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We discuss the design and implementation of a new reconfigurable stream processor for
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rise to a need for a reconfigurable stream processor. This thesis explores the use of recon-
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Chapter 1
Introduction

With the changing costs of different hardware elements, the balance between general

purpose hardware and dedicated custom hardware has swung between the two schools of

architecture. When processor speed was much slower, custom hardware was the norm at

the sacrifice of versatility. In the past decade, microprocessor speed has grown exponen-

tially due in no small part to the integration of additional dedicated hardware execution

units. However, along with this increased performance, the software demands placed on

the hardware have increased as well. This rekindles the need for custom hardware. Pro-

grammable logic offers a good solution for some target applications not requiring a large

number of complex mathematical operations. The recent improvements in FPGA recon-

figuration time and in gate density have made them practical for in-circuit reconfigurable

processing elements. This allows the custom hardware to be reconfigurable and therefore

not dedicated. The following thesis describes the background of reconfigurable hardware,

the Cheops Imaging System, the role of stream processors within Cheops, and finally the

State Machine stream processor, which implements reconfigurable custom hardware using

FPGAs.





Chapter 2
Background

The introduction of SRAM-based Field Programmable Gate Arrays has rekindled an

interest in application-specific hardware to complement general purpose processors. These

new devices offer in-circuit reconfiguration, with shorter reprogramming times and an

infinite number of reprogramming cycles.

2.1 Reconfigurable systems
One of the first reconfigurable custom computing architectures was the Anyboard, a

PC plug-in board used as a rapid prototyping environment for digital systems develop-

ment. This utilized five Xilinx XC3042 FPGAs (21,000 gates total) and took over five sec-

onds to configure. Although this system was not used to complement a general purpose

processor, it did serve to pioneer work as a reconfigurable platform for custom computing.

[11]

Another notable project was SPLASH, constructed at the IDA Supercomputing

Research Center. The architecture allowed up to 16 SPLASH boards to be connected to a

Sun Sparcstation via a separate interface board. Each SPLASH board employed sixteen

Xilinx XC4010 FPGAs (16,000 gates, total) connected by a 16x16 full cross-bar switch.

The notable aspects of this project is that the FPGAs were of high density (10,000 gates)

and had a reconfiguration time several orders of magnitude faster than the Anyboard. In

addition, a Hardware Description Language was employed to facilitate design entry on a

behavioral level. The current revision of this system, the SPLASH2, has been built with

seventeen Xilinx XC4010 FPGAs connected via a crossbar network with sixteen 36-bit

bidirectional ports. [6] Currently, Abbot, Athanas, and Tarmaster at the Bradley Depart-



ment of Electrical Engineering at the Virginia Polytechnic Institute and State University

are implementing real-time median and morphological filtering of images on the

SPLASH2.[28]

While the previous two architectures act as peripheral coprocessors to a host computer,

a more integrated approach is the PRISM-II machine built by Athanas, Agarwal, and Sil-

verman, et. al. at Brown University. This system employed three Xilinx 4010 FPGAs,

closely coupled with an AM29050 processor. A compiler identified computationally

intensive inner program loops, and automatically synthesized application specific hard-

ware implemented on the FPGAs to complement the general purpose processors computa-

tional abilities.[27]

In addition to adding custom hardware to complement processors, the use of FPGAs

may also reduce the size of a system through run-time reconfiguration. The system by Vil-

lasenor, Jones, and Schoner [29] experimented with reconfigurable hardware to time-mul-

tiplex a set of algorithms to implement far more logic than possible in combination. Their

system utilized a 5K gate CLAy 31 (Configurable Logic Array) a 64K EPROM for config-

uration data, SRAM, a frame grabber for input/output, and an Altera EP600 EPLD to

house the control state machine. The system was most useful in applications in which

rapid changes to the processing logic enhanced performance.

2.2 Cheops Imaging System
The Cheops system is a scalable modular processor for video coding that is being

developed by the Information and Entertainment Systems Group at the MIT Media Labo-

ratory. The system is able to perform digital signal processing for the generation of high-

resolution graphics at real-time rates. Cheops has three main types of modules: processor,

input/memory, and output. Data transfer between the three types of modules are handled

by the high-speed Nile bus. A lower speed Global bus is also available for control signals.



The processor module, called the P2, performs almost all of the signal processing. It dele-

gates regular operations (e.g. matrix algebra, correlations, and convolutions) to specialized

stream processors. Figure 2.1 shows that the P2 can contain up to eight stream processors

which are connected to banks of high-speed Video RAM via a full crosspoint switch form-

ing the hub. Thus, data may be streamed from a memory bank to a stream processor and

Figure 2.1: Cheops P2 Block Diagram. Blocks labeled SP represent stream processors.
Blocks with VRAM represent memory banks with DMA controllers.

vise versa. The Intel 80960CF general purpose processor is responsible for sequencing

and synchronizing the streaming of data through the functional elements, as well as per-

forming computations for which a stream processor is not present.

If the stream processors can perform the regular operations with high efficiency,

Cheops is able to achieve real-time processing rates. However, the absence of an appropri-

ate stream processor forces the computation to be delegated to the i960 general purpose

processor (GPP), causing a degradation in system performance. This generates a the need

for a reconfigurable stream processor whose behavior can be redefined in-circuit. In this



thesis we describe a stream processor called the State Machine which will employ a gen-

eral purpose processor and two FPGAs to complement its computational capabilities.

Data Data Data Data
InO 0 OutO In Out

Rei

Rec

Rec

Rec

Re

Figure 2.2: Generic Stream Processor Block Diagram. All Cheops stream processors to
date have conformed to the above block diagram. Data paths are shown at the top, while

control signals are to the left. SRAM exist only on two-phase stream processors.

2.2.1 Cheops Stream Processors

All of the stream processors constructed to date have conformed to a general block

diagram as illustrated in figure 2. A stream processor in Cheops communicates to the sur-

rounding system via a control port called the Register Interface, and via two Stream Data

ports for video data.

The processor has access to the hub via the stream interface, located at the top of the

diagram. Typically, a single stream processor card may contain up to two separate stream

processors each of which would require a separate stream port. Note that each processor

contains an input line and a separate output line. This accommodates single-phase opera-

tions in which processor simultaneously streams data in and out. Two-phase processors

contain memory to store the stream data while it is being processed, and are necessary

when the stream operation is long latency, or requires access to a set of values (e.g. matrix

multiplication).



The register interface is directly accessible from the i960 GPP on each P2 module. It

allows the i960 to configure the stream processor and update parameters. During normal

operation, this contains both status and control registers accessible to both the i960 and

any internal processor that may be on-board. Due to arbitration and the fact that the regis-

ter interface is only eight bits wide, transfer is slow. Thus, long data transfers should be

cached on board the stream processor and processed by the internal processor.

2.3 Organization of Thesis
This thesis describes the hardware and the software of the State Machine reconfig-

urable stream processor. The next chapter explains the hardware implementation. Chaper

4 describes the software environment in which applications run. Finally, Chaper 5 dis-

cusses State Machine applications.





Chapter 3
Hardware Implementation

In the previous chapter, we discussed the growing trend of closely coupling reconfig-

urable logic with a microprocessor, then illustrated how the Cheops Imaging System may

benefit from a stream processor with such a design. In this chapter, we discuss the hard-

ware implementation of the State Machine. It begins with explaining the design objectives

of the board, then discusses the major components of the board and how they meet those

constraints. After acquainting the reader with the main parts, board control is then dis-

cussed. Finally, we conclude this chapter with details on the flood interface by which the

State Machine has access to the stream data.

3.1 Design Objectives
The three major influences on the State Machine design were conformity to the

Cheops stream processor model, the ability to perform three different classes of operation,

and the processing power to provide a substantial improvement over current Cheops hard-

ware. These design objectives manifest themselves in both the determination of datapaths

as well as the selection of components.

The State Machine must fit within the general stream processor block diagram that

was discussed in the previous chapter. Thus, the i960 aboard the P2 must have direct

access to the State Machine in such a way that it may configure the card via this access.

This strongly affected the design of the PC603 bus, discussed below.

