
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-040 July 27, 2007

Perfect Implementation of Normal-Form Mechanisms
Sergei Izmalkov, Matt Lepinski, and Silvio Micali

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4403008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Perfect Implementation of Normal-Form Mechanisms

By Sergei Izmalkov, Matt Lepinski, and Silvio Micali∗

July 25, 2007

Privacy and trust affect our strategic thinking, yet they have not been precisely mod-
eled in mechanism design. In settings of incomplete information, traditional implementations
of a normal-form mechanism —by disregarding the players’ privacy, or assuming trust in a
mediator— may not be realistic and fail to reach the mechanism’s objectives. We thus investi-
gate implementations of a new type.

We put forward the notion of a perfect implementation of a normal-form mechanism M: in
essence, an extensive-form mechanism exactly preserving all strategic properties of M, without
relying on a trusted party or violating the privacy of the players.

We prove that any normal-form mechanism can be perfectly implemented via envelopes and
an envelope-randomizing device (i.e., the same tools used for running fair lotteries or tallying
secret votes).

1. introduction

1.1. The Privacy Problem of Implementing Normal-Form Mechanisms

The game theoretic notion of a normal-form mechanism consists of a set of reports (or messages)
for each player, and an outcome function mapping these reports to outcomes. For example, in
the famous second-price auction mechanism, the reports consist of numerical bids —one for each
player— and the outcome function returns the player with the highest bid as the winner, and the
value of the second-highest bid as the price. Normal-form mechanisms can be designed so as to
enjoy valuable theoretical properties. The characteristic property of the second-price mechanism is
efficiency: because it is a dominant strategy for a player to bid his true valuation for the item for
sale, at equilibrium the winner is the player with the highest true valuation.

Of course, however, normal-form mechanisms are abstractions. Outcome functions do not spon-
taneously evaluate themselves on players’ reports. To be of use in concrete strategic settings, a
normal-form mechanism must be implemented, but then its theoretical properties may suffer.

privacy vs. trust. An implementation of a normal-form mechanism is called mediated if its
players rely on an external trusted party (the mediator), and unmediated otherwise. Every normal-
form mechanism has implementations of both types; in particular, the following ones:
M1 : (Mediated Mechanism) The players confide their reports to the mediator, who then secretly

evaluates the outcome function and publicly announces the result.
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M2 : (Unmediated Mechanism) The players seal their reports into envelopes, which are then pub-
licly opened so as to enable everyone to compute the outcome.1

These two general and concrete mechanisms are at opposite ends with respect to privacy and
trust. Consider using them to implement a second-price auction in a private-value setting. On
one hand, as long as the mediator is honest, M1 reveals nothing more than the correct outcome.
(However, the players cannot verify the mediator’s honesty: nothing guarantees that he announces
the correct outcome, or that he will keep their bids secret after the auction is over.2) On the other
hand, M2 guarantees the correctness of the outcome, but reveals much more: it makes the players’
reports public knowledge in their entirety. In sum, M1 requires total trust and offers total privacy,
while M2 requires no trust and offers no privacy.

privacy and trust as a strategic problem. Other implementations may fall in between the
above two extremes, but some loss of privacy appears to be unavoidable in unmediated mechanisms,
and some reliance on trust unavoidable in mediated ones. Accordingly, privacy-valuing players may
avoid participating in unmediated mechanisms, and distrustful players in mediated ones. In an
auction, such reduced participation not only causes the seller to fetch lower prices, but negatively
affects efficiency. Indeed, the requirement that “the item be won by the player who values it
the most” applies to all potential bidders, not just the ones trusting a given mediator. Thus,
no implementation that deters some players from bidding can be efficient in a general sense. In
addition, whenever (for lack of other ways of getting a desired item) distrustful players participate
in M1 or privacy-valuing players participate in M2, neither mechanism can be efficient, even with
respect to just the participating players.

In M1, a player who truly distrusts the mediator may fear that the price will always be artificially
close to the winner’s bid.3 Such a player will not find it optimal to report his true valuation to
the mediator; instead, he will have a strong incentive to “underbid.” Thus, the item for sale might
very well go to another player, who values it less but trusts the mediator more. Therefore, M1 is
not efficient.

In M2, a player truly valuing the privacy of his valuation receives, by definition, some negative
utility from its publicity. But then the only way for him to prevent his true valuation from becoming
public is to bid a different value, perhaps in a randomized fashion. This distortion may thus make
M2 inefficient as well.

More generally, privacy and trust affect the players’ strategic thinking, making it very hard for
concrete mechanisms —whether mediated or unmediated— to satisfy the strategic properties of
the abstract mechanisms they purportedly implement.

novelty and relative nature of the problem. In the second-price auction context, to
preserve M2’s efficiency, one may be tempted to handle privacy-valuing players by (a) monetizing
—somehow— privacy loss; (b) revising the players’ valuations accordingly; and then (c) relying on
the traditional Vickrey machinery. In so doing, however, the resulting auction would at best be

1For convenience, the players could employ an external party, who first collects their envelopes and then publicly
opens them, without making the mechanism a mediated one. In fact, while a mediator is blindly trusted, such an
external party only performs public actions, and thus all players can verify that he performs them correctly.

2According to Rothkopf, Teisberg, and Kahn (1990), such concerns explain why second-price auctions are rarely
used in practice.

3If player i bids $1000 dollars and the mediator (auctioneer) announces that i is the winner and must pay $999
dollars, it is impossible for i to know if there was really a bid of $999. Certainly, an auctioneer has incentives to
manipulate the outcome (e.g., if he is paid a percentage of the generated revenue for his services) and to betray a
player’s secret (e.g., if he is offered a bribe for his disclosure).
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efficient in the “revised” valuations, while Society’s interest is that it be efficient in the “original”
valuations. Integrating privacy and strategic concerns in the design of concrete implementations of
normal-form mechanisms is a new problem, requiring new techniques and conceptual frameworks.

At a closer look, however, not even the abstract second-price auction itself may be perfectly
efficient in a private-value setting. For instance, even in a magic world where the outcome function
evaluates itself on players’ reports, everyone is bound to learn that the winner’s valuation is higher
than the price; and this small loss of the winner’s privacy may suffice to miss the target of efficiency
in its purest form. But if the abstract second-price auction itself does not achieve perfect efficiency,
what goal can we set for its concrete implementations? We answer this question with the strongest
possible relativism: they should always enjoy efficiency (or any other desired property) to exactly
the same degree (whatever it may be) as the abstract second-price auction.

More generally, any normal-form mechanism implies some loss of privacy. This is the case
because the outcome itself (being a function of the players’ reports) contains information about
these reports. We regard this loss of privacy (which potentially affects all kinds of strategic concerns)
as inherent, and do not wish to rectify or modify this —or any other— property of a normal-form
mechanism.4 That is: in implementing a normal-form mechanism we aim at preserving exactly all
its privacy properties.

1.2. The Strategic Problem of Implementing Normal-Form Mechanisms

Together with a context C (describing, in particular, the players’ preferences and beliefs), a normal-
form mechanism M forms a game G = (M, C), and G’s equilibria are ultimately the object of
interest. Therefore, equilibria constitute the fundamental measure of the quality of an implemen-
tation, M′, of a normal-form mechanism M.

At the most basic level, one may focus on a single equilibrium e of G and demand that M′ be
such that the game G′ = (M′, C) has a payoff-equivalent equilibrium e′. More strongly, one may
require that, for all equilibria of G of a specific type (e.g., dominant-strategy, ex post, Bayesian
Nash, etc.), there are payoff-equivalent equilibria of G′ of the same type. Stronger yet, M′ should
guarantee that G′ exactly preserves all equilibria of G of all types; that is, G′ should not loose nor
modify any original equilibria, nor introduce any additional ones.5

In practice, the most transparent way in which an implementation of a normal-form mechanism
M fails to preserve all equilibria of M is by providing extra strategic options to two or more
players.6 Consider the following “extreme” implementation of the second-price auction among 10
players.

Implementation M̂: In a first step, all players simultaneously and privately submit their bids to
players 9 and 10. In a second and last step, players 9 and 10 simultaneously announce the winner
w and the price p. If the announced outcome is the same, then the good is sold as announced.
Else, the good is not sold and all players are fined.

4When dealing with a sequence of normal-form mechanisms, however, a carefully designed loss of privacy may
actually help to satisfy the strategic goals of the mechanisms yet to be played.

5 In fact, Saijo, Cason, and Sjöström (2003) provide experimental evidence showing that even two games possessing
the same set of dominant-strategy equilibria but a different set of Nash equilibria are actually played quite differently.

6Famous examples of auctions that resulted in outcomes that were not expected include FCC spectrum auctions,
in which bidders used last few digits of their bids to communicate their preferences and to collude on the outcome
(see Cramton and Schwartz (2002)) and the German GSM spectrum auction of 1999, in which two main participants,
Mannesmann and T-Mobil, split the available 10 licenses at a very low price (see Grimm, Riedel, and Wolfstetter
(2003)).
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Clearly, M̂ maintains the efficient equilibrium of the second-price mechanism —although, not in
dominant strategies. However, unlike in the original normal-form mechanism, in implementation
M̂ players 9 and 10 fully control the outcome: indeed, they could choose, without recourse, any
winner and price they want. In particular, based on the bids received in step 1, they can implement
the second-price auctions only among themselves, that is, they could announce the winner to be
the one between them with the highest bid, and the bid of the other as the price —which is
individually incentive compatible. That is, implementation M̂ brings into being a new equilibrium
ê, that has no counterpart in the second-price, normal-form mechanism. This example illustrates
that no concrete implementation M′ of a normal-form mechanism M could be considered “perfect”
without guaranteeing that G′ and G enjoy equivalent sets of equilibria.

Another example suggests that we may want an even stronger property. Consider the following
two-player normal-form games G1 and G2:

G1 :
A

A 1, 1
G2 :

A B
A 1, 1 101, 0
B 0, 101 100, 100

Note that G2 is a version of the Prisoner’s Dilemma. Because (A,A) is its sole equilibrium, G2

trivially preserves all equilibria of G1. Intuitively, however, G2 is far from being perfectly “strategi-
cally equivalent” to G1. This is so because there is an outcome, namely (B, B), giving both players
high payoffs but having no counterpart in G1. In some sense, the presence of such an outcome
undermines the strength of equilibrium (A,A). For instance, although in this paper we do not
concern ourselves with multiple interactions, if G1 and G2 were played repeatedly, we might expect
outcome (B, B) to emerge when playing G2. Thus, a sequence of plays of G1 could yield vastly
different outcomes than a sequence of plays of G2.

The above two examples indicate that, to ensure that playing a normal-form mechanism M is
fully equivalent to playing a concrete implementation M′ of M, it is crucial that M and M′ enjoy
the same strategic opportunities, not only for any single player but for any group of players as well.
Combining this strategic desideratum with the already discussed privacy one,

We define the problem of perfectly implementing a normal-form mechanism as that of perfectly
matching all of its privacy and strategic properties.

1.3. Our Contributions

Our contribution to a rigorous treatment of privacy and trust in mechanism design is as follows:

1. We introduce ballot-box mechanisms, a new class of unmediated, extensive-form mechanisms
concretely playable via ballots and a ballot-box.

Ballots and ballot-boxes are the same devices used, from time immemorial, for running fair
lotteries and tallying secret votes. Such venerable devices have previously been part of many
specific mechanisms, but today we demonstrate their power by showing that they can be used
as universal implementation devices for normal-form mechanisms.

2. We put forward a rigorous definition of what it means for a ballot-box mechanism B to
implement perfectly a mediated normal-form mechanism M in the classical setting.7

7By “classical setting” we mean a study of a single mechanism in isolation from any other interaction —concurrently
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As we shall see, perfect implementation is a strong but technical notion that captures many
a desideratum. In particular, whenever B perfectly implements M, the following two main
properties are guaranteed:

Strategic Equivalence. For each player i, there is a one-to-one correspondence between
his strategies in B and his strategies in M, and the outcome of any profile of strategies
in B is identical to the outcome of the profile of the corresponding strategies in M.
Privacy Equivalence. No set of players can gain more information (about the other
players’ strategies) in B than they can in M, where the only information available to
them coincides with what is deducible from the mechanism outcome.

3. We prove that every mediated normal-form mechanism is perfectly implementable by a ballot-
box mechanism.

In general, proving the existence of certain objects may not be helpful in finding them.8

Our proof, instead, is constructive in a very strong sense. Indeed, we exhibit a universal
mechanism translator: that is, a single algorithm that, given the description of any normal-
form mechanism M, efficiently outputs the description of a ballot-box mechanism perfectly
implementing M.

In particular, perfect implementation implies the exact preservation of all equilibria. Indeed, Strate-
gic Equivalence states that a mediated mechanism M and its perfect implementation M′ have
identical (up to renaming and reordering of strategies) normal-form representations. And tradi-
tional equilibrium concepts (such as Nash, Bayesian, dominant strategy, ex post, undominated
Nash, and trembling hand Nash equilibria) and set-valued solution concepts (such as rationalizabil-
ity and iterated elimination of dominated strategies) are invariant to isomorphic transformations
of normal-forms. Therefore, if a concrete mechanism M′ perfectly implements a normal-form one
M, then, for all contexts C and all traditional solution concepts E , the games G = (M, C) and
G′ = (M′, C) are guaranteed to have the same set of E-solutions.9

More generally, strategic equivalence and privacy equivalence guarantee that all subsets of
players (including the set of all players) have the same strategic opportunities and have the same
information in a play of a normal-form mechanism and in a play of its perfect implementation.
Therefore, perfect implementations provide no additional incentives for any coalition of players
—of any size— to form. Such bounding of coalitional power was first studied, in a slightly weaker
sense, by Lepinski, Micali, Peikert, and Shelat (2004).

1.4. The General Nature of Our Contributions

a general notion. Although presented via ballot-box mechanisms, the notion of a perfect
implementation is essentially independent of them. Ballot-box mechanisms are simply attractive
because they work in a most intuitive manner and enable us to measure precisely the flow of

or in the future. We stress, however, that no restrictions are placed on the players’ preferences. The players’ beliefs
(of any order) about anything relevant for the present as well as future payoffs are not limited in any way.

8For instance, Nash equilibria provably exist for any finite normal-form game, but how to find them efficiently
remains an open problem.

9An example of a solution that is not normal-form invariant is a specific variation of a trembling hand equilibrium
notion where the trembles (mistakes) are specified for actions (and not strategies) and are required to be equally
likely for all available actions. This will lead to different distributions of trembles on normal-form strategies.
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information during play (which is necessary for the rigorous treatment of privacy). What makes
them unique, right now, is that they are universal: namely, a perfect implementation of any normal-
form mechanism can be found within their class. We do conjecture, however, that other classes of
concrete mechanisms capable of universal perfect implementation will be discovered.

a context-free result. A mechanism, considered in different contexts, yields games that may
enjoy different properties. (For example, the unique Bayesian-Nash equilibrium of the first-price
sealed-bid auction is efficient in the symmetric independent private-values setting, and not efficient
in settings with any degree of asymmetry.) In principle, therefore, an automatic and universal
procedure for perfect implementation might very well consist of an algorithm that, on input an
arbitrary mechanism-context pair (M, C), outputs a concrete mechanism M′

C “equivalent” to M
in context C. The applicability of such a procedure, however, would be quite limited: while M is
a simple object (a set of messages and an outcome function), C may not be. For instance, as part
of C, the distribution on the players’ types may be prohibitively complex to specify.

Our translator is instead context-free. Namely, on input an arbitrary normal-form mechanism
M, it generates a concrete mechanism M′ such that, for all possible contexts C, the players are
indifferent between playing M and playing M′ in context C.

In essence, therefore, our translator achieves for mechanism implementation what Wilson (1987)
advocates for mechanism design: namely, that one should strive to find solutions minimizing de-
pendence on the details of the problems at hand (the “Wilson’s Doctrine”).

a signal-free solution. In a normal-form mechanism, players cannot signal information to
one another. By contrast, signalling seems unavoidable in an extensive-form mechanism. Anytime
a player A can choose between two or more actions that cause another player B to observe different
consequences before having a choice of actions himself, there is an opportunity for A to communicate
to B so as to affect the play and usher in new strategic opportunities. To guarantee strategic
equivalence, we thus construct our perfect implementations to be signal-free. Technically, we ensure
that the action set available to any player at any point of our ballot-box mechanisms consist of
either (1) a single action, or (2) a pair of actions a1 and a2 generating identical observables for all
other players. (In the second case, the player must make a choice, but this choice will only affect
the final outcome, at which point no choice of actions is available to any player.)

complementing mechanism design. The practical meaningfulness of any abstraction depends
on whether concrete implementations that adequately approximate it exist. In a sense, therefore,
our contributions enhance the practical meaningfulness of the very notion of a normal-form mech-
anism: no matter how “delicate,” its theoretical properties will continue to hold intact for at least
one concrete implementation (i.e., its ballot-box implementation).

We view our results as complementary to mechanism design. As remarkable as they may be,
the solutions offered by mechanism design are, most of the time, abstract normal-form mechanisms,
which may not retain their properties when straightforwardly played by players who value privacy
or do not trust anyone.10 Thus, while we do not help a designer in engineering new mechanisms, by

10Sjöström and Maskin (2002) provide a comprehensive survey of mechanism design and implementation theory
literature. Normal-form mechanisms are also extensively used in more applied fields, such as auction theory and
contract theory, see Krishna (2002), Bolton and Dewatripont (2005). Often the problems of privacy and trust are
by-passed by explicit additional assumptions. For instance, it is typically assumed that the seller (and similarly the
principal) can fully commit to the mechanism she offers to the buyers (and similarly to the agents)—and, since buyers
know that, their rationality dictates they must trust the seller.
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perfectly implementing whatever abstract mechanisms he finds, we do enable him to ignore issues
of privacy and trust in his work.

perfect implementation of public- and private-outcome mechanisms. In our discussion
so far, we have emphasized normal-form mechanisms with public outcome functions, that is, mecha-
nisms whose outcomes are totally and publicly revealed. More generally, however, mechanisms may
also have private outcome functions. At the end on an execution of such a more general mechanism,
not only a public outcome may be revealed to everyone, but each player may also privately learn a
personal “piece of information”, his private outcome.

