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Abstract

In the control of high performance robots and machine tools, feedback from the endpoint sensor mea-
suring the position of the end effector has great promise for improving accuracy. This endpoint feedback,
however, often incurs instability due to the non-collocated sensor-actuator configuration coupled with un-
modeled dynamics and sensor noise. Plant dynamics is often uncertain, and the tuning of endpoint feedback
controllers is beyond the capacity of the users. The objective of this thesis is to develop an automatic tuning
algorithm for non-collocated endpoint feedback systems.

In our attempt to solve problems associated with adaptive control, we proposed a progressive learning
algorithm. The idea of progressive learning is to tune the system step by step in the frequency domain in
order to expand the system bandwidth. In this work, the stability issue has been discussed in the framework
of the model reference adaptive control (MRAC). Our main focus of the research is to guarantee the stability
and the robustness of the system subject to the presence of the unmodeled dynamics and output noise. The
system is tuned gradually and progressively by increasing either the trajectory frequency or the controller's
order. Thus, fewer parameters need to be learned in each stage. This progressive cascading of controller
stage by stage in order to achieve wider control bandwidth is referred to as model augmentation. In this
research, we address the model augmentation as to when to augment the model and how to maintain stability,
despite unmodeled dynamics and sensor noise. Next, a series of reference trajectories are designed in such
a way that the system can be excited progressively starting from a low frequency range moving up to a full
spectrum. To validate the theoretical results, a simulation is shown first and followed by experimental results
and discussions of three endpoint controlled systems: a high-speed chip-placement machine, a linear slider,
and a coordinate measuring machine (CMM).

Thesis Supervisor: Haruhiko Asada
Title: Professor of Mechanical Engineering



Star light, star bright; first star I see tonight.

I wish I may, I wish I might

Of the wish I wish

Comes true

Tonight.
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Chapter 1

Introduction

1.1 Background

In the manufacturing area, we judge the performance of a machine based on its productivity,

its ability to adapt quickly for various task complexities, its reliability, and its repeatability under

various operating conditions. However, whenever a new task is assigned or a changeover occurs,

most of the machines need to be shut down for adjustments. This down-time that the machine is

unproductive is unacceptable for high-volume production machines. Also, during the production

stage, operating conditions change as the environmental conditions vary, thus in order to maintain

the performance, its ability for on-line adjustment is an absolute necessity.

Speed and accuracy are two fundamental performance specifications of many kinds of machines.

This is specially true for precision machines such as chip-placement machine, robots, and numer-

ical controlled (NC) coordinate measuring machine (CMM), where demands for higher speed and

tighter tolerance are increasing. Since a machine performs a task by moving its end-effector, i.e.,

the cutter or a chip-gripper, the positioning accuracy of its endpoint rather than the accuracy at the

motor axes is critically important. Most of today's machine are controlled based on the sensing

information obtained from the actuator axes. Therefore, anything beyond the actuator axes is out

of the feedback loop. Backlash at the gearing and transmission mechanisms, misalignment of the

structure, deformation due to the payload, etc. are all outside of the position feedback loop. To com-

pensate for these sources of endpoint error, we need to measure the endpoint position to perform

closed-loop feedback. This type of feedback control that uses the endpoint sensor data for feedback

is referred to as the endpoint feedback control. The advantage of using the endpoint feedback is that

it will give better performance results than the conventional collocated sensor/actuator control. The

endpoint feedback, however, needs a special care in tuning the feedback loop because the endpoint

feedback tends to have a large phase lag due to the non-collocated sensor/actuator configuration of
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sensors and actuators. As a result, the control system becomes difficult to stabilize.

At the accuracy required and speed operated by these precision machines, the systems need to

be constantly monitored and controlled. It is known that any physical system has an infinitely sys-

tem dynamics order; however, as a wide practice, by defining operating condition, we then use a

finite-complexity model to describe the system's behavior. It is based on this "reduced" model that

we perform the control. Thus, this "model" could be as general as the task, or as finite as the ac-

tual system. In most cases, either learning or adaptive control needs to be applied. The learning

control "controls" at the task-level, thus retraining is a must when a different task is required to be

performed. The adaptive control, on the other hand, controls the system at the system level directly

or indirectly based on an assumed system model. Thus, different tasks that operate at the same or

relative condition can be tolerated without retraining. As a part of our requirements is to minimize

the time for retraining, we need to implement the adaptive control scheme. Nonetheless, due to the

assumed model formulation, there will always be the presence of unmodeled dynamics. In terms of

adaptive control, as the system order and complexity increase, the number of the parameters needs

to be tuned increases at a much faster pace. It becomes very hard to tune many parameters while still

maintaining system and parameter stability with the presence of unmodeled dynamics. The direct

results of this drawback for the adaptive control scheme lead to seldom practice on actual complex

systems. Another drawback for the adaptive scheme is the time required and the method for tun-

ing the adaptive parameters. During the tuning, the machine has to be shut down from its actual

operation which is detrimental for any high-volume production machines. Since a large number of

adaptive parameters needs to be tuned, stability has become a big issue.

In most of the actual systems, sensor noise could also be detrimental to the adaptive control

algorithm since it is based on this corrupted output sensing data that the adaptive control is oper-

ating on. Therefore, it is quite important to develop a strategy that allows the system to be excited

gradually, yet in a stable manner and is robust enough to counter-measure the noise as well as the

unmodeled dynamics.
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1.2 Objective and Approach

The objective of this thesis is to formulate a stable, automatic and cohesive adaptive/tuning

endpoint feedback control algorithm to improve the system performance at vast operating condi-

tions. Our approach of this thesis is to explore a learning method in which the level of the task

complexity advances progressively in accordance with the learner's competence and level of ac-

complishment for improving the performance of endpoint feedback systems.

In the learning method, termed, progressive learning which is first presented in [Yang, 1995],

stated that it is possible to learn/adaptive input/output of a complex system with high relative degree

in its transfer function between its input and output by designing a series of tasks with different com-

plexity levels that reflects the current knowledge of a leaner. In other words, progressive learning

is an algorithm that helps the controller to learn the system step by step in the frequency domain in

order to expand the system bandwidth. In this original work, the stability issue has been discussed

in the framework of the model reference adaptive control (MRAC).

The original work of the progressive learning, like conventional adaptive control, does not re-

late a true task to the system level input in training, thus random or non-task-related but stable sig-

nals are subjected to the system for tuning. Thus, the system has to be shut down for the tuning.

Since we have to minimize this unnecessary "shut-down", we need to solidify the relation between

the stable training signals and the actual task. Another drawback of the original work of progres-

sive learning is that the dynamics system is considered to be ideal, i.e., the complete order of the

system is known as well as a system that is free of noise. However, for any physical system, the

complete system order may not be known ahead of time or due to the hardware issue, full-order of

the system complexity may not be considered all at once. Besides, there will be always some sensor

noise present in the system. Therefore, it is our intention to modify and improve the current state

of progressive learning. In this research, the concept of progressive learning has been extended so

that it can be applied to most of the endpoint feedback controlled manufacturing machinery. Due

to the fact that any physical system has infinite order, we can never obtain a full-representation of

the model. Instead, we will obtain a reduced form model. Thus, our main focus of the research is

to guarantee the stability and robustness of the system during the tuning with the presence of the

unmodeled dynamics as well as the output noise. In most cases, the information at higher frequency
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range is not so reliable due to the noise. At the same time, the higher the order of the system we

use, the more parameters need to be tuned at each time. Thus, another incentive for us to use the

reduced-formed model is so that a less number of parameters needs to be tuned each time.

Another emphasis of the research is to link the required task to the stable reference design so

we can tune the system while it is performing an actual task. Then the system is tuned gradually

and progressively by increasing either the reference excitation frequency bandwidth or the system's

dynamics model's complexity depending on the progress of the tuning.

The nature of any physical system when it is excited at low frequencies is that the system be-

haves as an ordinary rigid-body system; therefore, there is no reason to tune and control the system

using a complex controller for it. To take advantage of the reduced dynamics behavior of the phys-

ical system, the system is first partitioned into a series of stages arranging by their natural frequen-

cies. Then, the system is "progressively" adaptively learned and controlled stage by stage instead of

all at once. As we increase the trajectory speed, we start to excite higher modes of the system, thus

more complex controller needs to be designed and controlled. The way of progressively cascading

the controller to control stage by stage is referred to as model augmentation. Thus, less amount

of the parameters need to be tuned at each time. With these intermediate stage training results, a

"lean" controller for vast operating conditions, or a most compact controller without degradation

of the system performance at each operating regions can be easily obtained and implemented. In

this research, based on our problem formulations of stability and robustness analysis, we address

the model augmentation in terms of when to augment the model and how the parameters should

be expanded. The concept of using a trajectory with a known designed frequency spectrum in the

beginning, and increasing the designed frequency bandwidth as tuning proceeds to generate a sta-

ble reference input is referred to as the trajectory synthesis. As more knowledge of the system is

gained, the machines' throughput is guaranteed to increase since wider control bandwidth can be

expected. More importantly, since trajectory design has incorporated the system dynamics, better

accuracy can be expected than the traditional static or quasi-static assumptions usually assumed for

the trajectory design. Together, they are cohesively linked to the frame of robustness and stabil-

ity of the adaptation dynamics in the final form of Extended Progressive Learning. The proposed

tuning algorithm combines the learning, the adaptation, and the augmentation cohesively and au-
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tomatically.

To validate the research, a simulation is shown first to demonstrate the concept. Then it is fol-

lowed by a series of actual experimental results and discussions of three endpoint feedback con-

trolled systems: a high-speed chip-placement machine, a linear slider, and a coordinate measuring

machine(CMM).

1.3 Outline of the Thesis

This thesis is composed of three main parts: the theory, the algorithm to apply the theoretical

results, and experimental results by applying the progressive learning to the three actual systems

mentioned earlier. In the theory portion of the thesis, a problem formulation based on the reduced

model in the frame of MRAC is first described. The stability analysis first conducted by assuming

that the effect of the unmodeled dynamics and output noise are negligible in Sec. 3.4. In Sec. 3.5,

we perform the robustness analysis to see the effect of unmodeled dynamics and sensor noise on

the stability of the adaptation dynamics. Finally, based on the robustness analysis, we describe how

to design stable reference input through the use of trajectory synthesis is discussed in Sec. 3.6.

After describing the theoretical developments, we will formally describe the extended progres-

sive learning algorithm that bridges the differences between the actual applications and the theo-

retical results in Chapter 4. In this chapter, we discuss how we can transform an actual system ap-

plication and apply the extended progressive learning on it. Several of the practical issues such as

determining the model structure, sensor noise, and on-line validation of the results are all discussed

in this chapter. Also, based on the stability and the robust analysis, when and how to perform model

augmentation are discussed in Sec. 4.3. Then it is based on this algorithm we perform the simulation

to validate the proposed research in Sec. 4.5. In Chapter. 5, we presented three actual experimen-

tal tuning results: a high-speed chip placement machine, a linear slider, and a CMM. Finally, the

conclusions and future works are given in Chapter 6.



Chapter 2

Extended Progressive Learning for Endpoint Feedback

Controlled Systems

2.1 Introduction

Endpoint feedback systems have been one of the systems to which adaptive and learning

controls are difficult to apply. In most of the cases, the relative degree, which is defined as the or-

der difference between the denominator and numerator of a transfer function, of the input/output

transfer function is high or greater than two. One of most fundamental requirements for an adap-

tive controller to work is to "persistently" excite the system. However, because of the parameter

uncertainty and large phase lag, the system might become unstable when it is persistently excited.