The second interface that was specified in the general stream processor description is

the flood interface. In order to take advantage of the two stream data ports per stream pro-

cessor card, the State Machine must be able to perform in three distinct classes of opera-



tion. It must be able to operate as two separate stream processors each using its own

stream port. Next, it must be able to function as a single stream processor with the option

of using one or both stream ports. Finally, the State Machine should be able to function as

two separate stream processors, but working in tandem. To meet the demands placed on

the board by these requirements, the State Machine was designed with two symmetrical

halves, each having an FPGA, an SRAM to support two-phase operation, as well as a

Look-Up Table SRAM to aid in computations. The two halves, named Boswell and

Johnson, can be seen in the State Machine block diagram below (Figure 3.1). Their com-

ponents are discussed in the Major Components section below.

The general stream processor model places restrictions on not only the datapaths, but

also the components themselves. A Cheops stream processor is a daughter card to the P2

processing board. As a result, all stream processors are subject to size restrictions so that

they may physically fit into the Cheops system. This limits the number of components that

may be on the board. Given that the State Machine will contain a microprocessor, and two

FPGAs, the board design becomes very dense. This makes heat dissipation and thus power

consumption a concern and affects the selection of the major components.

Another influence on component selection is the fact that the State Machine computa-

tional elements must provide substantial processing power. Since the i960 processor

aboard the P2 is integer-based, the State Machine must utilize a microprocessor the func-

tional units to complement the i960. In addition, to reduce the latency on stream opera-

tions, the microprocessor should have high instruction throughput. As described in more

detail in Section 3.2.1.1 below, the PowerPC603 is the best choice given these require-

ments.

Additional computational elements of the State Machine are the FPGAs. A simple

requirement for the FPGAs is that they must be in-circuit reconfigurable and have a fast



configuration clock speed to make real-time reconfiguration practical within Cheops. Fur-

ther, the FPGAs should have as high of a usable gate count as possible so that they may

realize more complex functions. This count is a function of not only the total number of

logic gates available, but also of the percentage of utilization. In turn, this percentage of

utilization increases with better internal FPGA routing resources. As will be explained

below in Figure 3.2.1.2, given these parameters, the AT&T ORCA FPGAs were a good

choice

Finally the computational power of the State Machine can be augmented by the ability

to cache functionality descriptions on-board. This allows the 603 to handle FPGA config-

uration, leaving the i960 to perform other tasks. As a result, the program memory for the

603 should be large enough to fit not only executable code, but also, configuration bit-

streams for the FPGAs

3.2 Major Components
Now that the design objectives have been discussed, we turn to a discussion of the

major components of the State Machine to explain how they meet those requirements. In

addition, details are given of each component to lay down background information for

mechanisms explained later. The following section is divided into processing elements,

storage elements, and interconnection elements.

3.2.1 Processing Elements

The processing elements aboard the State Machine consist of a general purpose pro-

cessor (GPP) as well as reconfigurable logic. The reconfigurable logic consists of not only



field programmable gate arrays, but also of SRAM Look-Up Tables which aid the FPGAs

in computations.
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Figure 3.1: State Machine Block Diagram

3.2.1.1 Power PC603 Microprocessor

The general purpose processor is realized by a PowerPC603, a state of the art RISC

microprocessor. It has 32-bit addressing and 64 bit data bus which will be run in the

optional 32-bit mode. The PowerPC family of processors was chosen for its superscalar

.



performance, as it is capable of issuing and retiring as many as three instructions per

clock. It supports out of order execution to maximize instruction throughput despite long-

latency operations such as bus transactions. The 603 implementation of the PowerPC

architecture has multiple execution units: an integer unit, a floating point unit, a branch

processing unit, a load-store unit, and a system register unit. The performance of these

units are described briefly below.[5]

The integer unit (IU) has a one cycle latency for most computations. The floating point

unit (FPU) has a longer latency, but is pipelined and issues up to one instruction per clock

cycle. The branch processing unit (BPU) performs static branch prediction and can often

process zero-cycle branches. The load/store unit (LSU) enforces in order issue and transla-

tion of load/store instructions, though the memory accesses may occur out-of-order. The

programmer may enforce strict ordering through the use of synchronizing instructions.

Finally the system register unit (SRU) performs system-level control instructions, such as

moves to and from special purpose registers.

Another advantageous feature of the 603 is its low-power consumption. It is capable of

four power-saving modes as well as dynamic power management. The first power saving

mode is sleep mode where all of the functioning units are powered down. Nap mode is

where all of the functioning units are powered down except for the time base and decre-

menter units. Doze mode maintains data cache coherency as well as the time base and dec-

rementer units. The 603 can exit nap or doze mode by implementing a time-out in the

decrementer. The final power mode is of course full-power mode, where everything in the

603 is powered up. Dynamic power management (DPM) automatically powers down

unused execution units. Since CMOS circuits consume negligible power when not switch-

ing, the execution units can be turned off by withholding the clock signal. To power on the

execution unit, the 603 would just enable the clock signal, making power-up time of an



execution unit negligible. Thus, DPM operates transparently from software and external

hardware.

An added benefit of the 603 is its memory address translation facilities which will be

used to provide flexibility in relocating application code. In particular, block address trans-

lation (BAT) will be used to translate the effective addresses of the application code to the

correct physical address. This allows the application code to be compiled to effective

addresses starting with zero, regardless of the code location in physical memory. In addi-

tion to translation, the BAT facilities will also provide memory protection for the operat-

ing system.

3.2.1.2 AT&T Optimized Reconfigurable Cell Array (ORCA) Field
Programmable Gate Array

The reconfigurable logic of the State Machine board will be realized by a pair of

AT&T 2c40 ORCA field programmable gate arrays (FPGAs). The ORCAs represent the

state of the art in FPGAs at the time of the board construction. Some of the industry stan-

dard features of the ORCAs are the 0.5 micron CMOS process technology, low power

consumption, and high-frequency system clock operation (33Mhz-80Mhz). What distin-

guishes the AT&T ORCAs over other FPGAs is its higher usable gate count. At the time

of board construction, the ORCAs boasted the highest gate count of 40,000 logic gates. In

such a large die size, routing resources become even more critical to overcome increased

propagation delay. However, the ORCAs' routing resources are also better designed than

those of other FPGAs. A more detailed discussion of the ORCA architecture is as follows.

The ORCA architecture consists of an array of programmable logic cells (PLCs)

which realize the logic with programmable input/output cells (PICs) around the perimeter.

The ORCA 2c series divides the PLC array into four equal quadrants. Each quadrant is

arranged into blocks of 4x4 PLCs, called sub-quad arrays.
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Figure 3.2: Simplified PFU Diagram

Each PLC consists of a programmable function unit (PFU) and internal routing

resources. As can be seen in Figure 3.2, a PFU consists of four look-up tables (LUTs) and

four latches/flip-flops for logic implementation. The LUTs realize the combinatorial logic

and can be configured to operate in one of three modes (Combinatorial logic mode, ripple

mode, memory mode). The latches/flip-flops realize the sequential logic. They can func-

tion as positive or negative level sensitive latches, or positive or negative edge-triggered

flip-flops. Their input may come from either directly from PFU input or from the LUT.

The flip-flops themselves can operate in different modes to realize synchronous/asynchro-

nous, inverted/noninverted, or purely combinatorial logic. To speed up signals which feed

external logic, the outputs of the FFs feed directly to the I/O pads for each PLC that is

adjacent to a PIC.



The PICs consist of I/O buffers to interface with bond pads as well as routing

resources to connect bond pads to/from PLCs. Although PICs have no user-definable reg-

ister logic they do have direct pathways to the nearest PLC registers. This gives the

ORCAs more versatility for over Altera FLEX architecture which have dedicated input/

output registers which cannot be used for any other function.

The routing resources of the ORCA FPGAs are implemented on various levels. Rout-

ing resources consist of switching circuitry and metal interconnect segments. The switch-

ing circuitry connects the metal interconnects, and provide either signal switching,

amplification, or isolation. The ORCA routing resources are symmetric in vertical and

horizontal directions, and can be classified into different levels of scope.

