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Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

We consider a multiple-input, multiple-output (MIMO) wideband Rayleigh block fad-
ing channel where the channel state is unknown at the transmitter and receiver and
there is only an average input power constraint. We compute the capacity and analyze
its dependence on coherence length, number of antennas and receive signal-to-noise
ratio (SNR) per degree of freedom. We establish conditions on the coherence length
and number of antennas for the non-coherent channel to have a “near coherent”
performance in the wideband regime. We also propose a signaling scheme that is
near-capacity achieving in this regime. We compute the decoding error probability
and study its dependence on SNR, number of antennas and coherence length. We
show that error probability decays inversely with coherence length and exponentially
with the product of the number of transmit and receive antennas. Moreover, in the
wideband regime, channel outage dominates error probability and the critical and
cut-off rates are much smaller than channel capacity.
In the second part of this thesis, we introduce the concept of a fiber aided wire-
less network architecture (FAWNA), which allows high-speed mobile connectivity by
leveraging the speed of optical networks. Specifically, we consider a single-input,
multiple-output (SIMO) FAWNA, which consists of a SIMO wireless channel inter-
faced with an optical fiber channel through wireless-optical interfaces. We propose a
design where the received wireless signal at each interface is sampled and quantized
before being sent over the fiber. The capacity of our scheme approaches the capacity
of the architecture, exponentially with fiber capacity. We also show that for a given
fiber capacity, there is an optimal operating wireless bandwidth and number of inter-
faces. We show that the optimal way to divide the fiber capacity among the interfaces
is to ensure that each interface gets enough rate so that its noise is dominated by
front end noise rather than by quantizer distortion. We also show that rather than
dynamically change rate allocation based on channel state, a less complex, fixed rate
allocation scheme can be adopted with very small loss in performance.
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Chapter 1

Introduction

This thesis addresses two broad topics in multiple antenna systems. The first is the

fundamental information theoretic limits of multiple antenna systems in the wideband

regime and the second is design of high-speed mobile communication networks using

multiple antennas in a distributed fashion.

1.1 Multiple antenna systems in the wideband

regime

Recent years have seen the emergence of high data rate, third generation wideband

wireless communication standards like wideband code division multiple access (W-

CDMA) and Ultra-wideband (UWB) radio. Motivated by the ever increasing demand

for higher wideband wireless data rates, we consider multiple antenna communication

over the wideband wireless channel.

At the cost of additional signal processing (which is getting cheaper with rapid ad-

vances in VLSI technology), multiple-input, multiple-output (MIMO) systems have

been known to improve considerably performance of wireless systems in terms of relia-

bility as well as throughput, without requiring additional resources such as bandwidth

and power. However, multiple antenna research has focused primarily in the regime

where the received signal-to-noise ratio (SNR) per degree of freedom is high. Such a
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regime operates in essence as a narrowband regime. We now study the performance

of MIMO at the other extreme, i.e., when the available bandwidth is large, which

takes us to the regime where the SNR per degree of freedom is low.

In wideband channels, the available power is spread over a large number of degrees

of freedom. This makes the SNR per degree of freedom low. Hence, while studying

these channels, we need to focus on the low SNR regime. We will therefore use the

terms “wideband” and “low SNR” interchangeably, with the understanding that the

latter refers to the SNR per degree of freedom.

The study of single antenna wideband channels dates back to 1969 and early work has

considered the Rayleigh fading channel model. Kennedy [4] shows that the capacity

of an infinite bandwidth Rayleigh fading channel is the same as that of an infinite

bandwidth additive white Gaussian noise (AWGN) channel with the same average

received power. Using the results of Gallager [9], Telatar [10] obtains the capacity

per unit energy for the Rayleigh fading channel as a function of bandwidth and signal

energy, concluding that given an average power constraint, the Rayleigh fading and

AWGN channels have the same capacity in the limit of infinite bandwidth. Telatar

and Tse [24] show that this property of the channel capacity is also found in channels

with general fading distributions.

Médard and Gallager [18, 28] establish that very large bandwidths yield poor perfor-

mance for systems that spread the available power uniformly over time and frequency

(for example DS-CDMA). They express the input process as an orthonormal expan-

sion of basis functions localized in time and frequency. The energy and fourth moment

of the coefficients scale inversely with the bandwidth and square of the bandwidth,

respectively. By constraining the fourth moment (as is the case when using spread

spectrum signals), they show that mutual information decays to 0 inversely with in-

creasing bandwidth. Telatar and Tse [24] consider a wideband fading channel to be

composed of a number of time-varying paths and show that the input signals needed

to achieve capacity must be “peaky” in time or frequency. They also show that if

white-like signals are used (as for example in spread spectrum communication), the

mutual information is inversely proportional to the number of resolvable paths with

14



energy spread out and approaches 0 as the number of paths get large. This does not

depend on whether the paths are tracked perfectly at the receiver or not. A strong

coding theorem is obtained for this channel in [36]. Subramanian and Hajek [29] de-

rive similar results as [18, 28] using the theory of capacity per unit cost, for a certain

fourth-order cost function, called fourthegy.

We now consider the use of multiple antennas over these channels. MIMO channels

were first studied from a capacity point of view in [13, 21]. In a Rayleigh flat-fading

environment with perfect channel state information (CSI) at the receiver (coherent

channel) but no CSI at the transmitter, and statistically independent propagation

coefficients between all pairs of transmit and receive antennas, the multiple antenna

capacity increases linearly with the smaller of the number of transmit and receive

antennas, provided the signal-to-noise ratio is high [13].

When CSI is unavailable at the transmitter as well as the receiver, the channel is

referred to as a non-coherent channel. In [20], Marzetta and Hochwald derive the

structure of the optimal input matrix for this channel as a product of two statisti-

cally independent matrices; one of them being an isotropically distributed unitary

matrix and the other being a diagonal, real and non-negative matrix. They also show

that there is no gain, from the point of view of capacity, in having the number of

transmit antennas be more than the coherence interval (in symbols) of the channel.

Zheng and Tse [27] obtain the non-coherent MIMO capacity in the high SNR regime

and show that in this regime, the number of transmit antennas required need not be

more than half the coherence interval (in symbols).

In this thesis, we assume that the transmitter and receiver have no CSI. Hence, we

study the non-coherent channel. We also assume Rayleigh block fading. In the limit

of infinite bandwidth, Zheng and Tse [27] show that the capacities per degree of

freedom for the coherent and non-coherent MIMO channels are the same, i.e.,

lim
SNR→0

Ccoherent(SNR)

SNR
= lim

SNR→0

Cnon−coherent(SNR)

SNR
= r,

where, r is the number of receive antennas and SNR is the average signal-to-noise

ratio per degree of freedom at each receive antenna.
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In this thesis, we use the following notation:

f(x) = O(g(x)) ⇔ lim
x→0

f(x)

g(x)
= non-zero constant,

f(x) = o(g(x)) ⇔ lim
x→0

f(x)

g(x)
= 0.

The capacity can thus be expressed as:

C(SNR) = rSNR + o(SNR) nats/channel use

and is thus a linear function only in the limit of low SNR. As SNR increases from

0, capacity increases in a sublinear fashion, showing that low SNR communication is

power efficient.

Using a Taylor series expansion, Verdú [30] shows that the second derivative of the

capacity at SNR = 0 is finite for the coherent channel. The impact on the coherent

capacity of antenna correlation, Ricean factors, polarization diversity and out-of-cell

interference is considered in [34]. For the non-coherent channel, Verdú [30] shows

that though “flash” signaling is first order optimal, it renders the second derivative

−∞. Hence, the coherent and non-coherent channels have the same linear term and

differ in their sublinear term. Therefore, as bandwidth is increased, the non-coherent

channel capacity approaches the wideband limit slower than the coherent channel

capacity.

Let us define the sublinear term for the MIMO channel with t transmit and r receive

antennas as

∆(t,r)(SNR) , rSNR − C(SNR) nats/channel use.

Computing the sublinear term tells us the capacity and also quantifies the conver-

gence of the capacity function to the low SNR limit. Smaller the sublinear term,

faster the convergence. Using the results of Verdú [30], the sublinear term for the

Rayleigh fading coherent MIMO channel, ∆
(t,r)
coherent(SNR), is

∆
(t,r)
coherent(SNR) =

r(r + t)

2t
SNR

2 + o(SNR
2).

On the other extreme, for the i.i.d Rayleigh fading non-coherent MIMO channel, the

sublinear term, ∆
(t,r)
i.i.d (SNR) ≫ O(SNR

2) [30]. In this paper, we compute ∆
(t,r)
i.i.d (SNR)
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and show that on-off signaling achieves capacity for the i.i.d Rayleigh fading non-

coherent MIMO channel.

Figure 1-1 shows the sublinear terms for the Rayleigh fading coherent channel and

the i.i.d Rayleigh fading non-coherent channel with the same number of transmit and

receive antennas. A property of the non-coherent capacity is that it tends towards

the coherent capacity as the coherence length increases. Hence, the sublinear term for

the i.i.d Rayleigh fading non-coherent channel is the largest (non-coherent extreme),

whereas, for the coherent channel, it is the smallest (coherent extreme). In this

thesis, we focus on how the non-coherent MIMO channel capacity is influenced by

the coherence length, number of antennas and SNR. We do so, by computing the

sublinear term, which in turn tells us the capacity of the low SNR non-coherent

MIMO channel of arbitrary coherence length. Thereby, we sweep the region, shown

in Figure 1-1, between the coherent and non-coherent extremes.

In the low SNR regime, the sublinear term also represents the energy efficiency of

communication. Let En and N0 represent the energy per information nat and the

noise spectral level, respectively. We have:

En

N0
=

SNR

C(SNR)

=
SNR

rSNR − ∆(t,r)(SNR)

=
1

r

1

1 − ∆(t,r)(SNR)
rSNR

.

Taking logarithms on both sides,

log
(En

N0

)

≈ ∆(t,r)(SNR)

rSNR
− log(r). (1.1)

Equation (1.1) shows how energy efficiency is related to the sublinear term. The

smaller the sublinear term for a channel, the more energy efficient will it be. As the

non-coherent capacity is always less than the coherent capacity for the same number

of transmit and receive antennas, lack of receiver CSI results in energy inefficiency.

Also, note that the minimum energy (in dB) required to reliably transmit one infor-

mation nat decreases logarithmically with the number of receive antennas.

18
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Let us now turn to Figure 1-2, which shows how wideband capacity changes with

bandwidth. We denote P as the average receive power and N0 as the noise spectral

density, which makes the wideband limit rP
N0

nats/sec. We obtain this figure by scal-

ing the y-axis of Figure 1-1 by the bandwidth. For the same number of transmit and

receive antennas, the non-coherent capacity is less than the coherent capacity. Thus,

the non-coherent channel requires a larger bandwidth in order to reliably support

the same throughput as the coherent channel. We define bandwidth penalty as the

extra bandwidth required by a non-coherent channel to have the same capacity as

that of its coherent counterpart. Channels whose capacities converge slowly to the

wideband limit have to incur large bandwidth penalties. Bandwidth penalty grows

with bandwidth. Hence, for the non-coherent channel, as we approach the wideband

limit, we gain in terms of energy efficiency (as the sublinear term decreases), but the

bandwidth penalty becomes larger. We quantify this effect by computing the low

19



SNR non-coherent MIMO capacity. Studying how capacity changes with coherence

length also tells us the amount of bandwidth required to achieve a “near coherent”

performance. Note that since bandwidth penalty increases with decreasing coherence

length, the channel at the non-coherent extreme (i.i.d Rayleigh fading non-coherent

channel) has to incur the largest bandwidth penalty.

Prelov and Verdú [38] consider non-coherent communication with the input distri-

bution constrained to be exponentially decaying. It is shown that the capacity per

degree of freedom in the low SNR regime is O(SNR
2). Reference [39] considers the

same capacity under the constraint that only the fourth and sixth order moments of

the input are finite. Once again, the non-coherent capacity per degree of freedom is

shown to be O(SNR
2). Hence, [38, 39] show that when there is a higher order (fourth

and above) constraint on the input, capacity scales inversely with bandwidth. Thus,

the non-coherent capacity does not approach the wideband limit and diverges from

the coherent capacity as bandwidth increases. These results are akin to the single

antenna channel results [18, 24, 28, 29]. Hassibi and Hochwald [32] propose a train-

ing scheme that is near-optimal in the high SNR regime. However, at low SNR, their

scheme results in the rate per degree of freedom to go as O(SNR
2). Since the overall

rate decays to 0 inversely with bandwidth, their training scheme is not desirable at

low SNR.

In chapters 2 and 3 of this thesis, we consider multiple antenna communication over a

wideband, non-coherent Rayleigh block fading channel. In chapter 2, we compute the

capacity with only an average power constraint and consider its interaction with the

coherence length of the channel, number of transmit and receive antennas and SNR.

We establish how large the coherence length has to be in order for a non-coherent

channel to have a “near coherent” performance at low SNR. More specifically, we

show that, if the channel coherence length is above a certain antenna and SNR de-

pendent threshold, the non-coherent and coherent capacities are the same in the low

SNR regime. We show that the transmit antennas affect the sublinear capacity term

and hence, the approach of capacity to the wideband limit with increasing band-

width. We also propose a signaling scheme that is near-optimal in the wideband

20



regime. The capacity problem that we consider in this paper has been considered for

single antenna channels by Zheng, Tse and Médard [42]. They consider the interac-

tion between coherence length and capacity at low SNR and compute the order of

the sublinear capacity term. The work in this paper builds on their work, where, we

analyze the more general MIMO channel and exactly compute the sublinear capacity

term. We use a finer scale of analysis than [42], which allows us to understand how

the transmit and receive antennas affect the sublinear capacity term and hence, the

approach of the non-coherent capacity to the wideband capacity limit.

We analyze the error probability for the non-coherent low SNR MIMO channel in

chapter 3. The behavior of error probability for the coherent [19, 33] as well as non-

coherent [22, 31] MIMO channels has been well studied in the high SNR regime. For

the coherent MIMO channel with coherence length 1 symbol, the error exponent is

computed by Telatar [21] for any SNR. The behavior of the error exponent for the

non-coherent MIMO channel in the low SNR regime has recently been considered by

Wu and Srikant in [41]. Their analysis considers the linear capacity term, rSNR, and

the error exponent is computed by fixing the coherence length and letting SNR tend

to 0.

Our consideration of the effect of the interaction among SNR, number of transmit

and receive antennas, and coherence length, on the error probability, yields a detailed

characterization of the error probability behavior. While we consider a less general

family of input distribution functions than [41], we establish results for a much wider

set of operating regimes in terms of the relative values of antennas, coherence and

SNR. Our analysis shows that in the low SNR regime, the critical rate as well as the

cut-off rate are much smaller than the channel capacity. Moreover, the error proba-

bility decays inversely with coherence length. We introduce the notion of “diversity”

in the low SNR regime and use it to show that error probability decays exponentially

with the product of the number of transmit and receive antennas. Hence, in terms of

reliability in the wideband regime, transmit antennas have the same importance as

receive antennas. In the high SNR regime, it is well known that outage dominates the

error probability. Our analysis shows that this is true even at low SNR, i.e., channel
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outage dominates the error probability at low SNR.

1.2 High-speed mobile communication networks

There is a considerable demand for increasingly high-speed communication networks

with mobile connectivity. Traditionally, high-speed communication has been effi-

ciently provided through wireline infrastructure, particularly based on optical fiber,

where bandwidth is plentiful and inexpensive. However, such infrastructure does not

support mobility. Instead, mobile communication is provided by wireless infrastruc-

ture, most typically over the radio spectrum. However, limited available spectrum

and interference effects limit mobile communication to lower data rates.

We introduce the concept of a fiber aided wireless network architecture (FAWNA),

which allows high-speed mobile connectivity by leveraging the speed of optical net-

works. Optical networks have speeds typically in hundreds of Megabit/sec or several

Gigabit/sec (Gigabit Ethernet, OC-48, OC-192, etc.). In the proposed architecture,

the network coverage area is divided into zones such that an optical fiber “bus” passes

through each zone. Connected to the end of the fiber is a bus controller/processor,

which coordinates use of the fiber as well as connectivity to the outside world. Along

the fiber are radio-optical converters (wireless-optical interfaces), which are access

points consisting of simple antennas directly connected to the fiber. Each of these

antennas harvest the energy from the wireless domain to acquire the full radio band-

width in their local environment and place the associated waveform onto a subchannel

of the fiber. Within the fiber, the harvested signals can be manipulated by the bus

controller/processor and made available to all other antennas. In each zone, there

may be one or more active wireless nodes. Wireless nodes communicate between one

another, or to the outside world, by communicating to a nearby antenna. Thus any

node in the network is at most two hops away from any other node, regardless of the

size of the network. In general, each zone is generally covered by several antennas,

and there may also be wired nodes connected directly to the fiber.

This architecture has the potential to reduce dramatically the interference effects that
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Figure 1-3: A SIMO fiber aided wireless network architecture.

limit scalability and the energy-consumption characteristics that limit battery life, in

pure wireless infrastructures. A FAWNA uses the wireline infrastructure to provide a

distributed means of aggressively harvesting energy from the wireless medium in ar-

eas where there is a rich, highly vascularized wireline infrastructure and distributing

in an effective manner energy to the wireless domain by making use of the proximity

of transmitters to reduce interference.

Tonguz and Jung [14, 16] consider the design of a similar network architecture where

a given area is divided into microcells. Each microcell has a passive base station con-

sisting of a single antenna and a laser diode. The wireless signals directly modulate

this laser diode. The passive base stations are connected to a central base station

using a single-mode fiber, and the signal from each microcell is decoded separately.

References [26, 35, 37] consider designs which use heating, ventilation, and air con-

ditioning (HVAC) ducts for communicating the radio frequency signals to and from

the central base station.
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In chapter 4, we consider a single-input, multiple-output (SIMO) fiber aided wireless

network architecture. We will also refer to this as SIMO-FAWNA. Figure 1-3 shows

such a link between two points A and B. The various quantities in the figure will be

described in detail in chapter 4. In the two hop link, the first hop is over a wireless

channel and the second, over a fiber optic channel. The links we consider are ones

where the fiber optic channel capacity is larger than the wireless channel capacity.

The transmitter at A transmits information to intermediate wireless-optical interfaces

over a wireless SIMO channel. The wireless-optical interfaces then relay this informa-

tion to the destination, B, over a fiber optic channel. The end-to-end design is done

to maximize the transmission rate from A to B. Since a FAWNA has a large number

of wireless-optical interfaces, an important design objective is to keep the wireless-

optical interface as simple as possible without sacrificing too much in performance.

Our problem has a similar setup, but a different objective than the CEO problem [15].

In the CEO problem, the rate-distortion tradeoff is analyzed for a given source that

needs to be conveyed to the CEO through an asymptotically large number of agents.

Rate-distortion theory, which uses infinite dimensional vector quantization, is used

to analyze the problem. We instead compute the maximum end-to-end rate at which

reliable communication is possible. In general, duality between the two problems

doesn’t exist. Unlike the CEO problem, the number of wireless-optical interfaces is

finite and the rate (from interface to receiver B) per interface is high, owing to the

fiber capacity’s being large. Finite-dimensional, high resolution quantizers are used

at the interfaces.