We shall define and construct perfect implementations for these mechanisms as well. In par-
ticular, therefore, we perfectly implement second-price auctions in which only the winner and the
seller learn the identity of the winner and the price, while all other players only learn that they did
not win.

1.5. Prior Work on Privacy and Trust

zero knowledge and simulators. The study of privacy without trust started two decades
ago in theoretical computer science; specifically, with the zero-knowledge proofs of Goldwasser,
Micali, and Rackoff (1985). Assume that a prover P wishes (1) to prove a mathematical statement
S to a verifier V , but also (2) to keep private any detail of the proof. Saying “S is true” is not
convincing, and a classical proof of S, though convincing, would reveal much more than just “S is
true”.11 In contrast, a zero-knowledge proof is an interactive process that enables P to convince
any distrusting V that S is indeed true but does not reveal any additional piece of knowledge.
Zero-knowledge proofs are formalized via the notion of a simulator, a conceptual tool that is also
used in our paper.

secure computation. A direct predecessor of our notion of perfect implementation is secure
computation, as defined (and computationally achieved) by Goldreich, Micali, and Wigderson
(1987), improving on a two-party result of Yao (1986). They showed that n parties, each pos-
sessing a secret input, can securely evaluate any function f on their inputs. That is, the n parties
can talk back and forth so as to compute the output of f on their secret inputs with essentially
the same correctness and privacy as if they privately handed their inputs to a trusted party, who
would then secretly evaluate f and announce the result. Such privacy and correctness should hold
even if some players deviate from their prescribed communication instructions. Specifically, secure
computation protects against malicious monolithic coalitions — i.e., groups of perfectly coordinated
players. To model the perfect coordination of a group of players C, secure computation envisages
a single entity A, the adversary, that controls the members of C, before, during, and after the
evaluation. (In particular, each message received by a member of the coalition C, during the com-
munication protocol, is actually received by A, and any message sent by a member of C is actually
chosen by A.) The way secure computation bounds the power of a monolithic coalition C is by
guaranteeing that —as long as the players not in C stick to their communication instructions—
whatever C can achieve in a secure evaluation of f (i.e., whatever influence C can have on f ’s
output, and whatever knowledge C can gather about the inputs of the other players) the same C
can achieve in a mediated evaluation of f .

11For instance, providing two large primes p and q whose product equals n is a proof of the statement S = “n is
the product of two primes.” But such proof appears to contain much more knowledge than the mere statement “n is
the product of two primes” (whatever they may be)!
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Secure computation has been achieved in two main models of communication. In the first
one —indeed, the one originally put forward by Goldreich, Micali, and Wigderson (1987)— the
players communicate by ordinary broadcast, but use encryption to guarantee privacy. (The security
properties of this model thus hold only for computationally bounded adversaries, who cannot
crack such encryptions.) In the second one —put forward by Ben-Or, Goldwasser, and Wigderson
(1988) and Chaum, Crépeau, and Damg̊ard (1988)— the players communicate via perfectly private
channels. That is, it is envisaged that between each pair of players i and j there exists a dedicated
“lead pipe” that enable i and j to exchange messages so that no one else can see, alter, or gain any
information about what they say to each other, or whether they are communicating at all. (The
privacy guaranteed in this model is information theoretic, rather than computational.)

These two models differ in the size of the coalition they can tolerate. In the broadcast model,
security is guaranteed against coalitions of any size. In the private-channel model, security is
guaranteed only against coalitions of a minority of the players.12

Our paper is actually the first one to provide secure computation (via a different communication
channel: namely ballots and a ballot box) in the information theoretic model and against coalitions
of arbitrary size.

secure computation vs. perfect implementation. A protocol for securely evaluating a
function f essentially is a concrete, extensive-form mechanism. It is thus very natural to consider
implementing a normal-form mechanism M by the following concrete mechanism MSC : the play-
ers first choose their reports, and then securely compute on them the outcome function of M.
Unfortunately, this appealingly simple approach fails for three main reasons, only the first of which
is correctable.

Honesty. The very notion of secure computation is stated relative to the honesty of some
players. A honest player is one always following his instructions, and secure computation bounds
the power of a coalition C only if the other players are honest. Honesty is clearly at odds with
rationality: a rational player will surely deviate from his prescribed instructions whenever it is
advantageous for him. Nonetheless, though explicitly part of the definition of secure computation,
honesty by itself is only superficially problematic to the above mechanismMSC . For instance, in the
secure-computation protocol of Goldreich, Micali, and Wigderson (1987), each player is required,
for any encrypted message he sends, to give a (zero-knowledge) proof that the underlying clear-text
message is actually in compliance with his prescribed strategy. If a player fails to provide such
a proof, then he is immediately identified. Accordingly, if MSC is enriched so that a sufficiently
high fine is imposed on such a player, it will be rational for him to comply with his prescribed
instructions.

Signaling. It is well know that enabling the players of a normal-form mechanism to signal to
one another introduces additional equilibria, and all known secure-computation protocols enable
uncontrolled and undetected signaling among the players —thus making M and MSC strategically
non equivalent. The possibility of signaling is self-evident in all secure-computation protocols in
the private-channel model: by assumption, such channels allow for free and undetectable commu-
nication among the players. Uncontrolled signalling occurs more subtly in all secure-computation
protocols in the broadcast model. In essence, these protocols require the players to execute proba-
bilistic strategies, and thus exchange messages with positive “entropy.” Whenever this is the case,

12 Rabin and Ben-Or (1989) show that security can be guaranteed even against coalitions comprising dn/2− 1e of
the players; but a result of Cleve (1986) implies that this bound on coalition size is actually the highest possible.
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Hopper, Langford, and von Ahn (2002) prove that any pair of players can implement a covert chan-
nel of communication, so called steganographic communication. That is, while exchanging their
prescribed messages, any two players may also exchange additional information without anyone
else (even a computationally unbounded observer) noticing it. By means of these covert channels,
the players can signal to each other, and thus gain additional strategic opportunities not present in
M. The very inability of detecting such signalling rules out any possibility of punishing signalling
players (so as to make it irrational to engage in steganographic communication). The only way
to control signaling in secure computation is provided by the work of Lepinski, Micali, and Shelat
(2005). Roughly, while they cannot prevent signaling in the secure computation of a function, they
can ensure that such signaling is “no more powerful than a pre-play cheap-talk conversation.” In
essence, they show how to simulate the following 4-stage mediated mechanisms: (1) the players
freely engage in cheap talk (but cannot contract with each other); (2) each player, now locked in
his own room, chooses his report and submits it to the mediator; (3) the mediator applies the out-
come function to the submitted reports; and (4) the mediator broadcasts the public outcome, and
privately delivers to each player his private outcome. Though this is a very powerful simulation,
the initial cheap-talk stage significantly alters the strategic opportunities of a normal-form mecha-
nism. In sum, no implementations of normal-form mechanisms based on known secure-computation
protocols can satisfy our notion of strategic equivalence.

Coalitions. A separate source for the strategic non equivalence of M and MSC is the “ex-
cessive” power enjoyed by some coalitions of players. Indeed, for all secure-computation protocols
there exists at least one coalition C that not only can force any outcome it wants (as the players
9 and 10 can do for the implementation M̂ of the second-price mechanism discussed in Section
1.2), but can do so without being detected by anyone.13 In the protocol of Goldreich, Micali, and
Wigderson (1987), only the coalition of all players has such power. In all secure-computation pro-
tocols that rely on private channels, C can be any coalition comprising a majority of the players.
Such large coalitions may not be a concern if honesty is assumed to be the norm, but they are very
much a concern when all players are assumed to be rational.

Our paper can interpreted as the first one to guarantee secure computation based solely on
rationality of the players (no matter of the incentive structure and of size of a coalition).14

1.6. Other Related Work

Privacy of information was certainly recognized in earlier economics papers, but from a normative
perspective, not one of mechanism design.15 Closer to our work, trusted-party simulation has
further been investigated in the following three directions.

13In all prior secure-computation protocols, such a coalition can force any outcome it wants with the guarantee
that no player not in the coalition (let alone an external observer!) can notice any wrong doing. This is not the case

if players 9 and 10 collude in M̂. For instance, if player 1 reports a bid of 100, and players 9 and 10 announce that
the winner is player 9 and the price is 5, then player 1 immediately realizes that 9 and 10 have cheated.

14Indeed, Izmalkov, Lepinski, and Micali (2005) cast an earlier version of our results in terms of secure computation.
15The special issue “The Law and Economics of Privacy” of The Journal of Legal Studies (1980, Vol. 9(4)) and

Posner (1981) address the question of and under which circumstances should private information be collected and
publicly released. Stigler (1980) provides several examples of economic phenomena that are linked to privacy concerns:
reputation, blackmail, industrial secrecy and espionage.
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special cases. All the literature on pre-play communication games achieving correlated equi-
librium (or communication equilibrium, or Bayesian-Nash equilibrium) can be viewed as replacing
the mediator in the evaluation of a specific class of probabilistic functions f . (See in particular,
Bárány (1992), Forges (1990), Ben-Porath (1998), Aumann and Hart (2003), Urbano and Vila
(2002), Ben-Porath (2003), Gerardi (2004), Dodis, Halevi, and Rabin (2000), Gerardi and Myerson
(2005), Krishna (2006).) In addition, the emphasis of all these papers is on preserving specific
equilibria of the original game, without concerns about other equilibria that may be generated in
the process.

Halpern and Teague (2004) —see also Gordon and Katz (2006) and Lysyanskaya and Trian-
dopoulos (2006)— use secure function evaluation to replace the mediator for a specific class of
incentives. (In essence, they require that the preferences are such that the function to be evaluated
is dominant-strategy incentive compatible.) Again, no consideration is given to the introduction of
additional equilibria.

By contrast, we replace the mediator for all functions and for all possible preferences of the
players, and keep all equilibria intact.

spreading trust. Some works, in particular that of Naor, Pinkas, and Sumner (1999), rather
than putting trust on a single mediator, distribute it onto multiple mediators. (Thus, correctness
and privacy hold only in so far these mediators do not collude with each other, nor signal information
that they are not supposed to.)

By contrast, our emphasis is on removing all trusted parties.

impossibility results. Whether or not a trusted mediator can be replaced by an unmediated
interaction of the players alone crucially depends on the means of interaction available to the players.
Because such a replacement is counter-intuitive, we informally expect it to be impossible in most
interaction models. Indeed, this replacement has been proved impossible, in a formal sense, in many
specific interaction models, even for a restricted class of contexts and outcome functions. Notably,
Aumann and Hart (2003) prove that two players cannot reach any non-trivial correlated equilibrium
via “cheap talk,” so long as the players communicate essentially by broadcasting messages. Brandt
and Sandholm (2004) argue the impossibility of unconditionally privacy-preserving second-price
auctions in many interaction models.

By contrast, we prove that there exists a reasonable model of interaction (via ballots and a
ballot box) in which replacing the mediator is possible for all outcome functions and all contexts.

1.7. Road Map

The rest of the main body of this paper intuitively describes our notions and results for normal-form
mechanisms with public outcomes. Their formalizations, and our proofs, are presented in Sections
A through F of our Appendix. Section G extends our work to normal-form mechanisms with both
public and private outcomes. Finally, Section H discusses the issue of abort, that is, the players’
ability (in certain settings) of taking no actions rather than those specified in their action sets.

2. the intuitive notion of a ballot-box mechanism

Ballot-box mechanisms are extensive-form, imperfect-information mechanisms with Nature. Ac-
cordingly, to specify them we must specify who acts when, the actions and the information available
to the players, when the play terminates, and how the outcome is determined upon termination.
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A ballot-box mechanism ultimately is a mathematical abstraction, but possesses a quite natural
physical interpretation. The physical setting is that of a group of players, seated around a table,
acting on a set of ballots with the help of a randomizing device, the ballot-box. Within this physical
setting, one has considerable latitude in choosing natural actions available to the players. In this
paper, we make a specific choice, sufficient for our present goals. In future papers, one may make
different choices, so as to achieve different goals, and still deal with a ballot-box mechanism.

ballots. There are two kinds of ballots: envelopes and super-envelopes. Externally, all ballots
of the same kind are identical, but super-envelopes are slightly larger than envelopes. An envelope
may contain a symbol from a finite alphabet, and a super-envelope may contain a sequence of
envelopes. (Our constructions actually needs only envelopes containing an integer between 1 and
5, and super-envelopes capable of containing at most 5 envelopes.) An envelope perfectly hides
and guarantees the integrity of the symbol it contains until it is opened. A super-envelope tightly
packs the envelopes it contains, and thus keeps them in the same order in which they were inserted.
Initially, all ballots are empty and in sufficient supply.

ballot-box actions. There are 8 classes of actions in a ballot-box mechanism —those in the
first 7 classes are taken by the players, and those in the eighth class are taken by Nature.

Each action in the first 6 classes is referred to as a public action, because a player performs it in
plain view, so that all players know exactly which action has been performed. These classes are: (1)
publicly writing a symbol on a piece of paper and sealing it into a new, empty envelope; (2) publicly
opening an envelope to reveal its content to all players; (3) publicly sealing a sequence of envelopes
into a new super-envelope; (4) publicly opening a super-envelope to expose its inner envelopes;
(5) publicly reordering a sequence of envelopes; and (6) publicly destroying a ballot. The last two
classes of public actions are not actually necessary, but considerably simplify the description of our
construction. Note that each public action has the same effects, no matter which player performs
it.

An action in the seventh class is referred to as a private action, because a player performs it
outside of public view, so that the other players do not know which action has been performed.
There are two possible private actions for each pair of ballots of the same kind (i.e., either two
envelopes or two super-envelopes containing the same number of envelopes). To perform the 0-
action, a player i picks up both ballots, hides them behind his back, and then returns them to the
table in the same order. To perform the 1-action, i picks up both ballots, hides them behind his
back, and then returns them in the opposite order. Because the other players cannot tell whether
the order has been changed, i is effectively choosing a secret bit. We call two private actions
complementary if they are the 0-action and 1-action for the same pair of ballots.

An action in the eighth class is referred to as an action of Nature. Such an action consists of
“ballot boxing” a publicly chosen sequence of ballots. That is, it consists of reordering the chosen
ballots according to a permutation randomly chosen by —and solely known to— Nature.

public and private information. The players can keep track of the ballots on the table. We
formalize this ability by associating to each ballot a unique identifier: a positive integer that is
common information to all players. These identifiers correspond to the order in which the ballots
are placed on the table for the first time, or returned to the table after being picked up and permuted
—by the ballot box, by a private action, or by a public reordering.

The public and private information generated by ballot-box actions are intuitively described as
follows. Each action, when played, generates a publicly available string. In the case of a public
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action A on ballots j, k, l,..., this string consists of “A, j, k, l, ...”. A private action additionally
generates a secret bit available only to the acting player. If player i secretly re-orders ballots j and
k, then the public string consists of “a re-ordering of ballots j and k has occurred,” and i’s secret
bit corresponds to the specific re-ordering he chose. The public record is the concatenation of the
public strings generated by all actions played thus far. Similarly, for each player i, i’s private record
is the concatenation of the bits corresponding to all private actions played by i.

mechanism play. A ballot-box mechanism is played in a fixed number of rounds. Players and
Nature act one at a time, in a pre-specified order. In each round, the information available to the
acting player consists of the current public record and his current private record, and the actions
available to him are described by a pre-specified function of the current public record.

The mechanism terminates when all players in the fixed sequence have acted, and the outcome
is a pre-specified function of the final public record.

3. the intuitive notion of a perfect implementation

3.1. Standard Normal-Form Mechanisms and Their Logical Structure

All normal-form mechanisms considered in this paper are finite; that is, have finitely many possible
messages and outcomes. For convenience, we actually focus on standard normal-form mechanisms;
that is, normal-form mechanisms where all messages and outcomes have the same length. (This is
without any loss of generality, since messages and outcomes could always be artificially padded so
as to be equally long.)

We view such abstract mechanisms as been played in three conceptual stages: (1) an initial
commitment stage, in which each player —independently of the others— selects his message string;
(2) a magical computation stage, in which the outcome function spontaneously evaluates itself on
the selected messages; and (3) a final revelation stage, in which the resulting outcome is announced.

3.2. A Structural Definition of Perfect Implementation

At a high level, a perfect implementation of a standard normal-form mechanism M is defined to be
a ballot-box mechanism B that preserves the above logical structure of M. (We shall then prove
that such a structural definition guarantees that B is strategically and privacy equivalent to M.)
Let us now break down this high-level definition into its syntactic and semantic components.

Syntactically, B consists of 3 ballot-box protocols,16corresponding to the 3 conceptual stages
of M: a ballot-box committer, a ballot-box computer, and a ballot-box revealer. These protocols,
letting M’s messages be L-bit long and letting g be the outcome function, have the following
functionalities.

1. The ballot-box committer is executed first and results in each player i having an input mi.
The players are free to choose whatever inputs they like, but are then “committed” to them:
by the end of the stage, for each player i, there is a separate sequence of envelopes whose
contents encode mi.

2. The ballot-box computer is executed next and transforms the envelopes encoding m1, . . . ,mn

into envelopes encoding the outcome g(m1, . . . ,mn).
16Ballot-box protocols essentially are ballot-box mechanisms which may start with a non-empty set of ballots, or

produce no outcome.
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3. The ballot-box revealer is executed last and solely consists of opening the envelopes whose
contents encode the outcome: by decoding these now public contents, each player individually
learns g(m1, . . . , mn).

