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Abstract

Hall thrusters have become a tempting alternative to traditional chemical propulsion
systems due to the great mass savings they provide through high specific impulses.
However, a major stumbling block to their widespread integration is uncertainty about
the thruster plume's interaction with spacecraft components. While in-space data is
difficult to collect, much experimental data from vacuum tank tests is readily avail-
able. Effectively taking advantage of this wealth requires understanding of the effects
from imperfect ground test conditions. A previous plume model, Qasi3, has been
upgraded to better simulate the vacuum tank environment primarily through improve-
ments to the source model, the collision method, and the sputtering method. The
code is now more accurate and provides insight into phenomena such as background
pressure consequences. sputtering and sputtered material deposition.
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Chapter 1

Introduction

1.1 Hall Thrusters

Hall thrusters are members of the electric propulsion family, characterized by an an-

nular acceleration channel and a radial magnetic field. Electrons are emitted from an

external cathode and backstream towards the anode where they encounter the mag-

netic field. Because of their small Larmor radius and long collision mean free path,

electrons are prevented from diffusing across the magnetic field easily and are effec-

tively captured in azimuthal drifts along field lines. Neutral propellant gas, typically

xenon, is injected into the channel near the anode and undergoes ionization upon

contact with the trapped electrons. The resultant heavy ions have a Larmor radius

much larger than the thruster's dimensions and are accelerated out of the channel by

the axial electric field with little influence from the magnetic field. Figure 1-1 shows

the cross-section of a typical Hall thruster.

1.2 Motivation

1.2.1 Advantage of Electric Propulsion

Hall thrusters and other types of electric propulsion have recently attracted much

interest as they provide high specific impulses at relatively high efficiencies. Unlike
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Cathode
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Magnet

Figure 1-1: Cross-section of typical Hall thruster.

conventional chemical propulsion systems, electric propulsion devices do not rely on

the internal energy stored within their propellant. Instead, an external power source

is used to impart energy to the working fluid. As no inherent limitation due to

the propellant exists, a high Ip is attainable which translates to a highly desirable

mass savings. Higher exhaust velocities and thus higher specific impulses are only

constrained by the power processing unit (PPU) which provides the external energy

and is the primary contributor to the electric propulsion system's mass. By balancing

,p with PPU mass, Hall thrusters are found to fall in an optimum operation regime

well-suited for missions such as station-keeping and orbit transfers.

1.2.2 Hall Thruster Integration Issues

Despite numerous advantages, reservations about integrating Hall thruster technology

into space systems exist because of various unknowns. One large area of concern

is the interaction the thruster plume has with the spacecraft. As a result, many

efforts have been made to study these effects through both experiment and simulation.

To date, very little in-space plume data has been taken as such experiments are

both difficult and expensive. Conversely, a multitude of vacuum tank experiments

20



have been performed or are planned for the near future. While these on-ground

tests provide much insight into the behavior of the Hall thruster and its plume,

interpretation of the collected data also needs to take into account effects due to

imperfect experimental conditions.

One such limitation is the finite capability of the vacuum pumps. Because per-

feet vacuum conditions cannot be achieved, a nominal background neutral density

exists that interacts with the plume through collisions. While ionizing collisions with

these background neutrals cause an increase in measured thrust if ions are created at

higher than background potential, the effects of charge exchange (CEX) collisions are

of greater concern. These collisions occur when the positive charge of a fast-moving

source ion is given to a slow-moving background neutral in a resonant process, result-

ing in a high-energy neutral and a low-energy ion. The potential hump of the plume

is not as easily overcome by these CEX ions and they are pushed laterally more than

their energetic source ion counterparts. This phenomenon is reflected in higher values

of current density at outlying angles of the distribution.

An unwanted consequence of CEX ions, whether formed from interaction with a

source or a background neutral, is sputtering of objects in contact with the plume.

To avoid direct impingement by the plume on spacecraft components such a s solar

arrays, thrusters are generally canted at an angle. Although the thrust vector is

no longer ideally aligned, the main beam is now diverted away from the sensitive

surfaces. Unfortunately, though the lower energy CEX ions have less potential to

cause harm, their location in the wings of the plume puts them dangerously close

to the spacecraft components trying to be avoided. Some CEX ions may even be

accelerated backwards and strike the spacecraft's main body. While it is hoped that

damage on-orbit is kept to a minimum, it is difficult to discern its magnitude from

ground experiments. Separating the effects of a background neutral density and its

subsequent elevation of CEX ion levels is not a simple task. Another integration issue

is foreign material from the thruster itself depositing on sensitive spacecraft surfaces.

In this case, the closed environment of the vacuum tank is an additional drawback as

sputtering off of facility walls and instruments may be confused with that from the

21



engine.

The combination of a contained environment and the limited pumping capability

causes recirculation of plasma. Plasma that would normally be dispersed in the

vacuum of space is retained and may induce unexpected effects in the testing domain.

Due to these uncertainties, drawing conclusions on in-space plume behavior based

on vacuum tank experiments is difficult. The goal of this research is to improve the

ability of a numerical plume simulation to model a tank environment. If tank effects

on thruster operation can be accurately captured by the physics of a simulation and

verified against available empirical data taken on the ground, then greater confidence

in the projections of the pluine's response in a perfect vacuum is earned. Furthermore,

the model then can act as a tool for correlation between the plume's behavior on

ground and in actual orbital conditions, aiding in integration of the thruster into

spacecraft.

1.2.3 ETEEV

The Electric Thruster Environmental Effects Verification (ETEEV) experiment is a

joint effort underway between MIT, WPI, Draper Laboratory, Busek, and the Air

Force Research Laboratory. The purpose of the project is to collect in-space plume

behavior of a Hall thruster and a Pulsed Plasma thruster as a Shuttle Hitchhiker

payload scheduled to fly in 2003. More detail about the experiment can be found in

the work of Thomas and Pacros [18, 11].

Design of the Hall thruster side of the experiment is being handled by MIT. A

BHT-200 provided by Busek is currently being prepared for the flight in a vacuum

tank at MIT. This research focuses on simulating the ETEEV setup as better under-

standing of the plume aids in experiment design matters such as instrument selection

and placement. A reciprocal benefit exists in that both on-ground vacuum tank and

in-space plume data will be available in the near future for code verification.

22



1.3 Outline of Research

This research begins with an existing numerical plume model which is then upgraded

to better simulate plumes in a tank environment. Chapter 2 gives an overview of

the state of the original plume model prior to any changes. Chapter 3 describes the

development of better source models to simulate the BHT-200. Chapter 4 presents

efforts made to improve modeling of collisions. Chapter 5 covers enhancements to

the sputtering methodology. Chapter 6 presents results and conclusions about the

research. Finally, additional code modifications and a brief user's manual of the

upgraded code are included as appendices.
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Chapter 2

Original Plume Model

2.1 Quasi3

Quasi3 is a hybrid PIC-DSMC three-dimensional simulation of a Hall thruster plasma

plume written by Oh [10]. Expansion of the plume is modeled in a user-specified geom-

etry and background pressure. Estimates of surface erosion rates for three materials

are calculated based on incident particle flux and energy. Contour plots of these

rates, particle fluxes and energies on simulation surfaces, and the current density

distribution are the main results extracted from the simulation.

2.1.1 PIC method

Particle-In-Cell (PIC) methods treat gases as a collection of particles. Simulated

particles represent a much larger number of real particles and are referred to as

macroparticles. In the case of a plasma, several species must be accounted for ions,

neutrals, and electrons. Macroparticles representing these species move throughout

a computational grid. At each time step, trajectories are altered due to self-induced

and externally applied force fields. For a plasma, the self-induced electric field is

calculated by weighting charged species to the grid nodes to determine the local

charge density as in Figure 2-1. Poisson's equation,
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Figure 2-1: Particle-In-Cell (PIC) methodology.

V 2 0(X., Y) y, z) ,(2.1)

is then solved on the grid and the resulting potential is differentiated to yield the

electric field,

E = -Vb. (2.2)

Fields are weighted back to macroparticles and the resultant forces are used in in-

tegration of the equations of motion to move the macroparticles to their positions

for the next time step. This procedure is repeated until the total simulation tine is

reached.

Quasi3 uses a hybrid-PIC methodology in which the electrons are modeled as a

fluid instead of as particles. Further simplification is achieved by assuming quasi-

neutrality and reducing the general electron momentum equation to the Boltzmann

relationship,

n, = noe kTe (2.3)

Magnetic fields in the plume are considered negligible, so only the electric field is
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modeled. Xenon ions are weighted to the computational grid and the resulting local

ion charge density is equated to the electron charge density because of quasi-neutrality,

*ni ne. (2.4)

In this manner. solving of Equation 2.1 is avoided. Equation 2.3 can then be solved for

the potential with an assumed constant electron temperature of 2 eV throughout the

plume. The electric field is calculated with Equation 2.2 and particle positions and

velocities are updated due to the resultant forces as in the traditional PIC method.

2.1.2 Collision Model

In addition to the electric field, collisions also affect macroparticle motion. A Direct

Simulation Monte Carlo (DSMC) method is used to model the collisions listed in Ta-

ble 2.1. During each iteration, a global time counter is incremented by the simulation

time step. Collisions are then performed on a cell-by-cell basis in which pairs of colli-

sion partners are selected randomly. Each cell is stepped through and if a minimum

number of particles is not within the cell, collisionality is deemed improbable, the

local time counter is incremented by the time step, and the next cell is proceeded

to. If collisions are likely, two particles are chosen randomly and undergo a selection-

rejection scheme to determine whether the collision occurs or not. If a collison occurs,

the collision frequency for that process is inverted and used to increment the local

time counter. A multi-species time counter that supports multiple collision species

and types and variable macroparticle weighting calculates this time step. The veloc-

ities of particles involved in the collision are then altered based on the collision type.

This process repeats until the local time counter exceeds the global time counter at

which point the simulation continues to the next cell.

2.1.3 Computational Grid

The entire simulation is performed on a Cartesian grid generated by a program called

Mesh3. The (rid represents the simulation domain and contains information about
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Charge Exchange Elastic
Xe-Xe+ Xe-Xe+
Xe-Xe++ Xe-Xe++

Xe-Xe

Table 2.1: Collisions simulated in Quasi3.

the parent and embedded meshes used in the hybrid-PIC and DSMC routines. Em-

bedded meshes are used to obtain finer resolution in areas of interest in the domain.

Simulation objects such as the thruster, tank walls, or solar arrays are also included

in the grid. Because a Cartesian grid is used throughout, meshes and objects are

constrained to being rectangular in shape.

2.1.4 Source Model

The original source model represents the plasma flow from a SPT-100 thruster which

has nominal operating parameters as summarized in Table 2.2. This plasma is com-

posed of ions, neutrals, and electrons. Since electrons are described by a simplified

fluid model, source electrons are not modeled directly and are accounted for by the

Boltzmann equation. Table 2.3 summarizes source model parameters which are used

along with those in Table 2.2 to calculate number fluxes of source ions and neutrals

using,

hi = ' Ifall., (2.5)

h, = mfir(1 - mi). (2.6)

At each iteration, these rates and the time step determine the number of particles

to be inserted into the simulation. An empirical model of the thruster's exit plane

ion distribution is constructed from experimental measurements of near-field current

density of a SPT thruster taken by Gavryushin and Kim [6]. The magnitude and

direction of ion flow as a function of radial position are extracted from Figure 2-2 and

fitted to high-order polynomials.
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Specific Impulse, Is, 1610 s
Anode Specific Impulse 1735 s

Thrust 84.9 ,mN
Discharge Voltage, VI) 300 V
Discharge Current. I, 4.5 A

Propellant Flow Rate, rh 5.0 mg/s

Propellant Fraction to Cathode 7.5%

Table 2.2: SPT-100 nominal operating parameters.

Exit Plane Outer Radius, r1  0.100 m
Exit Plane Inner Radius, r2 0.056 m

Anode Propellant Fraction, f, 0.929
Anode Utilization Fraction, 7, 0.95

Cathode Orifice Radius 0.0005 m
Cathode Axial Offset 0.01 "?
Cathode Radial Offset 0.075 To

Xe+ Axial Drift Velocity 17,020 mr/s
Xe+ Azimuthal Drift Velocity 250.0 mn/s

Xe+ Axial Temperature 34 cV
Xe+ Radial Temperature 0.689655172 eV

Xe+ Azimuthal Temperature 0.068975517 eV
Xe Temperature 0.086 eV

Table 2.3: Source model parameters for SPT-100.

29



Figure 2-2: Experimental measurements of near-field current density. [6]

The magnitude of the current density is converted to a number density by assum-

ing all ions are singly-charged and leave the thruster with a drift velocity of 17,020

m/s. This number density is integrated across the exit plane to find total ion flow and

then normalized, resulting in a probability distribution. Integrating this result gives

a radial cumulative distribution function which decides where particles are injected

radially. The direction of the current density vectors are used to derive a beam di-

vergence angle function to choose what direction to insert particles in. The assumed

drift speed of 17,020 m/s is broken into radial and axial components based on the

divergence angle. At each time step, the number of charged particles to be inserted

is calculated with Equation 2.5 and a user-specifed fraction is assumed to be doubly

ionized. Double ions are assumed to have the same distribution as the single ions and

are injected in the same manner, the only difference being their double charge.