A FAWNA is an example of a channel model where quantization is performed between

the source/channel encoding and decoding operations. Another example is a commu-

nication system where the receiver quantizes the incoming signal prior to decoding

(Receiver implementation using a digital signal processor). Our analysis extends to

all such channel models.

Let us denote the capacities of the wireless and optical channels as Cw(P, W, r) and

Cf bits/sec, respectively, where, P is the average transmit power at A, W is the

wireless transmission bandwidth and r is the number of wireless-optical interfaces.
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Since, as stated earlier, we consider links where Cw(P, W, r) ≤ Cf , the capacity of a

SIMO-FAWNA, CSIMO(P, W, r, Cf), can be upper bounded as

CSIMO(P, W, r, Cf) < min
{

Cw(P, W, r), Cf

}

= Cw(P, W, r) bits/sec. (1.2)

One way of communicating over a SIMO-FAWNA is to decode and re-encode at the

wireless-optical interface. A major drawback of the decode/re-encode scheme is signif-

icant loss in optimality because “soft” information in the wireless signal is completely

lost by decoding at the wireless-optical interface. Hence, multiple antenna gain is lost.

Moreover, decoding results in the wireless-optical interface’s having high complexity

and requires the interface to have knowledge of the transmitter code book.

We propose a design where the wireless signal at each wireless-optical interface is

sampled and quantized using a fixed rate memoryless vector quantizer before being

sent over the fiber. Hence, the interfaces use a forwarding scheme. Since transmission

of continuous values over the fiber is practically not possible using the type of mod-

ulation commonly associated with commercial lasers, quantization is necessary for

the implementation of a forwarding scheme in a FAWNA. The proposed design has

quantization between end-to-end coding and decoding. Knowledge of the transmitter

code book is not required at the wireless-optical interface. The loss in “soft” informa-

tion due to quantization of the wireless signal, goes to 0 asymptotically with increase

in fiber capacity. The interface has low complexity, is practically implementable, is

extendable to FAWNAs with large number of transmitters and interfaces and, offers

adaptability to variable rates, changing channel conditions and node positions.

We show that the capacity of our scheme approaches the upper bound (1.2), expo-

nentially with fiber capacity. The proposed scheme is thus near-optimal since, the

fiber capacity is larger than the wireless capacity. Low dimensional (or even scalar)

quantization can be done at the interfaces without significant loss in performance.

Not only does this result in low complexity, but also smaller (or no) buffers are re-

quired, thereby further simplifying the interface. Hui and Neuhoff [12] show that

asymptotically optimal quantization can be implemented with complexity increasing

at most polynomially with the rate. We establish the optimal way in which fiber
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capacity should be divided among the interfaces (interface rate allocation) and in-

vestigate robustness of FAWNA capacity with respect to it. We also analyze the

loss from keeping rate allocation fixed (based on wireless channel statistics) rather

than dynamically adjusting it according to channel state. For a SIMO-FAWNA with

fixed fiber capacity, quantizer distortion as well as power efficiency increases with

wireless bandwidth and number of interfaces. The two competing effects result in

the existence of an optimal operating wireless bandwidth and an optimal number of

wireless-optical interfaces.

Notation

Let us establish notation that will be used in this thesis. The bold type will be used

to denote random quantities whereas normal type will be used to denote deterministic

ones. Matrices will be denoted by capital letters and the scalar or vector components

of matrices will be denoted using appropriate subscripts. Vectors will be represented

by small letters with an arrow over them. All vectors are column vectors unless they

have a T superscript. Scalars will be represented by small letters only. The superscript

† will be used to denote the complex conjugate transpose.
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Chapter 2

Wideband MIMO Capacity

In this chapter, we compute the capacity of a non-coherent MIMO channel at low

SNR. The analysis shows the interaction between the number of receive and transmit

antennas, coherence length of the channel and SNR, in the wideband regime. We also

propose a near-capacity achieving signaling scheme for this channel.

2.1 Model

We model the wideband channel as a set of N parallel narrowband channels. In

general, the narrowband channels will be correlated. We restrict our analysis to

narrowband channels having independent and identical statistics, and also assume

each narrowband channel as being flat faded. From [42], we see that the behavior

of channels with low SNR per degree of freedom is robust to reasonable modeling

assumptions and necessary simplifications. Hence, the results for a more precise

MIMO channel model may not differ significantly from that of the simple model we

consider in this paper.

Using the sampling theorem, the mth narrowband channel at symbol time k can be

represented as:

~y[k, m] = H[k, m]~x[k, m] + ~w[k, m],
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where H[k, m], ~x[k, m], ~w[k, m] and ~y[k, m] are the channel matrix, input vector, noise

vector and output vector, respectively, for the mth narrowband channel at symbol

time k. The pair (k, m) may be considered as an index for the time-frequency slot, or

degree of freedom, to communicate. We denote the number of transmit and receive

antennas by t and r, respectively. Hence, ~x[k, m] ∈ Ct and ~y[k, m], ~w[k, m] ∈ Cr. The

channel matrix, H[k, m], is a r× t complex matrix, independent of the channel input

and additive noise. The entries of the channel matrix are i.i.d zero-mean complex

Gaussian, with independent real and imaginary components. Equivalently, each entry

of H[k, m] has uniformly distributed phase and Rayleigh distributed magnitude. We

thus model a Rayleigh fading channel with enough separation within the transmitting

and receiving antennas to achieve independence in the entries of H[k, m]. The channel

matrix is unknown at the transmitter and the receiver. However, its statistics are

known to both. The noise vector, ~w[k, m], is a zero-mean Gaussian vector with

the identity as its covariance matrix, i.e., ~w[k, m] ∽ CN (~0, Ir). Since the narrowband

channels are assumed to be independent, we shall omit the narrowband channel index,

m, to simplify notation. The capacity of the wideband channel with power constraint

P is thus N times the capacity of each narrowband channel with power constraint

P/N . Hence, we can focus on the narrowband channel alone.

We further assume a block fading channel model, i.e., the channel matrix is random

but fixed for the duration of the coherence time of the channel, and is i.i.d across

blocks. Hence, we may omit the time index, k, and express the narrowband channel

within a coherence block of length l symbols as:

Y = HX + W,

where, X ∈ Ct×l has entries xij , i = 1, ..., t, j = 1, ..., l, being the signals transmitted

from the transmit antenna i at time j; Y ∈ Cr×l has entries yij, i = 1, ..., r, j = 1, ..., l,

being the signals received at the receive antenna i at time j; the additive noise W has

i.i.d entries wij, which are distributed as CN (0, 1). The input X satisfies the average

power constraint

E
[

trace

{

XX†
}]

= l SNR,
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where, SNR is the average signal to noise ratio at each receive antenna per narrowband

channel. As N tends to ∞, SNR tends to 0, and the narrowband channel is in the

low SNR regime.

2.2 Dependence of capacity on coherence length

We first analyze the dependence of non-coherent capacity on the coherence length

of the channel. In [20], the structure of the capacity achieving input matrix for our

non-coherent MIMO channel model is described as

X = AΦ,

where

A =














‖~xT
1 ‖

. . .

‖~xT
i ‖

. . .

‖~xT
t ‖














,

is a t×l random matrix that is diagonal, real and nonnegative with identically (though

possibly not independently) distributed entries and ‖~xT
i ‖ is the norm of the signal

vector transmitted by the ith antenna. Since these entries are identically distributed,

we have ∀i ∈ {1, . . . , t}

E[‖~xT
i ‖2] =

l SNR

t
.

Φ is an l × l isotropically distributed unitary matrix. The row vectors of Φ are

isotropic random vectors which represent the direction of the signal transmitted from

the antennas. A and Φ are statistically independent. Since this structure of the input

matrix is optimal, we shall restrict our attention to inputs having such structure.

We first prove Lemma 1, which establishes two necessary conditions the input distri-

bution must satisfy for the mutual information of the channel to be above a certain

value. This lemma will be used in Theorem 1 to establish the dependence of the

non-coherent capacity on the channel coherence length.
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Lemma 1 For any α ∈ (0, 1] and γ ∈ (0, α), if there exists an input distribution on

X such that

1

l
I(X;Y) ≥ rSNR − r(r + t)

2t
SNR

1+α + O(SNR
1+α+γ),

then the following two conditions are satisfied by this distribution:

t

l
E
[

log(1 + ‖~xT
i ‖2)

]

≤ (r + t)

2t
SNR

1+α + O(SNR
1+α+γ), (2.1)

tE

[

log
(

1 +
‖~xT

i ‖2

l

)]

≥ SNR − (r + t)

t
SNR

1+α + O(SNR
1+α+γ), (2.2)

for all i ∈ {1, .. . . . , t}.

Proof: See Appendix A. 2

This leads to the following theorem that describes the dependence of the non-coherent

capacity on the coherence length:

Theorem 1 Consider a non-coherent Rayleigh block fading MIMO channel with av-

erage signal to noise ratio, SNR. Let the block length be l and the capacity, C(SNR).

For any α ∈ (0, 1] and γ ∈ (0, α), if

C(SNR) ≥ C∗(SNR) , rSNR − r(r + t)

2t
SNR

1+α + O(SNR
1+α+γ),

then

l > lmin ,
t2

(r + t)2
SNR

−2α.

Proof: See Appendix B. 2

This theorem states that the coherence length must be strictly larger that lmin for the

channel capacity to be above C∗(SNR). Since the inequality for the coherence length

is strict, this implies that a channel with capacity C∗(SNR) will have its coherence

length, l∗, strictly greater than lmin, i.e.,

lmin < l∗.
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2.3 Communicating using Gaussian-like signals

In this section, we propose a signaling scheme using which a rate of C∗(SNR) is

achievable if the coherence length is greater than or equal to a threshold, lG.

We prove the following lemma, which shows that, using a Gaussian input distribution,

we can achieve “near coherent” performance if the coherence length of the channel is

large enough.

Lemma 2 Consider a non-coherent Rayleigh block fading MIMO channel with aver-

age signal-to-noise ratio, SNR. Let the block length be l and the capacity, C(SNR). If

we use Gaussian signals over this channel, then for any ǫ ∈ (0, 1], if

l ≥ t2

(r + t)2
SNR

−2(1+ǫ),

then

C(SNR) ≥ rSNR − r(r + t)

2t
SNR

2 + O(SNR
2+ǫ).

Proof: We first lower bound the mutual information of the non-coherent channel

MIMO channel as

I(X;Y)

= I(X;Y|H) + I(H;Y) − I(H;Y|X)

≥ I(X;Y|H) − I(H;Y|X). (2.3)

Let us choose the distribution of X to be one where all the entries of X are i.i.d and

CN (0, SNR
t

). Note that it is exactly this distribution that achieves capacity for the

coherent MIMO channel. Therefore,

1

l
I(X;Y|H) = rSNR − r(r + t)

2t
SNR

2 + O(SNR
3). (2.4)

I(H;Y|X) is the information that can be obtained about H from observing Y, con-

ditioned on X being known. Therefore

I(H;Y|X)
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= h(Y|X) − h(Y|X,H)

= rtE log(1 + ‖~xT
i ‖2)

≤ rt log
(

1 +
l

t
SNR

)

, (2.5)

where we have used Jensen’s inequality to get the upper bound in (2.5). Combining

(2.3), (2.4) and (2.5), and noting that

C(SNR) ≥ 1

l
I(X;Y),

we obtain:

C(SNR) ≥ rSNR − r(r + t)

2t
SNR

2 − r
t

l
log
(

1 +
l

t
SNR

)

+ O(SNR
3). (2.6)

For any ǫ ∈ (0, 1], let us choose

l =
t2

(r + t)2
SNR

−2(1+ǫ).

Therefore,

r
t

l
log
(

1 +
l

t
SNR

)

= r
(r + t)2

t
SNR

2(1+ǫ) log
(

1 +
t

(r + t)2SNR
1+2ǫ

)

= r
(r + t)2

t
SNR

2(1+ǫ) log
( t

(r + t)2SNR
1+2ǫ

)

+ o(SNR
2(1+ǫ))

= r
(r + t)2

t
SNR

2(1+ǫ) log
( t

(r + t)2

)

+r
(r + t)2

t
(1 + 2ǫ)SNR

2+ǫ
[

SNR
ǫ log

( 1

SNR

)]

+ o(SNR
2(1+ǫ))

≤ r
(r + t)2

t
SNR

2(1+ǫ) log
( t

(r + t)2

)

+ r
(r + t)2

t
(1 + 2ǫ)SNR

2+ǫ + o(SNR
2(1+ǫ))

(2.7)

= O(SNR
2+ǫ).

In (2.7), we use the fact that since ǫ > 0 and SNR → 0, SNR
ǫ log( 1

SNR
) ≪ 1. Since

r t
l
log
(

1 + l
t
SNR

)

decreases monotonically with l, we have that

l ≥ t2

(r + t)2
SNR

−2(1+ǫ)

⇒ r
t

l
log
(

1 +
l

t
SNR

)

≤ O(SNR
2+ǫ).
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Combining this with (2.6) completes the proof. 2

We now introduce an input distribution that has a flashy as well as a continuous

nature. A similar input distribution was first introduced in [42] for achieving the

order of the sublinear capacity term for a single-input, single-output non-coherent

Rayleigh block fading channel.

For a given α ∈ (0, 1], transmit in only δ(SNR) = SNR
1−α fraction of the blocks. As we

are in the low signal to noise ratio regime, δ(SNR) ∈ (SNR, 1]. Since we concentrate

the power only over a fraction of the blocks, the signal to noise ratio for the blocks

in which we transmit increases to SNRb, where,

SNRb ,
SNR

δ(SNR)
= SNR

α.

In the blocks that we choose to transmit, let the entries of the input matrix X be i.i.d

CN (0, SNRb

t
). Note that as we increase α from 0 to 1, the fraction of blocks that we

transmit increases from SNR to 1. Therefore, as α increases, the distribution changes

from a peaky to a continuous one. We call this type of signaling Peaky Gaussian

signaling. We establish the following theorem:

Theorem 2 Consider a non-coherent Rayleigh block fading MIMO channel with av-

erage signal to noise ratio, SNR. Let the block length be l and the capacity, C(SNR).

If we use Peaky Gaussian signals over this channel, then for any α ∈ (0, 1] and

ǫ ∈ (0, α], if

l ≥ lG ,
t2

(r + t)2
SNR

−2(α+ǫ),

then

C(SNR) ≥ C∗(SNR) = rSNR − r(r + t)

2t
SNR

1+α + O(SNR
1+α+ǫ).

Proof: Let us use Peaky Gaussian signaling for communicating over the non-coherent

MIMO channel. We can now apply Lemma 2 to the blocks over which we choose to

transmit. Note that these blocks have a signal to noise ratio of SNRb. Thus, for any
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ǫ
′ ∈ (0, 1], if

l ≥ t2

(r + t)2
SNRb

−2(1+ǫ
′
)

= t2

(r+t)2
SNR

−2(α+αǫ
′
),

then

C(SNRb) ≥ rSNRb −
r(r + t)

2t
SNRb

2 + O(SNRb
2+ǫ

′

).

Since we are transmitting in δ(SNR) fraction of the blocks,

C(SNR)

= δ(SNR) · C(SNRb)

≥ rSNR − r(r + t)

2t
SNR

1+α + O(SNR
1+α+αǫ

′

).

Note that for ǫ
′ ∈ (0, 1], αǫ

′
, ǫ ∈ (0, α]. This completes the proof. 2

Thus, we see that using Peaky Gaussian signals a rate of C∗(SNR) is achievable if the

coherence length is greater than or equal to lG.

To achieve reliably any rate, the required coherence length using Peaky Gaussian

signaling is strictly greater than the required length (Theorem 1) using the optimal

input distribution. Thus, if l∗ is the coherence length needed to have a capacity of

C∗(SNR),

lmin < l∗ ≤ lG.

However, for α ∈ (0, 1], as ǫ → 0, lG → lmin and Peaky Gaussian signaling is near-

optimal for the non-coherent MIMO channel.

From Theorems 1 and 2, we see that for any α ∈ (0, 1] and ǫ ∈ (0, α], if

t2

(r + t)2
SNR

−2α < l ≤ t2

(r + t)2
SNR

−2(α+ǫ), (2.8)

the sublinear capacity term is

∆(t,r)(SNR) =
r(r + t)

2t
SNR

1+α + O(SNR
1+α+ǫ).

We summarize this result in the following theorem:
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Theorem 3 Consider a non-coherent Rayleigh block fading MIMO channel with av-

erage signal to noise ratio, SNR. For any α ∈ (0, 1] and ǫ ∈ (0, α], the capacity of the

channel is

C(SNR) = rSNR − r(r + t)

2t
SNR

1+α + O(SNR
1+α+ǫ)

if and only if there exists a σ ∈ (0, ǫ] such that

l =
t2

(r + t)2
SNR

−2(α+σ).

This theorem tells us the capacity of a non-coherent MIMO channel in the low SNR

regime and shows its dependence on the coherence length of the channel, number of

receive and transmit antennas and SNR. Note that the transmit antennas affect the

sublinear capacity term. Peaky Gaussian signals are near-optimal when communicat-

ing over this channel. σ is used in the theorem to parameterize (2.8). This theorem

leads to the following corollary:

Corollary 1 Consider a non-coherent Rayleigh block fading MIMO channel with av-

erage signal to noise ratio SNR. For any α ∈ (0, 1] and ǫ ∈ (0, α],

∆(t,r)(SNR) =
r(r + t)

2t
SNR

1+α + O(SNR
1+α+ǫ)

if and only if there exists a σ ∈ (0, ǫ] such that

l =
t2

(r + t)2
SNR

−2(α+σ).

In Theorem 3 and Corollary 1, α is an indicator of how close the channel capacity is to

the coherent extreme. The coherent channel corresponds to the case when α = 1 and

the i.i.d non-coherent channel corresponds to the case when α → 0. We have also seen

that Peaky Gaussian signals are optimal for the non-coherent MIMO channel. Thus,

with a channel coherence length of l ∼ t2

(r+t)2
SNR

−2α, one should transmit Gaussian

signals in δ = SNR
1−α fraction of the blocks. At the coherent extreme, δ = SNR

0

and one should transmit in all the blocks in order to achieve capacity. On the other

hand, for the i.i.d Rayleigh fading channel (non-coherent extreme), one should only

transmit in δ = SNR
1 fraction of the blocks. We shall study the non-coherent extreme
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with a finer scaling later on in the thesis.

Let us eliminate the parameter α from Corollary 1. The sublinear capacity term then

becomes

∆(t,r)(SNR) =
r

2
√

l
SNR + o(

SNR√
l

).

From (1.1), we have

log
(En

N0

)

∝

√

1

l
.

Hence, the minimum energy required to reliably transmit an information bit decreases

inversely with the square root of the coherence length of the channel. These results

apply for α ∈ (0, 1]. For channels whose coherence length is larger that t2

(t+r)2
SNR

−2

symbols, the sublinear capacity term remains O(SNR
2). Let us now focus on the

coherent and non-coherent extremes.