Semantically, B’s protocols satisfy the following properties.

Minimum Information. The first two protocols reveal no information about the inputs; and
the third one reveals only the outcome. (This information requirement matches that of M.)

Minimum Choice. In the first protocol of B, for each player i, there are exactly L rounds
(corresponding to the L bits of i’s message) in which i is active and his action set consists
of two complementary private actions. In all other rounds of B, the action set consists of a
single action: either a public one or an action of Nature. (This requirement matches the fact
that in M each player i chooses his own L- bit message mi and makes no other strategic
choices.)

Same Bit-by-Bit Encoding. Of course, all three protocols must use the same encoding scheme,
which encodes a binary string by concatenating the encodings of its individual bits. (This
technical requirement matches the fact that the players and the mediator of M “talk in the
same language”, and in this language a message is the concatenation of its individual bits.)

3.3. Perfect Implementation Implies Strategic and Privacy Equivalence

Let us now briefly explain two crucial semantic implications of the above structural definition.
Informally, an extensive-form (and imperfect-information) mechanism B is strategically equiv-

alent to a standard normal-form mechanism M if “there exist isomorphisms between the players’
strategies in the two mechanisms that preserve the outcomes.” That is, no matter which strategies
the players may select in B, they are guaranteed to have corresponding strategies in M that yield
exactly the same outcomes. Viceversa, for each possible way to play M, the players are guaranteed
to have a corresponding way to play B which produces an identical outcome. Importantly, this cor-
respondence is not between strategy profiles, but between the strategies of each individual player.
That is, every player i can “translate” his own strategy from one mechanism to the other with-
out any cooperation from the others. Thus, the players truly are strategically indifferent between
playing M or B.

Assuming that a ballot-box mechanism B is strategically equivalent to a standard normal-
form mechanism M, we further say that B is privacy equivalent to M if, for any subset P of the
players and any strategy profile s, the sequences of decision nodes the players in P go through
in an execution of B with profile s, can be generated from just the final outcome and sP , the
strategy sub-profile of P .17 This technical property can be interpreted as follows. At the end on an
execution of M, the players of P collectively know: (1) the strategies they used (i.e., the messages
they sent to the mediator) and (2) the final outcome. At the end of an execution of B the players
of P collectively know: (1′) the strategies they used and (2′) the sequences of decision nodes they
went through.18 Because B is strategically equivalent to M, (1′) and (2′) suffice to reconstruct

17Actually we prove a much stronger property when B is a perfect ballot-box implementation of M: informally,
that there exists a probabilistic algorithm that on just the outcome information —without any knowledge of the total
profile of strategies s that generated it— reproduces a “fictitious” public record with the same probability distribution
with which s would have generated it.

18Note that, due to the strategic equivalence of M and B, (1) and (1′) are actually equivalent.
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the outcome, but in principle could contain additional information. However, when B is privacy
equivalent to M they cannot. Therefore, all players are indifferent between playing M and B also
from a privacy perspective.

We formalize strategic and privacy equivalence in our appendix, and then prove the following.

Theorem 1: If a ballot-box mechanism B perfectly implements a standard normal-form mechanism
M, then B is strategically and privacy equivalent to M.

3.4. Existence of Perfect Implementations

In light of our sketched definition of a perfect implementation, to prove the existence of a perfect
implementation for general standard normal-form mechanisms, we must prove the existence of
general ballot-box committers, computers and revealers. Proving the existence of general ballot-
box committers is not a problem: after finding a procedure to commit to a single bit, repeating
it L times enables the players to commit to L bits. Ballot-box revealers present no problems
either: a revealer simply consists of opening a fixed sequence of envelopes. Proving the existence
of ballot-box computers, however, is a much bigger problem, and we can only solve it in a modular
fashion.

Modularity enables one to understand and to design complex systems by breaking them into
a multiplicity of simpler components, and is thus central to Science and Engineering.19 In our
case, it enables us to solve our problem as follows: first, we construct ballot-box computers for a
few elementary functions, then we show that it is possible to “assemble” them so as to obtain a
ballot-box computer for any desired finite function. The net result is summarized in the following
result, proved in our appendix.

Theorem 2: For every standard normal-form mechanism M, there exists a ballot-box mechanism
B that perfectly implements M.

3.5. Efficient Construction of Perfect Implementations

In principle, the existence of a ballot-box mechanism perfectly implementing a mediated one may
be highly non-constructive. In such a case, finding a perfect implementation would require a new ad
hoc construction for each mediated mechanism of interest. We dispel this possibility by providing
a universal method of finding perfect ballot-box implementations. That is, we exhibit a single
“compiling” algorithm C converting (the description of) any standard normal-form mechanism
into (the description of) a ballot-box mechanism perfectly implementing it.

Such a universal method, however, would be practically useless if it were computationally infea-
sible to carry out. Traditionally, players’ resources (for reasoning and computing) are assumed to
be unbounded in game theory, but bounded in cryptography. Our construction, however, achieves
the best of both worlds. Namely, perfect implementation applies to players with unlimited resources,
but is achievable by players with limited ones. For any standard normal-form mechanism M, not
only do ballot-box mechanisms perfectly implementing M exist, but ours are also (1) very easy to
find, and (2) very easy to play. Both properties are formalized in our appendix, where we prove
the following result.

19In Science, the usefulness of modularity is eloquently exemplified by the extensive use of lemmas in long proofs.
As for Engineering, the very computer used in typesetting this paper has been manufactured by integrating together
hundreds of individual components, often produced by separate firms.
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Theorem 3: There exists a linear-time algorithm C that, on input any standard normal-form
mechanism M, outputs a linear-time ballot-box mechanism B that perfectly implements M.

3.6. The Key to Our Universal Construction.

As for the earlier constructions of Gödel and Turing, in logic and computation respectively, the
universality of ours stems from the ability of “equating subjects and objects.” In the case of Gödel
numberings, for example, the coherence of Peano’s arithmetics is itself encoded as a sentence in
such arithmetics. In our case, we represent data and operations as permutations of the integers 1
through 5 as follows: each permutation p is encoded into a sequence of 5 envelopes, so that envelope
j contains p(j). Such a sequence of envelopes is both a piece of (really physical!) data, as well as
an algorithm, which via the ballot box is capable of operating on other data. For instance, one of
the crucial subroutines of our construction is a procedure that, given two sequences of 5 envelopes
—the first sequence encoding a permutation p and the second a permutation q— interprets the
first sequence as a multiplication program and returns (without revealing any information about
p or q) a sequence of 5 envelopes encoding the product permutation pq, that is, the permutation
mapping each i between 1 and 5 to p(q(i)).

4. extensions and conclusions

In this paper, we have shown that any single normal-form mechanism can be implemented without
altering its strategic and privacy properties. In a forthcoming paper, we generalize the present
results so as to implement perfectly multiple mediated mechanisms. Such mechanisms may also be
interdependent in an arbitrary way: that is, they can be executed simultaneously or sequentially,
and their mediators may privately communicate with each other.20 Achieving these results will
require a more general treatment of modularity in mechanism design.

These results are just a start, and much more needs to be done. People care about privacy. And
to make more accurate predictions and develop more meaningful models, privacy should intrinsically
inform any general study of human interactions. In particular, we believe and hope that a rigorous
and comprehensive treatment of privacy will become an an integral part of game theory.
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a. notation

Basics. We denote by R+ the set of non-negative reals; by Σ the alphabet consisting of English
letters, arabic numerals, and punctuation marks; by Σ∗ the set of all finite strings over Σ; by ⊥
a symbol not in Σ; by Sk the group of permutations of k elements; by x := y the operation that
assigns value y to variable x; by ∅ the empty set, and by φ the empty string/sequence/vector.

If S is a set, by S0 we denote the empty set, and by Sk the Cartesian product of a set S
with itself k times.

If x is a sequence, by either xi or xi we denote x’s ith element,21 and by {x} the set
{z : xi = z for some i}. If x is a sequence of k elements and i and j are positive integers such
that i < j ≤ k, then by x[i,j] and x(i,j] we respectively denote the sequences xi, . . . , xj and
xi+1, . . . , xj . If x is a sequence of k integers, and m is an integer, by x + m we denote the
sequence x1 + m, . . . , xk + m. If x and y are sequences, respectively of length j and k, by x ◦ y
we denote their concatenation (i.e., the sequence of j + k elements whose ith element is xi if
i ≤ j, and yi−j otherwise). If x and y are strings (i.e., sequences with elements in Σ), we denote
their concatenation by either xy or x|y.

Players and profiles. We always denote by N the (finite) set of players, and by n its cardinality.
If i is a player, −i denotes the set of the other n − 1 players, that is, −i = N \ {i}. Similarly,
if C ⊂ N , then −C denotes N \ C. A profile is a vector indexed by N . If x is a profile, then,
for all i ∈ N and C ⊂ N , xi is i’s component of x and xC is the sub-profile of x indexed by C;
thus: x = (xi, x−i) = (xC , x−C).

Probability distributions. All distributions considered in this paper are over finite sets. If X : S →
R+ is a distribution over a set S, we denote its support by [X], that is, [X] = {s ∈ S : X(s) > 0}.
We consider two distributions X and Y equal if [X] = [Y ] and X(s) = Y (s) for all s ∈ [X]. We
denote by rand(S) the uniform distribution over S.

If X is a distribution, x ← X denotes the operation that assigns to variable x an element of
[X] selected according to X. If f, g, . . . are functions and X, Y, . . . are distributions, by

〈 f(x, y, . . .), g(x, y, . . .), . . . : x ← X; y ← Y . . .〉

we denote the distribution generated by the following experiment: first select x according to X,
second select y according to Y , and so on; then return the sequence f(x, y, . . .), g(x, y, . . .), . . ..

If A is a probabilistic algorithm, the distribution over A’s outputs on input x is denoted by
A(x). A probabilistic function f : X → Y is finite if X and Y are both finite sets and, for every
x ∈ X and y ∈ Y , the probability that f(x) = y has a finite binary representation.

b. normal-form mechanisms

Definition 1: A normal-form mechanism is a tuple M = (N,M, Y, g), where:
• N , the set of players, is a finite set;
• M , the message space, is the Cartesian product of n subsets of Σ∗, M = M1 × · · · ×Mn;
• Y , the outcome set, is a subset of Σ∗; and
• g, the outcome function, is a probabilistic function, g : M → Y .

21For any given sequence, we shall solely use superscripts, or solely subscripts, to denote all of its elements.
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We refer to each Mi as the message space (or strategy set) of player i, and to each m ∈ Mi as a
message (or strategy) of i. M is finite if M and Y are finite sets and g is a finite function.

Definition 2: A normal-form mechanism M = (N, M, Y, g) is a standard normal-form mechanism
if M1 = · · · = Mn = Y = {0, 1}L for some integer L; that is, M = (N, ({0, 1}L)n, {0, 1}L, g).

remark. Without loss of generality, we focus solely on standard normal-form mechanisms.22

c. ballot-box mechanisms

Definition 3: An envelope is a triple (j, c, 0), where j is a positive integer, and c a symbol of Σ.
A super-envelope is a triple (j, c, L), where both j and L are positive integers, and c ∈ ΣL. A ballot
is either an envelope or a super-envelope. If (j, c, L) is a ballot, we refer to j as its identifier, to c
as its content, and to L as its level. (As we shall see, L represents the number of inner envelopes
contained in a ballot.)

Let B be a set of ballots and j an integer. Then, by contB(j) we denote the symbol c ∈ Σ, if B
has a single envelope with identifier j and content c, and the symbol ⊥ otherwise. If j is a sequence
of positive integers, j = j1, . . . , jm, then by contB(j) we denote the symbol ⊥ if contB(jk) =⊥ for
some element jk, and the string contB(j1)| · · · |contB(jm) otherwise.

A set of ballots B is well-defined if distinct ballots have distinct identifiers. If B is a well-defined
set of ballots, then IB denotes the set of identifiers of B’s ballots. For j ∈ IB, Bj (or the expression
ballot j) denotes the unique ballot of B whose identifier is j. For J ⊂ IB, BJ denotes the set
of ballots of B whose identifiers belong to J . To emphasize that ballot j actually is an envelope
(super-envelope) we may use the expression envelope j (super-envelope j).

Definition 4: A global memory for a set of players N consists of a triple (B, R, H), where
• B is a well defined set of ballots;
• R is a sequence of strings in Σ∗, R = R1, R2, . . .; and
• H is a profile of sequences of strings in Σ∗, H = H1, . . . , Hn.

We refer to B as the ballot set; to R as the public record; to each element of R as a record; to H
as the private history profile; and to each Hi as the private history of player i. The empty global
memory is the global memory for which the ballot set, the public record, and the private history
of every player are all empty. We denote the set of all possible global memories by GM .

Definition 5: Ballot-box actions are functions from GM to GM . The subset of ballot-box actions
available at a given global memory gm is denoted by Agm. The actions in Agm are described
below, grouped in 8 classes. For each a ∈ Agm we provide a formal identifier; an informal reference
(to facilitate the high-level description of our constructions); and a functional specification. If
gm = (B,R, H), we actually specify a(gm) as a program acting on variables B, R, and H. For
convenience, we include in R the auxiliary variable ub, the identifier upper-bound: a value equal to
0 for an empty global memory, and always greater than or equal to any identifier in IB.

22 Indeed, any finite, mediated normal-form mechanism M = (N, M, Y, g) can be put into standard form as
follows. Let z be the cardinality of the largest set among M1, . . . , Mn, and Y . Choose L = dlog(z)e. Letting ci be
the cardinality of message set Mi, encode the elements of Mi as the lexicographically first ci strings in {0, 1}L and
consider any string x ∈ {0, 1}L lexicographically greater than ci as an alternative encoding of the first element of Mi.
Analogously encode the outcome set Y as elements of {0, 1}L. Define now g′ : ({0, 1}L)n → {0, 1}L to be the following
function: if x′i is an encoding of xi ∈ Mi for all i ∈ N , and if y′ is an encoding of y ∈ Y , then g′(x′1, . . . , x

′
n) = y′ if and

only if g(x1, . . . , xn) = y. Then, M = (N, ({0, 1}L)n, {0, 1}L, g′) is a standard normal-form mechanism equivalent to
M.
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1. (NewEn, c) —where c ∈ Σ.

“Make a new envelope with public content c.”

ub := ub + 1; B := B ∪ {(ub, c, 0)}; and R := R ◦ (NewEn, c, ub).

2. (OpenEn, j) —where j is an envelope identifier in IB.

“Publicly open envelope j to reveal content contB(j).”

B := B \ {Bj} and R := R ◦ (OpenEn, j, contB(j), ub).

3. (NewSup, j1, . . . , jL) —where L ≤ 5, and j1, . . . , jL ∈ IB are distinct envelope identifiers.

“Make a new super-envelope containing the envelopes j1, . . . , jL.”

ub := ub + 1; B := B ∪ {(ub, (contB(j1), . . . , (contB(jL)), L)};
B := B \ {Bj1 , . . . , BjL}; and R := R ◦ (NewSup, j1, . . . , jL, ub).

4. (OpenSup, j) —where j ∈ IB is the identifier of a super-envelope of level L.23

“Open super-envelope j.”

letting contB(j) = (c1, . . . , cL), B := B ∪ {(ub+ 1, c1, 0), . . . , (ub+ L, cL, 0)}; B := B \ {Bj};
ub := ub + L; and R := R ◦ (OpenSup, j, ub).

5. (PublicPermute, j1, . . . , jk, p) —where k ≤ 5, p ∈ SY Mk, and j1, . . . jk ∈ IB are distinct
identifiers of ballots with the same level L.

“Publicly permute j1, . . . , jk according to p.”

B := B ∪ {(ub + 1, contB(jp(1)), L), . . . , (ub + k, contB(jp(K)), L)}; B := B \ {Bj1 , . . . , Bjk
};

ub := ub + k; and R := R ◦ (PublicPermute, j1, . . . , jk, p, ub).

6. (Destroy, j) —where j is a ballot identifier in IB.

“Destroy ballot j”

B := B \ {Bj} and R := R ◦ (Destroy, j, ub).

7. (SecretPermute, i, b, j0, j1) —where i is the active player, b ∈ {0, 1}, and j0, j1 ∈ IB are
distinct identifiers of ballots with the same level L.

“Let Player i secretly permute ballots j0 and j1 (according to b).”

B := B ∪ {(ub + 1, contB(jb), L), (ub + 2, contB(j1−b), L)}; B := B \ {Bj0 , Bj1};
Hi := Hi ◦ b; ub := ub + 2; and R := R ◦ (SecretPermute, i, j0, j1, ub).

8. (BallotBox, j1, . . . , jk) —where k ≤ 5 and j1, . . . jk ∈ IB are distinct identifiers of ballots
with the same level L.

“Ballotbox j1, . . . , jk”

p ← rand(Sk); B := B ∪ {(ub + p(1), contB(j1), L), . . . , (ub + p(k), contB(jk), L)};
B := B \ {Bj1 , . . . , Bjk

}; ub := ub + k; and R := R ◦ (BallotBox, j1, . . . , jk, ub).

23All the ballot-box actions involving multiple super-envelopes require as inputs and produce as outputs the ballots
of the same level (see below). Thus, the level of any ballot can be deduced from the public record.
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We refer to a member of the first 6 classes as a public action; to a member of the 7th
class as a private action; and to a member of the 8th class as an action of Nature. If a =
(SecretPermute, i, b, j0, j1), we refer to b as a’s hidden bit. We say that private actions a and a′

are complementary if a = (SecretPermute, i, b, j0, j1) and a′ = (SecretPermute, i, 1−b, j0, j1);
and refer to a as the 0-action (of the pair) if b = 0, and as the 1-action otherwise.

remarks.