2.1.5 Surface Interaction Model

A crude surface interaction model predicts erosion of material off object surfaces

in the simulation. When particles cross a cell boundary, the boundary type is de-

termined from the information stored in the grid. If the boundary corresponds to

an object boundary, sputtering due to the particle impact is calculated. Because

quasi-neutrality is assumed in the model, resolution of the non-quasi-neutral sheath

boundary is not accomplished. Thus, a sheath interaction model is used to account

for this region. Typically, the object surface will fioat negative with respect to the
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pre-sheath plasma potential, causing positively charged ions to be accelerated towards

the wall. The potential drop across the sheath is calculated with,

k ITe 4I (2.7)
C .necej

Energy due to acceleration through this sheath potential is added to the particle

impacting the object surface. This energy is then used to calculate the sputtering yield

of silver, quartz, and silicon from fits to experimental sputtering data. These fits are

linear relationships between sputtering yield and incident particle energy generated

from data for normally-incident particles. Sputtering yields are then translated to

erosion rates for each material and averaged over the duration of the simulation.

Ions striking surfaces are deleted from the simulation while neutrals are reflected

specularly.

2.2 Later Modifications to Quasi3

Since its completion, Oh's work has been expanded upon. In studying issues related

to integrating a Hall thruster acceleration channel model with Quasi3, Qarnain [13]

modified the original source model. Fifes [5] hybrid PIC-MCC two-dimensional en-

gine code, Hall, is used to generate a simulated exit plane current density distribution

from which cumulative radial distribution and beam divergence angle functions are

derived. The source models axial ion temperature is also changed from 34 cV to

3.4 eV. Oh had originally chosen 34 eV because this value seemed to give better

results for the current density distribution. However, experimental as well as sim-

ulated results of ion energy distributions point toward a value smaller by an order

of magnitude. Further modification to Quasi3 includes improvement on the surface

interaction model by incorporating an empirical model for angular dependence of

sputtering yield developed by Yamamura et. al [20]. This model introduces an inci-

dent angle-dependent correction factor to the normal sputtering yield calculated in

Oh's original surface model.

Asare [1] made further improvements to the surface interaction model. The Ya-
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mamura method for angular dependence of sputtering yield is retained. However,

calculation of the normal sputtering yield is performed with a formulation by Mat-

sunamin, recommended by Yamanmura. In addition to tabulating the erosion rates of

surfaces, the sputtering yield is also used to insert sputtered particles into the sim-

ulation. These particles are tracked throughout the domain and their subsequent

deposition on other objects is recorded. Parameters for xenon sputtering aluminum

are used to calculate yields, so all objects are effectively composed of aluminum. Alu-

minum particles are ejected from the surface in-plane at 450 and travel on straight-line

trajectories until they either impact another surface or leave the simulation via am

exterior boundary. Incident particles striking surfaces are reflected with 80% of their

original energy and incident ions are neutralized before reflection.

2.3 Starting Point of this Research

Unfortunately, while trying to port Quasi3 from a UNIX to a PC system, the version

with the later modifications did not run properly. Thus, the original version of the

code written by Oh was procured and serves as the starting point of this research.
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Chapter 3

Source Model

3.1 Overview

The Quasi3 source model is of utmost importance in achieving good plume simulation

results. The source model encapsulates the state of the plasma exiting the Hall

thruster and must be detailed if accurate results of its expansion as a plume are

desired. Past work with Quasi3 has used a SPT-100 source model derived either

from experimental data or from results of a computational simulation. For this work,

the source model is of the lower power Hall thruster being used for the ETEEV

experiment, the BHT-200. The thruster is pictured in Figure 3-1 and its nominal

operating parameters are summarized in Table 3.1.

Anode Specific Impulse 1530 s
Thrust 10.5 mN

Discharge Voltage, V0  300 V
Discharge Current, 1, 0.65 A

Thruster Mass Flow Rate, ith 0.70 mg/s
Cathode Mass Flow Rate, rh, 0.10 mg/s

Table 3.1: BHT-200 nominal operating parameters.

33



Figure 3-1: BHT-200.
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3.2 Preliminary Source Model

A preliminary BHT-200 source model is generated in the same way that Qarnain

developed a computational SPT-100 source model. Fife's engine code, Hall, had

previously been regridded as in Figure 3-2 to simulate the BHT-200 by Szabo [17].

Figure 3-3 shows a schematic of the side view of the BHT-200. The rounded tip

can be seen in the curved portion of the bottom of the computational grid which

corresponds to the thruster centerline. The left-hand curve of the grid represents a

"virtual anode," corresponding to the first magnetic streamline that intersects the an-

ode. Electrons are expected to flow directly down this streamline into the anode since

their mobility parallel to the magnetic field is much greater than in the perpendicular

direction. Consequently, the thruster channel upstream of this streamline is domni-

nated by neutrals since electrons are not present to cause ionization and is ignored

by the simulation. If the grid is rotated about the centerline, the annular BHT-200 is

obtained. Runs are performed over several thruster oscillations and time-averaged to

provide exit plane information for the new Quasi3 BHT-200 source model. Simulated

thruster performance parameters from Hall are shown in Figure 3-4 and Table 3.2.

The exit plane location is chosen at z = .030 m since the space potential as seen in

Figure 3-5 has mostly fallen off by the time ions reach this axial position. As Quasi3

does not directly model ions falling through the potential produced by the thruster,

it is important that these effects are already incorporated into the source model.

Thrust, (F) 10.0 mN
Anode Current, (Ia) 0.6821 A
Beam Current, (Ib) 0.4424 A

Table 3.2: Simulated performance of BHT-200 from Hall.
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Figure 3-2: Spatial grid for the BHT-200 geometry.
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Figure 3-3: Side view of BHT-200.
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K B= 0.25, V0 = 300 V, simple wall conditions
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Figure 3-4: Simulated performance of BHT-200 from Hall.
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Figure 3-5: Space potential for BHT-200.
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3.2.1 Exit Plane Distributions

Figure 3-6 shows the averaged simulated Xe+ flux. Flux vectors at the grid points

closest to the exit plane are extracted to generate source model distributions. The

flux along the thruster centerline is not considered in this analysis since the value is

unrealistically high as the corresponding area approaches zero. The flux distribution

appears to have a 1/r relationship, consistent with the convergence of the flow towards

the engine's centerline, so a polynomial fit is performed on the r * flux distribution.

The resulting flux distribution is divided by the exit ion drift velocity to obtain a

number density distribution. A probability density function for radial ion position is

obtained by normalizing the number density distribution by its integral over the exit

plane. Integrating the probability density function results in,

P(r) = 50.1615r + 2049.6r 2 - 1.0315 x 105r , (3.1)

a cumulative distribution function that can be used to select the radial position of

ions as they are inserted into the simulation. P is the probability that the radial

coordinate of the source ion is less than r in meters. Hence, P is 0 at the inner radius

of the exit plane and 1 at the outer radius. The direction of the flux vectors is used

to generate a mean divergence angle function, resulting in,

a(r) = -2.763739 x 109r + 1.004221 x 10'r 3 -8.261261 x 10 5r2

+ 4.677020 x 102, - 1.634443, (3.2)

where a is in degrees. Figure 3-7 shows this analysis.

3.2.2 Additional Parameters

Anode propellant fraction, f, is calculated from nominal flow values to the anode

and the cathode with,
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fa = f. (3.3)
ril -- Tit

Anode ionization fraction, i), is calculated from Hall results using,

'u = . , (3.4)
ma

where beam current from Table 3.2 is converted to the corresponding ion mass flow,

min, assuming only singly-charged species. Axial ion drift velocity is derived from,

(vi)AIIs 2V 1  (3.5)

where,

VTNV =Kr)c 2 VD, (3.6)
2mjVD IB)

is calculated from Hall results.

By equating angular momentum out and the moment of forces in the azimuthal

direction, the experimental value of the original source model is replaced by an ex-

pression for azimuthal ion drift velocity derived from,

A n,,vj,(miviOT) dA f c(v, B, - u, B) r dV. (3.7)

Neglecting the axial magnetic field component gives,

nev% (mivior )2wir dr = J jv,(r B,)r dr dx, (3.8)

which can be written as,

d(vi) _ _

divix, ~e Br. (3.9)dx

Finally,

c(B,)
(Ivio)' = 1t .-X = (Pi),, - X, (3.10)

42



Radial B field averaged for each z
0 05

0.045-

0.04-

0.035-

0.03 -

Ei0.025 <Br>x = 0.0227 T

0.02

0.015

0.01

0.005
x 0.0133 m

0
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

z(m)

Figure 3-8: Calculation of azimuthal ion drift velocity.

where ( w),,, is the plasma ion cyclotron frequency. The engine's radial magnetic

field is averaged at each axial position as shown in Figure 3-8 and x is determined

by the distance between the start of ionization (0.0082 in) according to Hall and the

position corresponding to the overall averaged radial magnetic field (0.0215 rn).

Axial and radial ion temperatures are assumed to be 3.5 eV each. The azimuthal

ion temperature of .069 eV is kept from the original source model. while neutrals are

assumed to be thermalised with the wall at 700 K. Cathode parameters are taken

from engineering drawings of the BHT-200.

Because double ions are not directly modeled by Hall, they are assumed to have

the same exit plane distributions as the single ions. The fraction of ions leaving the

engine assuned to be doubly ionized is 0.1. These particles are inserted into the

simulation with 1.3 times the single ion drift velocity, corresponding to slightly less
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Exit Plane Outer Radius, r, 0.0203 m
Exit Plane Inner Radius, r 2  0.0000 n

Anode Propellant Fraction, f, 0.875
Anode Utilization Fraction, 1 0.8685

Xe+ Axial Drift Velocity 16,440 rn/s
Xe+ Azimuthal Drift Velocity 221.4 m/s

Xe+ Axial Temperature 3.5 cV
Xe+ Radial Temperature 3.5 eV

Xe+ Azimuthal Temperature 0.068975517 eV
Xe Temperature 0.0603448276 eV

Cathode Orifice Radius 0.0037338 m
Cathode Axial Offset 0.0094 m
Cathode Radial Offset 0.0472 rn

Anode Double Ion Fraction 0.1

Table 3.3: Preliminary BHT-200 source model parameters.

than double the energy of a single ion. This value is suggested by computations of

Blateau et. al. [2] for another small Hall thruster which conclude that double ion

production occurs throughout the acceleration channel in contrast with single ion

production which occurs primarily in the near-anode region. Hence, double ions are

accelerated through a much wider range of potentials than single ions and exit the

thruster with less than twice the energy of the singly-charged species. Table 3.3

summarizes parameters used for the BHT-200 source model.

3.3 Improved Source Model

An improved source model is generated by using output from an upgraded version

of Fife's code, HPHall, which includes modeling of double ions in the acceleration

channel, thus eliminating the assumption that ion species share the same distribution.

Using the same grid in Figure 3-2, runs are performed over several thruster oscillations

and time-averaged. Figure 3-9 and Table 3.4 show the results for thruster performance

parameters.
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Thrust, (F) 9.7 mN
Anode Current, (Ia) 0.6494 A
Beam Current, (Ib) 0.4022 A

Table 3.4: Simulated performance of BHT-200 from HPHall.
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Figure 3-10: Exit plane for improved source model.

3.3.1 Exit Plane Distributions

Instead of reading averaged information off of grid points, HPHall is modified to

record data about particles crossing the exit plane at z = .030 m as seen in Figure 3-

10. This plane is divided into 25 radial bins which in turn are sub-divided into axial

and radial velocity bins. Single and double ion data are recorded separately so that

distinct distributions for each species can be derived.

Since detailed information about axial and radial velocities is tracked, the new

source model does not assume a constant ion drift velocity across the exit plane.

Instead, functions for both velocity components, depending on radial position, are

extracted from the HPHaII simulation data. This approach also eliminates the need

for a beam divergence angle function as the direction of the particle is contained in

the two velocities.

Figures 3-11 and 3-12 show the axial and radial velocity distributions of single ions

at each radial bin. The vertical line in each plot marks the average velocity for that

radius. Two distinct peaks are observed in the radial velocity distributions close to

the thruster centerline. This phenomenon is attributed to the fact that as particles in
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Figure 3-11: Xenon single ion axial velocity distributions. Horizontal axes are axial
velocit, v2, ranging from 0 to 35000 m/s. Vertical axes are number of Xe+ ranging
from 0 to 3 x 1012.

HPHall cross the centerline grid boundary, they are reflected by reversing the sign of

their radial velocity in order to represent particles that are coming from the opposite

side of the annular engine. It is clear that the calculated average velocity values for

the radial component do not accurately reflect these two distinct populations of ions.

Thus., HPHall is also modified to label particles reflected at the centerline differently

from particles originating in the main engine channel so that the two populations can

be investigated independently.
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Figure 3-12: Xenon single ion radial velocity distributions. Horizontal axes are radial
velocity, V,, ranging from -35000 to 35000 m/s. Vertical axes are number of Xe+
ranging from 0 to 4 x 1012.
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Figure 3-13: Derivation of Xe+ number density distribution.

Single Ions

The same process described for the preliminary source model is used to generate the

radial cumulative distribution function, except during conversion of the flux distri-

bution to a number density distribution. Instead of dividing by an assumed ion drift

velocity across the entire exit plane, flux at each radial position is divided by its

corresponding average velocity. Figure 3-13 shows the procedure to obtain the radial

cumulative distribution function given by,

Pe,+ = 74.5992r - 1244.3r 2 + 6.4753 x 104r 3 - 3.1991 x 106,r 4. (3.11)

As before, this CDF can be used to determine the radial position of a source ion.
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Figure 3-14: Split of single ion populations.