Naturally, the key question is how to design the input signals that will persistently excite the sys-

tem without making it unstable. As described earlier, the productivity is directly proportional to

the speed which the machine can perform a task. In our approach, we view the task as a particular

form of trajectory. By carefully designing the input signals to satisfy the persistent excitation re-

quirement and the trajectory requirement, the system parameter convergence is guaranteed. More

importantly, the system performs a true task so the minimum productivity is maintained throughout

the process. Then, the controller will make different decisions based on the system performance.

If the controller has detected any significant degradation of the results, the controller will increase

the assumed controller model order to continue train the system. Otherwise, the controller will just

increase the task's speed to increase the productivity while tuning the system at higher bandwidth.

The decision making potion of the controller which is the main focus point of thesis will be pre-

sented later. The main objective of this chapter is first to review works in the related topics. The

second objective of this chapter is to give a brief overview or the concept of the proposed research.

Next, we are going to discuss each of them separately.
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2.2 Related Works

Some related works with the same or partially the same interest include stable adaptive con-

trol, persistent excitation, progressive control, process control and supervisory control. We will

discuss them individually to see how they fit into and differ from our research.

The stable adaptive control has been well formulated by [Narendra and Annaswamy, 1989].

In stable adaptive control, for example, the design of reference signals has been a central issue to

the convergence of system parameters. In particular, the concept of persistent excitation (PE) has

played an important role for the design of reference inputs. The PE provides conditions for the pa-

rameters of a plant or a controller to converge to their desired values [Narendra and Annaswamy,

1989]. By making the assumptions that the time constant of the convergence of the system param-

eter is much smaller than the system dynamics, [ Astr6m and Wittenmark, 1989] has proposed to

use the averaging theory to examine the stability and convergent rate based on the PE condition.

As pointed out by [Kosut, et. al, 1985], the averaging theory has its uses and limitations for adap-

tive systems. In the first place, the theory requires slow adaptation. Secondly, averaging theory is

a form of linearization while the actual adaptive system is a non-linear system. Thus, the nonlin-

earity must be treated by initializing the system in a neighborhood of the tuned system. The "tuned

system" is defined as the plant with its closed-loop characteristics equivalent to the desired model

proposed after tuning the controller parameters. Nevertheless, the averaging technique does ex-

plain the system's behavior near the tuned system. [Riedle and Kokotovic, 1985] later proposed

to use the integral manifold approach by applying the singular perturbation technique when the as-

sumption of the two time constants can not be met as for the averaging technique. Then, [Yang

and Asada, 1993] first proposed the use of progressive learning to address the design of the refer-

ence input in conjunction with the system performance. By using the technique of averaging theory

and the gradient descent rule for the adaptation, [Yang, 1995] is able to guarantee stable parameter

convergence for systems that have relative order greater than three with the use of the progressive

learning.

All of the above research works address the convergence without addressing the unmodeled

dynamics which are always present in any actual system. [Rohrs, et. al, 1985] first examined the

robustness properties of existing adaptive control algorithms to unmodeled plant dynamics and un-
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measurable output disturbance in the high frequency range. Due to the unmodeled dynamics, PE

condition may not be guaranteed. Nevertheless, as pointed out in [Boyd and Sastry, 1986], the es-

timated system parameters will still achieve partial parameter convergence with respect to the ex-

citation frequencies.

In the case of the supervisory control, similar research works appear in the area of gain schedul-

ing, [Rugh, 1990], [ Astraim and Wittenmark, 1989], and [Tran and Hrovat, 1993] to name a few.

The gain scheduling is a counter part of adaptive control. The gain scheduler uses a "look-up" ta-

ble that stored different predetermined controller gains to control the system open-loop at various

operating points. Nevertheless, it provides some insight in relating the performance to the learner.

However, so-called "look-up" table needs to be "pregenerated" and "pre-determined" for the gain

scheduler.

All of the above research works have concentrated in control. As part of our task, we need to also

study the trajectory synthesis for generating stable reference inputs based on the prescribed task.

Most of the research works that study the trajectory synthesis problem are based on an assumed

kinematic model or a dynamic model. There are less attentions paid to the controller performance

and model uncertainty.

In the field of the process control, stochastic process control (SPC) is probably the best known

and widely practiced control scheme [Owen, 1989], [Phadke, 1989], [Pyzdek and Berger, 1992].

In SPC, the data are collected, analyzed, and compared with the previous data through a series of

eight prescribed rules at each of the predetermined sampling time period. Based on the operator's

interpretation of the current analyzed data, a different action is taken. Thus, the SPC is an off-line

estimation process and no prediction is made at any time. The advantage of the SPC is that it gives

us some quick understanding of the system's behavior off-line. The disadvantage is that the sam-

pling frequency is predetermined and requires human intervention.

In conclusion, there is not a fully automatic adaptive/tuning system process control algorithm

available to address all of the above issues. Next we are going to describe a brief overview of our

proposed research.
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2.3 Concept of the Extended Progressive Learning

In this thesis, I propose to extend works done on progressive learning originally developed

by [Yang and Asada 1993]. In this thesis, we integrate the learning rule together with the learn-

ing scheduler. The learning scheduler can vary the task complexity level or the learner's structure

depending on the learning progress. The final learning method, which we refer to as Extended Pro-

gressive Learning, is defined as follows:

Extended Progressive Learning is a learning method in which the level of task com-

plexity and the level of learner's internal structure complexity are gradually increased

in accordance with the progress of learning. This is done so that the minimum task per-

formance requirements can be met throughout the learning process and that the learning

process may not diverge as the level of task complexity increases.

The progressive learning is a dynamic process since task assignments vary dynamically during the

learning process. As shown in Figure 2.1, the system consists of a learner, a task process or a plant,

a performance evaluator, and a supervisor. The desired trajectory is pre-designed to meet a set of

target points. The supervisor determines appropriate strategy for the system to take by either in-

creasing desired trajectory speed with the same complexity level for the learner or increase the com-

plexity level for the learner to achieve better system overall performance.

Figure 2.1: Progressive learning control block diagram

As stated earlier, there are four major parts of the development of a progressive learning con-

troller. The stability analysis is first discussed based on the formulation. The robustness analysis is
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then discussed to extend the stability analysis to cover the effect of unmodeled dynamics and out-

put sensor noise. Then based these two theoretical results, an optimal augmentation scheme will be

discuss as when and how to augment the controller's structure. Finally the trajectory synthesis is

discussed. Figure 2.1 summarizes them in a block diagram form. In the following chapter, we will

discuss each part in more detail.



Chapter 3

The Theory of Model Augmentation and Trajectory Synthesis

through Progressive Learning

3.1 Introduction

In this chapter, we are going to discuss the theory of extended progressive learning in par-

ticular the model augmentation and the trajectory synthesis. First, we state the problem statement

of the proposed research then we will formulate the problem. Then based on the problem formula-

tion, we will first focus on the stability issue relating to the model augmentation in Sec. 3.4 under

the ideal situation where the contribution from the unmodeled dynamics does not have any effect

on the system's performance and the corrupted sensor output by noise is minimal. Sec. 3.5 will fo-

cus on the robustness issue of the augmentation when the effect of unmodeled dynamics and sensor

noise do affect the tuning performance. Finally I will focus on the issues and approaches we made

for the stable reference input design in the context of trajectory synthesis in Sec. 3.6.

3.2 The Problem Statement

Endpoint feedback systems are one class of non-collocated systems with a high relative de-

gree and have been one of the systems to which adaptive and learning controls are difficult to apply.

One of the most fundamental requirements for an adaptive controller to work is to "persistently"

excite the system. However, because of the parameter uncertainty and large phase lag between the

input and output signals, the system might become unstable when it is persistently excited. Nat-

urally, the key question is how to design the input signals that will persistently excite the system

without making it unstable. As described earlier, the productivity is directly proportional to the

tracking speed. By carefully designing the input signals to satisfy both the persistent excitation re-

quirement and trajectory requirement, the system can be persistently excited in a stable fashion for

the system parameter adaptation to converge and more importantly, the system performs a true task
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so the minimum productivity is kept throughout the process. Based on the system performance,

the controller needs to make on-line decision in determining whether to stay at the current operat-

ing speed by modifying the assumed control structure to take on the "non-collocated" behavior, or

just to increase the operating speed with the same control structure. In either case, it will need to

guarantee equal if not better tracking performance.

The trajectory is specified by a finite set of points in space as shown in Figure 3.1. It is required

to go through all these discrete points, and come back to the original point, but the intermediate

points that connect each prespecified points are not determined. Therefore, there are certain degrees

of freedom in generating an actual path. Also the total cycle time required to complete one cycle of

trajectory tracking is unspecified. As the learning proceeds, the cycle time should be shortened as

much as possible. During the learning phase, however, the system is allowed to track the trajectory

at slower speeds, as long as all the specified points are visited correctly.

P1

Figure 3.1: Specified points and spatial trajectory

Figure 3.2 shows time profiles of the same trajectory that go through all the specified points.

Note that these trajectories have the same spatial frequency spectrum since they all have to go

through the same sets of points in space. However, they all have different temporal spectrum since

their operating speeds or the time profiles are different. In other words, they all go through the same

point in space at a different time. The temporal frequency spectrum expands or shrinks depending

on the cycle time T and tracking speed. According to the progressive learning theory, we should

start with low excitation frequencies, and gradually increase the frequencies as learning proceeds.

Therefore, as shown in the figure, the system first learns the slow trajectory with the longest cycle

time T7, and after completing the learning of the slow trajectory it learns the medium speed trajec-

Pi
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Figure 3.2: Time profiles for different cycle times

tory with a shorter cycle time, T2 . The learning process would be repeated for shorter cycle times as

far as the control system can track all the specified points within a tolerance error. When the track-

ing speed exceeds the physical limit of the control system, the tracking error may neither be kept

within the tolerance nor be improved by learning. The learning process is terminated when this

phenomenon is observed. Thus, the system is guaranteed to perform the trajectory tracking with

a specified accuracy throughout the learning process. This feature of progressive learning meets

industrial needs and fits to actual manufacturing environment, where minimum task specifications

must be satisfied even in the early stage of learning and the maximum productivity must be achieved

as production demands increase.

It is a known fact that any physical system, particularly the endpoint feedback system, has an

infinite system order between the input and output of the system. Based on the desired operating

bandwidth, we will simplify this "infinite" order system to a "lumped" parameter model as shown

in Figure 3.3. In this figure, the actuation will always be applied to M1 while the load is applied to

the furthest point. The output sensing is then obtained from the point of load directly. The system

may have a phase lag between the actuator and the load due to the compliance at the transmission,

but it is negligible at low frequencies. Therefore, the whole system can be modeled as a single

rigid body, as shown in Figure 3.3A. Both the actuator encoder and the endpoint sensor provide

basically the same positional information, as long as the system tracks a trajectory at a low speed

and the frequency spectrum of the trajectory is within a low frequency range. Tuning of control

parameters is rather straightforward for this collocated system.
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Figure 3.3: Lumped parameter models with different system orders

As the frequency spectrum expands, the simplified system model must be updated to the one

involving the next higher dynamic mode. As shown in Figure 3.3B, the single rigid body is now

split into motor inertia, mi, and a load inertia m2. Both masses are connected by the equivalent

stiffness k and damping b. Since our goal is to close the control loop from the endpoint sensor, the

control system becomes non-collocated as the second mode becomes prominent. Tuning of such a

non-collocated system is much harder than that of a collocated system. Applying the progressive

learning method; however, we can resolve the difficulty of such a non-collocated system. After

tuning at a slow speed, the stable range of excitation frequency has been expanded. As a result,

the learning at a faster speed may be stable. The stability is guaranteed even for a non-collocated

system where the relative order is three or higher.