Coherent Extreme

In this case α = 1 and from Theorem 3, we know that for ǫ ∈ (0, 1],

C(SNR) = rSNR − r(r + t)

2t
SNR

2 + O(SNR
2+ǫ),

iff there exists a σ ∈ (0, ǫ] such that

l =
t2

(r + t)2
SNR

−2(1+σ). (2.9)

We see that, provided the coherence length is large enough, the non-coherent capac-

ity is the same as the coherent capacity in the low SNR regime. Moreover, Peaky

Gaussian signaling is now completely continuous. Hence, when l ≥ t2

(r+t)2
SNR

−2,

the coherent and non-coherent capacities are the same in the low SNR regime and

continuous Gaussian signals are optimal for both.

Non-coherent Extreme

From Theorem 3, we see that as α → 0, l → 1 and we have an i.i.d Rayleigh

fading channel. In order to get the exact value of the sublinear capacity term for
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this channel, we need to know the precise value of α, which is not possible by this

asymptotic analysis. We do the precise analysis in Appendix C and show that the

capacity is1

C(SNR) = rSNR − ∆
(t,r)
i.i.d (SNR),

where

∆
(t,r)
i.i.d (SNR)

.
=

rSNR

log( r
SNR

)
.

Capacity is achieved using a single transmit antenna with on-off signaling, that be-

comes increasingly “flashy” at low SNR. This is consistent with our asymptotic analy-

sis, which shows that only SNR fraction of the blocks should be used for transmission

in the non-coherent extreme. Hence, we see that on-off signaling is optimal for the

single-input, single-output [25] as well as the MIMO i.i.d Rayleigh fading channels.

1Definition of (
.
=): Let f(SNR) and g(SNR) be functions of SNR. We denote f(SNR)

.
= g(SNR)

if

lim
SNR→0

log f(SNR)

log g(SNR)
= 1.
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Chapter 3

Wideband MIMO Error

Probability

In this chapter, we study the block error probability for the non-coherent MIMO chan-

nel, P block
error , when Peaky Gaussian signaling is used at the transmitter and maximum-

likelihood decoding is used at the receiver.

3.1 Error probability expression

The error probability is the average over the ensemble of codes when Peaky Gaussian

signaling is used. The coherence blocks used for transmission are independently coded.

Hence, the error probability can be expressed as:

P block
error

= Pr(error|Block used for transmission) · Pr(Block used for transmission)

+ Pr(error|Block not used for transmission) · Pr(Block not used for transmission).

Since we use Peaky Gaussian signaling and the receiver is assumed to have perfect

knowledge of the blocks that are being used for transmission, we have

Pr(Block used for transmission) = δ(SNR),

Pr(error|Block not used for transmission) = 0.
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Hence,

P block
error = δ(SNR) · Pr(error|Block used for transmission).

If we consider the input matrix transmitted in a block, X, as a super symbol of

dimension t × l, the channel is memoryless, since, for each use of the channel an

independent realization of H is drawn. Hence, using the results in [2], the error

probability can be upper bounded as

Pr(error|Block used for transmission) ≤ exp[−Er(R)],

where, Er(R) is the random coding error exponent for the super symbol channel:

Er(R) = max
ρ∈[0,1]

{

E0(ρ) − ρR
}

,

where,

E0(ρ) = − log

∫ [∫

q(X)p(Y |X)
1

1+ρ dX

]1+ρ

dY,

q(X) is the distribution of X, R is the transmission rate in nats per block used for

transmission and Y is the channel’s output matrix.

Since the signaling is Gaussian in a block used for transmission,

q(X) =
1

πlt
exp

[

− trace(X†X)
]

.

The range of R for which Er(R) is positive is:

0 ≤ R ≤ l

δ(SNR)
· C(SNR) , Cblock(SNR), (3.1)

where, Cblock(SNR) is the non-coherent capacity per block.

If we express l as

l =
t2

(r + t)2
SNR

−2ν , ν > 0,

then, from the results in the capacity section,

δ(SNR) = SNR
1−min{1,ν},

C(SNR) = rSNR − r(r + t)

2t
SNR

1+min{1,ν} + o(SNR
1+min{1,ν}),

Cblock(SNR) =
t2

(r + t)2
SNR

−2ν

[

rSNR
min{1,ν} − r(r + t)

2t
SNR

2min{1,ν}
]

+ o(SNR
−2[ν−min{1,ν}]).
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The signal-to-noise ratio in a block used for transmission, SNRb, is:

SNRb ,
SNR

δ(SNR)
= SNR

min{1,ν}.

Note that for ν ≤ 1, ν = α. By letting ν exceed 1, we analyze the error probability

behavior for coherence lengths larger than that required for coherent performance.

The error probability result is summarized in the following theorem:

Theorem 4 The block error probability for a non-coherent Rayleigh block fading

MIMO channel, P block
error , can be upper bounded as:

P block
error ≤ [SNR

1−min{1,ν}] · exp[−Er(R)],

where,

Er(R) = rt log

(

1 +
tSNR

−[2ν−min{1,ν}]

2(t + r)2

)

− R − o(1) R ∈ [0, Rcritical]

= rt log

(

1 +
ρ∗tSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ∗)

)

− ρ∗R − o(1) R ∈ [Rcritical, C
block
T,lb (SNR)]

= o(1) R ∈ [Cblock
T,lb (SNR), Cblock(SNR)]

= 0 R ∈ [Cblock(SNR),∞),

and

ν =
log
(

(r+t)2

t2
l
)

2 log
(

1
SNR

) ,

ρ∗ =
1

2





√
√
√
√1 + 4

(

rt

R
− (t + r)2SNR

2ν−min{1,ν}

t

)

− 1



 ,

Rcritical = rt/2 + o(1),

Cblock
T,lb (SNR) =

t2

(r + t)2
SNR

−2ν
[

rSNR
min{1,ν} − 2

r(r + t)√
t

SNR
ν+min{1,ν}

2

−r(r + t)

2t
SNR

2min{1,ν} + o
(

SNR
min{ν+

min{1,ν}
2

,2min{1,ν}}
)]

.

Proof: See Section 3.3. 2
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3.2 Dependence of error probability on various pa-

rameters

Region B Region CRegion A

Figure 3-1: Random coding error exponent for the non-coherent MIMO channel at low
SNR.

Theorem 4 divides the range of rates for which Er(R) is positive into three regions: A,

B and C, which is illustrated in Figure 3-1. Let us consider region A: R ∈ [0, Rcritical].

Since Rcritical = O(1) and Cblock(SNR) = O(SNR
−[2ν−min{1,ν}]), the critical rate is much

smaller than the channel capacity:

Rcritical ≪ Cblock(SNR).

Region A is an O(SNR
[2ν−min{1,ν}]) fraction of the capacity and is very small in the

wideband regime. The cut-off rate, Rcut−off , is given by

Rcut−off = Er(0)
.
= rt · [2ν − min{1, ν}] · log

( 1

SNR

)

.

Since the cut-off rate is an O
(

SNR
[2ν−min{1,ν}] · log( 1

SNR
)
)

fraction of the capacity, it

is much smaller than the capacity in the wideband regime:

Rcut−off ≪ Cblock(SNR).
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Let us consider the third region over which Er(R) is positive, region C:

R ∈ [Cblock
T,lb (SNR), Cblock(SNR)]. This interval is a [Cblock(SNR)−Cblock

T,lb (SNR)]/Cblock(SNR)

fraction of the capacity, where,

Cblock(SNR) − Cblock
T,lb (SNR)

Cblock(SNR)
=







O(SNR
ν−min{1,ν}

2 ) ν ≤ 3
2

o(SNR) ν > 3
2

.

Hence, region C is also a very small fraction of the capacity in the wideband regime.

Therefore, we can conclude that it is region B: R ∈ [Rcritical, C
block
T,lb (SNR)], that domi-

nates the range of rates in the wideband regime.

From Theorem 4, the error probability in Region B can be expressed as:

P block
error ∼ SNR

1−min{1,ν} ·
[

R

l · SNR
min{1,ν}

]rt

. (3.2)

To observe this, let us consider the error exponent for

R = l · rSNR
κ, min{1, ν} < κ < 2ν. (3.3)

This rate lies in Region B and the optimum ρ is

ρ∗ = O
( 1

R

)

.

Substituting in Theorem 4, we observe

Er(R)

= rt log

(

1 +
ρ∗tSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ∗)

)

− ρ∗R − o(1)
∣
∣
∣
(ρ∗=O( 1

R
))

.
= rt log

[

l · SNR
min{1,ν}

R

]

.

For ν ≤ 1, SNR
min{1,ν} ∝ 1/

√
l. Hence, for a fixed rate R, the error probability decays

inversely with the coherence length in the following way:

P block
error ∝







(
1
l

) rt−1
2

l ≤ SNR
−2

(
1
l

)rt

l > SNR
−2

.
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Let us now examine the effect of antennas on the error probability. To analyze this,

we propose a definition of “diversity” in the low SNR / wideband regime.

Let P and W be the total received power and system bandwidth, respectively. High

SNR diversity [19], dH(W ), is commonly defined as:

dH(W ) , − lim
P→∞

log(P block
error (P,W))

log(P)
.

This definition describes the asymptotic behavior of error probability with received

power, for fixed bandwidth.

In the low SNR/wideband regime, we define diversity, dL(P), as:

dL(P) , − lim
W→∞

log(P block
error (P,W))

log(W )
.

This definition describes the asymptotic behavior of error probability with bandwidth,

for fixed received power. Since SNR ∝ 1/W , an equivalent definition of low SNR

diversity is 1:

dL , lim
SNR→0

log(P block
error (P, SNR))

log(SNR)
. (3.4)

From (3.2, 3.3), we have

dL = r · t ·
[

κ − min{1, ν}
]

+ 1 − min{1, ν}.

Hence, we conclude that the decay in error probability is exponential with the product

of the number of transmit and receive antennas, rt. Similarly to the high SNR regime,

the product of the number of transmit and receive antennas comes about as a diversity

factor in the low SNR regime. Hence, we conjecture that rt is a diversity factor for a

MIMO channel at any SNR.

In the capacity section of this paper, we have seen that receive antennas have greater

significance than transmit antennas since, the former affects the linear as well as the

sublinear capacity term whereas, the latter affects only the sublinear term. However,

since the error probability decays exponentially with rt, the transmit antennas have

the same importance as receive antennas in terms of reliability. This emphasizes the

1We omit the argument of dL(.) for simplicity.
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importance of multiple transmit antennas in the wideband regime.

Let us now consider channel outage in the low SNR regime. For a block fading channel,

outage occurs in a coherence block when the channel matrix is so ill-conditioned that

the block mutual information cannot support the target block data rate. We denote

the outage probability as Poutage, and present a heuristic computation to show that

P block
error ∼ SNR

1−min{1,ν} · Poutage.

Thus we see that in the low SNR/wideband regime, for rates away from capacity, the

error probability is dominated by the outage probability. Hence, like at high SNR,

channel outage is the major source for errors even at low SNR.

Heuristic Proof: The outage probability can be upper bounded using a training based

scheme (This scheme is described in detail in the proof of Theorem 4). We directly

state the channel model when this scheme is used for data transmission (the first t

symbols are used for training):

~yi = H
′

~xi + ~v
′

i, i = t + 1, . . . , l,

where, H
′

has i.i.d CN (0, 1) entries and is perfectly known at the receiver (this is

the MMSE channel estimate) , ~v
′

i is a zero-mean noise vector having the covariance

matrix

E[~v
′

i~v
′†
i ] = Ir,

and {~xi} are i.i.d complex Gaussian vectors:

~xi ∼ CN (0,
f ∗(SNR)

t
It),

where,

f ∗(SNR) = SNR
min{1,ν} + o(SNR

min{1,ν}).

Now,

Poutage
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= Pr
(

I(~xt+1, . . . , ~xl; ~yt+1, . . . , ~yl|H
′

) < R
)

≤ Pr

(

log det
(

It +
f ∗(SNR)

t
H

′†H
′
)

<
R

l − t

)

(3.5)

≤ Pr

(

log

(

1 +
f ∗(SNR)

t
trace(H

′†H
′

)

)

<
R

l − t

)

(3.6)

∼ Pr

(

χ2
rt <

R

lf ∗(SNR)

)

. (3.7)

Equation (3.5) follows since the mutual information is minimized if {~v′

i} are i.i.d

complex Gaussian [23, 32]. In (3.6), we use the inequality:

det
(

It +
f ∗(SNR)

t
H

′†H
′
)

≥ 1 +
f ∗(SNR)

t
trace(H

′†H
′

).

In (3.7), χ2
rt represents trace(H

′†H
′
) and is a chi-squared random variable with rt

degrees of freedom. Hence, if we choose the rate in Region B as in (3.3), we have for

low SNR,

R

lf ∗(SNR)
≪ 1.

Hence,

Poutage ∼
[

R

l · SNR
min{1,ν}

]rt

⇒ P block
error ∼ SNR

1−min{1,ν} · Poutage.

2

3.3 Error probability derivation

In this section, we prove Theorem 4.

Upper Bound to Er(R)

We first establish an upper bound to Er(R) by providing the receiver perfect knowl-

edge of H. Let us denote the random coding error exponent for this coherent channel

by EU
r (R). Since the error probability for the coherent channel cannot be greater

that the channel without knowledge of H, we have

Er(R) ≤ EU
r (R), (3.8)
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where,

EU
r (R) = max

ρ∈[0,1]

{

EU
0 (ρ) − ρR

}

,

and

EU
0 (ρ) = − log

∫ ∫ [∫

q(X)p(Y, H|X)
1

1+ρ dX

]1+ρ

dY dH.

The computation of EU
0 (ρ), when l = 1, is done in [21]. Here, we do the computation

for arbitrary l. The following lemma specifies an upper bound to EU
0 (ρ):

Lemma 3

EU
0 (ρ) ≤ rt log

(

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

)

.

Proof: Since H is independent of X,

p(Y, H|X) = p(H)p(Y |X, H).

Hence, EU
0 (ρ) can be expressed as

EU
0 (ρ) = − log

(

EH

[
∫ [∫

q(X)p(Y |X,H)
1

1+ρ dX

]1+ρ

dY

])

.

The conditional probability p(Y |X, H) is given by

p(Y |X, H) =
(

SNRb

πt

)rl

exp

[

−SNRb

t
trace

{(

HX − Y
)†(

HX − Y
)}]

.

Defining B as

B ,
SNRb

t(1 + ρ)
H†H.

⇒ B−1 =
t(1 + ρ)

SNRb

(H†)−1(H)−1.

In the proof of this lemma, for any matrix M , we use M−1 to denote its pseudoinverse.

Now,

∫

q(X)p(Y |X, H)
1

1+ρ dX

=

∫
1

πlt
exp

[

− trace(X†X)
](

SNRb

πt

) rl
1+ρ

exp
[

− SNRb

t(1 + ρ)
trace

{

(HX − Y )†(HX − Y )
}]

dX
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=
1

πlt

(
SNRb

πt

) rl
1+ρ

∫

exp
[

− trace

{

X†(It + B)X − SNRb

t(1 + ρ)
(X†H†Y + Y †HX − Y †Y )

}]

dX

=
1

πlt

(
SNRb

πt

) rl
1+ρ

exp
[

− SNRb

t(1 + ρ)
trace

{

Y †(Ir − (Ir + B−1)−1)Y
}] ∫

exp
[

− SNRb

t(1 + ρ)

·trace
{

X†H†(B−1 + Ir)HX − X†H†Y − Y †HX + Y †(Ir + B−1)−1Y
}]

dX

=
(

SNRb

πt

) rl
1+ρ

exp
[

− SNRb

t(1 + ρ)
trace

{

Y †(Ir − (Ir + B−1)−1)Y
}]

det(It + B)−l.

Therefore,

∫ [∫

q(X)p(Y |X, H)
1

1+ρ dX

]1+ρ

dY

=
(

SNRb

πt

)rl

det(It + B)−l(1+ρ)

∫

exp
[

− SNRb

t
trace

{

Y †(Ir − (Ir + B−1)−1)Y
}]

dY

= det(It + B)−l(1+ρ) det
(

Ir − (Ir + B−1)−1
)−l

= det(It + B)−ρl

= det

(

It +
SNRb

t(1 + ρ)
H†H

)−ρl

.

Hence,

EU
0 (ρ)

= − log EH

[

det

(

It +
SNRb

t(1 + ρ)
H†H

)−ρl
]

(3.9)

= − log EH

[

exp

(

−ρl log det

(

It +
SNRb

t(1 + ρ)
H†H

))]

≤ − log EH

[

exp

(

− ρlSNRb

t(1 + ρ)
trace(H†H)

)]

(3.10)

= − log

∫ ∞

0

xrt−1

(rt − 1)!
exp

(

−
(

1 +
ρlSNRb

t(1 + ρ)

)

x

)

dx

= rt log

(

1 +
ρlSNRb

t(1 + ρ)

)

.

To obtain (3.10), we use the following inequality:

log det
(

It +
SNRb

t(1 + ρ)
H†H

)

=

min(t,r)
∑

i=1

log
(

1 +
SNRb

t(1 + ρ)
λi(H

†H)
)
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≤ SNRb

t(1 + ρ)

min(t,r)
∑

i=1

λi(H
†H)

=
SNRb

t(1 + ρ)
trace(H†H).

λi(H
†H) is the ith eigenvalue of the random matrix H†H. Hence, EU

0 (ρ) can be upper

bounded as:

EU
0 (ρ)

≤ rt log

(

1 +
ρlSNRb

t(1 + ρ)

)

= rt log

(

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

)

.

This completes the proof of the lemma. 2

Combining (3.8) with Lemma 3, we obtain an upper bound for Er(R):

Er(R) ≤ max
ρ∈[0,1]

{

rt log

(

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

)

− ρR

}

. (3.11)

Since Er(R) is positive over the rate range (3.1), any upper bound to it will also be

positive over (3.1). In fact, since perfect knowledge of H at the receiver increases

capacity, the upper bound is positive over a rate range larger than (3.1).

Lower Bound to Er(R)

We now use a training based scheme to obtain a lower bound on Er(R). Since this

is one of the possible schemes that can be used for the non-coherent channel, the

random coding error exponent for this scheme, EL
r (R), can be upper bounded as

EL
r (R) ≤ Er(R). (3.12)

We rewrite the channel model within one coherence block as

~yi = H~xi + ~wi, i = 1, . . . , l. (3.13)

The channel matrix, H, is constant within the block. The total energy available in

the block is:

Etotal = l · SNRb.
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We use the first t symbols of the block for training2 using γ ∈ (0, 1) fraction of the

total energy. The remaining fraction is used for communicating data. The training

and data communication phases use independent input signals. Hence, the energy

used for training is:

Etraining = γEtotal = γlSNRb.

The following training sequence is used:

[~x1 . . . ~xt] =

√

Etraining

t
It.

This training scheme makes yi,j a sufficient statistic for estimating hi,j . The receiver

computes the minimum mean-squares error (MMSE) estimate of H from [~y1 . . . ~yt].

