
Issues in Building Mobile-Aware Applications with the
Rover Toolkit

by

Joshua A. Tauber

B.S., Computer Science (1991)
B.A., Government (1991)

Cornell University

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1996

(Massachusetts Institute of Technology 1996. All rights reserved.

Author • .r ,.........r
Department of Electrical Edgineering and Computer Science

May 28, 1996

Certified byns..aashoek
Frans Kaashoek

Assistant Professor of Compute- cience and Engineering
Thesis Supervisor

Accepted by.................................-. . . T. . v. KfV
. ::: . Frederic. ogenthaler

Chairman, Department Comr ittee on Gra ate Theses

JUL 16 1996 C ,.

L.EBRACRIES

Issues in Building Mobile-Aware Applications with the Rover Toolkit

by

Joshua A. Tauber

Submitted to the Department of Electrical Engineering and Computer Science
on May 28, 1996, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

To excel under the harsh conditions of a mobile computing environment, applications must be
designed to be aware of and take an active part in mitigating those conditions. The Rover Mobile
Application Toolkit supports a set of programming and communication abstractions that enable
mobile-aware applications to cooperate actively with the user and the underlying Rover runtime
system to achieve increased availability, concurrency, resource allocation efficiency, fault tolerance,
consistency, and adaptation. Analysis and experimental evaluation of a calendar tool redesigned to
be mobile-aware demonstrate that such application-level control allows correct operation, increases
interactive performance by up to a factor of 1000, and dramatically reduces network utilization,
under intermittently connected conditions.

Thesis Supervisor: M. Frans Kaashoek
Title: Assistant Professor of Computer Science and Engineering

Acknowledgments

Frans Kaashoek's imprint appears not only on the cover of this thesis but throughout its text,

structure, and concepts. I cannot emphasize enough the unwavering nature of Frans's support and

positive attitude. Frans always convinced me this thesis was possible even when I did not believe it

myself.

Anthony Joseph conceived and built most of Rover. Selflessly, he spent the wee hours of many a

morning debugging Rover and Webcal with me. He even came through at the last minute to re-run

experiments for me - from New York. For a year and a half he has provided a source of ideas and

techniques to keep me going when I had none and he happily shot down my ideas and techniques

when I had too many. Thank you Anthony.

The last minute crew of Emmett Witchel, Eddie Kohler, and Greg Ganger came through when

all others deserted me. They read drafts and helped me tame the numbers into tables and graphs.

If you can understand the numbers in this thesis, thank them. If not, blame me. I also want to

thank Emmett for putting up with a neurotic, hygienically-challenged officemate for the last week

(or was that a month ?) and for having such an interesting name.

My cheering section of Helen Snively, Howard Ramseur, and Geoff Hyatt encouraged me, praised

me, cajoled me, questioned me, even lied to me in order to get me to write. Hey, guys, it worked!

To Ken Birman, I will always be grateful for those fateful words of support "Go to grad school,

Josh." To Sam Toueg, the best teacher I ever had, I owe a double debt of thanks. He inspired me

to emulate him as an educator and invited me to join him as a researcher.

I'd like to thank the whole of the Parallel and Distributed Operating Systems Group, past and

present, for making my experience at MIT the fun frolic it has been. You are always enlightening

and entertaining. Most especially I want to thank, Neena Lyall who makes everything run smoothly,

even when I do stupid things.

Thank you Mitchell Charity for your endless discussions of semantics (both related to this thesis

and not).

By the way, this work was supported in part by the Advanced Research Projects Agency under

contract DABT63-95-C-005, by an NSF National Young Investigator Award, and by grants from

IBM and AT&T. I'm sure you wanted to know that.

Thanks Mom and Dad - for everything.

Thank you Stephanie for putting up with all the late nights, early mornings, piles of unwashed

dishes, foul moods, short tempers, and other symptoms of chronic thesitis. You are my toughest

proof reader and my most supportive fan. I don't tell you often enough how much both those

qualities mean to me. Thanks for being there, always.

To Shulamit. Now, I've caught up.

Contents

1 Introduction 15

1.1 Design G oals . 15

1.2 The Argument for Mobile-Aware Computing 16

1.3 Rover: The Toolkit Approach 18

1.4 M ain results 19

1.5 Thesis Outline 20

2 Rover Toolkit Overview 21

2.1 Rover Abstractions 22

2.1.1 Relocatable Dynamic Objects (RDOs) 22

2.1.2 Queued Remote Procedure Call (QRPC) 22

2.1.3 Events 22

2.2 Rover Architecture 23

2.2.1 Library 23

2.2.2 Client Access Manager 23

2.2.3 Object Cache 24

2.2.4 QRPC Log 24

2.2.5 Network Scheduler 24

2.2.6 Server 25

2.3 Using and Managing RDOs 25

2.3.1 Im port . 25

2.3.2 Export 26

3 Design Issues in Mobile-Aware Computing 29

3.1 Object Design 29

3.2 Computation Relocation 30

3.3 Notification 31

3.4 Replication 32

3.5 Consistency

4 Webcal: A Mobile-Aware Calendar Tool 37

4.1 Ical basics 37

4.2 Problems with Mobile Ical 39

4.3 W ebcal Design 40

4.3.1 Small data granularity 40

4.3.2 Computation relocation 40

4.3.3 User notification 41

4.3.4 Consistency 41

4.4 Webcal Implementation 42

4.4.1 Ical Tcl Interface 42

4.4.2 Data Consistency in Webcal 43

4.4.3 Caveats and Compromises 47

5 Evaluation 49

5.1 Experimental Environment 49

5.1.1 Data 49

5.1.2 Baseline Perform ance 51

5.2 Experiments 52

5.2.1 Interactive Performance 52

5.2.2 Benefits of Small Operations 53

5.2.3 Benefits of Migrating RDOs 55

6 Related Work 59

7 Conclusion 63

A Complete Data 65

. . . 32

List of Figures

4-1 Algorithm ITEM-IMPORT 44

4-2 Algorithm ROVER.UPDATE 45

4-3 Algorithm ITEM.CALLBACK 45

4-4 Algorithm ROVEREXPORT 46

5-1 Time to initiate calendar session 58

List of Tables

4.1 Lines of code changed or added in porting Webcal

Calendar sizes used in measurements

Bytes transmitted to perform typical Webcal operations...

5.3 The Rover experimental environment .

5.4

5.5

5.6

5.7

5.8

5.9

5.10

Time in milliseconds to perform QRPCs . .

Time to initiate a single import

Time to initiate a single export

Time to complete import

Time to complete multiple imports, cold cache

Time to complete a single export

Time to complete multiple exports

A.1 Time to re-read Ical calendar files

A.2 Time to save Ical calendar files

A.3 Time to initiate a single import

A.4 Time to initiate a single export

A.5 Time to complete a single import, cold cache

A.6 Time to complete multiple imports, cold cache

A.7 Time to complete a single import

A.8 Time to complete multiple imports

A.9 Time to complete a single export

A.10 Time to complete multiple exports

A.11 Time to initiate calendar session

. 4 2

.. 65

. 66

. 66

. 66

. 66

. 67

. 67

. 67

. 67

. 68

. 68

Chapter 1

Introduction

Application designers for mobile "roving" computers face a unique set of communication and data

integrity constraints that are absent in traditional workstation settings. For example, although

mobile communication infrastructures are becoming more common, network bandwidth in mobile

environments is often limited, and at times, unavailable. Thus, mobile applications should minimize

dependence upon data obtained over such limited, unreliable networks. On the other hand, mobile

computers are able to store much less data than their heavier, stationary counterparts. In addition, a

portable computer may be dropped, sat on, spilled on, or left next to an unshielded speaker, resulting

in the loss of stored data. Thus, mobile applications should minimize dependence on vulnerable data

stored in limited, unreliable resources on a mobile host. Mobile application designers have a common

need for system facilities that minimize dependence upon continuous connectivity, that provide tools

to optimize the utilization of network bandwidth, and that minimize dependence on data stored

uniquely on the mobile computer. The Rover Toolkit provides mobile application developers with

a set of tools to isolate mobile applications from the limitations of mobile communication and

computation systems.

1.1 Design Goals

Mobile computing system designers typically have one or more of the following goals in mind while

building applications: high availability, high concurrency, resource allocation efficiency, fault toler-

ance, consistency, and adaptation. Many of these goals are similar to goals in general distributed

computing. However, mobile computing emphasizes different aspects of these goals. Certain goals,

which were merely laudable achievements in a stationary distributed system, become critically nec-

essary in a mobile system.

In mobile computing, high availability means the ability to use the application on the mobile host

even while disconnected. In particular, the user should receive the same high level of responsiveness

and performance in an intermittently-connected environment as in a fully-connected one. High

concurrency means simultaneously accomplishing work at several points in the system. One form

of concurrency is the overlap of computation at the client, message transit time and computation

at the server. This client-server concurrency hides the latency of slow networks and overloaded

servers. A second form of concurrency is client-client concurrency in which multiple clients may

access and update the same data at the same time - possibly without being connected to each

other or the server. Third, mobile computing requires high resource allocation efficiency for several

critical resources: network bandwidth, processor cycles, stable storage, and energy. Each may be

several orders of magnitude smaller or slower on the mobile host than on a typical stationary host. In

addition, money becomes a resource to be allocated when network usage is not free. Fault-tolerance,

or reliability, takes on a new importance in mobile computing. First, in an intermittent environment,

network faults must be expected, and dealt with simply as another type of event. Second, the mean

time to failure in a mobile environment is drastically lower than in a stationary one. Data stored

on a mobile computer is extremely vulnerable to loss. Therefore, mobile-computing systems must

be resilient to these losses. Adaptation means mobile applications need to take advantage of the

changing availability of resources in the mobile environment. It means moving an application's

workload between servers and clients, both to address computationally under-powered clients and

overloaded servers. It also means permitting applications to be involved in connectivity related

decisions. Consistency in mobile computing means the same as in typical distributed computing

(i.e., an application's view of the data or objects in the system is independent of the application's

location) but it is harder to maintain because hosts may be disconnected from each other for extended

periods of time. To avoid blocking during disconnection, there is an increased emphasis on optimistic

schemes.

1.2 The Argument for Mobile-Aware Computing

Fundamentally, there are two approaches to building mobile-computing applications: mobile-aware

and mobile-transparent. Previous mobile-computing systems, such as Coda [26] and Little Work [16],

have promoted the mobile-transparent approach. The objective of the mobile-transparent approach

is to hide entirely the mobile characteristics of the environment so that applications may be used

without alteration. This is accomplished by creating a mobile-aware proxy for some service (in the

above cases, the file system). The proxy runs on the mobile host and provides the standard service

interface to the application while attempting to mitigate the effects of the mobile environment. The

proxy on the mobile host cooperates with a mobile-aware server on a well-connected, stationary

host. We have shown elsewhere that Rover can be used for either approach [21, 7]. The Rover Web

browser proxy is an example of the mobile-transparent approach. The Rover exmh mail reader and

the Rover Webcal calendar tool are examples of the mobile-aware approach.

Applying the end-to-end argument to mobile computing systems exposes that, while the mobile-

transparent approach is appealing, it is fundamentally limited in its applicability. Saltzer et. al.

state the "end-to-end argument" as follows:

[Communication functionality] can completely and correctly be implemented only

with the knowledge and help of the application standing at the endpoints of the com-

munications system. Therefore, providing that questioned function as a feature of the

communication system itself is not possible [41].

The functionality needed to create correct, well-performing applications in an intermittently-con-

nected environment requires the cooperation of the application. For example, it is not possible to

maintain an entirely consistent, well-performing, mobile file system without cooperation from the

applications mutating the file system.

In fact, it is not possible to write a file system that guarantees data consistency without ap-

plication cooperation in the stationary, non-distributed case. File systems allow applications to

cooperate in sequences of read-modify-write operations or to use pessimistic locking to maintain

consistency. Most applications choose to use some form of non-atomic read-modify-write semantics.

In a non-mobile environment, this decision constitutes an informed choice. Applications elect to al-

low a window of vulnerability between read and writes. In the non-mobile environment, that choice

works because, reads and writes are not far separated in time. In the mobile environment this choice

is ill-informed. Reads and writes may be separated by days.

Consider an application writing records into a file shared among stationary and mobile hosts.

During disconnection, the application on the mobile host inserts a new record. A file system proxy

on the mobile host will note that the file has changed and save the last write to the file. Meanwhile,

the application on a stationary host alters some other record in the file. Upon reconnection, the file

system can note that (possibly) conflicting updates have occurred. However, the file system cannot

resolve the conflict.

Coda recognizes this limitation and allows applications to cooperate with the file system through

adjunct applications called application-specific resolvers (ASRs). However, ASRs alone are insuffi-

cient. In this example, there is no way for the ASR to use the file system interface to determine

whether the mobile host inserted a new record or the stationary host deleted an old one.

The Coda file system proxy also changes the semantics of the file system in order to hide the

condition of the underlying network. The read/write interface no longer applies to a single file but

to possibly inconsistent replicas of the file. Therefore, any applications that depend on the standard

read/write interface for timing and sequencing information have already unrecoverably lost that

information before the ASR is ever invoked.

In contrast, a fully mobile-aware application can store not only the value of the file with the

inserted record but the operation inserting the record into the file. Furthermore, the application

need not rewrite the entire file. It only needs to log the operation to insert one record. Thus, the

data that the mobile host must send over the slow, unreliable network to reconcile with the server is

significantly decreased. Finally, since the application has more information about its own semantics,

the application can design the operation to automatically resolve its own conflicts. It may even

construct the resolution semantics "on-the-fly" in response to events in the mobile environment.

Thus, a mobile-aware application that actively cooperates with the underlying system integrates a

simplified model of consistency control with increased performance.