As the cycle time further reduces and the excitation frequencies become too high, the vibration

modes of the structure will be excited. As shown in Figure 3.3C, the system must be modeled as a

three mass system. The system order as well as the relative order increase and, as a result, the order

of the controller and observer must be increased. Unless the controller and observer have the right

orders with sufficient parameters to be tuned, the learning can not be performed correctly. In other

words, in progressive learning the control system cannot learn when trajectories having a frequency

spectrum that excites the unmodeled dynamics.
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In Sec. 3.4 we will first discuss the stability issue and in Sec. 3.5 we will discuss the robustness of

the adaptive system in the presence of the unmodeled dynamics as well as the output disturbance

noise. Then we will address how to design the reference input, i.e., the synthesis of trajectories.

The trajectory must satisfy not only geometric requirements described by a set of points but also

the stability and convergence conditions. Each frequency component involved in the trajectory may

influence the stability of the learning process as well as its convergence speed. In Sec. 3.6, we will

analyze these conditions and formulate a trajectory synthesis problem.

Next, we are going to first formulate the problem before we discuss each part.

3.3 Problem Formulation

In this section, we consider a model reference adaptive control(MRAC) scheme of the type

treated in standard textbooks (e.g., [Narendra and Annaswamy, 1987]). The system that we are con-

sidered here is a single-input-single-output system. The overall plant to be controlled is linear and

time-invariant with input u E IR and output y, E IR which are related by

yP = Wp(s)u (3.1)

where W,(s) = kp(Zp(s)/Rp(s)) is the transfer function of the plant. The reference model to be

followed is linear and time-invariant with input r E JR and output Ym E IR which are related by

ym = Wm (s)r (3.2)

where Win(s) = km(Zm(s)/Rm(s)) is the transfer function of the reference model. The objective

of control is to find a differentiator-free control law u(t) such that the output error

el = y, - Ym (3.3)

converges to zero asymptotically for arbitrary initial conditions and arbitrary piece-wise continu-

ous, uniformly bounded reference signals r(t).

To meet the control objective, we make the following standard assumptions concerning the plant
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W,(s) and the reference model Wm (s) with s denoting either the Laplace variable or the differential

operator:

(Al) R,(s) is a monic polynomial of known degree n,

(A2) Zp(s) is a monic Huriwitz polynomial of known degree m,

(A3) The sign of kp is known,

(A4) Zm(s) and Rm(s) are monic Hurwitz polynomials of degree m and n respectively.

We also add an assumption on the reference input r as

(A5) r has an autocovariance.

and further assume

(A6) Wp can be distinctly cascaded by series of first order or second order system as

shown below

W W, Kwp Zwp, kp Zp (3.4)
i=1 i=1 Rwp

where index i goes from 1 to n as the bandwidth varies from narrow to wide.

(A7) Wm can also be cascaded by series of first order or second order system as shown

below

Wm= - Wm, = Kwmi Zwm (35)
i=1 i=1 Rwmi

where index i goes from 1 to n as the bandwidth varies from narrow to wide.

Our major research goal is to progressively "augment" the system dynamics as we gain more

information about the system in order to increase the control bandwidth. We will make extra as-

sumptions about the plant and model dynamics at each "stage" to assume they can be approximated

in the following forms:

(A8) W, can be cascaded into Gp, and Gr,

Gp, q kGp ZGpq with order of nq (3.6)
i=1 RGpq
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Gr, = IWp = kGr, ZGrq with order of n, - nq (3.7)
i=q+l RGr,

(A9) Based on Gpq,, Gmq is chosen as

Gmq = Wmq = mq Zq with order of n, (3.8)
i=1 Rrnq

where the subscribe mg and pq denote the approximated desired model and plant model respectively

at each stage q; rq denotes the residual plant model respectively at each stage q; and nq denotes the

order of the system at the stage q where the overall order of the system order is n. By using the

notation denoted sequentially, n is represented as n, at nth stage. To simplify the description, from

this point on, the transfer function that is in question is defined as the transfer function between the

input, or the actuation, and the output, the output sensor. W represents the overall system transfer

function. G represents the reduced order transfer function at each stage. Appendix B summarizes

all the notations used in this thesis.

A. Control Structure

The control scheme proposed by [Narendra and Annaswamy, 1987] is shown in Figure 3.4. The

controller is described completely by the following differential equations and definitions at each

stage:

il, = AqW1, + lu (3.9)

2q, = AqW2q + lyp (3.10)
def [r, w T  w T TT (3.11)

f [kq , 0T OOq , O
T]T (3.12)

u = OT w (3.13)

where 01q, 0 2q7 Wlq9 W2q E ]Rq - 1, kq, 0 0q E IR, and (Aq, 1) is an asymptotically stable system in

controllable canonical form with

Aq(8) df det(sI - Aq) = AOq(S)Zmq(S) (3.14)
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for some monic Hurwitz polynomial AO, of degree nq - mq - 1.

Figure 3.4: Model Reference Adaptive Controller

Assuming that the control parameters are constant, the transfer functions of the feedforward and

the feedback controllers can be expressed respectively at each stage

Aq(s) Dq (s)
Aq(s) - C,(s) Aq(s)

where

cq(S)
O T= ( (sI - Aq)- 11, (3.15)

Aq(s) lq

Dq(S)
q(s) = + OT (1- Aq)-, (3.16)

Aq(S) 0 2q q)(3.16)

and the overall transfer function of the plant together with the controller can be expressed as

kkpZp(s)Aq(S) (3.17)F,((S) () - kZ()( (3.17)

(Aq(s) - Cq(s))Rcp,(s) - kGp ZGp(S)Dq(s )
SkGrqZGrq [(Aq(s) Cq(8))RGpq(s)- kcpqZGpq(s)Dq(s)] (3.18)

, (Aqs() -- Cq(s) - - kpp,(S) (s)Dq(s)
= F (S) kGr ZGr [(Aq(s) - Cq(s))Rcp,(s) - kGp ZGpq,()D(S)] (3.19)

(Aq(s ) - Cq(s))Rp,(s) - kp,Zp,(s)Dq(s)

where FGq (s) represents the estimated reduced order closed-loop transfer function and defined as

below:
kkGpq ZGp 8) Aq (S)

(s) = (Aq(s) - Cq(s))RGP (s) - kGp ZGpq(s)Dq() (3.20)

First we defined the following 1IFpq to denote the actual overall closed-loop characteristics polyno-
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mial at stage q as

(Fpq(S) = (Aq(S) - Cq(S))Rp(s) - kpZp(s)Dq(s) (3.21)

and (IGpq to denote the estimated reduced-form of the closed-loop characteristics equation as

'JGp,(8) = (Aq(8) - Cq(s))RGpq(S) - kGpqZGp,(S)Dq(S) (3.22)

Then Eqn.(3.18) can now be rewritten as

kGrq ZGrq GpqFp = FGq Gr Fq FGqFrq (3.23)
Fpq

where

F = kGrq Zrq Gq (3.24)
4JFPq

We will first assume now that the excitation frequency, w is low so that the remaining higher order

dynamics at q + 1 to n have no effect on the overall system. By making such assumption, we define

the following relation:

F,, (j) FGq (W) (3.25)

The transfer function from the reference input r to the regressor vector w with a constant pa-

rameter vector Oq is also derived as

Hwr, (SOq) =

1

(sIq - Aq)- 1 lGp FGq

Fpq

(sIq - Aq) - 1 FGq11

B. Nominal Representation of Reference Model

It is well known that under the above assumptions and control structure there exists an unique

constant vector 0" such that the closed-loop transfer function FGq (s, 6O) matches Gmq (s) exactly.

Namely, we can express the reference model as the plant FG, (s, Oq) with the same controller at

(3.26)
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Oq = 09. In this representation, the regressor vector wm, is given by

Wmq = [r, WT1qI Ym, wm 2 q]T (3.27)

Let ,mq (s) be the model characteristic function, that is, the closed-loop characteristic function when

6 = ,0, and it can be derived that

,Mq (S) = ZGp, (S) AOq (S)Rq (S) (3.28)

where Aq Zmq = Aq. For a given constant parameter vector 0, the closed-loop transfer function

is expressed as follows:

FG, (s) = kqkGpq ZGPqq Zmq
kqkGpq (Gpq

4m, Zmq

DGp, Rmq
kp Om.(s)kq 4 SGmm (S)
kq oGpq (S)

where kq = kmq/kGpq is the nominal value of gain k at stage q. Also note that wm, is the output of

a stable linear time invariant system driven by r(t) and its transfer function is

= Hwrq(S,) 00Hwmrqq

1

(sI - Aq)-lG qGmq

Gmq

(sI - Aq)-'lGmq

C. Output Error Dynamics

Let us define the parameter error vector as

def
q 0q - 0q.

From the above equations, the dynamics of the output error el can be easily derived as

1
el = 1oWm(s)0TW.

qko

(3.29)

(3.30)

(3.31)

(3.32)
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D. Adaptation Rule

The objective of adaptation is to make the parameter error as well as the output error asymptot-

ically converge to zero. For the above formulation, a so-called SPR rule such as

ýq(t) = Oq(t) = -el(t)wq(t) (3.33)

guarantees the overall stability of the adaptive system with persistently exciting signals, provided

that Win(s) is strictly positive real(SPR) (e.g., [Narendra and Annaswamy, 1987]). However, this

adaptation rule cannot guarantee the stability for plants with high relative degree. It is known that

instability may occur with a SPR rule if the regressor vector wq(t) is excited at a high frequency

(e.g., [Kokotovic, et al., 1985]).

In this research, we use the gradient descent rule for adaptation. The idea of gradient descent

rule is to reduce e' by adjusting 0 along the direction of steepest descent. Namely, the gradient

descent rule can be expressed as

1 ae2 T 091 T
q(t)= a = -ael (3.34)

2 a8, ,

where (&el/O8q)T is the sensitivity vector denoted by Vcq(t), and can be derived as

aelT
Oq (t) = e (3.35)

= FG, (s)w (3.36)

where FGq = FGq/kq, that is,

kGpq ZGpq Aq ()
FGq(S) = (A,(s) - C,(s))RGp,(s) - kGpq(s)ZGpq(s)Dq(S) (3.37)

The derivation of the above equation is provided in [Yang, 1995]

It has been empirically and analytically shown that the closed-loop stability of the gradient de-

scent rule depends on the adaptation gain and the magnitude of the reference signal. It has also

been shown that the gradient descent rule may cause instability depending on the initial values of



3.3 Problem Formulation

the control parameters. In other words, the gradient descent rule may cause instability even for a

simple plant for which the stability can be guaranteed with the SPR rule, although a complete sta-

bility analysis has not been available yet. The objective here is to show that the adaptive system can

be stabilized even with the gradient descent rule if the system is excited progressively by changing

the frequency content of the reference input according to the progress of the adaptation. Based on

the full-order representation, [Yang, 1995] has derived a stability condition in the frequency do-

main for the gradient descent rule and proved that the stability of the adaptive system depends on

the frequency content of the reference signal as well as the values of the control parameters. Also,

based on the full-order representation with the stability analysis, [Yang, 1995] proved that there

always exists a sequence of reference inputs that guarantee the stability for a plant with a high rel-

ative order. However, there is no direct link between the task requirement and the reference input

design provided by the original progressive learning. Also, due to the extra assumptions we made

from A(6)-A(9), the analyses will be different. Thus, in the next few sections, we will focus on the

augmentation: Sec. 3.4 will focus on the stability issue relating to the model augmentation.
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3.4 Stability Analysis Using Averaging Theorem

Averaging is an asymptotic method that allows the analysis of dynamic behavior of a nonau-

tonomous (time varying) system through an autonomous (time invariant) system obtained by time-

averaging of the original system. The averaging method was originally proposed by [Bogoliuboff

and Mitropolskii, 1961], and further developed by [Sethna, 1973] and [Hale, 1980], to name a few.