Using ĥi,j and h̃i,j to denote the estimate and estimation error of hi,j , respectively,

we have for i ∈ {1, . . . , r}, j ∈ {1, . . . , t}:

ĥi,j ∼ CN
(

0,

Etraining

t

1 +
Etraining

t

)

,

h̃i,j ∼ CN
(

0,
1

1 +
Etraining

t

)

,

and, ĥi,j, h̃i,j are independent because the estimation is MMSE. Moreover, the sets

{ĥi,j} and {h̃i,j} have independent elements. Thus, representing the estimate and

estimation error of the channel matrix as Ĥ and H̃, respectively, we have

H = Ĥ + H̃,

where, Ĥ and H̃ are independent matrices, each with i.i.d Gaussian entries.

For the remaining l− t symbols within the same block, Etotal −Etraining = (1−γ)lSNRb

energy is used to send data using an i.i.d Gaussian code. The channel in this phase

can be represented as

~yi = Ĥ~xi + H̃~xi + ~wi
︸ ︷︷ ︸

~vi

, i = t + 1, . . . , l. (3.14)

2We assume l > t.
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{~xi} are i.i.d complex Gaussian vectors:

~xi ∼ CN
(

0,
(1 − γ)lSNRb

(l − t)t
It

)

.

H̃~xi is the noise due to the estimation error from the training phase coupled with the

input signal. Combining the additive white noise with the noise due to estimation

error, we have

~vi , H̃~xi + ~wi.

Note that ~vi is uncorrelated with Ĥ~xi. However, since Ĥ~xi contains ~xi, ~vi is not

independent of Ĥ~xi. Its covariance matrix is

E
[

~vi~v
†
i

]

= E
[

H̃~xi~x
†
iH̃

†
]

+ Ir

=

[

(1 − γ)lSNRb

t(l − t)
.

t

1 +
Etraining

t

+ 1

]

· Ir

=

[
t(1 − γ)lSNRb

(l − t)(t + γlSNRb)
+ 1

]

· Ir.

The channel in (3.14) can be normalized to:

~yi = H
′

~xi + ~v
′

i, i = t + 1, . . . , l, (3.15)

where, H
′
has i.i.d CN(0, 1) entries and is perfectly known at the receiver (this is the

MMSE estimate), ~v
′

i is a zero-mean noise vector having the covariance matrix

E
[

~v
′

i~v
′†
i

]

= Ir,

and {~xi} are i.i.d complex Gaussian vectors:

~xi ∼ CN (0,
f(γ, SNR)

t
It),

where

f(γ, SNR) =

γlSNRb

t+γlSNRb
· (1−γ)lSNRb

(l−t)

t(1−γ)lSNRb

(l−t)(t+γlSNRb)
+ 1

.
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Now,

f(γ, SNR)

= lSNR
2
b ·

γ(1 − γ)l

t(1 − γ)lSNRb + (l − t)(t + γlSNRb)

≥ lSNR
2
b ·

γ(1 − γ)

γlSNRb + t(1 + SNRb)

=
lSNR

2
b

t(1 + SNRb)
· γ(1 − γ)

1 + γ lSNRb

t(1+SNRb)

. (3.16)

Define

f ∗(SNR) , max
γ∈(0,1)

f(γ, SNR).

Using (3.16), we get a lower bound to f ∗(SNR):

f ∗(SNR)

≥ lSNR
2
b

t(1 + SNRb)
· max

γ∈(0,1)

{

γ(1 − γ)

1 + γ lSNRb

t(1+SNRb)

}

= SNRb



1 −
2
√

1 + lSNRb

t(1+SNRb)

lSNRb

t(1+SNRb)

+
2

lSNRb

t(1+SNRb)





= SNR
min{1,ν} − 2

(r + t)√
t

SNR
ν+min{1,ν}

2 + o
(

SNR
ν+min{1,ν}

2

)

, f ∗
LB(SNR).

Note that

f ∗
LB(SNR) = SNR

min{1,ν} + o(SNR
min{1,ν}). (3.17)

The random coding error exponent for this scheme is

EL
r (R) = max

ρ∈[0,1]

{

EL
0 (ρ) − ρR

}

, (3.18)

where,

EL
0 (ρ) = max

γ∈(0,1)

{

− log

∫ ∫ [∫

q(X)p(Y, H
′|X)

1
1+ρ dX

]1+ρ

dY dH
′

}

.

Since the training and data communication phases use independent input signals, H
′

is independent of X. Thus

p(Y, H
′|X) = p(H

′

)p(Y |X, H
′

),
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and

EL
0 (ρ) = − log

(

EH
′

[
∫ [∫

q(X)p(Y |X,H
′

)
1

1+ρ dX

]1+ρ

dY

])

.

The following lemma specifies a lower bound to EL
0 (ρ):

Lemma 4

EL
0 (ρ) ≥ rt log

(

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

)

− o(1).

Proof: Reference [23, 32] shows that capacity of the channel in (3.15) is minimized if

{~vi} are i.i.d Gaussian:

~vi ∼ CN (0, Ir), i = t + 1, . . . , l.

We conjecture that this noise distribution also minimizes error exponent. With this

assumption, the error exponent for this channel with i.i.d Gaussian noise is similar to

that of the coherent channel (EU
0 (ρ) in (3.9), with SNRb replaced by f(γ, SNR) and l

replaced by l − t). Hence, we obtain the following lower bound:

EL
0 (ρ)

≥ max
γ∈(0,1)

{

− log EH
′

[

det

(

It +
f(γ, SNR)

t(1 + ρ)
H

′†H
′

)−ρ(l−t)
]}

= − log EH
′

[

det

(

It +
maxγ∈(0,1) f(γ, SNR)

t(1 + ρ)
H

′†H
′

)−ρ(l−t)
]

= − log EH
′

[

det

(

It +
f ∗(SNR)

t(1 + ρ)
H

′†H
′

)−ρ(l−t)
]

≥ − log EH
′

[

det

(

It +
f ∗

LB(SNR)

t(1 + ρ)
H

′†H
′

)−ρ(l−t)
]

≥ − log EH
′

[(

1 +
f ∗

LB(SNR)

t(1 + ρ)
trace(H

′†H
′

)

)−ρ(l−t)
]

(3.19)

= − log

∫ ∞

0

xrt−1 exp(−x)

(rt − 1)!

(

1 +
f ∗

LB(SNR)

t(1 + ρ)
x

)−ρ(l−t)

dx

= − log

∫ ∞

0

xrt−1

(rt − 1)!
exp

[

−x − ρ(l − t) log
(

1 +
f ∗

LB(SNR)

t(1 + ρ)
x
)]

dx

= − log C, (3.20)
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where,

C ,

∫ ∞

0

xrt−1

(rt − 1)!
exp

[

−x − ρ(l − t) log
(

1 +
f ∗

LB(SNR)

t(1 + ρ)
x
)]

dx.

Equation (3.19) holds owing to the following inequality:

det
(

It +
f ∗

LB(SNR)

t(1 + ρ)
H

′†H
′
)

=

min(t,r)
∏

i=1

(

1 +
f ∗

LB(SNR)

t(1 + ρ)
λi(H

′†H
′

)
)

≥ 1 +
f ∗

LB(SNR)

t(1 + ρ)

min(t,r)
∑

i=1

λi(H
′†H

′

)

= 1 +
f ∗

LB(SNR)

t(1 + ρ)
trace(H

′†H
′

). (3.21)

λi(H
′†H

′
) is the ith eigenvalue of the random matrix H

′†H
′
.

We now compute an upper bound to C. Splitting the range of integration, we have

C = C1 + C2, (3.22)

where,

C1 =

∫ 2t(1+ρ)

0

xrt−1

(rt − 1)!
exp

[

−x − ρ(l − t) log
(

1 +
f ∗

LB(SNR)

t(1 + ρ)
x
)]

dx,

C2 =

∫ ∞

2t(1+ρ)

xrt−1

(rt − 1)!
exp

[

−x − ρ(l − t) log
(

1 +
f ∗

LB(SNR)

t(1 + ρ)
x
)]

dx.

Expanding the logarithmic function, C1 can be upper bounded as:

C1

≤
∫ 2t(1+ρ)

0

xrt−1

(rt − 1)!
exp

[

−x − ρ(l − t)f ∗
LB(SNR)x

t(1 + ρ)

(

1 − f ∗
LB(SNR)

2t(1 + ρ)
x
)]

dx

≤
∫ 2t(1+ρ)

0

xrt−1

(rt − 1)!
exp

[

−x − ρ(l − t)f ∗
LB(SNR)(1 − f ∗

LB(SNR))

t(1 + ρ)
x

]

dx

≤
∫ ∞

0

xrt−1

(rt − 1)!
exp

[

−x − ρ(l − t)f ∗
LB(SNR)(1 − f ∗

LB(SNR))

t(1 + ρ)
x

]

dx

=

[

1 +
ρ(l − t)f ∗

LB(SNR)(1 − f ∗
LB(SNR))

t(1 + ρ)

]−rt

=

[

1 +
ρ

t(1 + ρ)

[(

l − t
)(

SNR
min{1,ν} + o(SNR

min{1,ν})
)
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·
(

1 − SNR
min{1,ν} + o(SNR

min{1,ν})
)]]−rt

(3.23)

=

[

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

[

(1 − (t + r)2

t
SNR

2ν)(1 + o(1))

· (1 − SNR
min{1,ν} + o(SNR

min{1,ν}))
]]−rt

=

[

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

(

1 + o(1)
)
]−rt

=

[

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

]−rt
[

1 + o(1)
]

. (3.24)

Note that equation (3.23) follows from (3.17). Now, C2 can be upper bounded as:

C2

≤
∫ ∞

2t(1+ρ)

xrt−1

(rt − 1)!
exp

[

−x − ρ(l − t) log
(

1 + 2f ∗
LB(SNR)

)]

dx

≤
∫ ∞

0

xrt−1

(rt − 1)!
exp

[

−x − ρ(l − t) log
(

1 + 2f ∗
LB(SNR)

)]

dx

= exp
[

− ρ(l − t) log
(

1 + 2f ∗
LB(SNR)

)]

. (3.25)

Combining (3.22, 3.24, 3.25), we get the upper bound for C as:

C (3.26)

≤
[

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

]−rt
[

1 + o(1)
]

+ exp
[

− ρ(l − t) log
(

1 + 2f ∗
LB(SNR)

)]

=

[

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

]−rt
[

1 + o(1)
][

1 +
[

1 + o(1)
][

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

]rt

· exp
[

− ρ
( t2

(t + r)2
SNR

−2ν − t
)

log(1 + 2(SNR
min{1,ν} + o(SNR

min{1,ν})))
]]

(3.27)

=

[

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

]−rt
[

1 + o(1)
][

1 +
[

1 + o(1)
]

· o(1)
]

=

[

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

]−rt
[

1 + o(1)
]

. (3.28)

Equation (3.27) follows from (3.17). From (3.20, 3.28), we get a lower bound to EL
0 (ρ)

as:

EL
0 (ρ) ≥ rt log

(

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

)

− o(1). (3.29)
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This completes the proof of the lemma. 2

Combining (3.12, 3.18) with Lemma 4, we obtain a lower bound for Er(R):

Er(R) ≥ max
ρ∈[0,1]

{

rt log

(

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

)

− ρR

}

− o(1). (3.30)

Since the training based scheme has a lower capacity than the non-coherent capacity,

the range of rates for which the error exponent for the training based scheme is

positive, is reduced from (3.1). We compute a lower bound to the capacity for this

scheme.

Letting {~v′

i} be i.i.d white Gaussian vectors, i.e., ~v
′

i ∼ CN (0, Ir) in (3.15), we can

lower bound [23, 32] the capacity per block used for transmission for this training

based scheme, Cblock
T (SNR), as

Cblock
T (SNR)

≥ (l − t) max
γ∈(0,1)

{

EH
′

[

log det

(

It +
f(γ, SNR)

t
H

′†H
′

)]}

= (l − t)EH
′

[

log det

(

It +
maxγ∈(0,1) f(γ, SNR)

t
H

′†H
′

)]

= (l − t)EH
′

[

log det

(

It +
f ∗(SNR)

t
H

′†H
′

)]

≥ (l − t)EH
′

[

log det

(

It +
f ∗

LB(SNR)

t
H

′†H
′

)]

≥ (l − t)

[

rf ∗
LB(SNR) − r(r + t)

2t
f ∗2

LB(SNR)

]

≥ t2

(t + r)2
SNR

−2ν
[

rSNR
min{1,ν} − 2

r(r + t)√
t

SNR
ν+

min{1,ν}
2

−r(r + t)

2t
SNR

2min{1,ν} + o
(

SNR
min{ν+min{1,ν}

2
,2min{1,ν}}

)]

, Cblock
T,lb (SNR).

(3.31)

Equation (3.31) follows from (3.17). Hence, the lower bound to Er(R) in (3.30) is

positive in the range

0 ≤ R ≤ Cblock
T,lb (SNR).
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Combining the upper and lower bounds

Combining (3.11, 3.30), we have

Er(R) = max
ρ∈[0,1]

{

rt log

(

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

)

− ρR

}

− o(1),

0 ≤ R ≤ Cblock
T,lb (SNR). (3.32)

Let

ρ∗ = arg max
ρ∈[0,1]

{

rt log

(

1 +
ρtSNR

−[2ν−min{1,ν}]

(t + r)2(1 + ρ)

)

− ρR

}

.

We compute ρ∗ in the regime of low SNR as:

ρ∗ =







1 0 ≤ R ≤ Rcritical

1
2

[√

1 + 4
(

rt
R
− (t+r)2SNR2ν−min{1,ν}

t

)

− 1

]

Rcritical ≤ R ≤ Cblock
T,lb (SNR)

,

where, Rcritical, the critical rate [2], is

Rcritical = rt/2 + o(1).

Substituting ρ∗ in (3.32), we have for 0 ≤ R ≤ Rcritical,

Er(R) = rt log

(

1 +
tSNR

−[2ν−min{1,ν}]

2(t + r)2

)

− R − o(1), (3.33)

and, for Rcritical ≤ R ≤ Cblock
T,lb (SNR),

Er(R)

= rt log







1 +







√

1 + 4
(

rt
R
− (t+r)2SNR2ν−min{1,ν}

t

)

− 1

√

1 + 4
(

rt
R
− (t+r)2SNR2ν−min{1,ν}

t

)

+ 1







[

tSNR
−[2ν−min{1,ν}]

(t + r)2

]







−R

2





√
√
√
√1 + 4

(

rt

R
− (t + r)2SNR

2ν−min{1,ν}

t

)

− 1



− o(1).

(3.34)
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For R ∈
(

Cblock
T,lb (SNR), Cblock(SNR)

]

, the lower bound (3.30) to Er(R), is 0. However,

the upper bound (3.11) is o(1) in this range. Hence, we can say that

Er(R) = o(1) for Cblock
T,lb (SNR) ≤ R ≤ Cblock(SNR). (3.35)

Equations (3.33 - 3.35) characterize the random coding error exponent for the non-

coherent channel. This completes the proof of Theorem 4.
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Chapter 4

Fiber Aided Wireless Network

Architecture

In this chapter, we introduce the concept of a Fiber Aided Wireless Network Ar-

chitecture (FAWNA), which allows high-speed mobile connectivity by leveraging the

speed of optical networks. Specifically, we consider a single-input, multiple-output

FAWNA (SIMO-FAWNA). Figure 4-1 (same as Figure 1-3) shows such a link between

two points A and B. The various quantities in the figure will be described in detail

in this chapter. Unless specified otherwise, all logarithms in this chapter are to the

base 2.

4.1 Model and communication scheme

There are r wireless-optical interfaces and each of them is equipped with a single

antenna. The interfaces relay the wireless signals they receive from the transmitter,

to the receiver at B, over an optical fiber. Communication over the fiber is interfer-

ence free, which may be achieved, for example, using Time Division Multiple Access

(TDMA) or Frequency Division Multiple Access (FDMA).
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Figure 4-1: A SIMO fiber aided wireless network architecture.

4.1.1 Wireless Channel

We use a linear model for the wireless channel between A and the wireless-optical

interfaces:

~y = ~ax + ~w, (4.1)

where, x ∈ C, ~w, ~y ∈ Cr are the channel input, additive noise and output, respectively.

We assume ergodic block fading where, ~a ∈ Cr is the channel state that is random but

fixed for the coherence time of the channel and changes independently from block to

block. The channel state is independent of the channel input and the additive noise,

and is perfectly known at the receiver at B but not at the transmitter. ai denotes the

channel gain from the transmitter to the ith wireless-optical interface. The additive

noise, ~w ∼ CN (0, N0Ir), is independent of the channel input and N0/2 is the double-

sided white noise spectral density. The channel input, x, satisfies the average power
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constraint

E[|x|2] = P/W,

where, P and W are the average transmit power at A and wireless bandwidth, re-

spectively. Hence, the ergodic wireless channel capacity is

Cw(P, W, r) = WE

[

log
(

1 +
‖~a‖2P

N0W

)]

, (4.2)

and W symbols are transmitted over the wireless channel every second.

4.1.2 Fiber Optic Channel

The fiber optic channel between the wireless-optical interfaces and the receiver can

reliably support a rate of Cf bits/sec. Communication over the fiber is interference

free and the ith interface communicates at a rate of Ri bits/sec with the receiver at

B. Let us define the set of all rate vectors satisfying

0 < Ri ≤ Cf for i ∈ {1, . . . , r}, (4.3)
r∑

i=1

Ri = Cf , (4.4)

as S. Fiber channel coding is performed at the wireless-optical interfaces to reliably

achieve the rate vectors in S. Note that the code required for the fiber is a very low

complexity one. An example of a code that may be used is the 8B10B code, which is

commonly used in Ethernet. Hence, fiber channel coding does not significant increase

the complexity at the wireless-optical interface. We assume error free communication

over the fiber for all sum rates below fiber capacity. To keep the interfaces simple,

source coding is not done at the interfaces. We show later that since fiber capacity is

large compared to the wireless capacity, the loss from not performing source coding

is negligible.

4.1.3 Communication Scheme

The input to the wireless channel, x, is a zero mean circularly symmetric complex

Gaussian random variable, x ∼ CN (0, P/W ). Note that it is this input distribution
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that achieves the capacity of our wireless channel model. At each wireless-optical

interface, the output from the antenna is first converted from passband to baseband

and then sampled at the Nyquist rate of W complex samples/sec. The random

variable, yi, represents the output from the sampler at the ith interface. Fixed rate

memoryless m-dimensional vector quantization is performed on these samples at a rate

of Ri/W bits/complex sample. The quantized complex samples are subsequently sent

over the fiber after fiber channel coding and modulation. Thus, the fiber is required

to support reliably a rate of Ri bits/sec from the ith wireless-optical interface to the

receiver at B.

The quantizer noise at the ith interface, qi, is modeled as being additive. Hence, the

two-hop channel between A and B can be modeled as:

~z = ~ax + ~w + ~q, (4.5)

where, ~q = [q1, . . . ,qr]
T . The interfaces have noise from two sources, receiver front

end (front end noise ~w) and distortion introduced by their quantizers (~q). The

quantizer at each interface is an optimal fixed rate memoryless m-dimensional high

resolution vector quantizer. Hence, its distortion-rate function is given by the Zador-

Gersho function [1, 6, 8]:

E[|qi|2] = E[|yi|2]Mmβm2−
Ri
W =

(

N0 +
E [|ai|2] P

W

)

Mmβm2−
Ri
W . (4.6)

Mm is the Gersho’s constant, which is independent of the distribution of yi, and βm

is the Zador’s factor, which depends on the distribution of yi. Since fiber channel

capacity is large, the assumption that the quantizer is a high resolution one is valid.