The end-to-end argument does not require that every application use an original, ad hoc ap-

proach to mobile-computing. On the contrary, it requires that the underlying communication and

programming systems define an application programming interface that optimizes common cases

and supports the transfer of appropriate information between the layers. Since mobile-computing

applications share common design goals, they will need to share design features and techniques.

1.3 Rover: The Toolkit Approach

The Rover Toolkit provides exactly such a mobile-aware application programming interface. Rover

allows mobile-aware applications to obtain information about the mobile-environment and act on it

to to maintain consistency and enhance performance. Simultaneously, Rover optimizes common-case

schemes for replication and communication in intermittently connected environments. The Rover

Toolkit offers applications a distributed object system based on a client-server architecture. Clients

are Rover applications that typically run on mobile hosts, but could run on stationary hosts as well.

To improve reliability, servers typically run on stationary hosts and hold the long term state of the

system. The Rover Toolkit consists of a library linked into all applications and runtime modules on

client and server machines. Rover applications actively cooperate with the runtime system to import

objects onto the local machine, invoke well-defined methods on those objects, export to servers logs

of method invocations on those objects, and reconcile the client's copies of the objects with the

server's.

The key task of the programmer in building an application with Rover is to define relocatable

dynamic objects (RDOs) for the data types manipulated by the application and data transported

between client and server. The programmer divides the program into portions that run on the

client and portions that run on the server. The two parts communicate by means of queued remote

procedure calls (QRPC). The programmer then defines methods that update objects, including code

for conflict detection and resolution. All code making up the application and data touched by the

application can be cast into RDOs.

To illustrate the issues that mobile-aware applications designers face, this thesis studies one

application in detail: Webcal. Webcal is a mobile-aware version of the Ical calendar tool. Webcal

was built with the Rover Toolkit for the purpose of highlighting the differences between mobile-aware

and mobile-unaware applications. In particular, this thesis illustrates how application-level control

is necessary for correct operation of Webcal while also enhancing its interactive performance. Other

applications built with Rover provide additional evidence of the usefulness of this approach.

1.4 Main results

The Rover Mobile Application Toolkit supports a set of programming and communication abstrac-

tions that enable mobile-aware applications to cooperate actively with the user and the underlying

Rover runtime system to achieve the goals of mobile application design. Using Webcal as a case

study, this thesis shows that:

* Rover successfully decouples Webcal interactive performance from network performance. Mea-

surements show that the interactive performance of Webcal is excellent and nearly equivalent

across three orders of magnitude of network bandwidths and across one order of magnitude in

data size. Over a slow network, the use of QRPC and RDOs allows mobile-aware applications

to return to processing user interactive tasks up to 1000 times faster than non-mobile-aware

applications.

* Rover object operation logs allow mobile-aware applications to update data in time propor-

tional to the size of the data changed, rather than the total size of application data. Transport

of logs of small operations on objects can significantly flireduce latency and bandwidth con-

sumption compared to reads and writes of whole files.

* Rover applications replicate data to ensure high availability and reliability. Servers maintain

a highly reliable data store available to any connected client. Mobile clients import copies of

data and code so as to be available to the user even during disconnection.

* Rover allows mobile-aware applications to place functionality dynamically on either side of a

slow network connection to minimize the amount of data transiting the network. Interface

functionality can run at full speed on a mobile host, while large data manipulations may be

performed on the well-connected server.

* Rover involves applications in consistency-control decisions. The most restrictive regimes are

too expensive and unnecessary for most mobile applications. Similarly, the most efficient are

not restrictive enough for some. Applications cooperate with Rover to achieve the appropriate

balance for their cases.

* Rover exposes information about the mobile environment to applications. Mobile-aware ap-

plications can adjust their behavior or notify the user of new conditions.

* Experience indicates that porting applications to Rover generally requires relatively little

change to the original application. Using Rover proxies, some applications have been used

unchanged (e.g., Netscape and Mosaic).. Others have been made fully mobile aware with a

change to approximately 10% of the original code and as little as three weeks work.

1.5 Thesis Outline

The remainder of this thesis is divided into six chapters. Chapter 2 gives a brief overview of

the Rover Application Toolkit's abstractions, architecture, and programming model. Chapter 3

discusses the issues that arise in making applications mobile-aware. Chapter 4 analyzes the design

and implementation of the mobile-aware calendar tool, Webcal. Chapter 5 presents a quantitative

evaluation of Webcal and Rover. Chapter 6 discusses related work. Chapter 7 concludes.

Chapter 2

Rover Toolkit Overview

The Rover toolkit provides a mobile-aware application programming interface that optimizes com-

mon cases and supports the transfer of information between the application and the underlying

system. Rover allows mobile-aware applications to obtain and act on information about the mobile

environment to to maintain consistency and enhance performance. Simultaneously, Rover optimizes

common-case schemes for replication and communication in intermittently connected environments.

The Rover toolkit offers applications a distributed object system based on a client-server architec-

ture. Rover applications are divided between clients that typically run on mobile hosts and support

user interaction and servers that typically run on stationary hosts and hold the long term state of

the system. The Rover Toolkit consists of a library linked into all applications, and runtime modules

on client and server machines.

Rover applications employ a variation of the check-in, check-out model of data sharing: they

import objects onto the local machine, invoke methods provided by the objects, and export logs of

the method invocations on the objects back to servers which reconcile the logs with the server copies

of the objects and their logs.

To create an application with Rover, a programmer divides the program into client and server

functionality. The key "Roverizing" task of the programmer is to define RDOs for the data types

manipulated by the application and data transported between client and server. The programmer

then defines methods that update an object, including code for conflict detection and resolution.

This section briefly describes the Rover Toolkit from three perspectives. First, I describe the

key communication and programming abstractions of the Toolkit. Second, I describe the structure

of the Toolkit, defining the function of each component. Finally, I describe the functioning of the

Toolkit in managing an RDO. For further insight into the Rover Toolkit, see [21, 22].

2.1 Rover Abstractions

2.1.1 Relocatable Dynamic Objects (RDOs)

Relocatable dynamic objects (or, simply, Rover objects) are objects with well-defined interfaces that

can be dynamically relocated from the server to the client, or vice versa. RDOs are named by

unique object identifiers and stored on servers. Rover caches objects on mobile hosts in a cache that

is shared by all applications running on that host. Cached objects are secondary copies of objects

which may diverge from the primary copies retained by servers. An RDO might be as simple as a

calendar entry with its associated operations (e.g., set appointment time) or as complex as a module

that encapsulates part of an application (e.g., the user interface of a calendar tool). These more

complex RDOs may run in a new thread of control when they are imported. The safe execution of

RDOs is ensured by executing them in a controlled environment. Controlling RDO behavior is a

subject of continuing research but not of this thesis.

2.1.2 Queued Remote Procedure Call (QRPC)

Queued remote procedure call (QRPC) is a communication mechanism that permits applications to

continue to make RPC requests even when a host is disconnected, with requests and responses being

exchanged upon network reconnection. This asynchronous communication model allows applications

to decouple themselves from the underlying communication infrastructure. During disconnected

operation, the network simply appears to be very slow.

Unlike simple message passing, QRPC incorporates stub generation, marshaling and unmarshal-

ing of arguments, and at-most-once delivery semantics. QRPC differs from traditional asynchronous

RPC in its failure semantics. [10] A traditional RPC fails when a network link is unavailable or when

a host crashes [4]. QRPCs are stored in a stable log so that if links become unavailable or the sender

or receiver crashes, they can be replayed upon recovery. They are deleted from the log only after

a response has been received from the server. In addition QRPC differs from traditional RPC in

that it is decoupled from the communications channels. QRPC requests and replies may be sent on

distinct communication channels and may even be sent over several channels (due, for example, to

the failure of a network link in midstream). Applications are notified of the completion of QRPCs

by callback.

2.1.3 Events

While not a new idea, events are key to application-level control in Rover. The Rover runtime

monitors a number of properties of the mobile environment including the network and other hardware

resources as well as the runtime system itself. Applications also may register callbacks in order to be

notified of these changes in the environment. Application-visible system events include the queuing

and dequeuing of QRPCs, creation and deletion of other Rover clients, network connection and

disconnection, and change in the quality of service of the network. Similarly, applications may poll

to view the log of operations or dependency vector for a particular object. Other events in the mobile

environment made visible through events include changes to the power system and I/O devices.

2.2 Rover Architecture

The Rover Toolkit consists of a library linked into all applications and runtime modules for client

and server machines. The client runtime module is structured as three layers and consists of four

components. At the top, is the application linked with the Rover library. Below the application

is the system layer managed by the access manager and encompassing the object cache and the

operation log. Finally, the network scheduler is the transport layer for the system sitting between

the network and the rest of the runtime system. The server run time module is similar in structure.

The function of each component is discussed below.

2.2.1 Library

Each Rover application is linked with the Rover library. This library defines the Rover application

programming interface and manages communication between the client application and the Rover

runtime system. In addition, the library manages the portion of the Rover object cache located

in the address space of the client. Rover applications are typically structured in an event driven,

non-blocking style to allow the Rover library to handle messages from the Rover runtime system as

they arrive. However, this structure is not strictly necessary. The use of distinct processes to handle

the division of responsibility between the client application and the Rover runtime system provides

all necessary parallelism and asynchrony.

2.2.2 Client Access Manager

Each client machine has a local Rover access manager that mediates all interactions between client

applications and servers. The access manager gives applications a consistent communication interface

even in the presence of intermittent network connectivity. The access manager services requests for

objects, mediates network access, manages the object cache, and logs modifications to objects.

Client applications use the access manager to import objects from servers and cache them locally.

Applications invoke the methods provided by the objects and, using the access manager, make

changes visible globally by exporting logs of the changes to the objects back to the servers.

Within the access manager, objects are imported into the object cache, while QRPCs are exported

to the QRPC log. The access manager routes invocations and responses between applications, the

cache, and the QRPC log. The log is drained by the network scheduler, which mediates between

the various communication protocols and network interfaces.

2.2.3 Object Cache

The object cache provides stable storage for local copies of imported objects. The cache stores both

the last known durable state of objects (updated only at the direction of the server) and the current

tentative state of objects (updated by client applications). In addition, each object is cached with

a logical dependency vector received from the server that indicates the last modification time of

the durable state of the object. The object cache consists of a local private cache located within

the application's address space (for efficiency) and a global shared cache located within the access

manager's address space (for stability and sharing). Client applications do not usually directly

interact with the object cache. The client library and access manager coordinate to map import and

export operations onto objects cached both within the application's address space and the access

manager's address space.

2.2.4 QRPC Log

Once an object has been imported into the client application's local address space, method invo-

cations without side effects are serviced locally by the object. In order for an operation to have a

durable effect on an object, an export QRPC is entered in the stable QRPC log located at the client.

The QRPC causes the server to perform the operation on the primary copy of the object. The log

is flushed to the server asynchronously with application activity.

Support for intermittent network connectivity is accomplished by allowing the log to be flushed

back to the server incrementally. Thus, as network connectivity comes and goes, the client will

make progress towards reaching a consistent state. The price of local updates is that the client's

and server's copies of an object will diverge over time. At some point, network connectivity will be

restored and exported modifications to objects will have to be reconciled with any changes to the

server's copies. Only after reconciliation can an operation be considered durable.

2.2.5 Network Scheduler

The Rover network scheduler drains operations from the log and transmits them to servers. The

network scheduler controls when and which communication interfaces are opened and what should

be sent over the interface. The scheduler is responsible for retransmission in the case of link failure.

Thus, the Rover runtime system permits applications to largely ignore network connectivity as an

issue.

On the other hand, the applications provide useful information to help optimize network activity.

The network scheduler groups related operations together for transmission. The Toolkit leverages

off the queuing performed by the log to gain transmission efficiency. The network scheduler may

reorder logged requests based upon two primary criteria: the application's consistency requirements

and application-specified operation priorities. Using these criteria, the scheduler provides an ordering

for flushing operations from the log. Scheduling QRPCs is a subject of continuing research but not

of this thesis.

2.2.6 Server

The Rover server runtime system is analogous to that of the client. However, the server does not have

the added complexity of an object cache. Instead, each application is responsible for managing its

own object store (or cooperating with other applications to co-manage objects) and servicing QRPCs

directed to it. The server runtime is responsible for de-multiplexing, logging, and scheduling QRPC

requests and replies. In addition, the server library provides calls to help manage and store objects

and logs of operations on objects.

2.3 Using and Managing RDOs

Usually, applications use two flavors of queued remote procedure call to transport and update relo-

catable dynamic objects: import and export. The use of these QRPCs and their relation to object

invocation and reconciliation are described below.

2.3.1 Import

When an application imports an object, Rover first checks the object cache. If the object is resident

and the application accepts cached object copies, the application receives a working copy of the

cached object. When an application invokes a method on an object, it may either directly invoke

the operation on its working copy of the object or it may call Rover to invoke the operation. In the

latter case, in addition to performing the operation on the working copy of the object, the operation

and the new tentative state of the object are stored in the object cache. The operation is stored in

a log associated with the object. (Do not confuse the log of operations on an object stored in the

cache with the QRPC log.) The tentative copy of the object is stored in addition to the durable

state received directly from the server during import. In addition, the access manager sends the

operation log to the server in an export QRPC. The durable state of the object is updated when

the server reports the result of performing and reconciling the operation on its primary copy of the

object. By using working objects with tentative state, applications can continue computation even

if the mobile host is disconnected. Rover applications typically reflect the fact that an object has

tentative state to the user (e.g., by displaying them in a different color).

If an object is not present in the object cache at import time, Rover lazily fetches it from the

server using a queued remote procedure call. Rover stores the import QRPC in the QRPC log and

returns control to the application. The application can register a callback routine with Rover that

will be called by Rover to notify the application when the object arrives. Whenever the mobile host

is connected, the Rover network scheduler drains the QRPC log in the background and forwards

QRPCs to the server.

