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Abstract

The examination of the structural evolution of carbon during oxidation has proven to be
of scientific interest. Early modeling work of fluidized bed combustion (FBC) showed that most
of the oxidation reactions of interest occur in the micropores. This work has focuses on the
evolution of macroporosity and microporosity of carbons during kinetic controlled oxidation
using Small Angle X-Ray Scattering (SAXS), CO2 surface areas, and High-Resolution
Transmission Electron Microscopy (HRTEM) analysis.

Simple studies of fluidized bed combustion of coal chars has shown that many of the
events previously considered to occur due to fragmentation may in fact be an effect of "hidden"
or nonaccessible porosity. This thesis uses a modified shrinking core model to examine the
effect of macropore size on the combustion of large (4-8 mm) coal particles in the FBC.
Modeling work, supported by experimei::al evidence, has shown that even though complete
penetration of the particle interior by oxygen may occur for large pores, micropores will not be
completely penetrated and will act as diffusive barriers. These barriers shield the interior of the
particle from oxidants, and increases in reactivity (CO2 production) are the result of barriers
being destroyed, revealing "fresh" carbon to the system.

The generation of a combustion resistant grid used in the HRTEM, coupled with SAXS
and CO2 measurements of the surface areas, and SAXS fractal analysis has confirmed that soot
particles shrink during their oxidation. The shrinkage is the result of an overall change in
structure. This structure becomes, on a radial basis, much more ordered near the edges, while the
center itself becomes transparent to theHRTEM beam, implying a lack of structure in this region.
Although complex, the oxidation of soot has distinct identifiable stages. The first is a
devolatilization/combustion of absorbed hydrocarbons to increase surface area by exposure of
pores and surface roughening. This surface roughening continues during oxidation with
simultaneous densification (shrinkage) until a maximum density/surface roughness is reached at
approximately 60% conversion.

The HRTEM techniques developed for examination of soots have also been applied to
Spherocarb, an artificial char(Analabs) used in combustion studies. The Spherocarb ordering
increases during oxidation, where average lattice parameters increase by 50% during reaction,
accompanied by minor decreases in doo2 lattice spacing. The densification (shrinkage) of
Spherocarb and other carbons at low temperature can be attributed to this ordering. Assuming
that these orderable fringes react in a manner similar to graphite fringes implies that the
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reactivity should go down as the structure becomes ordered and edge carbons are destroyed.
However, the reactivity of Spherocarb actually increases during reaction when normalized with
the remaining mass and surface area. This increase in reactivity is possibly due to 1) increased
catalytic effects, 2) defect site retention, and/or 3) chemisorption effects. The overall trend
suggested by the ordering/reaction data indicates that low temperature ordering is not a process
that is akin to "annealing." It is instead a process that must be modeled differently of high
temperature oxidation where annealing will play a role, but also where other factors must also be
considered. This has important implications for the extrapolation of low temperature structural
studies to higher temperatures.

Thesis Supervisors: Adel F. Sarofim
Lammot Du Pont Professor of Chemical Engineering Emeritus

John B. Vander Sande
Cecil and Ida Green Distinguished Professor of Materials Science
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CHAPTER 1
1. Introduction

Coal is an extremely heterogeneous material that is difficult to characterize. Coal is

fossilized organic matter formed by geological processes and is composed of a number of

distinct organic entities called macerals and lesser amounts of inorganic substances (minerals).

The macerals of coal consist principally of carbon with various amounts of hydrogen and

oxygen, ranging from -50 wt % carbon to over 95 %. Char is the product of pyrolysis of coal,

and is considered to be formed as an intermediate in combustion after the devolatilization of the

coal.

The reaction of carbon (char) with oxidizing gases is controlled by the following steps:

(1) Mass transfer by diffusion of gaseous reactants from the bulk gas to the carbon surface.

(2) Adsorption of reactants on the surface.

(3) Surface reactions and formation of adsorbed product.

(4) Desorption of products.

(5) Diffusion of products to the bulk gas.

The kinetics of carbon oxidation are determined by the slowest step. This determination

is based on process parameters (temperature and pressure) and carbon properties (active site

concentration and catalytic effects).

At higher temperatures, the reaction may be controlled by diffusion of reactants to the

external surface of the particle (Regime III)'. At lower temperatures, the rate determining step is

due to surface kinetics (Regime I). At intermediate temperatures, the reaction may be controlled



by both the chemical processes and diffusion through the pores and the external surface

boundary layer (Regime II).

One measure of the overall chemical kinetics of the heterogeneous carbon reactions with

oxidizing gasses is calculated by the following

1 dW
Ro = (1)W0 dt

where Ro is the overall reactivity at temperature T, Wo is the initial mass and dW/dt is the rate of

weight loss. Another measure of the kinetics is the instantaneous rate of reaction normalized by

the actual, rather than the initial mass of the carbon,

1 dW
R, = (2)

W, dt

where Wt is the actual mass at time t. The intrinsic reactivity is expressed per unit surface area

and is given by

kiP m

Ri = -kP(3)
A

where Ri is the intrinsic reactivity, ki is the intrinsic rate constant (related to temperature by the

Arrhenius expression, k = A e-/RT), P is the partial pressure of reactant gas, m is the true reaction

order., and A is the surface area. The overall reactivity, R, is related to the intrinsic reactivity, Ri,

by

Ro = 1AtRi (4)

where ri is the degree of gaseous penetration and At is the total surface area. For reactions under

pure kinetic control, i1 = 1, indicating complete penetration of all pores.



The physical properties of carbon at various temperatures or mass totals can be

experimentally evaluated accurately, but the "reactivity" of carbon is difficult to measure with

precision. Smith2 compiled intrinsic reactivities of large numbers of carbons and compared

them, finding differences of up to four orders of magnitude for the same temperature (see Figure

1).

The intrinsic reactivity of carbon is a function of the gas used, and a surface area

evaluation method is necessary. The measurement of the surface area available to a reacting gas

molecule is not a straightforward task. Methods of physical adsorption of gases to obtain

isotherms and their interpretation often indicate pore volume rather than surface area.

The measurement of surface area is most usually determined by gas adsorption

measurements using various modifications Brunauer-Emmett Teller theory3. A clean surface is

prepared by outgassing in vacuum, and then the gas (normally nitrogen or carbon dioxide) is

admitted in precise amounts. The amount of gas adsorbed is calculated using pressure

differentials. From the isotherm of the gas adsorption, a value of the surface area can be

inferred4. Another measure of surface area is active surface area (ASA), measured by

chemisorption of oxygen on clean carbon surfaces,5 which measures the active sites available to

reaction.

The surface area can also be measured by the use of Small Angle X-ray Scattering

(SAXS), of which a typical experimental setup is shown in Figure 2. SAXS data is produced by

the interactions of X-rays with variations in the electron density caused by inhomgenaities in the

scattering medium on a scale of 0.5 to 200 nm. Using SAXS, one is able to measure micro-

(width less than 2 nm), meso- (width between 2 and 50 nm) and macropores (width greater than



50 nm).6 For porous solids, the greatest change in electron density is assumed to be at the solid

void interface, although for most chars the presence of ash complicates this assumption.

Evaluation methods for obtaining the surface area from SAXS data include the Debye equation,

Porod's Law and the Guinier equation. Although all three theories use different assumptions, the

three theories use plots of the intensity of scattering in one form or the other to obtain an estimate

of the surface area (see Chapter 4).

The surface area measurements are actually a measure of the structure of the carbon. For

most chars, the surface area is predominantly in the micropores, while the pore volume is

predominantly in the macropores.7 Microporous carbons have a very disordered structure as

revealed by High Resolution Transmission Electron Microscopy (HRTEM). 8 The various

models proposed to describe the microstructure differ in detail, but the essential feature of all of

them is a twisted network of defective carbon layer planes cross-linked by aliphatic bridging

groups.

Transmission electron microscopy provides a means of obtaining high-resolution images

of carbonaceous material. Figure 3 provides a schematic of a typical TEM microscope. The

preparation techniques for TEM are quite difficult, as it is necessary to obtain very thin sections

of carbon less than 10 nm of uniform thickness (See Appendix A). Proper preparation can allow

direct imaging of the layer planes in carbon materials, which reveals the complexity of the most

regular structures, and shows ordering down to the nanometer level,9 as shown in Figures 4 and

5. Figure 4 shows an anathraphene graphite and is a prime example of d002 structure of graphite,

although one can not measure the length of the lattice fringe (La) due to its extreme length (see

20



Appendix A). Figure 5 shows the layering of the turbostratic carbon, although the random

orientation of the carbon is not conducive to simple analysis as in Figure 4.

The more ordered parts of carbon structure are essentially graphitic. Small volumes have

graphitic like structure, as exhibited in Figure 6. However, the presence of defects, distortions,

and hetero atoms destroys the regularity, resulting in disordered media. Little energy is needed to

slide the graphitic layers over one another due to the weak Van der Waals forces holding the

layers together. Twisting the layers of Graphtec carbon like paper so that they are not aligned

with one another is possible leading to structures which have roughly parallel and equidistant

layers but with a random orientation, the so called "turbostratic" carbon, an example of which is

shown in Figure 5. Heat treatment of some of these disordered carbons can lead to decreases in

these defects and subsequent increase in the graphitic nature of the carbon, as depicted in Figure

7.10 The study of these defects is important to the understanding of mechanisms of gasification

and oxidation."

The reason for the extensive study of graphitic ordering and its effects on oxidation is

that the edge carbon atoms have been shown to be more reactive than basal plane carbon

atoms. 12 Geometrically, as the oxygen (or other gasifying agent) approaches the graphite lattice,

it can undergo reaction either at the edge of the basal plane or on the basal plane itself. Rates at

the edges are 102 to 103 times faster on the edges than on the basal plane. 9 Even under high

temperatures where diffusional control begins to affect overall reactivity (T = 1100 and 1500K),

the oxidation rates of edge carbons are still 10 to 29 times higher 13 than those for basal plane

carbon.



An analogous ordering appears to happen even at low temperatures. Hurt14 observed that

during oxidation of Spherocarb and sucrose char under Regime I conditions, diameter decreased

substantially. This observation was confirmed by others using carbons as disparate as soot,15

form coke,'6 and bituminous coal char.' 7 Hurt speculated that this was due to an atomic

rearrangement of the carbon during oxidation. Extensive turbostratic ordering was shown

concurrently with lowering of reactivity for laboratory scale pulverized combustion at 2000K.'8

Further investigations found that much of the residual carbon in industrial boilers consisted of

highly ordered carbon. 19 However, the link between low temperature densification and high

temperature ordering during oxidation is not clear. Since models of char combustion assume a

static structure, the source of this rearrangement and effect on reactivity is important to examine

in light of the increasing use of lower temperature burners. Structural rearrangements will

potentially affect reactivity, fragmentation behavior, and ultimately, char burnout, which will in

turn play an import part in particle emission and control strategies.

This study explores the effects of structure upon the reactivity of model chars. The effect

of large macropores on the combustion time of large coal particles in an FBC is explored in

Chapter 2, showing that large variations in CO2 combustion profiles may result from simple pore

distribution arguments. The structural evolution of soots during oxidation is examined with

SAXS, CO2 absorption, HRTEM, and a new technique for examining nanometer size objects

before and after significant combustion, and is discussed in Chapters 3-5. The structural

evolution of Spherocarb, a compound frequently used as a model char is discussed in Chapters 6

and 7, showing that the fine structure as measured during oxidation increased, and is a useful

concept in understanding issues such as fragmentation. Furthermore, this structural ordering can

22



effect the reactivity of carbon. However, the relationship between low temperature carbon

ordering and reactivity is complex, due to effects such as catalysis, defect retention and

chemisorption issues.
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Figure 4. An ordered graphitic TEM structure produced commercially with anathraphene, 590
kX original magnification.
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Figure 5. TEM image of a carbon with turbostratic like structure (Spherocarb, 590kX original
magnification).
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Figure 7. Generation of local graphitic level in carbons by heat treatment from Marsh et al 0. As
heat treatment temperature increases from 1000C to 2400C, ordering increases.
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CHAPTER 2
2. Evolution Of CO 2 During Combustion In A Fluidized

Bed: Random Pore Model

2.1 Introduction

Fluidized Bed Combustors (FBC) are becoming increasingly important as a system for

generation of electricity with low cost pollution controls, especially in developing nations such

as China. The system consists of a bed of char fluidized with oxidizing gasses, to which various

pollution controlling additives, such as limestone, may be added. Prediction of the carbon

content in fluidized beds is important because carbon losses in the bed are proportional to the

carbon loading, because of carbon's role in the reduction of nitrogen oxides formed in the bed,

and because of the importance of carbon content for final ash disposal. The carbon load is

proportional to the carbon particle burnout time, which is, in turn, related to the particle diameter

raised to a power between 1 and 2. Fragmentation and attrition, which produce smaller particle

sizes, will thus decrease the burning time and the carbon content.

Evidence for fragmentation in fluidized beds has been provided by showing the variation

in products of combustion of single coal particles. Sundback et al.20 explained this variation by

postulating fragmentation of a single char particle, using CO2 profiles to obtain the size and

number of coal fragments evolved during reaction. However, Zygourakis and Sandmann 21

explained the same behavior by the use of a discrete structural model, in which the reaction rate

increased sharply when the reaction front reached large internal cavities that were previously

unavailable for reaction, even under complete kinetic control (Regime I). In this present study
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this approach is modified to simulate the variation in CO2 emissions from single burning coal

particles by using a simple system of pores, randomly distributed throughout a spherical char

particle. Only the penetration depth and initial pore sizes are used as structural model

parameters. The model results are examined by comparing the random factor to two different

types of coal in a laboratory scale fluidized bed.

2.2 EXPERIMENTAL

Batch combustion experiments were performed in a small-scale quartz glass bubbling

fluidized-bed reactor (FBC) with an inner diameter of 57 mm. A bed of silica sand (particle size

150-212 gm) with a bed height of approximately 50 mm was fluidized by oxygen in helium. A

nondispersive infrared (NDIR) detector was used to measure the overall conversion of carbon to

CO2. An attached Fourier transform infrared (FTIR) spectrometer equipped with an MCT

detector and a low-volume gas cell of 223 cm3 was used to monitor CO2, CO, and CH4 exhaust

gasses. A complete schematic of the system is given in Figure 8.

The oxygen concentration in the inlet gas stream was varied from 2-8% by use of mass

flow controllers. The flow rate was set to 2.5 L/min at STP (298 K, 1 atm) conditions. Single

coal particles, 5-10 mm in diameter, were burned at temperatures between 973 K and 1123 K.

An analysis of the coals used in this study is given in Table 1. All measurements of the off-gas

indicated that, except during the devolatilization step, the CO and CH4 accounted for less then

1% of the original amount of fixed carbon in the coals tested.

In order to obtain samples for size distribution analysis for the pores of the char burned in

the FBC, a small cage was constructed of #40 steel mesh and suspended in the FBC using

nichrome metal tubing. For initial devolatilization samples, the cage was embedded in the FBC



silica sand, and He gas was used to fluidize the bed. The sample coal was inserted into the bed

and after 2 minutes, the cage was lifted to the top of FBC and the sample was allowed to cool to

room temperature under inert gas flow. This process was used to retrieve Newlands and Illinois

chars at up to 75% conversion. The total surface areas of the retrieved chars where analyzed

using an ASAP 2000 (Nicolet) automated nitrogen BET.

To obtain an average macropore size for the initial, devolatilized chars, the chars were

then mounted in epoxy (Buehler, Epo-thin epoxy) and allowed to cure. Once curing was

accomplished, top portion of each sample was removed by grinding the epoxy/char until the

center of the char particle was reached. The epoxy/char was then polished, and the resulting

epoxy mounted char was then optically imaged and average pore size was determined.

Property Newlands Coal Illinois #6 Coal
Volatile Matter (%) 26.49 36.19

Fixed Carbon(%) 56.07 50.97

Total Carbon (%) 58.83 65.1

Ash (%) 17.44 12.84

Nitrogen (%) 1.2 1.05

Table 1. Proximate and ultimate analysis of Newlands and Illinois coal.

2.3 RESULTS

The data shown in Figure 9 is representative of a typical CO 2 profile of coal burned the

fluidized bed. The high initial peak of off gasses between 0 and 2 minutes in Figure 9 is due to

the devolatilization of the coal particle when it is initially introduced into the bed. The

devolatilized coal char is then oxidized slowly in the FBC, with random variation seen from the

"average" value of the CO 2 production. The smooth profile at high conversions is due to the
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multiple fragments, which are generated toward the end of the run when attrition effects are

large.

The CO2 combustion profile for the Newlands coal is given in Figure 10. The data

between devolatilization profile and the final stages of combustion was fit to a linear profile, and

an average "noise" factor was computed by simply taking the difference from a best fit of the

CO2 profile using the linear range from about 1 minute after devolatilization is over to

approximately 60% conversion. The profile indicates a relatively smooth combustion

characteristics, with little deviations from the average combustion values(approximately ±3 %,

defining the average as the best fit of the data). Increasing the oxygen content of the feed gas

simply accelerates the combustion process, and does not affect the "noise" level.

The Illinois #6 coal, shown in Figure 11, has two typical types of deviations. One is a

"jump" to a higher combustion rate, which can be attributed to a single event that radically

changes the reactivity (CO2 production) of the system. A similar effect was observed by

Sundabk et al., and attributed to large fragmentation events. The secondary "noise" is like the

noise reported for Newlands coal, but in the range of + 5%. This secondary "noise" also

significantly decreases after a "jump" to higher combustion rates.

The nitrogen BET surface area of the cage retrieved chars were measured and the change

in surface area is given in Figure 12. The surface area profiles indicate a decrease in surface, due

to either (1) increase in the pore size (causing a decrease in area) due to combustion, or (2) a

combination of increasing ash content and "sticking" of the silica sand to the particle. However,

while the absolute surface area is changing, the area of the meso/macropores remains constant,

suggesting that the increase in pore size may be the most important factor.



Examination of the epoxy mounted devolatilized char, as given in Figure 14 and Figure

15, gives an average macropore size of 0.15 mm for the Newlands coal. The Illinois #6 char had

an approximate pore size of 1.4 mm if one excludes the large cenospheric centers of the particle,

which as shown in Figure 15 had an approximate size of 5 mm in diameter and accounts for a

great deal of volume of the char. Roughly 1/3 of the particles examined showed cenospheric

properties, while the rest of the coals had pores similar to the pore walls of the Illinois # 6outer

char edge.

2.4 DISCUSSION

According to the works of Zygourakis 22'23 and Perlmutter24,25,26'27, even in the kinetically

controlled regime, not all the porosity is accessible at a given time, due to pore blockage. As the

blockage is cleared, new regions are exposed that can significantly increase reactive area. The

simple CO2 evolution model developed here follows an approach similar to the Zygourakis

model, but we cannot assume strict Regime I (kinetic control) conditions. Different pore sizes

will have different depths of penetration. For FBC conditions, complete penetration is expected

with large pores, even for large (7mm diameter) particles, while for small pore sizes (D <10nm),

diffusion effects predominate, leading to a Regime II (diffusion and kinetic control) combustion.

One may numerically calculate the extent of this penetration by calculating the

penetration depth of the oxygen for an assumed pore size. Smith 2 gave the penetration depth for

a pore size of rp as

L=rp Deff C 2  (5)
4Rchem



where rp is the pore radius, Dff is the effective diffilusivity of the gas (02) of given

concentration C, and Rchem is rate of reaction of the char. The factor IJD may be assumed to

give a rough estimate of the effectiveness factor of the char combustion.

The penetration depth as a function of pore radius and temperature is calculated and

given in Figure 13 as a function of particle temperature and pore size. For the conditions

examined in our study, the temperature ranged from 950-1150 K, while the particle diameter

ranged from 5 mm to 10 mm. Under these conditions, the penetration depth is smaller than the

particle size for micropores, but for macropores, the penetration depth is of the same order or

greater than the particle size. Due to the low penetration of gasses in the micropores, they

essentially act as a blocking region to diffusion. Therefore, one can conclude that reactant gasses

do not penetrate the micropores and that they serve only as reaction sites for the gasification of

the char. The macropores, with their large penetration depths, act as pathways for diffusion, if

they are not hidden or blocked by micropores. Thus, the variation in CO2 generation may be the

result of simply reacting away the blocking shells of micropores and exposing macropores.

To quantitatively test this hypothesis, a simple model was designed. Under the FBC

conditions studied, we are typically in Regime II for large particles, where only partial

penetration of the char is achieved. The base model we assume is the classic shrinking sphere

model (Regime III), with variations to account for the penetration of the particle by reaction

gasses. Distributed throughout the sphere are a number of "pore" spheroids of uniform size that

are penetrated to allow for access to the interior of the char particles . The spheroids are

distributed randomly under the criteria that

n Rpore(6)
E = (6)

Rcar



where n is the number of pores needed to generate the appropriate porosity, and Rpore and Rchar

are the pore and char radii respectively. To simplify the model, the following assumptions are

also made about the pores: (1) the pores are independent of each other; (2) the pores do not grow

during reaction and, (3) the pores only participate in the reaction if the reaction front of the

shrinking sphere passes through them. Of the assumptions, the first is the severest, as it does not

allow for development of pore networks, although large pores may be thought to model large

pore networks. A representation of the char model using these assumptions is shown in Figure

16. The dark line in Figure 16 represents the reaction zone, or penetration depth. In the. system

are distributed 3 types of pores; 1) pores that are completely hidden to the reacting gas, 2) pores

that are in the reaction zone, and 3) pores that have been destroyed during oxidation.

Using the pseudo-shrinking core model, one can assume for the basis of this analysis that

the reaction rate, r, is proportional to the char surface area exposed during reaction (Regime I),

(7)r = kAcCo, (7)

where k is the kinetic parameter, the dependence on oxygen concentration, C02, is assumed to be

linear, and Ach is the accessible surface area of the char. This is in effect assuming that the

concentration profile of reactant gas in the system, instead of gradually being consumed to 0

concentration in the center of the particle, is instead a step function that abruptly drops past the

pore penetration depth.