However, for values below r = 0.007714 in, the ion may either be part of the afore-

mentioned near-side or far-side populations. The reason for this sharp cutoff in far-

side ions will be seen later. Figure 3-14 shows the split of the two ion populations

and the fraction of ions coming from across the centerline as a function of radius.

The first 10 radial bins, excluding the first data point, are used to find a fit for this

fraction which is given by,

ffar-sideXe+ = = -1.2789 x 10 3r 2 - 58.7267r + 0.5055.
rlnear-sideXe-+ + f'far-sideXe+

(3.12)

Each population of ions has its own axial and radial velocity functions. Figure 3-

15 depicts the velocity distributions for the near-side population where the axial and
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Figure 3-15: Single ion near-side population velocity distributions.

radial velocity functions are given by,

2.4597 x 101r6 - 1.2956 x 1014r- + 2.4102 x 102r"

- 2.0171 x 101013 + 6.6624 x 107r2 + 2.8743 x 10 5'r

+ 1.6065 x 10", (3.13)

Vr(r)near-sideXe+ -3.2370 x 10131-5 + 1.3736 x 1012r4

+ 1.4132 x 10 8r 2 + 4.0677 x 10"r -
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Xe+ vz distributions - near-side population
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Figure 3-16: Near-side population single ion axial velocity distributions. Horizontal
axes are axial velocity, vz, ranging from 0 to 35000 m/s. Vertical axes are number of
near-side Xe+ ranging from 0 to 3 x 1012.

Figures 3-16 and 3-17 show the axial and radial velocity distributions at each

radial position for the near-side population ions. The axial velocity distributions have

a noticeable spread, so Gaussian fits are done at each radius to determine an average

axial ion temperature which is incorporated into the model by adding a thermal

component to the axial velocity. Figure 3-18 shows the temperatures calculated across

the exit plane. The axial ion temperature is taken to be 2.96 eV. The radial velocity

distributions are narrow enough that no radial ion temperature is assumed.

The same procedure is followed to model the far-side population. Figure 3-19

shows the far-side velocity distributions. Fits for axial and radial velocity are per-
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Xe+ vr distributions - near-side population
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Figure 3-17: Near-side population single ion radial velocity distributions. Horizontal
axes are radial velocity, v,., ranging from -35000 to 35000 mr/s. Vertical axes are
number of near-side Xe+ ranging from 0 to 4 x 1012.
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Mean axial Xe+ temperatures - near-side population
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Figure 3-18: Axial niear-side ion temnperature.
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formed on the first 11 bins (the 12th is discarded) to get,

'Vz(r)far-,sideXe+ =

V(r) far-sideXe+ =

5.2001 x 1017r6 - 1.0830 x 10 16r5 + 7.8699 x 10"3r

-2.4931 x 101r3 + 3.1718 x 108r2 - 4.5502 x 10 5 r

+ 1.5936 x i0 4, (3.15)

8.2936 x 10Irr - 1.9545 x 11 6 ,r5 + 1.6987 x 101r-

- 6.8781 x 10 1 r,3 + 1.3017 x 10,r2 - 5.3546 x 105r

+ 1.1409 x 104. (3.16)

Figures 3-20 and 3-21 are the velocity distributions for the far-side population

at each radial position. The first 8 radial bins are used to calculate the axial ion

temperature of the far-side population as shown in Figure 3-22 - the resulting axial

far-side ion temperature is 3.47 cV.

As seen in FigUre 3-19, a maximum in far-side ion radial velocity occurs, corre-

sponding roughly to the location of the the thruster's curved lip. Far-side ions found

radially further from the centerline originate from further back in the accleration

channel. Those particles coming from above the lip with too much radial velocity will

impact the thruster wall and not make it to the centerline, while ions with too little

radial velocity will not make it across the centerline before the exit plane position.

Thus, a cut-off in far-side ions at r = 0.007714 rn is observed.
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Xe+ vz distributions - far-side population
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Figure 3-20: Far-side populatioin single ion axial velocity distributions. Horizontal
axes are axial velocity, v2, ranging from 0 to 35000 mi/s. Vertical axes are number of
far-side Xe+ ranging from 0 to 1 x 1012.
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Xe+ vr distributions - far-side population
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Figure 3-21: Far-side population single ion radial velocity distributions. Horizontal
axes are radial velocity, v,., ranging from -35000 to 35000 mn/s. Vertical axes are
number of far-side Xe+ ranging from 0 to 2 x 1012.
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Mean axial Xe+ temperatures - far-side population

5-

0

<2 -

1 - <T>= 3.470542 eV

0 L
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

r (m)

Figure 3-22: Axial far-side ion temperature.
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Double ions

Since information about double ions is collected separately from that of the single ions,

the doubly-charged species has its own set of exit plane distributions. Figures 3-23

through 3-32 and Equations 3.17 through 3.22 show the analysis for the double ions.

Items of note are that the velocities of the double ions are indeed higher than those

of the single ions. The extra charge causes the double ions to gain more energy when

falling through the thruster's electric field. The double ions also have a larger spread

in velocities, corresponding to the higher axial ion temperatures of 7.29 eV for the

near-side population and 3.46 eV for the far-side population. This is believed to be

a result of double ions being formed at different locations of the acceleration channel

and falling through a range of potentials.

Px,++ = 70.1681r + 681.9905r 2 - 8.4330 x 10 4r 3  (3.17)

far-,sieXe++ = "fa- deXe+ _ = 620.7026r 2  66.1980r + 0.4772
fnear-sideXe++ + nfar-sideXe++ 6

(3.18)

VZ(r)nearsideXe++ 1.6049 x 1013r5 - 8.1792 x 10111.4 + 1.2617 x 1010r3

- 1.0211 x 108r 2 + 8.6508 x 105r + 2.1926 x 104 (3.19)

Vr(r')nearideXe++ -3.8977 x 10 1 3 r5 + 1.5517 x 1012 r 4 - 2.0763 x 10 10 r3

+ 1.5344 x 108r 2 + 7.0821 x 10 5 1 - 1.5960 x 10' (3.20)
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Figure 3-23: Derivation of Xe++ number density distribution.

-3.9674 x 1012 r4 -+ 5.2944 x 1010r 3

+ 3.7329 x 10 4r -+ 2.1585 x 104

2.8130 x 10"r2

(3.21)

'1,r(r')far-sidehxc++ = -3.8926 x 10 2 0 r,7 + 1.0983 x 1019 r6 1.2323 x 101r5

+ 7.0001 x 101r 4 - 2.1190 x 101r 3 + 3.2412 x 10 9r 2

- 1.4654 x 106r + 1.6299 x 104 (3.22)
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Xe++ vz distributions - near-side population
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Figure 3-26: Near-side population double ion axial velocity distributions. Horizontal
axes are axial velocity, v2, ranging from 0 to 35000 n/s. Vertical axes are number of
near-side Xe++ ranging from 0 to 3 x 10".
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Xe++ vr distributions -near-side population
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Figure 3-27: Near-side population double ion radial velocity distributions. Horizontal
axes are radial velocity, v,., ranging from -35000 to 35000 mr/s. Vertical axes are
number of near-side Xe++ ranging from 0 to 4 x 10".
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Mean axial Xe** temperatures - near-side population
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Figure 3-28: Axial near-side double ion temperature.
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Xe++ vz distributions - far-side population
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Figure 3-30: Far-side population double ion axial velocity distributions. Horizontal
axes are axial velocity, v2, ranging from 0 to 35000 mi/s. Vertical axes are number of
far-side Xe++ ranging from 0 to 1 x 10".
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Xe** vr distributions - far-side population
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Figure 3-31: Far-side population double ion radial velocity distributions. Horizontal
axes are radial velocity, v,., ranging from -35000 to 35000 mr/s. Vertical axes are
number of far-side Xe++ ranging from 0 to 15 x 1010.
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Mean axial Xe** temperatures - far-side population
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Figure 3-32: Axial far-side double ion temperature.
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Exit Plane Outer Radius, r, 0.0203 m
Exit Plane Inner Radius, r 2  0.0000 rm

Anode Propellant Fraction, f, 0.875
Anode Utilization Fraction, ra 0.6957
Xe+ Azimuthal Drift Velocity 221.4 m/s

Xe+ Axial Near-side Ion Temperature 2.96 eV
Xe++ Axial Near-side Ion Temperature 3.47 eV

Xe+ Axial Far-side Ion Temperature 7.29 eV
Xe++ Axial Far-side Ion Temperature 3.46 eV

Xe+ Azimuthal Temperature 0.068975517 eV
Xe Temperature 0.0603448276 eV

Cathode Orifice Radius 0.0037338 mn
Cathode Axial Offset 0.0094 m
Cathode Radial Offset 0.0472 i

Anode Double Ion Fraction 0.125

Table 3.5: Improved BHT-200 source model parameters.

3.3.2 Additional parameters

Most additional parameters remain the same from the old source model with the

exception of the calculated axial ion temperatures, the anode ionization fraction, and

the fraction of ions that are doubly charged. Anode ionization fraction is calculated

as before using Equation 3.4 and HPHall results. However, instead of assuming only

singly-charged species when converting beam current to an ion mass flow, an average

charge per particle is found to account for the existence of double ions. From the exit

plane information, the anode double ion fraction is found to be 12.5% by number,

making the average particle charge 1.8 x 10-19 C. Table 3.5 summarizes the new source

model parameters.

3.4 Comparison of Source Models

Figures 3-33 and 3-34 show the ions for the two source models after the source particles

have reached steady-state. It is clear that the plume of the old source model is more

beam-like while the new source model exhibits more divergence. This can be explained

since the old source model assumes the same ion drift velocity across the exit plane.
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Old source model New source model

Figure 3-33: Comparison of source models - single ions.

Old source model New source model

Figure 3-34: Comparison of source models - double ions.
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Figure 3-35: Comparison of source models.

In contrast, the new source model incorporates velocity distributions across the exit

plane, modeling slower particles at the edge of the plume that will be affected more by

the radial potential and cause more divergence. This behavior can also be observed

in the current density distributions of the two source models as seen in Figure 3-35.

The new source model has higher values of current density at larger angles, reflecting

the presence of the sideways-pushed ions.

The simulated current densities of the two source models are also compared to

scaled experimental data. As there is currently no experimental data available for

the BHT-200, data taken from a SPT-100 by Pencil et. al. [12] is scaled to provide a

basis for comparison. Figure 3-36 shows this data -for comparison to the BHT-200,

scalings to account for the difference in power and measuring distance are performed.

Current density is assumed to scale linearly with power and inversely with the square
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Figure 3-36: Ion current density versus divergence angle. measurements sealed to 1
m radius from the thruster exit plane. [12]

of the measurement distance. After these scalings, the resultant distribution is in-

tegrated to find the beam current which is 0.6127 A, greater than the .4022 A of

the source model. This discrepancy may arise from instrument errors meaning the

original unsealed plume data also does not integrate to the expected SPT-100 beam

current or from a difference in the ratio of beam to anode current, , between the

two thrusters. As a result. ain additional scaling is added. The final scalinig formula

is given by,

.. PBHT rS.PT )2PBHHT =(rsPTPT (3.23)
JBHT (JSPT ( P5PT I BHT(

where the extra scaling factor is,

(IB)BHT simulated (3.24)
(IB)BHTscaled

Because of its greater detail in modeling the exit plane velocity distributions,

the improved source model shows better agreement of current density magnitude,

especially at sniall angles, with experimental data.
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Chapter 4

Collisons

4.1 Overview

As previously discussed. collisions play an important role in affecting the plume's

behavior, particularly under vacuum tank conditions. Several improvernents to the

Quasi3 collision method have been implemented.

4.2 Charge Exchange Cross-section

The dominant collision phenomena in the plume region is the resonant charge ex-

change process where an ion gives its charge to a neutral.

Xe + Xe+ Xe+ + Xe

Xe + Xe++ Xe++ + Xe

These collisions are of potential concern in a Hall thruster plume as they typically

involve a fast-moving ion giving its charge to a slow-moving neutral, resulting in a

slow-moving ion and a fast-moving neutral. These slow-moving ions then do not have

enough kinetic energy to overcome the potential hump of the thruster and may be

accelerated at high anules or even backwards. coming in contact with the spacecraft,

solar arrays, or other components in their path. While having less energy than the

main beam ions, CEX ions still have enough energy to cause harmful damnage through
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sputtering. Thus, their accurate modeling is important to predict surface interactions

properly.

In modeling Xe - Xe+ CEX collisions, Quasi3 uses the collision cross-section of

Rapp and Francis [14] given by,

URF (-0.8821 In c, + 15.1262)2 X 10-20M 2  (4.1)

where c,. is the relative velocity in n/s.

However. Szabo [16] argues that better accuracy is achieved with the Sakabe and

Izawa [15] cross-section. This cross-section,

5, = [1.81 x 10-' -2.12 x 10Thlogc,](I/I0 )-"cm2  (4.2)

where c,. is in cm/s, I is the ionization potential of xenon (12.1 eV) and I, is the

ionization potential of hydrogen (13.6 eV), agrees better with experimental data and

results in cross-sections about 30% larger than those of Rapp and Francis. Thus, the

Sakabe and Izawa cross-section has replaced that of Rapp and Francis in Quasii.