Hence, for all i, Ri/W ≫ 1. Also, as this quantizer is an optimal fixed rate memoryless

vector quantizer, references [3, 5, 6, 7, 11] show that the following hold:

E[qi] = 0,

E[ziq
∗
i ] = 0,

E[yiq
∗
i ] = −E[|qi|2].

Therefore,

E[|zi|2] = E[|yi|2] − E[|qi|2].
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We denote the SIMO-FAWNA ergodic capacity using our scheme as Cq(P, W, r, m, Cf).

This can be expressed as

Cq(P, W, r, m, Cf)

= WI(x;~z|~a)

= WE [I(x;~z|~a = ~a)]

= E
[
Cb

q(P, W,~a, r, m, Cf)
]
. (4.7)

where, Cb
q(P, W,~a, r, m, Cf) , WI(x;~z|~a).

Since we consider links where Cw(P, W, r) ≤ Cf , we obtain the following upper bound:

Cq(P, W, r, m, Cf) < Cw(P, W, r). (4.8)

We show later in this chapter that Cq(P, W, r, m, Cf) approaches this upper bound, ex-

ponentially with fiber capacity, and hence, is near optimal. Observe that the wireless-

optical interfaces have low complexity and do not require knowledge of the transmitter

code book. They are extendable to FAWNAs with large number of transmitters and

interfaces and offer adaptability to variable rates, changing channel conditions and

node positions.

4.2 Interface Rate Allocation

In this section, we address two questions: First, how should rates be allocated to the

interfaces in a coherence block and second, since channel state varies independently

from block to block, is there significant loss in not computing the optimal rate allo-

cation every block?

To answer the first question, consider the channel within a block interval. The channel

state in this block takes the realization ~a. We establish the following theorem:

Theorem 5 For any interface rate allocation, ~R, we have

Cb
q(P, W,~a, r, m, Cf)

≥ W log
( 1

1 − P
N0W

~v†M−1~v

)

, Cb
q,LB(P, W,~a, r, m, ~R), (4.9)
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where, ~v is specified for i ∈ {1, . . . , r} as

vi = ai(1 − Mmβm2−
Ri
W ),

and M is specified for i ∈ {1, . . . , r}, j ∈ {1, . . . , r} as

Mij =







aia
∗
j P

N0W

(

1 − Mmβm2−
Ri
W

)(

1 − Mmβm2−
Rj
W

)

for i 6= j,
(

1 + |ai|2P

N0W

)(

1 − Mmβm2−
Ri
W

)

for i = j.

Proof: See Appendix D. 2

In the next section, we show that the supremum of the lower bound (4.9) over all

rate vectors in S, approaches Cb
q(P, W,~a, r, m, Cf), exponentially with fiber capacity.

Hence, we consider this lower bound alone for finding the optimal interface rate

allocation.

The optimal rate allocation for this block is given by

~R∗(~a) = arg max
~R∈S

[

Cb
q,LB(P, W,~a, r, m, ~R)

]

. (4.10)

To understand optimal rate allocation, let us consider a SIMO-FAWNA with two

interfaces1, fiber capacity 200 Mbps, channel state ~a = [1 1
2
]T , P

N0
= 100×106, W = 5

MHz and Mmβm = 1. Since R2 = Cf − R1, it suffices to consider the capacity with

respect to R1 alone. The plot of Cb
q,LB(P, W,~a, r, m, ~R) with respect to R1 is shown

in figure 4-2.

We can divide the plot into three regions. The first region is from 0 Mbps to 50

Mbps, where the first interface has low rate2 and the second has high rate. Thus,

noise at the first interface is quantizer distortion dominated whereas at the second

interface is front end noise dominated. Hence, as we increase the rate for the first

interface, the distortion at the first interface decreases and overall capacity increases.

The reduction in rate at the second interface due to increase in R1 has negligible

effect on capacity since front end noise still dominates at the second interface.

The second region is from 50 Mbps to 170 Mbps. In this region, the rates for both

1Even though we consider a two interface SIMO-FAWNA, results generalize to SIMO-FAWNAs
with any number of interfaces.

2Whenever we mention “low rate”, the rate considered is always high enough for the high reso-
lution quantizer model to be valid.
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Figure 4-2: Interface rate allocation for a two interface SIMO-FAWNA.

interfaces are high enough for front end noise to dominate. Since quantizer distortion

is low with respect to the front end noise at both interfaces, capacity is almost in-

variant to rate allocation. Observe that capacity is maximum in this region and the

size of this region is much larger than that of the first and third.

The third region is from 170 Mbps to 200 Mbps and here, the first interface has high

rate and the second has low rate. Therefore, noise at the first interface is front end

noise dominated whereas at the second interface is quantizer distortion dominated.

An increase in rate for the first interface results in decrease in rate for the second

interface. This decrease in rate results in an increase in quantizer distortion at the

second interface, which results in overall capacity decrease.

The channel gain at the first interface is higher than that at the second interface.

Hence, compared to the second interface, the first interface requires more rate to

bring its quantizer’s distortion below the front end noise power. Also, reduction in

quantizer distortion at the first interface results in higher capacity gains than reduc-
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tion in quantizer distortion at the second interface. This can been seen from the

asymmetric nature of the plot in figure 4-2 around R1 = 100 Mbps.

We see that the optimum interface rate allocation for a FAWNA is to ensure that

each interface gets enough rate for it to lower its quantizer distortion to the point

where its noise is front end noise dominated. Wireless-optical interfaces seeing higher

channel gains require higher rates to bring down their quantizer distortion. After this

requirement is met, FAWNA capacity is almost invariant to allocation of left over

fiber capacity. This can be seen from the near flat capacity curve in the second region

of the plot in figure 4-2. Thus, any interface rate allocation that ensures that noise

at none of the wireless-optical interfaces is quantizer distortion dominated, is near

optimal.

Since fiber capacity is large compared to the wireless capacity, the fraction of fiber

capacity needed to bring down the distortion for the interfaces so that none of them

is quantizer distortion limited, is small. Therefore, the set of interface rate vectors

for which Cb
q,LB(P, W,~a, r, m, ~R) is near maximum, is large and there is considerable

flexibility in allocating rates across the interfaces. Therefore, we see that large fiber

capacity brings robustness to interface rate allocation in a FAWNA. For example,

from figure 4-2, we see that even an equal rate allocation for the two interface SIMO-

FAWNA is near-optimal.

We now address the second question posed at the beginning of this section: Since

channel state changes independently from block to block, is there significant loss in

not computing the optimal rate allocation every block? First, consider the case where

interface rate allocation is dynamic, i.e., done in every block. The optimal rate alloca-

tion vector for the block is given by (4.10) and it depends on the channel realization

(state). The ergodic capacity lower bound of a SIMO-FAWNA with dynamic rate

allocation is given by

CD
q,LB(P, W, r, m, Cf) = E

[

Cb
q,LB

(

P, W,~a, r, m, ~R∗(~a)
)]

.

Consider the same two interface SIMO-FAWNA as in the previous question but with

channel state ~a = [h1
1
2
h2]

T , where h1 and h2 are i.i.d CN (0, 1). For this wireless-
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Figure 4-3: Dynamic rate allocation.

optical channel, we compute CD
q,LB(P, W, r, m, Cf) ∼ 21.4 Mbps . Figure 4-3 shows

how the optimal rate for the first interface, R∗
1, changes with channel realization.

Since the average channel gain at the first interface is larger than that at the second,

the mean of the observations in the figure is above half the fiber capacity.

Dynamic rate allocation involves computation of the optimal rate allocation vector

at the receiver at B and updating the interfaces with optimal values of rates, every

coherence block. This considerably increases the complexity in a FAWNA. In order to

simplify, we consider static rate allocation, i.e., interface rate allocation is computed

based on wireless channel statistics and fixed forever. The interface rate allocation

vector is chosen as one that maximizes the ergodic capacity lower bound:

~R∗
S = arg max

~R∈S
E
[

Cb
q,LB

(

P, W,~a, r, m, ~R
)]

.

Hence, the ergodic capacity lower bound of a SIMO-FAWNA with static rate alloca-

tion is

CS
q,LB(P, W, r, m, Cf) = E

[

Cb
q,LB

(

P, W,~a, r, m, ~R∗
S

)]

.
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Note that this is sub-optimal to dynamic rate allocation:

CS
q,LB(P, W, r, m, Cf) ≤ CD

q,LB(P, W, r, m, Cf) ≤ Cq(P, W, r, m, Cf).

For the two interface SIMO-FAWNA, figure 4-4 shows how ergodic capacity changes

with R1. Since the ergodic capacity is the capacity averaged over channel realiza-

tions, this plot is similar to that in figure 4-2. From figure 4-4, we observe that

CS
q,LB(P, W, r, m, Cf) = 21.35 Mbps and the near-optimal rates for interface 1 are

R∗
S,1 ∼ [72, 142] Mbps.

Note that the loss from static rate allocation is very small. Moreover, the set of static

rate allocation vectors for which this loss is very small, is large. For this example, the

loss is only 50 Kbps or 0.23% of capacity, and all rates from 72 Mbps to 142 Mbps

are close to optimal for interface 1. Though the SIMO-FAWNA capacity is sensitive

to quantizer distortion, large fiber capacity ensures that the interfaces always have

enough rate so that they are never distortion limited over the typical set of channel

realizations. This robustness of FAWNA capacity to interface rate allocation makes
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static rate allocation near-optimal. Observe from figure 4-4 that even equal rate al-

location is near-optimal. This near-optimality of static rate allocation translates to

considerable reduction in FAWNA complexity.

4.3 Effect of various parameters on performance

In this section, we analyze the effect of quantizer dimension, fiber capacity, transmit

power, number of interfaces and wireless bandwidth on the performance of our scheme.

To simplify analysis, we set the wireless channel gain ~a = g · ~1, where, ~1 is a r

dimensional column vector with all ones and g is a complex random variable. For

this channel, all interfaces have the same instantaneous received power. Hence, an

equal interface rate allocation is optimal:

~R∗(g ·~1) = ~R∗
S =

Cf

r
·~1,

and there is no loss from static interface rate allocation. Hence,

CS
q,LB(P, W, r, m, Cf) = CD

q,LB(P, W, r, m, Cf).

Since the ergodic capacity using dynamic rate allocation is the same as that using

static rate allocation, we will remove the superscript to simplify notation and denote

the ergodic capacity lower bound as Cq,LB(P, W, r, m, Cf). From Theorem 5, we can

express this lower bound as

Cq,LB(P, W, r, m, Cf) = WE




log




1 +

r|g|2(1 − Mmβm2−
Cf
rW ) P

N0W

1 + |g|2PMmβm2−
Cf
rW

N0W









 . (4.11)

We show in this section that the lower bound (4.11) approaches the upper bound

Cw(P, W, r) in (4.8), exponentially with fiber capacity. Hence, since the fiber capacity

is large, the lower bound almost completely characterizes Cq(P, W, r, m, Cf) and we

consider this alone for analysis.
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4.3.1 Effect of quantizer dimension

We now study the effect of quantizer dimension, m, on the performance of the pro-

posed scheme. Since Gaussian signaling is used for the wireless channel, the input to

the quantizer at the interface is a correlated Gaussian random vector. Zador’s factor

and Gersho’s constant obey the following property:

M∞β∞ ≤ Mmβm ≤ M1β1 ≤ M1β
G
1 ,

where, βG
1 is the Zador’s factor for an i.i.d Gaussian source and β1 ≤ βG

1 . Mmβm

decreases with increase in m. Since M1 = 1
12

, M∞ = 1
2πe

, βG
1 = 6

√
3π and β∞ = 2πe,

1 ≤ Mmβm ≤ π
√

3

2
.

The lower bound corresponds to fixed rate infinite dimensional vector quantization

whereas, the upper bound corresponds to fixed rate scalar quantization.

In (4.11),
r|g|2(1−Mmβm2−

Cf
rW ) P

N0W

1+ |g|2PMmβm2
−

Cf
rW

N0W

decreases monotonically with increase in Mmβm.

Hence, Cq,LB(P, W, r, m, Cf) increases with m and can be lower and upper bounded

as

Cq,LB(P, W, r, 1, Cf) ≤ Cq,LB(P, W, r, m, Cf) ≤ Cq,LB(P, W, r,∞, Cf),

where, Cq,LB(P, W, r, 1, Cf) and Cq,LB(P, W, r,∞, Cf) correspond to ergodic capacity

lower bounds for fixed rate scalar and infinite dimensional vector quantization at the

interfaces, respectively. Reduction in quantizer dimension reduces complexity at the

interface but results in a capacity penalty. The maximum loss in capacity occurs

when fixed rate scalar quantizers are used at the wireless-optical interfaces.

4.3.2 Effect of fiber capacity

We now analyze the effect of fiber capacity on the performance of a SIMO-FAWNA.

Define

Φ(Cf ) , Cw(P, W, r) − Cq,LB(P, W, r, m, Cf).
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Figure 4-5: Dependence of SIMO-FAWNA capacity on fiber capacity.

From (4.2, 4.11), we have

Φ(Cf ) = −E




log




1 −

r|g|2 P
N0W

(1 + |g|2P

N0W
)Mmβm2−

Cf
rW

1 + |g|2PMmβm2−
Cf
rW

N0W









 .

Now,

Φ(Cf )

≤ −E

[

log

(

1 − r|g|2P
N0W

(

1 +
|g|2P
N0W

)

Mmβm2−
Cf
rW

)]

= O(2−Cf ),

and

Φ(Cf )

≥ −E



log



1 −
r|g|2 P

N0W
(1 + |g|2P

N0W
)Mmβm2−

Cf
rW

1 + |g|2PMmβm

N0W









= O(2−Cf ).
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Hence,

Φ(Cf) = O(2−Cf ).

Therefore,

Cq,LB(P, W, r, m, Cf) = Cw(P, W, r) − O(2−Cf ).

This implies that the ergodic capacity lower bound using the proposed scheme ap-

proaches the capacity upper bound (4.8), exponentially with fiber capacity. Also

observe that Φ(∞) = 0. Note that though our scheme simply quantizes and forwards

the wireless signals without source coding, we see that it is near-optimal since the

fiber capacity is much larger than the wireless capacity. This behavior is illustrated

in figure 4-5, which is a plot of Cq,LB(P, W, r, m, Cf) and the upper bound (4.8),

versus fiber capacity. In the plot, we set g ∼ CN (0, 1), W = 1 Mhz, Mmβm = 1,

r = 5 and P
N0

= 25 × 106 sec−1. Note that the fiber capacity required to achieve

good performance is not large for an optical fiber, which have speeds in the order of

Gigabit/sec.

4.3.3 Effect of transmit power

An increase in transmit power, P , leads to two competing effects. The first is increase

in receive power at the interfaces, which increases capacity. The second is increase in

quantizer distortion, which reduces capacity. The ergodic capacity lower bound of our

scheme, Cq,LB(P, W, r, m, Cf), increases monotonically with
r|g|2(1−Mmβm2−

Cf
rW ) P

N0W

1+
|g|2PMmβm2

−
Cf
rW

N0W

,

which in turn increases monotonically with P . Hence, the first effect always dom-

inates and the ergodic capacity lower bound of our scheme increases with transmit

power.

4.3.4 Effect of number of wireless-optical interfaces

Let us focus on the effect of the number of interfaces, r, on Cq,LB(P, W, r, m, Cf). Since

the quantization rate at the interface is never allowed to go below 1, the maximum
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Figure 4-6: Effect of the number of interfaces on Cq,LB(P,W, r,m,Cf ).

number of interfaces possible is rmax = ⌊Cf

W
⌋. Keeping all other variables fixed, the

optimal number of interfaces, r∗, is given by

r∗ = arg max
r∈{1,2,...,rmax}

Cq,LB(P, W, r, m, Cf).

For fixed wireless bandwidth and fiber capacity, an increase in the number of interfaces

leads to two competing effects. First, capacity increases owing to receive power gain

from the additional interfaces. Second, quantizer distortion increases owing to addi-

tional interfaces sharing the same fiber, which results in capacity reduction. Hence,

capacity doesn’t increase monotonically with the number of antennas. Obtaining an

analytical expression for r∗ is difficult. However, r∗ can easily be found by numerical

techniques. Figure 4-6 is a plot of Cq,LB(P, W, r, m, Cf) versus r for g ∼ CN (0, 1),

W = 5 Mhz, Mmβm = 1, Cf = 100 Mbps. Note that, for this example, rmax = 20.

Plots are obtained for P
N0

= 20 × 106 sec−1, 200 × 106 sec−1 and 2000 × 106 sec−1,

which correspond to average interface signal-to-noise ratio (SNR) of 6 dB, 16 dB and

20 dB, respectively. The corresponding values of r∗ are 8, 3 and 2, respectively. Ob-
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Figure 4-7: Dependence of SIMO-FAWNA capacity on wireless bandwidth.

serve that r∗ decreases with increase in average interface SNR. This happens because,

when average interface SNR is low, it becomes more important to gain power rather

than to have fine quantization. On the other hand, when average interface SNR is

high, the latter is more important. Hence, as average interface SNR decreases, r∗

tends towards rmax.

4.3.5 Effect of wireless bandwidth

We now analyze the effect of wireless bandwidth, W , on Cq,LB(P, W, r, m, Cf). Since

the quantization rate is never allowed to go below 1, the maximum possible bandwidth

is Cf/r. For fixed fiber capacity and number of interfaces, the optimal bandwidth of

operation, W ∗, is given by

W ∗ = arg max
W∈

h

0,
Cf
r

i

Cq,LB(P, W, r, m, Cf).
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Since quantizer distortion as well as power efficiency increases with W , the behavior

of the capacity lower bound with bandwidth is similar to that with the number of

interfaces. Note that the quantization rate at each interface decays inversely with

bandwidth. When the operating bandwidth is lowered from W ∗, the capacity lower

bound is lowered because the reduction in power efficiency is more than the reduction

in quantizer distortion. On the other hand, when the operating bandwidth is increased

from W ∗, the loss in capacity from increased quantizer distortion is more than the

capacity gain from increased power efficiency.

The optimal bandwidth, W ∗, can be found by numerical techniques. Figure 4-7 shows

the plot of the capacity lower bound and the upper bound (4.8) for g ∼ CN (0, 1),

Cf = 200 Mbps, Mmβm = 1, r = 2 and P
N0

= 100×106 sec−1. The optimal bandwidth

for this case is W ∗ = 52.4 Mhz.
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Chapter 5

Conclusion

In chapters 2 and 3, we compute the capacity and error probability for the non-

coherent wideband MIMO channel. The effect on capacity and reliability of coher-

ence length and number of transmit and receive antennas is examined. The analysis

shows that, though the number of transmit antennas does not affect the linear capac-

ity term, it does affect the sublinear capacity term, i.e., the approach of capacity to

the wideband limit with increasing bandwidth. We also establish conditions on the

channel coherence length and number of antennas for the non-coherent capacity to be

the same as the coherent capacity in the wideband regime. We show that the error

probability decays inversely with coherence length and exponentially with product of

the number of transmit and receive antennas. This highlights the importance of mul-

tiple transmit antennas, besides multiple receive antennas, in the low SNR regime.