• All ballot-box actions are deterministic functions, except for the actions of Nature.

• The variable ub never decreases and coincides with the maximum of all identifiers “ever in
existence.” Notice that we never re-use the identifier of a ballot that has left, temporarily or
for ever, the table. This ensures that different ballots get different identifiers.

• Even though we could define the operations NewSup, PublicPermute, and BallotBox
to handle an arbitrary number of ballots, it is a strength of our construction that we never
need to operate on more than 5 ballots at a time. We thus find it convenient to define such
bounded operations to highlight the practical implementability of our construction.

Definition 6: A global memory gm is feasible if there exists a sequence of global memories
gm0, gm1, . . . , gmk, such that gm0 is the empty global memory; gmk = gm; and, for all i ∈ [1, k],
gmi = ai(gmi−1) for some ai ∈ Agmi−1 .

If (B,R, H) is a feasible memory, we refer to R as a feasible public record.

remark. If gm = (B,R, H) is feasible, then Agm is easily computable from R alone. Indeed,
what ballots are in play, which ballots are envelopes and which are super-envelopes, et cetera, are
all deducible from R. Therefore, different feasible global memories that have the same public record
also have the same set of available actions. This motivates the following definition.

Definition 7: If R is a feasible public record, by AR we denote the set of available actions for any
feasible global memory with public record R.

Definition 8: An L-bit ballot-box mechanism is a tuple B = (N, K, J, PS, AF, OF ) where
• N is a set of players;
• K, the mechanism length, is a positive integer;
• J , the outcome-boundary round, is a positive integer ≤ K;
• PS, the player sequence, is a sequence of K elements from N∪{Nature}: PS = PS1, . . . , PSK ;
• AF , the action-function sequence, is a sequence of K deterministic functions mapping public

records to sets of ballot-box actions such that, for all k ∈ [1,K] and for all feasible public
record R:

(1) AF k(R) ∈ AR consists of either a single action, or two complementary private actions;
and

(2) whenever k > J , AF k(R) is an open-envelope action.

• OF , the outcome function, is a function mapping Σ∗ to {0, 1}L.
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Mechanism Play. Mechanism B is played as follows. Let gm0 = (B0, R0,H0) be the empty global
memory. The players and Nature act one at a time, in K rounds, as specified by PS: the first
one to act is PS1, the second is PS2, and so on. At the kth round, if j = PSk ∈ N , the
information available to j consists of Rk−1 and Hk−1

j —i.e., the current public record and the
private history of j (i.e., the hidden bits of the secret actions played so far by j).24 Based on
this information, player j chooses an action ak ∈ AF k−1(Rk−1). Otherwise, if PSk =Nature,
then AF k−1(Rk−1) = {ak}, where ak is an action of Nature. In either case, ak maps the
current global memory gmk−1 = (Bk−1, Rk−1,Hk−1) into a new global memory ak(gmk−1) =
gmk = (Bk, Rk,Hk). After K rounds —i.e, when the global memory gmK = (BK , RK ,HK)
is generated— the play terminates and the recommended outcome y ∈ {0, 1}L is obtained by
evaluating function OF on Cont(R(J,K]) —i.e., the contents of the envelopes publicly opened in
the last K − J rounds.25

Executions. An execution e of B is a sequence of global memories obtainable by playing B until
termination, e = (B0, R0,H0), . . . , (BK , RK ,HK). By Bk(e), Rk(e), and Hk(e) we denote,
respectively, the ballot set, the public record, and the private history profile of e at round k.
The outcome of e, out(e), is the string obtained by evaluating OF (Cont(R(J,K])).

Decision Nodes. A (round-k) decision node of player i in a mechanism B is a triple (k, R, Hi), where
k < K and PSk = i, such that, for some execution e of B, both R = Rk−1(e) and Hi = Hk−1

i (e).
The set of all possible round-k decision nodes of player i (over all possible executions of B) is
denoted by DNk

i .
Strategies. A (pure) strategy of player i in B is a function si mapping each possible decision node

(k, R, Hi) of player i into the available action set AF k(R). We denote by SBi the set of all
strategies of player i in B, and by SB the set of all strategy profiles in B. We say that an
execution e of B is an execution of s ∈ SB if, for all k ≤ K, ak = si(k,Rk−1,Hk−1

i ) where
i = PSk. We denote by EX(s) the distribution over the executions of s.26 We may also write
EXB(s) to highlight, if needed, the mechanism B.

remarks.

• Dummy Players for Public Actions. In a ballot-box mechanism, each public action is performed
by the player specified in PS. However, because the effect of a public action solely depends
on the current public record —not on who performs it— ballot-box mechanisms might as well
specify that the first player performs all public actions. Ballot-box mechanisms may even
“out-source” public actions to an external entity, such as a referee.

• Finiteness. Although there are infinitely many ballot-box actions, each ballot-box mechanism
B is finite, because it consists of a finite number of rounds and at each round the active player
has at most two actions to choose from.

• Imperfect Information. Ballot-box mechanisms are of imperfect-information for two reasons.
First, whenever the set of available actions consists of two complementary secret actions,
the active player permutes a pair of ballots, but all other players do not know which of two

24This implies that j knows all the actions he played in the past. In fact, all public actions are manifest in the
public record, and j’s secret actions can be fully reconstructed from their hidden bits and the public record.

25Recall that the outcome-boundary round J is defined so that, for each k = J + 1 to K, Rk = (OpenEn, jk, ck).
Thus, Cont(R(J,K]) = cJ+1 · · · cK .

26Because all strategies of s are pure (and therefore deterministic), this distribution solely arises from the random-
ness of the ballot box (if used).
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possible permutations was actually chosen. Second, when called into action, the ballot box
(i.e., Nature) permutes a sequence of ballots in a way unknown to all players. For these two
reasons, the players may not know the exact content of a particular envelope. But they do
know (1) which envelopes are in play —because the identifiers of the current ballots are always
deducible from the public record— and (2) the exact set of the current envelopes’ contents
—because the content of each newly created envelope is always public, and remains unaltered
until the envelope is opened.

• Extended Ballot-Box mechanisms. One can easily envisage extending the above definition of
a ballot-box mechanism to allow for richer action sets, more general rules to select the acting
players, and more complex information structures. This might be quite desirable for achieving
some other objectives not considered in this paper. We chose to have a bare-bone definition
to keep the notation as simple as possible and to capture required elements for our perfect
implementation exactly.

d. the notion of a perfect implementation

D.1. Preliminary Notions

D.1.1. Bit-by-bit Encodings

Let ` be a positive integer. A bit-by-bit encoding of length ` is a function mapping any binary string
x to a string x̄ ∈ Σ∗ satisfying the following 3 properties: (1) 0̄, 1̄ ∈ Σ`; (2) 0̄ 6= 1̄; and (3) xy = x̄ȳ
(i.e., it preserves concatenation). Because a bit-by-bit encoding is fully specified by the values it
takes at 0 and 1, we identify it with the pair of strings (0̄, 1̄).

A bit-by-bit encoding (0̄, 1̄) is immediately extended to binary functions. If f : D → {0, 1}∗,
where D ⊂ {0, 1}∗, then we define the function f̄ as follows: f̄(x̄) = f(x) for all x ∈ D.

The decoding function of (0̄, 1̄) is the function mapping x̄ to x for all x ∈ {0, 1}∗.
(As we shall see, the bit-by-bit encoding we use in our construction is an encoding of length 5,

in which 0 and 1 are represented by two distinct permutations of the first five integers.)

D.1.2. Ballot-Box Protocols

Definition 9: A ballot-box protocol P is a ballot-box mechanism which has its length equal to its
outcome-boundary round —i.e., P = (N,K, K,PS, AF, OF )— and is executed starting with any
feasible global memory.

For short, when no confusion is possible, we may just use the term protocol rather than “ballot-
box protocol”. The distribution over the executions of a protocol P with strategy profile s and
initial global memory gm0 is denoted by EXP(s, gm0).

remarks.

• Being always equal to the length K, the outcome-boundary round of a ballot-box protocol
P = (N, K, K,PS, AF,OF ) is redundant; and so is P’s outcome function OF , because it is to
be evaluated on the last K −K = 0 elements of the public record. Accordingly, we identify P
with its 1st, 2nd, 4th, and 5th components and more simply write P = (N, K,PS, AF ).

• As “degenerate” ballot-box mechanisms, protocols retain all notions (e.g., executions, strate-
gies, and decision nodes) and notations (e.g., Bk(e), Rk(e), and Hk(e)) of Section C.
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Definition 10: We say that a ballot-box protocol P = (N, K, PS,AF ) is the concatenation of
protocols P1 = (N,K1, PS1, AF1), . . . ,Pm = (N,Km, PSm, AFm) if
• K = K1 + · · ·+ Km;
• PS = PS1 ◦ · · · ◦ PSm; and
• AF = AF1 ◦ · · · ◦AFm.

We denote the concatenation of protocols P1, . . . ,Pm by P = P1 ◦ · · · ◦ Pm.

D.1.3. Address Vectors

Definition 11: An address is a finite sequence x of distinct positive integers. An address vector x
is a vector of mutually disjoint addresses, that is, {xi} ∩ {xj} = φ whenever i 6= j. The identifier
set of an address vector x = (x1, . . . , xk) is denoted by Ix and defined to be the set

⋃k
i=1{xi}. If

B is a set of ballots, then we define contB(x) to be the vector (contB(x1), . . . , contB(xk)). If i is a
positive integer, then x + i is the address vector whose jth component is xj + i (i.e., each element
of sequence xj is increased by i).

As usual, an address profile is an address vector indexed by the set of players.

D.2. Ballot-Box Committers

As intuitively explained in Section 3, a perfect implementation of a normal-form mechanism M
consists of 3 protocols: a committer, a computer, and a revealer. The committer is executed first.
At the highest level, its goal is to implement the stage of M in which the players’ independently
choose their private messages. A ballot-box committer achieves its goal by generating, for each
player i, a separate sequence of envelopes whose contents encode his message mi. (Such messages
are thus “committed” in the sense that the players cannot change them, because the envelopes
containing them are in public view.) To match M’s first stage exactly, such envelopes must be
generated in a special way, that is, so as to guarantee the three properties formally described below.

Definition 12: Let P = (N, K, SP,AF ) be a ballot-box protocol, (0̄, 1̄) a bit-by-bit encoding, and
x an address profile, x = x1, . . . , xn. We say that P is a L-bit ballot-box committer for (0̄, 1̄) with
output address profile x if there exists a unique sequence U such that, for every execution e of P
whose initial global memory is empty, the following three properties hold:

1. Correctness: For every player i, HK
i (e) ∈ {0, 1}L and contBK(e)(xi) = HK

i (e).

2. Privacy: RK(e) = U .

3. Clean Termination: IBK(e) = Ix.

We denote the final identifier upper-bound of an execution of P by ubP .

remarks.

• Correctness. A committer may involve several types of ballot-box operations. (Indeed, ours
generates both new envelopes and new super-envelopes, some of which it opens and some of
which it destroys.) No matter which operations these may be, however, Correctness requires
that, once P is executed, the private history string of each player is of length L, and that the
ballots corresponding to the output address profile x1, . . . , xn contain the bit-by-bit encoding
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of the players’ hidden-bit sequences. This requirement has both syntactic and semantic im-
plications. Syntactically, Correctness implies that each element of xi is the identifier of an
envelope in BK(e) —else, contBK(e)(xi) would equal ⊥ rather than the bit-by-bit encoding of
an L-bit string. Further, because each envelope of an output address contains a single sym-
bol of Σ, each xi consists of `L identifiers whenever the bit-by-bit encoding scheme (0̄, 1̄) has
length `. Semantically, Correctness implies that the envelopes of address xi encode a message
mi freely chosen by player i alone. (I.e., the other players have no control over the value of
mi.) This is so because the envelopes in xi are guaranteed to contain the bit-by-bit encoding
of the final private history of player i. Recall that i’s private history, Hi, grows, by a bit at
a time, in only one case: when i himself secretely chooses one of two complementary actions.
In our physical interpretation, when i temporarily holds two envelopes behind his back, and
then returns them in the order he chooses. This is an “atomic” (in the sense of “indivisible”)
choice of i, and therefore the other players have no control over it.

• Privacy. Privacy requires that, at each round k of a ballot-box committer, the public infor-
mation available to the acting player always consists of the fixed sequence Uk−1, no matter
what strategies the players employ. Thus, while Correctness implies that any control over the
choice of a player’s message solely rests with that player, Privacy implies that all messages are
independently chosen, as demanded in a normal-form mechanism M, and totally secret at the
end of the committer’s execution.27 Privacy thus rules out any possibility of signaling among
players during the execution of a committer.

Note that the information available to a player i consists of both his private history Hi

and the public record R. In principle, therefore, the privacy condition should guarantee that
no information about other players’ strategies is deducible from Hi and R jointly. As argued
above, however, HK

i depends on i’s strategy alone. Thus, formulating Privacy in terms of the
public record alone is sufficient.

• Clean Termination. Clean termination ensures that only the envelopes containing the desired
encoding of the players’ private messages remain on the table.

• Fixed Final Identifier Upper-Bound. Notice that the value ubP is well defined because a
committer’s execution starts with an empty global memory and ends with a fixed public
record. Notice too that ubP is computable form U alone.

D.3. Ballot-Box Computers

A ballot-box computer P for a function f is a special protocol. Executed on an initial global
memory in which specific envelopes (the “input envelopes”) contain an input x for f , P replaces
such envelopes with new ones (the “output envelopes”) that will contain the corresponding output
f(x). Of course, no property is required from P if its initial memory is not of the proper form.

With modularity in mind, we actually envision that an execution of a computer P may be
preceded and/or followed by the execution of other computers. We thus insist that P does not

27Traditionally, such independence property is also referred to as simultaneity. More strongly, one might interpret
simultaneity to mean that the players of M literally submit their privately chosen messages at the same physical time.
As currently defined, a perfect implementation of M does not preserve this property. (Indeed, when implementing
committers in Section F.3, the players commit their messages sequentially, and one bit at a time.) If literal simultaneity
were indeed possible, however, we could certainly incorporate it into ballot-box mechanisms and demand that the
players execute each step of the commitment phase simultaneously.

23



“touch” any ballots of the initial memory besides its input envelopes. This way, partial results
already computed, if any, will remain intact.

Definition 13: Let f : Xa → Y b be a finite function, where X, Y ⊂ Σ∗; and let x = x1, . . . , xa be
an address vector. We say that a feasible global memory gm = (B, R, H) is proper for f and x if
Ix ⊂ IB and contB(x) ∈ Xa.

Definition 14: Let f : Xa → Y b be a finite function, where X, Y ⊂ Σ∗; let x and y be two
address vectors; and let P = (N, K,PS, AF ) be a ballot-box protocol such that AF only returns
sets consisting of a single action: either a public one, or an action of Nature. We say that P is a
ballot-box computer for f with input address vector x and output address vector y if there exists a
probabilistic algorithm SIM such that, for any execution of P with (i) strategy profile s; and (ii)
initial memory gm0 = (B0, R0,H0), proper for f and x, whose identifier upper-bound is ub, the
following three properties hold:

1. Correctness: 〈 contBK(e)(y + ub) : e ← EXP(s, gm0) 〉 = f(contB0(x)).

2. Privacy: 〈 RK(e) : e ← EXP(s, gm0) 〉 = 〈 R0 ◦ F : F ← SIM(ub) 〉.
3. Clean Operation: BK(e) = B{y+ub} ∪B0 \B{x}.

We refer to SIM as P’s simulator; to B{x} as the input envelopes; and to B{y+ub} as the output
envelopes. For short, when no confusion may arise, we refer to P as a computer.

remarks.

• Correctness. Semantically, Correctness states that the output envelopes will contain f eval-
uated on the contents of the input envelopes. Syntactically, as for committers, Correctness
implies that each integer of each address yj + ub is the identifier of an envelope in BK(e).

• Privacy. By running a computer P for f , the only additional information about f ’s inputs or
outputs gained by the players consists of R[1,K], the portion of the public record generated by
P’s execution. Privacy guarantees that this additional information is actually useless. Indeed,
(1) the identifier upper-bound ub is deducible from R0, and thus already known to the players,
and (2) R[1,K] can be generated “with exactly the same odds as in a random execution of P”
by P’s simulator only on input ub. Since such simulator is a fixed algorithm, R[1,K] cannot
contain any information about f ’s inputs and outputs that is not deducible from ub.

• Clean Operation. Clean Operation guarantees that P
1. Never touches an initial ballot that is not an input envelope (in fact, if a ballot is acted

upon, then it is either removed from the ballot set, or receives a new identifier), and
2. Eventually replaces all input envelopes with the output envelopes (i.e., other ballots

generated by P are temporary, and will not exist in the final ballot set).

• Dummy Strategies. Note that the strategies s formally enter our definition of a computer
P (since they are part of our notation for a random execution) but are actually irrelevant,
because all action sets of P have cardinality 1.28

28This constraint guarantees that players cannot signal to one another during the execution of P. It also makes it
further clear that, although the entire information available to a player i consists of the public record R as well as his
own private record Hi, it suffices to state Privacy in term of the public record alone. In fact the private record Hi of
each player i grows only when i chooses his action from an action set consisting of two complementary actions. In
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• No Bit-By-Bit Encodings. Notice that, while the definition of a committer relies on bit-by-bit
encodings, that of a computer does not. This is so because committers must prepare the inputs
to a mechanism’s outcome function, and such function maps bit strings to bit strings. Our
computers, on the other hand, deal with functions with more general domains and ranges.
For instance, one of our fundamental ballot-box computers must evaluate the function that,
on input a permutation of 5 elements, returns the inverse permutation. Although also the
inputs and outputs of such a function may ultimately be encoded as bit strings, we prefer to
represent them as sequences of the first 5 integers. For instance, the identity permutation is
represented by the sequence 12345. Indeed the ability of computing with ballots and a ballot
box in a private and correct way crucially depends on the representation chosen for inputs
and outputs, and as we shall see representing permutations of 5 elements as strings over the
alphabet {1, 2, 3, 4, 5} will be crucial.