4.3 Elastic collisions

As pointed out by Katz et. al. [7], elastic scattering may play a part in the relatively

high-energy ions observed at large angles in the plume. These particles are not at-

tributed to CEX collisions which should result in lower energy ions. The ion-neutral

elastic collision method is slightly modified as it previously assumed final trajectories

for particles, defying quantum mechanics in that the identity of each particle was

known a priori. The method now randomly assigns final trajectories to each of the

particles involved. The result is that more source ions may be scattered off neutrals

at large angles while retaining their high energy levels, explaining the high energy

peak measured in the plume wings. However, this modification did not have much

effect on simulation results as seen in Figure 4-1.

76



5

4.5

4

3.5

-

za
CL

3

e.5

1.5

1

0.5

u.
0

Figure 4-1: Si
5 x 10-( Torr.

100 200 300 400
E/q (eV)

500 600 700

mulated retarding potential analyzer (RPA) measurements for P

77

Old elastic collision method
38 - New elastic collision method

-46-

i50

I 
,\

F 1

54

M62

2



4.4 Neutral weighting selection

As discussed in Chapter 2, a PIC method is used to model the ions and neutrals of the

plume. Weighting factors for each species are chosen so that enough macroparticles

are present in the simulation to maintain statistical accuracy. Because of the imple-

mentation method of the collision module, particles of the same species are restricted

to having the same macroparticle weight. As explained in Section 2.1.2, after each

collision, a cell's local time counter is incremented by a collision-dependent time step.

This time increment is given by the multi-species tine counter,

At = L V(4.3)
NAJ{(2N1W 1 + 2N 2 W2 ± + c.'+ 4. c)

where the subscripts 0, 1 and 2 represent neutrals, single ions and double ions re-

spectively. N is the number of macroparticles of the species in the cell, W is the

species weighting factor, W, is the lower weighting factor of the two collision part-

ners, V is the cell volume, and c,. is the relative velocity of the two particles. Tij is

the cross-section of the collision being modeled, (Too, oo. or 70 2.

In his thesis, Oh outlines some limitations to using this multi-species time counter.

Since it is linearly dependent on the smaller of the two particle weightings and Xe - Xe

elastic collisions are modeled, the neutral weighting should be on the same order as

those of the ion species. If the neutral weighting is much higher than the ion species

weightings. when a Xe- Xe elastic collision occurs, W will be a large value, as will At.

Thus, the local time counter may be incremented by a value larger than the global

time step, effectively removing the cell from consideration for collisions over several

time steps. Setting the neutral weighting generally becomes a concern only when

trying to model a plume with a background density, for example, in a vacuum tank.

If the plume is being modeled in a perfect vacuum, the combined neutral flux from

the thruster and its cathode is small enough that a small neutral weighting does not

slow the simulation down. However, when a background neutral density is included,

many more neutral particles must be simulated. If the neutral weighting is kept on

the same order as the ion species weightings, a significant amount of the computation
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time and memory is spent on background neutrals. To avoid this issue, Oh proposes

that when modeling a background density, Xe - Xe elastic collisions should not be

included, removing the concern of large collision time steps and permitting a larger

neutral weighting.

Another issue that arises due to the neutral weighting occurs when trying to

achieve good resolution around the thruster exit by placing embedded grids in this

region. Since the weighting of every neutral macroparticle in the simulation must be

identical, cells in finer meshes may only contain a few macroparticles due to their

small volume. In order to preserve good statistics. Quasi3 requires a minimum of

four neutral macroparticles in a cell before collisions occur. Hence, if the neutral

weighting is set too high, embedded grid cells near the thruster exit may not have

enough simulated particles and this critical region will have no collisions.
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Chapter 5

Sputtering

5.1 Overview

Sputtering is the process in which atoms of a target material are removed by impinging

particles. Sputtering yields, the number of target atoms removed per incident parti-

cle, are dependent upon incident particle energy, incident angle, and target surface

composition. Particles found in Hall thruster plumes typically have energies above

sputtering thresholds and concerns about possible damage to spacecraft components

have been raised. Understanding sputtering in a tank environment is also important

in order to distinguish between sputtered material from the tank and from the engine.

As mentioned in Chapter 2, the version of Quasi3 containing the sputtering

method improvements of Qarnain and Asare could not be run properly so a version

prior to their changes is the starting point for this research. The angular dependence

of sputtering yield used by Qarnain and the normal sputtering yield used by Asare

are re-implemented. Asare's addition of inserting sputtered particles into the simu-

lation is also redone. However, instead of requiring all materials to be composed of

aluminum, the user now has the option in Mesh3 to specify object materials. Cur-

rently, sputtering off of aluminum, iron, silver, gold, silicon, and molybdenum has

been implemented. It is fairly simple to add more materials and this procedure is

described in more detail in B.5.
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5.2 Normal Sputtering Yield

The method of Yamamura et. al. [20] for angular dependence of sputtering yield

recommends using the third Matsunami formula for the normal incidence sputtering

yield. This is given by

(5.1)Y(E) =P 00 1 -(Eh-""'4 .
1+ 0.35Uss(c) \ E /

Values of P are tabulated in [20] and,

c for Equations

where,

3.441 cln(c + 2.718)

1 + 6.355 c+ 6(-1.708 + 6.882\c)'

s(c) = kc'1 2,

Etah-.normr = Us 1.9 + 3.8 -il+ 0.314 1.24

5.2 and 5.3 is,

E
EL

M1 + M2 Z 1 Z2 I2 M1 + M12 Z1 Z 2EL A 14.39 .A2  a
M/2 a M

e is elementary charge and is divided by 47(.: to convert it to SI units. Combining

this with other factors needed to convert EL to eV results in the 14.39 factor. k for

Equation 5.3 is.,

(5.7)009;1/6 (ZZ)1/2 (M1I + AI2)3/2
k =0.0793Z1 (Z j/ M

(Z/ 3 + Z2/ 3) 3/4 A 1 M1 M2 ) 1/2

and a, in Angstroms, for Equation 5.6 is.,
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Table 5.1 summarizes parameters used in this calculation and Figure 5-1 shows the

normal incidence sputtering yield for silicon by xenon which increases steadily with

incident particle energy. The yield will eventually plateau at higher energies since

particles are so energetic that they burrow deep into the target material without

causig any sputtering. However, these energies lie beyond the range of interest for

Hall thrusters.
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5.3 Angular Dependence of Sputtering Yield

A correction factor to the normal sputtering yield is calculated with,

Y(0) = cos-f exp -E(cos- '0 - 1), (5.9)

where,

f = f 1 + 2.51<> (5.10)

E f cos 00pt. (5.11)

f, in Equation 5.10 is the Sigmund f and is tabulated in [20] while,

Eth-ang 
(5.12)

E'

Eth-ang = 1.5 + 1.38 (5.13)

h = 0.834, M2 > AT1

h = 0.18, M 2 < J1

4 A, 111/12(5.14)
' (M1 + J12 )2

Parameters from Equation 5.11 are as follows:

0opt = 90" - 286( )", (5.15)

a \3/2 Z1Z2 1(1

9 = ( (5.16
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Parameter Al Si Ag Au Fe Mo
M1 , projectile mass [ama] 131.29 131.29 131.29 131.29 131.29 131.29

Z1 , projectile atomic number 54 54 54 54 54 54
1 2 , target mass [armu] 26.982 28.086 107.868 196.967 55.845 95.94

Z2, target atomic number 13 14 47 79 26 42
Us, sublimation energy [cV] 3.39 4.63 2.95 3.81 4.28 6.82

a, screening radius [A] 0.1052 0.1045 0.0896 0.0819 0.0976 0.0912
k 0.11 0.112 0.153 0.207 0.125 0.146

E, [keV] 563.5 591.3 904.3 1250 694.5 847.9
Et-orm [eV] 69.2 91.16 19.57 17.74 46.57 49.05

P 25.54 13.66 88.31 81.26 38.47 28.41

f. 1.8 1.8 1.84 1.73 1.84 1.85
RO, average lattice constant 2.56 2.72 1.13 0.98 1.12 0.91

0.5657 0.5807 0.9904 0.9600 0.8375 0.9758
Etang [CV] 72.25 95.24 26.38 23.44 52.2 63.45

Table 5.1: Sputtering yield calculation parameters with Xe as the projectile.

where E is the incident energy in eV. Table 5.1 summarizes parameters used in this

calculation.

Figure 5-2 shows the sputtering yield of silicon by incident xenon particles with

an energy of 200 cV as a function of incident angle. A maximum for the yield occurs

around 60' which represents a minimum in the threshold energy. Sputtering due to

heavy particles such as xenon is mainly due to two processes. At angles near nor-

mal incidence, the primary mechanism for sputtering is due to the projectile atomi

penetrating into the target surface. backscattering off interior atoms and into surface

atoms which are subsequently ejected from the material as seen in Figure 5-3. As

incident angle increases, the threshold energy for this process increases and the dom-

inant niechanism at oblique angles then becomes projectile atoms directly knocking

out target atoms near the surface. shown in Figure 5-4. This process starts out with

a high threshold energy at normal incidence which steadily drops with increasing in-

cidence angle. The combination of these two mechanismus results in a minimumn in the

sputtering threshold energy which is then reflected in the sputtering yield maximum.

85



0.45

0.4-

-,

S0.35 -
cu

E
o 0.3-

S0.25-
0 .

0.2 -

_0
.2 0.5
C,)

7E0.15
0)

C)

0.05-

0,
0 10 20 30 40 50 60 70 80 90

Angle (degrees)

Figure 5-2: Sputtering yield of silicon by incident xenon at 200 eV.
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Element Absolute Eth [CV] Pseudo Eth [eV]
Aluminum 69.3 100

Silicon 91.3 150
Silver 20 40
Gold 18.9 50
Iron 46.9 70

Molybdenum 49.9 80

Table 5.2: Sputtering yield thresholds.

5.4 Low-energy Sputtering Method

Figure 5-5 shows the sputtering yield of silicon for various incident angles as a function

of energy. At energies near threshold, the sputtering yield formulation of Yamamura

for non-normal incidence angles breaks down as the yield approaches infinity. Hence,

an alternate method for this energy regime has been implemented as illustrated in

Figure 5-6. An absolute energy threshold is taken where the sputtering yield at normal

incidence goes to zero. Below this energy, it is assumed that no sputtering occurs,

regardless of incident angle. Additionally, a pseudo energy threshold is determined for

each material by selecting an energy at which the yield curves described by Yamamura

still provide realistic values. For each incident angle, a linear extrapolation between

the yield at the pseudo energy threshold and zero yield at the absolute threshold

is performed to model low-energy sputtering. In this manner, sputtering yields at

all energies can be calculated. Table 5.2 tabulates these threshold energies for the

materials of interest.

5.5 Angular Distribution of Sputtered Material

Although equations for the outgoing angular distribution of the sputtered particles

are described by Asare [1, 8], the formulation was never implemented in Quasi3.

Instead, ejected particles were assumed to leave the surface at 45' in-plane. In order

to better understand where sputtering deposition occurs, this theory has now been

incorporated into the simulation.

Once the yield has been calculated, a corresponding number of sputtered macropar-
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ticles are inserted into the simulation. The sputtered particle's outgoing angles are

selected from a distribution that depends on incident angle and energy. Figure 5-7

shows the nomenclature for the angles involved.

A differential sputtering yield is defined such that its integral over all possible

outgoing angles, 01 and #, results in the yield for incident energy, E, and angle, 0 as

follows:

2-r, -r/ 2

Y(E, 0) = ] d] S(E, 0: 0 1, 0) sin 01dO1. (5.17)

The differential sputtering yield is given by,

S(E, 0; 01, q) =

0.042 cySos 01 1
IT Us

(5.18)

1 £ 3w
2 E , [cos 0-(01) + 4 sin 0 Cos 0 sin1 ,

where,

1 [3sin2 1i- 1 cos2 01(3sin 201+1) In 1+sin01 1 (5.19)
2 sil 2o, 2 sin3 3 1  1 - sin 01 1

The integrand of Equation 5.17 is an unnormalized probability distribution function
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for the outgoing angles. After integrating over all 01 and 0, the normalized probability

distribution,

f(0, ) d do = P(0i1, dO1 , de). (5.20)

f(0,1) 1 sin1 cos 0 1 1 - [ cos 0/(01) + -7 sil 0cos 6sin1 ,
'r(1 - 6 cos 0) 2 L 4

is achieved, where c = .h From this, cumulative distribution functions for 01 and

1 are derived as shown below:

F1 (01) = d' f (01', )db,
0 JO

F1 (01 ) 1 -cs -jEcosO {x2 + X lIn ,] (5.21)
I1- r-cos6 0 2 4 (2 2x I + x

where x = sin 01, and

F 2 I f ( 01, ,e ) #

I -'6sin 0sill 0 sill
F2 () [1 - (5.22)

2,Yr I - 1 (7 Cos 07(61)

These equations are used to statistically select the outgoing angles of the sputtered

paticles. Figure 5-8 gives a sense of the angular distribution shape for a few incident

angles.

5.6 Implementation of Sputtering Method

When a simulation particle crosses all interior boundary, Quasi3 checks if it has

enough energy to make it through the sheath. Particles repelled by the sheath are

specularly reflected while those that make it through the sheath access material-
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dependent sputtering information. If the particle's energy is below the absolute

threshold of the material, it is reflected and neutralized (if originally charged) with an

energy loss by reflecting the normal velocity and multiplying all velocity components

by an accommodation factor. The wall is assumed to be at a temperature of 300 K

and particles coming in contact with it are assumed to gain energy if their incident

energy is smaller and lose energy if their incident energy is higher as given by,

T 1 - T
= - T 0.5. (5.23)

After many collisions with the walls, particles should eventually thermalise and ap-

proach the same temperature as the wall. Particles above the absolute energy thresh-

old cause sputtering and the yield is calculated as described in Sections 5.2 through 5.4.