An interesting observation is that outage probability dominates the error probability

even at low SNR.

Recent research [43, 44] shows that for single antenna channels in the wideband

regime, an energy limited jammer has no effect on the wideband capacity limit nor

the error exponent. Future work may consider extending these results to the multiple

antennas case.

In chapter 4, we study a SIMO-FAWNA from a capacity view point and propose a

near-optimal design. We show that an optimal interface rate allocation is one which

ensures that each interface gets enough rate so that its noise is dominated by front
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end noise rather than quantizer distortion. Capacity is almost invariant to the way

in which left over fiber capacity is allocated. Hence, large fiber capacity ensures ro-

bustness of SIMO-FAWNA capacity to interface rate allocation. This robustness has

an important implication on design, rather than dynamically change interface rate

allocation based on channel state, a fixed rate allocation scheme can be adopted with

very small loss in capacity. This results in considerable reduction in system complex-

ity. We also show that for a given fiber capacity, there is an optimal operating wireless

bandwidth and an optimal number of wireless-optical interfaces. The wireless-optical

interfaces have low complexity and do not require knowledge of the transmitter code

book. The design also has extendability to FAWNAs with large number of trans-

mitters and interfaces and, offers adaptability to variable rates, changing channel

conditions and node positions.

Future research may consider FAWNAs with multiple transmitters and examine the

performance of various multiple access schemes. For the multiple transmitters sce-

nario, interference reduction and tradeoff between the various system parameters are

interesting topics for study.

78



Appendix A

Proof of Lemma 1

Proof of (2.1): For any α ∈ (0, 1] and γ ∈ (0, α), let there exist an input distribution

on X that satisfies the following:

1

l
I(X;Y) ≥ rSNR − r(r + t)

2t
SNR

1+α + O(SNR
1+α+γ). (A.1)

Let YG be a matrix with i.i.d complex Gaussian entries and satisfying

E[trace(YGYG†)] = E[trace(YY†)].

Hence, h(Y) ≤ h(YG) and the entries of YG i.i.d CN (0, 1 + SNR). Moreover, con-

ditioned on X, the row vectors of Y are i.i.d CN (0,XX† + Il). We can thus upper

bound the mutual information as

I(X;Y)

= h(Y) − h(Y|X)

≤ h(YG) − h(Y|X)

= rl log(1 + SNR) − rtE[log(1 + ‖~xT
i ‖2)]

≤ rlSNR − rtE[log(1 + ‖~xT
i ‖2)]. (A.2)

Combining (A.1) and (A.2) and noting that the norms of the input vectors ‖~xT
i ‖ are

identically distributed, we see that if the input distribution satisfies (A.1), then it

necessarily satisfies the first condition (2.1).
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Proof of (2.2): Observing the structure of the optimal input [20] for the non-coherent

MIMO channel, we can upper bound the mutual information as

I(X;Y) ≤ I(A;Y|Φ) + I(Φ;Y|A), (A.3)

where, I(A;Y|Φ) is the information conveyed by the norm of the transmitted sig-

nal vectors given that the receiver has side information about their directions, and

I(Φ;Y|A) is the information conveyed by the direction of these vectors when the

receiver has side information about their norm. We establish upper bounds on these

two terms.

Upper bound for I(A;Y|Φ):

When the receiver has side information about Φ, it can filter out noise orthogonal to

the subspace spanned by the row vectors of Φ to obtain an equivalent channel

YΦ†

= HXΦ† + WΦ†

= HA + W
′

,

where W
′
has the same distribution as W and there is no loss in information since

YΦ† is a sufficient statistic for estimating X from Y. Therefore

I(A;Y|Φ)

= I(A;YΦ†|Φ)

= I(A;HA + W
′|Φ)

≤
t∑

i=1

I(‖~xT
i ‖; ~hi‖~xT

i ‖ + ~w
′T

i |~φ
T

i )

≤
t∑

i=1

r∑

j=1

I(‖~xT
i ‖;hij‖~xT

i ‖ + w
′

ij|~φ
T

i ), (A.4)

where the last two inequalities follow from the chain rule of mutual information

and the fact that conditioning reduces entropy. In order to get an upper bound

on I(‖~xT
i ‖;hij‖~xT

i ‖+w
′

ij|~φ
T

i ), we need to maximize this mutual information with the
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average power constraint, lSNR/t, and the constraint specified by (2.1). If we relax the

latter constraint (2.1), then the mutual information is that of a single-input, single-

output i.i.d Rayleigh fading channel with average power constraint lSNR/t. From

[25], we know that this mutual information is maximized by an on-off distribution of

the form

‖~xT
i ‖2 =







l
ζ

SNR
t

w.p. ζ

0 w.p. 1 − ζ

for ∀i ∈ {1, . . . , t} and some ζ > 0. This signaling scheme becomes increasingly

“flashy” as the SNR gets low, i.e., ζ → 0 as SNR → 0. Hence, (A.4) becomes

I(A;Y|Φ)

≤
t∑

i=1

r∑

j=1

I(‖~xT
i ‖;hij‖~xT

i ‖ + w
′

ij |~φ
T

i )

≤
t∑

i=1

r∑

j=1

H(‖~xT
i ‖)

≈ rtζ log(
1

ζ
),

where the approximation is valid since we are in the low signal to noise ratio regime

and ζ → 0 as SNR → 0. Therefore, we have

1

l
I(A;Y|Φ) ≤ rtζ

l
log(

1

ζ
). (A.5)

However, this on-off distribution minimizes (2.1) also and hence the extra constraint

does not change the optimal input. Therefore, it suffices to consider on-off signals.

Hence, (2.1) becomes

(r + t)

2t
SNR

1+α + O(SNR
1+α+γ)

≥ tζ

l
log(1 +

l

ζt
SNR)

≥ tζ

l

[

log(
1

ζ
) − log(

t

lSNR
)
]

≈ tζ

l
log(

1

ζ
), (A.6)
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where the approximation is valid since l
ζ

SNR
t

≫ 1 as SNR → 0, i.e. the peak amplitude

becomes very large as the signal to noise ratio tends to 0. Combining (A.5) and (A.6),

we have

1

l
I(A;Y|Φ) ≤ r(r + t)

2t
SNR

1+α + O(SNR
1+α+γ). (A.7)

Upper bound for I(Φ;Y|A):

We can upper bound I(Φ;Y|A) in terms of the mutual information of a single-input,

single-output channel, i.e.

I(Φ;Y|A) ≤
t∑

i=1

r∑

j=1

I(~φ
T

i ; ~yT
j |A, ~φ

T

1 , . . . , ~φ
T

i−1,
~φ

T

i+1, . . . ,
~φ

T

t , ~yT
1 , . . . , ~yT

j−1, ~y
T
j+1, . . . , ~y

T
r ).

The term inside the double summation represents the mutual information of the

channel between the ith transmit antenna and jth receive antenna when no other

antenna is present and the norm of ~xT
i is known at the receiver. Since the input

vectors are identically distributed and the channel matrix has i.i.d entries, the mutual

information between any pair of transmit and receive antennas given that the other

antennas are absent will be the same. Hence, for all i ∈ {1, . . . , t} and j ∈ {1, . . . , r},

I(Φ;Y|A) ≤ rtI(~φ
T

i ; ~yT
j |A, ~φ

T

1 , . . . , ~φ
T

i−1,
~φ

T

i+1, . . . ,
~φ

T

t , ~yT
1 , . . . , ~yT

j−1, ~y
T
j+1, . . . , ~y

T
r ).

We may thus consider the single-input, single-output channel between the ith transmit

antenna and jth receive antenna:

~yT
j = hij‖~xT

i ‖ + ~wT
j .

Hence,

I(Φ;Y|A)

≤ rtI(~xT
i ; ~yT

j |‖~xT
i ‖)

= rtE
[
I(~xT

i ; ~yT
j |‖~xT

i ‖)
]
. (A.8)

Since I(~xT
i ;yT

j |‖~xT
i ‖) is the mutual information of a single-input, single-output chan-

nel over l channel uses, it has a power constraint of
‖~xT

i ‖
l

. This mutual information can
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be upper bounded by the capacity of AWGN channel with the same power constraint,

i.e.

I(~xT
i ; ~yT

j |‖~xT
i ‖) ≤ l log

(

1 +
‖~xT

i ‖
l

)

. (A.9)

Combining (A.8) with (A.9), we obtain

I(Φ;Y|A) ≤ rtlE

[

log

(

1 +
‖~xT

i ‖
l

)]

. (A.10)

From (A.3), (A.7) and (A.10), we obtain our upper bound to I(X;Y) as

1

l
I(X;Y) ≤ rtE

[

log

(

1 +
‖~xT

i ‖
l

)]

+
r(r + t)

2t
SNR

1+α + O(SNR
1+α+γ). (A.11)

Combining (A.11) with (A.1) and noting that all the input vectors have identically

distributed norms, we see that the input distribution satisfying (A.1) satisfies the

second constraint (2.2) also. This completes the proof of the lemma. 2
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Appendix B

Proof of Theorem 1

For any α ∈ (0, 1] and γ ∈ (0, α), let

C(SNR) ≥ C∗(SNR) = rSNR − r(r + t)

2t
SNR

1+α + O(SNR
1+α+γ).

This implies that there exists a probability distribution on X such that

I(X;Y) ≥ C∗(SNR).

From Lemma 1, we know that this distribution must satisfy the following constraints

for all i ∈ {1, . . . , t}:
t

l
E
[

log(1 + ‖~xT
i ‖2)

]

≤ (r + t)

2t
SNR

1+α + O(SNR
1+α+γ), (B.1)

tE
[

log
(

1 +
‖~xT

i ‖2

l

)]

≥ SNR − (r + t)

t
SNR

1+α + O(SNR
1+α+γ). (B.2)

Using these constraints, we establish a necessary condition on the coherence length.

As the norms of the transmitted signals are identically distributed, it suffices to

consider only one of them. Therefore, we shall omit the subscript, i, and define

random variable b as

b ,
t‖~xT‖2

lSNR
.

The two constraints become

t

l
E
[

log
(

1 +
blSNR

t

)]

≤ (r + t)

2t
SNR

1+α + O(SNR
1+α+γ), (B.3)

tE
[

log
(

1 +
bSNR

t

)]

≥ SNR − (r + t)

t
SNR

1+α + O(SNR
1+α+γ). (B.4)
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Moreover, as

E[‖~xT‖2] =
lSNR

t
, (B.5)

⇒ E[b] = 1. (B.6)

Note that (B.4, B.6) do not depend on the coherence length, l, whereas (B.3) does.

Also, the left hand side of (B.3) is a monotonically decreasing function of l. Thus,

to find how large the coherence length must be, we need to find the distribution on

b that minimizes the left hand side of (B.3) subject to the constraints (B.4, B.6).

Using this distribution for b, we can obtain the necessary condition on the coherence

length from (B.3).

For any β > 0, we can express (B.4) as

SNR

t
− (r + t)

t2
SNR

1+α + O(SNR
1+α+γ)

≤ E
[

log
(

1 +
bSNR

t

)]

= Pr(b ≥ tSNR
−β)E

[

log
(

1 +
bSNR

t

)∣
∣
∣b ≥ tSNR

−β
]

+ Pr(b < tSNR
−β)E

[

log
(

1 +
bSNR

t

)∣
∣
∣b < tSNR

−β
]

≤ Pr(b ≥ tSNR
−β)E

[

log
(

1 +
bSNR

t

)∣
∣
∣b ≥ tSNR

−β
]

+ Pr(b < tSNR
−β)E

[bSNR

t

∣
∣
∣b < tSNR

−β
]

=
SNR

t
− Pr(b ≥ tSNR

−β)E
[bSNR

t
− log

(

1 +
bSNR

t

)∣
∣
∣b ≥ tSNR

−β
]

.

Therefore,

Pr(b ≥ tSNR
−β)E

[bSNR

t
− log

(

1 +
bSNR

t

)∣
∣
∣b ≥ tSNR

−β
]

(B.7)

≤ (r + t)

t2
SNR

1+α + O(SNR
1+α+γ).

When β ≥ 1, b ≥ tSNR
−β implies bSNR

t
≫ 1, which makes bSNR

t
≫ log(1 + bSNR

t
)

(since SNR ≪ 1). Hence, ∀β ≥ 1

Pr(b ≥ tSNR
−β)E[b|b ≥ tSNR

−β] ≤ (r + t)

t
SNR

α + O(SNR
α+γ) = o(1). (B.8)

From Markov’s inequality, ∀β ≥ 1

Pr(b ≥ tSNR
−β) ≤ SNR

β

t
= o(1). (B.9)
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When β < 1, b < tSNR
−β implies bSNR

t
≪ 1. Hence, (B.7) can be expressed as

(r + t)

t2
SNR

1+α + O(SNR
1+α+γ)

≥ Pr(b ≥ tSNR
−β)E

[bSNR

t
− log

(

1 +
bSNR

t

)∣
∣
∣b ≥ tSNR

−β
]

≥ Pr
(

tSNR
−1 ≥ b ≥ tSNR

−β
)

E
[bSNR

t
− log

(

1 +
bSNR

t

)∣
∣
∣tSNR

−1 ≥ b ≥ tSNR
−β
]

≥ Pr
(

tSNR
−1 ≥ b ≥ tSNR

−β
)

E
[1

2

(bSNR

t

)2

− 1

3

(bSNR

t

)3∣
∣
∣tSNR

−1 ≥ b ≥ tSNR
−β
]

≥ Pr
(

tSNR
−1 ≥ b ≥ tSNR

−β
)[1

2
SNR

2(1−β) − 1

3
SNR

3(1−β)
]

.

Thus, ∀β ∈ (0, 1)

Pr
(

tSNR
−1 ≥ b ≥ tSNR

−β
)

≤ 2(r + t)

t2
SNR

2β−(1−α)

1 − 2
3
SNR

1−β
+ o
(

SNR
2β−(1−α)

1 − 2
3
SNR

1−β

)

. (B.10)

Let us divide the interval [tSNR
−β, tSNR

−1], β ∈ (0, 1), into K > 1 finite intervals so

that each interval is of length

ε =
t(SNR

−1 − SNR
−β)

K
.

Now, for any ε > 0

E
[

b|tSNR
−1 ≥ b ≥ tSNR

−β
]

Pr
(

tSNR
−1 ≥ b ≥ tSNR

−β
)

=

K∑

i=1

E
[

b|tSNR
−(β+iε) ≥ b ≥ tSNR

−[β+(i−1)ε]
]

Pr
(

tSNR
−(β+iε) ≥ b ≥ tSNR

−[β+(i−1)ε]
)

≤ t
K∑

i=1

SNR
−(β+iε) Pr

(

tSNR
−(β+iε) ≥ b ≥ tSNR

−[β+(i−1)ε]
)

≤ t

K∑

i=1

SNR
−(β+iε) Pr

(

tSNR
−1 ≥ b ≥ tSNR

−[β+(i−1)ε]
)

≤ 2(r + t)

t

K∑

i=1

SNR
−(β+iε)

[
SNR

[2(β+(i−1)ε)−(1−α)]

1 − 2
3
SNR

[1−(β+(i−1)ε)]
+ o
(

SNR
[2(β+(i−1)ε)−(1−α)]

1 − 2
3
SNR

[1−(β+(i−1)ε)]

)]

(B.11)

=
2(r + t)

t

K∑

i=1

[
SNR

[β−(1−α)+(i−2)ε]

1 − 2
3
SNR

[1−(β+(i−1)ε)]
+ o
(

SNR
[β−(1−α)+(i−2)ε]

1 − 2
3
SNR

[1−(β+(i−1)ε)]

)]

.

Equation (B.10) is used to obtain (B.11). Let β = 1−α+2ε, where ε ∈ (0, α
2
). Then,

E[b|tSNR
−1 ≥ b ≥ tSNR

−β] Pr(tSNR
−1 ≥ b ≥ tSNR

−β)

≤ 2(r + t)

t

K∑

i=1

[
SNR

iε

1 − 2
3
SNR

α−(i+1)ε
+ o
(

SNR
iε

1 − 2
3
SNR

α−(i+1)ε

)]

.
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Since,

SNR
iε

1 − 2
3
SNR

α−(i+1)ε
= o(1) ∀i ∈ {1, . . . , K},

we have

E
[

b|tSNR
−1 ≥ b ≥ tSNR

−(1−α+2ε)
]

Pr
(

tSNR
−1 ≥ b ≥ tSNR

−(1−α+2ε)
)

≤ o(1).

(B.12)

From (B.10), we have for β = 1 − α + 2ε, where ε ∈ (0, α
2
),

Pr
(

tSNR
−1 ≥ b ≥ tSNR

−β
)

≤ 2(r + t)

t2
SNR

1−α+4ε

1 − 2
3
SNR

α−2ε
+ o
(

SNR
1−α+4ε

1 − 2
3
SNR

α−2ε

)

= o(1).

(B.13)

From (B.8, B.9, B.12, B.13), we know that for 0 < ǫ < α

Pr(b ≥ tSNR
−(1−α+ǫ)) = o(1),

Pr(b ≥ tSNR
−(1−α+ǫ))E[b|b ≥ tSNR

−(1−α+ǫ)] = o(1),

which implies

Pr(b ≤ tSNR
−(1−α+ǫ)) = O(1),

Pr(b ≤ tSNR
−(1−α+ǫ))E[b|b ≤ tSNR

−(1−α+ǫ)] = O(1).

Hence, the distribution on b that minimizes E
[

log
(

1 + blSNR
t

)]

, subject to the

constraints (B.4, B.6), is the on-off distribution:

b =







tSNR
−(1−α+ǫ) w.p. η

0 w.p. 1 − η

where

η =
SNR

1−α+ǫ

t
.

Hence, with this on-off distribution on b, (B.3) becomes

(r + t)

2t
SNR

1+α + O(SNR
1+α+γ) ≥ SNR

1−α+ǫ

l
log
(

1 + lSNR
α−ǫ
)

. (B.14)
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Now,

SNR
1−α+ǫ

l
log
(

1 + lSNR
α−ǫ
)∣
∣
∣
l= t2

(r+t)2
SNR−2α+ǫ

=
(r + t)2

t2
SNR

1+α log
(

1 +
t2

(r + t)2
SNR

−α
)

≫ (r + t)

2t
SNR

1+α + O(SNR
1+α+γ).

Thus, with l = t2

(r+t)2
SNR

−2α+ǫ, (B.14) is not satisfied. However, the right hand side

of (B.14) is a monotonically decreasing function of l. Hence, for the constraint in

(B.14) to be met

l >
t2

(r + t)2
SNR

−2α+ǫ ∀ǫ ∈ (0, α).

Thus, we see that if an input distribution satisfies (B.1, B.2, B.5), then the coherence

length must necessarily obey

l >
t2

(r + t)2
SNR

−2α
, lmin.

This completes the proof of the theorem. 2
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Appendix C

Capacity of an i.i.d Rayleigh fading

MIMO channel

We compute the capacity of an i.i.d Rayleigh fading MIMO channel when CSI is

unavailable at both the transmitter as well as the receiver. It is shown in [20] that

increasing the number of transmit antennas beyond the coherence length does not

increase capacity. Hence, from a capacity point of view, it suffices to use only one

transmit antenna (t = 1). We will therefore consider the capacity of a single-input,

multiple-output (SIMO) channel.