Under the shrinking sphere assumption, there is no < and 0 dependence on the rate of

combustion due to uniform combustion, so the evolution of surface area over time reduces to a

one-d mensional problem of radius r. However, added to the area from the external surface of

the char is the area from the penetrable pores, giving a total surface area of



A = 4 i Ri2a + Z1 4e R2 (8)

where the term on the left represents the external surface of the char and the summation on the

right is taken over all the pores that are involved in the reaction. The complete source code for

the model may be found in Appendix D.

Using a constant radial decrease, one can numerically calculate curves for the evolution

of the surface area with pore radius. From the surface area profile and using the reaction

paramters calculated by Goel et al.,28 one may then use Equation (7) to calculate the rate of CO2

production, as given by Figure 17 as a function of Rpo,. With very small pores, a constant

surface area is developed that decreases with R. However, as the radius of pores increases,

surface area peaks are generated due to the revelation of pores. These peaks become relevant at

pore radiuses of approximately 0.5 mm. While this may seem large, the char particles have

original diameters of approximately 7 mm in diameter. It should also be noted that the spherical

pores can be inferred to model "pore" regions, not just pores. These pore regions would be

clusters of smaller pores that are initially inaccessible but exposed during reaction.

While it is difficult to test the model against real FBC data, as the model essentially

describes "randomn" noise, one can test pore size distribution of the sample during conversion..

As can be seen in Figure 12, the surface area decreases with increasing conversion, and most of

this loss in area occurs in the micropores. This is indicative of the evolution of true surface area

and a preferential consumption of smaller sized pores (micropores), in agreement with the

assumption that all reactions take place in smaller pores micropores. 29 However, BET nitrogen

surface area only examines the finer pores, and not large (macro-) pores.

Another option to test the efficiency of the model is to measure the initial pore size

distribution of the coal after devolatilization by mounting char samples in epoxy and sectioning
37



the coal. The epoxy mounted samples of chars after 2 minutes of devolatilization are shown in

Figure 14 and Figure 15 for an initial coal size of 5-7 mm. The Newlands coals had an average

pore size of less than 0.15 mm in diameter as measured optically, with the largest pore area being

approximately 2 mm near the center of the particle. The Illinois #6 coal, in contrast, tended to

plasticize a great deal during devolatilization, resulting in a greatly expanded particle size. As

seen in Figure 15, this expansion resulted in the formation of large cenospheric like particles,

with large cavities internal to a relatively nonporous outer layer. However, as can be seen in

Figure 15, not all particles formed large cenospheres. Furthermore, accurate measurements of

the pore distribution of the sample is difficult due to the inability of the epoxy to penetrate the

relatively nonporous outer shell, resulting in a crushing of the char pore walls, rather than a

grinding of material. The crushed hole in the center of the particle had a width of 4 mm,

approximately 50% of the size of the particle. Furthermore, examination of exposed pores

within the shell revealed larger pores in the 2-3 mm range enclosed by sturdy walls.

Although the maximum pore size (2-3 mm) measured in the chars was larger than the

pores examined in the model, a comparison of the model analysis with measured pore

distribution/CO2 profiles is encouraging. The Newlands char, with its small pores has very little

variation in the combustion profiles associated with the oxidation of its char. Furthermore, its

relatively well developed pore network means that inaccessibility will not be much of a problem.

In contrast, the Illinois #6 char, with its large pores, is subject to a large degree of variability.

The "jumps" may be due to revelation of the cenospheric center and the beginning either a large

fragment or of an inner/outer shell combustion. The importance of penetration is seen in average



noise before and after a "jump," where the average "noise" level falls, probably due to the fact

that all pores are accessible, although this is difficult to prove at the late stages of combustion.

2.5 CONCLUSIONS

Experimental measurements of the variation of CO2 generation during combustion of chars in an

FBC have been performed. A model of the comnbustion of char in Regime II has been developed

to explain the variation in CO2 generation during the combustion of char particles in a FBC. The

model assumes that there is no penetration of the particle by reaction gasses except for regions

were porosity is evident. The model adequately explains the variations seen in the production of

CO2 for pore sizes greater than approximately 0.5 mm. Comparison with pore sizes for

Newlands and Illinois #6 chars shows that the criteria for relatively large variations in CO2

production for a single char particle during combustion in an FBC may be met by chars with

pores that are inaccessible to initial reactants.
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Figure 9. Typical profile of CO 2 off gas during combustion of Illinois Coal #6, 1025K.
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Figure 14. Epoxy mounted samples of Newlands Coal char, devolatilized at 1023K for 2
minutes in the FBC. Original images size a) 4.1 mm and b) 4.3x7.2 mm. The gray regions
represent the char, while the black dots represent actual pore voids, and the white regions
represent smaller pores. The pores are seen to be small, with pores sizes in the range of 0.1-0.15
mm. While the pores are small, the network(white lines) is quite extensive.

Figure 15. Epoxy mounted samples of Illinois #6 Coal char, devolatilized at 1023K for 2 minutes
in the FBC. Original image size a) 8mm and b) 10mm. The Illinois #6 char has an extremely
large cenospheric cavity in the center, of approximately a) 4mm and b) 6mm surrounded by a
relatively nonporous char region, with large variation in pore sizes from 0.05 to 0.3 mm.
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CHAPTER 3
3. Soot Surface Area Evolution During Air Oxidation As

Evaluated By Small Angle X-Ray Scattering And C02

Adsorption

3.1 INTRODUCTION

Soot is produced by incomplete gas-phase combustion of fossil fuels and other organic

matter.30 While soot is emitted from numerous sources, the desire to control soot emissions from

diesel engines has resulted in research into the performance of filters designed for exhaust

collection systems. The collected soot is then burned off, thus there is in an interest in the

oxidation reactivity of diesel soot. This oxidation process is also important particularly for the

production of carbon black, where high oxidation is used to generate high surface area material.

Furthermore, due to some of its structural similarities to highly reacted carbons, soot is a good

model for investigating carbon reactivity. Therefore, a better understanding of the evolution of

surface areas of soots during oxidation is desired.

Pore structure descriptions in carbon combustion studies have generally been used as a

common parameter in reaction characterization. However, for soots, little is known about how

the surface area and other physical properties vary during the reaction process. While soot is

generally considered a non-porous material, some researchers have reported the existence of

porosity. Neoh, et al.31 found evidence for increases in soot microporosity during oxidation as

measured by N2 adsorption, much larger than the hypothetical unconnected sphere surface area,

suggesting this difference was due to micropore development. Wicke and Grady32 also reported
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that thermal desorption of the soot-oxygen complex formed by pre-adsorption of oxygen atom at

298 K produced a significant increase in soot porosity. Smith and Polly33 found a six-fold

increase in surface area for oxidation of large carbon black particles, which they attributed to

porosity development, although their carbon blacks were relatively large (200 nm). Du34 found

rapid increases of soot area at greater than 20% conversion in oxygen (going from an initial CO2

surface of 121 m2/g to over 800 m2/g at 70% conversion), concluding that this was due to the

reacting away of a blocking "shell" layer. After removal of this layer, internal micropores

become accessible, causing a rapid increase in surface area. Du also found that the rate of

reaction was proportional to the surface area up to 70% conversion. Bonnefoy, et al.35, also

reported a linear rate of mass loss for various carbon blacks and soots doped with catalyst, along

with an increasing surface area (N2) with conversion, ranging from a start of 100 m2/g to 600

m2/g at 50% conversion36.

Another characterization method for soots and carbon blacks is offered by fractal

geometry that characterizes structural heterogeneity by use of fractal dimensions. 37 As a general

trend, high surface area soots (carbon blacks) will give high fractal numbers, while low surface

area soots will give low fractal numbers, where the fractal number represents the degree of

roughness, with 2 meaning a smooth surface and 3 a highly irregular one.38 There is a wide

range in the reported fractal dimensions of soot. Xu et al.39 found that the fractal dimension of

graphitized carbon black was 2.0 + 0.01, corresponding to a smooth surface, regardless of carbon

black grade. Ismail and Pfeifer"f found similar results for carbon blacks and aerosils that had not

been subjected to graphitization, conforming to a fractal dimensions of 2.02 + 0.04. Darmstadt

et al4' found that as pyrolysis pressure was increased, the fractal dimension of rubber grade



carbon black decreased from a high of 2.6 to a low of 2.47, indicating a smoothing out of the

surface due to carbonaceous deposits and possible reordering of the material.

The examination of the microstructure of soot is also important to further explain the

morphological changes that soots undergo during oxidation. Ishiguro42 proposed that the

observed rise in surface area (from a nitrogen surface area of 52 to 296 m2/g), and the

corresponding decrease in diameter, was due to the growth of crystallites with a turbostratic

structure, and subsequent stripping of the outer layer due to tensile stresses. However, Hurt43 has

proposed that this process is due to the actual densification of the soot particles. This has

important implications concerning the modeling of the combustion of soot. Using Ishiguro's

hypothesis, one would expect to model soot combustion as a shrinking core model, while Hurt's

model implies that complete penetration of soot by oxygen occurs. Both processes will affect the

surface area of the soot due differences in crystallite size, and examination is warranted.

This Chapter examines the surface area changes generated by oxidation of soot in air. In

order to examine the surface area of the soot, Small Angle X-Ray Scattering (SAXS) and CO2

gas adsorption methods were used. The SAXS measurements have the advantage of detecting

total porosity, giving a surface profile for the entire sample, while the CO 2 measurements

describe only the accessible regions of the sample. Furthermore, the fractal nature of the soots is

also examined to aid in understanding their morphological evolution.

3.2 EXPERIMENTAL

Two distinct soots were used in this study. A commercially generated diesel soot from

the National Institute of Standards (abbreviated as NIST soot, catalog number 1250), collected

by filtration of diluted diesel exhaust, offers a high degree of material conformity and was used



due to its low ash content. Furthermore, it has been used in environmental absorption studies,

and an assessment of its surface properties during combustion is desirable. The second soot

(termed NEU soot) was collected during runs made at the Northeastern University, Boston diesel

engine emissions program. The latter soot was collected in a ceramic monolith filter, and

subsequently blown off by a high-pressure air stream. The ash content of the soot was high, due

to fuel additives and possibly due to contamination by the ceramic filter. However, possibly due

to a long residence time (a few hours) in the filter at a substantially high temperature (573 K), the

volatile matter was significantly lower than the NIST soot. A collection of pertinent information

for both soots is given in Table 2

Experiments were also performed on Spherocarb, a synthetic char furnished by Analabs

that has been widely used in combustion studies. Spherocarb is a relatively pure carbon (97% C,

2% H, 1 % 0), with little contamination by metals and other impurities. Furthermore, the

Spherocarb's high surface is an ideal standard for testing methodologies.

Reactivity and surface area determinations were carried out in a standard Cahn 113 TGA

system with an attached electronic acquisition system described elsewhere. 34 Approximately 25

mg of soot was devolatilized in inert Helium atmosphere at 1173 K for 15 minutes after a heating

rate of 40 K/min. Subsequently, the devolatilized soot, termed 0% conversion, was cooled to

773 K in approximately 20 minutes. The inert atmosphere was then switched to air, and

oxidation proceeded isothermally. After oxidation to the desired conversion level, the sample

was cooled to room temperature in an inert helium atmosphere.



Material NIST SOOT NEU SOOT Spherocarb

% Moisture (at 383 K) 5.6 0.5 0.7

% Total Volatile Matter (at 1073 K) 31.5 14 -

% Ash Content 0.96 6 780 ppm

He Density (g/cm') 2.1 2.04 2.1

CO2 Surface Area, as received (mZ/g) 49 96 1000

C02 Surface Area, after devolatilization (m2/g) 273 367 -

SAXS Surface Area, as received (m2/g) a 156 207 1240

SAXS Surface Area after devolatilization (m2/g) 344 280

External Diameter after devolatilization 36 nm 27 nm 150 gm

External Area (mZ/g)b 110 150 <1

Table 2. Physical Properties of Carbon Examined, and surface area for starting materials.

The average primary particle size was estimated by use of a transmission electron

microscope (TEM). The soots were ultrasonically suspended in ethanol and deposited onto a

carbon coated TEM grid. A Joel 200 CX TEM electron microscope operating at 200 keV was

used to image the soots at typical magnifications of 100-150 kX. The resulting micrographs

were digitized using a Powerlook II scanner, and the diameter of the soots were measured and

averaged using the image-processing program Semper 6P. The diameters for the devolatilized

soots are included in Table 2. TEM micrographs of representative samples are shown in Figure

18.

a Based on an apparent density of 1.5 g/cm3 for the soots, 0.83 g/cm 3 for Spherocarb.

b Assuming a spherical particle, the external surface area is -D2 where D is particle
pnDD3/6 Dp

diameter and p is particle density.



The surface area of the oxidized sample was measured gravimetrically by using CO 2

adsorption. The gravimetric method has advantages over the volumetric method more

commonly used today. It can accurately measure surface areas in smaller amounts of sample due

to the sensitivity of the TGA, and both reactiun rate and surface area can be measured by in the

same TGA without moving the sample. The method consisted of introducing increasing

concentrations of high purity CO2 in He (0, 0.1, 0.2, 0.35, 0.5, and 1.0 mole fractions

respectively) into the TGA, and recording the subsequent weight change due to CO2 adsorption.

At least 45 minutes were allowed for equilibrium to be established for each point of the CO2

isotherm. The weight change was then corrected for buoyancy effects due to different gas

densities, and the CO2 surface area was then calculated. Full details may be found in Du44.

SAXS experiments were also done on each oxidized soot sample. The X-ray scattering

experiments were carried out on a Nicolet two-dimensional position-sensitive detector with an

associated Rigaku rotating-anode generator operating at 40 kV and 20 mA which provided Cu

Ka (X = 0.154 nm) radiation. The primary beam was collimated by two Ni mirrors, which

allowed for the X-ray beam to be focused onto a small beam stop. A sample to detector length of

28.5 cm was used for all samples. Full details may be found in Kofinas.45

3.3 THEORY

3.3.1 C02 Surface Area Characterization

Characterization of the micropore capacity of the samples was estimated by application

of the Dubinin- Polanyi (DP) equation46 to CO2 adsorption at 296 K,

AW RT Po
log V = log AW  log Vo-k( f)2 log2 P  (9)

Wo - P



where V is volume absorbed at pressure P, AW is the change from starting weight Wo, fl is the

affinity coefficient, k is a surface property constant, while the saturation pressure Po is evaluated

by the correlation po0 = 10-874.34
/
r +4.7386 atm. After using the DP equation to determine the

intercept Vo, the specific micropore surface area is calculated from

Sp= Vo No oco02(1)
SspN= C, (10)

Mco2

where No is Avogadro's number, MCO 2 is molecular weight of CO2, while aco2 is the cross-

sectional area of a CO2 molecule (taken as 24.3 nm2).

3.3.2 Small Angle X-Ray Scattering (SAXS) Characterization

SAXS intensity profiles have been used in several studies to determine the pore structure

in carbons. 47-51 Levendis and Flagan47 used SAXS to characterize the micropores of carbon

spheres of controlled porosity. Foster and Jensen48-49 used SAXS to investigate carbon pore

structure evolution during CO2 gasification. Guet et al50 characterized the structure of different

carbons activated by steam and CO2 using SAXS. Hua et al51 used SAXS along with contrast

matching to compare the porous structure of various carbons and inorganic materials. The

advantage of SAXS is it ability to measure open porosity and more importantly, closed porosity

which is not measurable by gas adsorption techniques.

The basic property measured in all SAXS studies is the scattering intensity (I) of X-ray

radiation caused by differences in electron densities of each phase. The surface area of a solid

may be evaluated in the so called Porod region for larger angles of SAXS by assuming a

randomly distributed porosity throughout a uniform solid.52 The Porod approximation holds as h



-+, ( where h = 4't sin 0 / X, and 20 equals the angle of scattering of the x-ray beam), For

collimated optics, Porod's law becomes

2 i7Ap SI(h) = 4 (11)

where S is the total surface area of matter contained in volume V, and Ape is the difference in

electron density. To avoid the use of absolute intensity measurements, which are difficult to

obtain, the intensity may be normalized by the invariant Qo, or the total integrated intensity given

by

VQo= oh2 I(h) dh = 2 i2 (Ap ) 2 (12)
where AVNV is the volume fraction of scatterers.

The evaluation of the invariant Qo must proceed carefully. The lower limit is not a

significant problem, as h2I(h) is small as h tends to zero, although it must be extrapolated due to

the presence of the beam stop. At higher values of h, the small I(h) can be influenced by

extraneous sources. Therefore, the numerical integration was divided into three parts,53

Qo = Q, + Q2 
+ Q, = ho"" h2 I(h)dh + J~h h2 I(h)dh + fI' h2 I(h)dh. (13)

where Q2 is evaluated from the measured scattered intensity I(h) between hmin and hmax,

corresponding to the minimum and maximum scattering vectors of the measured scattering

curve. The integration from hmax to infinity was calculated using Porod's approximation for

intensity.

Extrapolation for small angles was accomplished by using the Guinier approximation.

As h -+ 0, the Guinier region is reached and the scattered intensity exponentially rises as

I(h)= V A exp R (14)
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where Rg is the electron radius of gyration about the center of electronic charge.

The total specific surface area (Ssp) may then be evaluated as

i e (1-E) limh-4..h 4 I(h)
Sa, = (15)

P Qo

where e is the porosity and p is the apparent density of the sample.

Another measure of the surface irregularity is the fractal dimensions of an object. True

fractal objects are scale-invariant or self-similar, in that they look similar at all levels of

magnification. The earliest work in fractal analysis has shown that the degree of surface

roughness, or irregularities can be expressed by the parameter Ds, 54'55 where 2 < D, < 3. Ds may

be taken as a measure of the space filling ability of the surface.37 For an Euclidean, perfectly

smooth surface, Ds = 2, and the value of Ds increases with the degree of surface irregularity, and

for a very rough, disordered surface, the value of Ds approaches 3.

The roughness is further classified by defining a surface fractal object, which is rough on

a length scale small compared to its radius, e.g., rough pore boundaries in a porous solid.56 The

intensity scattered on fractal surfaces is proportional to a negative power of the wave vector h for

ht > 1,

I oc h -'  (16)

where S is the correlation length for surface fractal behavior. In other words, s is the upper

limit of the length range in which the surface is fractal. For materials with a surface fractal

nature,

a=6-D s  (17)

When Ds = 2 (smooth surface), the intensity is proportional to h- , the Porod's Law dependance.
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3.4 RESULTS AND DISCUSSION

3.4.1 Reactivity Measurements of Soot

During devolatilization in the TGA, volatile matter was driven off until a constant weight

was reached. This freshly devolatilized material was termed 0% conversion, and oxidation

proceeded at 773 K in air. The reaction rate was calculated by normalizing the rate of change in

mass by initial sample mass (g/g-min) on a dry ash free basis,

1 Aw
R =--(18)

Wc,o At

where wc,o is the initial mass of carbon and Aw/At is the weight change in time interval At. The

intrinsic reactivity was computed by dividing the reaction rate by the specific surface area at time

t and correcting for conversion, X, of the initial carbon, or

Ri = R(ý S#l(I-X (19)

The variation of the reactivity with conversion is plotted in Figure 20, while the change in

the intrinsic reactivity is plotted in Figure 21. For the NIST soot, a relatively linear rate of mass

loss was observed, followed by a leveling off of reaction rate at higher conversions. The NEU

soot passed through a maximum rate at approximately 30% conversion. Both the NEU and

NIST soots had, assuming first order kinetics, rate constants of 0.15 s'at 30% conversion, in

good agreement with Bonnefoy et. al.,35 who reported rate constants between 0.06 to 0.2 s' for

diesel soots. The high initial rate for the NIST soot may be a function of loosely bound organic

matter that is not devolatilizable in an inert atmosphere, or as Ishiguro described, the soluble

organic fraction. 42



3.4.2 Surface Area

The original and oxidized products were characterized by CO2 to determine the specific

surface area. The Dubinin-Polanyi plots were all fitted to straight lines with minimum

correlation coefficients well above 0.997 for all tests, an example of which is shown in Figure

23. The resulting CO2 surface areas calculated using Equation 10 are plotted in Figure 24. As

shown in Figure 24, there is approximately a two fold increase in surface area during oxidation.

The greatest increase in surface area occurs during the initial devolatilization step. Surface areas

then rose to a maximum surface area at around 50% conversion for both soots. However, while

the surface areas of the NIST soot remained essentially constant above 50% conversion, the

NEU soot exhibited a loss of surface area. The most plausible explanation for this is that the ash

content plays a significantly greater roll in the surface area calculations as reactions proceeds (at

80% conversion, ash makes up approximately 25% of the sample). Furthermore, the

accompanying small, but measurable decrease in surface areas at higher conversions for the

NIST soot may also be evidence of Hurts' densification phenomenon at higher conversions as

proposed by Hurt.

The significant overall increase in surface area during devolatilization and oxidation can

be explained in two ways:

1. Micropores are created in soot particles during oxidation, or

2. The micropores are inherently contained in the soot particle, but are inaccessible.

Devolatilization and oxidation reacts away the shell that initially blocks these pores, making

them accessible and increasing porosity.
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To check these hypothesis, SAXS measurements, which have the inherent ability to

measure total porosity, were performed.

3.4.3 SAXS MEASUREMENTS

SAXS profiles of the converted soots were measured at each conversion level. The

resulting two dimensional profiles did not exhibit any isotropic effects, so the average intensity

at each value of h was found by radially integrating the circular profiles measured by the 2-D

detector to eliminate noise. Typical profiles are shown in Figure 23 for the NIST and NEU soot

data. Intensity data were corrected for background noise for by using the high h range to obtain

the correct background subtraction factors and treated with the aid of a set of programs

furnished by Glatter 7' 5,.