An appropriate number of sputtered mnacroparticles is then inserted into the simula-

tion. The outgoing angles are chosen using the equations outlined in Section 5.5

a random number between 0 and 1 is chosen and used with Equation 5.21 to pick

the particle's 01. This result is then substituted into Equation 5.22 to find 0' by

comparison with another random number. Sputtered particles are assumed to follow

straight-line trajectories until they are either deposited on another surface or exit the

simulation via an exterior boundary. Measurements by Wehner [19] found velocities

of sputtered atoms from metal surfaces by mercury ions corresponding to energies

on the order of 10 to 30 eV. Mercury, like xenon, falls in the category of heavy-ion

sputtering, so sputtered particles caused by xenon impingement are likely to fall in

the same range. This finding supports the straight-line trajectory assumption since

the velocities of sputtered atoms are high enough that they do not remain in the

plume region long enough to collide with other particles and can be considered a

second-order effect. The velocities are also low enough that the particles pose no

threat in causing sputtering damage to surfaces themselves. In order to speed the

simulation, sputtered particles are given an artificially high velocity to decrease their

transit time through the domain.
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Chapter 6

Results and Conclusion

6.1 Overview

Various tests are run with the final model to investigate plume behavior. Simulations

of current density distribution serve to verify the source model and delve into the

effects of background pressure on the plume. More detailed analysis into the causes

of these effects provides much insight. Finally, cases in a simulated vacuum tank

are run to synthesize all the improvements and to qualitatively verify the sputtering

model.

6.2 Current Density Distribution

Runs of the simulation to measure current density distribution are done with the

grid pictured in Figures 6-1 and 6-2. The simulation domain shown in Figure 6-1 is

large enough to allow measurement of the current density at 0.6 n from the thruster

exit. Samples of particles crossing an imaginary hemisphere of radius 0.6 m are

taken to generate the simulated distributions. In order to achieve better resolution

around the engine exit plane, three successively smaller embedded meshes are placed

inside the parent mesh as shown in Figure 6-2. Each embedded mesh has a cell

width half as big as its parent. For cases with a background density, the six exterior

boundaries are set to have a background neutral flux in order to replenish neutrals
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Figure 6-1: 3D view of current density simulation domain.

leaving the simulation and to maintain pressure. Furthermore, for reasons described

in Section 4.4, background density runs only use one layer of embedded mesh and do

not model neutral-neutral elastic collisions. Simulation runs are for 5,000 iterations.

Typically, since neutral weighting is not an issue in vacuum cases, all collisions,

including neutral-neutral elastic collisions, are modeled. However, as seen in Figure 6-

3, a broader current density distribution results. The Xe-Xe collisions serve to diffuse

the neutrals which in turn leads to the wider distribution of ions. The exclusion of

these collisions results in a difference in the plume structure. For more consistent

comparisons to the background density cases, vacuum cases are also run without the

neutral-neutral elastic collisons.

96



Parent Mesh Embedded Mesh 1

0 20 40 60 80 100

x (cm)

Embedded Mesh 2

. , . .

- -

* * * 7.* aa i : ;. ei i' : i

150

100

50

150

100

50

0 20 40 00 80 100

x (Cm)

0 20 40 00 80 101

x (Cm)

Embedded Mesh 3

- k

.. .

f ... i . : .. . .

100

100

50

150

100

s0

0 20 40 00 0 100

x (Cm)

Figure 6-2: Embedded meshes for current density simulation domain.
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Figure 6-4: Comparison of scaled and simulated data at 60 cm.

6.2.1 Comparison to Experimental Data

FigUre 6-4 is the comparison of the simulated current density distribution against

experimental data scaled as described in Section 3.4 at a pressure of 5 x 10- 6 Torr.

The simulated distribution matches the experimental data peak well. However, the

shape of the distribution for the inner angles does not correlate well and the amount

of current found in the wings is under-predicted. Section 6.4.1 discusses possible

reasons for these incongruities.
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Figure 6-5: Current density distributions for various background pressures at 60 cm.

6.2.2 Effect of Background Pressure

Current densities are simulated at various background pressures and results are shown

in Figure 6-5. There is a trend of increasing current density in the wings with increas-

ing background pressure which is explained by the larger amount of CEX collisions

that occur with higher background densities. The ions produced in these collisions

are of lower energy than the source ions and as a result are more affected by the

potential hump of the plume and thus are pushed into the larger angle range.

Figure 6-6 shows that the amount of particles with a low energy-to-charge ratio

at 70' increases with background pressure. These low energy ions are believed to be

the products of CEX collisions. Figures 6-7 and 6-8 are phase-space velocity plots for

all single and double ions in the domain at the end of the simulation separated into

source, elastic and CEX populations. It is apparent that the ions emanating from the
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Figure 6-6: Simulated RPA data at 70' for various background pressures.

source are at higher energies than those produced from charge exchange, confirming

the conclusion that the low-energy ions are from CEX processes. As expected, ions

from elastic collisions fall in an energy range between those of the source and CEX

ions. Figure 6-9 shows all charge exchange ions for two different pressures. Clearly,

more charge exchange ions exist at the higher value of background pressure. Figure 6-

10 shows all source ions for the same pressures for which little difference is observed. It

is obvious that the charge exchange ions are found throughout the domain, including

the high angles, whereas the source ions are mainly directed forward in the thrust

direction. Hence, hypotheses about the effect of background pressure on CEX ion

production and their location are justified.

A more detailed look at the effect of the background pressure on plume structure

is done by running cases where the neutral flux from the source (that coming from the
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main engine and the cathode) is set to zero. The current densities are then solely a

result of interaction with neutrals of the background density. These distributions, as

well as those from the baseline cases, are depicted in Figure 6-11. It is observed that

the current densities resulting from only the effect of the background neutrals follow

the predicted pattern of higher wings with increasing pressure and that the presence

of the background density becomes the dominant effect in the distribution's outlying

angles. To better understand this, Figures 6-12 through 6-17 are generated. As seen

in Figures 6-12 through 6-14, the current density in the central region of the plnne

decreases as background pressure increases since the presence of more background

neutrals causes a greater number of source ions to be scattered out of the plume's

core. The cases that exclude the source neutrals have higher current densities because

there are less neutrals for ions to interact with. This decreasing trend continues until

about 50' where growth of the current density with background pressure begins to

emerge. The ions lost from the center of the distribution make their appearance in

the larger angles which explains this result. The cases that include source neutrals

typically have the higher current density values in this regime since more ions are

scattered into the wings. Figures 6-15 through 6-17 confirm that source ions are

being diverted from the smaller to the higher angles of the plume. Small angles are

almost entirelv dominated by source ions. However, as angles become larger. the

fraction of CEX ions begins to climb, especially at higher background pressures. By

the time the outer regions of the plume are reached, CEX ions have become the

main contributor to the current density. An interesting observation is that the angle

where crossover of the source and CEX ion fractions for a certain pressure occurs

roughly corresponds to the angle where a "kink" in the current density distribution

of Figure 6-11 for that pressure happens.

It is clear that the wings of the current density distribution become increasingly

dominated by the presence of a background gas as pressure rises. If these large angles

are the domain of interest in a vacuum tank experiment, a much lower pressure must

be maintained to capture realistic plume behavior. At a critical pressure, when the

background density becomes the overpowering effect, extrapolation of experimental
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Figure 6-11: Current density distributions for various background pressures at 60 cm
with inclusion and exclusion of source neutrals.

to actual in-space results is impossible. It is hypothesized that this critical pressure

occurs when the corresponding background neutral density approximately equals the

neutral density produced by the thruster in areas where CEX collisions primarily

take place. For the BHT-200, a pressure of 5 x 10-6 Torr or below suffices. While

low enough pressures may be possible to maintain for a small thruster such as the

BHT-200, this may not be the case for a larger thruster. Since the source neutral

density at the exit plane is smaller, maintaining an adequate vacuum pressure becomes

increasingly difficult as the pumps need to work harder to both clear the larger amount

of gas injected by the thruster and to maintain a low enough background neutral

density that the source neutral density is not overpowered.
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6.3 Simulation in Vacuum Tank

In order to bring together all the modifications made to Quasi3, a simulation of the

thruster in a vacuum tank is run. This run synthesizes the improvements made to

the code's source model and sputtering methodology.

6.3.1 Simulation Geometry

The tank modeled is the vacuum facility located at MIT being used to prepare the

ETEEV experiment. Figure 6-18 shows the grid used to simulate the tank. Two

walls have been removed for easier viewing of the tank interior. The geometry is

quite crude with respect to the actual tank which is cylindrical in shape and has a

complex back wall designed to catch sputtered material. Because Quas'S is limited

to rectangtular geometries. such features could not be captured in the model. The

geometry includes walls modeling the tank as a box, the thruster, two witness plates

to study the sputtering and its deposition in the tank, and a hole in the center of

the bottom to model the vacuum pumps. The hole is scaled by balancing mass flow

injected by the thruster to mass flow leaving the tank,

mthrstr = - mxeA. (6.1)
4

The pressure the tank stabilizes to during engine operation is 2 x 10-5 Torr. Assuming

room temperature of 300 K in the tank, the density and neutral thermal velocity can

be calculated with,

P
7 = , (6.2)kVT

8 kT
S= k. (6.3)

ir m

Equations 6.1 through 6.3 result in an expression for the area of the hole,
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Figure 6-18: Simulated tank geometry.

m |27rkT
A = - .2 (6.4)

P VM

The two witness plates are modeled as silver and are oriented with respect to the

thruster as shown in Figures 6-19 and 6-20. The tank walls are made of steel and

hence are modeled as iron. Similar embedded meshes to those in Figure 6-2 are placed

around the thruster exit plane. The potential reference point is placed at a node in

the plume's path and walls in contact with the plasma are modeled as conductors as

described in Section A.1. The tank simulation runs are 45,000 iterations.
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6.3.2 Tank Simulation Results

Cathode Asymmetry

An interesting aspect of the 3D simulation is that the flow from the cathode is modeled

separately from that of the main engine, so the plume is not completely symmetric.

For this simulation, the cathode is modeled as being directed in the negative y direc-

tion. All particles emitted from the cathode are assumed to be neutrals (the cathode

plume may in reality be 3-10% ionized). Figures 6-21 and 6-22 demonstrate this

asymmetry of the source neutrals. Figure 6-21 shows them without any obstructions

in the domain, while Figure 6-22 shows the plume neutrals with the simulated witness

plates in their path. Shadowing in the particle distribution due to the witness plate

obstruction can be observed.
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Surface Interactions

Sputtering and deposition data are collected for all surfaces in the tank simulation as

shown in Figures 6-23 throuoi 6-32. It should be noted that these results are from

runs with a minor error in the calculation of sputtered particle outgoing angles. An

extra +1 term is included inside the curly braces of Equation 5.21. As illustrated in

Figures 6-23 and 6-25, silver sputters from the west walls of the witness plates in large

amounts as these are the sides directly exposed to the thruster plume. As expected,

this rmaterial from the witness plates accumulates mostly on the west wall behind the

thruster and on the north and south walls west of the plates (Figures 6-28 and 6-30).

Figures 6-23 and 6-26 show no silver deposition on the west and east walls of witness

plates 1 and 2 respectively, accounting for the fact that these surfaces have no line

of sight from the other plate. Another point to note is that both the east wall of

witness plate 1 and the west wall of witness plate 2 receive a finite amount of silver

deposition. This phenomenon is explained because the witness plates have a finite

width in the simulation. Hence, the north and south walls of the witness plates are

capable of sputtering and subsequently depositing on the other plate.

Iron sputtering mostly occurs in the east side of the tank since the plume is aimed

in this direction (Figures 6-27 through 6-29). In Figure 6-28, the shielding of the north

wall from sputtering due to obstruction by witness plate 2 can be seen. Deposition of

iron occurs throughout the tank. primarily on the east faces of the witness plates and

the eastern parts of the tank walls. Since iron sputtering is predominantly located in

this region, it follows that its deposition is as well.

Figure 6-32 depicts the flux of different types of Xe+ on the tank's west wall.

Throughout the course of the simulation, when charge exchange collisions occur,

those particles involved are labeled as "CEX particles," allowing separation and com-

prehension of the differences between particles that have undergone the process and

those that have not. It is clear that the ion flux striking the west wall is primarily

due to CEX ions -- to reach this surface, ions must have a velocity opposite to the

thrust direction which most likely is the result of the CEX process. The occurrence of
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source ion flux on this wall is probably due to large angle elastic scattering of source

ions - particles undergoing elastic collisions do not get relabeled and as such are

grouped with the source ion population. It can be seen from Figures 6-31 and 6-32

that CEX ions generally strike walls close to the locale of their formation (typically

around the engine exit plane). The side "wings" formed by the CEX ions which are

pushed laterally by the plume's potential hump can also be observed.