D.4. Ballot-Box Revealers

A ballot-box revealer is a protocol that opens a fixed sequence of envelopes.

Definition 15: We say that a ballot-box protocol P = (N, K,PS, AF ) is a ballot-box revealer with
address vector z if, for any initial global memory (B0, R0,H0) such that each member of Iz is the
identifier of an envelope in B0, (1) each function in AF only returns action sets consisting of a
single open-envelope action; and (2) in any execution of P, all envelopes in Iz are opened.

D.5. Perfect Implementation

A ballot-box mechanism B perfectly implementing a normal-form mechanism M simply consists
of three ballot-box protocols, executed in order: (1) a committer that generates “input envelopes”
whose contents encode the players’s choices for M’s messages; (2) a computer that evaluates the
outcome function of M on the contents of the input envelopes and stores the result in “output
envelopes”; and (3) a revealer that opens all such output envelopes, thus enabling the players —or
anyone else— to retrieve the desired result. By the end (since in this paper we do not deal with
executing sequences of mechanisms), no ballot should remain on the table.

Definition 16: Let M = (N, ({0, 1}L)n, {0, 1}L, g) be a standard normal-form mechanism; (0̄, 1̄)
a bit-by-bit encoding; P1 an L-bit committer for (0̄, 1̄) with output address profile x and final
identifier upper-bound ub∗; P2 a ballot-box computer for ḡ with input address profile x and output
address vector y; and P3 a ballot-box revealer with input address vector y + ub∗.

We say that a ballot-box mechanism B = (N, K, J, PS, AF,OF ) perfectly implements M if

1. The ballot-box protocol (N,K, PS, AF ) is the concatenation of P1, P2, and P3; and
2. OF is the decoding function of (0̄, 1̄), applied to the contents of the envelopes opened by P3.

remarks.

any case, as argued for committers, the content Hi is not affected by any action of the other players, but grows of one
bit only when i privately selects one of two complementary actions. Thus, if the content of Hi contained knowledge
about the other players’ strategies, this knowledge would have been available to i —through the public record!—
when he chose his private actions.
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• No Signaling. A distinctive property (and often the main advantage) of a mediated normal-
form mechanism M is that the players cannot signal to each other.29 This property, though
not true for most extensive-form mechanisms, actually holds for any ballot-box mechanism B
that perfectly implements M. This is quickly argued as follows. Signalling essentially arises
from a player’s ability to choose among different actions. In B, instead, players can choose
between different actions only during the execution of the ballot-box committer. As already
argued, however, all executions of a ballot-box committer produce exactly the same public
record, regardless of their chosen strategies, and thus no player can signal to any other.

• No Residual Information. Note that our definition of perfect implementation implies that, by
B’s end, “no information is left on the table.” (In fact, P1’s Clean Termination implies that
only the envelopes whose contents encode the players’ messages remain on the table at the end
of the committal stage; P2’s Clean Operation implies that only the output envelopes remain on
the table at the end of the computation stage; and P3 ensures that no more ballots are finally
left on the table.) This property is very important, because it is hard —if not impossible!—
to constrain what may happen after a mechanism ends, and thus to control what happens to
any residual information in the system. Indeed, if such information existed and were related
to the players’ strategies, its fate might affect the very play of the mechanism. For instance,
let M be the following normal-form mechanism for running a secret referendum: player i’s
message mi is either YES or NO, and the public outcome is the tally of YES votes. Let now
M′ be an implementation ofM that, while correctly and privately computing the desired tally,
also generates and hands to each player i a sequence of unopened envelopes, Ei, encoding mi.
Such an M′ can hardly be considered to be a satisfactory implementation of M, as it makes
“buying votes” easier than in M. Indeed, in M′ i can ex-post prove how he voted to some
other player j by handing over the envelopes of Ei to j, or by opening them in front of him.
By contrast, after a play of M player i could only claim to another player j what his vote mi

was. (In a forthcoming paper dealing with multiple mechanisms, Property 3 will be properly
revisited.)

e. perfect implementation implies strategic and privacy equivalence

Let us now prove that the structural definition of a perfect implementation actually captures, as
promised, the intuitively discussed properties of strategic and privacy equivalence. We start by
formalizing them.

Definition 17: Consider a ballot-box mechanism B = (N,K, J, PS,AF, Y, OF ) and a standard
normal-form mechanism M = (N, ({0, 1}L)n, {0, 1}L, g). We say that B is strategic and privacy
equivalent to M if ∀i ∈ N there exist a bijection ψi : SBi ↔ {0, 1}L and a probabilistic algorithm
SIM such that, ∀s ∈ SB the following properties hold:

Strategic Equivalence: 〈 out(e) : e ← EXB(s) 〉 = g(ψ1(s1), . . . , ψn(sn)).
Privacy Equivalence: 〈RK(e) : e ← EXB(s) 〉 = 〈 F : e ← EXB(s); F ← SIM(out(e)) 〉.

We refer to algorithm SIM as B’s simulator.
29Of course, players may always “communicate to one another via the outcome” —at least for most outcome

functions. That is, in M, by sending the mediator a suitable message mi, a player may affect the outcome so as
communicate some information to the other players. Such a communication is both “legitimate and intrinsic.” By
saying that a player cannot signal we mean that he cannot communicate more information to the other players than
via the outcome alone.
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Theorem 2: If a ballot-box mechanism B perfectly implements a standard normal-form mechanism
M, then B is strategically and privacy equivalent to M.

Proof. Let B = (N, J,K, PS,AF, OF ) be the concatenation of a committer P1 of length K1, a
computer P2 of length K2, and a revealer P3 of length K3; let (0̄, 1̄) be the bit-by-bit encoding
scheme of B; and let ` be the length of (0̄, 1̄).

proof of strategic equivalence. First of all, notice that a strategy of a player i in B is
uniquely identified with his strategy in P1. (This is so, because every action set of P2 and P3 has
cardinality 1.)

Let us now define, for each player i, the function ψi as follows. On input si ∈ SBi , do: choose
any strategy sub-profile s∗−i ∈ SB−i; choose any execution e of B with strategy profile (si, s

∗
−i); and

set ψi(si) = HK1
i (e). That is, define ψi(si) to be the hidden-bit sequence of i at the end of P1.

Function ψi is well defined, because in the execution of a committer protocol a player’s hidden-bit
sequence solely depends on that player’s strategy. Furthermore, because P1 is an L-bit committer,
HK1

i (e) is an L-bit string. Thus, ψi : SBi → {0, 1}L.
Let us now argue that ψi is surjective. Let bi = b1

i . . . bL
i ∈ {0, 1}L, and let si ∈ SBi be the

strategy that selects the bk-action at the kth decision node of i where the action set consists of
two complementary private actions. Then, ψi(si) = b1

i · · · bL
i . Let us now argue that ψi is injective.

Assume that si and s′i are distinct strategies in SBi . Then, because P2’s and P3’s action sets always
have cardinality 1, si and s′i must prescribe different actions in at least one of the L decision nodes of
i in P1 in which the action set consists of two complementary actions. If they do so at the jth such
node, then ψi(si) and ψi(s′i) would differ at the jth bit. Thus, ψi is a bijection: ψi : SBi ↔ {0, 1}L.

Finally, let e = gm0, . . . , gmK be a random execution of B with strategy profile s, where
gmj = (Bj , Rj ,Hj). Then, the first K1 global memories of e constitute an execution of committer
P1; the next K2 global memories constitute an execution of computer P2 on initial global memory
gmK1 ; and the final K3 global memories constitute an execution of revealer P3 on initial global
memory gmK1+K2 . The correctness property of P1 implies that the content of its jth output

address is H
Kj

j . Because the input addresses of P2 equal the output addresses of P1, because P2 is
a computer for ḡ, and because e is a random execution of P2 on initial global memory gmK1 , by the
correctness property of P2, the contents of the output addresses of P2 are distributed according to
g(HK1

1 , . . . , HK1
i ). Since P3 is a revealer whose input addresses equal the output addresses of P2, its

length K3 is equal to `L, and, upon termination of P3, the outcome returned by OF is distributed
according to g(HK1

1 , . . . , HK1
i ). Therefore, for any strategy profile s ∈ SB, 〈 out(e) : e ← EXB(s) 〉

and g(ψ1(s1), . . . , ψn(sn)) are equal distributions.

proof of privacy equivalence. Consider the following algorithm SIM , in which U is the
fixed public record of P1, SIM2 is the simulator for P2, y is the output address vector of P2, and
the encoding scheme is the same bit-by-bit encoding of B.

Algorithm SIM :

Input: z = z1 · · · zL ∈ {0, 1}L.

(1) F2 ← SIM2(ubP1);
(2) Compute z̄ = b1 · · · b`L;

(Note that z̄ ∈ {0, 1}`L, because (0̄, 1̄) has length `, and that y = y1, . . . , y`L.)
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(3) Set F3 = (OpenEn, y1 + ubP1 , b1), . . . , (OpenEn, y`L + ubP1 , b`L).
(I.e., F3 is the public record produced by opening an envelope sequence y +ubP1 containing z̄.)

Output: Public record F = U ◦ F2 ◦ F3.

It is clear that SIM is the simulator required for B’s privacy equivalence to M to hold.
Q.E.D.

f. how to perfectly implement any standard normal-form mechanism

As per Definition 16, to construct a perfect ballot-box implementation of a normal-form mechanism,
we must first specify a bit-by-bit encoding scheme and then (1) a ballot-box committer; (2) a ballot-
box computer for ḡ; and (3) a ballot-box revealer.

F.1. Our Encoding Scheme

In this section we present our encoding scheme, respectively mapping 0 and 1 to two distinct
permutations in S5, that is, to two specific bijections from {1, 2, 3, 4, 5} into itself. The reason for
this unusual choice of encodings is that, using our ballot-box operations, we can perform arbitrary
computation on “enveloped data.”

F.1.1. Barrington’s S5 Implemention of NOTs and ANDs

The following is our rendition of a result of Barrington (1986), namely that the Boolean functions
NOT and AND can be realized as sequences of group operations in S5.

notation. If x is a permutation in S5, we denote by xj the image of integer j ∈ {1, 2, 3, 4, 5}
under x —i.e., xj = x(j)— and identify x with the 5-symbol string x1x2x3x4x5.

six constants. There exist six permutations in S5, denoted by I, a, b, [a → b], [a−1 → a], and
[aba−1b−1 → a] which satisfy the following properties:
• I is the identity permutation.
• aba−1b−1 6= I.
• [a → b]−1a[a → b] = b.
• [a−1 → a]−1a−1[a−1 → a] = a.
• [aba−1b−1 → a]−1aba−1b−1[aba−1b−1 → a] = a.

Proof: a = 12453, b = 25341, [a → b] = 34125, [a−1 → a] = 12354, and [aba−1b−1 → a] = 42153.

three operators. For any x ∈ S5, the operators “˜” , “ ′ ” and “ ∗ ” are defined as follows:
• x̃ = [a → b]−1x[a → b]
• x′ = [aba−1b−1 → a]−1x[aba−1b−1 → a]
• x∗ = [a−1 → a]−1x[a−1 → a]

bit representation. 0 is represented by I, and 1 by a = 12453.

realizing not & and. If permutations x1 and x2 respectively represent bits b1 and b2 then

• ¬b1 = (x1a
−1)∗

• b1 ∧ b2 = (x1x̃2x
−1
1 x̃2

−1)′
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F.1.2. Insufficiency of NOT s and ANDs for General Computation

Unfortunately, NOT and AND are insufficient for general computation.30 To implement any
deterministic finite function, in addition to NOT and AND, one needs to use also the binary
function DUPLICATE, which on input a bit b returns the pair (b, b). And to implement any
probabilistic finite function, one further needs to use the binary function COIN , which on empty
input returns a random bit. However, neither DUPLICATE nor COIN can be realized in S5.

At high level, we bypass this limitation by (1) representing permutations in S5 as sequences of
5 envelopes and (2) using these physical representations and our ballot-box operations for imple-
menting DUPLICATE and COIN (in addition to NOT and AND). That is, rather than viewing
a permutation in S5 as a single, 5-symbol string, we view it a sequence of 5 distinct symbols, and
put each one of them into its own envelope, which can then be manipulated separately by our
ballot-box operations. Such “segregation” of permutations of S5 into separate envelopes is crucial
to our ability of performing general computation, and in a private way too.

F.1.3. Our Envelope Encodings

Definition 18: We define the S5 encoding to be the following, length-5, bit-by-bit encoding:
(0̄, 1̄) = (I, a), where I = 12345 and a = 12453.

Definition 19: Let B be a well-defined set of ballots and σ a sequence of 5 envelope identifiers in
IB. If contB(σ) ∈ S5, then we say that σ is an envelope encoding of a permutation of S5 and refer
to such a permutation by σ̂. If σ̂ ∈ {I, a}, then σ is an envelope encoding of a bit.

Therefore, tautologically, an envelope encoding σ is the envelope encoding of σ̂. We reserve
lower-case Greek letters to denote envelope encodings.

F.2. Our Protocol Conventions

We specify our protocols using the following conventions.

1. For simplicity, we directly list the action(s) available at a given round, rather than providing
an algorithmic description of the action function AF operating on the public record. If a listed
action a is not feasible for the current memory, we simply interpret it as ‘Make a new envelope
with public content 0,” which is always feasible.

2. We describe an individual action a via its “informal reference” as per Definition 5. In addition,
we add an explicit and convenient reference to the identifier(s) of any ballot generated by a.
For instance, when we say “Make a new envelope x with public content c”, we mean “Make
a new envelope with public content c” and refer to the newly created identifier as x (rather
than ub + 1).

3. If a is a public action or an action of Nature, then we omit specifying the acting player, since
the action’s effect will be the same no matter who performs it.

30Indeed, the result of Barrington (1986) was solely concerned with implementing a restricted class of finite functions
called NC1. Notice that, when computing the AND of two bits in S5, the method above destroys both of them. A
general computation may instead require to perform additional operations on such bits, and thus one needs to be
able of “saving copies of them.”
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4. We often collapse the actions of several rounds into a single conceptual round, providing con-
venient names for the ballot identifiers generated in the process. For instance, if p is a per-
mutation in S5, the conceptual round “Create an envelope encoding σ of p” stands for the
following 5 actions:

Make a new envelope σ1 with public content p1.
Make a new envelope σ2 with public content p2.
Make a new envelope σ3 with public content p3.
Make a new envelope σ4 with public content p4.
Make a new envelope σ5 with public content p5.

F.3. Our Ballot-Box Committers

Protocol CommitL

For player i = 1 to n DO: For bit t = 1 to L Do:
(1) Create an envelope encoding α(i,t) of permutation I = 12345.
(2) Create an envelope encoding β(i,t) of permutation a = 12453.

(3) Make a new super-envelope A(i,t) containing envelopes α
(i,t)
1 , . . . , α

(i,t)
5 .

(4) Make a new super envelope B(i,t) containing envelopes β
(i,t)
1 , . . . , β

(i,t)
5 .

(5) Let player i secretly permute A(i,t) and B(i,t) to obtain the super-envelopes C(i,t) and D(i,t).

(6) Open C(i,t) to expose envelopes γ
(i,t)
1 , . . . , γ

(i,t)
5 . Set γ(i,t) = γ

(i,t)
1 , . . . , γ

(i,t)
5 .

(7) Destroy D(i,t).
Output Addresses: For each i ∈ N , the sequence xi = γ(i,1), . . . , γ(i,L).

Lemma 1: Protocol CommitL is an L-bit Ballot-Box Committer for the S5 encoding.

proof of correctness. At the end of Step 3, A(i,t) contains a sequence of 5 envelopes encoding
the identity permutation I, and, at the end of Step 4, B(i,t) contains a sequence of 5 envelopes
encoding permutation a. Thus, recalling that in the S5 encoding I = 0̄ and a = 1̄, at the end of
Step 5, C(i,t) contains an envelope encoding of b̄ if player i “chooses the bit b” (i.e., if the tth bit
of Hi is b). Thus, at the end of Step 6, the content of address xi is Hi, where Hi is a binary string
of length L, as demanded by Definition 10.

proof of privacy. First notice that, at each iteration (i, t) of the seven steps of CommitL, the
variable ub is increased by 19. (In fact: Steps 1 and 2 consist of five actions, each action producing
one new identifier; Steps 3 and 4 produce one new identifier each; Step 5 produces 2 new identifiers;
Step 6 opens one super-envelope, thus exposing five envelopes and producing five new identifiers;
finally, Step 7 destroys one super-envelope without generating any new identifiers.) Now notice
that, prior to iteration (i, t), exactly (i−1)L+(t−1) iterations have occurred. Therefore, the value
of ub at the beginning of iteration (i, t) is 19((i− 1)L + (t− 1)). Thus (recalling that a = 12453),
Privacy is established by noticing that, in any execution of CommitL —no matter what the bits
committed so far may be!— the portion of the public record generated by iteration (i, t) is the
following, fixed sequence U(i, t), where ub is the integer 19((i− 1)L + (t− 1)):

(NewEn, 1, ub+1) (NewEn, 2, ub+2) (NewEn, 3, ub+3) (NewEn, 4, ub+4) (NewEn, 5, ub+5)
(NewEn, 1, ub+6) (NewEn, 2, ub+7) (NewEn, 4, ub+8) (NewEn, 5, ub+9) (NewEn, 3, ub+10)
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(NewSup, ub + 1, . . . , ub + 5, ub + 11)
(NewSup, ub + 6, . . . , ub + 10, ub + 12)
(SecretPermute, i, ub + 11, ub + 12, ub + 14)
(OpenSup, ub + 13, ub + 19)
(Destroy, ub + 14, ub + 19)

Q.E.D.

the redundancy of the destroy operation. Notice that the super-envelope D(i,t) generated
in Step 5, contains a sequence of 5 envelopes whose contents encode a permutation in SY M5 —the
complement of the tth bit of player i’s input. Thus, in Step 7, D(i,t) is destroyed to ensure that no
residual information is left on the table. The same assurance can be obtained, without relying on
the destroy operation, by replacing Step 7 by the following three steps: (7A) super-envelope D(i,t)

is opened so as to reveal the 5 envelopes δ
(i,t)
1 , . . . , δ

(i,t)
5 ; (7B) these 5 envelopes are ballot-boxed to

ensure that their contents are no longer correlated with the tth bit of i; and (7C) the randomly
permuted 5 envelopes are publicly opened. By doing so, however, the players will observe a public
random signal —namely, a random permutation in S5— which potentially could be used in choosing
future input bits in ways that have no counterpart in a normal-form mechanism. To prevent their
from happening, for all iterations (i, t), it suffices to execute all Steps 7A–7C after all inputs bits
have been committed to.