The Guinier plots for typical runs are shown in Figure 25. The linear range is quite broad

for most samples, suggesting that there is a narrow pore size distribution. Typical hmin values

were approximately 0.25 nm-1, and the intensity for values of h less than hmin were obtained by

extrapolating the data using Equation 14. The applicability of Porod's Law was checked by

plotting h4I versus h4, as shown in Figure 26. The invariant plot does not show significant

variation from Porod's law at high h, exhibiting an approximately constant h4I value. At very

high values of h, the plots exhibited a higher variation in h4 I, due probably to the small intensity

values as compared to other sources of radiation in this range.

To check the SAXS systems, and compare a well behaved carbon to obtained results,

SAXS experiments were also done on Spherocarb, a high-surface area synthetic char. The

intensity curve of the Spherocarb scattering is given Figure 27, while the inset shows the well-
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behaved Porod's Law region. The SAXS resulting calculated surface area of char was 1200

m2/g. This value is above the typical CO2 value reported for Spherocarb as 850-1000 m2/g,

which is to be expected as SAXS can measure inaccessible porosity.

The invariant was calculated using the Guinier and Porod's approximations to extend the

integration region from zero to infinity. The surface areas of the soots were then calculated

using the Porod's law approximation given in Equation 11. However, the porosity and density of

the soot particles are essential components in this analysis to obtain specific surface areas.

Unfortunately, small sample sizes precluded accurate measurement of these factors. Therefore,

three alternate density/porosity variations are assumed to give the limits of porosity for the

purposes of calculating surface area. For all approaches, measured true (He) densities of 2.1

g/cm3 and 2.04 g/cm3 for the NIST and NEU soots were used respectively. An initial starting

apparent density of 1.5 g/cm 3 after devolatilization was assumed for both soots, based on values

reported in the literature ranging from 1.3 to 1.859 g/cm3. The three models were:

(1) Constant density oxidation. The soot is assumed to burn at with no variation in density. As

density does not vary, the porosity given by

E= 1 - (20)
Ptre

remains the same. This corresponds to reaction in Regime IIl, or pure external

diffusion control of reaction.

(2) Constant diameter oxidation. The soot is assumed not to change size as oxidation proceeds.

Therefore, density will decrease and porosity increase with increasing conversion. This

assumption will break down at higher conversion levels due to collapse of the soot structure.



This assumption corresponds to reaction in regime I, or pure kinetic control, and assumes that

all pores are completely penetrated.

(3) Ishiguro's 42/Hurt's 43 diameter variation with conversion is assumed. Ishiguro investigated

diesel soot oxidation under similar conditions as to this study, so the soot diameter variation

can be assumed to be the same. Furthermore, TEM measurements of the NIST soot diameter

during oxidation that support the theory of Hurt using an oxidation resistant grid agree well

with the overall diameters of Ishiguro. (See Chapter 5.). While the underlying theory for the

diameter variation is different, the overall result is the same. Normally, combustion with a

diameter change would conform to Regime II or III combustion. However, Theile modulus

analysis confirms that at 773 K, the reaction is in the kinetic control regime (I). Assuming

that Hurt's ordering model of densification is correct, the particle will change in mass and

volume during reaction as

p= Po 0 (1-X,) (21)

The results obtained using these three assumptions are plotted in Figure 28 for each soot

sample, along with the CO 2 areas measured by adsorption for comparison. As can be seen in the

figures, there is a striking variation between the results obtained for the three different cases .

The constant density assumption gives relatively low values of surface areas that do not vary

greatly with conversion. The constant diameter assumption gives rapidly increasing surface area

values, rising to over 800 m2/g for both soots. The Hurt/ Ishiguro curve falls between the

constant density and constant diameter approaches. One should also note that the relative values

assumed for density can cause a great deal of variation in the actual values reported, although the

trends remain the same.



Examining the NIST CO2 and SAXS area curves (Figure 28), one trends notes that there

are evidently two regions where the agreement in trends is evident, below 40% conversion and

above it. Below 40% conversion, all assumptions other than the constant density approach give

the same upward increasing trend. However, past 40% conversion, only the constant density

approach gives trends that are qualitatively the same between the two area evaluation methods.

The NEU soot also follows a similar trend, with the constant density approach again yielding a

relatively flat surface area profile. However, the surface area profiles for all three methodologies

provide trends that agree somewhat with the CO2 surface area, including the decrease in surface

area past 50% conversion.

The fractal nature of the soot surfaces was calculated on a length scale (= 2 /h) of 1 to

40 nm, ranging in size from the micropores to the diameter of the soots, and is given in Figure

29. Both soots have low fractal dimensions initially, with dimensions slightly less than 2, in

reasonable agreement with the results of Xu et al.39 The reason the values are less than 2 is

probably due to mass fractal nature of the entire soot agglomerate, and not individual particles.

Devolatilization of the soots increases the surface roughness of the system, but the surfaces are

still relatively smooth. The smoothness of the soots is probably due to aromatic layers that are

deposited and loosely held on the surface of the soot during soot generation, of which

devolatilization causes their pyrolysis.

The introduction of oxidant to the system radically alters the surface roughness of the

soot, as indicated in Figure 29. The fractal dimension increases from about 2.2 for the

devolatilized soot to about 2.7, even at very low levels of oxidation. The fractal dimension then

increases with oxidation, up to a maximum of 2.9, very near the theoretical limits for a solid.



Both soots follow the same trends, although the NEU and NIST soots differ somewhat at high

conversions, probably due to the impurities in the NEU soot. The high fractal numbers for soot

surface roughness are comparable to the range of surface roughness obtained by Sahouli et al60

for vacuum pyrolysis generated carbon blacks (range 2.69-2.91). The high degree of surface

roughness also agrees well with Ehrburger-Dolle et al.,61 who found that high surface area

furnace carbon blacks exhibited surface fractal properties while low surface areas did not exhibit

fractal character (D, - 2).

That the SAXS surface area calculated assuming a constant density gives the trend that

agrees best with the CO2 data is troublesome, as penetration depth analysis would indicate

complete penetration of all pores at 773 K. The constant density assumption would indicate that

the diameter remains constant during reaction. However, the diameter does change significantly,

as evident in direct measurements of the soot diameter.42'43 The disagreement between the two

calculated areas may be addressed by examining Figure 28. Assuming a relatively small error,

the two methodologies do not significantly diverge before 40% oxidation. Examination of the

actually volume variation of the soot in Chapter 5 reveals that while the diameter does vary

significantly from the constant density and diameter slopes at lower conversions, the density

change begins to slow and parallel the constant density line at higher conversions. This is

indicative that only very small changes in density, if at all, are possible at higher conversions,

and oxidation then proceeds with constant density.

3.5 CONCLUSION

Reaction of soots at 773 K was performed in air to various conversion levels and surface

were measured be SAXS and CO2 adsorption. The surface area as shown by CO2 absorption



increased by a factor of two as the soots were oxidized. SAXS areas could also vary

dramatically for our soots, depending on the model assumed for the density variation with

conversion.

The combined analysis of the SAXS, CO2 adsorption and TEM data indicates that during

the initial stages of combustion, the soot is capable of structurally transforming and densifying,

and the soot structure may be broken down into 3 distinct stages.

The soot, as received, contains numerous "light" hydrocarbons that surround the skeletal

soot structure, as illustrated in Figure 30. Devolatilization will remove the adsorbed compounds,

revealing some of the skeletal sti ucture and introducing porosity. The introduction of oxygen

then further facilitates removal of hydrocarbons that are lightly bonded to the soot structure,

revealing at last the connected soot skeletal structure. This structure is subject to the

densification phenomena, structurally ordering during oxidation, until complete burnout is

achieved.
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Figure 18. TEM images of the soots used in this study; a) NIST and b) NEU.
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Figure 29 Fractal evolution of Soot. Devolatilization increases the fractal character of the soot,
while oxidation increases its character even more.
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Figure 30. Idealized Soot particle. a) smooth, covered with hydrocarbons, b) devolatilized, with
hydrocarbons filling selected areas, such as dark "pores" and c) Oxidized, with only skeletal
structure.

74



CHAPTER 4
4. Generation of A Combustion Resistant Grid: Application

To Single Particle Studies

4.1 INTRODUCTION

A large variety of carbonaceous solids are of interest in combustion, including soots,

cokes from liquid-fuel combustion and chars from high temperature decomposition of organic

solid precursors. The oxidation of these solids can occur uniformly throughout the solid under

certain conditions, notably for low rates of reaction, small particle size, and high porosity. For

small particles in the nanometer size range, it is difficult to experimentally distinguish

measurements that occur at a single particle level from bulk phenomena. An observation of

interest is gasification induced densification, in which structural rearrangements result in particle

contraction during oxidation. This densification phenomenon was inferred from the studies of

particles in the 20 nm to 13 mm range, including Spherocarb,62' 63 Pittsburgh #8 coal,64 form

coke,65 and soot.66 Hurt et al.67 attributed the densification to the microstructural rearrangement

of the carbons due to oxidation, but had no direct corroboration of these changes.

Ishiguro et al.6 observed the reduction of primary particle diameter during the oxidation

of diesel soot at 5000C. They attributed this particle size reduction to surface ablation of the

particles due to surface tension effects. Ishiguro et al. also provided high resolution electron

micrographs and EELS data from the soot at different extents of oxidation, supporting the theory

that increased ordering (graphitization) of the soot occurs with increased degree of oxidation.
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Data concerning the evolution of the size and microscopic structure of the same soot particle

during oxidation would be useful in resolving this issue.

Heckman and Harling68 obtained transmission electron microscope (TEM) micrographs

of the same carbon black particles before and after oxidation, but did not report the details of

their experimental procedure. Heckman observed that the key to the methodology is the

development of a sample holder that will withstand oxidation and allow imaging of soot particles

at the same location on a TEM grid after the soot particles have been subjected to different

amounts of oxidation external to the microscope.69 Controlled atmosphere electron microscopy

(CAEM) for examining carbon during oxidation has been developed but so far only with lower

resolution microscopes.70 Higher resolution microscopes use electron energies which can cause

structural rearrangements for the long reaction times involved for chemically controlled soot

oxidation;7' therefore CAEM cannot be used to pursue structural changes at high resolution.

A modification of the Heckman procedures for obtaining and processing a labeled TEM

grid that survives oxidation has been developed. The generation of this grid and its application

to the study of soot shrinkage during oxidation are the subject of this chapter.

4.2 SAMPLE PREPARATION

Standard TEM grids are available in a variety of materials, consisting typically of a thin

metal mesh with an overlaying amorphous carbon layer that provides sample support. For

examination of carbon structure in which the amorphous carbon layer would interfere with

sample characterization, a lacy carbon layer grid is preferred. The carbonaceous material to be

imaged is examined by imaging only the portion that extends over the holes of the lacy carbon.

The very thin carbon layer, however, is quite fragile, readily reacting under slightly oxidizing
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conditions, destroying the structure of the grid and its usefulness as a sample holder. The

problem of fragility was solved by coating the grid with a deposit of non-reactive aluminum

(oxide)

The grids, obtained from Ted-Pella Inc., were labeled nickel grids for location assistance,

coated with lacy carbon with typical hole diameters of 300 nm. The grids were then coated on

both sides with approximately 7.5 nm to 10 nm of aluminum using a thermal evaporator;

thickness was confirmed with a profiler. This thickness was the minimum needed to provide a

robust "sandwich" to protect the grid structure. After coating, the grids were subjected to a

temperature stabilization period, typically 1 hour at 900K in air after a mild (10K/min) heat ramp

in a thermogravimetric analyzer (Cahn, model 113 TGA). The mild heat ramp allowed for an

evening out of the aluminum coating, which can deposit unevenly or in large crystal domains.

The high temperature oxidizing environment allows for further stabilization of the aluminum

(MP 930K) by formation of aluminum oxide (MP ~2300K). The stabilization step also acted as

a first-pass removal method for grids that were not capable of withstanding elevated

temperatures, probably due to uneven metal deposition, which may leave carbon exposed to the

oxidizing environment. The sample examined was NIST diesel particulate matter (NIST item

1650), a standard diesel soot used in environmental studies. The NIST soot was devolatilized at

1173K for 15 minutes in order to minimize particle movements that could arise due to outgasing

of volatile material. The NIST soot was then ultrasonically suspended in ethanol and deposited

dropwise onto the prepared grid. The grid and deposited soot were then subjected to a "thermal

shock" step consisting of a rapid heating(50K/min) in inert gas to above the reaction temperature



(823K). This allowed thermal stability of the agglomerates to be achieved in order to minimize

changes in the agglomerate structure due to heating in subsequent steps.

After stabilization, the sample was examined using either a Joel 200CX TEM or an

Akashi/Topcon 002B, both equipped with LaB6 filaments operating at 200 keV. For a typical

sample, 4-5 regions were identified and photographed at magnifications of 100-150 kX, along

with lower magnification micrographs used for identification of the proper grid location in later

microscopy work. The grid with deposited sample was thel oxidized at 773 K in air using the

thermogravimetric analyzer (TGA). The conversion level was calculated using a control sample

of the same material to measure the change in oxidation level versus time, since the amount of

sample was too small in comparison to the grid weight to allow for measurement of weight loss.

After oxidation, the grid was again imaged with the electron microscope, locating regions

photographed before oxidation. Typically, only one or two of the regions had soot agglomerates

that were identifiable in the preoxidation images, probably because of temperature induced

movement of the agglomerates, which are held to the grid only by electrostatic forces. The

micrographs were then digitized using Adobe Photoshop@ with attached scanner (UMAX model

II) and analyzed with Semper 6P®.

4.3 RESULTS

TEM micrographs of the same region taken before oxidation and after oxidation to 40%

weight conversion are shown in Figure 31 and Figure 32. Individual soot particles, such as those

at point A and B, were selected for the purpose of examining structural changes during

oxidation. Comparison of the two figures shows that the agglomerate itself has retained much of

its overall shape. The upper portion has moved from its attachment point C in the pre-oxidation



micrograph to point D in the post oxidation micrographs, resulting in a change in the overall

orientation of the agglomerates without loss of overall structure.

In Figure 33, the soot primary particle at Point A has been isolated. The pear shaped

region is the result of the overlapping and fusion of two primary particles. The particle diameter

is measured using software tools, and the differences in diameters are obtained. The plot of the

overall trends in particle volume (assuming a spherical volume) is given in Figure 34, along with

comparisons of the data from Ishigurols

While only the pear-shaped particle was measured in the subregion (Figure 33), there are

important trends to note from the entire region. The first is that the overall structure is

maintained. Even though a large fraction of sample has been oxidized, there is little change in

the structure that is not due to rotation or shrinkage. This indicates that the particle is burning

without removal of outer layers, since the agglomerate does not lose its shape. One would

expect that primary soot particle connectivity would not be retained after oxidation if surface

layer recession were occurring. That shrinkage occurs throughout the agglomerate is evidenced

by the increase in the number of soot primary particles in the subregion (Figure 33) indicating

that shrinkage has occurred not only for the measured particle, but also for the entire soot

agglomerate.

The usefulness of the technique is exhibited in Figure 35, showing a highly oxidized

sample. The same soot agglomerate is imaged before and after oxidation to 90% by weight.

Due to the high degree of oxidation, loss of the particles due to structural breakdown is severe,

and the same primary particle may not be identified with a reasonable degree of accuracy,

limiting the usefulness of this methodology. However, the primary particles are from the same



agglomerate, minimizing possible differences in the primary particle history, reducing the error

associated with measurement of microscopic particles.

4.4 CONCLUSIONS

A combustion resistant grid has been used to examine the shrinkage of single soot

particles during kinetically controlled oxidation. The retention of soot agglomerate shape and

structure agrees well with the hypothesis that soots undergo homogeneous shrinkage during

oxidation.

The examination of soot is only one potential application of this grid, and studies with

different materials may be of interest. While only low oxidation temperature experiments were

performed, the aluminum oxide grid structure can withstand higher temperatures, and may be of

use as a collection grid during in-situ combustion studies.



Figure 31. TEM micrograph of NIST soot before oxidation (original image: 200keV. 120kX
magnification).
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Figure 32. TEM micrograph of NIST soot after oxidation to 40% conversion (original image:
200keV, 120kX magnification).
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Unoxidized Soot
-D = 34.5 nm

Same Soot,
Oxidized 40%
D = 31.2 nm

Figure 33. Magnification of Region A of Figures la and lb. Shrinkage of the primary particles
that make up the pear-shaped particle is evident.
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Figure 34. Comparison of sample data using Ishiguro's data and the data generated using the
grid. The error bars represent the maximum variation in diameter observed.
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CHAPTER 5
5. Radial Distribution Of Soot Structure Obtained With

High iesolution Transmission Electron Microscopy

5.1 INTRODUCTION

Widely used techniques used to measure porosity and surface area, such as gas absorption

(N2, CO2) and Small Angle X-Ray Scattering (SAXS), when performed on particulates such as

soot, yield average sample characteristics, but do not provide details on the variation of the

physical structure within a particle. The morphology of carbonaceous materials is the direct

result of their oxidation history.9 One result of oxidation is that certain carbon blacks yield

cenospheric (hollow) particles, suggesting that the outer layers are less reactive than the core.

Another result is the observation of large increases in the surface area of soot after only a small

fractional oxidation (50 to 400 m2/g for ethylene soot going from 0 to 20% conversion,72 and 50

to 300 m2/g for Regal 600 carbon black for the same level conversion73) . This can be attributed

to "blockage" of the internal area of individual particles by a relatively impervious shell of

carbonaceous material. 72'7 4

Diesel soot consists of spherical primary particles, approximately 20-30 nm in diameter,

that are aggregated in grape-like clusters of 1 to 2 mm, as seen in Figure 31.75 In diesel engines,

soot forms in the fuel-rich pockets and may undergo oxidation before being released to the

atmosphere. The basic structure of soots is formed in these pockets from large poly-aromatic

hydrocarbons (PAH) compounds that coalesce and deposit onto single particles. Using High-

Resolution Transmission Electron Microscopy (HRTEM), it has been found that under different
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loads, diesel engines emit structurally different soots.7 6 It also has been found that an increase of

lattice ordering and a decrease in primary particle size is the result of oxidation of soot.66 Similar

results have been observed for carbon black.77

The purpose of this study is to examine the effect of oxidation on the microstructure of

soot. The consequences of radial variation in the structure of soot as function of oxidation will

be examined by analyzing the soot structure using a recently developed methodology based on

image analysis of high resolution transmission electron micrographs.

5.2 EXPERIMENTAL AND ANALYTICAL METHODS

Diesel emissions are complex in structure and composition. Electron microscopy

(HRTEM) coupled with image-analysis techniques that apply high level computer software has

been used to analyze the structure of a diesel soot that has been exposed to oxidizing conditions

(air, 773 K). A standard soot generated by the National Institute of Standards and Testing, NIST,

was used for this study. The sample, NIST 1650, corresponds to a medium load diesel engine

exhaust with collection by dilution followed by filtration.

In order to minimize interference from the polycyclic aromatic hydrocarbons (PAHs)

absorbed on the soot surface, the soot was devolatilized in an inert helium atmosphere by heating

at 50K/min to 1173 K. The soot was held at 1173 K for 15 minutes until a constant sample

weight, measured by a standard Cahn 113 thermogravimetric analyzer (TGA) was obtained. The

sample was then cooled at a cooling rate of approximately 40 K/min, and then oxidized in air at

773K using the TGA to 70% mass conversion. Another sample was treated in a furnace for 1

hour at 1500 K in a covered graphite crucible, with a sample weight change of approximately

40% due to pyrolysis and/or mild oxidation.



A small portion of each sample was ultrasonically suspended in ethanol and deposited

dropwise on a lacy carbon TEM grid. An oriented gold crystal was used as a calibration standard

and subjected to the same techniques as the diesel soot samples. The use of a specifically

oriented gold crystal allows only the lattice locations in one plane to be diffracted. Thus, precise

measurements of the lattice distances may be made and compared to the experimental samples.

An Akashi/TOPCOI •-)2B transmission electron microscope with an LaB 6 filament

operating at 200 KeV was used to produce high resolution images of each sample. The

micrographs were digitized with a UMAX PowerLook II model scanner operating at a scanning

resolution of 993 dpi. The high level language computer software, SEMPER 6PTM (Synoptics,

LTD., Cambridge, UK), developed especially for image analysis, was then used to manipulate

the digitized images in order to extract data that could be used to characterize each soot sample.

Optical diffraction patterns showing the periodic patterns present were generated from these

images (see Appendix A and B). The optical diffractogram is a power spectrum calculated by

squaring the modulus of the Fourier transform. Intensity profiles characteristic of the range of

contrast in the diffractograms were then produced. A series of "filters" were also applied to the

digitized soot images to eliminate noise and isolate the significant structural data from the image.

The extracted structure then becomes the basis for statistical analysis. A complete explanation of

the technique used may be found in Appendix B.

After image processing, the lateral extent of fringes, La, and interlayer d002 spacing were

quantified. The angular dependence of the structures was also be measured, and was used to

obtain the center reference axis of the primary soot particle so that the mean of the orientation of



all structural elements was as close to zero as possible in order to get as accurate a measurement

of the soot center as possible.

The lateral extent of fringes is defined as:

La = AB4m ax  (22)

where m is the principal second moment of area. A second moment is a mean square of all

pixels about a line through the center of area of a structural element (fringe). The principal

second moments are the second moments with respect to a pair of mutually perpendicular axes in

directions that achieve minimum and maximum moments. The constant B is a physical

conversion factor from pixels to Angstroms. The factor A, usually between 3 and 4 depending

on the shape of the object in question, was determined experimentally to be 3.56 1/pixel.