Runs with an initial background density produce basically the same surface in-

teraction data, but fluxes are altered by the introduction of background neutrals as

shown in Figures 6-33 and 6-34. CEX ion flux is still the major contributor to the

west wall and is also increased by an order of magnitude over the vacuum case. How-

ever, the shape of their distribution corresponding to the plume's potential profile

is lost. The presence of the neutral background results in CEX collisions happening

throughout the tank and not only near the thruster exit plane, where the source neu-

trals are localized. The preferential impingement of the upper part of the west wall

occurs because the thruster is closer to the tank's bottom. Thus, CEX ions produced

below the thruster are more likely to deposit on the bottom wall before having the

opportunity to reach the west wall. The opposite is true for the upper region of the

tank, explaining the focusing of CEX ions on the upper west wall. Remnants of the

former CEX ion distribution can still be seen in Figure 6-33, but it is much broader

as explained by the dispersed production of CEX ions.

Overall, the surface interaction results of the tank simulations seem to make sense

qualitatively, giving confidence in the general sputtering methodology.
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Figure 6-23: Witness plate 1, west wall, silver material.
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Figure 6-24: Witness plate 1, east wall, silver material.
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Figure 6-25: Witness plate 2, west wall, silver material.
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Figure 6-26: Witness plate 2, east wall, silver material.
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Figure 6-27: East wall, iron material.
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Fig-ure 6-28: North wall, iron material.
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Figure 6-29: Up wall, iron material.
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Figure 6-30: West wall, iron material.
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Figure 6-31: Up wall, iron material.
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Figure 6-32: West wall, iron material.
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Figure 6-33: Up wall with background density, iron material.
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Figure 6-34: West wall with background density, iron material.
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6.3.3 Tank Filling

Wkhen simulating the tank filling process, no initial background density is assumed,

so neutrals only originate from the source model. The code is run until particles

leaving are balanced by particles entering, resulting in a steady-state total. Because

the number of neutrals dominates, a very large neutral weifghting needs to be used to

maintain a, reasonable computation rate and memory usage. Figure 6-35 shows the

convergence of a tank filling case run over 11 days. The ion species reach their steady-

state totals almost immediately whereas the neutrals take much longer. Temperatures

of each species are calculated from particle information saved every 250.000 iterations

and plotted in Figure 6-36. The neutral temperature should asymptote to 300 K since

accommodation to the tank wall temperature occurs after many collisions. However,

the simulated temperature seems to be decreasing below the predicted value. In

addition, the final pressure of 1.4 x 10' Torr as seen in Figure 6-37 is below the

expected 2 x 10- Torr. Although there are issues with the final temperature and

pressure values of the tank filling simulation, it is promising that the number of

neutrals converges, so further improvements to the model may result in completion

of tank simulation runs over the course of a few days.

6.4 Sources of Error

Although improvements to Quasi3 have been made, issues with the simulation still

remain, largely evidenced by the mismatching of simulated and experimental current

density data. Several probable sources of error are outlined below.

6.4.1 Charge Exchange

As seen in Figure 6-4, the current density in the wings of the plume is under-predicted.

A possible reason for this is that CEX ions generated inside the engine before the exit

plane are not currently modeled. These slow-moving ions could easily be pushed into

the wings by the potential hump of the plume, thus filling out the current density.
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Previously, Brenizer [3] added CEX collisions into Hall and found that although

the overall performance parameters of the thruster were unaffected, the potential

at the exit plane was elevated due to their inclusion. It was hypothesized that the

slower-moving CEX ions are retained longer within the engine, thus increasing the

potential. Unfortunately, Brenizer's modifications were made to a previous version of

Hall which did not include double ions, so CEX ions from the engine are not included

in the current source model. However, post-processing of data from HPHall is done

to estimate the amount of CEX missing from the model. The rate at which CEX

collisions occur is calculated with,

hCEX = ninCr(CEX, (6.5)

where ni and n, are the densities of the colliding species, c, is their relative velocity

and UCEX is the cross-section of the charge exchange collision of interest. The single

ion-neutral and double ion-neutral CEX cross-sections are given by,

.Xe-Xe+CEX = 1.81 X 1014 - 2.12 x 10 log m2  (6.6)

TXe-Xe++CEX = (3.4069 x 10- - 2.7038 x 101 iIn Cr) 2 fl 2  (6.7)

Using time-averaged data from HPHall for the BHT-200 and Equations 6.5 through

6.7, the rates for both types of CEX collisions are post-calculated. Figure 6-38 shows

the single ion-neutral CEX collision rate. Figure 6-39 shows the double ion-neutral

CEX collision rate.

While most of the CEX production occurs in the near-anode engine region, these

ions are not a major threat since they are formed far enough inside the channel that

they are accelerated through a high potential and have gained enough energy before

the exit plane that they can be grouped with the normal source ions. Ol the other

hand, the CEX ions produced near the exit plane, though fewer in number, are the

most dangerous as they fall through a reduced value of potential and leave the thruster

with coniparatively slower velocities. In order to estimate the amount of missing CEX
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Figure 6-40: Region used to estimate missing CEX from source model.

Xe - Xe+ CEX rate 1.5385 x 1016 s-I
Xe - Xe++ CEX rate 9.5945 x 101 s-1

Table 6.1: CEX production rates in engine region before exit plane.

from the source model, a region before the exit plane at z = .030 n and where the

potential is relatively small is chosen as depicted in Figure 6-40. The overall rates of

CEX ion production within this region are calculated and presented in Table 6.1.

To compare these values to the amount of CEX produced in the plme, CEX ion

production rates for this region are also calculated. Numbers of collisions are kept

track of during the simulation and overall collison rates are derived from the collision

totals and simulation time. Table 6.2 summarizes the results for various pressures.

Determining whether engine or plume CEX dominates depends on the background

pressure of interest. Typically, charge exchange of the plume dictates at the higher

background pressures while that of the engine becomes a more significant effect as

true vacuum conditions are approached.
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Pressure [Torr] Xe- Xe+ CEX rate [#/s] Xe -Xe++ CEX rate [#/s]
0 3.336 x 1015 3.478 x 114

5 x 10-7 6.667 x 1013 6.959 x 1014

2.2 x 10-6 1.320 x 1016 1.435 x 101'
3.34 x 10-6 1.729 x 1016 1.914 x 1015

5 x 10-6 2.283 x 1016 2.568 x 10'
2 x 1-5 6.342 x 1016 8.194 x 1015

2.5 x 10-5 7.841 x 1016 1.053 x 1016

Table 6.2: CEX production rates in plume region for various background pressures.

6.4.2 Linking of Source and Plume Models

The linkage between the source and plume models is still not ideal. Al abrupt

transition in modeling imethodology occurs at the exit plane where the engine code

stops and the plume code begins. For instance, the plume code assumes no magnetic

field while there may still be a residual magnetic field in the engine code. If magnetic

forces in the plume do exist, then the assumptions culminating in the use of the

Boltzmann equation for electron modeling are incorrect as they presume that only

pressure and electric forces are present.

Another inconsistency in modeling techniques is the treatment of electron tem-

perature. HPHall allows Te to vary across magnetic field lines while Quasi3 assumes

a constant 2 eV throughout. Other plume models [9] use significantly higher values

for electron temperature such as 8 or 11 cV, so the sensitivity of Quasi3 to this

parameter is studied by running a case with 4 eV for the temperature. Figure 6-41

shows only slight broadening of the current density distribution with the higher Te.

Figure 6-42 shows the values and averages of potential and electron temperature

across the exit plane as given by HPHall. Although there is a distribution across the

exit plane for these values that is not modeled in the plume code, the average values

do correlate quite well. Notably, the average electron temperature of 1.95 eV is very

close to the assumed value, thereby confirming the choice of 2 eV. Figure 6-43 shows

the potential distribution of the plume as calculated by Quasi3. The maximum value

is 2.691 V while the inilimum is -6.91 V, meaning the point of highest potential just

at the exit plane is at 9.601 V with respect to the infinity point of the simulation,
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Figure 6-42: HPHall exit plane averages.

closely matching the average exit plane potential of 9.46 V.

Though there does appear to be promise in the linking of the current engine

and plume codes, experimental observations have seen strange behavior in the region

just beyond the thruster exit plane where the primary engine and cathode plasmas

interact. To date, this phenomenon has not been captured by any computational

model accurately.

6.4.3 Lack of Experimental Data

The lack of experimental data for the BHT-200 is a major obstacle in verifying the

source model properly. Uncertainty about the scaling method makes comparison to

other available engine data non-ideal.
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6.5 Conclusions

An existing plume model, Qqasi3, has been upgraded to better simulate a tank envi-

ronmnent. Major improvements to the source model, collision method, and sputtering

method as well as minor modifications summarized in Appendix A have been made.

As described in the previous sections:

" The magnitude of the simulated BHT-200 current density distribution matches

well with scaled experimental data. However, the overall shape of the distribu-

tion, especially at high angles, has yet to be captured accurately.

* Increases in background pressure and accordingly background neutral density

mainly affect outlying regions of the plume where an increase in pressure cor-

responds to an increase in current density. This phenomenon is traced to the

higher frequency of CEX collisions in the denser background.

* A critical pressure exists where tank results can no longer be considered a good

representation of perfect vacuum behavior. It is believed that this pressure

corresponds to a balance between background and source neutral density in the

primary region of CEX collision occurrence.

" Qualitative distribution of sputtering and its deposition in a simulated domain

can be accomplished.

6.6 Future Work

While now better equipped to handle the tank environment, continuing issues suggest

many directions for future work in plume simulation.

* Experimental data for the BHT-200 needs to be taken to verify the plume code.

The data; from the in-space ETEEV experiment is especially important as it will

allow correlation between actual orbital data with that taken on the ground.
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" CEX ions prior to the exit plane should be included to improve the source model.

HPHal1 can be upgraded to model these collisions and exit plane distributions

for the CEX products can be added to the Quasi3 source model.

" Sputtered material from the engine itself should be modeled as its deposition is

also a concern. HPHaII can be altered to include a similar sputtering model to

that described in Chapter 5. However, if the engine material is not elemental,

alternate methods of calculating sputtering yield may need to be found since

Yamnamnura does not tabulate data for ceramics.

" Better linkage between engine and plume code modeling methodologies should

be done to assure that fundamental plume behavior is not discarded with as-

sumptions.

P Modeling the plume on an unstructured grid would vastly improve the quality

of the simulation as more realistic geometries can be modeled. Also, the cur-

rent Cartesian grid may not treat certain boundary conditions correctly - for

example, when two tank walls are modeled with two flat surfaces meeting along

the edge, simulation of plasma in the corner edge near the intersection of the

surfaces may not be modeled properly due to improper node weightings. Using

an unstructured grid would require boundary conditions to be an essential part

of the domain and thus avoid these concerns.

" A collision method that does not require all particles of the same species to

have the same weighting should be used. The constraint of having all neutrals

be the same weighting makes accurately modeling environments with a finite

background neutral density exceedingly difficult and rapid simulation of tank

filling nearly impossible. Using a method such as Fife's [5] where species par-

ticles may have variable weights would allow combination of macroparticles in

denser areas of the plume and separation in sparser regions.

" The need to exclude collisions under certain simulation conditions can be elim-

inated by not using a single time counter for all collision types.
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*Better modeling of the interaction between sputtering and deposition on surfaces

should be considered. Presently, the model assumes a superposition of these

two processes which may not be realistic. Surfaces with a large deposition

of one type of material may develop a thin boundary layer of this material

and modeling sputtering of the original target material becomes inaccurate as

deposited material may resputter.
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Appendix A

Other Code Modifications

This appendix summarizes additional code modifications made to clean tip issues that

arose during work.

A.1 Sheath Model

A.1.1 Sheath Drop

The sheath drop at surfaces is calculated with,

(A.1)

The relationship between the pre-sheath plasma potential and the wall potential is

then given by,

A# = node - Owall, (A.2)

as illustrated in Figure A-1. Previously, Quasi3 was mistakenly treating AO as being

#wal. This error has since been corrected.
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Figure A-1: Sheath drop.

A.1.2 Conducting Surface Sheaths

The previous sheath model treats all surfaces as floating with respect to plasma

potential at each surface cell, effectively modeling them as insulators. However, many

materials of interest that might come in contact with the plume, especially in a

vacuum tank, are conductors and as such, would have a uniform wall potential. Thus,

a method for modeling conducting surfaces is implemented.

The conductor wall potential is derived by balancing the ion and electron currents

to the plate,

(Ii)plate + (Ie)piate = 0. (A.3)

Converting the currents to integrals over the surface gives:

j, dA + je dA JJ eF dA - 7 4 k dA 0 (A.4)

Substituting in Equation A.2 and rearranging gives,

-kT n [ f ee kT dA
Opwal = In 4(A.5)

C ff cridA

150



which is incorporated into Q'tasi3 by integrating over conducting surfaces to find the

wall potential. If the ion flux to a surface cell is smaller than some epsilon value, its

contribution to the integral in the denominator of Equation A.5 is considered zero.

After the wall potential is calculated, each cell is cycled through again and sheath

potentials are updated with respect to the plasma potential. More detail on how to

use this method is in Appendix B.

A.2 Potential Reference Method

Quasi3 calculates potentials in the simulation with respect to an assumed reference

point located at infinity. Boltzmann's equation with the reference point incorporated

is,

-kTe r n
In 0, y - 0. (A.6)

Quasi3 assumes zero potential at the reference density of 1.0 x 1012 m- by default.

While this assumption may hold in environments with background plasmas such as

low Earth orbit (LEO), it does not necessarily apply when trying to model a vacuum

tank on the ground. The amount of ionization in a gas at thermal equilibrium can

be estimated by using the Saha equation [4].