F.4. Our Basic Ballot-Box Computers

In this section we first provide ballot-box computers for three (auxiliary) elementary functions:
namely, Permutation Inverse; Permutation Product; and Permutation Cloning. Then we show how
to utilize these auxiliary computers for building computers for DUPLICATE; COIN ; AND and
NOT . As already hinted, these last 4 computers suffice for constructing an arbitrary ballot-box
computer. Such final construction is formally presented in Section F.6, after establishing some
basic notation for the composition of finite functions.

F.4.1. Our Ballot-Box Computer for Permutation Inverse

Permutation inverse is the function that, on input a permutation p ∈ S5, returns p−1.

Protocol INVσ

Input address: σ —an envelope encoding of a permutation in S5.
(1) Create an envelope encoding α of the identity permutation I = 12345.
(2) For ` = 1 to 5: make a new super-envelope A` containing the pair of envelopes (α`, σ`).
(3) Ballotbox A1, . . . , A5 to obtain A′1, . . . , A

′
5.

(4) For ` = 1 to 5: open super-envelope A′` to expose envelope pair (µ`, ν`).
(5) For ` = 1 to 5: publicly open ν`, and denote its content by ν̂`. Set ν̂ = ν̂1 ◦ · · · ◦ ν̂5.
(6) Publicly permute µ1, . . . , µ5 according to ν̂−1 to obtain ρ1, . . . , ρ5. Set ρ = ρ1, . . . , ρ5.
Output address: 26, 27, 28, 29, 30.
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Lemma 2: For any 5-long address σ, INVσ is a ballot-box computer for permutation inverse, with
input address σ and output address 26, . . . , 30.

Proof. As per Definition 14, let us establish Correctness, Privacy and Clean Operation for INVσ.
Consider an execution of INVσ on any initial memory gm0 proper for permutation inverse and σ,
and let ub0 be the identifier upper-bound of gm0.

correctness. Step 1 generates 5 new identifiers (increasing ub0 by 5). Step 2 binds together,
in the same super-envelope A`, the `th envelope of α and σ. It generates 5 new identifiers, and all
of its actions are feasible since σ ∈ IB. Step 3 applies the same, random and secret, permutation
to both α̂ and σ̂, generating 5 new identifiers. Letting x be this secret permutation, Step 4 “puts
on the table” the envelope encodings µ = µ1, . . . , µ5 and ν = ν1, . . . , ν5 where µ̂ = xI = x and
ν̂ = xσ̂, and generates 10 new identifiers. At the end of Step 4, both ν̂ and µ̂ are totally secret.
Step 5, however, reveals ν̂ to all players, so that all players can compute ν̂−1 and verify that Step
6 is correctly executed. The action of Step 6 is feasible because σ̂ ∈ S5 and so ν̂ ∈ S5. Step
6 produces five new identifiers: 26th to 30th, counting from the start of the execution. Thus,
ρ = ub0 + 26, . . . , ub0 + 30; and ρ̂ = ν̂−1µ̂ = σ̂−1x−1x = σ̂−1 as desired.

privacy. Consider the following probabilistic algorithm.

Algorithm SIM−INVσ

Input: ub —an integer.
Randomly select a permutation r ∈ S5, and output the following sequence of records (grouped so
as to correspond to the records generated by each conceptual step of protocol INVσ):

(NewEn, 1, ub + 1) · · · (NewEn, 5, ub + 5)
(NewSup, ub + 1, σ1, ub + 6) · · · (NewSup, ub + 5, σ5, ub + 10)
(BallotBox, ub + 6, . . . , ub + 10, ub + 15)
(OpenSup, ub + 11, ub + 17) (OpenSup, ub + 12, ub + 19) · · · (OpenSup, ub + 15, ub + 25)
(OpenEn, ub + 17, r1, ub + 25) (OpenEn, ub + 19, r2, ub + 25) · · · (OpenEn, ub + 25, r5, ub + 25)
(PublicPermute, ub + 16, ub + 18, ub + 20, ub + 22, ub + 24, r−1, ub + 30)

To see that SIM−INVσ is the required simulator for INVσ, consider a random execution e of
INVσ on gm0 and a random output E of SIM−INVσ(ub0). First observe that the first 16 records
of e and E (corresponding to Steps 1-4) are identical. The remaining 6 records of the public record
of e are:

(OpenEn, ub0 + 17, ν̂1, ub0 + 25) · · · (OpenEn, ub0 + 25, ν̂5, ub0 + 25)
(PublicPermute, ub0 + 16, ub0 + 18, ub0 + 20, ub0 + 22, ub0 + 24, ν̂−1, ub0 + 30)

Thus, while the last 6 records produced by e and E may very well be different, they are identically
distributed. In fact, r = r1r2r3r4r5 is the random permutation selected by the simulator; and
ν̂ = ν̂1ν̂2ν̂3ν̂4ν̂5 = xσ̂, where x is the random permutation (secretly) selected by the ballot box.
Since the product of a random permutation in S5 and a fixed permutation in S5 is a random
permutation in S5, public records of e and E are identically distributed.

clean operation. Trivially follows by construction. Q.E.D.
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F.4.2. Our Ballot-Box Computer for Permutation Product

Permutation product is the function that, on input (p, q), where p, q ∈ S5, returns pq —i.e., the
permutation in S5 mapping i to p(q(i)).

Protocol MULT σ,τ

Input addresses: σ and τ —each an envelope encoding of a permutation in S5.
(1) Execute computer INVσ to obtain the envelope encoding α.
(2) For ` = 1 to 5: make a new super-envelope A` containing the pair of envelopes (τ`, α`).
(3) Ballotbox A1, . . . , A5 to obtain A′1, . . . , A

′
5.

(4) For ` = 1 to 5: open super-envelope A′` to expose envelope pair (µ`, ν`).
(5) For ` = 1 to 5: publicly open envelope ν`, and denote its content by ν̂`. Set ν̂ = ν̂1 ◦ · · · ◦ ν̂5.
(6) Publicly permute µ according to ν̂−1 to obtain ρ.
Output address: 51, 52, 53, 54, 55.

Lemma 3: For any two, disjoint, 5-long addresses σ and τ , MULT σ,τ is a ballot-box computer for
permutation product, with input addresses σ and τ and output address 51, . . . , 55.

Proof. Consider an execution of MULT σ,τ on any initial memory gm0 proper for permutation
product and σ, τ , and let ub0 be the identifier upper-bound of gm0.

correctness. Note that by Lemma 2, Step 1 generates 30 new identifiers (increasing ub0 by 30)
and produces envelope encoding α with α̂ = σ̂−1. Step 2 binds together, in the same super-envelope
A`, the `th envelope of τ and α. It generates 5 new identifiers, and all of its actions are feasible since
α is an envelope encoding. Step 3 applies the same, random and secret, permutation to both τ̂ and
α̂, generating 5 new identifiers. Letting x be this secret permutation, Step 4 “puts on the table”
the envelope encodings µ = µ1, . . . , µ5 and ν = ν1, . . . , ν5 where µ̂ = xτ̂ and ν̂ = xα̂ = xσ̂−1, and
generates 10 new identifiers. At the end of Step 4, both ν̂ and µ̂ are totally secret. Step 5, however,
reveals ν̂ to all players, so that all players can compute ν̂−1 and verify that Step 6 is correctly
executed. The action of Step 6 is feasible because α̂ ∈ S5 and so ν̂ ∈ S5. Step 6 produces five new
identifiers: 51th to 55th, counting from the start of the execution. Thus, ρ = ub0 +51, . . . , ub0 +55;
and ρ̂ = ν̂−1µ̂ = σ̂x−1xτ̂ = σ̂τ̂ as desired.

privacy. Consider the following probabilistic algorithm.

Algorithm SIM -MULT σ,τ

Input: ub —an integer;
Run SIM−INVσ(ub); randomly select a permutation r ∈ S5; and add to the output the following
sequence of records:

(NewSup, ub + 26, τ1, ub + 31) · · · (NewSup, ub + 30, τ5, ub + 35)
(BallotBox, ub + 31, . . . , ub + 35, ub + 40)
(OpenSup, ub + 36, ub + 42) (OpenSup, ub + 37, ub + 44) · · · (OpenSup, ub + 40, ub + 50)
(OpenEn, ub + 42, r1, ub + 50) (OpenEn, ub + 44, r2, ub + 50) · · · (OpenEn, ub + 50, r5, ub + 50)
(PublicPermute, ub + 41, ub + 43, ub + 45, ub + 47, ub + 49, r−1, ub + 55)
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To see that SIM−MULT σ,τ is the required simulator for MULT σ,τ , consider a random execution
e of MULT σ,τ on gm0 and a random execution E of SIM−MULT σ,τ (ub0). Lemma 2 implies
that the 22 records produced by protocol INVσ in conceptual Step 1 of execution e are distributed
identically to the first 22 produced by SIM−invertσ(ub0) in E. Next, 11 records produced by Steps
2-4 of MULT σ,τ are identical to the next 11 records in E by construction (they are constant).

The remaining 6 records of e and E differ only in the permutation they use, respectively, ν̂ and
r. Since both ν̂ and r are random permutations in S5, these are identically distributed. In addition,
random permutations of Step 1 of SIM−INVσ(ub0) and of Step 2 of SIM−MULT σ,τ (ub0) are
selected independently from each other. The same holds for (secret) permutations selected by the
ballot-box in Steps 6 of INVσ and of MULT σ,τ . Therefore, the whole records produced by e and
E are identically distributed.

clean operation. Evident from our construction. Q.E.D.

F.4.3. Our Ballot-Box Computer for Permutation Clone

Permutation clone is the function that, on input a permutation p ∈ S5, returns the pair of permu-
tations (p, p).

Protocol CLONEσ

Input address: σ —an envelope encoding of a permutation in S5.

(1) Execute computer INVσ to obtain the envelope encoding α.
(2) Create two envelope encodings, β and γ, of the identity permutation I.
(3) For ` = 1 to 5: make a new super-envelope A` containing the triple of envelopes (β`, γ`, α`).
(4) Ballotbox A1, . . . , A5 to obtain A′1, . . . , A

′
5.

(5) For ` = 1 to 5: open super-envelope A′` to expose envelope triple (µ`, ν`, η`).
(6) For ` = 1 to 5: publicly open envelope η`, and denote its content by η̂`. Set η̂ = η̂1 ◦ · · · ◦ η̂5.
(7) Publicly permute µ and ν according to η̂−1.31

Output addresses: 66, 67, 68, 69, 70 and 71, 72, 73, 74, 75.

Lemma 4: For any 5-long address σ, CLONEσ is a ballot-box computer for permutation clone,
with input address σ and output addresses 66, . . . , 70 and 71, . . . , 75.

Proof. In light of the previous two proofs, this one is quite straightforward. The simulator required
by Privacy is the probabilistic algorithm below.

Algorithm SIM−CLONEσ

Input: ub —an integer.
(1) Run SIM−INVσ(ub);
(2) Randomly select a permutation r ∈ S5 and add to the output the following sequence of records:

(NewEn, 1, ub + 31) · · · (NewEn, 5, ub + 35) (NewEn, 1, ub + 36) · · · (NewEn, 5, ub + 40)
31Note that Steps 2–7, in essence, correspond to a protocol for permutation inverse that on input α produces two

identical envelope encodings, each encoding α̂−1.
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(NewSup, ub + 26, ub + 31, ub + 36, ub + 41) · · · (NewSup, ub + 30, ub + 35, ub + 40, ub + 45)
(BallotBox, ub + 41, . . . , ub + 45, ub + 50)
(OpenSup, ub + 46, ub + 53) (OpenSup, ub + 47, ub + 56) · · · (OpenSup, ub + 50, ub + 65)
(OpenEn, ub + 53, r1, ub + 65) (OpenEn, ub + 56, r2, ub + 65) · · ·

(OpenEn, ub + 65, r5, ub + 65)
(PublicPermute, ub + 51, ub + 54, ub + 57, ub + 60, ub + 63, r−1, ub + 70)

(PublicPermute, ub + 52, ub + 55, ub + 58, ub + 61, ub + 64, r−1, ub + 75)

Q.E.D.

Corollary 1: For any 5-long address σ, CLONEσ is a ballot-box computer for DUPLICATE
with input address σ, output addresses 66, . . . , 70 and 71, . . . , 75, and simulator SIM−CLONEσ.

Proof. Recall that DUPLICATE is the binary function that, on input a bit b, outputs the pair of
bits (b, b). Thus, a ballot-box computer for DUPLICATE must, on input an envelope encoding
of a bit b, return two envelope encodings of the same bit. This is exactly what CLONEσ does. In
fact, (1) when σ is an envelope encoding of the identity permutation of S5, then so are ρ and ψ;
and (2) when σ is an envelope encoding of a = 12453, then so are ρ and ψ.

Q.E.D.

F.4.4. Our Ballot-Box Computer for COIN

Recall that COIN is the probabilistic function that, on no input, returns a random bit. Accord-
ingly, COIN is the probabilistic function that, on empty input, returns either I or a with equal
probability.

Protocol COIN

(1) Create an envelope encoding α of I and an envelope encoding β of a.
(2) Make new super-envelopes A and B containing envelopes α1, . . . , α5 and β1, . . . , β5, respectively.
(3) Ballotbox A and B to obtain super-envelopes C and D.
(4) Open C to expose an envelope encoding γ. Destroy D.

Output address: 15, 16, 17, 18, 19.

Lemma 5: Protocol COIN is a ballot-box computer COIN , with no input address and output
address 15, . . . , 19.

Proof. The only non-trivial part to prove Correctness is to demonstrate that contents of γ are
random and belong to {I, a}. Indeed, at the end of Step 2, A contains a sequence of 5 envelopes
encoding I, and B contains a sequence of 5 envelopes encoding permutation a. At the end of Step
3, the contents of C are either those of A or of B with equal probabilities. Thus, at the end of Step
4, the content of address γ is random and is either I or a.

Clean Operation is trivial, and Privacy straightforwardly follows by noting that the required
simulator for COIN is the following probabilistic algorithm.

Algorithm SIM−COIN
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Input: ub —an integer.
Output the following sequence of records:

(NewEn, 1, ub+1) (NewEn, 2, ub+2) (NewEn, 3, ub+3) (NewEn, 4, ub+4) (NewEn, 5, ub+5)
(NewEn, 1, ub+6) (NewEn, 2, ub+7) (NewEn, 4, ub+8) (NewEn, 5, ub+9) (NewEn, 3, ub+10)
(NewSup, 1, 2, 3, 4, 5, ub + 11) (NewSup, 6, 7, 8, 9, 10, ub + 12)
(BallotBox, 11, 12, ub + 14) (OpenSup, 13, ub + 14) (Destroy, 14, ub + 14)

Q.E.D.

F.4.5. Our Ballot-Box Computer for NOT

Protocol NOT σ

Input address: σ —S5 encoding of a bit.

(1) Create an envelope encoding α of permutation 12543.
(2) Execute computer MULT σ,α to obtain the envelope encoding β.
(3) Publicly permute β according to 12354.

Output address: 61, 62, 63, 64, 65.

Lemma 6: For any 5-long address σ, NOT σ is a ballot-box computer for NOT , with input address
σ and output address 61, . . . , 65.

Proof. Correctness trivially follows from the realization of the Boolean function NOT of Section
F.1.1: namely, if σ is the S5 encoding of a bit b, then 12354 σ 12543 encodes ¬b. Clean Operation
is self evident, and Privacy is trivially established by noting that the required simulator is the
following probabilistic algorithm.

Algorithm SIM−NOT σ

Input: ub —an integer.
(1) Output (NewEn, 1, ub+1) (NewEn, 2, ub+2) (NewEn, 5, ub+3) (NewEn, 4, ub+4) (NewEn, 3, ub+

5).
Set α = ub + 1, . . . , ub + 5.

(2) Run SIM−MULT σ,α(ub + 5). Set β = ub + 56, . . . , ub + 60.
(3) Add to the current output the record (PublicPermute, β, 12354, ub + 65).

Q.E.D.

F.4.6. Our Ballot-Box Computer for AND

Protocol ANDσ,τ

Input addresses: σ, τ —each S5 encoding of a bit.

(1) Create an envelope encoding α of permutation 24351.
(2) Execute computer CLONEσ to obtain the pair of envelope encodings (σ′, σ′′).