To get the characteristic interlayer spacings for the sample, the total area of the fringes

was determined with minimal filtering, which corresponds to eliminating repeated frequencies

below 0.3 nm and above 0.5 nm. Then, in order to eliminate differences in illumination between

each sample, the intensity range was narrowed and shifted to a position in which the number of

fringes showed a maximum as a function of intensity.77'78'

5.3 RESULTS

The electron micrographs in Figure 36 show the turbostratic (randomly orientated carbon

atoms layers) lattice structures of the untreated and oxidized diesel soots, respectively. In Figure

37, a portion of the base soot has been masked off using the image analysis software in order to

isolate the soot particle for comparison purposes. An example of the structural data extracted

from the soot images after a series of filters is shown in Figure 38.



Care was taken to eliminate any regions of overlap between adjacent primary particles.

The overall distribution of lattice lengths for each particle, along with a comparison of lattice

length as a function of radius is shown in Figure 39. The average lattice lengths were 1.53 + 1.0,

1.55 + 1.2, and 1.58 + 1.1 nm, for the untreated, 773 K and 1500 K soots, respectively. The

large errors associated with these readings are the results of a non-gaussian nature of the system.

5.4 DISCUSSION

The extracted soot images of the two different conditions that we have examined were

compared to the results for the unoxidized soot. The average lattice length for all samples was

approximately 1.5 nm, although there is there is a difference in the distribution of lattice lengths

of each sample. It is important to note that the untreated soot has more individual lattice fringes

due to its much larger area than the oxidized samples (approximately 2 times), making

comparisons difficult. However, as temperature/oxidation conditions increase, the lattice length

tends to shift toward a bimodal distribution, with a large concentration of shorter lengths, and

increasing number of longer lattice lengths.

Another method of comparing the samples is to examine the radially sectioned averages,

as shown in Figure 39. The average is plotted in bin sizes of 2.5 nm, along with the average

lattice length from a radius of 0 to the radius r. Each of the soot samples has as a small average

lattice length in the center and increases to a maximum value near the edge of the soot before

again beginning to decrease. The unoxidized soot starts with an average lattice length of

approximately 1.2 nm, and slowly increases to a maximum of about 1.6 nm near the edge of the

soot particle. This is similar to the results of Lahaye and Prado75 who observed that the layer



planes of soot are oriented around some randomly distributed centers in the particle, much like

an onion7 .

In contrast, both of the treated soot samples have higher maximum values for the radial

section, but start with lower center values for the radially sectioned average lattice length,

although the relative error is large for these samples due to the low number of fringes in the

center. The actual average for all samples is about the same due to the high total number of

small fringes for all particles. This transformation due to oxidation is similar to the work of

Buseck et al., who showed an ordering of the structure of amorphous coke with increasing

annealing temperatures and increasing linearity of the coke precursors when imaged by TEM. 79

For all of the soot samples, the lattice fringe length decreases near the edge. While this

may be due to interference from other particles that influence the average, careful examination of

Figure 38 reveals otherwise. As the edge of the particle is neared, the extracted structure reveals

fewer long lattice lengths and more indentations where no ordered structure can be seen. This

may be due to the carbon not being oriented in the direction of the electron beam, so that the

Bragg angle condition necessary for diffraction and viewing of the structure is not satisfied.

However, these edge carbons may also be the area "blocking" layers observed in surface area

studies of soot.72,74 The blocking layer appears to be structures that have not completely

coalesced into an extended structure, although they are stable to highly thermal conditions (eg,

the 1173 K devolatilization). Another possible explanation is that during formation of the soot,

high temperature oxidation only effects the outer layers of the soot particle, leaving an imperfect

structure at the surface of the soot particle.



We were unable to compare the interlayer spacing differences between the center and

edge layers. Except for the unoxidized case, we were unable to experimentally measure any

lattices in the center of the particle. This is either indicative that the interior of the particle has

been preferentially oxidized, as indicated by Heckman and Harling,68 who observed a hollowing

out of particle cores during oxidation, or the center of the particle cannot be imaged due to the

absence of Bragg conditions (see Appendix A). The untreated soot case had the same interlayer

spacing of 0.344 nm between the center and edge of the soots, in good agreement with Marsh et

al.9 who found that the interlayer distances were the same in the core and the periphery of the

primary particle. It is interesting to note that there is a considerable difference in the standard

deviation of the spacing. We measured roughly twice as many fringes on the edge of the soot,

yet the standard deviation increased from 0.014 nm in the center to 0.018 nm near the edge. This

may indicate that the chemical species involved in formation of the soot differ between

nucleation and outer edges, either in absolute size of the species or in its orientation. The

difference may also be due to high temperature exposure time differences during formation,

since the center of the soot particle is expected to a longer residence time during formation at

higher temperatures than the outer edges, allowing for the system to adopt a more energetically

favorable structure.

The differences between the untreated and oxidized soots show a difference between

nucleation and growth species, which supports some formation theories. If one assumes that

preferential oxidation takes place in the center, one can conclude that the center carbon solids

involved are fundamentally different in either their structural or chemical properties. The

concept that at inception the particles should be considered liquid droplets8o would seemingly



only apply to the initial 1-2 nm particle due to the disordered, small lattice structure found in the

center of the particle.

5.5 CONCLUSIONS

Differences in the carbon structure of soot has Leen shown to be a function of radius for

unoxidized soot. Oxidation of the soot alters the structure of the soot. Near the center of

untreated soot the structure is disordered with short lattice lengths predominating. As the radius

increases, the fringe length increases, becoming more ordered. This ordering with radius

increases as oxidation level increases. The increased ordering is caused by oxidation that allows

reacts away blockages to internal ordering

The generation of a hole in center of the soot particles during oxidation agrees well with

results of past researchers. If this is not a TEM artifact, this indicates that the species involved in

the formation of soots differ between the center and edge of the soot particles. Furthermore, this

hole generation would mean that there is complete penetration of the soot particle by oxidation,

indicating that what few pores there are provide adequate diffusion pathways.



(c)
Figure 36. Digitized TEM images of soot. (a) Initial soot (b) Soot Oxidized at 5000 C for I
hour (Weight conversion = 70%); (c) Soot Oxidized 1 hr, 1500K(X -40%)
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Figure 37. Isolated Soot particle of Figure Ia used for analysis.



Figure 38 Extracted Structure of Figure 37 showing lattice fringes. The outer edge shows more
variation than the middle shells.
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CHAPTER 6
6. Structural Changes of Char Particles During Chemically

Controlled Oxidation'

6.1 INTRODUCTION

Changes in particle structure during carbon oxidation are of importance because they can

influence particle sizes and shapes, which in turn influence reaction times. Moreover, the

changes in structure influence particle fragmentation, which affects combustion by changing the

particle size, and has a major impact on the number and size of fly ash particles produced per

coal particle 8 1,82 . There are several mechanisms of char fragmentation, including percolative

fragmentation, in which oxidation increases the porosity until the interconnectivity of the solid

matrix is interrupted; fragmentation resulting from the enlargement of macropores until they

interconnect and the particle breaks up; and attrition, fragmentation resulting from mechanical

forces acting on weakened parts of a char particle. Reports of fragmentation in the combustion

literature date back to the study of Davis and Hottel 83 on the oxidation of carbon spheres and

include the studies of Walker et al.84 and Dutta et al.8 5

The focus in this chapter is on the changes in the particle structure during char oxidation

in the chemically kinetically controlled regime (Regime I) and its impact on fragmentation. A

useful reference point is percolation fragmentation, the theory of which has been developed for

materials with a uniform pore size, for which various theories predict that the fragmentation

occurs at porosities of around 0.7.86 Kerstein and Niksa 86 carried out experimental

c Based on a paper published in the 26th Symposium (International) on Combustion, 1996.
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measurements on large carbon disks, 52 mm in diameter and 1.5 mm thick, and observed that the

samples disintegrated into very fine fragments at the predicted critical porosity. They showed

that this process is reproducible. However, coal chars tend to have a wide pore size distribution,

ranging from the micropores, having dimension of 2 to 3 nanometers, which account for most of

the internal surface area to the macropores, having dimencions in the tens of micrometers, which

often account for the major fraction of the porosity. For macroporous solids, the enlargement of

macropores can lead to fragmentation as the particle continuity is interrupted. This was shown

early for diffusion controlled reactions and, more recently, by Weiss and Bar-Ziv 87 and Zhang et

al.8 in synthetic char particles (Spherocarb) of 200 gm diameter reacting under chemically

controlled conditions. Modeling of the combustion of char that includes aspects of pore

enlargement connected to fragmentation was carried out by Kang et al.,8 ' Salatino and

coworkers, 89,9 0,9 1 and by Kantorovich and Bar-Ziv. 92 ,93 The problems in applying theory to chars

are complicated by two factors. The first is the wide range of pore size distribution. The second

is that the char particles shrink due to densification, a phenomena which has a major impact on

particle porosity.

The purpose of this chapter is to present the structural changes during oxidation to high

porosity of a synthetic char, Spherocarb. Spherocarb particles have the advantage of being

essentially ash free and spherical, while having a high initial porosity in the range 60-80%,

distributed approximately one-third/two-third between micro- and macro-porosity,

respectively.9 4 Studies of the structural change of Spherocarb were carried out in two

laboratories: (i) at Ben-Gurion University, where single particle experiments were carried out in

an electrodynamic 87' 95 chamber; and (ii) at MIT, where TGA experiments were performed and
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samples were characterized by high-resolution transmission electron microscopy (HRTEM).

The results of these studies provide insights on how the macroporosity and microporosity evolve

with increasing conversion under Regime I conditions and how this evolution impacts

fragmentation.

6.2 EXPERIMENTAL

6.2.1 Electrodynamic Chamber (EDC) Experiments

Observation of the detailed process of fragmentation of single highly porous char

particles in Regime I were carried out in an improved EDC. The EDC and its diagnostic systems

has been described in detail in recent publications, 87 ,95,96,97and will not be discussed here. In these

experiments a particle was heated vertically from below by a C02 laser beam. The DC voltage,

responsible for the levitation of the particle, is proportional to the vector sum of the gravitational,

photophoretic and free convection forces.87,95-97 The three forces were uncoupled by periodical

interruption of the laser.97 The DC voltage was measured every second by a data acquisition

system and a CCD camera recorded continuously the shadow of the particle for size and shape

measurements. Freeze-frame capabilities and shutter control facilitated the digital analysis of

individual images. A Mutech corporation model iVP, frame-grabber board was used for image

analysis. Size calibration was carried out by measurements of a 155 ±1 lpm diameter wire, which

was placed across the center of the EDC.

Particle density was measured at zero conversion by the drag force on a particle due to

imposed flow, also described by Weiss. 87,95 Figure 40 (top) presents the ratio of the drag force to

weight of a polystyrene particle and a Spherocarb particle (AV is a voltage difference of flow and

non-flow voltages, and Vo is initial voltage without flow). The line shape depends on the flow
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field within the chamber (as has been shown by D'Amore et al.98) and the magnitudes are

inversely proportional to pd 2 . 87 Since the density of the polystyrene is known, the density of the

Spherocarb can be obtained from the slope of a plot of (AV/Vo)(pd2) for polystyrene vs.

(AV/Vo)d 2 for Spherocarb as shown in the lower half of Figure 40, which yields a density for the

Spherocarb particle of 579 ± 2 kg/m 3. This method is valid for spherical particles. During char

oxidation, as the particles become aspherical, the density of particles are obtained from ratio of

mass (obtained from the DC voltage) and volume (obtained from the images of the particle from

two perpendicular angles).

6.2.2 TGA and HRTEM Measurements

Spherocarb particles at various conversions were produced by reaction in a

thermogravimetric analyzer in air at a temperature of 773 K. Carbon conversions were

determined by analyzing the weight versus time. The initial sample weight was approximately

10 mg.

For HRTEM observation, the oxidized samples were ground for 5 minutes in a ball mill

or a mortar and pestle for higher oxidation samples were sample size was limited. The resulting

powder was then ultrasonically suspended in ethanol and deposited dropwise on lacey carbon

TEM grids(Ted Pella). An Akashi/TOPCON 002B transmission electron microscope with an

LaB6 filament operating at 200keV was then used to record high resolution (590 kX) images of

each sample.
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The images were digitized, and an image analysis software (SEMPER6P, Synoptics Ltd.,

Cambridge, UK), developed specifically for applications to high resolution electron microscopy

was used to manipulate the stored images in order to extract characteristic Spherocarb structure.

Characterization was accomplished using a Fourier Transform of the TEM images to

establish periodicities. By then applying a mask to remove unwanted noise in the image, the

annulus was reverse transformed to obtain a gray filtered image. This image was then converted

to a two color 'extracted structure' by setting a threshold value for the pixel intensity. This

extracted structure was the basis for the statistical analysis of the lattice length, La, and d0 0 2

carbon spacing.99

More than one hundred oxidation experiments were carried out in air and in pure oxygen,

with moisture and without it, at temperatures varying from 700 K to 1000 K in the EDC for

conversions up to 80%. Another twenty-two experiments were conducted up to nearly complete

conversion. The experiments in the TGA were carried out in air at 773 K for conversions up to

96 percent. The structural transformations observed are summarized below.

6.3 RESULTS

6.3.1 Particle Size and Shape

In all experiments involving the EDC, the particle underwent non-uniform shrinkage.

The initially spherical particle transformed into a disk at 50-60% conversion. It was observed

that the particle rotated frequently up to about 40% conversion, with a consequent uniform

shrinkage. At higher conversions, the particle only flipped occasionally and non-uniform

shrinkage started, as observed previously. 87,96,97 The frequency of flips decreased noticeably

when the particle evolved into a disk at about 60% conversion. At higher conversion (above
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85%) the particle became one of the following three shape types: type I - a disk without a hole;

type II - a disk with one or more holes; type III - an opened disk. Figure 41 shows the three

types at high conversions (from two perpendicular sides) together with images of the initial

particles.

In the TGA experiments, the particles maintained their spherical symmetry to high

conversions (see Figure 43). The differences between particle shapes after oxidation in the EDC

and the TGA are due to the non-uniform heating of particles in the EDC 97. This non-uniform

heating, induced by the laser directed from below, results in a preferential reaction of the lower

side of the particle, and explains the shape and the flipping of the particle as it becomes

unbalanced, and the eventual formation of a hole in the center.

The results in the EDC and the TGA both show the dramatic shrinkage of the particles at

high conversions. This is consistent with the previously reported densification of carbon during

Regime I gasification or oxidation43" 100. The rationalization for the densification was that the

oxidation or gasification reactions induced reorganization of the fine structure leading to loss of

pores and contraction of the microporous regions. This hypothesis was tested in this study by the

use of HRTEM to study the changes in micro structure of the char with increasing carbon

conversion.

6.3.2 Fragmentation

The particles chosen for this study had high initial porosities (61 - 78%). From the

percolation theory for particles with uniform pore sizes, the particles started with porosities

exceeding the critical value or should have fragmented after very little conversion. For more

than 100 experiments carried out with conversions up to 80%, none showed fragmentation. For
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22 experiments (listed in Table 2) in which the conversion approached completion (up to 99%

conversion), five particles experienced minor fragmentation, and about half developed holes in

the center of the particle. A particle break up is shown in Figure 46, which presents a typical

conversion vs. time curve with a sequence of shadowgraphs depicting the shape development of

a Spherocarb particle of 204 micron diameter at various conversions, oxidized in air at T=920 K

(experiment number e7-281, in Table 2). The particle conversion was obtained from the weight

loss of the particle assuming that the charge remained constant, a good assumption at this

temperature. 95 The initially spherical particle turned into a disk at about 60% conversion.

Spatial dimensions of the particle are included in the figure. The projected images from two

perpendicular directions at 88% conversion show that the disk diameter decreased to 0.75 of the

initial particle diameter, while the thickness decreased to 0.62 of the initial diameter, and a hole

appeared around the center of the disk. The hole grew with increasing conversion and, at about

98% conversion, evolved into an opened ring. Further burning caused the particle to break into

two fragments. The image at this conversion shows one half of the broken ring. In fact, both

halves were suspended in the chamber after fragmentation. These two fragments were oscillating

around the center at a large distance from each other. Since only one could be suspended in the

center, the field parameters (AC and DC amplitudes and AC frequency) were adjusted such that

one of the fragments drifted away and the other was kept. This fragment continued to oxidize

and eventually broke into two other fragments at higher conversion.

Table 2 summarizes the results of only the experiments that were carri-ded out to high

conversions. In these 22 experiments only five particles fragmented. One can see that

fragmentation occurred only for those particles that developed opened disks-Type IE particles.
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However, not all particles that developed holes fragmented, but only those in which the progress

of the reaction produced shapes in which the particle continuity was broken.

Fine Structure

The results of the images abstracted from the HRTEM using image analysis are shown

together with the parent samples in Figure 43. The spacing between the fringes in the picture is

around 0.34 nm, slightly larger than that expected for graphites. The images showed increased

order with conversion. A quantitative measure of the increased order in the system is provided

by the lattice length La of the 'graphitic planes' in each sample. These are shown in Figure 44

for the original Spherocarb and high conversion (95%) particles. At high conversions there is

systematic increase in the fraction of large lattice lengths. The interlattice spacing also decreased

slightly. The peak in the distribution function for the original Spherocarb particles was at 0.34

nm, whereas at the high conversion (95 %) the peak had shifted to about 0.33 nm (see Figure

45). This ordering of the micoporous structure has important ramifications for the fragmentation

of the particles.

6.4 DISCUSSION

In order to understand the lack of fragmentation at high conversions in these experiments

one needs to examine the separate behavior of macro and micro pores. Changes in total porosity

of the particles versus conversion were obtained for six experiments from the changes in particle

mass and volume. The initial values and final values of the porosities were obtained by

assuming the dense phase had the density of graphite (2.2 g/cm 3), a reasonable assumption since

the interlattice spacings of the Spherocarb were similar to that of graphite. The results in Figure

46, demonstrate that although the porosity increase is less than would be expected in the absence
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of particle shrinkage, it is sufficient to provide final porosities in the range 0.83-0.87, in excess

of the percolation threshold of about 0.7 for a homogeneous material.

If the material is considered to have a bimodal distribution, then one can assess the

probability of exceeding the percolation threshold in either the macro-porous or micro-porous

regions. With about one-third of the porosity of Spherocarb particles being in the micro-pores

and two-thirds in the macro-pores, 95 the initial macro-porosity is in the range 40-50%, well

below the critical value, and the micro-porosity is half that value. The results of Hurt et al.94

show that the macro-features, including macro-pores, in chars shrink in proportion to the

shrinkage of the entire particle; therefore, the macro-porosity is expected to stay constant during

conversion. The micro-porosity will therefore increase but the values, obtained as the difference

between the total porosity and the macro-porosities(-0.4-0.5), will always be well below the

threshold value of 0.7. Therefore the lack of fragmentation of the Spherocarb particles even at

high conversions can be explained by the bimodal pore distribution, by noting that the micro-

porous and macro-porous regions maintain their integrity since neither reaches a porosity equal

to the percolation threshold.

The formation of holes in the center of the particle was a result of the uneven heating of

the particle resulting in the local acceleration of the reaction rate. When the holes break through

the walls of the particle, a ring is obtained and the further selective reaction can result in the

fragmentation for selected particles as was observed.

The results presented in this chapter on the changes in the macro-structure and micro-

structure of carbons can provide guidance to the development and refinement of models (e.g,
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references 88, 92, 94). These model improvements should include changes in the ordering that

lead to shrinkage and the changes in the pore structure of chars with oxidation or gasification.

6.5 SUMMARY AND CONCLUSIONS

The data that was obtained in the EDC showed that fragmentation is of less significance

than might have been inferred from simple percolation theory. The information on the micro-

structure of carbons provides insights on the reordering of the carbon structure which results in

the densification of the chars and the preservation of the structural integrity of particles. No

fragmentation was observed in the entire Spherocarb particle structure in numerous experiments

carried out in the EDC. Experimental porosity data show that the total porosity increased from

initial values of 0.6-0.76 to final value of 0.83-0.88. For the initial polymodal pore size

distribution of Spherocarb, the macro-porosity is well below the critical porosity of 0.7.

Therefore, consumption of carbon inside the particle was compensated by reordering and

shrinkage so that the percolation threshold is not attained for the entire particle. It was observed

that holes were formed at 65% to 96% conversion in thirteen experiments. These holes are a

consequence of non-uniform rate of reaction obtained under non-uniform laser heating. The

expansion of such holes led to fragmentation in a few cases, but this mechanism of fragmentation

is quite distinct from percolative fragmentation.

Evidence is provided from the examination of the microstructure of particles at different

conversion that the shrinkage is the result of the increased ordering of the graphite-like

microstructures in carbons with increased carbon conversion. The change in microstnructure will

be discussed in detail in the next chapter.
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Table 3. Summary of results of Spherocarb particles oxidized in EDC, in air at various
temperatures (values in parenthesis in density column is porosity in %), where T is temperature,
do is initial diameter, po is initial density, Eo is initial porosity.