Upon arrival of an import QRPC at the server, the server access manager invokes the appropriate

application stub to the requested object. The application hands the RDO back to the access manager

which logs the reply and sends it to mobile host. If a mobile host is disconnected between sending

the request and the reply, Rover will replay the request from its QRPC log upon reconnection.

Upon receiving an import QRPC reply, Rover inserts the returned object into the cache the

application and deletes the QRPC from the QRPC log. In addition, if a callback routine is registered,

Rover will perform the callback to inform the application that the object has arrived. The application

can then invoke methods on the local copy.

2.3.2 Export

When an an application invokes a method through Rover to modify a cached object, Rover lazily

updates the primary copy at the server by sending the method call in an export QRPC to the server,

and returns control to the application.

When the export QRPC arrives at the server, the server access manager invokes the application

export stub. The application invokes the requested method on the primary copy of the object.

Typically a method call first checks whether the object has changed since the client last received

an update for the object. Rover maintains version vectors for each object so that applications can

easily detect such changes. If the object has not changed, the method modifies the primary copy

and hands the log of the result back to the server access manager. The server then logs the reply

and sends it back to the mobile host.

If a method call at the server detects that the object has changed since the client last updated

the object, the server copy of the object must be reconciled with the operation log sent by the

client. The Rover Toolkit itself does not enforce any specific concurrency control mechanism or

consistency guarantees of objects. Instead, it provides a mechanism for detecting conflicts and

maintaining operation logs while leaving it up to applications to reconcile objects. For example, the

Rover Webcal distributed calendar tool exploits semantic knowledge about calendars, appointments,

and notices to determine whether a change violates consistency. Concurrently deleting two different

appointments in the same calendar does not result in a conflict. However, the client is informed of

the concurrent delete, so that the client copy of the calendar will reflect the second delete. If there

is a conflict that cannot be reconciled, the method returns with an error. These errors are reflected

to the user so that he or she can resolve the conflict.

In general, the server reply consists of a log of operations which will transform the durable state

of the client copy of the RDO to reflect the newly computed state of the primary RDO at the server.

The reply may indicate either the successful completion of the operation originally submitted by

the client or a substitute operation to be performed. The substitute may include any number of

operations that occurred at the server between the time the client received that last update and

the time of the reply. Upon arrival of the reply at the client, Rover deletes the QRPC from the

stable log, retrieves the permanent copy of the object from the cache, applies the entire log of

operations indicated by the server and invokes the callback associated with the original operation

(if one is registered). The resulting new durable state of the object is cached and the tentative state

deleted. To complete the reconciliation process, Rover then replays any other outstanding tentative

operations logged on the object, thereby creating a new tentative state to store in the object cache,

and invokes any callbacks on those operations.

Chapter 3

Design Issues in Mobile-Aware

Computing

3.1 Object Design

As the central structures about which all Rover design decisions revolve, relocatable dynamic objects

(RDOs) provide the key fulcrum for application-level control in Rover applications. The primary

abstractions used by Rover applications are RDOs. All code making up applications and all data

touched by applications can be cast into RDOs. Thus, mobile-aware applications leverage RDOs to

achieve high performance while maintaining correctness.

RDOs are replicated and cached for reliability and availability. This replication requires appli-

cations to maintain the consistency of RDOs. RDOs may function at either the client or server.

RDOs run on both the client and server and must be designed to function while QRPCs may be

arbitrarily delayed by network disruptions. All permanent changes to the data store are performed

through RDO method invocation, relayed by QRPCs. These methods must be carefully designed

to maintain consistency, resolve conflicts, and yet achieve high performance. Using the available

information about the network, RDO method invocations should be scheduled to balance network

utilization with the importance of the data. Similarly, the type of network connection should be

selected.

At the level of RDO design, application builders have semantic knowledge that is extremely useful

in attaining the goals of mobile computing. By tightly coupling data with program code, application

designers can carefully manage resource utilization in a way impossible at the level of a replication

system that handles only generic data. In Rover, applications are built on an object model, so

this coupling is extremely natural. For example, applications can trade computation time for data

transfer time to alleviate network latency. An RDO can include compression and decompression

methods along with compressed data in order to obtain application-specific and situation-specific

compression to reduce both network and storage utilization. A replication system attempting to

provide mobile-transparent service cannot benefit from such domain specific knowledge.

Another advantage of application-level control over generic data-level replication is that methods

can use application-specific knowledge to make efficient use of resources. This is clearly the case in

deciding the proper size of objects for replication. For example, file-based mobile computing systems

such as Coda [26] and Little Work [16] replicate the entire file. Any update to the file causes the entire

file to be written back to the primary file server. However, when working across a slow or intermittent

link, a small update size is key to efficient network usage and low latency. An application should

never be forced to write unnecessary data to the network. Operation logging allows applications to

write only the update and not the entire object. Mobile-unaware applications will treat the mobile

file system the same as a non-mobile one and unnecessarily write large amounts of data. Therefore,

application designers must be careful in selecting the size of objects and operations. Objects should

not be so large as to cause extra data to be moved across the network but should not be so small

that overhead dominates data content.

3.2 Computation Relocation

Rover gives applications is control over the location where computation will be performed. In an

intermittently-connected environment, the network often separates an application from the data on

which it is computing. By moving RDOs across the network, application designers may move data

and/or computation from client to server and vice-versa, depending on which type of migration is

more efficient. Typically, computation is smaller. Furthermore, since RDOs can be dynamically

reloaded at runtime, applications can reconfigure the location of computation or data in response

to current or predicted resource limitations. Finally, applications can perform computations against

large data sets which return small results and only move the result across the network. These

techniques enable applications to be as responsive in mobile environment as they are in stationary

ones.

For example, Graphical User Interfaces (GUIs) can be downloaded and customized for a mobile

host. Using GUIs over wide-area or low bandwidth networks can be an exercise in frustration. Typ-

ical GUI-based programs process a large amount of data concerning mouse movements, windowing

events, key presses, etc., in order to generate a fairly small number of changes to the permanent

data that the program manipulates. Executing the GUI on the mobile host while sending updates

to stored data across the network allows the user to have full-speed interactions with the program

while using the network efficiently. Input events can be processed locally, even if the client becomes

disconnected. In addition, these interactive programs can change their appearance depending upon

the available display resources and available bandwidth for fetching large images.

Similarly, performing actions on the server side of the network can have great benefits. A

Rover server can be dynamically configured to perform arbitrary computation on behalf of the

client. Application-specific data compression was mentioned earlier. A similar, but longer-lived

computation, is to perform filtering actions against a dynamic data stream. Without an RDO

executing at the server, the application would either have to poll or rely upon server callbacks.

While this might be acceptable during connected operation, it is not acceptable during disconnected

operation or with intermittent connectivity. Furthermore, every change to the data would have

to be returned to the client for processing. With RDOs, the desired filtering or processing can

be performed at the server, with only the processed results returned to the client. For example, a

financial client making decisions based upon a set of stock prices could construct an RDO that would

watch prices at the server and report back only significant changes, thereby significantly reducing

the amount of information transmitted from the server to the client.

3.3 Notification

Since the mobile environment may be extremely dynamic, it is important to present the user and

the application with information about its current state. The Rover Toolkit provides applications

with information about the environment for dynamic decision making or presentation to the user.

Applications may use either polling or callback models to determine the state of the mobile envi-

ronment.

The environment consists of the state of imported RDOs, the state of the network, and the state

of the mobile host. The RDO life cycle consists of: being imported but not yet present; being present

in the local environment; being modified locally by method invocations; having log(s) of operations

exported to the server; being reconciled or committed; and being evicted from the environment. A

network interface may be present or absent, and, if present, is characterized by cost and quality of

service: latency and bandwidth. Applications can register methods to be invoked for each change

in the state of an RDO or of the network. The state of the host includes its available hardware

resources including screen size, data and energy storage capacity, and input devices.

Applications can forward these notifications to users or use them for silent policy changes. For

example, in the calendar application described in Section 4, appointments that have been modified

but have not yet reconciled are displayed in a distinctive color. Such notification allows users to

tolerate a wider array of application behaviors. Flagging tentative appointments lets the user know

the appointment may be canceled due to conflict. Furthermore, the user knows that, since the data

has not been reconciled with the server, no other user has yet seen the proposed change to the

calendar.

This same application uses notifications about network connectivity to attempt to schedule com-

munication with the server. The application only enqueues server polling operations while the

network is connected. Thus, information about the network state enables the application to reduce

future network usage. Similarly, the Rover Web browser proxy [21, 7] can use information about the

available network bandwidth to decide whether to "inline" images in Web pages.

Using knowledge about the state of the host allows Rover applications to be dynamically ex-

tended. Rover starts as a minimalistic "kernel" that imports functionality on demand. This feature

is particularly important for mobile hosts with limited resources. Small memory or small screen

versions of applications may be loaded by default. However, if the application finds more hardware

and network resources available-say if the mobile host is docked-further RDOs may be loaded to

handle these cases [23].

3.4 Replication

Data and code replication is the chief technique Rover employs to enable client applications to

achieve high availability, concurrency, and reliability. Since each host has a copy of all relevant code

and data, applications can continue to operate in the absence of network connections. Similarly,

replication enables each host to operate on the replicated data concurrently. Since servers are less

prone to data loss, maintaining data at the server protects against mishaps at the client.

While replication can bring great benefits, application designers must carefully select the proper

replication strategy to minimize its costs. Keeping multiple replicas consistent entails additional

communication, increased latencies, potential for dead-lock, and use of additional resources. Ap-

plications should not replicate any more data than absolutely necessary and should strive to keep

update messages small. Strategies for reducing consistency-related-costs are discussed in detail in

the next section.

3.5 Consistency

With replication also comes the need for consistency control. No one consistency scheme is ap-

propriate to all applications. Therefore, Rover leaves the selection of consistency scheme to the

application. Alternatives range from no consistency control to pessimistic, application-level, two-

phase locks guaranteeing fully serializable execution. However, a limited number of consistency

control schemes lend themselves naturally to intermittently connected environments. Pessimistic

consistency control schemes may block a mobile host from making progress whenever it is discon-

nected.

Rover supports primary-copy, tentative-update replication. That is, the system always treats the

information received from the server as overriding the tentative state and operations stored at the

client. However, nothing prevents applications from always accepting client updates. Application

designers create operations to support whichever consistency paradigm they select.

Only a limited number of schemes seem particularly appropriate to mobile computing. (See [14]

for a full analysis of the alternatives.) The simplest scheme is simply no consistency control, or

hand-edited control. This trivial approach is appropriate for some applications. Applications can

take advantage of other aspects of the Rover Toolkit without imposing a consistency control scheme.

One common ad hoc approach taken by Lotus Notes [25], mail systems [37], and the Internet

name service [36] among others, is to require all replicas of the data store to converge to the same

values. Three techniques can be used to obtain convergence without serializing updates: append,

replace-with-value, and commutative updates. In the first two, each update is time-stamped or

version-vectored. Time-stamps require a notion of eternal global time and some level of clock

synchronization. Version-vectors increase with each system "event" and may produce a logical

notion of "happens before" [32]. Some implementations of version-vectors consider each update at

the local-host an "event". Thus, logical time increases faster at more actively writing hosts. For

append, available updates are stored in time-stamp order. For time-stamped replace-with-value,

only updates with time-stamps later than the last received update are accepted, "stale" updates are

silently discarded by the server. Commutative updates are data transformations that may be applied

in any order. No update depends on the result of any previous update. Commutative updates have

the advantage that the server need only confirm the updates' success, not positions in the stream

of updates. Using convergent schemes, all connected clients eventually see the same value for the

object but not necessarily all updates.

The logging of method invocations rather than the simple overwrite of data values allows in-

creased flexibility in dealing with possible conflicts. For example, a financial account object with

debit, credit, and balance methods provides a great deal more semantic information to the applica-

tion programmer than a simple account file containing only the balance. Debit and credit operations

from multiple clients could be arbitrarily interleaved as long as the balance never becomes negative.

In contrast, concurrent updates to a balance value would require that each client transaction have

access to the global balance and that updates to that balance be globally ordered. Such a scheme

would be inappropriate for many mobile computing applications which need update-anywhere se-

mantics, even during disconnection.

Convergence is one desirable property but may not be sufficient for all applications. Since stale

updates are discarded, not all clients see the same stream of updates. The converged state will

not necessarily encompass the effects of all updates. If intermediate states and updates are not

important to the application, convergence-based consistency control may be appropriate for mobile

computing systems. It is easier to implement and may run faster and avoid the complexity of conflict

resolution that serializable schemes require.

Some applications require greater consistency guarantees. At the extreme, applications may

require ACID (atomic, consistent, isolated, durable) transactions. Rover provides no direct support

for transactions. There is no call to lock an RDO. However, application-level locks, version vectors,

or dependency-set checks may be used to implement fully-serializable transactions within Rover

method calls. Unfortunately, pessimistic, or eager, concurrency control - acquiring locks on all

shared resources before use - is generally inappropriate for intermittently-connected environments. 1

A single disconnected host may stop all computers sharing a database from making progress.

Optimistic, or lazy, concurrency control schemes allow updates by any host on any local data. Any

conflicts caused by this policy are settled later by reconciliation. This property makes optimistic

concurrency control attractive for mobile computing. However, [14] predicts that the number of

conflicts (and therefore, the number of reconciliations) in an optimistic concurrency control scheme

grows quadratically with the rate of transactions and the number of hosts in the system. In a peer-

to-peer replication scheme this growing number of conflicts means that as the system scales, each

peer is likely to have an increasingly incorrect view of the system.