Within each PCL, intra-PLC routing resources are used to connect the inputs and out-

puts of the PFU to and from the PLCs. Inter-PLC routing resources are used to route

between PLCs. The 2C40 model of ORCAs has added sub-quad routing resources as well.

These routing resources stay within the bounds of the PLC 4-by-4 arrays, and are used to

increase routing of the longer inter-PLC routing resources. The inter-quad routing

resources are designed to connect PLCs in different quadrants, but particularly in non-

adjacent quadrants. As mentioned above, PIC routing connect the bond pads to and from

the PLCs and are designed to route nibble-wide data efficiently.

The metal interconnects or R-nodes, occur in different lengths. For example, inter-

PLC R-nodes (metal interconnects) can occur in four types which differ in their lengths:

xl, which spans one PLC; x4, spans four PLCs; xH, spans half the length/height of a PLC

array; xL which spans the full length/height of the PLC array. In each PLC there are 16 xl

R-nodes (8 vertical, 8 horizontal), four sets of 4 x4 R-nodes 8 xL R-nodes (4 vertical, 4

horizontal) four horizontal and four vertical xH R-nodes run in each column and row of



the a PLC array. The R-nodes are connected by either configurable interconnect points

(CIPs) or by bidirectional buffers.

The varying lengths of R-nodes provide another advantage over other FPGAs such as

the Altera FLEX 8000 architecture. The FLEXes metal connections, called FastTrack

Interconnects run the entire length of the device. While it saves time by avoiding switch-

ing circuits, it reduces the number of signals which can use this interconnect. That is,

while the ORCAs can route many local signals through their shorter length R-nodes, the

FLEXes can only route one signal through their FastTrack's regardless of the length of

path.

Another advantage that the ORCAs have is the routability of clock and global signals.

In order to provide a fast and low-skew clock or other global routing, dedicated clock R-

nodes are provided. They run the entire length of the PLC and run two horizontal/vertical

R-nodes per column/row. This increases routability of clock signal to the point that any of

the I/O pins may serve as the clock input without significant clock skew.

As is common in many modem FPGAs, the ORCAs can be reconfigured in-circuit by

a microprocessor. During configuration, the FPGA latches in configuration data which

specifies its logical behavior. Specifically, the ORCAs will be configured in Synchronous

Peripheral mode. In this mode, an external device must generate a configuration clock

which the ORCA uses to serialize byte-wide configuration data. Every eight clock cycles,

the microprocessor must drive a new configuration byte to the ORCA. The configuration

clock is generated by the Register Interface, described below. Synchronization between

the configuring microprocessor and the configuration clock is performed by the bus con-

troller.

3.2.1.1 SRAM Look Up Tables (LUTs) 64Kbyte by 18bits



In addition to the ORCAs, the SRAM Look-Up Tables, or LUTs, realize a form of

reconfigurable logic in that they can too can be reprogrammed to realize combinatorial

logic. During stream data computations, the LUTs provide a one-to-one mapping for

stream data coming in from the hub. The LUTs are realized by NEC UPD4310181e-15

SRAM which has just a 15 nanosecond access time. It is fully programmed by either the

603 or the i960 and can be read by the its dedicated ORCA.

3.2.2 Storage Elements

The major storage elements aboard the State Machine are three SRAM modules of one

megabyte each. These are used to store program code, FPGA configuration data, as well as

stream data and are described below.

Base Address in
PC603 Address
Space
0x0010_0000

0x00000

0x03000

Ox 10000

0x20000
Ox40000

0x60000

0x80000

OxA0000

OxC0000

OxD0000

OxE0000

OxF0000
Offset from
base address

Exception Table

Operating System

Ramlog Header

Ramlog space

Program Slot #1

Program Slot #2

Program Slot #3

Program Slot #4

Program Slot #5

FPGA Config
)- -ata Slo7t# -

FPGA Config _
Data Slot #2

Figure 3.3: Page 0 SRAM memory space



3.2.2.1 PageO SRAM

The Page 0 SRAM holds both 603 code, and ORCA configuration information. It is

accessible by both the 603 and the i960. The 603 may access the SRAM in burst transfers

which it typically uses in instruction cache line fills. The i960 writes the code and configu-

ration information during WRITE board mode. The SRAM is partitioned by the 603 BAT

facilities into 128 Kbyte slots as follows:

The first slot is reserved for the operating system, and can only be accessed while in

supervisor level. The next six slots are used for storing application code. The last two slots

are reserved for caching FPGA configuration data.

3.2.2.2 Boswell/Johnson SRAM

The Boswell and Johnson SRAM hold stream data flooded in through their respective

FPGA. These SRAM are accessible from the 603 as well, allowing the microprocessor to

perform operations on the stream data. Both the ORCA and the 603 may access the

SRAM in byte, short (two bytes), and word (four bytes) lengths. The 603 may access the

Boswell and Johnson SRAMs in burst transfers as well for data cache line fills.

3.2.3 Interconnections and Communications

3.2.3.1 PC603 bus

The PC603 bus is the main bus of both the PowerPC603 and the i960. It connects both

the 603 and the i960 to the Page 0 SRAM (program memory) as well as the Register inter-

face. In addition, it allows access to both the Boswell and Johnson busses, described

below.

The PC603 data bus is 32-bits wide to accommodate the 32-bit architecture of the

PowerPC. In order for the i960 to access this bus through the eight-bit register interface,



data bus exchangers are used to align bytes of the i960 bus within the 32-bit wide 603 data

bus. The width of the address bus was determined by the 603 as well. The 603 is operating

in 32-bit addressing mode with the upper-order address bits used to select devices on the

board. The remaining lower-order address bits are used to drive the 20-bit wide PC603

address bus. Since the i960 can only assert 16 address lines, the remaining four upper-

order address bits are asserted by the page register in the register interface whenever the

i960 is driving the bus.

3.2.3.2 Boswell/Johnson bus

The Boswell and Johnson busses are symmetrical to each other and primarily connect

each FPGA to its respective stream data SRAM. In addition, the Look Up Table SRAM

may also be written through bus. This bus interfaces with the PC603 bus, and allows the

PC603 to access the stream data SRAM and to configure the FPGA as well as program the

LUTs. Configuration and LUT programming from the i960 is also supported. Note that the

Boswell and the Johnson address busses may drive each other when the two FPGAs are

working in tandem.

3.2.3.3 Intra-FPGA bus

The IntraFPGA bus is a 52-bit wide connection which directly connects the Boswell

and Johnson ORCAs. This bus is meant to be used in applications where the two ORCAs

are working together to realize a single, large function. Depending on the specific applica-

tion, the ORCAs may pass signals such as data bits, state bits, or handshake signals.

3.2.3.4 Transfer Sizes

While the i960 is only capable of single beat transfers of 8-bits wide, the 603 is capa-

ble of initiating single-beat, two-beat, or burst (eight-beat) transfers. Within a single-beat

transfer, the 603 may initiate one, two, three, or four-byte wide transactions. The 603 uses



burst mode transfers for cache line fills. In this mode, the 603 negotiates for the address

and data busses once for eight beats of data transfer, thus reducing arbitration overhead.

The addresses must be generated external to the 603 as described below in Section 3.3.5.1

The design does not support 2-beat transfers which are only used for a double-word

aligned load- or store-double operation to or from the floating-point GPRs. This decision

was made to simplify the bus controller logic. To cancel any 2-beat transactions that the

603 starts, the bus controller asserts /TEA which will cause a machine check exception

The ORCAs may initiate virtually any length transfer. Once it is granted its bus, the

Boswell or Johnson ORCA may retain the bus by asserting the BUSLOCK signal. This

was designed to allow long transactions to the stream data SRAM during flood transfers.

As with the Page 0 SRAM, the Boswell and Johnson SRAM MARs support one, two,

three, and four-byte wide transactions.

3.3 Board Control
Thus far, we have discussed the computational components, memory components as well

as the data paths. In this section, we discuss the board control devices which keep track of

board state as well as control bus transactions.In addition, we explain the hand-shake pro-

tocols that are available to the 603.