Exp. T do Po Eo Hole formed Fragmented at Shape type at
no. (K) (im) (g/cm 3 ) at conversion conversion final burnout

e7-271 930 247 0.76 0.65 83.8 89.8 3

e7-273 880 172 0.58 0.74 86.1 none 3

e7-281 920 204 0.59 0.73 87.7 97.5 3

e7-312 900 176 0.59 0.73 none none 1

e7-314 900 177 0.71 0.68 none none I

e7-315 940 200 0.78 0.64 95.9 none 2

e8-11 910 198 0.61 0.72 none none 1

e8-12 940 189 0.45 0.80 70.9 95.1 3

e8-14 860 206 0.50 0.77 90.8 none 2

e8-21 850 212 0.58 0.74 91.0 none 2

e8-22 880 215 0.85 0.61 none none 1

e8-23 870 187 0.78 0.65 none none 1

c8-24 910 205 0.48 0.78 66.3 none 2

e8-31 870 219 0.68 0.69 none none 1

e8-32 850 176 0.71 0.68 66.0 none 2

e8-33 970 187 0.63 0.71 82.8 none 2

e8-34 940 186 0.69 0.69 none none 1

e8-41 920 185 0.51 0.77 none none 1

e8-51 930 185 0.56 0.75 91.1 92.6 3

e8-52 900 177 0.53 0.76 none none 1

e9 780 205 86.0 97.0 3

el0 830 205 .579 .74 64.7 none 3

Type 1 is a disk without a hole.
Type 2 is a disk with one hole or more.
Type 3 is a disk that opens.
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Figure 41. Examples of threce types of shapes of initially spherical particles at high conversion.
Type I - a disk without a hole at 94% conversion. Type II - a disk with one hole at 98%
conversion. Type III - an opened disk at 95% conversion. The left sides of each panel are the
initial particles, while the right sides are the particle from two perpendicular sides at high
conversion.
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Figure 43. Shadowgraphs of Sphercarb Particles (initial diameter 160 pm) reacted in air at 773 K
and the HRTEM structures for each sample: top, 0% conversion; middle, 44% conversion;
bottom, 95% conversion.
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Figure 44. Distribution of lattice lengths La(in A) for Spherocarb particles at zero and greater
than 95 percent conversions by oxidation.
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CHAPTER 7
7. Effect of Carbon Microstructure on the Rate of Low

Temperature Oxidation

7.1 INTRODUCTION

The combustion of coal char can, depending on char temperature, occur in three regimes.

At low temperatures, the reaction rate is controlled by the kinetics of the surface reaction of

carbon with oxygen. The oxygen can diffuse throughout the pores of the particle faster than the

surface reactions, so the oxygen concentration is uniform throughout the porous particle (Regime

I). At intermediate temperatures, the reaction rate increases to the point that diffusion of oxygen

through the pores is comparable to the surface reaction (Regime II). At even higher temperatures,

the reaction rate is controlled by boundary layer diffusion to the particle surface (Regime III). In

Regime III, only a thin layer of char will oxidize, leading to the classic shrinking sphere model.

In Regime I, the carbon loss will occur uniformly so that diameter stays essentially constant

while the density decreases linearly until conversion is nearly complete. As oxidation nears

completion, percolative fragmentation will begin to occur at about 70% conversion (although for

Spherocarb this limit is much higher, as seen in Chapter 5).86

In char oxidation studies at temperatures low enough (T < 900 K) to be in Regime I, Hurt

et al •" observed that some chars, notably Spherocarb and sucrose char, did not gasify at a

constant diameter as expected, but instead "shrank." Shrinkage has been observed in various

other studies'01,102,103 for highly porous synthetic chars oxidized in regime I. It has been

shown'" that shrinkage is a general phenomenon occurring for a variety of carbonaceous
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materials for feature sizes ranging from tens of nanometers105 to 70 mm. 106 The observed

shrinkage either means that the coal structure has changed, as postulated by Hurt and others, or

that the particles did not burn in the kinetically limited regime. Hurt et al. also observed that

external features, such as the diameters of surface pores, decreased in size at the same rate as the

particle diameter. If the reaction was occurring without shrinking, the pore diameters would be

expected to enlarge as the particle reacted.

Hurt et al.' 4 speculated that as the char loses carbon, atomic rearrangements account for

the loss of pore volume in the fine pores. These atomic rearrangements lead to the graphitization

accompanied by an increase in the density. This is consistent with the observation of Levendis et

al.' 07 that little graphitization occurred when synthetic char was heated in nitrogen. However,

oxygen accelerated the graphitization of the synthetic char, and this graphitization increased as

oxidation temperature was increased. Thus, there is evidence that as chars react in oxygen, the

carbonaceous material undergoes graphitization.

The extent of graphitization is of importance to the modeling of char oxidation.

Oxidation of graphite occurs mainly at the prism faces in uncatalyzed reactions, although basal

plane defects cause pitting corrosion, creating additional prismatic faces during gasification. 108

It has been found that the reactivity of graphite prism planes is an order of magnitude higher than

for that of the basal plane. 109 Suuberg showed that the graphitization (heat treatment at T > 2500

K) of coals will, in general, decrease the reactivity of the carbons, as well as showing a

decreasing the surface area with increasing heat treatment temperatures. Davis et al. 110 found

that for pulverized coal (T > 1800 K) oxidation, three dimensional graphitization did not occur

due to insufficient reaction time, but rather graphitization lead to the growth of regions of
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turbostratic order. This growth in turbostratic order was accompanied by decrease in char

reactivity.

Using techniques recently developed to quantify high-resolution transmission electron

microscopy (HRTEM), one can examine the microstructural changes of Spherocarb during

oxidation. This chapter examines the microstructural evolution of Spherocarb for oxidation in

Region I, and using simple population balance modeling, derives the differences in lattice

oxidation rates as a function of oxidation, and give possible explanations for the change in

reactivity with conversion.

7.2 EXPERIMENTAL METHOD

Spherocarb particles were oxidized isothermally to different extents of conversion at 773

K in air (flowing at 100 ml STP/min) using a Cahn 2000 TGA with attached data collection

equipment. Carbon conversions were determined by analyzing the weight versus time, starting

from an initial sample weight of approximately 10 mg. An analysis of the Spherocarb used in

these experiments is given in Table 4.

Table 4. Spherocarb Properties.

Average bulk density (g/cm 3)11" 0.56-0.63

Helium density (g/cm 3)"' 2.10-2.15

BET Surface Area (m2/g) "' 860-1000

CO 2 Surface Area (m2/g)"12  870

Carbon Content (%)113 96.84

Hydrogen Content(%)" 3  0.73

Oxygen Content (by difference) (%)1 ~ 2.43

Ash Content (ppm)14 760
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For comparison purposes, X-ray diffraction analyses were performed on the initial

Spherocarb with a Rigaku diffractometer equipped with a rotating copper anode (A = 0.154 nm).

The ground Spherocarb was mounted on low-background quartz. The samples were corrected

for background noise by subtraction of a baseline measurement, an accurate enough method for

amorphous materials.

An Akashi/TOPCON 002B transmission electron microscope with an LaB 6 filament

(spherical aberration coefficient of 0.5 mm) operating at 200 keV was used to record high

resolution images of each sample. The light field images provide detailed information on the

crystalline structure of the carbon materials. The resolving power of the HRTEM allows one to

distinguish individual graphitic layers oriented perpendicular to the image plane, and if properly

focused, to extract information on the interlayer spacings. The lattice-fringe images yield

information on the degree and nature of crystallinity in the carbons. Usually, HRTEM requires

the generation of thin sections that are difficult to prepare. For this HRTEM study, optically thin

regions of char particles were prepared grinding the sample for 4 minutes in a ball mill previous

to any oxidation in order to minimize possible grinding artifacts. After grinding and oxidation in

the TGA, a small portion of each sample was ultrasonically suspended in ethanol and deposited

dropwise on a lacy carbon TEM grid. Thin edged sections of sample were found at moderate

magnifications (see Figure 51), and then photographed at high magnifications (590 kX),

Representative samples are reproduced here for discussion (Figure 52 and Figure 53)

To calibrate the microscope, an oriented gold crystal was used and subjected to the same

image analysis techniques as the Spherocarb samples. The use of a specifically "oriented" gold
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crystal allows only the lattice locations in one plane to be diffracted. Then, precise

measurements of the lattice distances may be made and compared to the experimental samples.

After HRTEM imaging, quantitative information on the structure of the particles was

determined by measurements using commercial software (SEMPER 6P,TM Synoptics, LTD.,

Cambridge, UK). The samples were digitized with a UMAX Powerlook II model scanner

(scanning resolution 1200 dpi, 993 used). The high level language computer software, SEMPER

6P,TM developed especially for use with high resolution electron microscopy, was used to

manipulate the stored images in order to extract data for each Spherocarb sample. From these

digitized images, optical diffraction patterns were generated. The optical diffractogram is a

power spectrum calculated from the modulus of the Fourier transform.

The power spectrum provides an important check of the instrumental defocus. Millward

and Thomas' 1 4 indicated that quantitative interpretations cannot be justified except under

rigorous conditions of microscopy (correct defocus) which generate adequate contrast-transfer

properties in the electron-optical system. Cra, •,.rd and Marshs15 and Johnson and Crawford"16

emphasized this by showing that serious artifacts may arise in carbon-fringe images at improper

defocus, usually in the form of contrast reversals and information gaps. The power spectrum also

provides a check for proper astigmatic correction, as the randomly oriented Spherocarb should

not show orientation preferences.

Intensity profiles characteristic of the contrast range of the diffractograms were then

produced. A series of "filters" was ?lso applied to the digitized images to extract only the

significant structural data (between 0.3 and 0.5 nm in spacing) from the image while eliminating

unwanted characteristics. This then becomes the basis for statistical analysis of the structures.
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The parameters that can now be quantified are the lateral extent of fringes (La), fractional

coverage (C), and interlayer spacing (d002). The lateral extent of fringes is defined as:

L,=A.B m•• (23)

where m is the principal second moment of irea. The second moment is the mean square of all

pixels about a line through the center of area of a structural element (fringe). The principal

second moments are the second moments with respect to a pair of mutually perpendicular axes in

directions that achieve maximum and minimum moments. The constant A represents the carbon

fringe shape factor that was found to be 3.56 pixels.128 The constant B is the pixel/Angstrom

conversion factor, equal to 0.4336 A/pixel for a scanning resolution of 993 dpi. To get the

characteristic interlayer spacing value for the sample, first the total area of fringes was

determined with minimal filtering, which corresponds to eliminating repeated frequencies below

0.3 nm and above 0.5 nm. Then, in order to eliminate possible differences in sample image

illumination, the intensity range was narrowed and shifted to a position in which the area of

fringes showed a maximum. The fractional coverage is then simply the ratio of total area of

fringes in this two-color image with the maximum to total area of image,

Area of Dark Fringes (24)
Total Area Processed

The fractional coverage is typically in the range of 25-35%. Of the parameters tested, the

fractional coverage is the measurement most subject to user "bias," as it is a strong function of

the area chosen, and can only be used as a parameter in well defined situations.

The best method for determining the characteristic interplanar (d002) spacing for a sample

has proven to be calculation of the distance between parallel fringe pairs."' As a first step, the

fringes, from the intensity calculations above, are filtered to remove pairs that are not within a

121



physically realistic distance from one another (in our case, 0.3-0.5 .;ta, although most d00 2

spacing is between 0.33 and 0.42 nm). Each fringe I is characterized by a center of area P1 and

the orientation of its long axis, a1. The calculation of the distance di between the parallel fringes

i and i + 1 is then performed with the following formula

di= mi, (x i+1 - x i )- (Yi+ - Yi )  (25)

mi = tan(+i + +2 (26)

where (xi, yi) and (xi+l, yi+l) are the coordinates of Pi and Pi+1, respectively. This calculation is

repeated for as many pairs as possible in order to obtain statistically meaningful values. The

interplanar spacing can then be specified by a mean and standard deviation, or a distribution

function if there is more than characteristic peak. An example of the lattice and d002 spacing is

given in Figure 47, while full details of this technique may be found in Palotis. 128

7.3 RESULTS

A typical weight loss curve is shown in Figure 48 for the complete oxidation of

Spherocarb. The calculated reactivity of the Spherocarb is given in Figure 49 for normalization

by both initial weight and instantaneous carbon content, along with the Spherocarb surface area

determined by Dudek.118 The intrinsic reactivity of the Spherocarb may be calculated by

assuming complete penetration of the Spherocarb particles, and dividing by the surface area, and

is given in Figure 50. The initial weight normalization oxidation rate of 3 mg/go-min agrees well

with the data reported by Hurt62 and Gavalas" for Spherocarb, with a high degree of

repeatability. As plotted in Figure 50, the reactivity, when normalized for remaining amount of

carbon, actually goes up during reaction. This plot shows an initial induction period (thought to
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be due to water desorption'19) where reactivity increases rapidly, followed by an increasing

reactivity rate.

Typical TEM micrographs for each Spherocarb conversion level examined with the

HRTEM are given Figure 52 and Figure 53, showing the turbostratic structure of Spherocarb at

0, 25, 50 and 75% oxidation. Circular portions of Figure 52 and Figure 53 were masked off using

the image analysis software in order to isolate sections for analysis. A power spectrum was then

generated from the image to show the periodicities present in the Spherocarb sample. The

images were further manipulated by applying filters to extract only the significant structural data

from the image while eliminating any unwanted characteristics. The masked section, power

spectrum, and extracted structure are shown in Figure 55 through Figure 58 for each of the

conversion levels.

The images of Figure 55 through Figure 58 are representative of the turbostratic carbon in

the system. As noted by Mitchelll 20 in cleaved samples of Spherocarb, there is thought to be a

layer of graphitic/denser "skin" around the Spherocarb. This notion is further supported by work

of Radovic and coworkers, who have noted the possibility a characteristic breakthrough that

could be explained as arising from a graphitic type shell in '2 9Xe NMR adsorption studies. 12 1

A possible section of this layer is shown in Figure 59, where a sheet of graphitic carbon

is visible with approximately 5-8 layers of graphitic carbon. Assuming that this skin coats the

entire outer surface area of the Spherocarb, the actual mass ratio of this layer to the rest of the

Spherocarb is only:

R PGT Psphero VSpherocarb 3.1% (27)
P graphite Aspherocarb,outer Lstack
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Since this percentage is quite low, we concentrate only on the turbostratic carbon by selecting

only on these areas in the microscope.

Representative lattice fringe length, fractional coverage, and d002 spacing distributions derived with the Spherocarb
extracted structures are given in Figure 60 through Figure 63 respectively, and summarized in

Table 5. It is important to note that in order to minimize variations that could arise

locally in the Spherocarb, these distributions are based on a minimum of 3 observed regions,

typically 2 from the same electron micrograph and an additional area as a check. The results of

multiple samplings at the same conversion level is shown Figure 64 as a function conversion

level. There is a great deal of scatter in the data, although the increasing lattice fringe length and

mildly decreasing d002 spacing are evident. For comparison purposes, x-ray analysis was

performed on the 0% conversion Spherocarb. The result of this analysis is given in Figure 65.

Conversion Level Average Lattice doo2 Spacing Fractional
(%) Length (nm) (nm) Coverage (%)

0 1.11 0.374 + 0.02 21.9 + 1.1

25 1.20 0.369 + 0.02 22.8 + 0.6

50 1.29 0.367 + 0.024 23.4 + 1.0

75 1.47 0.361 + 0.023 24.5 + 0.9

Table 5. Average Spherocarb properties as a function of conversion

The average lattice fringe length, La,avg shown in Figure 60 increases with increasing

extent of oxidation. As plotted in Figure 60, most of the change in lattice structure occurs in the

range of 1 to 2 nm. The greatest change in lattice structure occurs at 1.0 nm, where the fraction

of lower lattice lengths decreases during oxidation, and is one of the primary causes of the

increasing average lattice length from approximately 1.1 nm at 0% conversion to 1.5 nm for 75%

conversion. Marsh et a1l22 observed a similar increase in the lattice structure of petroleum coke,

with La going from approximately 1 nm to 2.5 nm for heat treatment temperatures of 750 K and
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1148 K respectively. Levendis et al123 also noted an increase in lattice length with increasing

oxidation temperatures for glassy carbons, with lengths increasing from 2.6 nm for temperatures

of 1400 K to 3.7 nm for temperatures of 1600 K.

It is important to note that, while the increasing average lattice length that accompanies

heat treatment is much greater than for the oxidized Spherocarb, no ordering at all is expected for

the low oxidation temperatures of the TGA (773K). This is shown in Figure 67, where a graph

of La as a function of heat treatment in nitrogen is shown for anthracene carbon. Until

approximately 1700 K, the carbon structure remains relatively stable, while the carbon rapidly

graphitizes with increasing heat treatment beyond this point. All reactions were carried out at

773 K in this study, far below the temperature of which thermal annealing results in measurable

changes in the carbon microstructure. There is a possibility that localized heating may occur

causing an isolated (adiabatic) graphitic layer temperature increase during combustion.

Assuming an aromatic region with a length of 1 nm (molecular weight - 1000 g/mol, heat

capacity - graphite = 4.5 cal/mol-K), the heat generated during conversion of a edge carbon to

CO2 (heat of combustion C0 2, AHf 94 kcal/mol), causes less than a 250 K increase in the local

temperature.

The interplanar spacings of carbon derived from the TEM images were compared to the

spacings obtained using XRD as a check on the image analysis methodology. For comparison

purposes, the 20 values were converted to layer spacings using Bragg's law (2doo 2 sinO = k), and

the two different methods were plotted in Figure 66. The 0% conversion Spherocarb has an XRD

spacing of approximately 0.37 nm. The layer spacing obtained by analysis of the HRTEM
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images was approximately 0.374 nm on average. Marsh et a1'24 reported a similar discrepancy

(0.35 nm versus 0.36 nm) for untreated petroleum coke.

The XRD gives a broader region of spacings, with most of the actual peak cut off in the

diagram. This is due to the fact that Spherocarb has a wide distribution of spacings due to its

disordered nature, causing a broadening of the peak. This broadening is also a function of the

source wavelength, with X= 0.154 nm for X-rays, and 0.029 nm for 200 keV electrons. The

broadening is, according to Scherrer, a function of wavelength, given as

A(20)= X (28)
L cos(

where Lc is the stacking height. Since the wavelength of the TEM is approximately an order of

magnitude difference, the width of the peaks should be approximately 10 times narrower.

The change in lattice fringe spacing, d0o2, with oxidation is shown in Figure 63 as a

function of conversion. The average values for the d002 spacings were 0.374, 0.369, 0.367, and

0.361 nm for 0, 25, 50 and 75% conversions, respectively. These values are slightly higher than

expected for graphitic carbon, but within the range of disordered carbons.' 25 This value is also

slightly higher than the value measured previously for Spherocarb (Chapter 5), which is probably

the result of using two different batches of Spherocarb. Another possible cause of the difference

is grinding. The samples in Chapter 5 were ground after conversion, while those in this chapter

were ground before combustion, and grinding has been shown to cause changes in structural

parameters. 126 The decrease in spacing agrees well with the decrease reported by Palotais et al. 128

for oxidized soot, where mean spacing decreased from 0.351 nm for unoxidized sample to 0.343

nm for the sample oxidized to 96% conversion. Levendis et al.124 also found that the interlayer

spacing of polymer chars decreased with heat treatment, and this effect was enhanced by oxygen.
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Marsh et al., also found that the average d-spacing significantly shifted toward smaller average

values with a narrowing of distribution during heat treatment of carbon black. However, no

change was reported for heat treatment temperatures of up to 1273K, 500K above our reaction

temperatures.

As can be seen from the extracted images of Figure 55 through Figure 58, the fractional

coverage (% dark) increases with oxidation, and is plotted in Figure 61. The coverage falls into

the 25-30% range for Spherocarb. The coverage, if one assumes that the fractional coverage is an

estimate of the number of ordered fringes that appear per area, and assuming that this estimate

can extend to three dimensions, can be taken represent an estimate of the particle density. As the

fractional coverage is simply the measure of dark fringes to total examined area, the true

coverage will be higher, as illustrated in Figure 62. The regions (A) between the dark lines that

represent fringes are part of a continuous 3 layer stack. However, the space they occupy is not

counted in the coverage, and is a source of error, especially for the turbostratic carbons that are

not entirely linear.

The increase in coverage from 20 to 25% may be taken as indicative of pore closing

(surface area loss) and concentration of ordered carbon. However, the "pores," regions with no

fringes, shown in the extracted structure are in actuality regions of either 1) low order carbon, 2)

ordered carbon not aligned with the beam to satisfy the Bragg angle, or 3) actual pores, and is

subject to some error. The stacking is also seen to increase with conversion, from an average

stack height of 2-3 layers for 0% conversion, up to average stack heights of 4-5 for 75%

conversion, although this was not measured extensively.
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In order to understand how the lattice length affects carbon reactivity, the derived lattice

parameters are plotted with reactivity as a function of conversion level in Figure 68. As shown

previously, the reactivity goes up with conversion. At the same time, the lattice spacing remains

approximately constant, and the lattice length increases by approximately 50%. This increase is

contrary to the idea that edge carbons are more reactive than basal carbons,"6' 3 as longer fringe

lengths are indicative of lower edge/basal carbon ratios and lower reactivity. A decrease in

reactivity with fringe length was shown by Davis et all48 for pulverized coal at high (1800K)

temperatures. However, at low temperatures, Ciambellil 27 '128 has shown increasing reactivity

with structure for soot oxidation.

To examine this issue of reactivity, a population balance model is needed to examine how

lattice fringes are changing during oxidation, as the distributions measured must be normalized

for remaining carbon and other factors. The model is developed in the next section.

7.4 DISCUSSION

7.4.1 Modeling of Reactivity Using Fringe Length Change

As the Spherocarb is a relatively pure carbon, it is ideal to test whether the lattice length

is a factor in the reaction rate of the carbon particles. In this analysis, we assume that the lattice

length is a measure of the proportion of edge to basal carbon atoms in the Spherocarb's

turbostratic structure. Marsh et al' 22suggested that these graphitic structures may line up to yield

apparent lengths comparable to those of longer molecules. However, we assume that for the thin

edge samples examined here, that this is not a factor (see Appendix A). Another source of

possible error is that throughout this analysis, Regime I, kinetic control is assumed. The

presence of an outer graphitic shell could possibly lower the diffusivity. However, reaction
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studies on Spherocarb by Hurt' 4 showed that for at least temperatures up to 900 K, complete

kinetic control is maintained.