We will use on-off signaling to communicate over the channel. This signaling scheme

is later proved to be optimal for the i.i.d Rayleigh fading MIMO channel. We specify

the signaling as

x =







√
A w.p. ω

0 w.p. 1 − ω
(C.1)

where, A ∈ ℜ+ and ω = SNR
A

. With this signaling, we have the following probability

distributions

p~y|x=0(~y) =
1

πr
exp(−‖~y‖2),

p~y|x=
√

A(~y) =
1

π(1 + A)r exp
(

− ‖~y‖2

1 + A

)

.
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The mutual information I(x; ~y) can be written as I(x; ~y) = h(~y) − h(~y|x). Now,

h(~y)

= −
∫

p~y(~y) log(p~y(~y))d~y

= −
∫ [

(1 − ω)p~y|x=0(~y) + ωp~y|x=
√

A(~y)
]

log
[

(1 − ω)p~y|x=0(~y) + ωp~y|x=
√

A(~y)
]

d~y

= −(1 − ω)

∫

p~y|x=0 log

[

(1 − ω)p~y|x=0(~y)

(

1 +
ω

1 − ω

p~y|x=
√

A(~y)

p~y|x=0(~y)

)]

d~y

−ω

∫

p~y|x=
√

A log

[

(1 − ω)p~y|x=0(~y)

(

1 +
ω

1 − ω

p~y|x=
√

A(~y)

p~y|x=0(~y)

)]

d~y

= − log(1 − ω) − (1 − ω)

∫

p~y|x=0(~y) log

[

1 +
ω

1 − ω

p~y|x=
√

A(~y)

p~y|x=0(~y)

]

d~y

−ω

∫

p~y|x=
√

A(~y) log

[

1 +
ω

1 − ω

p~y|x=
√

A(~y)

p~y|x=0(~y)

]

d~y + h(~y|x) + ωD(p~y|x=
√

A||p~y|x=0).

The divergence D(p~y|x=
√

A||p~y|x=0) is the divergence between two Gaussian random

vectors and is therefore

D(p~y|x=
√

A||p~y|x=0) = r(A − log(1 + A)).

The expression for the mutual information becomes

I(x; ~y) = rSNR − rSNR
log(1 + A)

A
− log

(

1 − SNR

A

)

− I(SNR, A),

where,

I(SNR, A) = I1(SNR, A) + I2(SNR, A), (C.2)

I1(SNR, A) = (1 − ω)

∫

p~y|x=0(~y) log

[

1 +
ω

1 − ω

p~y|x=
√

A(~y)

p~y|x=0(~y)

]

d~y,

I2(SNR, A) = ω

∫

p~y|x=
√

A(~y) log

[

1 +
ω

1 − ω

p~y|x=
√

A(~y)

p~y|x=0(~y)

]

d~y.

At low SNR, A takes very high values. Therefore, the mutual information can be

written as

I(x; ~y) = rSNR − rSNR
log(1 + A)

A
− I(SNR, A) (C.3)
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We will now compute I1(SNR, A) and I2(SNR, A). Let us define ς∗ to be such that

SNR

A(1 + A)r
exp

( Aς∗

1 + A

)

= 1.

Note that

ς∗

1 + A
=

log(A)

A
+ r

log(1 + A)

A
+

log( 1
SNR

)

A
.

Thus,

lim
A→∞

ς∗

1 + A
= 0.

We shall use this in future derivations.

Computing I1(SNR, A):

I1(SNR, A) =
A − SNR

A πr

∫

exp(−‖~y‖2) log

[

1 +
SNR

(A − SNR)(1 + A)r
exp

(
A

1 + A
‖~y‖2

)]

d~y.

Converting to spherical coordinates in 2r dimensions, we have for large A,

I1(SNR, A)

=
1

(r − 1)!

∫ ∞

0

ςr−1 exp(−ς) log

[

1 +
SNR

A(1 + A)r
exp

( Aς

1 + A

)]

dς + o(SNR
2)

=
exp(−ς∗)

(r − 1)!

∫ ∞

0

ςr−1 exp(−(ς − ς∗)) log

[

1 + exp
(A(ς − ς∗)

1 + A

)]

dς + o(SNR
2)

=
exp(−ς∗)

(r − 1)!

∫ ∞

−ς∗
(ς + ς∗)r−1 exp(−ς) log

[

1 + exp
( Aς

1 + A

)]

dς + o(SNR
2)

= I11(SNR, A) + I12(SNR, A) + o(SNR
2), (C.4)

where,

I11(SNR, A) =
exp(−ς∗)

(r − 1)!

∫ 0

−ς∗
(ς + ς∗)r−1 exp(−ς) log

[

1 + exp
( Aς

1 + A

)]

dς,

I12(SNR, A) =
exp(−ς∗)

(r − 1)!

∫ ∞

0

(ς + ς∗)r−1 exp(−ς) log

[

1 + exp
( Aς

1 + A

)]

dς.
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Computing I11(SNR, A):

I11(SNR, A)

=
exp(−ς∗)

(r − 1)!

∫ 0

−ς∗
(ς + ς∗)r−1 exp(−ς) log

[

1 + exp
( Aς

1 + A

)]

dς

≤ exp(−ς∗)

(r − 1)!

∫ 0

−ς∗
(ς + ς∗)r−1 exp(−ς) exp

( Aς

1 + A

)

dς

=
exp(−ς∗)

(r − 1)!

∫ 0

−ς∗
(ς + ς∗)r−1 exp

(

− ς

1 + A

)

dς

=
(1 + A)r

(r − 1)!
exp

(

− Aς∗

1 + A

)∫ ς∗

1+A

0

ςr−1 exp(−ς)dς

=
(1 + A)r

(r − 1)!
exp

(

− Aς∗

1 + A

)[

Γ(r) − Γ

(

r,
ς∗

1 + A

)]

= IU
11(SNR, A),

where,

IU
11(SNR, A) =

SNR

A
− (1 + A)r

[
SNR

A(1 + A)r

]1+ 1
A

[
r−1∑

j=0

[ ς∗

1+A
]j

j!

]

.

Also,

I11(SNR, A)

=
exp(−ς∗)

(r − 1)!

∫ 0

−ς∗
(ς + ς∗)r−1 exp(−ς) log

[

1 + exp
( Aς

1 + A

)]

dς

≥ IU
11(SNR, A) − exp(−ς∗)

2(r − 1)!

∫ 0

−ς∗
(ς + ς∗)r−1 exp(−ς) exp

( 2Aς

1 + A

)

dς

= IU
11(SNR, A) − exp(−ς∗)

2(r − 1)!

∫ 0

−ς∗
(ς + ς∗)r−1 exp

(A − 1

A + 1
ς
)

dς

= IU
11(SNR, A) − exp(−ς∗)

2(r − 1)!

∫ ς∗

0

ςr−1 exp
(A − 1

A + 1
(ς − ς∗)

)

dς

= IU
11(SNR, A) − 1

2(r − 1)!
exp

(

− 2Aς∗

A + 1

)[A + 1

A − 1

]r
∫ (A−1

A+1
)ς∗

0

ςr−1 exp(ς)dς

= IU
11(SNR, A) − (−1)r−1

2(r − 1)!
exp

(

− 2Aς∗

A + 1

)[A + 1

A − 1

]r
[

Γ(r,−A − 1

A + 1
ς∗) − Γ(r)

]

= IU
11(SNR, A) − (−1)r−1

2

[A + 1

A − 1

]r
[

exp(−ς∗)

r−1∑

j=0

[−A−1
A+1

ς∗]j

j!
− exp

(

− 2Aς∗

A + 1

)
]

= IU
11(SNR, A) − (−1)r−1

2

[A + 1

A − 1

]r[ SNR

A(1 + A)r

]1+ 1
1+A

[
r−1∑

j=0

[−A−1
A+1

ς∗]j

j!

]

+ o(SNR
2).
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Let

IL
11(SNR, A) =

(−1)r−1

2

[A + 1

A − 1

]r[ SNR

A(1 + A)r

]1+ 1
1+A

[
r−1∑

j=0

[−A−1
A+1

ς∗]j

j!

]

.

Thus, we have

IU
11(SNR, A) − IL

11(SNR, A) + o(SNR
2) ≤ I11(SNR, A) ≤ IU

11(SNR, A).

Since ς∗

1+A
→ 0 as A → ∞, we have

lim
A→∞

IU
11(SNR, A) = 0,

lim
A→∞

IL
11(SNR, A) = 0,

⇒ lim
A→∞

I11(SNR, A) = 0. (C.5)

Computing I12(SNR, A):

I12(SNR, A)

=
exp(−ς∗)

(r − 1)!

∫ ∞

0

(ς + ς∗)r−1 exp(−ς) log

[

1 + exp
( Aς

1 + A

)]

dς

=
exp(−ς∗)

(r − 1)!

∫ ∞

0

(ς + ς∗)r−1 exp(−ς)

[
Aς

1 + A
+ log

[

1 + exp
(

− Aς

1 + A

)]]

dς

= I1
12(SNR, A) + I2

12(SNR, A), (C.6)

where,

I1
12(SNR, A) =

exp(−ς∗)

(r − 1)!

[ A

1 + A

] ∫ ∞

0

ς(ς + ς∗)r−1 exp(−ς)dς,

I2
12(SNR, A) =

exp(−ς∗)

(r − 1)!

∫ ∞

0

(ς + ς∗)r−1 exp(−ς) log

[

1 + exp
(

− Aς

1 + A

)]

dς.

Now,

I1
12(SNR, A)

=
exp(−ς∗)

(r − 1)!

[ A

1 + A

] ∫ ∞

0

ς(ς + ς∗)r−1 exp(−ς)dς,

=
1

(r − 1)!

[ A

1 + A

] ∫ ∞

ς∗
(ς − ς∗)ςr−1 exp(−ς)dς,

=
1

(r − 1)!

[ A

1 + A

][

Γ(r + 1, ς∗) − ς∗Γ(r, ς∗)
]
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=
1

(r − 1)!

[ A

1 + A

][

Γ(r, ς∗)(r − ς∗) + (ς∗)r exp(−ς∗)
]

= exp(−ς∗)
[ A

1 + A

][ r − ς∗

(r − 1)!

[ r−1∑

j=0

(ς∗)j

j!

]

+
(ς∗)r

(r − 1)!

]

=
[

SNR

A(1 + A)r

]1+ 1
A
[ A

1 + A

][ r − ς∗

(r − 1)!

[ r−1∑

j=0

(ς∗)j

j!

]

+
(ς∗)r

(r − 1)!

]

= I1A
12 (SNR, A) SNR

1+ 1
A ,

where,

I1A
12 (SNR, A) =

[ 1

A(1 + A)r

]1+ 1
A
[ A

1 + A

][ r − ς∗

(r − 1)!

[ r−1∑

j=0

(ς∗)j

j!

]

+
(ς∗)r

(r − 1)!

]

.

Since ς∗

1+A
→ 0 as A → ∞, we have

lim
A→∞

I1A
12 (SNR, A) = 0.

Thus,

lim
A→∞

I1
12(SNR, A) = 0. (C.7)

We now compute I2
12(SNR, A).

I2
12(SNR, A)

=
exp(−ς∗)

(r − 1)!

∫ ∞

0

(ς + ς∗)r−1 exp(−ς) log

[

1 + exp
(

− Aς

1 + A

)]

dς

≤ exp(−ς∗)

(r − 1)!

∫ ∞

0

(ς + ς∗)r−1 exp(−ς) exp
(

− Aς

1 + A

)

dς

=
exp(−ς∗)

(r − 1)!

∫ ∞

0

(ς + ς∗)r−1 exp

(

−
(1 + 2A

1 + A

)

ς

)

dς

=
1

(r − 1)!

[ 1 + A

1 + 2A

]r

exp
( Aς

1 + A

)∫ ∞

( 1+2A
1+A

)ς∗
ςr−1 exp(−ς)dς

=
1

(r − 1)!

[ 1 + A

1 + 2A

]r

exp
( Aς

1 + A

)

Γ

(

r, (
1 + 2A

1 + A
)ς∗
)

=
[ 1 + A

1 + 2A

]r

exp(−ς∗)
r−1∑

j=0

[(1+2A
1+A

)ς∗]j

j!

= I2U
12 (SNR, A),
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where,

I2U
12 (SNR, A) =

[
SNR

A(1 + A)r

]1+ 1
A
[ 1 + A

1 + 2A

]r
[

r−1∑

j=0

[(1+2A
1+A

)ς∗]j

j!

]

.

Also,

I2
12(SNR, A)

≥ I2U
12 (SNR, A) − exp(−ς∗)

2(r − 1)!

∫ ∞

0

(ς + ς∗)r−1 exp(−ς) exp
(

− 2Aς

1 + A

)

dς

= I2U
12 (SNR, A) − 1

2(r − 1)!
exp

( 2Aς

1 + A

)∫ ∞

ς∗
ςr−1 exp

(

−
(1 + 3A

1 + A

)

ς

)

dς

= I2U
12 (SNR, A) − 1

2(r − 1)!

[ 1 + A

1 + 3A

]r

exp
( 2Aς

1 + A

)

Γ

(

r, (
1 + 3A

1 + A
)ς∗
)

= I2U
12 (SNR, A) − exp(−ς∗)

2

[ 1 + A

1 + 3A

]r
[

r−1∑

j=0

[(1+3A
1+A

)ς∗]j

j!

]

= I2U
12 (SNR, A) − 1

2
I2L
12 (SNR, A),

where,

I2L
12 (SNR, A) =

[
SNR

A(1 + A)r)

]1+ 1
A
[ 1 + A

1 + 3A

]r
[

r−1∑

j=0

[(1+3A
1+A

)ς∗]j

j!

]

.

Since ς∗
1+A

→ 0 as A → ∞,

lim
A→∞

I2L
12 (SNR, A) = 0,

lim
A→∞

I2U
12 (SNR, A) = 0,

⇒ lim
A→∞

I2
12(SNR, A) = 0. (C.8)

Substituting (C.7) and (C.8) in (C.6), we have

lim
A→∞

I12(SNR, A) = 0. (C.9)

Substituting (C.5) and (C.9) in (C.4), we obtain

I1(SNR, A) = o(SNR
2). (C.10)

Computing I2(SNR, A):

I2(SNR, A) =
SNR

πrA(1 + A)r

∫

exp

(

− ‖~y‖2

1 + A

)

log

[

1 +
SNR

(A − SNR)(1 + A)r
exp

(
A

1 + A
‖~y‖2

)]

d~y.
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Converting to spherical coordinates in 2r dimensions, we have for large A,

I2(SNR, A)

=
SNR

A(A + 1)r(r − 1)!

∫ ∞

0

ςr−1 exp

(

− ς

1 + A

)

log

[

1 +
SNR

A(1 + A)r
exp

(
Aς

1 + A

)]

dς

= I21(SNR, A) + I22(SNR, A) + o(SNR
2), (C.11)

where,

I21(SNR, A) =
SNR

A(A + 1)r(r − 1)!

∫ ς∗

0

ςr−1 exp

(

− ς

1 + A

)

log

[

1 +
SNR

A(1 + A)r
exp

(
Aς

1 + A

)]

dς,

I22(SNR, A) =
SNR

A(A + 1)r(r − 1)!

∫ ∞

ς∗
ςr−1 exp

(

− ς

1 + A

)

log

[

1 +
SNR

A(1 + A)r
exp

(
Aς

1 + A

)]

dς.

Computing I21(SNR, A):

I21(SNR, A)

=
SNR

A(A + 1)r(r − 1)!

∫ ς∗

0

ςr−1 exp

(

− ς

1 + A

)

log

[

1 +
SNR

A(1 + A)r
exp

( Aς

1 + A

)]

dς

≤ SNR

A(A + 1)r(r − 1)!

∫ ς∗

0

ςr−1 exp
(

− ς

1 + A

)
SNR

A(1 + A)r
exp

( Aς

1 + A

)

dς

=
[

SNR

A(1 + A)r

]2 1

(r − 1)!

∫ ς∗

0

ςr−1 exp
(A − 1

A + 1
ς
)

dς

=
[

SNR

A(1 + A)r

]2[A + 1

A − 1

]r 1

(r − 1)!

∫ (A−1
A+1

)ς∗

0

ςr−1 exp(ς)dς

=
[

SNR

A(1 + A)r

]2[A + 1

A − 1

]r (−1)r−1

(r − 1)!

[

Γ

(

r,−
(A − 1

A + 1

)

ς∗
)

− Γ(r)

]

=
[

SNR

A(1 + A)r

]2[A + 1

A − 1

]r (−1)r−1

(r − 1)!

[

(r − 1)! exp

(
A − 1

A + 1
ς∗
) r−1∑

j=0

−(A−1
A+1

)ς∗

j!
− (r − 1)!

]

=
[

SNR

A(1 + A)r

]2[A + 1

A − 1

]r (−1)r−1

(r − 1)!

[

(r − 1)!
[

SNR

A(1 + A)r

] 1
A
−1 r−1∑

j=0

−(A−1
A+1

)ς∗

j!
− (r − 1)!

]

= IU
21(SNR, A) SNR

1+ 1
A + o(SNR

2),

where,

IU
21(SNR, A) =

(−1)r

[A(1 + A)r]1+
1
A

[A + 1

A − 1

]r r−1∑

j=0

[−(A−1
A+1

)ς∗]j

j!
. (C.12)
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Now,

I21(SNR, A)

=
SNR

A(A + 1)r(r − 1)!

∫ ς∗

0

ςr−1 exp
(

− ς

1 + A

)

log

[

1 +
SNR

A(1 + A)r
exp

( Aς

1 + A

)]

dς

≥ SNR

A(A + 1)r(r − 1)!

∫ ς∗

0

ςr−1 exp
(

− ς

1 + A

)
SNR

A(1 + A)r
exp

( Aς

1 + A

)

dς

− SNR

2A(A + 1)r(r − 1)!

∫ ς∗

0

ςr−1 exp
(

− ς

1 + A

)[
SNR

A(1 + A)r
exp

( Aς

1 + A

)]2

dς

= IU
21(SNR, A) SNR

1+ 1
A + o(SNR

2)

−1

2

[
SNR

A(1 + A)r

]3 1

(r − 1)!

∫ ς∗

0

ςr−1 exp
(2A − 1

1 + A
ς
)

dς

= IU
21(SNR, A) SNR

1+ 1
A + o(SNR

2)

−1

2

[
SNR

A(1 + A)r

]3 (−1)r

(r − 1)!

[ A + 1

2A − 1

]r
[

Γ(r,−(
2A − 1

1 + A
)ς∗) − Γ(r)

]

= IU
21(SNR, A) SNR

1+ 1
A + o(SNR

2)

−1

2

[
SNR

A(1 + A)r

]3 (−1)r

(r − 1)!

[ A + 1

2A − 1

]r
[

(r − 1)!
[

SNR

A(1 + A)r

] 1
A
−2 r−1∑

j=0

[−(2A−1
A+1

)ς∗]j

j!
− (r − 1)!