3.3.4 Register Interface

The register interface is an EPLD with registers for board control, and returning board

status. It is accessible by both the i960 and the 603, and whose address space is described

below.



i960 603 address
address (binary) Meaning

(binary)(binary)

00000 00011 State Register (read only)

10001 10011 General Purpose Register (read/write)

01010 01011 LPI interrupt

11011 11011 LP to State Machine Interrupt

00100 00111 Bus Priority Register (write only)

10101 10111 Helper/Configuration Register (write only)

01110 01111 FPGA interrupt store

11111 11111 Page Register (write only)

Table 3.1: Register Interface Address Space

3.3.4.1 State Register

The status register is readable by both the i960 and the 603, and returns status bits bout

the State Machine board.Together, start mode bit and the configuration mode bit determine

the board mode. The settings are described below. Note that the board mode values in this

Register Bit Meaning

Q1 Board Config Mode

Q2 Board Start Mode

Q3 Boswell Configuration Done Signal

Q4 Boswell /INIT signal

Q5 Johnson Configuration Done Signal

Q6 Johnson /INIT signal

Q7 Configuration Clock Enable

Q8 Configuration Synchronization Clock

Table 3.2: State Register



register are read only. They are a mirror of the writable values found in the bus priority

register, below. The Boswell/Johnson /INIT signal is used to detect bit stream errors in the

configuration data. The Boswell/Johnson Configuration Done indicates when configura-

tion for the FPGA has completed. When the FPGA has been configured, and is running,

then both conf_done and nstatus (/init) should be driven high by the FPGA. Thus, the con-

figuration master may detect successful configuration by monitoring these bits. The con-

figuration clock is used by the ORCAs during configuration mode. The configuration sync

signal (csync) is used to tell the bus controller when a new configuration byte may be writ-

ten to the FPGA(s). (By the ORCA specs a new configuration byte must be written to the

FPGA every eight configuration clock cycles.)

3.3.4.1 General Purpose (GP) Register

This register is used mainly to facilitate communications between the i960 and the

pc603. Both the 603 and the P2's i960 may read and write the general purpose register.

The GP register provides a means to pass byte sized values between the two processors.

3.3.4.2 LPI interrupt

This bit allows the State Machine to interrupt the i960. This has been designed to

allow the 603 to notify the resource manager when a stream computation is complete.

3.3.4.3 LP SMI interrupt

This bit allows the i960 to interrupt the 603 to request a service. Supported services are

to run a 603 application in a specific application code slot, and to configure the Boswell

and/or Johnson ORCA.

3.3.4.4 Bus Priority Register

The bus priority register is used by the bus controller during bus arbitration. Each of

the priority bits determine which device may own the bus when the bus is requested simul-



taneously by more than one device. In addition to priority bits, the board mode bits are

also used by the bus controller.

Table 3.3: Bus Priority Register

3.3.4.1 Helper/Configuration Register

The Configuration Register holds bits which help control configuration of the FPGAs.

In addition, the Boswell and Johnson LUT chip selects are on this register, but their out-

puts are enabled whenever the i960 is driving the 603 data bus. (That is bits Q4 and Q5 are

driven whenever the page register is driving.)

The ORCA configuration clock enable bit starts the configuration clock. This should

only be activated during configuration of the ORCAs, after the /INIT bits have gone high.

The Boswell or Johnson Configuration start bits should be strobed low to start configura-

tion or reconfiguration of the FPGAs. Alternatively, if these bits are kept low, then the

FPGAs are held in reset. The Boswell or Johnson look up table chip select bits may be

considered an extension of the page register. They are used as chip selects when writing

Register Bit Meaning

Q1 Boswell Priority bit (Boswell ORCA/603)

Q2 Johnson Priority bit (Johnson ORCA/603

Q3 PC603 bus priority bit (603/i960) (Direct to i960
data bus)

Q4 board config mode bit

Q5 board start mode bit

Q6 i960 accessible /HRESET to 603
(Direct to i960 data bus)

Q7 Unused

Q8 Unused



the LUTs. The Configuration Master bit

configure the ORCAs.

(603/LP) specifies which microprocessor may

Table 3.4: Helper/Configuration Register

3.3.4.1 FPGA interrupt Store

This address stores the values of the Boswell and Johnson interrupts to the 603. When

the 603 receives an external interrupt, this register is polled to discover which ORCA sent

the interrupt. The meaning of the values are as follows:

Ox01 - Boswell ORCA interrupt is active

0x02 - Johnson ORCA interrupt is active

0x03 - Both Boswell and Johnson ORCA interrupts are active

3.3.4.2 Page Register

Since only 16 bits of the i960's address bus is brought into the register interface and

the PC603data bus is 23 bits wide, this register must drive the upper order address bits,

Register Bit Meaning

Q1 ORCA configuration clock
enable bit

Q2 Boswell ORCA configura-
tion start bit

Q3 Johnson ORCA configura-
tion start bit

Q4 Boswell Look Up Table
Chip Select

Q5 Johnson Look Up Table
Chip Select

Q6 Configuration Master bit

Q7 Unused

Q8 Unused



providing a means of paging. In addition, this register allows i960 accesses to assert chip

selects to certain devices. The Boswell and Johnson ORCA select are used as chip selects

when reading or writing registers on the ORCA FPGAs. This may be for such purposes as

flood parameter passing, or stream parameter passing.The Page 0 SRAM select bit is used

I
Table 3.5: Page Register

when reading or writing the Page 0 SRAM. The last four bits of the Page Register are

the upper order address bits of the 603 address bus.

3.3.5 Bus Controller

If the 603 is the brains of the State Machine, then the bus controller is the heart of the

board. Its functions can be divided into two main groups, namely arbitration, and transfer

timing control.

3.3.5.1 Arbitration

The bus controller is responsible for arbitrating between bus masters for each of the

three busses on the State Machine board. Each of the busses have two possible bus mas-

ters, and it is the responsibility of the bus controller to control ownership of each bus. For

the 603 bus, either the 603 or the i960 via the register interface may own the address and

Register Bit Meaning

Q1 Unused

Q2 Boswell ORCA Select

Q3 Johnson ORCA Select

Q4 Page 0 SRAM Select

Q5 PC603 Address Bus Bit 16

Q6 PC603 Address Bus Bit 17

Q7 PC603 Address Bus Bit 18

Q8 PC603 Address Bus Bit 19



data busses. However, the current state of the board may dictate that only certain transac-

tions should be allowed. To help simplify control in the Bus controller of the State

Mode Encoding
<startbit, config bit>

0,0 Idle

0,1 Write

1,0 Config

1,1 Normal

Table 3.6: Board Modes

Machine, there are four board modes for the State Machine: Idle, Write, Config, and Nor-

mal modes.

During Idle mode, the State Machine initiates no activity. The only transfers supported

are P2 i960 accesses to the register interface, to change the board mode. This is the default

mode of the State Machine after power-up, and after a system reset. It ensures that the

board initiates no activity until the P2 board brings it out of Idle Mode

During Write mode, the i960 on the P2 may write to registers on Register Interface,

write to the Page 0 SRAM to download 603 code, and optionally ORCA configuration

data, and program both the Boswell and Johnson SRAM Look-Up Tables (LUTs). This is

the only mode in which the i960 has full access to the State Machine (e.g. the Boswell and

Johnson busses). That is, the i960 may set values in the register interface, write to the

PAGE 0 swam, write values to registers in the ORCAs, and program the LUTs. Here, the

603 is either in /HRESET, or all of its transfers are stalled in this mode to ensure that the

i960 has full access.



When the State Machine is in Configuration mode, the 603 is brought out of Hard

Reset (See special note on 603 /HRESET in Appendix B.1.) This is the mode in which

either the 603 or the i960 configures the FPGAs. If the i960 is the Configuration Master

(as determined by a bit in Register interface), then it has the same access privileges as in

WRITE MODE. If it is not the Configuration Master, then the i960 only has access to the

Register Interface, and the PAGEO SRAM. If the 603 is the Configuration Master, then it

has access to the register interface, the Page 0 SRAM, and the boswell and johnson busses.

Otherwise, all of its transactions are stalled until the State Machine is brought out of con-

figuration mode.