In order to derive a model for the oxidation of Spherocarb, one may make an analogy

between the population of individual lattice fringes and the population of particles in aerosol

particulate systems. Randolph and Larson' 29 applied a statistical mechanical view to the

conservation equations governing the size distribution of particulate systems to formulize the

population balance approach of Hulburt & Katz.' 30 The population balance is in effect a

statement of continuity for particulate systems. In this approach, the rate of increase of the

number of particles of a certain size miust be related to the rate at which particles of that size are

being formed and removed, and the rate at which the particles are growing. The number of

particles of a certain size is expressed as a population density, n(L). The population density at

size L, n(L), is defined as the ratio of the number of particles (or fringes in our case), dN, in a

differential neighborhood around L, to the size of the neighborhood. That is;

NdL = Number of Fringes in Length L + AL = n(L) (29)

To simplify the population balance system, the following assumptions are made:

1) No generation of lattice fringes occur during oxidation. This does not imply that lattice

fringes cannot grow, but that in the oxidation system we are using, any nucleation or

formation of new lattice fringes is superseded by changes due to oxidation (removal).

2) The porous region where reaction takes place does not change significantly during oxidation,

so diffusive effects need not be considered. This simply means that the particle burns with

Regime I kinetics.
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3) The rate of reaction in a given fringe length is uniform. Changes in reactivity for a fringe of

a given length are due to changes in interlattice spacing and possible changes in any catalytic

activity are neglected.

4) The lattice distribution may be approximated as an exponential distribution. This assumption

simplifies the distribution function, at the cost of losing the variability in lattice lengths,

especially at higher lattice fringe lengths. However, these lengths account for less than 5%

of the total number of measured fringes. The model fits of these distributions is given in

Figure 60.

Using these assumptions, the change in number of fringes in a given time interval in

length L to L + AL, as depicted in Figure 68, becomes

ddLAL (N) = N -(30)
dt dt dt

where the term on the left gives the time rate of change of the number of fringes. The first term

on the right gives the growth into (out of) the size range of the fringe of smaller size when dULdt

is positive (negative), and the second term gives the growth out of(into) the size range to (from)

large sizes when dlUdt is positive (negative).

Making use of the definition of the derivative with respect to L, one can than find that

dN dr dLl
dt dL[ dt (31)

dN( dL d( dL
-( d)+ N (32)dL dt dL dt

The change in lattice length with respect to time is essentially the reaction rate of the lattice

fringes, and one can define a reaction rate as
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dL
r= A (33)

dt

substituting r for the expression, one finds

dN• d+N dr-d = Zr-- r +(34)
dt dL dL

Normally, in population balance equations, one would only know r, the rate of reaction.

However, in our case, the distribution functions are known from the experimentally determined

HRTEM work, as

dN
- Change in number of fringes with conversion (35)dt
- Derivitive with respect to L of the distribution function (36)

dL

If one assumes that the reaction rate is constant as a function of lattice length, the solution

is straightforward. However, assuming that

dr
= Change in reaction rate of fringes with changes in L (37)dL

is not constant results in an iterative solution process.

One must now relate the TEM measurements of the fringes to the model, as the TEM

only gives a representative sample, not a full measurement of all the fringes (N(L)). An estimate

of the number of fringes must now be made using a mass or atomic balance. The absolute

number of carbon atom, NT, may derived by the weight of the sample and the carbon analysis

given in Table 4. Once can assume that there are essentially two types of carbon in our system,

an ordered carbon giving rise to TEM diffraction patterns (No), and a disordered, randomly

oriented sample that gives rise to no lattice fringes (NR) due to imaging limitations. Due to the

limitations of the TEM that the ordered carbon must fulfill the Bragg condition for diffraction,
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not all ordered carbon will appear in the microscope ( given a 100 margin of error for the doo2

planes to appear, only 100/1800 or approximately 5% of the fringes are expected to be imaged).

However, as a first order approximation, we assume that all carbon present is represented in the

carbon fringe image distribution, or

No + NR = NT = Total Amount of atomic Carbon = No (38)

To estimate the number of fringes from the number of ordered atoms, one must know the

average number of carbon atoms per fringe. To simplify the analysis, we assume that each fringe

is the projection of a circular aromatic compound, with predictable fringe spacings per carbon

atom, as given in Figure 70. From Figure 70, it is simple to calculate the number of carbon

atoms per fringe for a given length L, CA(L). The average value of carbon atoms per fringe may

then be calculated from the distribution function of each oxidation condition as

CAav = nCA(L) (39)
0

From the distribution length functions, the average values for CAavg were 49, 55, 69 and

91 atoms/fringe, corresponding roughly to lattice lengths of approximately 1.1, 1.2, 1.4 and 16

nm at conversion levels of 0, 44, 66, and 95% respectively,

Combining Equations 14 and 13 gives an overall estimate of the number of fringes as

No No
N, = = (40)

CAve nLCAL
0

The overall effect of the population balance may be seen as a model of the fringe change,

where the number of fringes is a function of both oxidation level and structural distribution

changes. The fringes at low conversions are highly concentrated at the lower lattice lengths.
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However, the number of fringes decreases with conversion due both to removal of mass, and

transformation of the lattice distribution to a higher average lattice length due to oxidation.

7.4.2 Modeling Results

A plot of lattice reaction rate r as a function of lattice length is given in Figure 71 for

various conversion levels. The absolute reactivity of fringes increases during oxidation. At very

low levels of conversion, the reactivity of each fringe is quite small, and in fact the growth of

fringes becomes noticeable at a lattice length of approximately 2 nm, where the counting

statistics for lattice fringes begins to break down due to lack of sample and modeling errors.

However, the growth area only corresponds to roughly 5% of the fringes and is not of much

importance globally.

To better understand the nature of the reactivity change, one needs to normalize the

reactivity data. For comparison purposes, we assume that the reactivity of a lattice of length 0.8

nm is comparable across each oxidation level. In the model, this lattice length corresponds to the

basic aromatic structural building block coronene. The normalized change in reactivity,

calculated by dividing the reactivity at a length of 0.8 nm, is plotted in Figure 72. The

normalized reactivity shows a fall off with increasing lattice length for all oxidation levels.

The difference in reactivity between short (La < 1 nm) and long (La > 2 nm) range order

is approximately a magnitude lower for all conversion levels. This is somewhat lower than the

trend of 2-3 order of magnitude differences in reactivity reported by researchers 9 for graphitic

edge/basal plane reactivity. While the change in reactivity is lower, these graphite studies have

carboni with a great deal more long-range order (La > 5nm) than the Spherocarb examined here.

133



To understand the nature of the decrease in reactivity with lattice length, Figure 71 also

shows the ratio of edge carbons to basal carbons in the circular aromatic compounds assumed in

the study. As can be seen, the decrease in reactivity actually occurs at a faster rate than would be

expected from edge carbon effects alone, although the trend is comparable in scope. This

implies that there is another process that acts to increase the reactivity of the fringes in inverse

proportion to their length. Furthermore, this process must act to increase the reaction rate with

increasing conversion. The actual process of oxidation is quite complex, but the following

possible causes of changes in reactivity are discussed: 1) catalysis, 2) defect/reactive sites, and

3) chemisorption.

Catalytic effects could be a factor. At high carbon conversions, the absolute ratio of

catalyst to carbon will increase with a consequent possibility of increasing reaction rate with

conversion. This assumes that the catalyst is mobile and not being removed from the system. At

the temperatures of the reactions studied here, catalyst should not be vaporized appreciably. As

to mobility, catalysts have been shown to be able to "eat" grooves in graphitic layers under

oxidizing conditions and low temperatures (Baker71). Another question that remains to be

answered for turbostratic carbon is the question of "contact" and whether smaller lattices have

the same reactivities (contact) with catalysts as compared to large lattices.

As shown by Hurt in Figure 73, the reactivity of acid washed Spherocarb is nearly

identical with unwashed Spherocarb. This indicates that catalysis is probably not a large factor

in the reactivity of Spherocarb, as would be expected with the low levels of impurities present in

Spherocarb. However, this assumes that acid washing Spherocarb removes all of the impurities,
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which may not necessarily be the case, as removal is highly dependant on char temperature

histories. Furthermore, the possibly presence of a graphitic shell may effect removal.

The concentrating of reaction sites is an interesting possibility that bears further

investigation. As can be seen by lattice variation in Figure 60, the lattice fringes are not static,

but instead evolve over time, increasing in overall length. An ideal case of oxidation induced

densification is shown in Figure 74. The squiggly line represents a blocking element, such as an

aliphatic joining group that prevents the two basic structural units, (BSU) from closing to form

an annealed molecule (Figure 74-b). At high temperatures, the removal of this blocking element

will result in annealing due to atomic movement and slippage of the two BSU. However, for

very low temperatures, the system may be in effect locked from closing due to interactions with

other layers and linkages (not shown). Therefore, at low temperatures the removal will induce a

physical shift of the BSU to become more linear and aligned, but the bonds are unable to form

because of unfavorable conditions due to distance and/or misalignment of the BSU. This lack of

joining may or may not be viewable in the microscope, as if the distance separating the two now

separate BSU is less than 0.16 nm, the current resolution of the electron microscope, the two

BSU will appear joined. This imperfect ordering phenomenon will tend to increase the reactivity

of molecule due to the leaving behind of active sites.

The concentration of active sites also makes sense when one examines the data of Davis

et al'48 and Palotas' 28 For low temperature oxidation of diesel soot, Palotas et al. found that the

reactivity per unit weight increases with increasing conversion, as in this study. Furthermore, the

d002 structure, as in this study, became slightly narrower. In contrast, the study of Davis et al. for

high temperature combustion of pulverized coal oxidation, found that the reactivity
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decreasedwith conversion, while conversely the structure will became more ordered as measured

by X-ray and TEM analysis. At high temperature, oxygen may accelerate the annealing

processes, which have typical activation energies of 400-800 kJ/mol,' 3 ' and begin to destroy

active sites. Low temperature oxidation may not have the sufficient energy to destroy these sites,

resulting in their retention.

The last factor considered is changes in the chemisorption of oxygen. The reactivity of

carbon at low temperatures may be modeled as first order in surface area and coverage, yielding

R =kAc•,n800 2  (41)

where 002 is the coverage of oxygen in the system. Schlogl et al132 found that an increase in

graphite structural perfection facilitated the dissociative chemisorption of oxygen. This is

similar to the results of Yang'33 and Olander' 34 where too high of a density of surface defects in

all cases was detrimental for the reaction rate. This indicates that a highly disordered structure

with low coordinated carbon atoms is not favorable to gasification.

Spherocarb can be seen to go through a similar state, from a highly disorganized structure

(La =1.0 nm, L, -2-3 stacks) to a more ordered structure (La =1.5 nm, L, =4-5 stacks). Assuming

that chemisorption of oxygen increases with ordering, the reactivity will also increase. This may

account for the increased reaction rate at low temperatures, where chemisorption plays an

important role in oxidation. This may be seen by the measured activation energy of Spherocarb

combustion, 35 kcal/mol94, which is compareable to the desorption energy of CO (30

kcal/mol' 34) on graphite

While carbon densification is important at lower temperatures, this study implies that any

reactivity effect that accompanies this densification may be fully offset by a change in the
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reactivity of fringes themselves and extrapolation of this structural change to higher temperatures

may not be warranted. The probable limit of this oxidative acceleration is approximately 1500

K, the point where annealing would naturally result in fringes of length approximately 1.5 nm.

7.5 CONCLUSIONS

The use of HRTEM and image analysis provides a method for examining the structure of

highly disordered turbostratic carbons quantitatively. The results of this study show that the

carbon lattice becomes more ordered during oxidation as exhibited both by the increased lattice

lengths, La and decreased d002 spacing. This ordering results in the densification phenomena

previously reported for carbons reacting under kinetic control.

The inverse correlation between structure and reactivity implies that one cannot measure

the structure of carbon and expect to predict reactivity. This is because of the complex

interaction between temperature history and chemisorption effects. Ordered fringes generated at

low temperatures will have a higher than expected reactivity, probably due to the presence of

defects that are not resolvable in the microscope. The ordering of carbon may also increase the

chemisorption of oxygen, increasing the overall reaction rate.
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Figure 47. Magnified extracted structure showing example measurement of d002 spacing and
Lattice length
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Figure 48. Weight loss of Spherocarb as a function of time at 773 K.
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Figure 49. Reactivity of Spherocarb as a function of conversion.
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Figure 50. Intrinsic Reactivity of Spherocarb
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Figure 51. Spherocarb at 290kX magnification. The carbon is seen to have a number of "holes"
At this magnification, these may be thought of as regions of different carbon density, or "pores."
The thin regions at the edge are where useful microscopy may be accomplished.
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rigure 52. Example ot Spherocarb a) 0% Conversion and b) 25% conversion. Original
micrograph, 200 keV, 590 kX.
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Figure 54. Magnified Spherocarb example isolated from Figure 52 and Figure 53 a) 0% b) 25%
c) 50% and c) 75% conversion.
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Figure 55. Isolated soot structure of Spherocarb at 0% Conversion. a) isolatedstructure, b)
power spectrum and c) extracted structure.
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Figure 56. Isolated soot structure of Spherocarb at 25% Conversion. a) isolated structure, b)
power spectrum and c) extracted structure.
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Figure 57. Isolated soot structure of Spherocarb at 50% Conversion. a) isolated structure, b)
power spectrum and c) extracted structure.
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r•gure 58. Isolated soot structure of Spherocarb at 75% Conversion. a) isolated structure, b)
power spectrum and c) extracted structure.
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Figure 59. Example of a "graphite" region in Spherocarb.
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Figure 61. Fractional coverage as a function of oxidation conversion.
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Figure 62. Coverage estimation of model fringes that form stacks of 3 layers.
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Figure 63. D002 spacing variation as a function of oxidation
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Figure 65. X-Ray Diffraction of pherocarb.
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Figure 66. Comparison of doo2 spacing of Spherocarb measured by X-ray diffraction and the
TEM image analysis.
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*- d. Spacing

S--*7. Lattice Length
- Reaction Rate

.... ..-..............

/

U- --

80 100

Conversion, %

Figure 68. TEM extracted Parameters and Reactivity as a function of Conversion

153

/....
/·~~

20

15 -

10-

51

o0
C
E

E

O

eC._2C.,

..J6
| -I r

--

I -



NdL_
dtL

L

Figure 69. Population balance around L.

154

NdL
dt L+AL

L+AL



E
0
co

ca
0E
0
C

co.2
0,(I,
Co

10 100 1000

Number of Carbon Atoms

Figure 70. Variation in lattice length as a function of carbon atoms. The aromatic molecules
depicted are the symmetric molecule, that are assumed to represent the lengths images.

U1000

100

10

1

0.1

0.01
8 12 16 20 24 28 32

Lattice Length, A

Figure 71. Reactivity of Fringe Lengths as a function of Lattice fringe length.
reaches an asymptotic value at about 15 A.

The reactivity

155

-f Af%^



-- x (0-40)
-0- X (40-70)
-0 X (70-95)
I -- Edge/Basal C Ratio

0 5 10 15 20 25 30 35 40

Lattice Langth, La

Lattice Length, La, A

Figure 72. Reactivity of lattice fringes of Spherocarb, normalized at La = .7 nm
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CHAPTER 8
8. Conclusions and Recommendations

8.1 CONCLUSIONS

A number of carbons of diverse origin have been studied in order to obtain a better

understanding of the evolution of carbon properties during oxidation. Three aspects of this

relationship were pursued: the role that macropores play in the combustion profile of coal char in

a fluidized bed, the examination of the issue of closed and open porosity in soots, and the origin

of the densification phenomenon and its effects on fragmentation.

Experimental measurements of the variation of CO2 generation during combustion of

single particles of coal char in an FBC were performed. A model of the combustion of char in

Regime II was developed to explain the variation in CO2 generation during the combustion of

char particles in a FBC. The model assumed that there was no penetration of the particle by

reaction gasses except for regions were porosity was evident. The model adequately explained

the variations seen in the production of CO2 for macropore sizes greater than approximately 0.5

mm. Comparison with pore sizes for Newlands and Illinois #6 chars showed that the criteria for

relatively large variations in CO2 production for a single char particle during combustion in an

FBC may be met by chars with pores that are inaccessible to initial reactants.

During the modeling and experimental work involved with the FBC, it became evident

from surface area evolution that, during combustion, most of the reaction was occurring in the

micropores, with little reaction occurring in the macropores. This process was examined in more

detail with novel techniques, including Small Angle X-ray Scattering (SAXS) and transmission

electron microscopy (TEM). Two carbons were investigated, soots and Spherocarb.
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Soot oxidation has many interesting combustion characteristics to recommend it for

study. One such aspect is the high surface area generation during the initial stages of

combustion, followed by a densification phenomenon. This densification phenomenon has been

attributed to atomic rearrangements or tensile stress "peeling." A novel methodology to examine

the same soot primary particle before and after oxidation was developed, and by identifying the

same soot features, homogeneous rearrangement was confirmed as the source of this shrinkage.

To examine the issue of high surface area generation during low levels of oxidation,

SAXS was used to examine total porosity, which includes porosity thought to be hidden by a

"blocking" layer of carbon. There was a large amount of surface area generated during

devolatilization of the sample, and a less pronounced generation of surface area during oxidation.

Furthermore, SAXS analysis indicates that while there was hidden porosity in the soots, this

porosity could not account for the generation of the large amounts of surface area developed

during oxidation. However, a fractal analysis indicates that there was a large difference in the

soot properties before devolatilization, after devolatilization, and after the introduction of

oxygen. Before devolatilization, the soot has a smooth character (Ds ~- 1.9), while after

devolatilization this surface becomes rougher (D2 - 2.3). Once oxidation begins, the fractal

nature of soot increases even more (Ds-2.9). This indicates that while some of the surface area is

generated due to revelation of inaccessible pores, a great deal of this area is the result of a

roughening of the surface by reacting away the "blocking" layer. This outer layer of the soots is

covered by short lattice length fringes, indicative of the blocking layer, and is probably formed

by the deposition of large PAH molecules during the formation process.

The TEM imaging techniques originally used to examine soot77 were applied to the

model char compound Spherocarb. Spherocarb has been extensively used to model char

oxidation reactions, notably in the electrodynamic balance (EDB). The densification
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phenomenon has been extensively documented in Spherocarb, but only model inferences have

been made. Using the TEM, distributions of the lattice fringe lengths, La, fractional coverage, C,

and d002 spacings were measured. During oxidation, the doo2 spacings tended to decrease

slightly, although it was difficult to state this conclusively due to the large distribution of

spacings. However, the lattice fringe lengths, an indication of the fundamental size of the basic

structural unit of carbon, increased during oxidation from about 1 nm to approximately 1.5 nm in

length. The fractional coverage, which can be thought of as a rough measure of order and

density, increased from a value of 21.9% to 24.5%. The increase in lattice structure has not been

observed previously during low temperature oxidation, although structural ordering has been

observed in the residual carbon of high temperature (2000K+) commercial pulverized coal

plants.' 48 This transformation is the microscopic linkage between macro structural shrinkage and

the actual atomic rearrangements of the Spherocarb char. This has important implications for the

issue of fragmentation, as the structural transformation allows the Spherocarb to retain its shape

past the theoretical percolative fragmentation limit.

While the issue of densification has been proven relatively conclusively to be

accompanied with (caused) by structural transformations, the issue of how the transformation

effects reactivity is not as clear. The possible presence of graphite (possibly as a shell) makes

the measurement of structural transformations difficult. Analogies to graphite would indicate

that large lattice fringes would have smaller amounts of edge carbon, resulting in a decrease of

reactivity with structural ordering, which is the exact opposite effect observed for Spherocarb.

Population balances on the fringes further indicate that the overall reactivity of fringes

increases duing oxidation. This change is attributed to three possible causes:

1. Catalysis: As oxidation removes carbon, if the catalysts remains in the lattice network and

are mobile, reactivity will increase as the grams of catalyst/gram carbon ratio increases.
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2. While oxidation removes carbon atoms that cause structural defects, insufficient energy is

present in the system at low temperatures to anneal many of the defects. Therefore, while

lattice fringes lengthen during reaction, the ratio of defects to carbon mass may actually

increases during oxidation, increasing the reactivity of the Spherocarb.

3. Chemisorption: It has been shown for very disordered carbons that an increase in ordering

will accompany an increase in chemisorption of oxygen. Since the Spherocarb is going from

an analogous low order to higher ordered structure, a similar effect may be occurring.

8.2 PARALLELS BETWEEN SOOT AND SPHEROCARB

While soot and Spherocarb char come from vastly different sources, and are treated as

separate materials in this thesis, a comparison of their structural transformations does yield

additional insight into various processes, such as densification, and its effect on reactivity.

8.2.1 Reactivity

The intrinsic reactivities of Spherocarb and soot are plotted in

Figure 75, along with a number of other carbons. A summary of the reaction conditions

of the plotted coals is given in Table 6. All of the plots assume that there is complete penetration

of oxygen into the particle interior during reaction. There is a relatively wide range of

reactivities, as would be expected from the different temperatures and properties of the material

represented. The range of reactivities also correspond well with the reactivity range reported by

Smith et al2 in Figure 1, although they are on the lower side of the reactivity range

As can be seen in

Figure 75, the reactivities of the soots used in this study are actually quite close to one another.

While the NIST soot follows the trend "expected" for carbon, that of continued mildly

decreasing reactivity with conversion, the NEU soot increases in reactivity with conversion. The
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reactivity of the soots compares well to that of the soot used by Du.34 The reactivities between

the soot samples are different by an order of magnitude for the initial starting material, but

equalize during reaction, indicating that the soot skeletal structures are approximately the same

for these systems, but the actual hydrocarbon species that are contained in the soots are not.

In comparison, other carbons are not as well behaved in falling upon one another.

The reactivity of three coals, PSOC 176,'35 illinois #6,136 and a Lignite' 36 are also plotted in

Figure 75. Disregarding the initial reactivities, which may be effected by limitations in mass

transfer, heating rate, and devolatilization conditions, the PSOC 176 coal is the most highly

reactive, and this reactivity does not change during reaction. Both the Illinois #6 and the lignite

have changes in reactivity, with a low initial reactivity that increases with conversion. However,

all three coals exhibit a relatively small change in reactivity with conversion

The reactivity of the synthetic(plain polymer-pp) chars' 37 is also relatively constant with

conversion, with reactivities comparable to that of the PSOC 176 char. The difference between

the polymer chars (high and low porosity) is generated by the addition of carbon black to

increase porosity. The carbon black also appears to act in a catalytic fashion in respect to the

reactivity, although this may be also a function of the changes in surface area of the system.