Rover applications use a primary-copy optimistic replication scheme to avoid this problem. The

server side of the application is responsible for maintaining the consistent view of the system. The

client side diverges from that view only by the actions of a single user. Thus, the client only needs

submit tentative operations to the server to reconcile the system state. After the server executes

the operations, and relays the results, the client (and user) can be assured any updates are durable.

The definition of conflicting modifications is strongly application- and data-specific. Therefore,

Rover does not try to detect conflicts directly. Since the submitted operation is tentative and

was originally performed at the client on tentative data, the result of performing the operation at

the server may not be exactly what the client expected. However, the result may be acceptable.

The application designer must embed conflict detection checks and resolution procedures in the

tentative operation to discover if the result is acceptable. Note that conflict detection may depend

not only on the application but on the data or even the operation involved. For example, our

calendar tool implements different consistency protocols for calendars and items. Calendars are

essentially sets of other objects. As inclusion and exclusion operations are the only allowed methods

on calendars, we simply let the server serialize the operations and never report a conflict. On the

other hand, individual appointments are treated as units of consistency. Concurrent updates to the

' From the transactions point of view, these schemes are eager. Each transaction eagerly seeks to complete on all

hosts at once. From a conflict point of view, they are pessimistic. The locking discipline pessimistically assumes each

transaction will cause a conflict.

same appointment may or may not result in conflict (depending on the type of update). These two

distinct data-type specific policies exemplify how the Rover architecture allows application designers

to build applications with the desired degree of consistency for application-level operations.

Chapter 4

Webcal: A Mobile-Aware Calendar

Tool

This section examines one application ported to Rover: Webcal, a mobile-aware version of the Ical

calendar tool. The purpose of this examination is to highlight the differences between the mobile-

aware and mobile-unaware versions of this application. In particular, this section points out both

how application-level control is necessary for correct operation and how it enhances interactive

performance.

Ical depends on a high-bandwidth, low-latency, continuous network connection for a number of

functions. The key to understanding how Webcal differs from Ical is to understand these dependen-

cies and how they hobble Ical in a mobile environment. Section 4.1 explains Ical's basic functionality.

Section 4.2 explains how Ical functionality is impeded in a mobile environment. Section 4.3 explains

how the design of Webcal addresses these weaknesses. Section 4.4 discusses the implementation of

Webcal.

4.1 Ical basics

The Ical calendar program, written by Sanjay Ghemawat, provides an X interface for displaying and

maintaining appointment calendars [11]. Calendars may contain other calendars and include items

displayed to the user. An item is either an appointment or a notice. Appointments start and finish

at particular times of the day. Notices do not have any starting or ending time. Notices are useful

for marking certain days as special.

The Ical interface includes monthly and daily views of appointments and notices. Items can be

added, deleted, or edited with point-and-click mouse operations, with keyboard entries, or with user

generated scripts. Each item is displayed in full on the day it occurs with text describing the item

appearing in visually depicted blocks of time for appointments.

In Ical, calendars are stored in files. A calendar is, essentially, just a set of items. A main

calendar also has the list of options specifying user preferences and a list of other calendars whose

items should be displayed. Items from the main calendar and from these "included" calendars are

shown to the user. All options for a calendar, all calendars it includes, and all the items it includes

are stored together in the single file. Ical calendars tend to grow over time. Users rarely delete

items. Calendars can grow to be hundreds of items and tens of kilobytes in size.

Under Ical, reading and writing large calendars is not a problem since the bandwidth to the file

system is large. The file system is either local to the executing machine or it is accessible over a

high bandwidth network. Ical reads and writes entire calendar files as one atomic unit, blocking all

other operation until the I/O operation is completed. Thus, Ical depends on continuous availability

of a high-bandwidth connection to the file system in order to provide adequate performance.

Ical uses whole-file reads and writes for a reason. They make maintenance of data consistency

simpler. In Ical, files are the unit of consistency. Ical uses file-modify times as a time stamp.

Whenever a calendar file is read, Ical stores the file-modify time as a time stamp. When writing out

calendars, either at the explicit request of the user or periodically, Ical checks the file-modify time.

There are two cases. First, if the file-modify time has not changed, the file may be overwritten with

impunity. Alternatively, if the file-modify time has changed; the file has been re-written since the

last read. Ical assumes the stored data and the data it wants to write conflict. The user is asked to

select which set of data to use.

In both cases Ical is vulnerable to data loss. Both these cases are minimized by the low latency

of disk operations. In the latter (conflicting) case, the user is asked to select which data to use, and

therefore, implicitly which data to throw away. The user must select between the data stored on disk

(generally changed in some unknown way) and the data Ical is trying to store (generally changed

by the user). Either way, reconstructing the lost data is left entirely to the user. (The user may

also try to recover by renaming the data but this can be as cumbersome as reconstructing it.) In

the former (non-conflicting) case, the vulnerability is more subtle. The read and comparison of the

file-modify time is not atomic with the writing of the data. However, since the network file system

is implemented over a low latency network, this time is small enough that the risk is tolerable. (The

actual write of the data is performed in an atomic manner, so there is no risk of corruption, only of

inconsistency.)

These vulnerabilities are tolerable because Ical periodically and frequently reads its entire data

set. Thus, there are two windows of vulnerability when a write by concurrently running programs

will create a conflict. The first is the period between the time Ical polls the file system for data and

the time Ical attempts to write data. The second is the period between the time the user enters

data into Ical and the time Ical polls the file system for data. Both of these windows are increased

in size by the time between file system write and flush. (That is, polling for data only reports data

older than the write-flush window.) During reads and writes Ical is blocked. The user can make no

progress. Thus, the fact that reads and writes are operations quick enough to do often allows the

user to set the frequency of reads and writes to be high enough that conflicts are rare.

Since calendars are shared among many users (popular calendars are typically shared by tens of

people at the MIT Laboratory for Computer Science), the data must remain continuously available

to all users. Therefore, calendars usually reside on a networked file system and consistency is really

determined by the underlying file system.

4.2 Problems with Mobile Ical

In a mobile environment, Ical's assumption of a high-bandwidth, low-latency, continuously available

link to the file system is violated. Network file operations are often unavailable and when available

simply take too long. Writes and reads may only happen when a network connection is available.

Thus, simple periodic reads and writes cannot be allowed. (They would either block or crash the

program.) Bandwidth is a scarce resource. Writing or reading huge amounts of unchanged data

in order to update small items wastes inordinate amounts of bandwidth and degrades performance

unacceptably.

The latency for even small network operations becomes large. The turn around time between

a stat and a write can become so large as to be an unacceptable approximation of atomicity. The

larger and inherent problem is that during periods of disconnection, the file system version of the

data and the program version of the data diverge. The time between reads may grow to be on the

order of days, not seconds. Thus, entire user sessions become part of one Ical write operation. Ical's

all-or-nothing policy regarding writes becomes completely inappropriate.

An even larger latency problem shows up if one tries to run Ical on a machine connected to the

fast wired network while displaying its interface remotely on the mobile-host. While file operations

will be full speed, the X-interface must run over the slow link from the mobile computer to the fully

connected machine. Obviously, this means the user is unable to use the program altogether during

periods of disconnection. Even if the user were willing to accept that restriction, running X over a

slow network so disrupts interactive performance as to be unusable. Even when using a version of

the X protocol optimized for use over slow connections, the round trip latency is simply too large

and bandwidth too small to transmit each mouse movement, window-entering event, or keyclick to

the fixed machine and receive window-drawing instructions in response.

4.3 Webcal Design

Webcal is the Rover redesign of Ical. Functionally, Webcal improves on Ical by requiring minimal user

intervention in the presence of intermittent network connections, optimizing the usage of network

bandwidth, and displaying the tentative nature of data to the user. Three design differences between

Ical and Webcal account for these advantages. First, Webcal uses a fine-grained object model in

place of Ical's coarse-grained, file-based data model. Second, Webcal splits computation between

the client and the server. Third, Webcal implements a mobile-aware user interface.

4.3.1 Small data granularity

Webcal altered the Ical data model to conform better to the mobile environment. Semantically, items

are independent of the calendars in which they are listed. Items can be changed without affecting

other items or the encompassing calendar. The only relation between an item and a calendar is

the "includes" relation. That is, a calendar may include an item and each item is included by

some calendar. Therefore, items, in addition to calendars, are first class objects in Webcal. Each

item maps to an RDO that is named, stored, fetched, cached, and updated independently of other

items in its calendar. Each item has a globally unique name, independent of its including calendar.

Detection of conflicting concurrent updates is performed on the granularity of individual items.

The effect of the change to an item-centered data model is two-fold. Concurrent updates result in

conflict less often and all updates are smaller. First, the number of objects in data storage increases

by roughly two orders of magnitude (i.e., by the number of items per calendar). Thus, the chance

for two different users to interfere with each others' work decreases proportionately. When such

conflicts do occur, they are isolated to the particular items which have been updated in a conflicting

manner. Thus, false sharing (and false conflicts) in the database decreases. Only concurrent changes

that alter the same item trigger conflict resolution in Webcal. Second, the size of each object in

the data store also decreases by orders of magnitude since each object is now an item instead of a

collection of items. Webcal communicates updates to the server rather than whole calendars. Thus,

much less static data transits the network. Both updates and (rare) conflict resolution can proceed

quickly.

4.3.2 Computation relocation

In addition to altering the Ical data model, Webcal alters the Ical computational model by splitting

functionality between the client and server. The client is responsible for interacting with the user.

The server manages data storage. Thus, the graphical user interface is a set of RDOs executed

entirely on the client. The client performs all interface computation on the client machine. Such

computation ranges from window layout to tracking and triggering alarms. No data transits the

network unless the data store is affected. When data is stored, Webcal exports the affected RDOs

by means of QRPCs. The use of QRPC for communication decouples the application from the

functioning of the network. Locating the interface RDOs on the client allows Webcal to accept user

input and function as if the client were fully connected, even while completely disconnected.

The server is responsible for serializing concurrent updates to Webcal calendars. The server

maintains the single master copy of a Webcal object store. Objects may be stored in Ical calendar

files for backward compatibility or as objects in a database. In addition, each object has a log of

operations that is the serialized history of that item or calendar. The current object state is simply

the memo-ized result of playing the log. Each log entry is time stamped by the server when it is

made. These time stamps are used in the reconciliation process to extract a suffix of the log to send

back to the client.

4.3.3 User notification

There are only two differences in the user interface between Ical and Webcal. First, Webcal displays

to the user the information that the Rover Toolkit makes available about the status of RDO updates.

Items that are known to reflect the durable state of the item are displayed normally. Items that have

changes that are not yet stable are displayed in a special color. In addition, whenever such items are

selected, the status line of the calendar displays text labeling the current state of the item.. As an

item moves from one category to the other--either because the user changes an item or because new

information arrives from the server-the display is updated. The second interface difference flows

from the change in the data model. Users are asked to resolve conflicts on an item-by-item-rather

than whole-calendar-basis. Due to disconnection, the time between a user edit occurring and the

time Webcal informs the user of a conflict caused by that edit may be a period of hours or days.

Thus the user is much less likely to remember exactly what action precipitated the conflict. The

decreased granularity of conflict notification allows the user to see precisely where the conflict is and

take action to resolve it.

4.3.4 Consistency

Clients generate operations on RDOs (corresponding to items and calendars) in the store. Each

update is associated with a dependency vector signifying the durable version of the object against

which the operation was generated. In Webcal, this dependency vector is not used to determine

whether to apply its tentative operation or reconciliation code. Rather, Webcal uses a content-

dependent scheme described below in Section 4.4.2. Each client plays the operation it generates

against its object cache but the server invocation of the operation overrides that tentative action at

the client. Invoking operations at the single server results in a single, serialized log of object updates.

Rover Base New Rover New Rover
Program code client code server code

Webcal 26,000 C++ 2,600 C++ 1,300 C++
and Tcl/Tk and Tcl/Tk and Tcl/Tk

Table 4.1: Lines of code changed or added in porting Webcal

Clients receive the (serialized) suffix of the object operation log that represents all operations on the

object (by that client and all others) since the last time the client received an update.

Upon receiving that log, the client reverts the object back to the durable state from the tentative

version due to the application of unconfirmed operations. The client then evaluates the log suffix

against the old durable state of the object, bringing the client cache into synch with the server.

This new durable state is then cached. The user is notified of any rejected operations and asked

to resubmit them. The client then continues by reapplying the still unconfirmed operations to the

object to generate the new tentative state of the object to store in the cache.

4.4 Webcal Implementation

The implementation of Webcal had the following four goals:

* Webcal must maintain data consistently across periods of disconnection without preventing

users from making progress or entering new data.

* Webcal should minimize network utilization for common operations.

* Webcal should maintain interactive application performance during periods of disconnection

equivalent to that available while connected by a high speed network.

* Webcal should be easy to implement. Therefore, there should be only minimal changes to the

Ical code base and great ease of debugging.

This section addresses how the implementation meets those goals. The first part describes the Ical

Tel interface through which Webcal is implemented on top of Ical. Following that is a description of

the algorithms implemented to maintain data consistency. The chapter concludes with a discussion

of caveats and compromises of the implementation.

4.4.1 Ical Tcl Interface

In Ical, calendars and items are stored persistently on file systems. Copies of these calendars and

items are read into Ical's address space. The Tel code operates on these copies through well-defined

interfaces. Part of this interface is implemented in C++ and the rest is implemented by Tel support

libraries. The C++ code exports calendar and item objects to the Tcl interpreter. A number of

operations are provided to create such objects and to manipulate dates and times. In addition, the

calendar and item objects have numerous methods that can be called from Tcl code. The Ical GUI

code is the frontend of the program that uses this Tcl interface to access and manipulate calendar

and item data stored in the C++ backend and file system.