Finally, during Normal mode, the State Machine is in full operation. The 603 has full

access to the 603 and Boswell/Johnson busses. The i960 only has access to the register

interface so that is may change the board mode, or check board status.

The above board modes help determine which transactions may be made in different

states of the board. These are used in the arbitration mechanism All of the bus masters of

the State Machine follow a general arbitration sequence to obtain the bus. This sequence

will be explained in the context of arbitration for the PC603 address bus. The simplified

equation that the bus controller uses to give a bus grant is as follows and is explained

below:

/BG = !(!/BR & !BB & (P1 # !<i960 requesting>)) (3.1)

In the above equation, /BG is the bus grant signal. The /BR term refers to the bus

request signal asserted by a potential bus master. The /BB signal specifies when the bus is

busy and is asserted by a bus master whenever it is driving the bus. The P1 signal is a pri-

ority bit as described under the register interface section. The term '<i960 requesting>'

signifies that the i960 is requesting the bus. (The actual terms are more than a simple sig-



nal and are explained below.) The 603 initiates arbitration for possession of the address

bus by asserting a bus request bit (/BR) to the bus controller. If the bus busy (BB) signal is

not asserted and either the 603 has bus priority or does not have priority but the i960 is not

simultaneously requesting the bus, then the 603 receives the bus grant. Arbitration for the

Boswell and Johnson busses follow the same general scheme as above.

For the full version of the equation above, extra logic terms are added for board mode

restrictions. (The equation is expanded as per DeMorgan's rule for reasons of illustration.)

/BG = !(!/BR & !BB & (P1 # !<i960 requesting>) & ((strt & confst) # (strt & !confst &
Conf_master))) (3.2)

The first term of the added section specifies that the /BG may be asserted while in

NORMAL mode. The second term specifies that the /BG may only be asserted during

CONFIG mode is the 603 is the configuration master.

Note that for the PC603 bus, the above arbitration scheme is separated for the address

and data busses. This is to accommodate the 603's ability to initiate split-phase bus trans-

actions. Thus, the address and data tenures need to coincide for the PC603 bus. Although

the above example explains the PC603 address bus arbitration, the PC603 data bus uses a

similar mechanism. The use of split-bus transactions allows other bus activity to occur

between the address and data tenures.

As previously mentioned, the i960 requests the 603 bus in a slightly different way.

While the 603 microprocessor is designed for multi-processor systems, the i960 embedded

controller assumes that it has full possession of its busses. However, the State Machine

realizes an arbitration scheme by taking advantage of the i960's /READY signal which

can prolong an access when deasserted. When the i960 begins a transaction to the State

Machine, it asserts the /ADS timing signal and either the /CSO or the /CS 1 which the bus

controller interprets as a bus request from the i960 for the PC603 bus. Because there are



address and data latches between the PC603 bus and the i960's own bus, the State

Machine can keep the i960 from driving the PC603 bus by not asserting the drive signals

to these buffers. The bus controller prolongs the i960 transaction by deasserting the /

READY signal until the i960 is granted the bus. Once the bus is granted, the bus controller

waits a short period of time to allow the State machine board to service the transaction,

then asserts /READY active low to allow the i960 to terminate the transaction.

3.3.5.1 Transfer Timing Control

In addition to bus arbitration, the bus controller is also responsible for the transfer tim-

ing. Each type of transfer has a control finite state machine in the bus controller to control

the assertion of signals such as load and drive signals. For single-beat transfers, the timing

control is fairly simple. The bus controller ensures that the destination latches on to the

address and data bus values only when they are valid. Transfers are acknowledged once

the values are latched in.

More complex timing control is required for 603 burst transfers. The advantage of

burst transfers is that the arbitration overhead for multiple memory accesses are reduced

by grouping the accesses into a single transaction that accesses sequential addresses. Thus,

arbitration occurs only once, and the consecutive addresses must be generated externally

to the 603. For instruction fetches and other accesses to the Page 0 SRAM, the burst mode

counting is performed by the Page 0 Memory Address Register (MAR). This MAR con-

sists of address registers, as well an EPLD which performs the counting. The MAR loads

in the address generated by the 603, and the counter updates the low order address bits

during the burst transfer. Similarly, the Boswell and Johnson busses are capable of burst

mode transfers. For these busses, the counting is performed by PALCE22v10 programma-

ble array logic device, called the counters pal.



In addition to burst transfers, FPGA configuration requires complex timing control. As

explained in Section 3.2.1.2 above, a new configuration byte must be written to the FPGA

every eight configuration clock cycles. To help meet this timing requirement, the register

interface not only generates the configuration clock, but also a configuration synchroniza-

tion clock (CSYNC) which is one-eighth the frequency of the configuration clock. Thus,

the control FSM in the bus controller ensures that only one configuration byte is written

during a single CSYNC clock period. The exception is when both FPGAs are being con-

figured simultaneously. In this case, one Boswell configuration data byte is clocked in

when CSYNC is high, and one Johnson configuration date byte is clocked in when

CSYNC is low.

CCLK

I I I I I I '
CSYNC

CONF DATA -D

Figure 3.4: Configuration Timing Diagram

3.3.6 Control Protocol between the 603 and the i960

The Register Interface and the Page0 SRAM described above give the i960 and the

603 the means to pass data and have shared memory with each other. However, this is not

an efficient means of a semaphore. To realize a handshake protocol between the i960 and

the 603, each processor has a dedicated interrupt to each other.

3.3.6.1 i960 to 603 signal (SMI interrupt)

The i960 may interrupt the 603 to request a service. This is accomplished by enabling

the SMI interrupt bit in the Register Interface, causing the 603 to vector to the /SMI inter-



rupt handler. This handler code checks the value in the General Purpose to find the type of

service requested.

The 603 may acknowledge this interrupt by clearing the enable bit itself on the register

interface.

3.3.6.2 603 to i960 signal (LPI interrupt)

The 603 may interrupt the i960 to signal when it has completed a flood service. When

the 603 enables this bit, an interrupt signal (which is bussed with the other stream proces-

sor cards' signals) is generated to the i960. The i960 in turn polls each State Machine

installed to identify which board sent the interrupt. The i960 may then acknowledge the

interrupt by clearing the enable bit on the register interface.

The i960 also has direct access to HRESET and the PC603 bus priority bits. i.e. Writ-

ing to these bits does not require ownership of the PC603 bus.

3.3.7 Control Protocol between the 603 and the Boswell/

Johnson ORCAs

3.3.7.1 ORCA to 603 interrupt

The ORCAs need to be able to signal the 603 when it has completed a flood transfer.

Both the Boswell and the Johnson ORCA have interrupt signals which are wire ORed to

feed the EXTERNAL INTERRUPT pin on the 603. The 603 can then poll the register

interface FPGA interrupt store address to identify which ORCA interrupted it.

For applications in which the 603 performs computations on the stream data, this sig-

nal indicates to the 603 that it may begin. For applications in which only the FPGAs are

affecting the stream data, this signal indicates that the stream process has completed. At

his point, the 603 uses the LPI interrupt described above to signal completion of the com-

putation.



3.3.7.2 603 to ORCA interrupt acknowledge

The 603 may acknowledge the above interrupt by asserting the BINT_ACK or

JINT_ACK signals which are wired to high order address bits on the 603. For applications

involving the 603, this signals indicate to the ORCAs that the 603 has completed its com-

putations.

3.4 Flood Transfer Control Hardware
The above board control mechanisms provide the i960 with the means to read and

affect board status via the register interface. The flood interface complements that by pro-

viding the means to stream video data into and out of the State machine via the stream data

interface. Physically, it is realized in the FPGA logic.

The P2 processor board supplies a set of control signals to each of the stream proces-

sor to facilitate flood transfers. These signals describe stream data location and format as

well as provide timing information to the stream processor and are described below.

The stream interface receives three signals from the hub which are important during

the flood transfer. The first signal is called EHubclk. During flood transfers stream data

changes values relative to EHubclk. The next signal is Floodclk which is half the fre-

quency of EHubclk. This clock signal exists to accommodate slower P2 logic devices.

Finally, the three FloodOK signals are used to signify the start of a transfer. These signals

change relative to FloodClk.