The Spherocarb, while of much lower reactivity than the plain-polymer chars, also

exhibits a similar increase in reactivity with conversion as the high porosity polymer char and the

Illinois #6 char. The Spherocarb reactivity of this study also agrees well with the reactivity

measured by other researchers, although slightly lower. However, the very large change in

reactivity for the Spherocarb does not seem to match other carbons, except possibly the plain-

polymer high porosity char. This may be an indication that the carbon black added to the plain

polymer may act in a similar manner as the "graphitic" inclusions seen in the Spherocarb.
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8.2.2 Densification

The reactivities of Spherocarb and soot are not directly comparable in an absolute sense.

However, the issue of densification is directly comparable between carbonaceous systems.

Plotted in Figure 76 is the Spherocarb and Soot change in volume as a function of conversion,

along with size changes seen in other carbon studies.

The Spherocarb and soot studied herein have volume changes that are comparable with

past measurements of chars that undergo the densification phenomenon. However, the locations

of the structural rearrangements that occur are quite different for the two types of materials. As

illustrated for soot in Chapter 5, the structural rearrangements that seem to cause the

densification phenomena seem to occur more readily in the outer layers of the soot, most

probably due to different structural properties. In contrast (Chapter 7), the Spherocarb

rearrangements appear to be, except for possibly the graphitic "edges," happening throughout the

Spherocarb particle.

One of the most interesting items to note is the PSOC 1451 char that is devolatilized at

two different temperatures, 1200K and 1600K.'38 While both chars share some of the same

properties due to the common parent coal, the densification is different for the two chars. The

1600K char does not exhibit densification, while the 1200K char does. Wong et al. attributed

this to increased graphitization of the chars, as evidenced by the loss of finer pores. This would

support the notion that the maximum temperature where densification would be expected to

occur would be about 1300-1500K, the point where structural rearrangements (graphitization)

begin to occur due to temperature effects.
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8.3 RECOMMENDATIONS FOR FUTURE WORK

The issue of densification has been investigated by direct observation of carbon

structural transformation in soots and Spherocarb. However, the issue of the change in reactivity

with conversion is a subject well worth exploring further. While normalization by remaining

carbon is not usually done in combustion experiments, it is a useful tool when following carbon

reactivity evolution. The increase in reactivity that is shown for Spherocarb and NEU soot does

not follow the conventional wisdom of greater order, less reactivity, and high burnout, low

reactivity.

The reactivity change in Spherocarb should be followed more closely, especially at

different temperatures than the ones explored here to gain a better understanding of this ordering

phenomenon. Furthermore, a time-temperature series on structural ordering would allow one to

obtain an estimation of the activation energy of this structural ordering, an important criteria for

determining its importance to combustion modeling. The answers to the question of why the

reactivity goes up may also be accomplished with a series of oxygen chemisorption experiments

on the Spherocarb, as it could confirm/ eliminate one of the possible reasons for this increase.

Furthermore, a more detailed investigation on the actual structure that initially comprises

Spherocarb should be performed. There is a possibility that the graphite does form a shell, and

this would certainly effect diffusion in the system. If it is distributed, the assumptions used in

percolative fragmentation (specifically, homogeneous material) is circumspect, and thus the issue

needs to be examined.

The other general topic that should be addressed deals with microscopy. As can be seen

in this thesis, there is still not an adequate theory linking TEM observations on the microscale

with large macroscale combustion systems. However, the following recommendations

concerning the microscopy can be made:
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1) Ideally, the densification of soot should be investigated further with thec combustion

resistant grid, but with much larger "as received" soots. Some carbon blacks are in

the 200 nm range, and would be ideal for this, assuming that they are not already

extensively graphitized. A goniometer stage series, that would allow rotational

movement of the soot during TEM work, would also be useful to compensate for

movement of soots during combustion.

2) The TEM structure should be pursued aggressively, although perhaps not with

Spherocarb due to possible heterogeneity with the graphitic inclusions observed.

Again, a three-dimensionally spatially oriented data series, such as can be obtained by

using a goniometer stage, would be helpful in reconstructing the skeletal frame of the

Spherocarb.
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Table 6. Oxidation conditions and surface areas for carbons used in

Figure 75.

Sample Temp Reaction Initial Surface Final (Max)
K Gas Area (gas type) Surface Area

(m2g) (mg)
Ethylene Soot, catalyzed by Ca 34  773 Air 100 (CO02) 650

Plain Polymer, low Porosity 7  773 Air 2 (300) (N2)
59 (560) (CO2)

Plain Polymer +25% Carbon 773 Air 184 (360) (N2)t
Black, High Porosity Synthetic
Char 137

PSOC 176 Bituminous Coal' 35  800 17% 02 56 (N 2) 450

Lignite Coali36  701 5% 02 488.7(CO 2) 390

Illinois #6 Bituminous Coal 799 5% 02 530.8 (N2)

Spherocarb Char14  768 Air 1000 (CO2) 600

NIST Soot, this study 773 Air 50 (274) -425

NEU Soot, this study 773 Air 93(367)~ -400*

Spherocarb, this study 773 Air 1000 (C0 2) 600

t The higher values are after 15% oxidation
* The higher number represents the value after devolatilization.

Table 7. Oxidation conditions used in densification comparison of Figure 76.

Sample Reaction System Atmosphere Temperature (K)

Diesel Soot, Ishiguro" Furnace Air 773

Spherocarb (Hurt) 14 EDB/TGA Air 768

Spherocarb(Waters)10 3  EDB Air 800-100

Bituminous (PSOC 1451) EDB Air 800 + 50
Coal, Devolatilized at
1200K'38

Bituminous (PSOC 1451) EDB Air 800 + 50
Coal, Devolatilized at
1600K 138

NIST Soot, this Study TGA Air 773

Spherocarb, this Study TGA Air 773
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Appendix A. Summary of the Theory of HRTEM Light

Imaging of Carbon

The study of carbons using the TEM is one of the principal methods used in this thesis.

However, the science of carbon imaging with the TEM is quite diffuse, ranging over numerous

fields. Issues such as the transfer function of the TEM, focusing, and astigmatism confuse an

issue already made complicated by the inherent three-dimensional nature of carbon steriology.

Complex methodologies such as defocusing, axial illumination, tilted illumination and the like

often have been used to characterize the complex, randomly oriented crystals in carbons.

However, despite its complexity, the TEM provides an excellent compliment to "blind"

statistical methods such as x-ray diffraction and spectroscopy, as a picture is sometimes worth

more than a thousand charts when understanding the nature of carbon. This appendix is an

attempt to present some of the essential theory for imaging carbons, and some of its limitations.

Much of this section is based on excellent reference series Chemistry and Physics of

Carbon,139,140 and works by Olander'09, 140 and Marsh9,10,12 2"124 that deal with carbon structure and

microscopy.

To begin the examination of carbon, one must first understand the composition of carbon.

All carbonaceous materials can be considered to be made up of similar building blocks arranged

in different manners. This elemental unit is referred to in microscopy terms as the basic

structural unit, BSU, and is thought to contain planar aromatic structures consisting of 10-20

rings arranged in parallel stack heights of two to four layers. There are only two symmetries that

need be considered in carbon studies, spherical or cylindrical. For most turbostratic carbon
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examples, spherical symmetry predominates, either in statically spherical symmetry with

crumpled sheets or in the case of graphitic structures, infinite spherical radius.' 40

A.1 OPERATOR MICROCOPE PARAMETERS

Before proceeding to the theory involving the processing of TEM micrographs, one must

first understand a typical TEM, a schematic of which is depicted in Figure 3. An excellent

source for operating instructions is Introduction to TEM'4 1. The most important factors that are

subject to user control in generating a resolvable image are

(1) Accelerating Voltage: Simply put, the power of the microscope. The higher the voltage, the

more the electrons will penetrate the sample, allowing for thicker samples. However, more

sensitive samples are subject to damage from very energy electrons, so care must be taken.

The wavelength of the electrons is given by

S= -= h(2meE)-_ 2  (42 )

where h is Planck's Constant, p is the electron momentum, E is the accelerating voltage, and

e and m are the electron charge and mass. Neglecting relativistic electrons, X = (150/E) 1/2

or 0.37 nm for an accelerating voltage of 100 keV.

(2) Condenser Aperture: This device acts to make the beam of electrons of coherent energy to

minimize variations in intensity from "spreading" of the source power.

(3) Objective Lens: The electron focusing point of the lens. Electromagnetic lenses are subject

to high amounts of spherical aberrations that limit the resolution.

(4) Focusing/Astigmatism: The process of tuning the objective lens so that the object is in focus

with no preferential alignments highlighted.

A.2 THEORY OF LIGHT FIELD IMAGING: OPTICAL DIFFRACTION
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PATTERNS AND TRANSFER FUNCTIONS

From (002) light field micrographs, the length of a perfect fringe (L1) and the distorted

fringes (L2) can be measured. The number, N, of fringes in a stack can also be measured. To

simplify these measurements, Taylor and Lipson' 42 and Ban' 43 used laser sources to obtain

optical diffraction patterns when laser light passed through a TEM negative. Classically, a

He/Ne laser beam ( X= 632.8 nm) optical bench was used to obtain optical diffraction patterns

(ODP), as shown Figure 77. The optical transform provided information, in the form of a spatial

frequency intensity map, about the distribution of optical density on the electron micrograph, this

is in turn directly related to the electron intensity distribution in the original image.

One of the problems encountered with the ODP system depicted in Figure 77 is the issue

of magnification. Slight errors in placement of the negative can lead to large errors in

magnification. However, modern computers and digital scanners have neatly solved this

problem. One can use a modern digital scanner to obtain the pattern that would normally reach

the diffraction lens. Once can then mimic the optic lens by performing the same function of the

lens electronically, by taking the Fourier transform of the image mathematically. During the

course of this thesis, performance of this operation (referred to previously as "taking a power

spectrum") has improved from approximately 3 minutes (Intel 486DX66 microprocessor) for a

256 pixel radius scanned image to less than 15 seconds (Intel Pentium 133 MHz

microprocessor).

An example of the differences and inherent limitations of TEM microscopy is shown in

Figure 78. The electron micrographs (a-c) are from a focal series taken of a single region of a

polyvinyl chloride (PVC) sample graphitized at 815 0 C. The general appearance of the image
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fringes is similar at each focal position, but critical inspection shows many differences of detail.

Unfortunately, one cannot quantify these diffei'ences without ODP techniques. Applying the

ODP technique, the transform intensity of zero is indicated as black (0%) and increasing

transmitted intensity is shown by increasing the grey level until complete transmittal is

represented as white (100%). The scattered light intensity patterns are quite distinct in each of

the three cases, and these differences can only result from dissimilarities in the information

recorded on the respective electron micrographs. Clearly, if micrographs are used to characterize

the specimen quantitatively, the answer obtained depends upon which original micrograph is

chosen for analysis. Therefore, it is of utmost importance to critically assign which, if any, of

the electron micrographs most closely represent the structure.

The relationship between fringes and the corresponding family of lattice planes depends

on the transfer function of the lens, an essential concept in microscopy. The phase contrast

transfer function sin X(s), assuming a thin phase/amplitude grating, is used in the following

equation for electron microscopy

AD (s) = 8(0) - oV(s) sin X(s) (43)

where AD is the wave function in the back-focal (diffraction) plane of the imaging system and s

represent the generalized reciprocal space coordinates. The symbol o = irx/W, where X and W

are the relativistically corrected values of the electron wavelength and acceleration potential.

The Dirac delta function 8(0) represents the primary beam, while V(s) is a Fourier transform of

the potential distribution in the object projected onto a plane normal to the optic axis of the

microscope. The Fourier transform mathematically represents the process that electron lenses

perform.
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The transfer function, a.k.a. phase contrast function, sin X(s), is a description of how

accurately information is transferred from the object plane to the image plane. When sin X(s) =

0, no information is contained in the image related to the corresponding object structure.

However, if sin X(s) = 1, the appropriate object detail is transferred with maximum contrast.

To demonstrate the importance of sin X(s), consider the case of a perfectly ordered

graphite crystal oriented for 002 lattice imaging (spacing 0.34 nm) and of effectively infinite

lateral extent for a Phillips EM300 electron microscope (Cs = 1.6 mm) operating at 100kV. The

electrons will be scattered at a precise angle corresponding to a single spatial frequency of 1/0.34

nm'1. As shown in Figure 79, if the objective lens is not focused properly, the graphitic layer

contrast will be quite weak. Proper focusing allows the lattice planes to be observed with the

maximum achievable positive and negative contrast. This focusing must be done carefully, as

seen in the 3-dimensional transfer function in Figure 82, where astigmatism would lead to

improper reinforcing in one spatial direction.

Ideally, one wants a transfer function as seen in Figure 80, but with a "plateau," where

sin X(s) is near unity, broadened to encompass a wider range of spatial frequencies. One must

examine the Scherrer equation for the instrumental phase factor X(s) as a function of the

scattering angle a(s) defined as

2n 1 1
X(s) = -[-DFa(s) Cs C2 (s)] (44)

T2 4

to understand how to change X(s).

There are three possible ways of affecting X(s), the lens aberration defect of focus (DF),

the spherical coefficient (Cs), and the wavelength, X. To a first order approximation, the DF and
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C, terms are are inherent in the design of the TEM, while , is a function of the accelerating

voltage. The effect of improving the spherical aberration of the microscope is shown in Figure

80. The actual transfer function of the Akashi 002B used in this work is very close to the bottom

of Figure 80. The vast improvements are due to a low Cs(0.5mm), a much smaller DF, and a

higher accelerating voltage. The use of better electronic controls in future versions of TEM will

undoubtedly improve this value further.

One must ask "why go into great detail about the transfer function?" The answer is that

the transfer function of the microscope is directly related to the information content of the optical

transform. To clarify this, one needs to examine the relationship between transform intensity and

the original structure of the specimen investigated in the electron microscope.

In the optical diffraction system, we assume the electron micrograph is illuminated with a

plane wave of unit amplitude. The intensity of the transmitted light through the object is

governed by the distribution of transmissivity over the micrograph, so

10o(r) = 10- D(r) (45)

Where D(r) is the distribution of optical density on the electron micrograph and Io(r) is the

intensity of transmitted light. The wave amplitude of the light immediately after interaction with

the electron micrograph may then be written as

So(r) = 10- D(r) /2 (46)

Assuming that the plate acts as a pure amplitude object.

D(r) is linearly related by K to the time of exposure of the image intensity in the electron

microscope, II(r), or

D(r) = KI, (r) (47)
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Giving

Wo(r) = exp[-K'I, (r)] (48)

in exponential form.

When combined with a transformation of (41) and a convolution transform, the optical

transform intensity, IT, becomes

IT (s) = 8(0) + K'4a 2V 2 (s) sin 2 X(s) (49)

The feature of most importance in the above equation is that the optical transform

intensity is a function of the square of the transfer function. The dependence on sin X(s) may be

observed in optical transforms prepared from electron micrographs of amorphous evaporated

thin films of carbon. The distribution of electrons scattered by this carbon is fairly uniform over

a wide range of frequencies and under ideal imaging conditions the optical transform will exhibit

a corresponding distribution in optical intensity. In practice, image aberrations cause the

transform intensity to by modulated by sin X(s), and can be used to characterize the TEM.

Figure 81 demonstrates this effect, where the differences in a single region of a thin,

evaporated carbon film are shown for various levels of defocus. Only image b can be thought of

as "in focus." The rest of the images have periodic spacings that are related to the transfer

function of the TEM system, and not the sample itself.

A.3 THEORY OF LIGHT FIELD IMAGING: SAMPLE THICKNESS AND

LINE LENGTH

In the preceding discussion, the specimen was assumed to be thin enough to behave as a

weak phase object, or in other words, the electrons are considered to be scattered once. In the

general case, multiple scattering of electrons does occur, and is related to the thickness of the
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sample. The most convenient way of modeling this effect is the multislice approach of Cowley

and Moodie.' 44 In this approach, the crystal is divided into slices that are thin enough so that

multiple scattering within a slice is negligible. The potential within each slice is considered

projected onto an internal plane, and the crystal is thus represented as a series of scattering

planes separated by vacuum gaps. The electron wave effect is then simply a sum of the changes

each phase brings about.

The studies of Jefferson and coworkersl 45 in the formation of doo2 lattice images of

graphitic carbons showed that for linear transfer theory to be possible, the specimen thickness

must be no more than 5 nm. In particular, secondary fringes predominate at thicknesses of 11.5

nm, and this result is repeated periodically for thick samples. However, Jefferson and Millward

concluded that, provided that spherical aberration is low and defocus is appropriately chosen, the

effect of multiple scattering on the information relating to the shape of the crystal is not

particularly important. This is due to the weak nature of these interactions for thin sample

thickness, and as a practical matter, modern instruments have a thickness limit of approximately

10 nm.

The limit of 10 nm on sample thickness is also a result of the limitation to the size of

crystal domains. As the crystal size decreases, the Bragg condition (a function of the fact that

the microscope only illuminates fringes that fulfill a narrow window of the Bragg angle given by

2dsinO-X, where d is the distance between scatters) becomes less and less strict so that an

increasing error relative to the Bragg angle becomes possible without losing too much of the

scattered beam intensity. For example, for a 2 layer carbon particle with a 1 nm thickness, the

intensity will reach a maximum when the angle reaches 0002 (~ 5x10-3 rad, about 100), as shown
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in Figure 83. However, the beam will vanish if the specimen's tilt reaches an angle a of

approximately +doo 2/2t, or about 18x10 .2 rad. A 20002 tilting is negligible at this point, and a

large degree of error is allowed. As the thickness increases to 10 nm, the maximum tilt, a, is

approximately 10 times less, or 18x 10-3 rad, or slightly more than 20. This is another reason the

practical limit of carbon microscopy is about 10 nm. If a becomes less that 20, the ability to

satisfy the practical limit of fulfilling the Bragg angle becomes too great.

The overlap is especially important to turbostratic carbon, where there are a large number

of superimposed layers. Electron beams scattered from this material are close to e,, ;: other and

can pass through the aperture. For graphitic crystals superimposed at random one can develop

rotational moires. These rotational moires are shown in Figure 84, showing the destructive

interference that can occur with overlap. This limits turbostratic information to only mean

length and distribution of fringes, and not shape.

The diffraction limitation of about 100 also becomes important in understanding a

possible cause of the reported "hole" in many carbon blacks and soots, 146 as seen in Figure 86.

The question is whether it is a hole, an amorphous or nearly amorphous region, or something

else. One must first assume that the basic structural unit, BSU, of a particle is layered in

concentric circles. Then, analysis must be made on two adjacent BSUs that form a basis for

concentric shells within a soot primary particle, as shown in Figure 87.

Letting OB be the bisector of AOC, the angle CBO is then equal to angle ABO. If the

BSU of AB fulfills the 002 Bragg condition, BOA is 100 at the maximum. Therefore, the BSU

of CB cannot be imaged. The radius of the circle OA is then given by

AB-=tanl00 (50)
OA
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Assuming that OA bisects the BSU, then the radius of OA is simply

AB 0.5 nm
OA == - = 2.8 nm (51)

tanl0 °  0.176

Therefore, there is a theoretical limit of 5.6 nm in sample width. For areas less than this limit, no

TEM fringes will be observed.

However, the limit of 5.6 nm assumes that the onion-like structures proposed by Lahaye

and Prado' 47 for primary particles extends to the limit of the inner core of the particle. This

clearly ignores the differences between the two principle mechanisms in the formation of

primary particles, nucleation and deposition. There is no reason that the nucleation of the soot

particle will be preferentially form the "onion" layers that later depositions will, as can been seen

in Chapter 5, instead of flat platelletes. Therefore, the "hole" in the center, while non-imagable,

is probably not a true hole, but representative of structural differences and a more amorphous

carbon nature.

Another issue that one must deal with is steriology, the projection of the 3 dimensional

geometric structure that makes up carbon unto the 2 dimensional image plane. The simplest way

to deal with this structure is to assume that the basic aromatic structures that make up the carbon

can be considered "lines" in space (The misorientation of the aromatic layers, due to the Bragg

condition and simple contrast limitations, will force only relatively straight lines to appear). One

can use the fundamental relationship for projected lines relating the mean projected length of a

straight, randomly oriented line segment to the true length.

Since any line can be broken up into line segements of length 81, one can consider an

elementary segment of length 81 with one end fixed that is free to rotate in any direction 0 or 4
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(ie, anywhere in a sphere of radius 81). Figure 85 shows one octant of the surface. The average

projected line length, 1', is then given by

x/2x/2
8126lsin012 sinOdOd#

0a 0= o 12(52)
2S161/2

281 x/2x/2 x/2.C
= sin 0'2 dOd = 81jsin 0 2 dO = I81 (53)

0 0 0 4

Since the line L can be represented by a series of elementary colinear segments, L = l81 and

4-
L = (-)L' (54)

Where 8L' is the mean line length on the projected plane. This value provides an upper bound

for the error, as the limitation of fulfilling the Bragg condition will limit the arc of the fringes to

a narrow region, decreasing this difference.

Once the lattice fringe images has have been generated (checked with the ODP method or

the Fourier transform), we are left with an image of the lattice fringes, as depicted in various

figures throughout this thesis. Assuming that optimal defocus has been achieved and no other

defects (such as astigmatism) are present, the most important question remains, what exactly do

these fringes (lines) represent?

A.4 THEORY OF LIGHT FIELD IMAGING: INTERPRETATION OF

FRINGE "LINES"

The following questions must be answered before any analysis of a distribution of

lengths, and for simplicity, we will refer to Figure 88, which provides a grossly simplified image

of an extracted pattern.:
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What are the dark (light) lines?