In the port of Ical to Webcal, rather than reimplement the entire C++ backing in Tcl-based

RDOs, one more layer of Tcl objects is added on top of the already extant system. Each C++-

backed Tcl calendar or item object is shadowed with a Rover RDO. These RDOs transport the

data for calendars and items to and from the server which maintains the object store. Values for

these objects are transfered to and from the C++-backed Tcl objects using Ical's Tcl interface. In

the Webcal client, access to the file system is disabled and replaced by calls to import or export

the shadow RDOs. Thus, the Rover layer now acts as the backend to the C++-backed Tcl GUI

frontend. Table 4.1 lists the total amount of code written for Webcal and relates to the base of Ical

code.

4.4.2 Data Consistency in Webcal

Webcal uses a combination of time stamps, checkpointing, and logging to maintain data consistency.

Calendar and item data is transported between the client and server portions of Webcal in RDOs.

These RDOs do not directly implement user interface operations. Instead, the RDOs update Ical

C++-backed Tcl calendar and item objects. Thus, data consistency must be maintained in two

ways: between the client and server version of the RDOs and between the client RDO and the Ical

interface objects.

The following section describes the "life cycle" of an item in Webcal. This section concentrates on

the item RDO because it exercises all the complexity of maintaining consistent state. The handling

of calendar RDOs is similar but simpler.

Webcal Item Import

Initially, an item is imported from the server into the client using Algorithm ITEM-IMPORT (Figure 4-

1). As with other Rover RDOs, Ical items are imported through the Rover access manager. When

a response from the server arrives, the Rover runtime system initiates the ROVERUPDATE step

as shown in Figure 4-2 Algorithm ROVERUPDATE is run whenever new data is received from the

server, i.e. in response to either an import or an export. First, Rover breaks the server message into

its components: code, data, time stamp, and log. In response to an initial request for an item, the

server will return code and state for the RDO. In response to subsequent communication, only the

log will be present. The library then instantiates the durable state of the RDO, from the cached

value or from the new information returned by the server. If the server sent a log in the message,

ITEMIMPORT(item) {
ROVER-IMPORT(item, ITEMCALLBACK)

}

ROVERIMPORT(item, callback) {
cache--item-+callback := callback
send (item)

}

Figure 4-1: Algorithm ITEMIMPORT

the library applies the operations received from the server. Each operation on an item begins with

a conflict detection check. The operation checks the current value of the RDO and program against

the expected values stored in the operation. An unexpected value will cause the client to raise

an exception and notify the user. Having passed this test, the operation completes and stores an

internal checkpoint of its state for later use. In and of itself, this has no effect on the Webcal GUI.

However, the callback immediately updates the frontend Ical GUI item with the result that the user

now sees the same data the server stored when the message to the client was generated.

Webcal Item Export

When user changes are to be saved (initiated either by a timer, the network monitor callback, or

the user), Webcal initiates ITEMEXPORT step. There are four parts to ITEMEXPORT as shown in

Figure 4-4.

First, Webcal compares the content of the Ical frontend GUI item with the content stored in

the internal RDO checkpoint. During the course of use, the GUI is allowed to drift away from the

backend RDOs. User actions affect what the user sees and the internal state of the program but not

the Rover backend that Webcal adds to Ical. So, if content of the GUI frontend item is the same as

the content of the Rover backend RDO, the user has not changed anything since information was

last received from or sent to the server. Thus, no new operation needs to be sent to the server.

Second, the export generates the operation. Each operation consists of the four parts discussed

in the next section.

Third, Webcal must check that the log generation process has been atomic. Rover provides no

explicit locking mechanism. Thus, any call into the Rover library may allow the library to invoke

event driven callbacks, including callbacks that modify RDOs. While the approach avoids deadlock,

it does require an extra check in the export path. It is possible for the Rover library to receive

an update to the RDO while the operation log is being generated. In that case the log would be

invalid and the generation process is restarted. Therefore, Webcal saves the dependency vector for

the RDO before the log is generated and checks that it has remained unchanged through the course

ROVER UPDATE(item, servermessage) {
cache-+item--*time-stamp := server_message--time-stamp
cache--+item--*code := server message--*code
cache-*item--+durablestate := server_message--data
server_log := servermessage--+log
unmarshall (cache--item-+durable-state)
APPLYSERVERLOG (item, server_log)
cache---item--+durablestate := marshall (item, server_log)
APPLYTENTATIVE_LOG(item)
cache-*item--+tentative-state := marshall (item)

}

APPLYSERVERLOG(item, serverlog) {
foreach operation in server_log {

apply (item, operation)
if operation in cache-+item-log {

invoke (cache-item--+callback)
delete operation from cache--+iteml-og

}

APPLYTENTATIVE_LOG(item) {
foreach operation in cache-+item--+og {

apply (item, operation)
if error {

invoke (cache--+item-- callback)
delete operation from cache--item---log

}

Figure 4-2: Algorithm ROVERUPDATE

ITEMCALLBACK(item) {
flush item to frontend

}

Figure 4-3: Algorithm ITEMCALLBACK

ITEM_EXPORT(item) {
IF (item-+checkpoint == item-+frontendvalue)) {

return /* Nothing to export */
}
repeat {

stamp := ROVER_GET_TIMESTAMP(item)
operation := GENERATEOPERATION(item)

} until {stamp == ROVERGETTIMESTAMP(item)}
ROVER.EXPORT(item, operation, ITEM.CALLBACK)

GENERATEOPERATION(item) (
append (operation, conflict detection check)
append (operation, conflict resolution code)
append (operation, method invocations to update RDO)
append (operation, checkpoint update code)
return operation

ROVEREXPORT(item, operation, callback) {
apply (item, operation)
append (cache-+item--log, operation)
cache-+item-- callback := callback
cache--item--tentative.state := marshall (item)
send (item, operation)

Figure 4-4: Algorithm ROVEREXPORT

of the operation. Since the Rover library (with the cooperation of the Webcal server) maintains the

dependency vector automatically, this check is easy and efficient.

Having passed the atomicity test, Webcal hands the operation log to the Rover library routine

ROVER_EXPORT. The ROVER_EXPORT applies the operation to the RDO (bringing it into synch

with the GUI), updates the object log and tentative state of the object in the cache, and finally

sends the operation to the server. When the server reply is received, the ROVERUPDATE step begins

again.

Webcal Operation Structure

Each operation consists of four parts (shown in Algorithm GENERATEOPERATION in Figure 4-

4): conflict detection, method invocation, conflict resolution, and checkpoint update. First, Webcal

generates the conflict detection check portion of the operation. The conflict detection check is always

evaluated before the corresponding operation is evaluated. The conflict detection check evaluates

one of two criteria. At the server, the conflict detection check ensures that the RDO in question

has the expected values. This checks for concurrent updates to the object by other clients as well

as previous tentative operations that failed to commit. At the client, the conflict detection check

must verify that the item frontend still matches the last checkpoint of the RDO taken at that client.

That is, the operation should not overwrite changes (made to the frontend by the user) that have

not yet been exported to the server. Thus, at the client, Webcal checks for concurrent access to the

object between the user and the server.

Second, if a conflict is found, an exception is raised and the user notified of the conflict. The

user may then select the manner in which to resolve the conflict. The user may discard the current

changes to the item and accept overwriting of the current state of the frontend GUI item with the

new durable state of the backend RDO. Alternatively, the user may select to re-apply the local

changes to the GUI after the operation has completed.

Third, Webcal generates a set of RDO method invocations which will change the backend item

RDO from its current (possibly tentative) state to one that precisely reflects the frontend Ical GUI

item. While a set of method invocations is generated, the RDO is not actually changed at this point.

The methods are only invoked during the ROVER-EXPORT procedure described above.

Fourth, an operation updates the internal RDO checkpoint. Webcal stores the new checkpoint

to reflect the new state of the GUI. This checkpoint will be used for comparison if a new export

process is initiated and for conflict detection when the server sends the next update to the client.

4.4.3 Caveats and Compromises

The port of Ical to Rover balances ease of implementation (porting) with efficiency of implementa-

tion. In both the data consistency model and the object storage layer, the Webcal prototype favors

ease of implementation and backward compatibility over complete efficiency.

The process of checkpointing and generating a log on demand (by calculating differences) could

be simplified by more extensive changes to the Ical GUI. Any significant user action could update

a second dependency vector, noting that the item has been changed. Simultaneously the log for

updating the RDO could be built up incrementally. While this method would be efficient and

obviate the need for item checkpointing, it would require a great deal of change to the Ical GUI.

The process would also be more error prone in that each point where the GUI affects the item

data would have to be found and modified. Further, this method would not eliminate the need for

each operation to encode its entire read set as part of its conflict detection check. At that point

the basic design decision to layer shadow RDOs over the GUI rather than reimplement it becomes

questionable.

The checkpointing/dependency vector tradeoff shows that the Rover Toolkit is not yet aggressive

enough in pushing control up to the application layer. Applications control dependency vectors on

the server side but not on the client side. This leads to the need in Webcal to implement a higher-level

semantic operation.

The second compromise made in implementing Webcal stems from the desire for backward com-

patibility. Webcal can use and store calendars in Ical v7.0 format files, in addition to the Webcal

data store. This allows Ical and Webcal users to share some calendars. The unfortunate result is

that calendar files are converted to RDOs, and vice-versa, on the fly at run time. This conversion

cost is fairly high and reduces server performance somewhat. However, as server performance is not

on the critical path, this compromise is acceptable.

The third caveat to note is that Rover and Webcal are prototypes designed for ease of debugging.

As a result, a few features are not fully implemented. For example, RDOs are never ejected from the

client cache-effectively limiting the size of calendars a user can load. More importantly, QRPCs and

RDOs cannot be batched for transport. The item-centered data model for Webcal described above

is update optimized-small updates result in little work. However, the initial load of a calendar

requires that each RDO be imported. Thus, the design causes data to be fragmented, increasing

protocol overhead, and causes many network round trips. Batching would solve this problem nicely.

Batching allows one QRPC to encapsulate several requests, reducing protocol overhead and round

trips. An additional consequence of the fact that the Rover implementation is at the prototype stage

is that data sizes for are larger than need be. Protocol overhead for QRPC is excessive and the data

representation for Webcal calendars are inefficient.

Chapter 5

Evaluation

The following set of experiments were designed to validate the benefits of mobile-aware application

design. The experiments measure the Webcal calendar tool and the Rover Toolkit as examples of

mobile-aware design. The main results are:

* Rover successfully decouples interactive performance from network performance. The interac-

tive performance of Webcal is excellent and nearly equivalent across three orders of magnitude

network bandwidths and latencies, and across one order of magnitude in data size. Over a

slow network, the use of QRPC allows Webcal to return to processing user interactive tasks

up to 1000 times faster than Ical (Webcal's mobile-unaware predecessor.).

* Mobile-awareness allows data update times to be proportional to the amount of data changed,

not the total size of application data. Transport of logs of small operations on objects can

reduce latency and bandwidth consumption compared to reads and writes of whole files.

* Migrating RDOs provides Rover applications with excellent performance over moderate band-

width links and in disconnected operation. By moving executable objects across the network

to the mobile host, applications can significantly increase interactive performance.

5.1 Experimental Environment

5.1.1 Data

The experiments below exercise Ical and Webcal on three calendars constructed to reflect the

behavior of users at MIT LCS. Table 5.1 shows the sizes of these calendars and the storage required

to represent them in the Webcal data store. Most of the experiments involve two particular types

of QRPCs: item import and item export. Imports break into two cases: cached and uncached.

If the item is cached, the reply is merely a verification that the cache data is valid. If not, the

Measure Small Medium Large
Number of Items 10 50 160
Bytes in Ical file 1448 7276 25319
Webcal data bytes 3421 16817 55187
Webcal log bytes 11529 57570 180955
Webcal GDBM overhead 7446 33001 94355
Total bytes stored by Webcal server 22396 107388 330497

Table 5.1: Calendar sizes used in measurements. Ical calendar sizes are selected to reflect the range
of Ical calendars found at MIT LCS. Webcal object store contains calendars that are functionally
identical to the equivalently sized Ical file.

Operation Protocol Code Data Log
Cold item import request 400 0 0 0
Cold item import reply 153 90 273 0
Warm item import request 418 0 0 0
Warm item import reply 151 0 0 0
Warm export request 315 0 0 785
Warm export reply 153 0 0 785

Table 5.2: Bytes transmitted (above the TCP layer) to perform typical Webcal operations.

reply contains the item data and code. The sizes of these operations are shown in Table 5.2. The

implementation of an item consists of approximately 650 lines of Tcl code ('-25600 bytes) that is

loaded as a library as part of the start-up of Webcal. The 90 bytes of code sent in an import is the

call in the library to create and unmarshall the item data.

The Webcal prototype uses the the Gnu Database Manager(GDBM) for its data store. Item

operation logs and objects are stored together at the server. Currently, the Webcal data represen-

tation is designed for convenience of debugging and human readability rather than performance.

This tendency is encouraged by our selection of Tcl as the implementation language for RDOs.

Clearly, a byte compiled language would be more space efficient. Therefore the size of these items

is excessive. Webcal calendars store the same data as Ical calendars in twice the space. In addition,

each operation in the Webcal log is three times the size of item on which it operates. Neither of

these data increases is inherent in the system. They are merely artifacts of the implementation. An

optimized Webcal data format would be at least as small as the Ical format, likely smaller. Similarly

an optimized Webcal log operation should be no more than one third the size of the original item.

In addition, the prototype never truncates the log. Information older than the last time when all

clients were up to date can be forgotten.

Server: TCP
Pentium 120 Transport Ping-Pong Latency Throughput

null 800 B 2000 B 1 MB
Client: Ethernet 10 13 31 4.45
TP 701C/75 WaveLAN 69 117 284 1.09

19.2 Wired CSLIP 331 653 1874 0.027
9.6 Cellular CSLIP 2 858 3170 2990 0.008

Table 5.3: The Rover experimental environment. Latencies are in milliseconds, throughput is in
Mbit/s. Table shows mean times in milliseconds.