Averaging methods were then successfully developed for the stability analysis of adaptive systems

by [Astr6m, 1984], [Riedle and Kokotovic, 1985] and [Anderson, 1986]. An extensive review and

useful averaging theorems for adaptive systems are found in [Sastry and Bodson, 1989]. In [Sas-

try and Bodson, 1989], the characterization of the asymptotic stability of the adaptive systems was

addressed through averaging analysis for systems with two time scales. [Yang, 1995] has applied

the average theorem and further proved the stability and its bound of using the gradient descent

adaptation rule adaptation rule for the adaptive system when full-order assumption is used.

The objective of this section is to examine the stability of the reduced system when the unmod-

eled dynamics are within the assumptions made earlier.

The dynamics equation of the control parameter as stated in Eqn.(3.36) as follows:

1 Oe2T oel T
Oq(t) = Oq(t) = -- a- = -ae 1  (3.38)

2 aOq aq(

where 4 q, the parameter error vector, is defined as 0 - 0' where 0' is the desired parameter vector

and (Oel/q9q)T is the sensitivity vector denoted by q(t), and can be derived as

ael T

q(t) = (3.39)
O5q

= FGq (s) (3.40)

where FG, = FGq /kq, that is,

kGp, ZGpq Aq(s)FG,(s) (3.41)Gq() (Aq,() - Cq(s))RGp,(s) - kGp,(s)ZGp(s)Dq(S) (3.41)

The derivation of the above equation can be found in [Yang, 1995].
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By applying the averaging method given in [Sastry and Bodson, 1989], we can approximate the

original system in Eqn.(3.38) by using an averaged system as

a 1 to+T
--avq =l -O Gmq iq w FG, wdt (3.42)koq 1 0T Ito

a 1 to+T
= lim.T j FGqwGmqwdt qavq. (3.43)

ko, Tmoo T to

def defDefining def GmqW and wo d FGw, and assuming the cross correlation between these two

exists, we obtain

a [ 1 m to+T 1W
aavq = limoo wt +T dt] qavq (3.44)

a/ pRwfwo(0) av,. (3.45)
qko

The averaging theorem in [Sastry and Bodson, 1989] proved that assuming the cross correlation

matrix Rwfwo(0) exists and a is sufficiently small the original system is exponentially stable if

the averaged system is exponentially stable. Therefore, in order to derive a stability condition for

the original system, we need only to derive a stability condition of the averaged system given in

Eqn.(3.45).

Defining S,(dw) be the spectral measure of the reference input, we can express Rwf W (0) as

R wo(0) = ( Jw) 2 Gmq(jW Hwmr (j)HHm(J)Sr(dw) (3.46)

where AH denotes the Hermitian transpose of A if A is a matrix or a vector, or the conjugate of A

if A is a scalar. See [Yang, 1995] for the derivation of the above expression.

We next assume the reference input r is regulated and bounded as defined earlier shown in gen-

eralized form shown below:

N

r(t) = y Ri sin(wi + pi), Ri > 0 for all i. (3.47)
i=1

where Ri and cpi are the amplitude and phase components of the reference input in the form of
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Fourier series at frequency, wi and N is the number of the distinct Fourier frequencies. Rw,,w (0),
then, can be expressed as

RRWM((j)2Te {  Hwmr(jwij) Hr(jwj)}

kR() Z Rfl Wm(Jwi)1 21e{ meq H(jwi)H(~ (i)}
q '1 N b (jwi)

E RIWm(jwi) 2 I q)m{ } IIm{Hw. r (jwi)Hg mr(Ji,)} (3.48)

q i=1 G, (jWi)

By using the Lyapunov function given as

V(avq) = IaVsq12 (3.49)

and Eqn.(3.45),

V(Oav) qt,,[RWfEWe(O) + Rwf,,wo(0)T] av,. (3.50)

As stated in [Yang, 1995], if the real parts of all the eigenvalues of Rwf o (0) are positive, the ma-

trix in the parentheses above is symmetric positive definite. Therefore, letting Amin be the smallest

eigenvalues of Rw,, o (0) within the stability range of Oa,, we get

-V((avq,) Ž aAminV(qavq) > 0. (3.51)

Namely, the parameter error converges exponentially to zero with the rate of aAmin.

From Eqn.(3.48), the symmetric part of Rwwo, (0) can be expressed as

1 [Rwf we (0) + Rwwo(O)T] = RTWm(jW) (ji) H mr(Jwi)} (3.52)
1i=1

Assume that there exist 2n linearly independent vectors in vector Hwm,(jwi), i = 1, ... , N

where N > 2n. Namely, vectors Hwmr(jWi) span the whole 2n-dimensional vector space. Then,

since R "Wm(jWi) 2 is strictly positive given any av1 bounded, the averaging theorem automati-

cally prove the following stability condition as below :
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Theorem 1 Suppose assumptions (Al) to (A9) for the adaptive system are met, then, the original

system given in Eqn.(3.45) is exponentially stable, if

Re•( {m, wi) } > 0 for all wi, (3.53)

or

ILZ{fm,(jW )} - Z{ G,q(jw)}I < - for all wi, (3.54)

The idea of progressive learning is that the system is excited in low frequencies in the beginning

to avoid the instability and the frequency range for stability is expanded gradually according to the

progress of learning. Defining tQ be the frequency range of stability as

Q = w I L{m, (jW)} - Z{Gq•(jw)}I < r (3.55)

the main theoretical results that supports the above argument is given as:

Theorem 2 (Progressive Excitation Theorem) Suppose, for a given 0(h - l ), there exists o (h) such

that
Qo(h-1) = {wIO < w < w(h)}. (3.56)

where the superscript h stands for the hth trial. Also suppose that the parameter vector converges

from 0 (h- 1) to O(h) by a stable adaptation law with the above reference input. Then, there always

exists E > 0 such that

W(h+l) = (h) + e, and (3.57)

L{'jtm(jW)} - Z{4(Oh)(jW)}j < - forall w E {l 0 < w < Wo(h+1)}. (3.58)

where e is originally defined as the increased expansion frequency from hth trial to h + 1 trail.

See [Yang, 1995] for the proof. This theory stated that as long as we follow the stability condition

stated earlier to excite the system, we can always achieve a possible increment in expansion of the

frequency range. Here, we extend the original definition of e to its implied meaning as the incre-

ment in frequency of the matched phase region. Another word, E will represent the amount of the

frequency range where the phase plot of the closed-loop transfer function in the region of excitation
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has improved after each trial.

Untill now, we have assumed that the unmodeled dynamics does not make any contribution to

the stability. Next, we are going to rederive the stability condition with this assumption removed

and relax several assumptions we made earlier in order to suit it to the actual implementation.
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3.5 Robustness of Augmentation

In the previous sections, we have introduced the systems under ideal conditions. Since our

research goal is to apply the proposed algorithm to real physical systems, we need to consider the

robustness of the proposed control algorithm under two "idealized" real physical effects: the un-

modeled dynamics, and the sensor output noise, which will be the main focus of this section. Here,

we will retain the same notations that we have used throughout this thesis.

Most of the adaptive control algorithms we see today are mainly focused on the ideal case for

systems, namely, when assumption A(1)-A(6) are followed. However, this is usually never true in

any actual physical system. In most cases, the system order of the actual physical system, W,(s)

that we assumed to be n, earlier is unknown. At the same time, the designer dose not have a detailed

state-space model of the plant to be controlled, either because it is too complex or its dynamics is

not well understood. It is based on this available information as well as the performance require-

ments that the designer determines the relevant frequency bandwidth of the system. Through the

interpretation of the available open-loop bode plot, the designer then determines the plant model,

Gp, (s) which is the lowest order of nq, nq < n,, and which is valid within the frequency range de-

termined. The designer then designs an appropriate reference model, Gm, (s) which has order of nq,

and the controller as in the case of the MRAC to control the actual system, W,(s). In our definition,

W,(s) = G p, (s)Gr (s) where the unmodeled dynamics, Grq (s), has order of nu, n, = n, - nq.

Together, they can be summarized in Figure 3.5. In the actual system, instead of the noise-free nom-

inal output, yp, (t), the clean sensor output, y,(t), is usually corrupted with sensor noise, v(t). One

Figure 3.5: Model following control system
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important thing to note is that nq is only an assumption based on the designer's own interpretation

in the predetermined frequency range of interest. Thus, naturally, there exist an WH,, the marginal

stability frequency, for the assumed model to be "sufficiently" representing the actual system. As

we push for wider system bandwidth, we need to vary the assumed system order for the plant from

q to j where j > q. By increasing to another stage, j, we can then achieve a higher wHn with a

higher controller complexity Oj E IR2xnj with a wider bandwidth as the task requires.

In this section, we will examine the robustness of the proposed algorithm under these effects:

* presence of the sensor noise,

* presence of the unmodeled dynamics,

in terms of the local stability. We then validate the robustness with a simulation.

The robustness which will be introduced is defined to be that the controller parameter adap-

tation dynamics is ineffective by the presence of unmodeled dynamics as well as the presence of

noise. The robustness issue was first raised by [Rohrs, et al., 1982] and [Rohrs, et al., 1985] when

they showed that several algorithms can become unstable when some of the assumptions required

by the stability proofs are not satisfied. Since then, many researchers have been working on how to

modify the existing adaptive control algorithms, mainly on the adaptive law, to expand the robust-

ness margin. To name a few, hybrid adaptive control is first presented by [Gawthrop, 1980], dead

zone is presented by [Peterson and Narendra, 1982], [Sastry, 1984], [Narendra and Annaswamy,

1986],[Narendra and Annaswamy, 1986], etc., a-modification is presented by [Ioannou and Koko-

tivic, 1983], and regressor vector filtering by [Wittenmark and Astrom, 1984]. It is our intention

here to examine the robustness of our algorithm without changing the adaptive law chosen which is

the gradient descent rule. It, in many cases as presented by many researchers, is the worse adaptive

law since it may introduce instability even without the presence of these effects. The main reason

that we still use the gradient descent rule instead of other adaptation rules is so that we can show the

effectiveness of our algorithm is robust enough even for the worse adaptation rule. Nevertheless, as

pointed out by [Sastry and Bodson, 1989], robustness depends on the plant, the controller as well

as on reference inputs. We will show how each item listed above affects the stability and how we

can ensure the robustness by setting constrains on them from the stability analysis to be introduced
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later. We are now in position to examine the robustness to each of the cases itemized earlier in the

following sections.