T3 /2
-_ a2.4 x 102. (A.7)

The ionization energy for xenon, U, is 12.1 eV/atom. Assuming a tank pressure of

2 x 10- Torr and standard temperature of 300 K, the background neutral density

is r, = 6.28 x 1017 T1-3. This results in an estimated background plasma density

of 4.91 x 10-81 m- 3 which is much smaller than the reference density and thus the

default assumptions of Quasi3 are erroneous.

In order to model the potential more realistically, the ability to specify a reference

point for the potential within the simulation has been added. As a result, potentials

can be modeled self-consistently within the domain. The user has the option to set
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the zero potential reference point in one of three places - at a domain node, at a

surface cell, or at a specified background plasma density. In the surface cell case, the

potential on the surface is set to zero and then the density and potential of the node

directly above the cell is used to reference all other domain potentials. The ability

to specify the background plasma density as the reference point allows more detailed

modeling in a space environment because in conditions such as LEO, this density may

vary widely depending on time of day.

A.3 Visualization Software

An important part of plume simulation is being able to visualize the results. Previ-

ously, Quasi3 used Plot3 (based on the VisualU and ParticleS graphics libraries) for

3D visualization and Surfplot (based on the Grafic library) for surface visualization.

While functional, these packages were also difficult to use. Furthermore, alm added

limitation was the inability of either Surfplot or the computer it was running on to

accept data files containing information about more than 10 objects. This restriction

of only 10 objects translated to difficulty in modeling complex geometries.

As such, Quasi3 has been rewritten to output data files in a format that call be

used in Teeplot, a commercial data visualization package. Tecplot is very user-friendly

and call handle data files containing up to 32,700 zones. If each of the 6 sides of am

object is represented by a zone, this means data files can contain information for up

to 5,450 objects. Thus, the code is now primed to simulate complex geometries.
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Appendix B

Quasi3 Manual

Much of how to use Quasi3 is in the appendix of Oh's thesis this section covers

clarifications and usage of modifications made to the original version.

B. 1 Overview

Quasi3 is named because it assumes quasi-neutrality and models the plume in three

dimensions.

Using Quasi3 has 3 components:

* grid generation

" plume simulation

" data visualization

The grid generator is actually a separate program from Quasi3. It is called Mesh,3 and

outputs a .grid file that is used as an input into the main Quasi3 plume simulation.

Mesh3 is used to generate the grid based on a user-defined geometry and boundary

conditions.

The plume simulation is the crux of the program. Quasi3 takes several input files

and then models the plume and its interactions with surfaces. It saves output files at

user-specified intervals that allow analysis of various plume properties.
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The data visualization allows the user to see what is really going on in the simulation.

The output files are used in Tecplot which then generates something tangible to look

at instead of pages and pages of numbers.

B.2 Mesh3

Mlesh3 generates a grid to represent the simulation domain. The user specifies details

about the meshes and objects in a file called domain.c. (The file doesn't necessarily

have to be called 'domain.c'. but it must contain the same functions as domain.c.)

An example domain.c file of the geometry used for the tank simulation is at the end

of this section.

The sizes of meshes and objects are determined in cell widths that the user de-

fines in normalized units. A normalized unit is equal to the reference length in the

simulation. Reference quantities normalize variables throughout Mesh and Qquasi3

to avoid machine computation errors when dealing with very large and very small

numbers in the same calculation. The important thing to know when creating a sim-

ulation geometry is that the reference length, reflenuth, is the length of a normalized

unit. If the reference quantities are kept the same, ref-length is 0.010513 n. Thus,

if CELL-WIDTH is set to 10 normalized units, each cell is then 0.10513 rn wide.

Embedded meshes have half the cell width of their parent mesh, the one they are

defined on. If an embedded mesh is placed on the grid described above, its cell width

would be 0.052565 m.

Oh's thesis describes how to set boundary conditions and define objects, embedded

grids, and sources for the domain. When specifying widths of objects or meshes, they

should be given in number of nodes. For example, if the width of the domain's parent

mesh is 25 cells in the x-direction, DOMAIN-X-WIDTH should be set to 26. Offsets

should be given in number of cells on the parent (if an embedded grid) or index (if

an object) mesh.

A few parameters have been added to object definition. The material switch allows

the user to specify the composition of objects. At present, seven materials have been
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incorporated into the code. It is fairly simple to add more materials as outlined in

Section B.5. Currently, material options are:

" ALUMINUM

" SILICON

" SILVER

" GOLD

" IRON

" MOLYBDENUM

" UNOBTAINIUM

"Unobtainium" is a fictional material which is unsputterable - any particles that

strike it will get absorbed into the surface and are deleted by the simulation. The

conductswitch parameter tells the simulation whether to treat the surface as a con-

ductor (1) or an insulator (0). Only single sides are treated as conductors which is

reasonable for objects like tank walls which only have one simulation surface in contact

with the plasma. However, for objects immersed in the plasma or a tank wall with a

hole in it (to model the vacuum pump), the potential across the object cannot be set

to the same value. The method also does not work properly if the surface lies across

more than one grid. It is also recommended that if the SURFACE-CELL potential

reference method is used, that the reference point not be placed on a conducting

surface.

The potential reference method is specified in domain.c as well. Options are:

" SURFACE-CELL - sets potential on specified surface cell to zero, potentials

in rest of domain calculated with respect to potential and plasma, density at

node just above cell

" DOMAINNODE - sets potential at node to zero
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" USERALUES - sets potential to zero at specified plasma density

" DEFAULTNIETHOD - uses default values of zero potential at ref-density

A point with reasonable values of plasma density should be chosen for the potential

reference point for more self-consistent results. A good location is a node or surface

cell directly in front of the thruster on the parent mesh - a point here will usually be

guaranteed of having a finite density to use as a reference for the rest of the domain.

Sample domain.c file:

/* domain.c */

/* This file is where the simulation's geometry is specified */

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include "constants.h"

#include "mesh3.h"

#include "globals.h"

/* Domain Definition */

#define DOMAINXWIDTH 39 /* Nodes in X direction */

#define DOMAINYWIDTH 32 /- Nodes in Y direction */

#define DOMAINZWIDTH 40 /* Nodes in Z direction */

#define CELLWIDTH 4.0 /* Normalized units */

/* Needed to calculate thruster flow rate */

#define XEIONMASS (0.1313/AVOGADRO)

void defineBoundaries()

/* Sets the exterior boundary conditions (along edges of the domain) */

particle{bud-switch[NORTH) = ABSORBING;

particle-bnd-switch[BOUTH] = ABSORBING;

particleobnd-switch[EAST] = ABSORBING;

particle-bnd-switch [EST] = ABSORBING;

particle-bnd-switch[UP] = ABSORBING;

particleobnd-switch[DOWN] = ABSORBING;

neutral-fluxswitch[NORTH] = FALSE;

neutral_ftunxswitch[SOUTH] = FALSE;

neutral-fluxmswitch[EAST] = FALSE;

neutral-flux owitch[WEST] = FALSE;

neutral-flux-switch[UP] = FALSE;

neutral-flux-switch[DOWN] = FALSE;

ion-fluxiswitch[NRTH] = FALSE;

ion_fluxswitch[SOUTH] = FALSE;

ion-flux-switch[EAST] = FALSE;

ionflux_switch[WEST] = FALSE;

ionjflu..-witcb[UP] = FALSE;

ion-flux-switch[DOWN] = FALSE;
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}

void defineEmbeddedGrids()

nembeddedgrid = 3; /* nembeddedgrid is a global variable of

embeddedgrid = (embeddeddata *) calloc (nembeddedgrid, sizeof(embeddeddata));

if (embeddedgrid > 0) {

embeddedgrid[].xc = 12;

emboddedgrid[j.yc = 14;

ombeddedgrid[0].zc = 14;

embeddedgrid[0].xoffc = 6;

emboddedgrid[O],yoffc = 7;

embeddedgrid[0] .offc = 7;

embeddedgrid[0].parent = -1;

}

if (nembeddedgrid > 1) {

embeddedgrid[1].xc = 15;

embeddedgrid[1].yc = 19;

embeddedgrid[1].oc = 19;

embeddedgrid[1].xoffc = 4;

embeddedgrid[1].yoffc = 4;

oobhddedgrid[1]..offc = 4;

embeddedgrid[1].parent = 0;

if (nembeddedgrid > 2) {

embeddedgrid[2].xc = 13;

embaddodgrid[2].yc = 21;

oobeddedgrid[2].0c = 21;

embeddedgrid[2].xoffc = 8;

embeddedgrid[2].yoffc = 8;

embeddedgrid[21.zoffc = 8;

embeddedgrid[2].parent = 1;

/0 Width in nodes on parent mesh */

/* Offset in cells on parent mesh a/

/* -1 indicates the top mesh is the parent o/

/* Width in nodes on parent mesh */

/* Offset in cells on parent mesh */

/o -1 indicates the top mesh is the parent of

/* Width in nodes on parent mesh of

/* Offset in cells on parent mesh */

/* -1 indicates the top mesh is the parent of

void definefbjects[)

{

nobjects = 12;

objects (box *) calloc

/* Piece 1: thruster of

objects[0].index = 0;

/* nobjects is a global variable, type short int */

(nobjects, sizeof(box));

/f This gri

objects[o].xc = 3;

objects[Ol].yc = 2;

objects[O],zc = 2;

objects[O].xoffc = 9;

objects[O].yoffc = 13;

objects[O].zoffc = 13;

objects[0).type = FLOATING;

objects[0],material = UNOBTAINIUM;

objects[0].conductswitch[NORTH] = 0;

objects[0].conductswitch[EAST] = 0;

objects[0].conductswitch[SOUTi] = 0;

objects[0].conductswitch[WEST] = 0;

objects[0].conductswitch[UP] = 0;

objects[0].conductswitch[DOWN] = 0;

sprintf(objects[0].name, "thruster");

/* Grid in which coord are given of
d must surround the object ENTIRELY of

/* X-width, nodes of
/* Y-width, nodes of

/* Z-width, nodes */

/* X-offset, cells of

/* Y-offset, cells sf

/* Z-offset, cells of

/* Dbject surface boundary type of

/* NO SPACES ALLOWED in name */
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if (nobjects > 1) {

/* Piece 2: west wall */

objects[i].index = 0;

objects[l].xc = 2;

objects[l].yc = 26;

objects[1].c = 34;

objects[l].xoffc = 2;

objects[1].yoffc = 3;

objects[1].zoffc = 3;

objects[l].type = FLOATING;

objects[l].material = IRON;

objects[l].conductscitch[NORTH] = 0;

objects[l].conductswitch[EAST] = 1;

objects[1].conductswitch[SOUTH = 0;

objects[l].conductswitch[WEST] = 0;

objects[1].conductswitch[UP] = 0;

objects[1].conductswitch[DOWN] = 0;

sprintf(objects[1].name, "West-wall");

if (nobjects > 2) {

/* Piece 3: east wall */

objects[2].index = 0;

objects[2].xc = 2;

objects[2].yc = 26;

objects[2].zc = 34;

objects[2].coffc = 36;

objects[2].yoffc = 3;

objects[2].zoffc = 3;

objects[2].type = FLOATING;

objects[2].material = IRON;

objects[2].conductswitch[NORTH] = 0;

objects[2].conductswitch[EAST] = 0;

objects[2].conductswitch[SOUTH] = 0;

objects[2].conductswitch[WEST] = 1;

objects[2].conductswitch[UP] = 0;

objects[2].cosductsoitch[DOWN] = 0;

sprintf(objects[2].name, "eastwall");

}

if (nobjects > 3) {

/* Piece 4: north wall */

objects[3].index = 0;

objects[3]..c = 33;

objects[3].yc = 2;

objects[3].zc = 34;

objects[3].xoffc = 3;

objects[3].yoffc = 28;

objects[3].zeffc = 3;

objects[3],type = FLOATING;

objects[3].materiai = IRON;

objects[3].conductswitch[NORTH] = 0;

objects[3].conductswitch[EAST] = 0;

objects[3].conductswitch[SOUTH] = 1;

objects[3].conductswitch[WEST] = 0;

objects[3].conductswitch[UP] = 0;

objects[3].conductswitch[DOWN] = 0;

sprintf(objects[3].name, "northbwall");
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if (nobjects > 4) {

/* Piece 5: south wall s/

ubjects[4].index = 0;

objects[4].xc = 33;

objects[4].yc = 2;

objects[4].zc = 34;

objects[4].xofIc = 3;

objects[41.yoffc = 2;

objects[4.zoffc = 3;

objects[4].type = FLOATING;

objects[4].material = IRON;

objects[4].coodoctswitch[NORTH] = 1;

objects[4].conductswitch[EAST] = 0;

objects[4].conductswitch[SOUTH] = 0;

objects[4].conductswitch[WEST] = 0;

objects[4].conductswitch[UP] = 0;

objects[4].conductswitch[DOWN] = 0;

sprintf(objects[4].name, "southwall");

if (nobjects > 5) {

/* Piece 6: up wall */

objects[5].index = 0;

objects[l].xc = 33;

ubjects[5R.yc = 26;

objects[5].0c = 2;

objects[5].xoffc = 3;

objects[N].yoffc = 3;

objects[5].zoffc = 36;

objects[5].type = FLOATING;

objects[N] saterial = IRON;

objects[5].conductswitch[NRTH] = 0;

objects[5].conductswitch[EAST] = 0;

objects[5].conductswitch[SOUTH] = 0;

objects[5] .conductswitch[WEST] = 0;

objects[S].conductswitch[UP] = 0;

objects[5].conductswitch[DOWN] = 1;

sprintf(objects[5].name, upwall");

if (nobjects > 6) {

/* Piece 7: down wall, piece 1 /

objects[6].index = 0;

objects[6R.xc = 13;

objects[6].yc = 26;

objects[6].zc = 2;

objects[6].xoffc = 3;

objects[6].yoffc = 3;

objects[6].zoffc = 2;

objects[6].type = FLOATING;

objects[6],material = IRON;

objects[6].conductswitch[NORTH] = 0;

objects[6].conductswitch[EAST] = 0;

objects[6].conductswitch[SOUTH] = 0;

objects[6].conductswitch[WEST] = 0;

objects[61.conductswitch[UP] = 1;

objects[6].conductswitch[DOWN] = 0;

sprintf(objects[6].name, "downwall-piece_1");