5.1.2 Baseline Performance

The Rover test environment consisted of a single server and multiple clients. The server was an

Intel Advanced/XV (120 MHz Pentium) workstation running Linux 1.3.74 as the server. The Rover

server ran as a stand alone TCP server. The clients were IBM ThinkPad 701C laptops (25/75MHz

i80486DX4) running Linux 1.2.8. All of the machines were otherwise idle during the tests. The

network options consisted of switched 10 Mbit/s Ethernet, 2 Mbit/s wireless AT&T WaveLAN,

and Serial Line IP with Van Jacobson TCP/IP header compression (CSLIP) [20] over 19.2 Kbit/s

V.32turbo wired and 9.6 Kbit/s ETC cellular dial-up links'. To minimize the effects of network

traffic on our experiments, the switched Ethernet was configured such that the server, the ThinkPad

Ethernet adapter, and the WaveLAN base station were the only machines on the Ethernet segment

and were all on the same switch port.

The cost of a QRPC can be broken into two primary components:

1. Transport cost. The time to transmit the request and receive the reply.

2. Execution cost. The time to process the QRPC at the server.

Transport costs

The latency and bandwidth of various representative network technologies was measured to

establish a baseline. The results are summarized in Table 5.3. The table shows the latency for 10,

800, and 200 byte ping-pong and the throughput for sending 1 Mbyte using TCP sockets over a

number of networking technologies. These sizes were selected to demonstrate performance at the

1The configuration used was suggested by the cellular provider and the cellular modem manufacturer: 9.6 Kbit/s
ETC. We connected to the laboratory's terminal server modem pool through the cellular service provider's pool of
ETC cellular modems. This imposed a substantial latency (approximately 600ms) but also yielded significantly better
resilience to errors. Other choices are 14.4 Kbit/s ETC and directly connecting to our laboratory's terminal server
modem pool using 14.4 Kbit/s V.32bis. However, both choices suffered from significantly higher error rates, especially
when the mobile host was in motion. Also, V.32bis is significantly less tolerant of the in-band signaling used by
cellular phones (for cell switching and power level change requests).2 Unfortunately, I am not certain of the validity of the latency numbers for cellular TCP connections. Bad data
was discovered late in the process and replaced with this data, collected via cellular connection from New York.
Surprisingly, it seems the New York to Cambridge connection seems to be lower latency than connections initiated
from here in LCS.

Transport Round Trip QRPC Latency
350 B 550 B 900 B 1900 B

Ethernet 139 142 147 157
WaveLAN 147 221 154 164
19.2 Wired CSLIP 832 922 973 1230
9.6 Cellular CSLIP 4100 4210 4500 6210

Table 5.4: Time in milliseconds to perform a 350, 550, 900, and 1900 byte QRPC (including protocol
overhead. Table shows mean times in milliseconds.

extremes and at the sizes corresponding to Webcal import and export operations. The throughput

over wireless CSLIP is lower than expected (8.2 Kbit/s instead of 9.6 Kbit/s) because of the overhead

of the ETC protocol and errors on the wireless links. The throughput over wired CSLIP is higher

than expected (28 Kbit/s versus 19.2 Kbit/s) because of the compression that is performed by

the modem on ASCII data. The 1 Mbyte of ASCII data used for the test is very compressible

(GNU's gzip -6 yields a 14.4:1 compression ratio); since Rover is sending Tcl scripts (ASCII) Rover

applications will likely observe similar compression benefits when using wired CSLIP links.

Effect of QRPC size on performance

Table 5.4 summarizes the effect of QRPC size on performance. Combining the transport and

overhead of the Rover run time system (but excluding any application) and examining the total

costs, the round trip time for a 350, 550, 900, and 1900 byte QRPC (including protocol overhead)

is measured. These sizes were selected to reflect the current round-trip size of Webcal item import

and export operations (900 and 1900) and target sizes for optimized operations. Currently, the

Rover QRPC protocol is designed for convenience of debugging and human readability rather than

performance. The results show that substantial benefits are available by optimizing Webcal data

representations. For example, merely reducing the export operation to the target size (- 350 bytes)

would save up to two seconds per export over slow links. Reducing the QRPC protocol overhead

could have similar results.

5.2 Experiments

5.2.1 Interactive Performance

In order to demonstrate that asynchronous operation allows interactive application performance to

be independent of the network speed, the time for an application to initiate network actions was

measured. The two cases selected are the time for Webcal to perform Algorithm ITEMAMPORT and

Algorithm ITEMEXPORT (See Section 4.4.2). Tables 5.5 and 5.6 summarize the results.

As a control, the time for Ical I/O operations was used. The two operations measured were the

Transport Small Calendar Med Calendar Large Calendar
Webcal Ical Webcal Ical Webcal Ical

Local 0.437 1.400 1.490
Ethernet 0.045 0.704 0.050 2.670 0.055 2.380
WaveLAN 0.049 0.707 0.048 2.270 0.054 2.710
19.2 Wired CSLIP 0.047 1.430 0.043 5.540 0.049 14.100
9.6 Cellular CSLIP 0.044 4.210 0.046 16.700 0.049 50.100

Table 5.5: Time to initiate the import of one item from a Webcal calendar (i.e, the time to perform
Algorithm ITEMIMPORT) and the time to re-read Ical calendars over NFS. Table shows mean times
in seconds.

time to re-read a calendar and the time to save a calendar. All measurements, except the local case,

are over NFS.3 What the data do not show are the NFS errors over CSLIP. Over the noisier links

(Wired and Cellular CSLIP), sometimes several attempts were necessary to read or save a calendar

successfully. The cellular NFS numbers were extremely difficult to obtain. Had Ical been used to

save an actual calendar, it would have corrupted the calendar several times.

When Ical is performing an I/O operation, the application freezes for the duration of the operation

- up to 50 seconds for slow links and large calendars. Rover QRPCs decouple Webcal from the

slow networks. At the end of the operation, the application has contacted the access manager with

all relevant data. As a separate process, the access manager is free to perform logging, queuing, and

data transmission without substantial effect on the application. Thus, as the data shows, the time

to initiate an operation is completely independent of the speed of the network.

We see that the interactive performance of Webcal is excellent. Over the 9.6Kbit cellular CSLIP

link for a large calendar, the use of QRPC allows Webcal imports to return to processing user

interactive tasks 1000 times faster than Ical re-reads. Even for Ethernet, interactive performance

increases a factor of 15-43, depending on calendar size. Similarly, we see that Webcal export is 187

times faster than Ical save. For Ethernet, interactive performance increases a factor of 1-3.

5.2.2 Benefits of Small Operations

This following experiment demonstrates that mobile-aware applications benefit significantly in terms

of decreased network bandwidth consumption from the use of object operation logs. The experiment

compares calendar update operations in Ical and Webcal. The conclusion to note is that for Webcal,

update time is proportional to the size of the changed data rather than the size of the calendar.

3 Re-reading a calendar requires substantially more computation than saving. Re-reading involves reading from
disk,deleting all the old items from memory and from the interface and then unmarshalling and instantiating the new
ones. Saves mere marshall the items from memory into the storage format and then saving the items. Saves are done
almost entirely at the C-++ level, while re-reads involve a lot of Tcl execution.

Transport Small Calendar Med Calendar Large Calendar
Webcal Ical Webcal Ical Webcal Ical

Local 0.043 0.066 0.127
Ethernet 0.244 0.265 0.285 0.486 0.280 0.932
WaveLAN 0.250 0.325 0.249 0.487 0.257 1.220
19.2 Wired CSLIP 0.230 2.430 0.230 5.330 0.259 15.000
9.6 Cellular CSLIP 0.243 10.200 0.252 23.100 0.267 50.000

Table 5.6: Time to initiate the export of one item from a Webcal calendar(i.e., the time to perform
Algorithm ITEMEXPORT) and the time to save Ical calendars over NFS. Table shows mean times
in seconds.

The time to perform various update operations was measured to demonstrate the benefits (re-

duction in latency and bandwidth consumption) of small operations in a mobile environment. The

time to complete import and export operations was measured. The time to completion measures

the time from the initiation of the operation (with Algorithm ITEMIMPORT or ITEMEXPORT) until

the completion of the operation callback (Algorithm ROVER.UPDATE). In other words, the time

measured is the total the amount of time until the new data is received (for imports) or known stable

(for exports), including time in the Rover run time system, in the access manager, on the wire, at

the server and in the application. As in the last set of experiments, the Webcal operation times are

compared to the corresponding Ical operations: calendar re-read and save.

To select a reasonable workload, we drew on our experience with group calendars. The rate at

which calendars change is highly variable. In our experience at MIT LCS, group calendars change

at the rate of a few items a week as meetings and lectures of group interest are scheduled. Personal

calendars may change at a substantially higher rate. For example, a professor leaving on a trip may

schedule an entire day's or week's itinerary at once. Several professors share appointment calendars

with their personal assistants. In this set up, the assistant may enter the latest changes to an

itinerary while the professor is on the plane. Upon landing the professor may then receive the new

items or changes to the old ones. We selected operations on one and ten items.

Tables 5.7 and 5.8 summarize the results of the import experiments. Tables 5.9 and 5.10 sum-

marize the results of the export experiments. We see that times to complete imports and exports

depend only on the amount of new data to be obtained while re-reads and saves depend on the size

of the whole calendar. If only a single item has changed, Webcal import is 1.6-10 faster than Ical

re-read at obtaining the new information.

If ten items have been changed, the performance of the Webcal prototype is poor. The Rover

prototype does not currently support batching of operations. Further, the implementation does

not yet provide ordering guarantees on operations. Therefore, Webcal only allows one outstanding

operation at a time. Comparing the times for a single import to the times for ten imports shows

the result. Ten imports uniformly take ten times as long as one import. On a slow network, round

Transport Small Calendar Med Calendar Large Calendar
Webcal Ical Webcal Ical Webcal Ical

Local 0.437 1.400 1.490
Ethernet 0.273 0.704 0.301 2.670 0.306 2.380
WaveLAN 0.295 0.707 0.345 2.270 0.351 2.710
19.2 Wired CSLIP 1.313 1.430 1.361 5.540 1.409 14.100
9.6 Cellular CSLIP 5.839 4.210 5.868 16.700 4.939 50.100

Table 5.7: Time to complete the import of one item from a Webcal calendar with a cold
cache (i.e., the time from initiating Algorithm ITEMJIMPORT until the completion of Algorithm
ROVERUPDATE) and the time to re-read Ical calendars over NFS. Table shows mean times in
seconds.

Transport Small Calendar Med Calendar Large Calendar
Webcal Ical Webcal Ical Webcal Ical

Local 0.437 1.400 1.490
Ethernet 2.626 0.704 4.125 2.670 4.354 2.380
WaveLAN 3.485 0.707 4.307 2.270 5.745 2.710
19.2 Wired CSLIP 12.692 1.430 13.156 5.540 12.651 14.100
9.6 Cellular CSLIP 55.264 4.210 57.709 16.700 53.649 50.100

Table 5.8: Time to complete the import of ten (10) items from a Webcal calendar with a cold cache
(i.e., the time from initiating Algorithm ITEMIMPORT for the first item until the completion of
Algorithm ROVER.UPDATE for the tenth item) and the time to re-read Ical calendars over NFS.
Table shows mean times in seconds.

trip latency dominates the cost. Ten exports take less than ten times as long as one because of the

overlap of log replay computation with communication. A prototype system for batching QRPCs

and encapsulating multiple RDOs in one request is under development and will be of substantial

benefit.

Similarly (as mentioned in Section 5.1.1) reducing item and log size as well as protocol overhead

will have a substantial impact. Each import causes about 900 bytes to transit the network while

each export causes about 2000 bytes to cross. So, by the time ten items cross the network, Webcal

is actually sending more data than Ical. Batching will keep QRPC protocol constant, independent

of size. Increasing item representation efficiency should allow Webcal to send the whole calendar in

slightly more bandwidth than Ical uses.

The conclusion to note from both these cases is that, even without batching, update time is

proportional to the size of the changed data not the size of the calendar.

5.2.3 Benefits of Migrating RDOs

The final experiment demonstrates the benefits to user interactivity of relocating dynamic objects in

an environment with moderate bandwidth links and disconnected operation. The experiment mea-

Transport Small Calendar Med Calendar Large Calendar
Webcal Ical Webcal Ical Webcal Ical

Local 0.043 0.066 0.127
Ethernet 1.872 0.265 1.934 0.486 2.043 0.932
WaveLAN 1.933 0.325 2.279 0.487 2.015 1.220
19.2 Wired CSLIP 3.577 2.430 3.944 5.330 3.841 15.000
9.6 Cellular CSLIP 8.772 10.200 8.733 23.100 8.702 50.000

Table 5.9: Time to complete the export of one item from a Webcal calendar(i.e., the time from
initiating Algorithm ITEMEXPORT until the completion of Algorithm ROVERUPDATE) and the
time to save Ical calendars over NFS. Table shows mean times in seconds.

Transport Small Calendar Med Calendar Large Calendar
Webcal Ical Webcal Ical Webcal Ical

Local 0.043 0.066 0.127
Ethernet 6.501 0.265 7.806 0.486 8.080 0.932
WaveLAN 7.792 0.325 8.316 0.487 8.414 1.220
19.2 Wired CSLIP 23.948 2.430 22.951 5.330 23.470 15.000
9.6 Cellular CSLIP 78.243 10.200 77.205 23.100 73.361 50.000

Table 5.10: Time to complete the export of ten (10) items from a Webcal calendar (i.e., the
time from initiating Algorithm ITEMEXPORT for the first item until the completion of Algorithm
ROVERUPDATE for the last item) and the time to save Ical calendars over NFS. Table shows mean
times in seconds.

sured the time to perform a simple task using Ical and Webcal: starting the application and viewing

the appointments for a week's activities using the medium calendar. The experiment attempts to

show that moving the interface RDO across the network decreases the amount of time a user has to

wait for the response from the graphical user interface.