Execute computer CLONEτ to obtain the pair of envelope encodings (τ ′, τ ′′).
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(3) Execute computer INVτ ′′ to obtain the envelope encoding β.
Execute computer INVσ′′ to obtain the envelope encoding γ.

(4) Execute computer MULT β,α to obtain the envelope encoding δ.
Publicly permute δ according to 34125 to obtain κ.

(5) Execute computer MULT γ,κ to obtain the envelope encoding µ.
Publicly permute µ according to 34125 to obtain π.

(6) Execute computer MULT τ ′,π to obtain the envelope encoding λ.
Publicly permute λ according to 34125 to obtain ξ.

(7) Execute computer MULT σ′,ξ to obtain the envelope encoding ν.
Publicly permute ν according to 32514.

Output address: 451, 452, 453, 454, 455.

Lemma 7: For any two, disjoint, 5-long addresses σ and τ , ANDσ,τ is a ballot-box computer for
AND, with input addresses σ and τ and output address 451, . . . , 455.

Proof. Correctness trivially follows from the realization of the Boolean function AND of Section
F.1.1: namely, if σ and τ respectively are S5 encodings of bits c and d, then the S5 encoding of c∧d
is 32514 σ 34125 τ 34125 σ−1 34125 τ−1 24351. Clean Operation is self evident and Privacy follows
from realizing that the required simulator is the following probabilistic algorithm.

Algorithm SIM−ANDσ,τ

Input: ub —an integer.
(1) Output (NewEn, 1, ub + 1) (NewEn, 2, ub + 2) (NewEn, 5, ub + 3) (NewEn, 4, ub + 4)

(NewEn, 3, ub + 5). Set α = ub + 1, . . . , ub + 5.
(2) Run SIM−CLONEτ (ub + 5) and SIM−CLONEσ(ub + 80).32

Set σ′ = ub + 71, . . . , ub + 75, σ′′ = ub + 76, . . . , ub + 80, τ ′ = ub + 146, . . . , ub + 150, and
τ ′′ = ub + 151, . . . , ub + 155.

(3) Run SIM−INVτ ′′(ub + 155) and SIM−INVσ′′(ub + 185).
Set β = ub + 181, . . . , ub + 185 and γ = ub + 211, . . . , ub + 215.

(4) Run SIM−MULT β,α(ub + 215). Set δ = ub + 266, . . . , ub + 270. Add to the current output
the record (PublicPermute, δ, 34125, ub + 275); and set κ = ub + 271, . . . , ub + 275.

(5) Run SIM−MULT γ,κ(ub + 275). Set µ = ub + 326, . . . , ub + 330. Add to the current output
the record (PublicPermute, µ, 34125, ub + 335). Set π = ub + 331, . . . , ub + 335.

(6) Run SIM−MULT τ ′,π(ub + 335). Set λ = ub + 386, . . . , ub + 390. Add to the current output
the record (PublicPermute, λ, 34125, ub + 395). Set ξ = ub + 391, . . . , ub + 395.

(7) Run SIM−MULT σ,ξ(ub + 395). Set ν = ub + 446, . . . , ub + 450. Add to the current output
the record (PublicPermute, ν, 32514, ub + 455).

Q.E.D.

Therefore, protocolsNOT andAND for functions NOT and AND can be easily constructed by
creating envelope encodings of constant permutations, and, in the correct order, executing protocols
INV, MULT , CLONE , and publicly permuting a set of 5 envelopes for each permutation product
where the left permutation is a known constant.

32Recall that protocols INV, MULT , and CLONE generate, respectively, 30, 55, and 75 new identifiers.
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remark. Notice that AND and NOT take as inputs envelope encodings of bits and produce
envelope encodings of bits. By contrast, the ballot-box protocols INV, MULT , and CLONE
(that underly our construction of NOT and AND) are ballot-box computers operating on envelope
encodings of arbitrary permutations in S5, rather than just 12345 or 12453.

F.5. Our Ballot-Box Revealers

If the outcome function g of a normal-form mechanism M produces L-bit outputs, then the S5

encoding ḡ produces outputs of length 5L. Therefore, the revealer of a ballot-box implementation
of M must open 5L envelopes.

Protocol Revealy

Input address: y = y1, . . . , yL —where each yi is a sequence of 5 envelope identifiers.

For i = 1 to L do: for j = 1 to 5 do: publicly open envelope yj
i .

F.6. Our Computers for General Finite Functions

To implement any given normal form mechanism, it is much easier to construct its ballot-box
committer and revealer than its ballot-box computer. Indeed, committers and revealers have a
fixed functionality, and thus “designing one is designing them all.” By contrast, there are “infinitely
diverse” outcome functions, and in principle designing a ballot-box computer for one of them may
provide negligible help in designing a ballot-box computer for another. Fortunately, standard
complexity theoretic results state that any finite function g is equivalent to a Boolean circuit —in
essence, a “special composition” of the 4 Boolean functions NOT , AND, DUPLICATE, and
COIN .33 We exploit this fact to construct a ballot-box computer for any given outcome function
from the already constructed ballot-box computers for (the S5 encodings of) these elementary
functions.

F.6.1. Boolean Circuits

directed graphs. A directed graph —digraph for short— consists of a pair (V,E), where V is
a finite set and E a subset of V × V . We refer to V as the set of nodes, and to E as the set of
edges. Whenever (u, v) ∈ E, we refer to u as a parent of v, and to v as a child of u. We refer
to the number of parents of a node u as u’s in-degree, and to the number of children of u as u’s
out-degree. A node of V is called a source if it has in-degree zero, a sink if it has out-degree zero,
and an internal node otherwise.

A path is a sequence of nodes s1, . . . , sk such that for all i < k, (si, si+1) ∈ E. A digraph (V,E)
is acyclic if, for any path s1, . . . , sk such that k > 1, s1 6= sk. (Note that any non-empty acyclic
digraph has at least one source and at least one sink.) In an acyclic digraph, the maxheight of a
node u, denoted by maxheight(u), is the maximum integer k for which there exists a path s1, . . . , sk

in which s1 is a source and sk = u.
For an acyclic digraph with n nodes, a function ord : V → {1, . . . , n} is a natural order if

33 At the simplest level, a function h is the composition of two functions f and g if h(x) = f(g(x)) for all x.
Unfortunately this simple type of composition does not guarantee that any function is the composition of a few
simple ones, and we thus need to work with more general compositions.
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1. for any source u, internal node v, and sink z, ord(u) < ord(v) < ord(z); and
2. for any internal nodes u and v, ord(u) < ord(v) whenever maxheight(u) < maxheight(v).

When a natural order ord is specified, by “node j” we mean the node u such that ord(u) = j.

boolean circuits. A Boolean Circuit C consists of a quadruple ((V,E), ord, a, Func) where:
• (V, E) is an acyclic digraph such that every sink has maxheight ≥ 3 and

- every source has out-degree one and every sink has in-degree one;
- every internal node has in-degree 1 or 2 and out-degree 1 or 2; but
- no node has in-degree 2 and out-degree 2.

• ord is a natural order for V ;
• a is a positive integer not exceeding the number of sources in (V,E); and
• Func is a function mapping the internal nodes and the sources whose order is greater than a

to the set of functions {NOT, AND,DUPLICATE,COIN} as follows:
- if node j is a source, then Func(j) = COIN ;
- if node j has in-degree 1 and out-degree 1, then Func(j) = NOT ;
- if node j has in-degree 2 and out-degree 1, then Func(j) = AND; and
- if node j has in-degree 1 and out-degree 2, then Func(j) = DUPLICATE.

We refer to the first a sources as input nodes, to all other sources and internal nodes as computation
nodes, and to the sinks as output nodes.

graphical representation of boolean circuits. A Boolean circuit ((V, E), ord, a, Func)
can be represented graphically as follows: (1) each node u is represented by a “separate” circle,
shrinking the circles of input and output nodes to a “dot”; (2) ord is represented by drawing the
circle of node u “lower than or on the left of” the circle of node v whenever ord(u) < ord(v); (3)
each edge (u, v) is as an arrow directed from the circle representing u to the circle representing v;
and (4) for each computation node j, Func(j) appears inside the circle representing node j. For
brevity, we denote NOT by ¬, AND by ∧, DUPLICATE by D, and COIN by $. See Figure 1.
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Figure 1: Graphical representation of a Boolean circuit with two input nodes.

F.6.2. Boolean Circuits as Functions

Let C = ((V, E), ord, a, Func) be a Boolean circuit with a input nodes, b output nodes, and c
computation nodes. Then C can be interpreted as the finite function FC : {0, 1}a → {0, 1}b
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mapping an input vector x = x1 . . . xa to an output vector y = y1 . . . yb as follows:
• For i = 1 to a, label the outgoing edge of the ith source with bit xi.
• For i = a + 1 to a + c do:

if Func(i) = COIN , then randomly choose a bit b and label i’s out-going edge by b;
if Func(i) = NOT and bit b labels i’s incoming edge, label i’s outgoing edge by ¬b;34

if Func(i) = DUPLICATE and b labels i’s incoming edge, label i’s outgoing edges by b;
if Func(i) = AND and b1, b2 label i’s incoming edges, label i’s outgoing edge by b1 ∧ b2.

• For i = 1 to b, set yi to be the bit labeling the incoming edge of (sink) node a + c + i.
We say that function FC is deterministic if Func does not map any computation node to COIN ;
and probabilistic otherwise.
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Figure 2: A computation of the Boolean circuit of Figure 1, on input 11 and coin toss 0.

boolean-circuit representation of finite functions. A Boolean circuit representation of
a finite function f is a Boolean circuit C such that f = FC . It is well known in complexity theory
that a Boolean-circuit representation of f can be efficiently computed from any other standard
representation of f .

F.6.3. Constructing Ballot-Box Computers for Boolean Circuits.

Intuitively, we construct a ballot-box computer for any Boolean circuit C = ((V, E), ord, a, Func)
by simply “translating” C into a protocol PC . As we have seen above, the function FC “visits each
computation node j according to ord, evaluates Func(j) on the bits found on j’s incoming edges,
and passes the outputs along j’s outgoing edges of (V, E).” Similarly, PC “visits each computation
node j in the same order, and executes the corresponding ballot-box computer for Func(j) on the
input envelopes found on j’s incoming edges, and passes the output envelopes along j’s outgoing
edges.” Technically, PC is a concatenation of (multiple copies of) NOT , AND, CLONE , and
COIN , in proper order and with proper input addresses.

The following algorithm P formalizes how circuit C is translated into the desired ballot-box com-
puter PC . Algorithm P uses ub0 to refer to the identifier upper-bound of the initial global memory
gm0 = (B0, R0,H0) for PC . (Recall that, when executed on gm0, the action functions of PC can
deduce ub0 from R0.) Algorithm P constructs P as the concatenation of ballot-box computers, one

34Note: because ord is a natural order for V , when it comes time to label node i’s outgoing edges, all of node i’s
incoming edges have already been labeled.
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for each computation node of C. If j is such a computational node, the corresponding ballot-box
protocol is denoted by Pj , and the variable wj predicts the value of the identifier upper-bound at
the start of the execution of Pj .

Algorithm P

Inputs:
C = ((V, E), ord, a, Func) —a Boolean Circuit with b output nodes and c computation nodes;
x = x1, . . . , xa —an address such that each xi has length 5.

(1) Set wa+1 = ub0.
(2) For i = 1 to a, label the outgoing edge of the ith source with xi.
(3) For i = a + 1 to a + c, do:

if Func(i) = COIN ,
then set Pi = COIN ; label i’s outgoing edge with σi = 15 + wi, . . . , 19 + wi; and set wi+1 =

wi + 19;
if Func(i) = NOT and σ labels i’s incoming edge
then set Pi = NOT σ; label i’s outgoing edge with σi = 61 + wi, . . . , 65 + wi; and set wi+1 =

wi + 65;
if Func(i) = AND and (σ; τ) label i’s incoming edges,
then set Pi = ANDσ,τ ; label i’s outgoing edge with σi = 451 + wi, . . . , 455 + wi; set wi+1 =

wi + 455;
if Func(i) = DUPLICATE and σ labels i’s incoming edge,
then set Pi = CLONEσ; label i’s outgoing edges with σi = 61 + wi, . . . , 65 + wi and τi =

66 + wi, . . . , 70 + wi; and set wi+1 = wi + 70;
(4) For i = 1 to b: if α labels the incoming edge of sink a + c + i, then set yi = α− w0;
(5) Set PC = Pa+1 ◦ · · · ◦ Pa+c.

Outputs:
PC —a ballot-box protocol (the desired protocol); and
y = y1, . . . , yb —an address (PC ’s output address).

Lemma 8: If P(C, x) = (PC , y), where C = ((V, E), ord, a, Func) is a Boolean circuit and x =
x1, . . . , xa an address such that each xi has length 5, then protocol PC is a ballot-box computer for
FC with input address x and output address y.

Proof. The correctness of Pc follows from the following facts. First, observe that if ub0 is the
identifier upper bound of the initial memory gm0, proper for FC and x = x1 . . . xa, then for each
computation node j, wj is the initial identifier upper-bound at the start of execution of Pj . Indeed,
wa+1 = ub0, and wj+1 is generated off-setting wj by exactly the number of new identifiers created
by any execution of its corresponding computer Pj . (Recall that NOT always increases ub by
65, AND by 455, CLONE by 70, and COIN by 19.) Second, P labels each edge with 5 distinct
integers. Third, due to the correctness of NOT , AND, CLONE , and COIN and the order in
which PC calls for their execution: (1) at the start of Pj ’s execution, the label already assigned by
P to each incoming edge of computation node j is guaranteed to be an envelope encoding of a bit;
(2) upon termination of Pj , the label already assigned by P to each outgoing edge of j also is an
envelope encoding of a bit; and finally (3) the “underlying” output bit is that (bits are those) of
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Func(j) evaluated on the “underlying” input bit(s). Thus, an execution of PC labels each edge in
E with an envelope encoding of a bit so that the underlying bits of these encodings label (V,E)
exactly as does a computation of FC .

Privacy is easily established by noting that the following probabilistic algorithm SIM−PC is
the required simulator for PC .

SIM−PC

Input: ub —an integer.
Set ub0 = ub and, for each i = a + 1 to a + c, define ubi as in P.
(1) For i = a + 1 to a + c, run SIM−Pi(ubi).
Clean Operation trivially holds for PC as it holds for each individual ballot-box computer Pj .

Q.E.D.

F.7. Constructing Perfect Implementations For All Normal-Form Mechanisms

We are finally ready to state and prove our main theorem.

Theorem 1: For any standard normal-form mechanism, there exists a ballot-box mechanism B that
perfectly implements it.

Proof. Let M = (N, ({0, 1}L)n, {0, 1}L, g) be a standard normal-form mechanism. In light of Defi-
nition 16, to present a ballot-box mechanism B = (N,K, J, PS,AF, OF ) that perfectly implements
M, we must specify a bit-by-bit encoding {0̄, 1̄}, and the three ballot-box protocols P1, P2, and
P3. We do so as follows:
• Set {0̄, 1̄} = {12345, 12453}.
• Set P1 = CommitL; and let x and ub∗ respectively be P1’s output address and final identifier

upper bound.
• Set P2 = PC , where C is a Boolean circuit for g and (PC , y) = P(C, x).
• Set P3 = Revealy+ub∗ .

Q.E.D.

F.8. Universality and Efficiency of Our Construction

Let us now argue that the construction of Section F.7 can be actually carried out in an automatic
and efficient way —indeed in linear time— and produces ballot-box mechanisms that themselves
work in linear time.

F.8.1. Mechanism Representation and Definition of Efficiency

To discuss the efficiency of our construction we must first explain
1. What it means for an algorithm to be linear-time;
2. How a normal-form mechanism is represented as an input to an algorithm;
3. How a ballot-box mechanism B is represented as an output of an algorithm; and
4. What it means for a ballot-box mechanism to be linear-time.
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explanation 1. The traditional model for analyzing the precise efficiency of concrete algorithms
is the Random-Access Memory (RAM) machine.35 In essence, this is the idealization of a modern
computer, where memory cells are large, plentiful and easily accessible.36 In our context, a RAM
machine guarantees that each element of a public record (and thus each identifier) can be stored
in a single cell of memory and that, after writing the address of a memory cell, the contents of the
specified cell can be retrieved in unit time. A RAM machine also guarantees that any elementary
operation on the values stored in a constant number of memory cells has a constant computation
cost. (Examples of such elementary operations are comparing two values, multiplying a value by
a constant, or adding two values.) A different source of computational cost is that of generating
an output. Since this is not an internal operation on the “fast and capacious” memory cells of the
RAM machine, outputting an k-bit string is defined to take k computational steps.

With this preamble, saying that an algorithm A runs in linear time means that there exists a
positive constant c such that, whenever A’s input is a binary string of length λ,37 A terminates
within cλ steps of computation on a RAM machine.

explanation 2. Note that a standard normal-form mechanism M = (N, ({0, 1}L)n, {0, 1}L, g)
can be fully described by a Boolean circuit C = ((V, E), ord, a, Func) computing g.38 (In fact, all
elements of M are derivable from this representation, because C has nL sources and L sinks.) Let
us now provide a specific way to encode C (and thus M). Let C have v nodes and e edges. Then,
v and a are represented in unary (i.e., by the concatenation of, respectively, v and a 1s, denoted by
1v and 1a). Node j (i.e., the jth node according to ord) is described by a unique l-bit string, where
l = dlog(v)e: namely, the l-bit binary expansion of integer j (with leading 0s if necessary). Each
edge (i, j) of E is described by a unique 2l-bit string: namely, the concatenation of the descriptions
of i and j. We thus define the standard binary encoding of C to be the string 1v01a0S, where string
S ∈ {0, 1}2le is the concatenation of the descriptions (in lexicographic order) of the e edges of E.
Notice that such encoding can be parsed in a unique way, and that, denoting its length by λ, we
have λ = O(v log v).39 We call such an encoding of C an E2-representation of M.

explanation 3. A ballot-box mechanism B = (N, J,K, PS, AF, OF ) is represented as a bit string
specifying the cardinality n of N and integers J and K in binary; the sequence PS as a Kdlog(n)e-
bit string; the sequence AF = AF 1, . . . , AFK as K RAM-machine programs; and the function OF
as a RAM machine program. We call such a representation of B, an E3-representation of B.