}

if (sobjects > 7) {
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/* Piece 8: down wall, piece 2 */

ebjects[7].index = 0;

ebjects[7].xc = 9;

objects[7].yc = 10;

objects[7].zc = 2;

objects[7].xoffc = 1;

objects[7].yoflc = 19;

objects[71.zoffc = 2;

objects[7],type = FLOATING;

objects[7].material = IRON;

objects[7].conductswitch[NORTH] = 0;

objects[7].condctswitch[EAST] = 0;

objects[7].conductswitch[SOUTH] = 0;

objects[7].conductswitch[WEST] = 0;

objects[7].conductswitch[UP] = 1;

objects[7].conductswitch[DOWN] = 0;

sprintf(objects[7].name, "down-wallpiece_2");

}

if (nobjects > 8) {

/* Piece 9: down wall, piece 3 *

objects[8].index = 0;
objects[8].xc = 9;

ebjects(8].yc = 9;

ebjects[8].zc = 2;

objects[8].xoffc = 15;

objects[8].yoffc = 3;

objects(8.zoffc = 2;

objects[8].type = FLOATING;

objects[8].material = IRON;

objects[8].conductswitch[NORTH] = 0;

objects[8].conductswitch[EAST] = 0;

objects[8.conductswitch[SOUTH] = 0;

objects[8].conductswitch[WEST] = 0;

objects[].conductswitch[UP] = 1;

objects[8].conductswitch[DOWN] = 0;

sprintf(objects[8].none, "down-wall-piece_3");

if (nobjects > 9) {

/* Piece 10: down wall, piece 4 /

objects[9].index = 0;

objects(9].xc = 13;

objects[9].yc = 26;

objects[9].-c = 2;

objects[9].xoffc = 23;

objects[9].yoffc = 3;

objects[9].zoffc = 2;

objects[9].type = FLOATING;

objects[9]material = IRON;

objects[9].conductswitch[NORTH] = 0;

objects[9].conductswitch[AST] = 0;

objects[9].conductswitch[SOUTH] = 0;

objects[9].conductswitch[WEST] = 0;

objects[9].conductswitch[UP] = 1;

objects[9].conductswitch[DOWN] = 0;

sprintf(objects[9].name, "down-wall-piece_4");

if (nobjects > 10) f
/* Piece 11: witness plate 1 */
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objects[1O].index = 0;

objects[l0].xc = 2;

objects[10].yc = 6;

objects[10].zc = 6;

objects[lO].xoffc = 18;

ubjects[10].yoffc = 6;

objects[10].zoffc = 11;

objects[10].type = FLOATING;

objects[10].material = SILVER;

objects[10].conductswitch[NORTH] = 0;

objects[10].conductswitch[EAST] = 1;

objects[10].conductswitch[SOUTH] = 0;

objects[10].conductswitch[WEST] = 1;

objects[10].conductswitch[UP] = 0;

objects[l0].conductswitch[DOWN] = 0;

sprintf(objects[10].name, 'witnessl");

if (nobjects > 11) J

/* Piece 12: witness plate 2 */

objects[11].imdax = 0;

objects[11].xc = 2;

objects[1ll.yc = 6;

ebjects[(ll].c = 6;

ebjects[11].xoffc = 21;

objects[11].ynffc = 21;

objects[il],zoffc = 11;

objects(ll].type = FLOATING;

objects(ll].material = SILVER;

objects[11].conductswitch[NORTH] = 0;

objects[ll].conductswitch(EAST] = 1;

objects[ll].conductswitch[SOUTH] = 0;

objects[ll].conductswitch[WEST] = 1;

objects[11].conductswitch[UP] = 0;

objects[ll].conductswitch[DOWN] = 0;

sprintf(objects[11].name, "witness2");

void defineSources()

/* The source location is given by its center. So, if you place the source on a flat edge, and then turn it to any non-zero gimble angle, a/

/* you'll get particles showing up INSIDE the object it's attached to (which is obviously a bad thing). So, be cautious in how you use

/* these sources at least for the near future 0/

nsources 1;

sources = (sourcedata *) calloc (nsources, sizeof(sourcedata));

if (nsources > 0) {

/* Piece 1: a hall thruster half e/

sources[0].nobj = 0; /* Object it's attached to */

sources[0].xc = 12.0; /* Coordinates on object (normalized units) */

sources[0].yc = 2.0;

sourcas[0].mc = 2.0;

/* Vector pointing along the thruster exit direction */

sources[0].thrustx = 1.0;

sources[O].thrusty = 0.0;

sources[0].thrustz = 0.0;

/* Vector perpendicular to thrust vector pointing from center to cathode 0/

sources[0].cathodex = 0.0;

161



sources[0].catodey = 1.0;

sources[O3.cathodez = 0.0;

/* Total propellant flow rate in #/sec (cathode and anode) */

sources[0].flow-rate = (8e-7/XEIONMASS);

}

void initializeVariables()

domain-x-width = DOMAINXWIDTH;

domainy-width = DOMAINYWIDTH;

domainoz-width = DOMAINZWIDTH;

cell-width = CELLWIDTH;

if (POTENTIALMETHOD == SURFACECELL) {

potential-method = SURFACECELL;

potential-ref-object 1;

potential-ref-index = 0;

potential-ref-side WEST;

potential-ref-i = 24;

potential-ref-j = 18;

else if (POTENTIALMETHOD == DOMAINNODE) {

potential-method = DOMAINNODE;

potential-ref-index = 0;

potential-ref-i = 20;

potential-ref-j = 28;

potential-ref-k = 28;

}

else if (POTENTIAL_METHOD == USERVALUES) {

potential method = USERVALUES;

potential-ref-density = 1.0e12;

}

else {

potential-method = DEFAULTPOTENTIAL;

B.3 Quasi3

Quasi3 requires two input files a .grid file generated by Mesh3 and a .in file which

contains simulation parameters. An example .in file for a perfect vacuum is at the

end of this section. Table B.1 outlines values that should be included in the .in file.

There are many switches throughout Quasi3 and Mesh3 that the user may want

to change, depending on the run case. Tables B.2 and B.3 summarize these.
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Variable Description

bkg-neutralidensity [neutrals/mn3 ] background neutral density
anode-prop-ingestion-factor ambient neutrals ingested
anode-double-ion-fraction fraction of ions leaving as double ions

xe-ionwt [realparticles/macroparticle] single xenon ion weighting
xe_2-ion-wt [realparticles/mrnacroparticle] double xenon ion weighting

xe-neutral-wt [realparticles/rm-tacroparticle] xenon neutral weighting

sputter-wt [realparticlcs/rnacroparticle] sputtered species weighting

Table B.1: Variables in a .in file.

File Switch Description
quasi3.h DEFAULTSTEPS-BETWEEN-OUTPUT Iterations between generation

of output files

DEFAULTSTEPS-BETWEENRESTART Iterations between generation
of restart data file

BKG-ELECTRON-TEMP Specify the background
electron temperature

SAVE-UNIX-DATA Save files for use with
Surfplot and Plot3

SAVETECPLOTASCIIDATA Save Tecplot ASCII files
SAVETECPLOTBINARYDATA Save Tecplot binary files

collision.c COLLISION-FAMILY Specify what types
of collisions are modeled

source.c ENGINE Specify what source

model to use

domain.h SAMPLE-RADIUS Specify radius that are
samples are taken at

WALLTEMPERATURE Accommodation temperature

Table B.2: Quasi3 switches.

File Switch Description
mnesh3.h POTENTIALIETHOD Specify how reference potential should be calculated

Table B.3: Aiesh3 switches.
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Sample input file:

vacuum.in

bkg-neutral-density: 0.0

anode-prop-ingestion-fraction: 0.0

anode-double-ionfraction: 0.125

xejion-wt: 1.13e10

xe_2_ion-wt: 1.61e9

xe-neutral-wt: 1.13elO

al-wt: 1.000

si wt: 1.0e10

ag-wt: 1.0e1O

auwt: 1.0010

feet: 1.0e10

Mo wt: 1.0010

B.4 Visualization Software

The original output files were written for use with PloW3 and Su'rfplot. Because of

its ease of use, output files are now generated to work with Tecplot. The original

data files can still be written, but they may not contain as much information as the

Teeplot files since they were not kept up-to-date with code modifications.

Tecplot files can be output either in ASCII or binary format. ASCII files are

useful for debugging purposes because they can be read easily. Also, scripts can be

written to post-process data from these files if needed. Binary files sometimes require

less memory and take less time to write. They are also read into Teeplot much faster

than ASCII files, so binary files should be written for file-intensive purposes such as

movie generation.

In order to use the Teeplot output files, the Tecplot include folder needs to be

added to the compiler's search path. Also, in order to write out Tecplot binary files,

the TecIO.lib library needs to be added.

The user can specify what kind of data should be saved when running the sim-

ulation. This is done by modifying appropriate switches in quasi3.h as described in

Table B.2. Different files are output for each option, so any combination of file types

can be saved. The user specifies a file prefix for each run (v3outnanme) and the output

files are as follows:
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SAVEUNIXDATA:

v3outnanie.iteration. sdata

v3outnaie.iteration.(at

SAVETECPLOTASCIIDATA:

v3outnaie. surface.iteration.(at

v3outnaie. geometry.dat

v3outnaime.particle.iteration.dat

v3outname. grid. iteration.dat

SAVETECPLOTBINARYDATA:

v3outnamne.surface.iterat ion.plt

v3outname.geometry.plt

v3outname.particle.iteration.plt

v3outname.cexxe.iteration. plt

v3outnamre.cexxeiou.iteration.plt

v3outname. cexxe2ion.iteration.plt

v3outnane.sputterxe.iteration.plt

v3outnraime.srcxe.iteration.plt

v3outname.srcxeion.iteration.plt

v3outname.srexe2ion.iteration.plt

v3outname. grid.iteration. pit

Surfplot file

Plot3 file

surface data

3D geometry data

3D particle data

3D grid data

surface data

3D geometry data

3D particle data (all particles)

3D CEX Xe neutral particle data

3D CEX Xe+ particle data

3D CEX Xe++ particle data

3D Sputtered Xe particle data

3D Source Xe neutral particle data

3D Source Xe+ particle data

3D Source Xe++ particle data

3D grid data

The Teeplot binary option saves many more files because of the way they need to

be written. In UNIX and Tecplot ASCII, all the particle data is incorporated into

one file, but Tecplot binary requires extra files. The user can select which files get

loaded into Tecplot to analyze particles of interest.

When using Tecplot to visualize in 3D, generally three files need to be loaded in

- the geometry, particle, and grid files. (For binary, if the user is interested in a

specific kind of xenon particle, then the appropriate file should be loaded as well.)

The geometry file contains information about the meshes and objects. so usually the

Tecplot Mesh and Boundary layers should only be active for these zones. The particle
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file contains information about all the particles in the simulation - using the Tecplot

Scatter layer is best for visualization. Finally, the grid file contains information about

the grid nodes, so the Teeplot Contour layer can be used to visualize this.

When viewing surface data in Teeplot, after loading the surface data file, the user

should do the following: Data-+Alter-+Shift Cell-Centered Data. Then pick all zones

on the left and all variables on the right with the exception of x and y (the first two).

This is because the surface data saved should be cell-centered, but Teeplot deals with

data as node-centered by default. The surface data files have been written so that

this should work correctly.

B.5 Adding Sputtered Materials to Simulation

The code can easily handle more materials for sputtering, as long as the sputtering

coefficients for them are known. The method currently employed is that of Yamna-

inura [20] in which sputtering coefficients for xenon impinging on target elements are

tabulated. If molecular compounds are desired in the simulation, alternate ways of

calculating the sputtering yield need to be implemented. Code modifications to add

elemental materials are summarized in Tables B.4 and B.5.

File Function Change
constants.h n/a add to list of imaterials

Table B.4: Changes to Mesh3.
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File Function Change
sputter.h n/a add to list of materials

n/a change NSPUTTER,

sputter.c calculateSputterCoefficients add data for material to list
domain.c defineSpecies add species to function declaration

add background attributes information
domain.h n/a change NSPECIES

add to list of species
change NLABELS
add to list of labels

input.c readInputFile add species to function declaration
add check-

add else if statements for reading in specieswt

add checking if material specified
add printf material wts
add fprintf material wts

main.c main declare species wt
add species in readInputFile function call
add species in defineSpecies function call
add species to print status information

functions.h n/a add species in readInputFile function declaration
add species in defineSpecies function declaration

tecplot.c saveTecplotSurfaceData add in data for surface writing
saveTecplotBinaryData

saveTecplot3Ddata add in zonename when writing out particle data
saveTecplotBinary3DData

Table B.5: Changes in Quasi3.
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