The results for the experiment are summarized in Figure 5-1. The figure shows two cases for Ical.

In the X11R6 case, Ical ran unmodified on the server, accessing data locally, while displaying the

user interface on the mobile host using X over the network. In the NFS case, it ran on the mobile

host using NFS to access data at the server.

Webcal ran locally on the mobile host with the application binary and supporting RDOs locally

cached. Thus, the times measured included the time to verify the RDOs representing the user's

calendar and the calendar items contained within it. The fully disconnected case measured perfor-

mance when all information was locally cached and validation requests were enqueued and logged

to stable storage for later delivery.

What the numbers do not show is the extreme sluggishness of the user interface when using X

with the server running remotely. Scrolling and refreshing operations are extremely slow. Clicking

and selecting operations are very difficult to perform because of the lag between mouse clicks and

display updates. In contrast, the Webcal interface is fully functional before all the data is loaded.

So, for example it is possible to make new entries while still loading the old. From this experience we

conclude that dynamically migrating RDOs (in this case the GUI) delivers substantial user-observed

performance benefits.

We then compare Rover Webcal in disconnected mode with the unmodified version of the appli-

cation running on the server and using X over Ethernet to provide the user interface to the mobile

host. When considering this comparison, it is important to recall the relative performance differ-

ences between the server (Pentium 120) and the mobile host (ThinkPad 701C), and that Rover

logs validation requests. We see that the Rover application's performance is competitive with the

unmodified applications (49 versus 14 seconds). Much of this time is spent in IPC round trips be-

tween the access manager and application as each RDO is loaded from the cache. Again, batching

will increase Webcal performance here. From this experiment, we can conclude that Rover delivers

excellent performance in disconnected operation.

If we compare the unmodified applications running over X with the Rover applications over a

9.6Kbit Cellular dial-up line, we see that the Webcal performs better than the unmodified applica-

tions using X over cellular (662 versus 345 seconds). Again, the time for Webcal to verify its data

includes 50 round trips to validate the calendar items. In addition, Webcal loads approximately 20

separate RDOs to create its interface. While validations of these RDO are allowed to overlap, a

substantial benefit would be gained from group validations.

In [21], a previous implementation of Webcal is compared to Ical. That implementation used

one RDO for the whole calendar and one RDO for the entire application. We can use this as an

approximation of the performance of Webcal over Rover with batched operations. In that paper,

Webcal was measured to be twice as fast as Ical over NFS using wired CSLIP and 20 times as fast

as Ical over X using cellular CSLIP.

150

M 100

.E 50

0

None Ethernet WaveLAN 19.2 Wired 9.6 Cellular

Figure 5-1: Time to initiate a calendar session. The figure shows time required to start the program
and read one week's appointments from the medium calendar.

Chapter 6

Related Work

Earlier work on Rover introduced the Rover architecture, including both queued RPC and relocatable

dynamic objects [21] . Queued RPC is unique in that it provides support for asynchronous fetching

of information, as well as for lazily queuing updates. The use of relocatable dynamic objects for

dealing with the constraints of mobile computing-intermittent communication, varying bandwidth,

and resource poor clients-is also unique to the Rover architecture. deLespinasse studied the mobile-

transparent Rover Web proxy[7]. Recent work has leveraged QRPC logs and RDOs to create fault-

tolerant applications. [22]

The Coda project pioneered the provision of distributed services for mobile clients. In particular,

it investigated how to make file systems run well on mobile computers by using optimistic concurrency

control and prefetching [26, 42]. Coda logs all updates to the file system during disconnection

and replays the log on reconnection. Coda provides automatic conflict resolution mechanisms for

directories, and uses Unix file naming semantics to invoke application-specific conflict resolution

programs at the file system level [27]. A manual repair tool is provided for conflicts of either

type that cannot be resolved automatically. A newer version of Coda also supports low bandwidth

networks, as well as intermittent communication [34].

The Ficus file system also supports disconnected operation, but relies on version vectors to

detect conflicts [39]. The Little Work Project caches files to smooth disconnection from an AFS file

system [19]. Conflicts are detected and reported to the user. Little Work is also able to use low

bandwidth networks [18]. These projects, as weel as Coda, are focused on hiding mobility from the

application.

The Bayou project [8, 45] defines an architecture for sharing data among mobile users. Bayou ad-

dresses the issues of tentative data values [47] and session guarantees for weakly-consistent replicated

data [44]. To illustrate these concepts, the authors have built a calendar tool and a bibliographic

database. Rover borrows the notions of tentative data, log replay, session guarantees, and the cal-

endar tool example from the Bayou project. Rover extends this work with RDOs, QRPC, and

events to deal with intermittent communication, limited bandwidth, and resource poor clients. In

concurrent work, Gray et. al. performs a thorough analysis of the options for database replication

in a mobile environment and concludes that primary copy replication with tentative updates is the

most appropriate approach for mobile environments [14].

One alternative to the Rover object model is the Thor object model [31]. In Thor, objects are

updated within transactions that execute entirely within a client cache. However, Thor does not

support disconnected operation: clients have to be connected to the server before they can commit.

An extension for disconnected operation in Thor has been proposed by Gruber and others [15], but

it has not yet been implemented. Furthermore, it does not provide a mechanism for non-blocking

communication, and their proposed object model does not support method execution at the servers.

The BNU project implements an RPC-driven application framework on mobile computers. It

allows for function shipping by downloading Scheme functions for interpretation [52]. Application

designers for BNU noted that the workload characterizing mobile platforms is different from worksta-

tion environments and will entail distinct approaches to user interfaces [28]. The BNU environment

includes proxies on stationary hosts for hiding the mobility of the system. No additional support for

disconnected operation, such as Rover's queued RPC, is included in BNU. A follow-up project, Wit,

addresses some of these shortcomings and shares many of the goals of Rover, but employs different

solutions [51].

RDOs can be viewed as simple Agents [40] or as a light-weight form of process migration [9, 38,

43, 48]. Other forms of code shipping include Display Postscript [1], Safe-Tcl [5], Active Pages [17],

Dynamic Documents [23], and LISP Hypermedia [33]. RDOs are probably closest to Telescript [53],

Ousterhout's Tcl agents [35], and Java [13]. Most differences between RDOs and these other forms

of code shipping are immaterial because the particular form of code shipping is orthogonal to the

Rover architecture. The key difference between Rover and other code shipping systems is that Rover

provides RDOs with a well-defined object-based execution environment that provides a uniform

naming scheme, an application-specific replication model, and QRPC.

The InfoPad project [29] and W4 [3] focus on mobile wireless information access. The InfoPad

project employs a dumb terminal, and offloads all functionality from the client to the server. W4

employs a similar approach for accessing the Web from a small PDA. Rover, is designed to be more

flexible. Depending on the power of the mobile host and the available bandwidth, Rover dynamically

adapts and moves functionality between the client and the server.

A number of proposals have been made for dealing with the limited communication environments

for mobile computers. Katz surveys many of the challenges [24]. Baker describes MosquitoNet, which

shares similar goals with Rover, but has not been implemented yet [2]. Oracle recently released a

product for mobile computers that provides asynchronous communication [10]; unfortunately, details

and performance analysis are not available.

A number of successful commercial applications have been developed for mobile hosts and limited-

bandwidth channels. For example, Qualcomm's Eudora is a mail browser that allows efficient remote

access over low-bandwidth links. Lotus Notes [25] is a groupware application that allows users to

share data in a weakly-connected environment. Notes supports two forms of update operations

discussed in Section 3.5: append and time-stamped. The Rover toolkit and its applications provide

functionality that is similar to these proprietary approaches and it does this in an application-

independent manner. Using the Rover toolkit, standard workstation applications, such as Ermh and

Ical, can be easily turned into mobile-aware applications.

The commercial group calendar/scheduler market is robust. A number of companies offer enter-

prise-wide scheduling tools, including TimeVision, Meeting Maker, OnTime, Organizer, and Ca-

LANdar. Most of these tools rely on connected operation to keep calendars up to date. Several

support some form of store and forward "synchronization" of calendars, generally through e-mail.

A few support disconnected operation of some sort, allowing a mobile user to download portions of

a calendar for off-line use. Unfortunately, all use proprietary technology, and it is difficult to tell

from the literature what semantics are implemented. The proliferation of proprietary "standards"

provides all the more support to the argument that a common toolkit would be useful to application

builders.

The DeckScape WWW browser [6] is a "click-ahead" browser that was developed simultaneously

with the Rover web browser proxy. However, their approach was to implement a browser from

scratch; as such, their approach is not compatible with existing browsers.

Several systems use E-mail messages as a transport medium, and obtain similar benefits as we

obtain by using QRPC. The Active Message Processing project [49] has developed various appli-

cations, including a distributed calendar, which use E-mail messages as a transport medium. As

another example, researchers at DEC SRC used E-mail messages as the transport layer of a project

that coordinated more than a thousand independently administered and geographically dispersed

nodes to factor integers of more than 100 digits [30]. This application is a centralized, client-server

system with one server at DEC SRC that automatically dispatches tasks and collects results.

The research described in this thesis borrows from early work on replication for non-mobile

distributed systems. In particular, we borrow from Locus [50] (type-specific conflict resolving) and

Cedar [12] (check-in, check-out model of data sharing).

Chapter 7

Conclusion

Mobile-aware applications are best suited to face the unique set of challenges faced by mobile com-

puters. Mobile-aware applications can excel even in the absence of high speed network connections.

The Rover Toolkit supports mobile-aware applications through an interface built on the communi-

cation and programming abstractions of queued remote procedure call, relocatable dynamic objects,

and events.

Interactive performance of Rover applications is decoupled from slow networks and nearly equiv-

alent across three orders of magnitude of network bandwidths and latency. Relocatable dynamic

objects allow mobile-aware applications to locate code together with data to increase resource uti-

lization efficiency. Transporting logs of small operations on objects allows applications to update

data in time proportional to the amount of the data changed, rather than the total size applica-

tion data. Rover applications select the level of consistency control appropriate to the data. Rover

optimizes optimistic concurrency schemes but does not impose any.

In summary, the Rover Mobile Application Toolkit enables mobile-aware applications to have

the information and control necessary to adapt to the rigors of mobile computing.

Appendix A

Complete Data

This appendix contains complete data for the tables and graphs shown in Chapter 5.

Transport Small Calendar Med Calendar Large Calendar
Mean a Mean Mean a

Local 0.437 0.072 1.40 0.65 1.49 0.13
Ethernet 0.704 0.039 2.67 0.10 2.38 0.67
WaveLAN 0.707 0.39 2.27 0.21 2.71 0.27
19.2 Wired CSLIP 1.43 0.66 5.54 0.43 14.1 0.84
9.6 Cellular CSLIP 4.21 0.94 16.7 0.67 50.1 2.2

Table A.1: Time to re-read Ical calendar files using NFS over various transports. Re-reads include
the computation to delete old items and include new ones. Thus, times for re-reads may exceed the
times for equivalent saves. Table shows mean times, in seconds, and standard deviations.

Transport Small Calendar Med Calendar Large Calendar
Mean a Mean a Mean a

Local 0.0430 0.0054 0.0656 0.0065 0.127 0.0020
Ethernet 0.265 0.013 0.486 0.011 0.932 0.047
WaveLAN 0.325 0.13 0.487 0.019 1.22 0.037

19.2 Wired CSLIP 2.43 0.029 5.33 0.13 15.0 0.55
9.6 Cellular CSLIP 10.2 1.64 23.1 1.61 50.0 2.06

Table A.2: Time to save Ical calendar files using NFS over various transports. Table shows mean
times, in seconds, and standard deviations.

Transport Small Calendar Med Calendar Large Calendar
Mean a Mean[a Mean a

Ethernet 0.045 0.015 0.050 0.014 0.0 4

WaveLAN 0.049 0.016 0.048 0.016 0.054 0.010
19.2 Wired CSLIP 0.047 0.010 0.043 0.013 0.049 0.004
9.6 Cellular CSLIP 0.044 0.012 0.046 0.010 0.049 0.003

Table A.3: Time to initiate the import of one item from a Webcal calendar i.e, the time to perform
Algorithm ITEMIMPORT. Table shows mean times, in seconds, and standard deviations.

Transport Small Calendar Med Calendar Large Calendar
Mean a Mean a Mean a

Ethernet 0.244 0.006 0.285 0.106 0.280 0.088
WaveLAN 0.250 0.003 0.249 0.018 0.257 0.003
19.2 Wired CSLIP 0.230 0.005 0.230 0.002 0.259 0.037
9.6 Cellular CSLIP 0.243 0.003 0.252 0.025 0.267 0.043

Table A.4: Time to initiate the export of one item from a Webcal calendar, i.e., the time to perform
Algorithm ITEMEXPORT Table shows mean times, in seconds, and standard deviations.

Transport Small Calendar Med Calendar Large Calendar
Mean a Mean a Mean a

Ethernet 0.273 0.023 0.301 0.023 0.306 0.009
WaveLAN 0.295 0.023 0.345 0.074 0.351 0.041
19.2 Wired CSLIP 1.313 0.103 1.361 0.089 1.409 0.163
9.6 Cellular CSLIP 5.839 0.745 5.868 0.828 4.939 0.338

Table A.5: Time to complete the import of one item from a Webcal calendar with a cold
cache, i.e., the time from initiating Algorithm ITEMIMPORT until the completion of Algorithm
ROVER.UPDATE. Table shows mean times, in seconds, and standard deviations.