3.5.1 Problem Reformulation for Robustness

As presented earlier, in each stage of the approximation, based on the controller structure,

q,, the observer polynomial A,, the currently projected plant, Gp,,, and the desired reference model,

Gm,, we can obtain the desired optimal control parameters 0' such that the closed-loop transfer

function FGpq equals to the desired reference plant, Gmq or

FGpq (S, O) = G,, (3.59)

where

90q

X

,Aq

FGpq (s, 00)

CO

Dq

= [k 0 , 0q, q, oq] [IR, R n q- 1 , IR, ]Rn q- 1]

[1, s, ,. s"'- 1]

= Det [sI - Aq]

def kCqG,,A
(Aq - Co) - GpqD

- Oo , qX

= 09 qX + 9qAq

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

Nevertheless, in the actual situation, the neglected plant transfer function, G,,, will contribute to the

parameter adaptation dynamics. Thus, instead of the 0', we will obtain a set of deviated control pa-

rameters, Otq, such that it stabilizes the overall closed-loop transfer function Fp, with the controller

parameters, q, set to ot,. Thus, this set of deviated parameters, Otq, is tuned to reflect the actual sys-

tem including the unmodeled dynamics, Grq. As long as the effect of unmodeled dynamics is small,

the tuned plant transfer function that approximately matches the model transfer function, Gm, can

be achieved as long as the persistent excitation condition is satisfied as well. This implies that Ot,

will be very close to the 00 since the effect from the unmodeled dynamics is negligible at low fre-

quency. As pointed out by [Sastry and Bodson, 1989] in terms of partial matching, Otq is derived



3.5.1 Problem Reformulation for Robustness

based on the elastic averaging between the actual system and the reference model at each excita-

tion frequency. As described earlier, for a given qth stage controller with order of 2nq - 1, complete

one-to-one matching between the closed transfer function based on the reduced order plant, FG,,

and the reference plant, Gm, is possible. However, the actual system with the qth stage controller

has order of nq + n, - 1 instead of 2 nq - 1. Thus, complete matching between Gmq and the actual

closed-loop transfer function, Fpq that includes the unmodeled dynamics, Grq is questionable. To

differentiate Gmq from the tuned plant, we will use the notation Ft, to represent the tuned plant.

S= ktqWpA(3.66)Ft (Aq - Ctq) - WpDtq
def F, (3.67)

where Frt, represents the residual transfer function and has the following relationship

k•Fr A, - cq - W,, D (3.68)

Frtq as explained earlier.

In the single excitation frequency case, clearly, in the region where unmodeled dynamics is

small, we can still achieve complete matching. As we start to excite the unmodeled dynamics, Otq

will start to drift to compensate for the contribution from the unmodeled dynamics. This slow drift

characteristics is due to the internal matching between the plant transfer function and the desired

transfer function where the closed-loop transfer function has higher order than the desired transfer

function. Similar drift characteristics is also found by [Sastry and Bodson, 1989] and [Astrim and

Wittenmark, 1989].

In the multiple excitation frequency case, due to varying Otq achieved at various excitation fre-

quencies at the region where Otq starts to drift, complete matching is not possible to satisfy all ex-

citation frequencies. Thus, it is important to limit the excitation frequencies to be within the region

where Otq (jw) remains almost invariant. The same interpretation can be taken in Eqn.(3.67) is that

as long as the excitation frequency, w, is within a frequency range Q2, E {w10 < w < w, } where

contribution from Frj (jw) is within a given bound, Otq obtained after elastic averaging of all the
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excitation frequencies will remain almost invariant. It is this elastic averaging effect, though we

can still achieve stable tuning behind w, in the single excitation frequency case, oscillation around

the elastic averaged Ot, based on the multiple excitation frequencies can be expected. Due to this

fact, w, is thus defined as the switching frequency for qth reference model and controller to achieve

a set of converged control parameter, Ot,, without augmenting.

The reason for maintaining parameters to remain invariant around the tuned parameters, Otq, is

that due to the fact that for any given controller and physical plant, there always exists a bound on

the variation of the control parameters such that the system is stable as in the case of the Routh 's

Stability Criterion[Ogata, 1990]. Robustness Control further expands the stability criterion to in-

clude the parameter variations in the form of the bound on parameters. Based on Eqn.(3.67), we

see clearly, as Frtq becomes excited more and more as we push for higher excitation frequency,

the tuned parameter, tq, which "stabilizes" plant will eventually drift into instability at wH, where

wHqdefines the absolute limit where stable parameter tuning can be achieved based on the stability

analysis to be presented later. Thus, it is important that we maintain a bound on parameters for the

parameter dynamics to remain stable despite the presence of unmodeled dynamics and the pres-

ence of the output noise. We can then directly derive a bound obtained from the well-established

robustness bound on system variation for a given controller. Since the excitation frequency is di-

rectly related to parameter dynamics and we have full control of it, our attention has now shifted to

derive a robustness bound on the excitation frequency. The definition of the robustness we will de-

rive is a bound that the control parameter will remain bounded with the presence of the unmodeled

dynamics and noise as well.

A similar robustness bound of the existence of such tuned parameters, Ot, with the presence of

the unmodeled dynamics and output noise based on the SRP rule is stated in [Sastry and Bodson, 1989]

and [Anderson, et. al, 1986]. In Appendix A, we restated several theorems used in[Sastry and Bod-

son, 1989]'s for future references.

Next, we are going to follow the same formulations but restated in our situation through the use

of the averaging theorem and tie it to the local stability we have derived earlier to state the bound

of the robustness based on the gradient descent rule instead of SPR.
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3.5.2 Derivation of the Robustness Bound

First of all, we would like to defined an additive assumption to the open- and closed-loop

system besides the multiplicative assumption we have made earlier:

W,P

Fpq

= Gpq + Gadq

= GpqGrq

= FGp + Farq

= FGpqFrq

open-loop, additive uncertainty

open-loop, multiplicative uncertainty

closed-loop, additive uncertainty

open-loop, multiplicative uncertainty

(3.69)

and from the earlier derivation of the regressor dynamics equation wq, we can obtain

Wq =

r

Wl

Yp

W2

r

[s - A]- lu

Yp

[s- A]- ' lyp

(3.70)

Since in our case, we have only the nominal information of the system, the regressor will contain

the nominal information plus the noise term, v. If we make further assumption that the noise is

only linear superposition of the unmodeled dynamics plus the actual output disturbance, v, we can

rewrite the above regressor equation based on the derivation of w, as below:

U = W, (FGpq +Farq)r

SW, '(FP)r

yp = Fpqr + Farr + v

= (Fp,)r + v

Wq =

1

[sI - A]-' lW-1(Fpq)

Fpq

[sI - A]- 1 lFpq

rr + H.,v

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

0

0

1

[s- A]- 1 l

r +

H (3.76)
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Then we can use the same averaging theorem to derive the following equation between the reference

and actual system:

CaVq

where Fq = Fpq/kt,, that is,

Fp, () =

a0
= - lim

01 T-PM
Sto+T

to

ktRwf o(0) avq

kpZpAq (s)

F wFt wT dt] OaVq

(Aq,() - Cq(s))Rp(s) - kp(s)Zp(s)Dq(s)"

and

R (0) = Sw w(dw). (3.80)

We further assume that the reference signal r and the sensor noise v are both stationary and have no

correlation between them or S(rv) = O.Then, we can derive the cross-correlation of the regressor,

S,, as follow:

(3.81)Su(dw) = Hwr(jw)HH (jw)Sr(dw) + Hv,,(jw)Hwv (jw)S,(dw)

Since wo = Fpqwf, then the cross spectral measure Sw o (dw) is given byFt qJ'

Swf Wo (dw) Sw, (dw)

= FqHFtqSw,(dw)

Swf w (dw)

(3.82)

(3.83)

= HWmr(jw)H•r• (jW) Fl (jw) Ftq (jw) Sr (dw)

+HW (jw) HH, (jW) FpU (jW)Ftq (jw) S(dw)

1 (pH (jW)= IF, (j) 2 j, Hwmr (j) Hgmr (JW) Sr (dw)

1tH+k- IF,(jW) 2 H,, (jw)HH,(jW) S,(dw)tq FPq

(3.84)

(3.85)

(3.77)

(3.78)

(3.79)

PPqH

\ Ftq
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Finally, we have obtained the symmetric part of Rf wee (0) with the assumption of the piece-wise

reference input, r and noise, v as below:

-1 r. Wo + • R = RIFq(ji)2 e{ (*) }1Ze{Hwmr(jwi)Hm (jwi) +

M

ktq V ( Il(Jw) 2e{ 4Re{Hwv(jw)H (jw)) }
j=1 (Fp (jW)

(3.86)

= R + R (3.87)

where Rr is all the terms that depend on signal r and R, is all the terms that depend on signal

v. M is the number of the noise spectrum. We will state this M later. Based on the same Lyapunov

function derived earlier, we can start to exam the stability and robustness based on the newly derived

Rf•w, as shown in Eqn.(3.87).

3.5.2.1 Robustness to Unmodeled Dynamics

In this section, we will examine the stability based on Eqn.(3.87) where the system does

include some unmodeled dynamics where nq < nn but no noise, thus, the second summation in

Eqn.(3.87) will drop out and the symmetric part of Rw,,w, will be left with the following term which

is very similar to the nominal term:

fracl2 [Rwwo, (0) + Rwfw(O)T] = kt- i~ F~L, tq( Wi) 2e{j J) }Re{Hwmr(jwi)HHmr( JI)
ktq ji=1 DFp, Uw)

(3.88)

In Eqn.(3.88), we see a term that is similar to the nominal term required for the stability as follow:

jL{tq,(jwi)} - Z{JFp,(jWi)}j < (3.89)

Eqn.(3.89) is different than the stability condition derived earlier due to the difference between

Gm, (jw) and Ftq(jw). Due to the fact that Ftq (jw) is not available as a measured signal, we need
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to relate it to the Gm, (jw). Based on an earlier assumption that

Ft,(jw) = Gm,(jw)Fr, (jw) (3.90)

and derivation shown in Appendix C, we can obtain the following:

(4tq _ kpkcZpAo Zmq 1
(q (Pq GmqFr(3.91)

- Fpq (3.92)
GmqFrtq

L{t} = L{Fpq} - L{Gmq} - Z{Ftq} (3.93)

Since the phase angle on Frtq could be both positive or negative, we then rearrange the above equa-

tion into the following form:

IL{Fq} - L{Gmq} I < 2 - Irq (3.94)

where Fr, = {Frt, }. Thus, this defined the maximum allowable excitation frequency WHq such

that

iFrq (jWHq)I 2 (3.95)

for us to achieve a stable tuning. The definition of WHq becomes even self-evident in the single ex-

citation frequency case as described earlier. In the single excitation frequency case, the reference

input is composed of only one frequency; in other words, it is scalar. In order for the control param-

eter adaptation dynamics to be stable, Rw,,, (0), which is also a scalar quantity, has to be greater

than zero. Thus, the constraint on the excitation frequency to be less than wHq has become both a

sufficient and necessary condition.

