PCR products (insert) and dsDNA of type 8 phage (vector) were digested with

BamHI and fag 1. After gel-purification by running electrophoresis using 1% agarose gel,



The insert and vector were ligated by incubation with T4 DNA ligase (NEB) at 16 C for

overnight. The mixture of ligation was transfected into XL1-Blue supercompetent cells

(Stratagen) (Figure B 1). After 30 min incubation at 37 C, 100 il of the transfected cells

were plated with 3 ml of agarose-top. Each plaque was inoculated and amplified to confirm

its DNA sequence.

Type 3
phage dsDNA : 5'-Ml3KEmu-pS Eag

I

PCR Product:

Type 8
phage dsDNA:

Type 83
phage dsDNA:

pVIll pill 3'4t3KE-2

Pt I BamH I Eag I

pVIII pilla-2
P It BamHI Eag I

pVIII pill 3 3KE-2

SDigeston wh BwmH I and EAg I
Lpgaon inlo tyw 8 phag. d DNA

pVIII pill

Figure B1. Construction of Type 83 phage. PCR product which contains Pst I and
BamH I restriction site was obtained. The region between BamH I and Eag I was
cloned to type 8 phage dsDNA. The dsDNA of type 83 phage contains DNA
sequence for peptide display at both pIII (orange) and pVIII (red).
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