Mean a Mean a Mean a

Ethernet 2.626 0.080 4.125 0.187 4.354 0.125
WaveLAN 3.485 0.265 4.307 0.163 5.745 1.973
19.2 Wired CSLIP 12.692 1.198 13.156 1.608 12.651 0.642
9.6 Cellular CSLIP 55.264 3.948 57.709 3.750 53.649 3.035

Table A.6: Time to complete the import of ten (10) items from a Webcal calendar with a cold
cache, i.e., the time from initiating Algorithm ITEM.IMPORT for the first item until the completion
of Algorithm ROVER.UPDATE for the tenth item. Table shows mean times, in seconds, and standard
deviations.

Transport Small Calendar Med Calendar Large Calendar
Mean a Mean a Mean a

Ethernet 0.340 0.056 0.344 0.031 0.372 0.089
WaveLAN 0.360 0.065 0.350 0.033 0.366 0.059
19.2 Wired CSLIP 1.054 0.034 1.065 0.029 1.137 0.065
9.6 Cellular CSLIP 4.275 0.105 4.175 0.181 4.005 0.117

Table A.7: Time to complete the import of one item from a Webcal calendar with a warm
cache, i.e., the time from initiating Algorithm ITEMIMPORT until the completion of Algorithm
ROVERUPDATE. Table shows mean times, in seconds, and standard deviations.

Transport Small Calendar Med Calendar Large Calendar
Mean a Mean a Mean a

Ethernet 2.646 0.142 4.066 0.156 4.169 0.100
WaveLAN 2.972 0.620 4.847 1.084 4.563 0.670
19.2 Wired CSLIP 9.734 0.898 10.315 2.621 9.833 0.899
9.6 Cellular CSLIP 49.424 6.732 48.658 8.439 39.784 0.217

Table A.8: Time to complete the import of ten (10) items from a Webcal calendar with a warm
cache, i.e., the time from initiating Algorithm ITEM-IMPORT for the first item until the completion
of Algorithm ROVER.UPDATE for the tenth item. Table shows mean times, in seconds, and standard
deviations.

Transport Small Calendar Med Calendar Large Calendar
Mean C Mean a Mean a

Ethernet 1.872 0.099 1.934 0.114 2.043 0.119
WaveLAN 1.933 0.053 2.279 0.887 2.015 0.096
19.2 Wired CSLIP 3.577 0.173 3.944 0.897 3.841 0.522
9.6 Cellular CSLIP 8.772 0.175 8.733 0.196 8.702 0.643

Table A.9: Time to complete the export of one item from a Webcal calendar, i.e., the time from
initiating Algorithm ITEM.EXPORT until the completion of Algorithm ROVERUPDATE. Table shows
mean times, in seconds, and standard deviations.

STransport II Small Calendar Med Calendar Large Calendar
11-Mean oa Mean a Mean a

Ethernet 6.501 0.236 7.806 0.333 8.080 0.135
WaveLAN 7.792 1.381 8.316 0.700 8.414 0.853
19.2 Wired CSLIP 23.948 1.511 22.951 1.238 23.470 1.549
9.6 Cellular CSLIP 78.243 3.341 77.205 4.674 73.361 2.049

Table A.10: Time to complete the export of ten (10) items from a Webcal calendar, i.e., the
time from initiating Algorithm ITEM.EXPORT for the first item until the completion of Algorithm
ROVERUPDATE for the last item. Table shows mean times, in seconds, and standard deviations.

Ical via X11R6 Ethernet 0:14
Ical (NFS) Ethernet 0:18
Rover Ethernet 0:45
Ical via X11R6 WaveLAN 0:17
Ical (NFS) WaveLAN 0:18
Rover WaveLAN 0:54
Ical via X11R6 19.2 Wired CSLIP 1:09
Ical (NFS) 19.2 Wired CSLIP 0:29
Rover 19.2 Wired CSLIP 1:31
Ical via X11R6 9.6 Cellular CSLIP 11:02
Ical (NFS) 9.6 Cellular CSLIP 1.08
Rover 9.6 Cellular CSLIP 5:45
Rover None 0:38

Table A. 11: Time to initiate a calendar session. The table shows time required to start the program
and read one week's appointments from the medium calendar. Table shows time as minute:seconds.

I Configuration II Transport I Time

__

" "

Bibliography

[1] Adobe Systems. Programming the Display PostScript System with X. Addison-Wesley Pub.

Co., Reading, MA, 1993.

[2] M.G. Baker. Changing communication environments in MosquitoNet. In Workshop on Mobile

Computing Systems and Applications, pages 64-68, Santa Cruz, CA, 1994.

[3] J. Bartlett. W4-the Wireless World-Wide Web. In Workshop on Mobile Computing Systems

and Applications, pages 176-178, Santa Cruz, CA, 1994.

[4] A.D. Birrell and B.J. Nelson. Implementing remote procedure calls. ACM Trans. Comp. Syst.,

2(1):39-59, Feb. 1984.

[5] N. S. Borenstein. EMail with a mind of its own: The Safe-Tcl language for enabled mail. In

IFIP Transactions C, pages 389-415, Barcelona, Spain, June 1994.

[6] M. H. Brown and R. A. Schillner. DeckScape: An experimental web browser. Technical Report

135a, Digital Equipment Corporation Systems Research Center, March 1995.

[7] A. F. deLespinasse. Rover mosaic: E-mail communication for a full-function web browser.

Master's thesis, Massachusetts Institute of Technology, June 1995.

[8] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. Welch. The Bayou

architecture: Support for data sharing among mobile users. In Workshop on Mobile Computing

Systems and Applications, pages 2-7, Santa Cruz, CA, 1994.

[9] F. Douglis and J. Ousterhout. Process migration in the Sprite operating system. In Proc. of

the 7th International Conference on Distributed Computing Systems, pages 18-25, Berlin, West

Germany, September 1987. IEEE.

[10] A. Downing, D. Daniels, G. Hallmark, K. Jacobs, and S. Jain. Oracle 7, symmetric replication:

Asynchronous distributed technology, September 1993.

[11] Sanjay Ghemawat. Ical, 1993. http://www.pmg.lcs.edu/ sanjay/ical-html.

[12] D. K. Gifford, R. M. Needham, and M. D. Schroeder. The Cedar file system. Communications

of the ACM, 31(3):288-298, March 1988.

[13] J. Gosling and H. McGilton. The Java language environment: A white paper, 1995. http://-

java.sun.com/whitePaper/j avawhitepaper-l .html.

[14] J. Gray, P. Helland, P. O'Neil, and D. Shasha. The dangers of replication and a solution. In

To appear in Proc. of the 1996 SIGMOD Conference, June 1996.

[15] R. Gruber, M. F. Kaashoek, B. Liskov, and L. Shira. Disconnected operation in the Thor

object-oriented database system. In Proceeding of the Workshop on Mobile Computing Systems

and Applications, pages 51-56, Santa Cruz, CA, 1994.

[16] P. Honeyman, L. Huston, J. Rees, et al. The LITTLE WORK project. In Proc. of the 3rd

Workshop on Workstations Operating Systems. IEEE, April 1992.

[17] H. Houh, C. Lindblad, and D. Wetherall. Active pages. In Proc. First International World- Wide

Web Conference, pages 265-270, Geneva, May 1994.

[18] L. Huston and P. Honeyman. Partially connected operation. In Proc. of the Second USENIX

Symposium on Mobile & Location-Independent Computing, pages 91-97, Ann Arbor, MI, April

1995.

[19] L. B. Huston and P. Honeyman. Disconnected operation for AFS. In Proc. USENIX Symposium

on Mobile & Location-Independent Computing, pages 1-10, Cambridge, MA, August 1993.

[20] V. Jacobson. Compressing TCP/IP Headers for Low-Speed Serial Links. Internet RFC 1144,

February 1990.

[21] A. Joseph, A. F. deLespinasse, J. A. Tauber, D. K. Gifford, and F. Kaashoek. Rover: A toolkit

for mobile information access. In Proc. of the Fifteenth Symposium on Operating Systems

Principles (SOSP), Copper Mountain Resort, CO, December 1995.

[22] A. Joseph and F. Kaashoek. Building fault-tolerant mobile-aware applications using the rover

toolkit. Submitted for Publication, May 1996.

[23] F. Kaashoek, T. Pinckney, and J. A. Tauber. Dynamic documents: Mobile wireless access to the

WWW. In Workshop on Mobile Computing Systems and Applications, pages 179-184, Santa

Cruz, CA, 1994.

[24] R. H. Katz. Adaptation and mobility in wireless information systems. IEEE Personal Com-

munications, 1:6-17, 1994.

[25] L. Kawell Jr., S. Beckhardt, T. Halvorsen, R. Ozzie, and I. Greif. Replicated document man-

agement in a group communication system. Presented at the Second Conference on Computer-

Supported Cooperative Work, Portland, OR, September 1988.

[26] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. ACM

Transactions on Computer Systems, 10:3-25, 1992.

[27] P. Kumar. Mitigating the Effects of Optimistic Replication in a Distributed File System. PhD

thesis, School of Computer Science, Carnegie Mellon University, December 1994.

[28] J. Landay. User interface issues in mobile computing. In Proc. of the Fourth Workshop on

Workstation Operating Systems (WWOS-IV), pages 40-47. IEEE, October 1993.

[29] M.T. Le, F. Burghardt, S. Seshan, and J. Rabaey. InfoNet: the networking infrastructure of

InfoPad. In Compcon '95, pages 163-168, 1995.

[30] A. K. Lenstra and M. S. Manasse. Factoring by electronic mail. In Advances in Cryptology -

Eurocrypt '89, pages 355-371, Berlin, 1989. Springer-Verlag.

[31] B. Liskov, M. Day, and L. Shrira. Distributed object management in Thor. In M. Tamer

Ozsu, Umesh Dayal, and Patrick Valduriez, editors, Distributed Object Management. Morgan

Kaufmann, 1993.

[32] L.Lamport. Time, clocks, and the ordering of events in a distributed system. Communications

of the ACM, 32(7), 1978.

[33] J.C. Mallery. A Common LISP hypermedia server. In Proc. First International World- Wide

Web Conference, pages 239-247, Geneva, May 1994.

[34] L. B. Mummert, M. R. Ebling, and M. Satyanarayanan. Exploiting weak connectivity for mobile

file access. In Proc. of the Fifteenth Symposium on Operating Systems Principles (SOSP),

Copper Mountain Resort, CO, December 1995.

[35] J.K. Ousterhout. The Tcl/Tk project at Sun Labs, 1995. http://www.sunlabs.com/research/tcl.

[36] J. Postel. Internet Name Server. IEN-116, August 1979.

[37] J. B. Postel. Simple Mail Transfer Protocol. Internet RFC 821, August 1982.

[38] M. L. Powell and B. P. Miller. Process migration in DEMOS/MP. In Proc. of the Ninth

Symposium on Operating Systems Principles (SOSP), pages 110-119, October 1983.

[39] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. J. Popek. Resolving file conflicts in

the Ficus file system. In USENIX Summer 1994 Technical Conference, pages 183-195, Boston,

MA, 1994.

[40] D. Riecken, editor. Intelligent Agents, volume 37. Communications of the ACM, July 1994.

[41] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design. ACM

Transactions on Computer Systems, 2(4):277-28, November 1984.

[42] M. Satyanarayanan, J. J. Kistler, L. B. M., M. R. Ebling, P. Kumar, and Q. Lu. Experience

with disconnected operation in a mobile environment. In Proc. USENIX Symposium on Mobile

& Location-Independent Computing, pages 11-28, Cambridge, MA, August 1993.

[43] J. M. Smith. A survey of process migration mechanisms. Operating Systems Review, 22(3):28-

40, July 1988.

[44] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer, and B. B. Welch.

Session guarantees for weakly consistent replicated data. In Proc. of the 1994 Symposium on

Parallel and Distributed Information Systems, pages 140-149, September 1994.

[45] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser.

Managing update conflicts in a weakly connected replicated storage system. In Proc. of the

Fifteenth Symposium on Operating Systems Principles (SOSP), Copper Mountain Resort, CO,

1995.

[46] D. B. Terry et. al.. Managing update conflicts in a weakly connected replicated storage system.

In Proc. of the Fifteenth Symposium on Operating Systems Principles (SOSP), Copper Mountain

Resort, CO, 1995.

[47] M. Theimer, A. Demers, K. Petersen, M. Spreitzer, D. Terry, and B. Welch. Dealing with ten-

tative data values in disconnected work groups. In Proc. of the Workshop on Mobile Computing

Systems and Applications, pages 192-195, Santa Cruz, CA, 1994.

[48] M. Theimer, K. Lantz, and D. Cheriton. Preemptable remote execution facilities for the V-

System. In Proc. of the Tenth Symposium on Operating Systems Principles (SOSP), pages 2-12,

Orcas Island, WA, December 1985.

[49] J. Vittal. Active message processing: Messages as messengers. In Proc. of IFIP TC-6 Inter-

national Symposium on Computer Message Systems, pages 175-195, Ottawa, Canada, April

1981.

[50] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The LOCUS distributed operating

system. In Proc. of the Ninth Symposium on Operating Systems Principles (SOSP), pages

49-70, Bretton Woods, NH, 1983.

[51] T. Watson. Application design for wireless computing. In Workshop on Mobile Computing

Systems and Applications, pages 91-94, Santa Cruz, CA, 1994.

[52] T. Watson and B. Bershad. Local area mobile computing on stock hardware and mostly stock

software. In Proc. USENIX Symposium on Mobile & Location-Independent Computing, pages

109-116, Cambridge, MA, August 1993.

[53] J. E. White. Telescript technology: The foundation for the electronic marketplace, 1994.