In the multiple excitation frequency case as stated earlier, oscillation of parameters around the

tuned parameters is expected unless we further constrain the excitation frequency range to be less

than ws. As stated earlier, our goal is to derive a bound such that the tuned parameters remain al-

most stationary. This can be easily achieved by minimizing the extra phase angle introduced by the

residual closed-loop transfer function, Frtq. We can only achieve this by exciting the system within
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the range of Q•, E {wJO < w < w,} where w, is defined as

Irq (js)l = rmax (3.96)

where Fmax is the maximum allowable phase prespecified to achieve minimal oscillation of the

tuned parameters. Thus the conservative robustness bound W,,obq is then defined as

def

Wrobq = WHq - WSq. (3.97)

As long as we can satisfy this robustness frequency bound, the stability can be achieved and im-

provement on e, the increment on the matched frequency range can be achieved even with the pres-

ence of the unmodeled dynamics.

3.5.2.2 Robustness to both Sensor Noise and Unmodeled dynamics

In this section, we will examine the stability based on Eqn.(3.87) where system includes both

the sensor noise and the unmodeled dynamics. However, due to there are several types of output

disturbance noise, we will later further distinguish them in this section.

In general, we have the following

Rwfose = Rr + RP, (3.98)

and the noise is white noise or M = oo. In order for the parameter dynamics to remain stable, all

eigenvalues of Rwfo have to remain positive. To make an even stronger constrain on the system

we can rewrite the above equation as below:

Rwfw O = Rr [I + R;'R] (3.99)

so that the variation of the 8 = j is greatly depending on the nominal terms, or

I1Rr'RvI < 1. (3.100)
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The physical meaning of the above statement is that as long as the correlation between the reference

and the adaptive dynamics dominates the correlation between the noise and the adaptive dynamics.

Another word, the effect of the noise is negligible as compared to the reference signals. Based on

the relation for the norm, we obtained

IIR- 'RVII < IIRI-'llRvII. (3.101)

Further more, based on the relation between the norm and the singular value, we obtained:

OIR'm'IIIRvI = (max(Rv) (3.102)
Umin (Rr)

where amin (R,) is the minimum singular value from the single value decomposition of Rr. Then

as long as

amin(Rr) »> max(Rv), (3.103)

then the adaptive system is robust to the output disturbance noise. By specifying a bound on amax (Rv)

to be b, and a given allowable ratio, C, then we can see that as long as

amin(Rr) Ž (b, > 0, (3.104)

then the adaptive system is robust to the output disturbance noise besides satisfying the Wrob stated

earlier.

Next, we are going to illustrate the robustness analysis presented above with a simulation.

3.5.3 Robustness Simulation

Now that we have introduced the robustness based on the stability of the parameter dynam-

ics, we will use a simulation to demonstrate the derived robustness bound.

The simulation case we used is the same simulation example stated in [Rohrs, et al., 1982] to

demonstrate the robustness. The overall MRAC system can be seen in Figure 3.6. The plant used

in the simulation is presented in Tab.3.1.
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Figure 3.6: Overall simulated MRAC system

Table 3.1: Robustness simulation setup
Name Command Setup

W 2 229
p s+1 s2+30s+229

v A sin wt 0 < A < 0.2, 0 < w < 94.25r/s

3.5.3.1 Robustness Simulation and Results

Based on the setup, the third order system is being estimated using only a first-order plant

model where

Gpj(s) - (3.105)

At each excitation frequency, the actual third-order system as seen using the first-order system model

can be derived as below:

Wp(jwr)
2 229

jw, + 1 -wL + 30wrj + 229
458

(259w, - w3)j + (229 - 31w4)
458

259-wr2

229-314r2(jWr + 259-)259-wr

(3.106)

(3.107)

(3.108)

Thus, the estimated plant parameters based on the first-order system model are:

458
259 - w'

229 - 31w 2

259 - w2 (3.109)
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where wr is the excitation frequency. The tuned steady state parameters can then be calculated as

3 3-a
k = = (3.110)

Due to the fact that there are only two parameters that need to be tuned, the reference input needs

to have only one excitation frequency with the exception of constant gain. As described earlier,

in the single excitation frequency case, excitation up and to the marginal stability frequency, wH

has become both necessary and sufficient requirement for the parameter dynamics to remain stable.

Based on the excitation frequency, wr, we can obtain Figure 3.7.Figure 3.8 shows the bode-plot for

the W,,Gm,, Ftf, and Fr1 where

s + 2(1 - 00)Fr = 1.18 s+2(1-(3.111)
r s3 + 31s 2 + 289s + 458(1 - o) (3.111)

From the phase plot, we see that Fr, starts making contribution to the overall phase plot around

1.0rad/s and its phase reaches 900 around 8rad/s. Based on these two plots, we see that the sta-

bilized, or tuned, parameters are very closed to the projected parameters as long as the excitation

is within 1.5rad/s. From that point on, the steady state parameter will start to drift. However, the

system will become unstable when 00 > 0.5 and o0 < -17.03. Thus, even if it is still able to

find steady state tuned parameters, the system may not be stable. This happens when the excitation

frequency goes beyond wH, where Z {Fr } reaches 900, or at around l0rad/s.

To further demonstrate the effect, we excite the system with a single excitation frequency rang-

ing from 0.5rad/s to 8rad/s. We also added the noise with the amplitude equals to 10% of the

excitation amplitude. We then plotted the tracking error to the norm of the parameter error 10 in

Figure 3.9 where the noise is not present and Figure 3.10 where the noise is present for all the cases.

At 6rad/s, we still can achieve both tuning and tracking though the presence of the unmodeled dy-

namics. With the added noise, we can only achieve the same performance when the excitation is

within 4rad/s. Even at 4rad/s, L {Fr (jw)} is greater than450 . Thus, as long as the wr is within

ws, then the system is not affected by the noise and unmodeled dynamics.

In this section, we have derived some theoretical results for the parameter dynamics robustness.

This simulation further demonstrated some of the theoretical results we stated earlier. Next, we will
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describe how we design the stable reference inputs based on the given task.
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Figure 3.11: Progressive learning with trajectory synthesis

3.6 Trajectory Synthesis Using Progressive Learning

In this section, the trajectory synthesis problem will be formulated in order to determine the

maximum increment of excitation frequency. In the design of the trajectory, there are two main is-

sues involves: task fulfillment issue where the designed desired trajectory needs to meet the task

requirements, and stable excitation issue, where excitation needs to guarantee stable tuning of the

control parameters from the given set of target points. The main purpose of the trajectory synthe-

sis is to tune the system with a known excitation stability range and to have the system performing

actual tasks without being shutting down. The overview of the trajectory synthesis as part of the

progressive tuning is shown in Figure 3.11 in particular the top portion of the graphics where the

task, or the target points, are been transformed into stable reference inputs to the system. It is im-

portant to note that, due to the fact that we are performing the adaptive control on the system level,

although the system is tuned to a specific geometric trajectory, the learned controller is valid for

any arbitrary trajectory. This is because that the whole frequency spectrum is covered throughout

the progressive learning.

3.6.1 Local Stability Analysis

In our earlier stability analysis, we have found that as long as we can maintain the robustness

condition in tuning the system, we can always achieve a positive improvement, e, in the frequency

range where the dynamics range of the actual system has been improved to be the same as the tuned

system. From these robustness conditions, we can maximize e by selecting the set of excitation
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frequencies that satisfy the upper phase limit for each stage of recursive learning operations. As

presented earlier, Eqn. (3.52) is a nonlinear matrix that governs stability of the parameter dynam-

ics. This equation is only applicable when the averaging theorem is valid. The eigenvector and

eigenvalues of the matrix, R,,s,, govern the local convergence rate with respect to the excitation

frequency used. The main reason it is local stability instead of global stability is due to the use of

averaging theorem. The lowest eigenvalue, Amin, of Rwfw o , determines the convergence rate at that

given trial and the eigenvector determines the direction parameters update themselves. In order to

achieve better convergence speed as well as local stability, we need to "reshape" this matrix. By

observing the matrix Rwtfwo , we see that we have two variables since we can freely choose the fre-

quency content and amplitude content of the reference inputs. Since our objective is to maximize

the minimum eigenvalue of the matrix, we can rewrite the maximing function as follows:

{R, w} = arg max (Amin(RRw wo)) (3.112)

where R = [R1, R2 , ... , RI]T, the magnitude of the all reference inputs and w = [wl, w2 , .. , Wn] T,

the set of excitation frequencies.

3.6.2 Requirements for Tracking

We have previously stated that as long as we follow the conditions suggested by the progres-

sive learning theory and persistent excitation requirement, we can improve the system performance.

However, the specifications on reference signals are described in the frequency domain while the
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task is described in the time domain. The main purpose of this section is to transform the refer-

ence trajectory or any other task from the time domain to the frequency domain that will satisfy the

reference input requirement. Usually, the target points we need to meet are prespecified as shown

in Figure 3.13. We are usually given a duration, or period,"T", that we need to complete the task.

One of the most straightforward approaches relating the time domain to the frequency domain is to

perform the Fourier transformation. Another advantage of using Fourier transformation is due to

the fact that the sine and cosine functions are cyclic function and are always continuous and differ-

entiable. These characteristics will become self-evident and important, as shown later.

The trajectory formulation states that for M target points, f(tl),f(t2),... , f(tM), we need at

least M/2 distinct frequencies. The time counter, tq, expands from 0 to T where T is time needed

to complete the task or the period. For a given frequency set,wl, w2 , ... , Wim, the following equation

determines the amplitude and the phase shift for each frequency:

M/2

E [Am sin (wmtj) + Bm cos (wmtj)] = f (t) where j = 1, 2, -... , M (3.113)
m=l



3.6.2 Requirements for Tracking

where Am and Bm are the amplitudes. Once we can take the trajectory and decompose it using

Eqn. (3.113) in terms of T, we have in fact transformed f(t) from the time domain into the spatial

domain. Then, depending on the specified T, i.e., 10s or 10ms, we have further translated f(t) into

the frequency domain by fixing the frequencies of which the trajectory function is composed. Using

this relationship, we have determined the set of w for a given trajectory time profile. By varying T

progressively, we can sweep out the whole frequency spectrum band.

The results obtained from Eqn.(3.113) represents the complete trajectory that meets all the target

point requirements and the way we interpolate between each target point. However, it represents

only the desired output. In order for the system to obtain such desired output we need to find out the

desired reference input that can deliver such output characteristics. To do so, we need to inverse the

desired model transfer function as shown in Figure 3.11. Thus, the reference input to the system

can produce the desired output without the phase lag. All the dynamic system transfer functions

can be viewed as a low-pass filter; in some cases, the inverse of the low-pass filter does not exist.

However, since we choose to use the sine function which is always differentiable and cyclic, we

can guarantee a solution after the inversion since the actual inversion is performed through the use

of algebraic manipulation process. Finally, we arrive at the reference input function that satisfies

the desired output requirement as shown below:

M

r(t) = Bfina sin (wq + Pfinalq) (3.114)
i=1

where Bfinalq represents the amplitude of each reference input and SWfinalq represents the phase shift

of each reference input after the algebraic manipulation process.