]

=
[

IU
21(SNR, A) − 1

2
IL
21(SNR, A)

]

SNR
1+ 1

A + o(SNR
2),

where,

IL
21(SNR, A) =

(−1)r

[A(1 + A)r]1+
1
A

[ A + 1

2A − 1

]r r−1∑

j=0

[−(2A−1
A+1

)ς∗]j

j!
. (C.13)

Combining (C.12, C.13), we have

[

IU
21(SNR, A) − 1

2
IL
21(SNR, A)

]

SNR
1+ 1

A + o(SNR
2)

≤ I21(SNR, A) ≤
[

IU
21(SNR, A)

]

SNR
1+ 1

A + o(SNR
2).

At low SNR, ς∗

1+A
→ 0 as A → ∞. Thus, we have

lim
A→∞

IU
21(SNR, A) = 0,

lim
A→∞

IL
21(SNR, A) = 0.

Therefore,

I21(SNR, A) = o(SNR
2). (C.14)
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Computing I22(SNR, A):

I22(SNR, A)

=
SNR

A(A + 1)r(r − 1)!

∫ ∞

ς∗
ςr−1 exp

(

− ς

1 + A

)

log

[

1 +
SNR

A(1 + A)r
exp

( Aς

1 + A

)]

dς

=
1

(r − 1)!

[
SNR

A(1 + A)r

]1+ 1
A

∫ ∞

ς∗
ςr−1 exp

(

− (ς − ς∗)

1 + A

)

log

[

1 + exp
(A(ς − ς∗)

1 + A

)]

dς

=
1

(r − 1)!

[
SNR

A(1 + A)r

]1+ 1
A

∫ ∞

0

(ς + ς∗)r−1 exp
(

− ς

1 + A

)

log

[

1 + exp
( Aς

1 + A

)]

dς

=
1

(r − 1)!

[
SNR

A(1 + A)r

]1+ 1
A

∫ ∞

0

(ς + ς∗)r−1 exp
(

− ς

1 + A

)

·
[

Aς

1 + A
+ log

[

1 + exp
(

− Aς

1 + A

)]]

dς

=
1

(r − 1)!

[ 1

A(1 + A)r

] 1
A

SNR
1+ 1

A

[

I1
22(SNR, A) + I2

22(SNR, A)
]

, (C.15)

where,

I1
22(SNR, A) =

1

(1 + A)r+1

∫ ∞

0

ς(ς + ς∗)r−1 exp
(

− ς

1 + A

)

dς,

I2
22(SNR, A) =

1

A(1 + A)r

∫ ∞

0

(ς + ς∗)r−1 exp
(

− ς

1 + A

)

log

[

1 + exp
(

− Aς

1 + A

)]

dς.

Now,

I1
22(SNR, A)

=
1

(1 + A)r+1

∫ ∞

0

ς(ς + ς∗)r−1 exp
(

− ς

1 + A

)

dς

=
1

(1 + A)r+1
exp

( ς∗

1 + A

)[∫ ∞

ς∗
ςr exp

(

− ς

1 + A

)

dς − ς∗
∫ ∞

ς∗
ςr−1 exp

(

− ς

1 + A

)

dς

]

=
1

(1 + A)r+1
exp

( ς∗

1 + A

)[

(1 + A)r+1Γ(r + 1,
ς∗

1 + A
) − ς∗(1 + A)rΓ(r,

ς∗

1 + A
)

]

=
1

(1 + A)r+1
exp

( ς∗

1 + A

)[[

r(1 + A)r+1

−ς∗(1 + A)r
]

Γ(r,
ς∗

1 + A
) + (1 + A)(ς∗)r exp

(

− ς∗

1 + A

)]

=
A

1 + A
I1A
22 (r, SNR, A),

where,

I1A
22 (r, SNR, A) = r!

[
r−1∑

j=0

[ ς∗

1+A
]j

j!

]
[

1 − ς∗

r(1 + A)

]

+
[ ς∗

1 + A

]r

.
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Since ς∗

1+A
→ 0 as A → ∞,

lim
A→∞

I1A
22 (r, SNR, A) = r! . (C.16)

Thus,

I1
22(r, SNR, A) =

Ar!

1 + A
. (C.17)

We now compute I2
22(SNR, A).

I2
22(SNR, A)

=
1

A(1 + A)r

∫ ∞

0

(ς + ς∗)r−1 exp
(

− ς

1 + A

)

log

[

1 + exp
(

− Aς

1 + A

)]

dς

≤ 1

A(1 + A)r

∫ ∞

0

(ς + ς∗)r−1 exp
(

− ς

1 + A

)

exp
(

− Aς

1 + A

)

dς

=
1

A(1 + A)r
exp(ς∗)

∫ ∞

ς∗
ςr−1 exp(−ς)dς

=
1

A(1 + A)r
exp(ς∗)Γ(r, ς∗)

=
(r − 1)!

A(1 + A)r

r−1∑

j=0

(ς∗)j

j!
. (C.18)

Also,

I2
22(SNR, A)

≥ 1

A(1 + A)r

∫ ∞

0

(ς + ς∗)r−1 exp
(

− ς

1 + A

)

exp
(

− Aς

1 + A

)

dς

− 1

2A(1 + A)r

∫ ∞

0

(ς + ς∗)r−1 exp
(

− ς

1 + A

)

exp
(

− 2Aς

1 + A

)

dς

=

[

(r − 1)!

A(1 + A)r

r−1∑

j=0

(ς∗)j

j!

]

− 1

2A(1 + A)r

∫ ∞

0

(ς + ς∗)r−1 exp
(

− (1 + 2A)ς

1 + A

)

dς

=

[

(r − 1)!

A(1 + A)r

r−1∑

j=0

(ς∗)j

j!

]

− 1

2A(1 + A)r
exp

((1 + 2A)ς∗

1 + A

)[ 1 + A

1 + 2A

]r

Γ

(

r,
(1 + 2A)ς∗

1 + A

)

=

[

(r − 1)!

A(1 + A)r

r−1∑

j=0

(ς∗)j

j!

]

− (r − 1)!

2A(1 + A)r

[ 1 + A

1 + 2A

]r r−1∑

j=0

[(1+2A
1+A

)ς∗]j

j!
. (C.19)

Now, as A → ∞, ς∗

1+A
→ 0. Therefore,

lim
A→∞

(r − 1)!

A(1 + A)r

r−1∑

j=0

(ς∗)j

j!
= 0,
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lim
A→∞

[

(r − 1)!

A(1 + A)r

r−1∑

j=0

(ς∗)j

j!

]

− (r − 1)!

2A(1 + A)r

[ 1 + A

1 + 2A

]r r−1∑

j=0

[(1+2A
1+A

)ς∗]j

j!
= 0.

As both the upper bound (C.18) and lower bound (C.19) go to 0, we have

lim
A→∞

I2
22(SNR, A) = 0. (C.20)

Substituting (C.17) and (C.20) in (C.15), we have

I22(SNR, A)

=
1

(r − 1)!

[ 1

A(1 + A)r

] 1
A

SNR
1+ 1

A

[ Ar!

1 + A

]

+ o(SNR
2),

= rA− r+1
A SNR

1+ 1
A + o(SNR

2).

Therefore,

I2(SNR, A) = rA− r+1
A SNR

1+ 1
A + o(SNR

2). (C.21)

Substituting (C.10) and (C.21) in (C.3) and (C.2), we obtain

I(x; ~y) = rSNR − rSNR
log(1 + A)

A
− rA− r+1

A SNR
1+ 1

A + o(SNR
2).

Let the capacity of the channel be C(SNR). Since on-off signaling may not be optimal

for the channel, we will denote the highest achievable rate using on-off signaling as

Con−off(SNR). Con−off(SNR) is given by

Con−off(SNR)

= max
A

I(x; ~y)

= rSNR[1 − M∗(SNR)] + o(SNR
2), (C.22)

where,

M∗(SNR)

= min
A

[ log(1 + A)

A
+ A− r+1

A SNR
1
A

]

= min
A

[ log(A)

A
+ A− r+1

A SNR
1
A

]

.
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The last equality holds since A is large. Let us denote

M(A, SNR) = min
A

[ log(A)

A
+ A− r+1

A SNR
1
A

]

.

We will prove the following lemma to get a lower bound on M∗(SNR).

Lemma 5

M∗(SNR) ≥ ML(SNR) ,
log log( r

SNR
)

log( r
SNR

)
. (C.23)

Proof: We shall prove this by contradiction. Let there be an A1 such that the lemma

does not hold. Since log(A1)
A1

≥ 0 and A
− r+1

A1
1 SNR

1
A1 ≥ 0, we have,

log(A1)

A1
≤ ML(SNR), (C.24)

A
− r+1

A1
1 SNR

1
A1 ≤ ML(SNR). (C.25)

If (C.24) holds, we have

A1 ≥ log(
r

SNR
).

Moreover,

A
− r+1

A1
1 SNR

1
A1

≥ A
− r+1

A1
1

[
SNR

r

] 1
A1

= exp(−(r + 1) log(A1)

A1
)
[
SNR

r

]− 1

log( SNR
r )

≥ exp[−(r + 1)ML(SNR)]e−1.

As SNR → 0, we have

exp[−(r + 1)ML(SNR)]e−1 ≫ ML(SNR),

⇒ A
− r+1

A1
1 SNR

1
A1 ≫ ML(SNR).

This contradicts (C.25), which completes the proof. 2

To get an upper bound for M∗(SNR), we pick a value of A. Let

A2 =
log( r

SNR
)

log log( r
SNR

)
.
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Now,

M∗(SNR) ≤ log(A2)

A2
+ A

− r+1
A2

2 SNR
1

A2 . (C.26)

We have

log(A2)

A2

=

[
log log( r

SNR
) − log log log( r

SNR
)
]
log log( r

SNR
)

log( r
SNR

)

≤
[
log log( r

SNR
)
]2

log( r
SNR

)
, (C.27)

and

A
− r+1

A2
2 SNR

1
A2 (C.28)

=
[ r

Ar+1
2

] 1
A2
[
SNR

r

] 1
A2

,

≤
[

max
r

r

Ar+1
2

] 1
A2
[
SNR

r

] 1
A2

,

≤
[ 1

eA2 log(A2)

] 1
A2
[
SNR

r

] 1
A2

,

≤
[
SNR

r

] 1
A2

(C.29)

=
[
SNR

r

]− log log( r
SNR

)

log( SNR
r )

=
1

log( r
SNR

)
. (C.30)

Equation (C.29) holds since A2 ≫ 1 for SNR → 0, which makes

[ 1

eA2 log(A2)

] 1
A2 ≤ [1]

1
A2 = 1.

Combining (C.26, C.27, C.30), we have

M∗(SNR) ≤ [log log( r
SNR

)]2 + 1

log( r
SNR

)
. (C.31)

Finally, using (C.22), Lemma 5 and (C.31), we have

rSNR − rSNR
[log log( r

SNR
)]2 + 1

log( r
SNR

)
+ o(SNR

2)

≤ Con−off(SNR) ≤ rSNR − rSNR
log log( r

SNR
)

log( r
SNR

)
+ o(SNR

2).

(C.32)
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Since on-off signalling may not be optimal

Con−off(SNR) ≤ C(SNR). (C.33)

As conditioning reduces entropy, we can express the input-output mutual information

as

I(x; ~y) ≤
r∑

k=1

I(x;yk). (C.34)

Each term on the right hand side of (C.34) is maximized by an on-off distribution

[25] and, we know from [42] that, with this distribution, the mutual information

∀k ∈ {1 . . . r} is

I(x;yk) ≤ SNR − SNR
log log( 1

SNR
)

log( 1
SNR

)
+ o(SNR

2).

Hence, we can upper bound the capacity as

C(SNR) ≤ rSNR − rSNR
log log( 1

SNR
)

log( 1
SNR

)
+ o(SNR

2).

Since,

log log( r
SNR

)

log( r
SNR

)
≤ log log( 1

SNR
)

log( 1
SNR

)
,

we have

C(SNR) ≤ rSNR − rSNR
log log( r

SNR
)

log( r
SNR

)
+ o(SNR

2). (C.35)

Combining (C.32, C.33, C.35), we obtain

rSNR − rSNR

[
log log( r

SNR
)
]2

+ 1

log( r
SNR

)
+ o(SNR

2)

≤ C(SNR) ≤ rSNR − rSNR
log log( r

SNR
)

log( r
SNR

)
+ o(SNR

2). (C.36)

We now introduce a notation for the approximation that ignores higher order loga-

rithm functions. Let f(SNR) and g(SNR) be functions of SNR. We shall denote

f(SNR)
.
= g(SNR)
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if

lim
SNR→0

log f(SNR)

log g(SNR)
= 1.

With this scaling, the inequalities in (C.36) become equalities and the capacity can

be expressed as

C(SNR) = rSNR − ∆
(t,r)
i.i.d (SNR),

where,

∆
(t,r)
i.i.d (SNR)

.
=

rSNR

log( r
SNR

)
.

We also see that on-off signaling (C.1) is capacity achieving for the i.i.d Rayleigh

fading MIMO channel in the wideband regime (keeping in mind our scaling, which

ignores higher order logarithm functions.)
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Appendix D

Proof of Theorem 5

The channel state realization is ~a = ~a. Consider another channel which differs from

our model, (4.5), in only the quantization noise distribution. For this channel

~zG = ~ax + ~w + ~qG, (D.1)

qG
i ∼ CN(0, E[|qi|2]), i ∈ {1, . . . , r},

the quantization noise is jointly Gaussian with the input x and the following are

satisfied:

E[zG
i qG∗

i ] = E[ziq
∗
i ] = 0, (D.2)

E[yiq
G∗
i ] = E[yiq

∗
i ] = −E[|qi|2]. (D.3)

Given the channel realization ~a, since ~qG is jointly Gaussian with x, ~zG is also jointly

Gaussian with x. References [17, 40] show that noise that is jointly Gaussian with

the input, minimizes mutual information. Hence, we obtain the following bound:

I(x;~zG|~a) ≤ I(x;~z|~a). (D.4)

Let x̂llse(~z
G) be the linear least-squares error (LLSE) estimate of x from ~zG and ellse,

the corresponding estimation error. Hence, x can be expressed as:

x = x̂llse(~z
G) + ellse.

Since x and ~zG are jointly Gaussian, minimum mean-squares estimation (MMSE) is

the same as LLSE estimation, and the estimation error is Gaussian and independent
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of the estimate. The variance of the estimation error is denoted as λllse = E[|ellse|2].
We now compute the lower bound to the SIMO-FAWNA block capacity using our

proposed scheme:

1

W
Cb

q(P, W,~a, r, m, Cf)

= I(x;~z|~a)

≥ I(x;~zG|~a) (D.5)

= h(x) − h(ellse)

= log
( P

λllseW

)

. (D.6)

We use (D.4) to obtain the inequality in (D.5). In order to compute the lower bound

(D.6), λllse needs to be computed. This can be expressed as:

λllse = E[|x|2] − E[x~zG†]Λ−1
~zGE[x∗~zG], (D.7)

where, Λ~zG is the autocorrelation matrix of ~zG.

From our channel and quantizer models, we have the following Markov chains for

i ∈ {1, . . . , r}, j ∈ {1, . . . , r}, i 6= j:

x ↔ yi ↔ qG
i , (D.8)

yi ↔ x ↔ qG
j , (D.9)

qG
i ↔ x ↔ qG

j . (D.10)

Using the first Markov chain, (D.8), we obtain:

E[xqG∗
i ]

= Eyi

[

E[xqG∗
i |yi]

]

= Eyi

[

E[x|yi]E[qG∗
i |yi]

]

= Eyi

[ E[xy∗
i ]

E[|yi|2]
yiE[qG∗

i |yi]
]

(D.11)

=
E[xy∗

i ]E[yiq
G∗
i ]

E[|yi|2]

= −a∗
i PMmβm2−

Ri
W

W
. (D.12)
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Since x and yi are jointly Gaussian random variables, we obtain (D.11). Equation

(D.12) follows from the quantizer properties (4.6, D.3), and our wireless channel

model (4.1).

Using the second Markov chain, (D.9), we obtain for i 6= j:

E[yiq
G∗
j ]

= Ex

[

E[yiq
G∗
j |x]

]

= Ex

[

E[yi|x]E[qG∗
j |x]

]

= Ex

[E[x∗yi]

E[|x|2] xE[qG∗
j |x]

]

(D.13)

=
E[x∗yi]E[xqG∗

j ]

E[|x|2]

= −aia
∗
jPMmβm2−

Rj
W

W
. (D.14)

Since x and yi are jointly Gaussian random variables, we obtain (D.13). Equation

(D.14) follows from (D.12), and our wireless channel model (4.1).

The third Markov chain, (D.10), gives us for i 6= j:

E[qG
i qG∗

j ]

= Ex

[

E[qG
i qG∗

j |x]
]

= Ex

[

E[qG
i |x]E[qG∗

j |x]
]

= Ex

[E[x∗qG
i ]

E[|x|2] xE[qG∗
j |x]

]

(D.15)

=
E[x∗qG

i ]E[xqG∗
j ]

E[|x|2]

=
aia

∗
jPM2

mβ2
m2−

Ri+Rj
W

W
. (D.16)

Since x and qG
i are jointly Gaussian random variables, we obtain (D.15). We obtain

(D.16) from (D.12) and our wireless channel model (4.1).

From (4.1) and (D.12), we obtain:

E[xzG∗
i ] = E[xy∗

i ] + E[xqG∗
i ] =

Pa∗
i (1 − Mmβm2−

Ri
W )

W
,

P

W
v∗

i . (D.17)
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We now compute Λ~zG. From (4.6, D.3), for i ∈ {1, . . . , r},

E[|zG
i |2]

= E[|yi|2] + E[yiq
G∗
i ] + E[y∗

i q
G
i ] + E[|qi|2]

= E[|yi|2](1 − Mmβm2−
Ri
W )

= N0

(

1 +
|ai|2P
N0W

)(

1 − Mmβm2−
Ri
W

)

, N0Mii, (D.18)

and for i ∈ {1, . . . , r}, j ∈ {1, . . . , r}, i 6= j

E[zG
i zG∗

j ]

= E[yiy
∗
j ] + E[yiq

G∗
j ] + E[y∗

jq
G
i ] + E[qG

i qG∗
j ]

= aia
∗
j

P

W
− aia

∗
jPMmβm2−

Rj
W

W
− aia

∗
jPMmβm2−

Ri
W

W
+

aia
∗
jPM2

mβ2
m2−

Ri+Rj
W

W

=
aia

∗
jP

W

(

1 − Mmβm2−
Ri
W

)(

1 − Mmβm2−
Rj
W

)

, N0Mij. (D.19)

Combining equations (D.6, D.7, D.17, D.18, D.19) completes the proof. 2
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Capacity-Achieving Signaling on Multipath Fading Channels”, IEEE Transac-

tion on Communications, Vol. 52, pp. 931-938, June 2004.

[37] O. K. Tonguz, D. D. Stancil, A. Xhafa, A. G. Cepni, P. Nikitin, and D.

Brodtkorb, “A Simple Path Loss Prediction Model for HVAC Systems”, IEEE

Transactions on Vehicular Technology, July 2004.
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