As mentioned above, there are three FloodOK signals to allow simultaneous flood

transfers across the hub interface of the P2. Prior to any flood transfer, the State Machine

must be told which FloodOK channel to use along with other parameters to describe the

transfer size and addressing. The first such parameter is called the FloodOK Index and

specifies which of the three FloodOK timing signals to use. The next parameter is Flood



Delay. Due to latency of the different device involved in the flood transfer (e.g. other

stream processors, VRAM banks, the crosspoint switch) valid stream data would start

streaming into the State Machine a fixed number of EHubclk cycles after the FloodOK

signal goes active.

The next set of parameters help characterize the stream data as a two-dimensional

transfer such as rectangular video frame of data. Data is stored in the P2's VRAM in a

two-dimensional representation to reflect the rectangular frame, even though the VRAM

itself is inherently one-dimensional. To perform a stream process on a subset of that data,

the State Machine requires parameters to compute the physical address of the smaller

frame. The xsize parameter specifies the width of the frame, while the ysize parameter

specifies the length of the frame.The stride parameter specifies the width of the full frame.

Finally, the start parameter specifies the offset address of the sub-frame relative to the start

of full-frame.

stride

k ---------------

ysize-

Memory addresses
progress from left
to right, up to down

full frame of video data

= subset frame of data

Figure 3.5: Flood transfer parameters
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Using these parameters, the ORCAs can receive and send stream data to the hub side.

When combined the handshake signals described in Section 3.3.6 and Section 3.3.7, the

above signals allow the ORCAs to perform single-phase computations. To perform dual-

phase stream computations, the ORCA must use the flood interface along with the arbitra-

tion scheme from Section 3.3.5 to stream video data into the Boswell or Johnson SRAM.

The flood interface follows the general arbitration mechanism previously discussed with

one addition. Each of the ORCAs may assert a buslock signal to retain possession of the

its bus once it has been granted. This allows the ORCA to arbitrate once for the entire

flood transfer, thus reducing control overhead. With both the flood transfer interface and

the bus arbitration mechanism, the ORCAs may handle both single and dual-phase stream

operations.





Chapter 4
Software Environment

The previous chapter explained how the P2 can configure the board and how stream

data can move into and out of the State Machine. Further it describes the means by which

the State Machine computational elements may access and move data around the board.

However, the applications are what determine how the stream data is processed in the

State Machine. These applications are discussed in the next chapter, but first we must

describe the 603 software support for the applications.

The software environment of the State Machine is what allows applications to take

advantage of the computational abilities on-board. The first part of the software environ-

ment is the memory mapping which is used by both the operating system code and the

application code to write to and read from devices on board. The other part of the software

environment is the operating system. Another important aspect of the software environ-

ment is how 603 code, and in particular the operating system is compiled.

4.1 603 Memory Address Space
The following is a discussion of the 603 memory address space. An overview of the

entire memory space is first given, then specific parts of it are discussed.

4.1.1 603 Address Space

The 603 address space describes the way in which external devices appear to the 603

as addresses. In hardware, ten of the twelve high order address bits are wired to individual

logic controlling the chip enable of the each device. Thus, to select each device for read or



write the 603 would assert the appropriate address line active high. The comprehensive

memory map is shown in Figure 4.1 . In particular, notice that address OxFFFO_0100 is
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Figure 4.1: PC603 Memory Space

aliased to the Page 0 memory, because the PowerPC603 vectors to this physical

address to find the exception table. This aliasing is performed in firmware.
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Figure 4.2: Page 0 SRAM memory space

4.1.2 Page 0 SRAM

As described the previous chapter, the Page 0 SRAM is divided into 128Kbyte slots so

that the 603 Block Address Translation facilities may be used to provide not only memory

translation but also protection. The figure is repeated in Figure 4.2 for a better framework

in which to explain the operating system below.

4.1.3 Application code



Figure 4.3 memory map shows how each application code slot is organized. Each code

slot is 128 Kbyte large. As can be seen, the application code is compiled to effective

address zero, and grows down into the slot. Each application slot has its own stack space

Ox00000 Application
Code

-128Kbytes

Ox FFFF Stack Base

Offset from
beginning of
code slot

Figure 4.3: Application Memory Space

which starts at the bottom of the code slot, and grows up. Application code is further

discussed in the following chapter.

4.1.4 Configuration Code Slot

The configuration code slot holds bit-streams which determine the behavior of the

ORCAs. Since the configuration data for this particular model of the ORCA is 59,305

bytes long, so each configuration slot has enough room to hold two bit-stream files. Each

slot will contain data for both the Boswell and Johnson ORCAs. By convention, the

Boswell configuration data will exist in the lower 64Kbytes of a configuration slot, while

the Johnson version of the data will exist in the upper 64Kbyte. Typically the two configu-



ration files in a slot will implement the same algorithm. However, the State Machine is

versatile enough to allow different algorithms in the same code slot.
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Figure 4.4: Configuration Data Memory Space

4.2 Operating System
4.2.5 Design Objectives

The operating system (OS) for the State Machine has three main design requirements.

First, the operating system must be compact so that it may fit into the limited memory

space on board the State Machine. Second, the (OS) must be kept simple so that no extra

supporting hardware is required. Finally, it must be able to switch to application code

quickly and efficiently. With these design constraints in mind, the OS was design was kept

to the bare minimal functionality. The main tasks that the operating system may perform

may be divided into three categories: bootstrap code, interrupt handler code, and context

switching. The description of the operating system is followed by a discussion of the com-

piling and loading process.



4.2.6 Bootstrap Code

The Bootstrap Code is the first set of instructions that the PC603 executes upon com-

ing out of system reset or after power-up. This code writes to 603 internal configuration

registers to set up the proper running conditions, such as little-endian operation, power-

saving mode, enabling of caching and of address translation. Also, this code may run

power-on diagnostic tests, and initialize structures (e.g. ramlogging, address translation)

The 603 is native big-endian, and therefore boots up in big endian mode. However, the

i960 and therefore the stream data is native little-endian. Therefore, the first task that the

bootstrap code must perform is to change the 603 to little endian operation. This may be

done by modifying a 603 special purpose register, called the Machine State Register

(MSR). However, because the 603 supports pipelined and out-of-order execution, a syn-

chronizing instruction must be used to ensure that all big-endian code is executed before

switching to little-endian mode. We take advantage of the PowerPC instruction 'return

from interrupt' (RFI) to perform the update of the MSR itself, synchronization, as well as

branching to a new address. (For more details on the RFI instruction, the reader is referred

to reference [16].) Note that the instructions of the bootstrap code up to and including the

RFI must be compiled in big-endian, while the rest of the code should be in little endian.

Details of compilation are discussed later in Section 4.3. Once the 603 has changed endi-

anness, it can continue the bootstrap code.

The following is a software description of power-on sequences for the 603. The 603

code changes to little endian mode, and branch to the actual bootstrap code. Here,

dynamic power management is enabled to allow power-saving. Next, the 603 initializes

the BAT registers and enables address and data memory translation, The 603 enables



address and data caching, and zeroes the time base. Finally, the 603 vectors to the main

code where it sits in a loop until a service request is made.

4.2.7 Exception handling

The PowerPC exception handling facilities allow the 603 to automatically change to.

Exception Physical Address of Handler

Reserved OxFFFO_0000

System Reset OxFFFO_0100

Machine check OxFFFO_0200

Data access OxFFFO 0300

Instruction Access OxFFFO 0400

External Interrupt OxFFFO_0500

Alignment OxFFFO 0600

Program OxFFFO_0700

Floating-point unavailable OxFFFO 0800

Decrementer OxFFFO_0900

Reserved OxFFFO_OA00 - OxFFFO_ BOO

System call OxFFFO_OCOO

Trace OxFFFO ODOO

Reserved OxFFFOOEOO

Reserved OxFFFO OE10 - OxFFFO OFFF

Instruction Translation miss OxFFFO_1000

Data load translation miss OxFFFO_1100

Data store translation miss OxFFFO_1200

Instruction address breakpoint OxFFFO 1300

System Management Interrupt OxFFFO_1400

Reserved OxFFFO 1500 - OxFFFO_2FFF

Table 4.1: Exceptions



supervisor mode to handle exceptions. When the 603 encounters an external interrupt,

internal error or other deviation from normal operation, it vectors to a specific hardware

address based on the causing influence. Although different conditions may cause the 603

to vector to the same interrupt handler address, the PowerPC architecture has special pur-

pose registers that the handler may access to identify the cause of the exception. In addi-

tion, the critical processor state bits are saved to Status Save/Restore registers (SRRO and

SRR1) and are restored when returning from the interrupt handler. The above table lists all

of the possible exceptions that the 603 may receive as well as the physical address of the

interrupt handlers. Handlers which are important to the operation of the State Machine are

described below.