Finally, Eqn.(3.114) after transformation from Eqn.(3.113) represents the reference input syn-

thesis equation from the trajectory tracking point of view. Next, we are going to combine both re-

quirements into one coherent equation that will complete the theoretical background of the trajec-

tory synthesis.
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3.6.3 Input Design for Stable Adaptation Tracking

After we have presented both sets of requirements in terms of the reference input earlier, we

can transform Eqn. (3.52) by adding Eqn. (3.114) into

1 wwo (0) + Nwo+ wf ( RiRFtq (Jwi) 121Zefrac(tq (J)Fpq (jw) }Hwmr (jWi) H Hmr (i
2 i=1

(3.115)

where

R = (Bfinalq exp3I " na1' ) (3.116)

and the final form of the trajectory synthesis after transformation is:

M/2
w = arg max(Amin(Rw,,,) + y( B inalq exp (w~ t+W' · ' q) -W, f(t))) (3.117)

i=1

where y is the Lagrange multiplier. As described earlier, originally, we can arbitrarily choose the

amplitude and frequency for the reference input in terms of the stability analysis. Once we put the

geometric constraint on it as shown in Eqn.(3.117), we have only one freedom in arbitrary selecting

the frequency but not the amplitude. Based on this equation, we have the freedom to choose any

distinct frequency to make up the set of the frequencies that will satisfy the stable tracking. This

means that the desired trajectory can go through all the targets while it has a known frequency con-

tend to ensure stable, faster convergent adaptive tuning. The use of the Lagrange multiplier is to

connect the optimal equation to its constraint.

Now, we have completed described the theoretical results for the model augmentation and tra-

jectory synthesis. Next, we are going to describe the progressive learning algorithm that is based

on these theoretical results.



Chapter 4

Implementation Procedure

4.1 Introduction

In this chapter, we will mainly focus on how we actually apply the theoretical results obtained

earlier to the actual application. We will first describe the summary of the implementation proce-

dure before we describe each step in a greater detail. In terms of the model augmentation, Sec. 4.2

focuses on all the necessary steps we need to perform or justify about the application we have in

mind. Sec. 4.3 focuses mainly on when is the best switching strategy that we can use while still

maintain the stability and fast convergence of the overall control parameters. Sec. 4.3.2 focuses

mainly on how to achieve fast convergence and stable parameter space expansion as we switch

from one stage to the next. Then we will discuss the termination procedure. To demonstrate the

proposed algorithm, we will use a simulation as shown in Sec.4.5to conclude this chapter.

4.2 Summary of the Implementation Procedure

In the earlier sections, we have introduced the theory of our research. In this section, we will

describe the general procedure in actual applying the proposed algorithm to actual systems step by

step and this is the general procedure we used in obtaining the results shown later.

In general, there are three main steps that we have to go through for implementing the progres-

sive learning algorithm. They are listed below:

1. Experimental setup

2. Experiment trials

3. Post-experimental process

Though they are very broad; they covered all the aspects. Next we will discuss each of them indi-

vidually.
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4.2.1 Experimental Setup

In the experimental setup section, we need to obtain some preliminary information about

the system that we want to tune. Based on this preliminary information, our main objective is to

first evaluate the effectiveness or applicability of the progressive learning to the system of interest.

Second, based on the user-defined performance specification, we need to determine how we actually

prepare each stage for running actual experiments.

In general, in order to know if we can effectively use the progressive learning algorithm is to

follow the steps listed below:

1. Obtain a open-loop bode plot of the system intended to control

2. Obtain a noise frequency spectrum to determine the bound on noise, b,

3. Determine a frequency range of interest where the minimal tracking speed is essential

4. Determine the lowest order of estimate of the plant transfer function that will fit the frequency

range of interest

5. Determine the maximum phase allowable for the discrepancy between the estimate transfer

function and the actual bode plot. This should be less than Z

6. Determine the estimated switching frequency, w8, based on the residual dynamics.

7. Determine the observer polynomial coefficients. They should reflect the dynamics bandwidth

of the subsystem and reject the noise penetration.

The main reason for obtaining the spectrum information about the system, is due to the fact that

all our analytical results are based on the frequency domain analysis. Furthermore, due to the fact

that results from our stability analysis and robustness analysis require us to know only the phase

portion of the spectrum information, we need to obtain at least some rough estimation of the phase

information if not the spectrum information. Once we have obtained the phase information, we can

start to evaluate the system if we in fact can apply the progressive learning algorithm.
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Though the concept of progressive learning algorithm seems nature; nevertheless, there are sev-

eral limitations that will prevent us to use the newly developed extended progressive learning algo-

rithm. First limitation of the progressive learning algorithm is to apply it to a non-minimal phase

system. The main reason is that when we derive the stability and robustness bound, in order to

achieve a conservative estimation, we use only the phase information. Due to the fact that the in-

terpretation of the phase plot for non-minimal phase systems has different meaning as compared

to the phase plot of the minimal phase systems, we can not yet guarantee the similar results can be

completely extended to the non-minimal phase system at this time. Thus, currently, we have to re-

strict our applications to be minimal phase endpoint feedback systems. Next, in order to apply the

extended progressive learning algorithm where we have added the model augmentation and trajec-

tory synthesis parts to it, the system spectrum has to display clear separation among various modes.

Each individual mode can be composed of any system order. However, on the other side, if no clear

separation can be observed, the effectiveness of model augmentation may be limited. It may not be

efficient and effective to apply the model augmentation to the system controller.

In order to determine if the system has "clear separable" modes, or stages, we offer the follow

suggestion. Since we are mainly concerned with only the phase information, we can use the small

angle approximation guideline to determine the separation region. Once the user defined what is

allowable phase angle deviation allowed from the higher mode, Emax which should be less than

200 due to the assumption of the small angle approximation, we can partake the frequency band

into various pieces and estimate the order of the system within each region. Consequently, we will

determine the estimated wq which is the maximum frequency where the higher order dynamics

phase contribution is still within the Pmax for each stage and the order of the subsystem in each of

the stage. To give an theoretical example, Appendix D has derived the required separation ratio

between two second order sub-systems has to be in order to be considered "separable." To keep in-

line with the notation we used, each separable region is considered to be one stage. Then, based on

the estimated order of the subsystem with the estimated system model parameters, we can also de-

termine the correct maximum excitation frequency for us to start tuning the system. This maximum

excitation frequency will in fact determine the "allowable speed" that the system can run initially.

Appendix D also derived the required excitation ratio between the maximum excitation frequency
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and the nature frequency of the first second-order system for the same system with two second or-

der sub-systems. As a side note for determining the order of the subsystem, we need to be very

conservative. Though in the deterministic robust control where the controller parameters are fixed

irrespectively of the true system behavior, over-estimating or under estimating system's behavior

may not cause instability; however, in the adaptive control field, parameters are estimated based on

the assumed model frame with true data that behave non-linearly, thus system dynamics becomes

depending on the outcome of the parameter adaptation dynamics. By over-estimating the system's

complexity, we require more parameters to be tuned thus stability and high convergence rate may be

hard to be achieved and impossible to be implemented. On the other hand, by under-estimating the

system behavior, the internal unmodeled dynamics will cause assumed modeled-framed parameters

to change naturally irrespective of the system dynamics. Thus, it is important as well as a practical

reason to assume a simplest model or the lowest order assumed system model that will describe the

system behavior in the region that we are interested in or the lowest excitation frequency range that

will still produces tolerated performance.

After we determined the maximum allowable excitation frequency ratio, we can run the trajec-

tory synthesis algorithm as presented earlier to determine the correct amplitude and phase shift in

order to meet the geometric requirement of the given task. The main reason for keeping the cor-

rect excitation ratio and separation ratio is that once we have started tuning, we can achieve stable

tuning without exciting the undesirable higher order mode and correctly initialize the control pa-

rameters need to be tuned. Then, we also need to design the observer dynamics to have a relative

dynamics region so that it can have a good cut-off frequency to eliminate the noise penetration to

the adaptation dynamics as mention earlier.

Though in theory, determination of b,, the bound on noise, is trivial; however, it is much harder

to determine in the real application since M, the number of the noise spectrum or the frequency

range, is harder to estimate. In general, M, the number of the noise spectrum is infinite; however,

by carefully selecting the observer characteristics polynomial, Aq, we can then limit the noise fre-

quency bandwidth. The physical interpretation of the Aq is a low pass filter. By selecting the range

of interested frequency, we can then have the correct cut-off frequency to limit the penetration of the

noise to the regressor signals. Thus, the effective frequency range of the noise spectrum will have
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the same frequency bandwidth as the tuned closed-loop frequency bandwidth. Due to the physical

limitation on the bandwidth of the servo amplifier together with the noise spectrum, there exist a

frequency w, such that the proper S/N ratio can not be achieved. Thus, this provides the marginal

stability limit that the tuning can expand the system's bandwidth. As long as we can achieve the

proposed bound, then the system is robust from the noise. In conducting the trajectory synthesis,

another warning in terms of the difference between the theory and the implementation is the status

of persistent excitation. The theory of the persistent excitation only provides sufficient condition

but does not guarantee the signal-independence for the Hw, (jwi)H , (jwi). Thus, unless we excite

the system with the signals that have enough energy content in the frequency range where the plant

model is of sufficient order to represent the actual plant, the "precise" persistent excitation is ques-

tionable. In the case when the system is not be persistently excited by the stable reference signal,

since due to the fact that if the noise is white noise, the overall dynamics will still achieve persis-

tent excitation condition but just not on the reference signal. Therefor the robustness is questionable

since R. 1 is not defined. Thus, as a practical issue, it is important to start with a lower order sys-

tem model which requires lower number of parameters to be estimated and to excite the system with

more frequency contents than the minimum requirements to ensure the parameter convergence.

After we have completed all the steps described above, we are ready to conduct actual experi-

ments to tune the system.

4.2.2 Experimental Trials

The main objective of this section is to faithfully execute the experiments with correct model

order structure and tracking speed in mind. Within each stage, we need to repeat various number of

runs to completely tune the control parameters. Each individual run of a complete task is considered

to be one trial. The length of a trial is fixed by the excitation frequency range used. The number of

trials required, however, is determined by the actual experimental results. In this stage, our main

task is to collect as much information as we can that will help us determine various actions to be

taken after completing one trial. For most of our applications that require endpoint feedback, our

objective here at this section is to collect the output sensor data, process the date, and perform on-

line adaptive control according to the gradient descent rule as suggested earlier. Then based on the
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output error, the observer dynamics estimates the missing state and the adaptive controller estimates

the "correct" control parameter values in order to achieve full-state feedback and to mimics the

desired model output.

Based on these input and output information between the actual experimental data and the de-

sired output, we need to determine the appropriate actions to take. Detailed descriptions of how we

determine and how we execute these actions is described in the next section.

4.2.3 Post-Experimental Process

Similar to the previous two sections, we need to again go through several steps as described

below:

1. Determining the phase angle at each of the excitation frequencies.

2. Comparing with the desired model to determine the e for each trial.

A. Increasing the excitation frequency range if e continues to be positive and/or increas-

ing.

B. Start the augmentation procedure if the progress of varepsilon starts to slow down.

3. Compare the frequency range, hardware limit, and noise frequency limit to determine the

termination of the experiments

From the above, we see the general overview in terms of list of steps that we need to follow for

the algorithm. Next, we will discuss the heart of the algorithm which is the decision making process

for augmentation. The "adequate" decision process includes on-line validation of the switching

frequency and the determination of the correct switching scheme. Then, we will discuss under what

condition we will terminate the experiments.
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4.3 Determining the Model Augmentation Scheme

In the previous section, we have found that the system will remain stable even though we

start to excite the unmodeled dynamics as long as Eqn.(3.87) is followed. Our next goal is to pro-

pose an augmentation scheme to expand the original system to include the unmodeled dynamics.

The main purpose of this section is to propose the model augmentation scheme to be used based on

the stability analysis and robust analysis presented earlier.