An E3-representation allows some latitude in choosing the RAM algorithms for AF and OF (a
choice that should be made wisely so as to ensure the desired “linearity” of B).

35The general notion of an “efficient algorithm” (technically, that of a polynomial-time algorithm) is quite inde-
pendent of the underlying computational model. However, more precise efficiency notions, such as “linear-time” are
meaningful only relative to a specific model of computation.

36See Cormen, Leiserson, Rivest, and Stein (2001) for a convincing explanation and justification of this model.
37Representing inputs in binary prevents wasteful algorithms from being deemed efficient. For example, iterated

addition is not an efficient way to multiply integers, but it would be if the input integers were represented in unary —
i.e., if integer x were represented by a string of x 1s. Any alphabet with more than one symbol allows for exponentially
more compact representation of inputs, which is a big jump with respect to unary representation. But adopting any
alphabet with more than two symbols only shortens the input length a mere constant factor relative to the binary
alphabet.

38Recall that C is easily computable from any other standard representation of g, although not necessarily in linear
time.

39Indeed, each node of (V, E) has at most 3 edges coming into or out of it. Therefore the number of edges, e, is
upper-bounded by 1.5v. Consequently, the length of the encoding string, v + 1 + a + 1 + 2le, is at most 5vdlog(v)e.
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explanation 4. The running time of a ballot-box mechanism B does not reflect the effort required
by the players to choose their strategies in B.40 Rather, we define it to be the maximum number of
steps required by a player, taken over all possible strategy profiles, and over all possible executions
of such strategies. Now, there are two kinds of steps for a player i in an execution of B:

1. Computational steps. At any round k in which he is the acting player, the computational steps
of i consist of two types:

1.1 the steps necessary to run program AF k on the public record Rk, so as to compute the
action set Ak available to him, and

1.2 the steps necessary to run his strategy to choose an action in Ak.

2. Physical steps. After i has selected an action in his action set, the physical steps of i are those
necessary for him to carry out the chosen ballot-box action on the current set of ballots.

The computational steps are assumed to be carried out in the RAM model, and counted accordingly.
As for the physical steps, we count a ballot-box action involving k ballots as k steps.

With this clarification, we say that B is linear-time if there exists a positive constant c such
that, letting Λ be the number of bits in an E3-representation of B, in any execution of B the total
number of steps required from each player is upper-bounded by cΛ.

Note that, if B is a perfect implementation of a normal-form mechanism M, then B is linear-
time if and only if, in each execution, each player performs O(Λ) computational steps of Type 1.1.
Indeed, since each action set of i in B consists of either (a) a single action or (b) two complementary
actions, a strategy of i coincides with binary string mi and requires trivial computation. (That
is, the j’s time the action set consists of two complementary actions, i’s strategy prescribes the
0-action if the jth bit of mi is 0, and the 1-action otherwise.) As for physical actions, at most Λ
ballot-box actions are performed in any execution of a Λ-bit B. Since any such action manipulates
at most 10 distinct ballots, the number of physical steps of B is guaranteed to be linear in Λ.

F.8.2. Our Construction as an Efficient Compiler

Let us now prove that our construction can be viewed as an efficient compiler C translating normal-
form mechanisms to equivalent and efficient ballot-box ones.

remark. Note that, for any L, σ, τ , and y, each action function AF k of any of the protocols
CommitL, Revealy, NOTσ, ANDσ,τ , CLONEσ, and COIN can be specified as a constant-time
RAM program that, on input the last 5 entries of the current public record R, generates the action
or the pair of complementary actions of round k. This is quite obvious for CommitL and Revealy,
and holds also for our 4 basic computers because, for each one of them,

• the number of rounds is fixed;
• the action function of each individual round specifies an action set consisting of a single action;
• for any given round k, the specified action is always from the same class; and
• the arguments of the specified action for each k depend only on (1) address x, (2) round k,

(3) the last entries of the public record —the maximum number of such entries is 5 for the
case of the PublicPermute action— and (4) the initial identifier upper-bound ub0 —itself
trivially computable from k and the current ub appearing in the last entry of the public record.

40The time the players may invest in selecting their strategies in B essentially coincides with that they may invest
in M, if B perfectly simulates M, and we regard it as “orthogonal” to the efficiency of B proper.
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Theorem 3: There exists a linear-time algorithm C that, on input any standard normal-form
mechanism M, outputs a linear-time ballot-box mechanism B that perfectly implements M.

Proof. Let C be the standard binary representation of the outcome function g of a normal-form
mechanism M = (N, ({0, 1}L)n, {0, 1}L, g); and let λ be the length of C.

Let us start by proving that CommitL and its output address x can be constructed in time
linear in λ. This is so because
• L and nL, respectively the number of sinks and input nodes, can be computed from the

standard binary encoding of C in time linear in λ.
• Protocol CommitL consists of 15nL rounds: indeed it is the repetition nL times of a core

of 15 actions (organized in 7 conceptual steps in Section F.3). Since CommitL always starts
with an empty initial memory, its first 15 actions are constant, and thus AF 1 through AF 15

are constant-time RAM programs themselves computable in constant time. These 15 actions
always generate 19 new ballot identifiers. The next 15 actions can be computed from AF 1 to
AF 15 by simply offsetting by 19 all of their identifiers. Thus they too can be computed in
constant time on a RAM machine. By continuing this offsetting for each of the subsequent
groups of 15 rounds, enables a RAM machine to internally compute CommitL in its entirety
in time linear in nL, and thus in λ.

• The output address of CommitL is x = x1, . . . , xnL, where xi = 19(i−1)+15, . . . , 19(i−1)+19.
Thus x can be internally computed and output in time linear in λ.

• The total number of identifiers involved in CommitL is 19nL, and thus O(nL log nL) =
O(v log v) = O(λ) bits suffice to write them down. Thus a RAM machine can also output
CommitL in linear in λ time.

Secondly, let us prove that algorithm P can be implemented so as to run in time linear in λ, and
thus PC and y can be constructed in time linear in λ. This is so because one can, in time linear
in λ: (1) deduce the total number of nodes v as well as the number c of computational nodes and
the number m of edges; (2) initialize one array A of v consecutive memory cells, the jth of which
contains the incoming and outgoing edges of node j, and set aside an array B of m consecutive
memory cells, the ith of which will contain a sequence of 5 integers —the label of edge i. Because
each cell of these arrays can be accessed in constant time, it becomes trivial to verify that the
entire internal computation of P can be completed in time linear in λ. (For instance, for each
computation node j, Func(j) is computable in constant time by retrieving —via array A— the
j’s incoming and outgoing edges and then counting them.) Further, outputting (PC , y) = P(C, x)
can be done in time linear in λ. This can be argued as follows. By the previous remark, each
AF k of PC is a constant-time RAM program that, on input the last 5 entries of the current public
record R, generates a single action on at most 5 identifiers. Thus, each AF k can be described by
a number of bits upper-bounded by a constant times the maximum length of an identifier. Since
each of our 4 basic computers has a constant number of rounds and generates a constant number
of identifiers, the total number of rounds of PC and the total number of identifiers generated are
linear in c. Thus, the complete description of PC and y is linear in c log c, and thus linear in λ
—which is O(v log v).

Thirdly, notice that the number of players N , the total number of rounds K, the player sequence
PS, the start of outcome round J , and Revealy are all trivially computable in linear time.

Finally, a RAM program for OF linear in λ can be described as a program that reads the last
5L entries of public record, divides them into L groups of 5 records, and then applies the S5 decoder
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to each group to obtain the desired L output bits.
Let now C be the algorithm that on input C, a λ-bit E2-representation of a standard normal-

form mechanism M = (N, ({0, 1}L)n, {0, 1}L, g), first computes E3-representations of CommitL,
PC , and RevealL as specified above, and then concatenates them to obtain the desired perfect
implementation B = (N, J,K, PS, AF,OF ) of M. Since such a concatenation too can be computed
in time linear in λ, we have proved that C runs in linear time.

Let us now prove that B is linear-time by proving, in light of Explanation 4, that the num-
ber of computational steps required from each player is O(Λ), where Λ is the length of B’s E3-
representation. This is so because each action function AF k of B is a constant-time RAM program,
and because we have just argued that OF is a RAM program running in time linear in L and thus
in Λ.

Q.E.D.

g. perfectly implementing any normal-form mechanism with private outcomes

Our results generalize to normal-form mechanismsM that, given a profile of messages (m1, . . . ,mn),
produce, not only a public outcome y, but also a private outcome yi for each player i.

Intuitively, perfect implementations of such mechanisms can be obtained by a slight modifica-
tion of our construction. First, consider a perfect ballot-box implementation BP of the “public
version” MP of M that maps (m1, . . . ,mn) to a public outcome with n + 1 components: namely,
(y, y1, . . . , yn). By the outcome-boundary round J , BP thus produces n+1 sequences of envelopes,
whose contents respectively encode y, y1, . . . , yn in a private and correct manner. Thus, to perfectly
implement the original M, one only needs to modify the ballot-box revealer of BP so that (1) it
publicly opens only the envelopes of the first sequence (thus making y publicly computable), and
(2) it lets player i “privately read” the envelopes encoding yi, thus enabling him to privately learn
yi.41

Let us now detail the changes to our definitions and construction necessary to formalize this
intuition.

changes to the definition of a normal-form mechanism. Definitions 1 is modified as
follows:

• The outcome set Y is now the Cartesian product of n + 1 subsets of Σ∗, Y = Y0 × Y1 · · ·Yn.

Definition 2 is restated as follows:
• A standard normal-form mechanism is a mechanism M = (N, M, Y, g) such that M1 = · · · =

Mn = Y0 = · · · = Yn = {0, 1}L for some integer L.
41 In sum, to implement normal-form mechanisms with private outputs, we just augment our ballot-box actions

with the new action “Player i privately reads envelope j.” While other augmentations are also possible, this one
properly extends to the private-output setting the important “no residual information” property (i.e., Property 3)
of perfect implementation. To illustrate this point, assume also including “hand envelope j to player i” in our set
of ballot-box actions; and consider the following two implementations, B and B′, of a secret referendum: namely the
normal-form mechanism in which the players simultaneously choose votes and the outcome function returns the tally
of their votes. Both B and B′ privately and correctly produce n1 sequences of envelopes, y containing the desired
tallies, and yi containing i’s vote, and then, in the revealing stage, open all envelopes in y. However, B has player i
privately read the envelopes in yi, while B′ hands over the envelopes in yi to player i. It is immediately seen that B
and B′ are privately and strategically equivalent. Nonetheless, a player in B can only claim what his vote was, while
a player in B′ can actually prove what his vote was. Thus, buying votes is possible in a much stronger sense in B′
than in B, so that the two mechanisms may be played in a much different way!
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changes to ballot-box actions. The following class of ballot-box actions is added:42

(PrivateRead, j, i) — where i is a player and j is an envelope identifier in IB.

“Player i privately reads the content of envelope j.”

R := R ◦ (PrivateRead, j, i, ub); B = B \ {Bj}; and Hi := Hi ◦ contB(j).

changes to the definition of a ballot-box mechanism. In essence, we continue to view a
ballot-box mechanism for a normal form mechanism with private outputs as having a single output
function OF , but let it have two inputs, and use the first one to indicate whether we are dealing
with computing the public output or the private output of a player i. Formally, Definition 8, that is,
the definition of an `-bit ballot-box mechanism B = (N, K, J, PS, AF,OF ), is modified as follows:

• Whenever k is greater than J , AF k(R) continues to be a set consisting of a single action, but
this single action can now be either an open-envelope action or a private-read action.

• When the play of B terminates the outcomes are obtained as follows. The public outcome
y0 ∈ {0, 1}` is obtained by evaluating function OF on inputs 0 and Cont(R(J,K]). The private
outcome yi ∈ {0, 1}` of player i is obtained by evaluating function OF on inputs i and H

(J,K]
i .

• In an execution e of B we distinguish the n + 1 outcomes as follows: the public one is denoted
by out0(e), and the outcome of player i by outi(e).

changes to the definition of a ballot-box revealer. Definition 14 is restated as follows:

• Let y0, . . . , yn be an address and R = (N,K, PS, AF ) a ballot-box protocol. We say that R
is a ballot-box revealer for addresses y0, . . . , yn if (1) each function in AF continues to return
actions sets consisting of a single action, but this action can now either be an open-envelope
or a private-read action; and (2) in any execution, envelope j is opened if and only if j belongs
to y0, and privately read by player i whenever j belongs to yi.

changes to the definition of perfect implementation. Definition 15 is modifed in items
5 and 6 as follow:

5. J = K − (n + 1)`L; and
6. OF is the function that

6.1 on input a pair consisting of 0 and z = c1, . . . , c`L ∈ Σ`L, applies the decoding function
of (0̄, 1̄) to z; and

6.2 on input a pair consisting of i > 0 and a sequence zi ∈ Σ`L, applies the decoding function
of (0̄, 1̄) to zi.

changes to the definition of strategic and privacy equivalence. Definition 16 is re-
stated as follows:

• Consider a general ballot-box mechanism B = (N, K, J, PS, AF, Y, OF ) and a standard general
mediated mechanism M = (N, ({0, 1}L)n, ({0, 1}L)n+1, g). We say that B is general strategic
and privacy equivalent to M if there exists a probabilistic algorithm SIM0 and ∀i ∈ N there

42It may be natural to think of this action as three separate actions: (1) handing over an envelope to a player i;
(2) having player i open the envelope and secretly read its contents; and (3) destroying the envelope after it has been
privately read. Formalizing the first two actions would require the notion of a player “possessing” an envelope and
thus would require re-defining a ballot to include the identity of the player possessing it. Although such formalization
is possible, we find it more convenient to formalize this two-step process as a single ballot-box action.
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exists a bijection ψi : SBi ↔ {0, 1}L and a probabilistic algorithm SIMi such that, ∀s ∈ SB

the following properties hold:

Strategic Equivalence: 〈(out(e), out1(e), . . . , outn(e)) : e ← EXB(s)〉 = g(ψ1(s1), . . . , ψn(sn)).
Privacy Equivalence: 〈 (RK(e),H1(e), . . . , Hn(e)) : e ← EXB(s) 〉 =

〈 F0, F1, . . . , Fn : e ← EXB(s); F0 ← SIM0(out(e)); ∀i ∈ N, Fi ← SIMi(outi(e), si) 〉.
changes to the ballot-box constructions. Our construction of perfect implementation
of mediated mechanisms stays the same, except for ballot-box revealers, that are constructed as
follows:

• Let y = y0, . . . , yn be an address such that each yi is a sequence of 5L envelope identifiers,
yi,1, . . . , yi,5L. Then the following is a ballot-box revealer for address y.

Protocol Revealy:

1. “For ` = 1 to 5L: publicly open envelope y0,`.”
2. “For i = 1 to n: For ` = 1 to 5L: “player i privately reads envelope yi,`.”

changes to the proofs. All proofs are either syntactically identical, or totally analogous.

h. the issue of abort

In an extensive-form mechanism, whenever it is player i’s turn to act, the set of actions available to
him must be fully specified. If M is a concrete mechanism and an action set of i is {Left, Right},
then it must indeed be the case that Left and Right are the only two options really available
to him. In most concrete settings, however, player i will have the ability of taking no action at
all.43 Following computer science literature, we call such a “do-nothing action” an abort. Such an
alternative option should not be confused with a non-participation option, which is an explicitly
available strategic choice in many mechanisms. Because aborts are inherent in most concrete
settings, any general theory of practical implementation must deal with them.

technically bypassing abort in ballot-box mechanisms. The abort option does not arise
in our ballot-box mechanisms, because they have been carefully engineered so as to by-pass this
possibility. Indeed, whenever it is a player’s turn to act, his action set in our ballot-box mechanisms
consists of (1) a single public action or (2) two complementary private actions. In the first case,
the action can be performed by anyone: all that the players need to see is that the action has
been performed. In particular, public actions can be performed by an external agent, even one not
trusted by the players, making the abort issue disappear completely. In the second case, while the
other players “look away,” the acting player needs either to swap two ballots or leave them alone.
Thus, performing no action is formally equivalent to leaving them alone.

43Assume that, in a concrete mechanism, the acting player i is at an intersection, and that his action set is
{(turn) Left, (turn) Right}. Then, for him to really have no other action available, he must be driving a car with
no breaks, on a road very steeply downhill, etc. Else, he would always have the option of standing still rather than
moving in either direction.
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alternative ways of handling aborts. One alternative way to handling the abort issue
consists of having the mechanism designer (1) formally include abort as an action available in each
action set of a concrete mechanism; (2) assign special abort outcomes to terminal nodes reached
after an abort by some player; and (3) provide incentives to prevent players from aborting. Strategic
equivalence can thus be formulated as outcome-preserving bijections between the players’ strategies
in the normal-form mechanism and their non-aborting strategies in its concrete implementation.
In fact, with proper incentives, all strategies that lead to aborting outcomes can be iteratively
eliminated as being dominated.44 This alternative was indeed taken in Izmalkov, Lepinski, and
Micali (2005) assuming that, as soon as a player played the abort action, a special terminal node
is immediately reached and a sufficiently high fine imposed on the aborting player.
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