4.2.7.1 System Reset/Power-Up Handler

The system reset handler is the code that the 603 vectors to after power-up as well as

after a system reset. After either of those causing conditions, the 603 reverts to its native

big-endian operation, regardless of the exception endianness setting. The code in the han-

dler is itself trivial, as it simply changes the board to little endian mode then vectors to the

boot strap code. The 603 then proceeds as described above in Section 4.2.6.

4.2.7.2 System Management (i960 to 603) Interrupt handler

The system management interrupt (/SMI) interrupt is used to implement a service

request from the i960 processor. The i960 writes a command byte to the GP register in the

Register IF, then interrupts the 603 via the /SMI signal to signal that it is requesting a ser-

vice from the 603. When the 603 receives the interrupt, then it will vector to the SMI inter-

rupt handler in the table (address OxFFFO_1400). Depending on the command byte, the



603 will vector to a different service. Services that are currently supported are listed in

Table 4.2 below.

Command Byte Macro Command Meaning

SLOT1 Run Code in Application Slot #1

SLOT2 Run Code in Application Slot #2

SLOT3 Run Code in Application Slot #3

SLOT4 Run Code in Application Slot #4

SLOT5 Run Code in Application Slot #5

SLOT6 Run Code in Application Slot #6

Table 4.2: i960 Service Request Command Bytes

For each of the above services, the i960 needs to have written a code segment in the

appropriate code slot. The interrupt handler then performs a context switch which consists

of the following steps.

The operating system must retrieve the parameter-passing structure (described below)

from the application slot stack, and place the parameters into the general purpose registers,

where the application code will retrieve them. (The cross-compiler used for applications

determines that the application code will retrieve its arguments from the 603 general pur-

pose register number three.) Once the parameters are ready, the 603 programs the IBAT

registers such that they map the effective address (EA) of the application code (whose

range starts with address 0) to the correct physical address (i.e. remapping the EA to the

correct process slot).

Finally, the interrupt handler issues an RFI command to jump to the correct process

slot and change back to user-level operation.



4.2.7.1 External (ORCA) Interrupt Handler

The external interrupt provides the ORCAs a direct signal to the 603. Either the

Boswell or the Johnson FPGA may assert the external interrupt. The handler for interrupt

from ORCA FPGAs must poll interrupt store address on register interface. Depending on

that value, the interrupt handler will update a global variable in software to signify that the

interrupt has been received. Typically, the 603 will have been running code in one of the

applications slots, and this global value will allow the program to proceed. For more

details, on application code, see Chaper 5. After the interrupt handler has updated this glo-

bal variable, it will restore the previously running code.

4.2.8 RAMLOG

Ramlogging is a Cheops system-wide means of debugging by 'printing' a tokenized

log into RAM. The State Machine will utilize ramlogging slightly differently. Here, ram-

logging provides a of means message-passing from the State Machine to the P2 board. A

ramlog consists of a circular queue in memory with head and tail pointers in the Ramlog

header. When a value is added to the queue by the 603 on the State Machine, the head

pointer is advanced. The i960 of the P2 periodically checks the head and tail pointers of

the ramlog. If the two pointers do not match, then the i960 pops values off of the circular

queue, and then advances the tail pointer. If the 603 fills the entire circular queue and runs

out of space, it overwrites the least recent value in the queue.

4.2.9 Context Switching

Context switching is performed as a result of a service request from the i960. During

this context switch, parameters for the application code must be passed from the i960 to

the 603. The following two sections describe the parameter passing structure and mecha-

nism. The third section then explains the context switching itself.



4.2.9.1 Parameter Passing Structure

The parameter passing structure was designed with the three following requirements in

mind. First, in order to allow translation from i960 data types to the native representation

of the stream processor, the parameters should be tagged with the type. Second, the

Tag Data

Type Size byte 0 byte 1 byte 2

Address Addnows

Figure 4.5: .Parameter Word

parameter structure should allow large and different size parameters to be passed.

Finally, the parameter structure should be compact to reduce the parameter download

overhead time. These requirements strongly suggest a tagged variable length parameter-

structure to describe each parameter. This structure is shown above in Figure 4.5.As can.

Tag ID Parameter Type Description

0 unsigned Integer integer values one to sixteen bytes long.
also used for bit fields

1 signed integer two's complement integer one to sixteen
bytes long

2 floating point IFFF floating point standard, the size
parameter specifies the precision

3 boolean false again the parameter type encodes the data

4 boolean true again the parameter type encodes the data

5 shared memory ID id for accessing large of persistent data
objects

6 tagged shared memory ID id for accessing large or persistent data
objects which are aggregates of dissimilar
data objects.



Table 4.3: Parameter Types
be seen above, the first nibble specifies the parameter tag and the second nibble speci-

fies the size of each parameter in number of bytes. The list of possible parameter types are

explained above in Table 4.3. To allow multiple parameters to be passed, a parameter list

will be used. This list structure, as shown below in Figure 4.6, consists of a size byte

which specifies the number parameters, followed by a linked list of the parameters them-

selves.

List Size Parameter Words

E_ I t-af W8- tag

Addni Addnma

Figure 4.6: Parameter Structure

4.2.9.1 Parameter Passing Mechanism

The above sections described the parameter passing describe how the parameters are

stored in a generic structure. This section describes how this structure is used to pass val-

ues to the State Machine for running application code. This process can be divided into

two parts: the i960 side, and the 603 side.

The i960 takes the parameters to be fed to the State Machine application and packages

it into the parameter structure described above. It then writes this parameter structure into

the stack structure of the appropriate application code slot.

On the 603 side, the context switching code extracts the parameter structure from the

stack structure. From here the 603 extracts the parameters out of parameter structure and

places them into the 603 GP registers. (The gcc compiler implemented for State Machine

applications expects application parameters to be found in the 603 internal General Pur-



pose Registers, starting with GPreg3.) For larger structures which will not fit entirely in a

GP register, a pointer is to the full parameter in memory is placed into the 603 GP register

instead.

4.2.9.2 Context Switching

The previous two sections described the parameter passing structure and mechanism.

Here we explain how they are used in the context of context switching. Recall that context

switching is used by the operating system to have the 603 vector to user application code.

Because each application executable is compiled to effective address zero, the BAT regis-

ters must be reprogrammed to translate application code effective addresses to the correct

code slot in the page 0 SRAM. In addition, the permission of the processor should change

to user-level execution. Finally, the 603 should issue the RFI command to synchronize

instructions, allow the address translation and permission changes to take affect, and

branch to the application code.

4.3 Compiling the Operating System
A preliminary cross-compiler has been constructed to run on the RS6000's Since the

603 is native big-endian, the first instructions that it sees upon power-up/hard reset must

be in big endian. (The State machine itself is little endian since the rest of Cheops is little-

endian.) This means that the first command in the exception table offset Ox00100 should

write to the MSR register to set bit 31 to 1. (See [16].pg. 2-23 for MSR bit settings.) These

commands which change the endianness must therefore be in big-endian themselves.

The PowerPC 603's version of Little Endian bears further explanation. Upon power-

up, the 603 is in big-endian mode. Changing the endianness (See [16], pg.2-43 for the

code segment to do this.) means changing the byte order as if the 603 were running in 64-

bit mode. Since we are running in 32-bit mode, this leads to a peculiar addressing scheme:



The 603 recognizes that single beat fetches of instructions occur in word lengths.