The dark lines represent positions of potential, i.e. carbon atoms. Under most conditions,

the dark lines represent absorption and scattering of electrons, indicating the presence of carbon

atoms. However, a reversed contrast image function (see Figure 79d) would result in the

opposite effect. In Figure 88, the dark lines represent carbon atoms lattice fringe structures

(which we assume perfectly represent the sample).

Can the dark lines arise from inadequate resolution of small molecules?

All microscopes have a resolution limit, and it a key to understanding this question. In

Figure 88, between lines C and D, there is a small gap. If this gap is larger than the resolution

limit of the microscope, there will be a measurable gap in the system. However, if the gap is

smaller than the resolution limit, than lines C and D will appear joined, with lengths

approximately that of lines A and B.

The resolution of the Akashi 002B electron microscope used in this work is 0.16 nm.

This resolution limit is larger than the average carbon-carbon aromatic bond (0.14 nm), and any

defects smaller than this will not be observable. Localized defects such as a fault internal to a

large molecule may be invisible, giving a dark line that is longer than the true length of the

constituent segments. This effect suggests that annealing large internal defects in a "molecule"

can produce long dark lines in images(i.e., pulling atoms into a more planar configuration will

lead to "larger molecules".

Can lengthen dark lines appear from something other than lengthened molecules?

Marsh showed, using a multislice approach, that projection of a 15 carbon model

compound (at maximum) showed no increase in lattice length, whereas a thickness of 32 atom
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projected compound produced long, contorted lines. It should be noted that for most carbon

systems, assuming an aromatic type structure, 15-carbon atom thickness represents a length of

approximately 2.3 nm, while a length of 32 atoms represents lengths on the order of 5 nm.

Lengths of the order 3 nm are seen in images of turbostratic carbons, but are rarely longer,

indicating that is not of sizable concern.

Another factor that may arise is shown in the meeting of lines D and G in Figure 88.

Clearly, the lattices are from separate systems, but in the microscope would appear to be one

lattice. This illustrates the fact that such systems rarely show lines that are straight. However, as

can be shown by numerous examples of graphitized carbon blacks and nanotubes, bends in

continuous graphitic sheets are possible by inclusion of a single 5-member ring. Therefore, one

must not separate out only the straight-line segments.

Can short lines arise from factors other than the predominance of short "molecules"?

A mechanism that can produce short dark lines arises from orientation effects of large

molecules and simple absorption by carbon of electrons. Assuming no diffraction occurs, and

carbon absorbs electrons linearly, then a system 20 atoms thick will absorb twice as many

electrons, resulting in a line that is half as intense as a system that is 10 atoms thick. Marsh

found that projections of greater than 14 atoms resulted in decreased spacing between dark lines,

or the lengthening of existing dark lines. This mechanism should not be a large factor in

turbostratic carbon, although the carbon thickness is usually above 3 nm (the thickness of

required for a projection of greater than 14 atoms). This is because the layers are not oriented in

a specific manner in turbostratic carbons. However, it does suggest that short images near the
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edge of the material should be carefully examined to ensure that fringes do not to arise from

simple thickness effects.

Overall, from the above discussion, light fringe imaging is a complex field of study.

However, it allows one to examine turbostratic carbons in ways that are impossible with other

methods, such as X-ray diffraction. In general, the true size of the constituent projections will

tend to be overestimated. However, while the absolute size may be larger than in reality, the

shorter fringes are a good estimate of disorder, while the lengthening of these lines is an

important indicator of order
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Figure 78. (a-c) 002 lattice images of the same regions of a polyvinyl chloride heat treated at

815'C under different underfocus settings of the objective lens. (d-f) are the corresponding
optical transforms.
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Figure 80. Phase-contrast transfer function sin X(s) for 100 keV electrons. a) CS = 1.0 mm and
70 nm underfocus, b) Cs-0.5 nm and 40 nm underfocus.
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Figure 82. 3-D portrayal of the transfer function (a). In region (b), the same transfer function has
not properly focused, resulting in astigmatism. The higher transfer function points will
preferentially increase the contrast of the fririges that are diffracted in this region.
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Figure 83. Illustration of maximum permissible tilt in electron microscopy.
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Figure 84. Rotation moires: a) sketch and b) image.

44

k~0

6

Figure 85. Mean projected length of a randomly oriented linear segment.
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Figure 86. Example of diesel soot with a "hole" after I hour heat treatment at 1523K.
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Figure 87. Calculation of the "empty" core radius.
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Figure 88. Simplified depiction of lattice and d002 fringe effects.
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Appendix B: TEM Sample Preparation and Image Analysis

Technique

Much of this work relies on image analysis of TEM micrographs. The analysis of TEM

micrographs quantitatively for structural order and other characteristics has traditionally been

quite difficult, especially when optical diffraction techniques are used, and many of the

theoretical issues were discussed Appendix A. The technique presented in this appendix is based

on the work of Palotis' 28 on soot, extended to Spherocarb and other thicker samples of carbons

that can be sectioned thin enough for TEM examinations.148

B.1 SAMPLE PREPARATION AND HARDWARE HANDLING

For the HRTEM observation a small portion of each sample of carbon was ultrasonically

dispersed in ethanol. Generation of the samples thin enough for measurement in the TEM was

accomplished by use of a ball mill for 5 minutes or a mortar and pestle for approximately 10

minutes. Figure 89 the analysis results of the extracted structure for each of the two grinding

methods. No significant differences were found between the sample methods. Once a fine

powder was generated, the dispersed suspension was deposited dropwise on a copper TEM grid

coated with a lacy carbon film. The examination of the samples was carried out on material that

extended over the holes in the supporting film in order to avoid interference from the amorphous

carbon background film.

An Akashi/TOPCON 002B transmission electron microscope operated at 200 keV, with a

LaB 6 filament was used to record high-resolution images of each sample, typically 590 kX for

structural imaging. These images were then digitized with a VITEK TM image acquisition system

equipped with a Kodak MEGAPLUSTM Model 1400 camera and stored as 1024x1024 pixel
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computer images. The VITEK system was replaced by direct image scanning with UMAX

POWERLOOK II digital scanner, operating at 993 dpi resolution, which offers significant

improvements in ease of use and repeatability,. The 993 dpi resolution was calculated to give the

same magnification as the original VITEK system. To confirm that the two different systems

gave the same results, the same negative area was digitized. The subsequent analysis of the

resulting images' fringe structure is given in Figure 90. The methods showed no significant

differences in the resulting data except for differences to be expected from inexactly duplicating

the same image.

The high degree of conformity exhibited in Figure 90 can also be used to surmise the

degree of error inherent the digitization system. Using a bin average of 0.5 A gave comparable

results only if nearest neighbors ( + 0.5 A) were included. This indicates that the analysis of

fringes has an absolute minimum error in the range of 0.25 A to 1.0 A, although probably closer

to the 0.25 A region.

Analysis of the images was accomplished using the high-level language computer

software, SEMPER6P® (Synoptics Ltd., Cambridge, UK), developed specifically for use with

high-resolution electron microscopy to manipulate the stored images. Using SEMPER6P,

pseudo-optical diffraction patterns were generated. The pseudo-optical diffractogram is a power

spectrum calculated from the modulus of the Fourier Transform (FT). Intensity profiles

characteristic of the range of contrast of the diffractograms were then produced. A sample, power

spectrum of Spherocarb is given in Figure 91. The diffraction pattern is a circular cloud as the

fringes are approximately evenly distributed over all possible directions with a wide range cf

interlattice spacings for the randomly oriented Spherocarb structure. Figure 91 also shows the
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effect of astigmatism on the power spectrum. The flattened power spectrum indicates no

preferential ordering, but more likely, astigmatism.

Using a correlated gold standard, the number of pixels per Angstrom was found in the

Fourier space. The relationship established using the oriented gold single crystal can be used to

translate the length range of interest, [d1,d2], in the scanned image, specified for pattern

repetition, into a region in Fourier (reciprocal) space, [rl,r2]. The FT of the original image is then

masked for r<rl and r>r2 (r2>rl). The remaining annulus is then reverse transformed.d The

integrated intensity profile of a FT image is shown in XXX as a function of the real (d)

coordinates. The gray scale filtered is then transformed to a two color 'extracted structure' by

establishing an intensity threshold value for the intensity of the pixels, separating the two colors

(here selected as black and white). This extracted structure is the basis for analyses most of the

previous Chapters (4-7), and complete details on the image properties tested may be found there

or in Palotas 28. A complete write up of an example SEMPER6P analysis code used to extract

fringe structure is found in Appendix C.

B.2 SOFTWARE PARAMETERS

The software parameters chosen were based on the early work of Palotais 28 and

experience, and should be valid for most thin edged carbons. However, an examination of the

software parameters used in the analysis is warranted.

d Theoretically the center peak (corresponding to infinite distance on the original image) in the
Fourier space is always needed for the reverse Fourier Transformation, therefore an annulus
would be insufficient. Semper 6P retains the information content of the center peak and, even if
the center is manually masked out, the reverse transform can be performed.
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B.2.1 Filter Pass:

The Fourier transform is filtered (masked out) in the high and low bands by specifying

the minimum and maximum layer spacing (d002). The range chosen was 3.0 to 5.0 Angstrom in

order to capture only fringes of reasonable interlattice spacing. This corresponds to the AA and

BB parameters in Appendix B. The value of 3 A corresponds to below the absolute limit of d00 2

fringe spacing reported, while 5 A represents the maximum spacing between fringes for them to

be considered to be part of the same pore system. The value of 235.62 was obtained by

measuring the pixel distances between lattice points for the gold standard in Fourier space.

B.2.2 Threshold Intensity

This is the minimum in intensity of a pixel considered to be part of a fringe in the

processed image. Figure 92 shows the results of varying the intensity threshold and filtering

parameters. The lower the intensity, the fewer the number of fringes are seen as fewer pixels

satisfy the intensity parameter. As can be seen in Figure 92, there is a great deal of variation in

image with threshold intensity, which poses a problem due to varying thickness and microscope

parameters. Every individual micrograph will have its own unique average intensity due to

variations in these parameters, and one must identify the proper intensity value for each

micrograph.

To solve for the optimum intensity, a plot of the fraction coverage versus intensity

threshold is created for each image, as shown in Figure 93. As the minimum intensity accepted

as part of a fringe increases, the fractional coverage decreases since fewer pixels satisfy the

condition of having sufficiently high intensity to be counted in the fringe. At a low intensity

threshold value the fringes are long and thick and become merged. As the threshold value
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increases the fringes begin to separate and the total number of fringes increases. By increasing

the threshold value even more the disappearance of the lower intensity group of pixels

accelerates and the number of identified fringes levels off and in fact begins to decrease.' 2 8 The

intensity used in the analysis is chosen to be the intensity where the maximum number of lattice

fringes can be found. This value usually is part of a relatively wide plateau, as depicted in the

box of Figure 93.

B.2.3 Minimum Fringe Area

This is the filtering parameter for the minimum fringe size that will be considered in the

extracted structure, and is specified to remove error that may arise from small fluctuations in

intensity from a variety of sources. The minimum area used to define a fringe was determined by

multiplying the width of graphitic/aromatic fringe in the microscope (approximately 0.15 nm,

about /2 the d002 spacing) by the length of two aromatic units (approximately 0.5 mrn). The width

(0.15 nm) is much smaller than the characteristic d002 spacing (0.34 - 0.4 nm) due to the fact that

the microscope will ideally only provide high image contrast where carbon atoms in a lattice

network exist. This spacing is much smaller than the characteristic d002 spacing (in practical

terms, roughly /2 of the space between planes will be exclnded from the fringe due to contrast

differences, resulting in thickness of 0.15 - 0.2 nm. Using the conversion ratio of 0.4336

Angstrom/pixel, this corresponds to a size of approximately 40-60 pixels. The elimination of

noise to the maximum possible extent is vital, since it can falsify describing parameters, e.g.,

lattice length, orientation or fractional coverage distributions.

As the minimum area is of critical importance, a distribution of the lattice fringe length

was obtained by varying the minimum size parameter, as shown in Figure 94. The absolute

197



number of lattice fringes is seen to increase in size as the minimum area considered a fringe

increases. The minimum area used does not alter the number of larger lattice lengths to a

significant extent past about 0.4 nm from the minimum fringe length specified. The fringe width

assumption can be confirmed by comparing the maximum fringe hits for minimum areas of 20

and 60 pixels. For a 20 pixel minimum area, the maximum number of fringes is located at 0.4

nm, and assuming a square fringe structure, corresponds to a mean thickness of 0.104 nm. The

60 pixel length maximum is located at 1.0 nm, corresponding to a fringe thickness of

approximately 0.12 nm.

For the basis of this analyses described in this thesis, a minimum area of 50 pixels was

used in the calculations. This gives a minimum pixel fringe length corresponding to roughly 0.7

nm, which corresponds well to the minimum length that can reasonably be expected to measure

for symmetric aromatic molecules, that of corenene (width 0.71 nm).
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Figure 89. Comparison of the fringe length analysis of ground Spherocarb obtained by using two
different powder preparation method
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Figure 90. Comparison of Spherocarb particles and the subsequent analysis obtained by using
two different methods to digitize the samples with the VITEK scanner and UMAX Powerlook II.
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(A)

(B)

Figure 91. Sample power spectrum of Spherocarb depicted in Figure 5. The cloud like character
(a) is due to the random distribution of different lattice lengths in the sample.
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Figure 92. Effect of software parameters on the extracted pattern of carbon black. The horizontal
axis shows the frequency window for the repeated pattern while the vertical axis is I , the
intensity threshold value for the filtered image (from Palotas128).
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parameters.

202

0.6

0.5

0.4

0.3

0.2

0.1

600

500

400 0)

300 '

200

100

0

-4-- Lattice Length vs min 20
...... i .... ...... --. Lattice Length vs min 40

-- i Lattice Length vs min 60
-- 7- Lattice Length vs min 80
S--- Lattice Length vs min 100

0 -

0ma

ic -rI Sn

I - I I - Iq



Appendix C: Extracting structural data from TEM images

with Semper 6P

This is a sample program needed to run Semper 6P to extract structural data, based on the program of Palotasl 28

How to extract the structure from the TEM image

copy 6800 3:1; cd=3; 1

t This is the TEM image.

fourier 1 to 3; fullplane;

mask 3 radius 118; mask 3 inside radius 39;

235.62
distance in A

halfplane; image; mask 3 radius 256

Masks out possible computational errors outside
image after reverse Fourier.

analyse 3 5 le -3.0 area 30,10000 segment 4
The extracted pattern
("segmented image").

Maximum area to be considered as
"particle" [pixels].

Minimum area for a "particle".

Intensity threshold: intensities above correspond to
structure, pixels with intensities below this value
are not element of the "structure" (do not form a
"particle").

The Particle Parameter List (variable value: ppl=5).

pset count; TotalArea=0
Count the particles, and the result is stored in

L variable n.

for index=l,n; pset area;
The area of the actual "particle" (in pixels)

__ is stored in variable a.

TotalArea=a+TotalArea; loop;

L 
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Closes the loop "for" started in the
previous line.

Calculates Total Area of all the particles (if it is done more
than once, it is important to annul it before the next loop).

type TotalArea
Types the numerical value onto the screen.

copy to6737 byte; c·py 5 to 6738;
Saves the Particle Parameter List. If you need
to analyze it later, don't forget to define
the variable ppl (i.e. give value to it,
before using any command related to the ppl:
ppl=6738; pset count;...).

Saves the extracted pattern in byte format (byte requires less
space on the hard drive).

calculate :4 >0 to 4;4 to 1
Makes the segmented image ("extracted
structure") black and white (originally it is
multi gray level, each "particle" has an
intensity value equal to its sequential number.
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Appendix D. Random Pore Model

* Pore model program *
* version 3.0 *
****** *************** **

INTEGER I,ilow, NPORES, Nsteps
INTEGER ARRYMAX
REAL RPORE, RCHAR
PARAMETER ( ARRYMAX = 3000000)
PARAMETER (Nsteps = 1000)
PARAMETER (POROSITY = 0.5)
PARAMETER (RPORE =.05)
PARAMETER (RCHAR = 3)

REAL X, DELTAX, time, vol, CO2
REAL PORES(1:ARRYMAX)

REAL DVDT, DRDT, DMDT, ppmCO2
integer asspore
external asspore

real ranl
external ranl

real RAREA, carbon
external RAREA

open ( unit = 20 , file ="results", status = 'unknown')
open (unit = 21, file = "model.log", status = 'unknown')

print *, "Check pore routine"
print *, RCHAR**3/Rpore**3
print *, ranl(10)
print *, "done checking"
seed = 0.4
write(21, *) " Going to assign Pores now"
write(21, *)
print *, "HI"
Npores = asspore(arrymax, PORES, POROSITY, RPORE, RCHAR)
print *, "I'm bacck"
print *,Npores

do 20 I = 1, Npores

20 continue

***** Char recesion rate(m/s)
* Data from Goeal
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DRDT = 2.736e-6
carbon = 0

R = RCHAR
ilow = 1
X = 0
Time = 0.
carbon = 0

50 if ( R .gt. 0) then

AREA = RAREA(arrymax, X, R, PORES, RPORE, ilow, Npores)
AREA = AREA/1e6

DVDT = Area * DRDT
DMDT= DVDT * 11.79

ppmCO2 = 172308.6 * DMDT *1e6
carbon = carbon + DMDT/.53*12.011/.486*1000

DELTAX= (AREA-3.4156*4*R*R/1e6)*DRDT*11.79*172308.6*1e6

write (20, *) time, R, ((Rchar-R)**3)/(Rchar**3),
+ ppmCO2, carbon

X = X+ DRDT*1000
R = RCHAR - X
Time = time + 1

if (time .it. 10) print *, X, R, Area, Vol, ppmC02,
+ DVDT, DMDT

goto 50
end if
endfile 20
close(unit = 20, status = 'keep')
close(unit = 21, status = 'keep')

END

* Subroutine to assign pores locations
******W.***

integer function asspore(nmax, pores, eps, Rp, Rc)
integer nmax, i, idum
real pores(1:nmax)
real eps, Rp, Rc, epsrun
idum = 100
seed = 0.597
epsrun = 0
write (21, *) "entered pore assignment routine"
print *, "in pore assign routine"
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1000 if ( epsrun .LT. eps) then
i = i + 1

* print *, i
pores(i) =Rc - ( ranl(idum) **(1./3.)) * Rc

* print *,i, pores(i), "done with pores"
epsrun = epsrun + (Rp**3)/(Rc**3)

* print *, pores(i), epsrun
if(epsrun .gt. .49 ) print *, i, epsrun
goto 1000

end if
print *, "done with pore randomizer"
write(21, *) "Pores succesfully randomized"
write(21, *) "Pores used = ", i
write(21, *) "Overall Porosity = ", i * Rp**3 / Rc**3
write(21, *)

call sort(nmax, i, pores)
write(21, *) "Pores succesfully sorted"

write (21,*)
print *, nmax
call porechk(nmax,i, Rp, Rc, pores)
asspore = i
end

* RANDOM FUNCTION 2

FUNCTION ranl(idum)
INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV
REAL ranl,AM,EPS,RNMX
PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836,

*NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS)
INTEGER j,k,iv(NTAB),iy

SAVE iv,iy
DATA iv /NTAB*0/, iy /0/
if (idum.le.0.or.iy.eq.0) then
idum=max(-idum, 1)
do 11 j=NTAB+8,1,-l

k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k
if (idum.lt.0) idum=idum+IM
if (j.le.NTAB) iv(j)=idum

11 continue
iy=iv (1)

endif
k=idum/IQ
idum=IA*(idum-k*IQ) -IR*k
if (idum.lt.0) idum=idum+IM
j=1+iy/NDIV
iy=iv(j)
iv(j)=idum
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ranl=min(AM*iy,RNMX)
return
END

***********

* Pore Checking subroutinte
***********

subroutine porechk(nmax,i,Rp,Rc, pores)
integer i, nmax, j
real Rp, Rc, x, DELTAX
real pores(1:nmax)
real step, pvol

step = 20
deltax = Rc/step
pvol = 0
x = deltax

write (21,*) "Checking Pore distribution"
do 1050 j = 1, i

* print *,"pores = ", pores(j)
5 if (pores(j) .it. x) then

pvol = pvol + (Rp**3)

else
6 eps = pvol/((Rc-x+DELTAX)**3-(Rc-x)**3)

pvol = 0
print *, x, eps
write (21,*) x, eps
x = x+Deltax
if (pores(j) .gt. x) goto 6
if ((j .eq. i) .and. (x .it. Rc)) goto 6
goto 5

endif

1050 continue
write (20,*)
end

***********

* Array sorter
*************

subroutine sort(nmax, i, pore)
integer i, nmax
real pore(l:rnmax)
real swapvar

do 1100 j = 1, i
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do 1200 k = j, i
if (pore(k) .it. pore(j) ) then

swapvar = pore(j)
pore(j) = pore(k)
pore(k) = swapvar

endif
1200 continue
1100 continue

end

* RAndom # generator
S* * **************

subroutine random(x,xr)

data k, j, m, rm / 5701, 3612, 566927, 566927.0 /

ix = int( x*rm)
kr = j * ix + k
Irand = mod(kr, M)
xr = (float(irand) + 0.5 ) / rm
return
end

** ************

* Area computator
******* **********

real function RAREA(MAX, X, R, pores, Rp, ilow, Npores)
real X,R, Rp
INTEGER MAX, i, ilow, Npores
real pores(1:MAX)
REAL area

* Spheroid area
area = 4* 3.1456 * R*R

* Compensate for pores

i = ilow

1500 if ((pores(i) .le. X) .and. (i .le. Npores)) then

if ( (pores(i) +2 *Rp) .le. X) then
ilow = i
i = i + 1

else
area = area + 3.1456 * (2*Rp - ( X -pores(i)))**2
i= i + 1
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end if
goto 1500

end if

RAREA = area

end
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