Thus, the bytes of the instruction are not reordered. However, every other instruction

should be swapped. That is, given the following instruction code:

Ox00100 ABCD
0x00104 EFGH
0x00108 IJKL
OxO010c MNOP

where the letters A,B,...,P are used to specify bytes, the instruction fetch unit would

access in the order:

Ox00104 EFGH
Ox00100 ABCD
OxO010c MNOP
0x00108 IJKL

This is equivalent to exclusive-ORing the address with 0x07 and zeroing out the lower

order bits because of the access size. That is, word accesses will have the third lowest

order address bit XORed and the two lowest order address bits zeroed out. Short accesses

XOR the second and third lowest address bits and zero out the first. Finally, byte sized

accesses simply XOR all three lowest order address bits.

Since the bulk of the code will be downloaded in little-endian, this addressing scheme

plus the fact that the 603 will boot in big-endian mode make it necessary to reorder the

instruction words in the big endian section.



Chapter 5
State Machine Applications

Now that the hardware implementation and the software environment have been

described, the discussion can finally turn towards State Machine applications. As the

board has three computational devices on-board, namely the 603 and the two ORCAs,

there is the opportunity to use these resources in different ways. This gives rise to the

application types, which will be discussed first. After we have identified the kinds of appli-

cations, we cover the application programs themselves.

5.1 State Machine Application Types
State Machine applications consist of a software executable as well as a hardware

description for the ORCA(s). Although all applications consist both software and hard-

ware descriptions, they can be classified into three groups which differ in the role that

these descriptions play.

The first application class is an FPGA-only function is probably the simplest. The 603

does not contribute to computation in this type of application, but does help communicate

the progress of computation to the i960. Computations such as bit-swapping or sample-fil-

tering can be performed by one of the FPGAs and the pre-programmed SRAM LUTs.

The second application is where the two FPGAs are working in tandem. A 52-bit bus

directly connects the two FPGAs and may be used for passing not only data address val-

ues, but also handshake control signals. In addition, each FPGA may drive the address bus

of the other FPGAs SRAM.

The third type of application is where the 603 is used to perform stream computations.

In the simplest example of this type of application, the 603 performs all of the computa-



tions on the stream data, and the FPGA functions as a flood-controller to stream video data

into and out of the SRAM.

5.2 Application Descriptions
5.2.0.1 603 Application programs

As mentioned above, a State Machine application consists of both a software program

and a hardware description for the ORCA(s). The software component is written in very

simple C code. Since the 603 is serving as an embedded controller, it has no direct access

to a file system, nor to standard input/output.Thus, commands such as fopen, fread, printf,

and scanf are not supported for the state machine. Instead the 603 utilizes the Ramlog

message passing scheme (See Section 4.2.8) to communicate with the external environ-

ment. To invoke reading and writing to the 603 memory space described in Section 4.1.1,

the application code will use C pointer syntax.

Example 603 application code pseudocode
The following is a pseudocode description of how a 603 application would progress:

I
while (!GLOBAL_FLAG);/* Wait until the Global Variable is set by the

External Interrupt Handler from Section 3.3.7 */
do computations on stream data;
assert interrupt acknowledge back to the ORCA
assert LPI interrupt /* i960 interrupt from Section 3.3.6 */

This pseudocode illustrates the use of the handshake protocols between the 603 and

the ORCA and between the 603 and the i960.

5.2.0.2 ORCA Hardware Description

The hardware description for the ORCAs are generated with a design flow which uses

industry standard design tools. A design is entered in VHDL, a text description of the

logic behavior, using the Synopsys design and synthesis tools. Synopsys not only has

VHDL libraries, but also a compiler which generates an EDIF netlist. This netlist is input



into the AT&T Foundry place and route tools which take in the design description and

determine the optimal was to realize it in the ORCAs hardware. This generates a file con-

taining the bit-stream as well as a file description header. This header is stripped from the

file to produce a configuration bit-stream ready for download into the ORCAs.





Chapter 6
Results and Conclusion

The State Machine as described above has been designed using the Cadence design

tools. Board layout, construction, and assembly were performed by an outside contractor.

Completed boards were returned within approximately six weeks, during which the oper-

ating system and test routines were designed. The assembled boards were tested and

debugged. There were several key difficulties in debugging the board which extended the

timetable of testing beyond the scope of this thesis. First of all, the procurement and instal-

lation of the Cadence design tools delayed design entry for several months. Secondly, the

603 manual was vague in regards to operation in 32-bit mode in little-endian addressing.

Further, the IBM application note pertaining to device wiring was inaccurate. Finally, the

AT&T documentation about the ORCA configuration process was inaccurate as well.

However, despite these minor setbacks, the following functionalities were successfully

tested and debugged:

* power supply
* i960 accesses to both register interface and Page 0 SRAM
* i960 writes to Boswell and Johnson ORCA registers
* i960 to 603 interrupt - hardware and interrupt handler
* configuration from i960
* 603 instruction format (compilation, loading)
* all supported 603 transaction types to Page 0 SRAM
* all supported603 transaction types to register interface
* all supported 603 transaction types to Boswell and Johnson SRAMs
* 603 code for block address translation, data and instruction caching
* C code compiler and loader for applications
* ORCA to Boswell/Johnson writes and reads

The following functionalities are yet to be tested:

* programming and use of LUTs



* 603 to Boswell/Johnson ORCA interrupt
* 603 to i960 interrupt
* FPGA configuration from the 603

The tested functions enable the State Machine to perform both FPGA-only applica-

tions and applications where FPGAs work in tandem. Further work with the State

Machine should obviously continue testing of the functionalities. In addition, applications

and benchmark tests may be performed to measure Cheops performances with and with-

out a State Machine. Another interesting benchmark would be to compare the State

Machine's performance versus the other stream processor (whose functionalities are

static).

Another study may be to test the resources of the ORCAs themselves. The Boswell

and Johnson ORCA pin assignments were designed to be symmetric to each other to allow

the intra-FPGA bus to be shortened. The specifications in the ORCA databook claim that

due to the symmetry of both the routing and computational resources, that such a differ-

ence in pin assignments should not produce a significant difference. It would be worth-

while to run benchmarks to test this claim, and for not only logic performance, but also for

logic routability.

Although the Page 0 memory space has been explicitly mapped out in Section 4.1.2, a

study may be conducted to find the optimum ratio of number of 603 code slots versus

number of FPGA configuration data slots for video stream processing.

As can be seen the State Machine holds many opportunities to experiment with recon-

figurable hardware. Different stream processor designs may be implemented as State

Machine applications with a shortened design cycle. The caching of State Machine func-

tionalities may be studied to optimize Cheops performance. Finally, the because of versa-



tility of its data and control paths, the State Machine maybe able to implement algorithms

not easily realized.





Appendix A
Schematics

The following pages show the schematics of the State Machine Board. These schematics



are generated by the Cadence Design Tools using the Concept entry tools. .
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Appendix B
Special Notes on Device Resets

B.1 Special notes on 603 Hard Reset (/HRESET)
The 603's reset signal is dependent upon the mode, but is not completely determined

by it. During IDLE MODE, the 603 is held in hard reset, and stays there until the board

mode is switched to either CONFIG MODE or NORMAL MODE (whichever is done

first). Optionally, the i960 may order the 603 into reset by writing to a bit in the register

interface. In this case, the 603 remains in HRESET until this bit is deasserted, and the

board mode is CONFIG or NORMAL MODE. (At this point, the 603 starts with the boot

strap code.) This feature was added to allow the i960 software to reset the 603,without

placing the board into IDLE Mode. It also allows the State Machine board to be used with-

out the 603. (i.e. the FPGAs may work without the 603 initiating any bus transactions.)

B.2 Special note on ORCA Reset pin
The ORCA FPGAs may be reset by not only the Cheops hard reset button, but also by

writing to the configuration control bit in the register interface. Configuration starts when

this bit is asserted low then released to high. By asserting and keeping this bit low, the

FPGA may be held in reset. (Note that this automatically occurs when the Cheops sysreset

button is hit.) This gives both the i960 and the 603 the ability to reset the FPGAs, and pos-

sibly hold them in reset.
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