4.3.1 Stable Tuning Range and Switching Frequency

In this section, we will determine the switching frequency as well as the stable tuning range.

As stated earlier in our robustness analysis , as long as we excite the system within the region

where the phase contribution of the unmodeled dynamics is less than Imax, we can achieve stable

adaptive control despite the pre-assumed modeled dynamics. Thus, based on the stability condi-

tion derived in the robustness analysis, w, that we determined in the setup section is defined as the

switching frequency. As we start exciting at a frequency higher than ws, unmodeled dynamics will

cause the tuned parameters to drift and the stability range to decrease as demonstrated in the ro-

bustness simulation. Thus, our first task is to determine the location of the switching frequency,

w,. Although determination of the exact location of w8 may not be possible, we can estimate it and

validate it later on line. In order to estimate the location of w8 , we have to examine the unmodeled

dynamics. Once we have determined the estimated order of the system, the G,(jw) can then be

determined as the difference between the actual system and the assumed plant model. As stated

earlier, phase of the Frr,is shown below:

Frt? IL- {Ftq(jw)}- L{Gmq(jw)}i (4.1)

Then based on the relation between the two and the phase contribution from the high order dynamics

at low frequency range is minimal, Fr, can be further estimated as

Fr, = Gr. (4.2)
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Then, w, can be easily estimated as below:

IZ{Grq,(jW)} = L'max (4.3)

In the setup, though based on the assumption of the modeled plant and the chosen reference

model, we estimate w, ahead of time; however, we need to validate the estimation of w, on-line in

the actual implementation. Before doing so, we need to estimate the phase angle at each excitation

on line as well.

The determination of {Fp,, } can be easily obtained through the use of simple sample signal data

analysis. From the trajectory synthesis, the reference signal r(t) can be decomposed into spectrum

signal at frequency wi as ri(t) = ai sin(wit) and its output yi(t) = ai I G(wi) I sin(wit + poi)

where a is the excitation amplitude, Gi(w) is the output transfer function gain, and cpi is the Z {Fpq }.

By using the averaging technique again, we can obtain the output averaging with its crossing cor-

relation with both the sin and cos functions as

1 TZt a
Y, = y (t)cos(wit)dt = I G(wi) I sin(cp) (4.4)T t=o 2

and

Y,, = - yi(t)sin(wit)dt I G(wi) cos(pi) (4.5)T t=o 2
Then I G(wi) I can be easily determined as below:

IG(w) I= /yc + Y82 (4.6)

and the phase shift / {Fp, } can be then determined as

L{F,,} = tan y() (4.7)

Once the phase of the closed-loop transfer function has been determined at each of the reference

input frequency, we can evaluate E, the improvement in tuning for each trial. As pointed out ear-

lier in the robustness analysis, we can not determine Ftq ahead of time since the Ot, the desired
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tuned control parameters, can not be obtained advance. Thus, besides limiting the phase contri-

bution to 2 less than the allow phase contribution, Fmax, we need to validate w, that was deter-

mined based on the open-loop residual transfer function, G,, in advance to maintain the stability.

As pointed out in the stability analysis, according to expansion theorem presented earlier, as long as

we maintain these conservative expansions, we will always achieve a positive e. The interpretation

of Eqn.(3.94) is that due to the uncertainty, the maximum allowable phase difference between the

reference model and the actual closed-loop transfer function at each excitation frequency in order

to achieve a positive expansion E is 1 - I r, 1. As we start to excite the unmodeled dynamics, the

residual dynamics will cause the parameter to drift in order to match the reference model at these

frequency ranges. One of the direct results of it is that we will observe parameters start to vary

quite significantly and the other direct result is to observe the magnitude for improvement on e to

decrease. At the point of WH, we will in fact either obtain a negative or zero improvement since

the stability of the parameter dynamics has become questionable. Thus, one of the natural meth-

ods directly resulting from this is to put the maximum parameter variation bound on a given tuning

session [Narendra and Annaswamy, 1987]. In our case, we will rely on the e obtained to ensure the

validation of ws on-line. According to the expansion theorem, if we observed the rate of change in

e to slow down, we have in fact started exciting the unmodeled dynamics. Thus, we can either stop

expansion of excitation frequency or start the augmentation process.

Once the w, is determined, the stable expansion frequency range, Z, can be determined as fol-

lows:

•• s E {wl[Z{Gm,(jw)} - L{FF(jw)}j < 7- max and 0 < w < w,} (4.8)

Then, our next step is to propose a stable augmentation scheme to determine how we expand from

one stage to another in terms of the control parameter space.

4.3.2 Expansion of Parameter Space

In the previous sections, we have presented the stability analysis in terms of unmodeled dy-

namics. In this section, we will present a way of expanding the parameter space when we perform

the model augmentation.
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Earlier, we have stated when to augment the controller complexity. Since at qth stage, the pa-

rameter space, Oq is E JR2(q ) while at (q + 1)th stage, the parameter space is 0q+1 is E IR 2 (q+1),

we need to describe the way of initializing the newly added parameters. From some preliminary

experimental results we have obtained, if we do augment both the controller complexity as well as

reference model at the same time, the initial parameters values are quite oscillatory. This is mainly

due to the fact that the newly added parameter space has not been correctly initialized. Thus, this

has led us to propose a new augmentation scheme in terms of expansion of parameter space.

Based on the MRAC formulation, the closed-loop transfer function for the qth stage is

F = KpkcqZpq (4.9)
(Aq - Cq)Rp - kpZpDq

with Gmq as the reference plant while the closed-loop transfer function for the (q + 1)th stage is at

Kpkc(l)ZpA(q+l)
FR (4.10)Fp(q+ ()(q+l) _ C(q+l))Rp - kpZpD(q+l)

with Gmq,+ as the reference plant model. In order to retain the stability from qth stage to q + Ith

stage, we need to carefully initialize the newly added parameters. Instead of directly augmenting

from qth stage to q + Ith stage, we propose a two-step augmentation scheme. During the transi-

tion stage, tfq, only the observer dynamics has been expanded as well as the controller parameter

space instead of expanding the excitation frequency range. The purpose is to achieve stable initial-

ization of the newly added parameter values since the effect of the higher order dynamics is low at

this point. Thus, the prior knowledge of the system is "preserved" and new knowledge is learned

through the augmenting the observer dynamics.

Once the improvement in e is restored, we will perform the second step in augmentation which

is to augment the reference input model to the new stage.

Next, we will conclude this algorithm by describing how we actually terminate the tuning ex-

periments.
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4.4 Termination Conditions for Progressive Learning

Besides the physical reasons for termination of experiment such as performance requirements,

servo-bandwidth, noise spectrum, and etc., there are other limitations for us to further expand the

control bandwidth of the system. As we push for higher performance or a wider-bandwidth, we have

to extend the controller complexity or increase the stage number. However, in the actual implemen-

tation issue, we need to study the feasibility of augmentation. In order to augment the expanding of

the frequency spectrum, we need to consider that the noise spectrum will not vary or diminish plus

many physical limitations such as servo bandwidth and rated output, sensor bandwidth, calculation

time-cycle for the hardware, and etc. Based on the projected next stage controller gains with the

same Imax, a new set of w, and WH can be calculated. Then we need to compared to the w,. If they

are both smaller than wv, then augmentation is achievable; otherwise, unless there is a hardware

change, we will not be able to make any improvement. We should also terminate the experiments

by observing E specially after we have augmented. After we have completed an experiment, we

should validate the experimental results by running the same test but with different task or different

trajectory to ensure the quality of the learning.

To summarize all the procedure, a simulation is done next before we actually show the actual

implementation results.
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4.5 Simulation

In this section, a simulation is shown here to demonstrate the use of the algorithm, in partic-

ular, the model augmentation and the trajectory synthesis as described earlier. A plant with relative

degree of three is used as an example. We also use it to demonstrate that the stable parameter con-

vergence can be achieved by a sequence of progressively exciting reference signals even with a

gradient descent adaptation.

A. Plant and Controller

The transfer function of the plant and the reference model are chosen to be

WM(s)

Wm(S)

Z+(s) 4(s + 0.6)
Rp(s) (s 2 + 0.4s + 0.16)(s2 + 0.8s + 4)

Zm(s) 5(s + 1)
Rm(s) (s2 + 1.04s + 0.54)(s 2 + 2.96s + 10.83)

where Wp(s) = Wp, x WP2 and W, and WP2 respectively are

3.75(s + 0.6) 1.0667

W = (s2 + 0.4s + 0.16)' p2 (s2 + 0.8s + 4)

and at the same time, where Wm(s) = Win1 x Wn2 and Wm, and WM2 respectively are

2.02(s + 1) 2.475
S= (s2 + 1.04s + 0.54)' 2  (s 2 + 2.96s + 10.83)

respectively.

The fixed control parameters for each stage are

A1 = [-1], 11 = [1],

0

0

-4

0

1

-5

0
S= 0

1

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

A1(s) = s + 1, A 2 (s) = (s3 + 5 s 2 + 8 s + 4)

A2 =

(4.16)
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By selecting "max to be 100 from the use of the small angle approximation as suggested in the

algorithm, we can then estimate w8 to be 0.7r/s and wH to be 1.1r/s. Then eight control parameters

k, 1 = [011, 012, 013]T, 02 = [021, 022, 02 3]T are adjusted using the gradient descent method.

The first stage tuned control parameters, Otl, are [ketl Ot 0to Ot2] = [0.5061 - 0.2774 -

0.1280 - 0.2478]. As we switch to augment the second stage observer polynomial, we expand

the parameter space to its tuned values as [ktl] = 0.84184, O,1 = [-0.008 -1.4633 -0.2389],

Oto = -0.7252, Ot2 = [1.8103 2.6827 2.7732]. Finally, after augmenting the second reference

model dynamics, the tuned control parameters will be [kt2] = 1.25, Ot, = [-0.91 - 17.9 -

2.4], Oto = -7.07, Or2 = [25.93 48.38 34.12].

B. Initialization and Instability Mechanism

The feedforward gain k was initialized to 0.5 and the other control parameters were initialized to

zero. Figure 4.1 shows the phase angle curves of both the initial plant closed-loop transfer function

as well as the final reference model.
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-250

-300
10 -2 10-1 100 10' 102

frequency

Figure 4.1: Initial and desired phase plot
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4.5.1 Simulation Setup

According to the model augmentation presented earlier, we have four scenarios to compare.

As described earlier, the system is a fourth order system. Our first scenario is the case when the

controller is designed based on the reduced order system or a second order system. The second

scenario is the full-order controller when the controller was designed and tuned based on the full-

order system or a 4th order system. The third scenario is the case that we start like the first scenario

with a second order controller, and then upgrade to the fourth order controller directly. The last sce-

nario is similar to the third scenario except that we add the intermediate stage to have the controller

upgrade the observer dynamics before we augment to the higher order controller. The summary of

all four scenario setups are shown in Table 4.1.

Table 4.1: Simulation Setup in terms of the order of the controller

Scenario No. 2nd order 2nd order + higher observer 4th order
1 all n/a n/a
2 n/a n/a all
3 1 n/a 2
4 1 2 3

The geometric trajectory for the system to follow is shown in Figure 4.2. The trajectory used for

simulation only covered x - axis trajectory data. Based on the trajectory synthesis, the frequency

is selected to be equally spaced between the maximum frequency and the zero frequency or the

D.C. frequency. The maximum excitation frequency for each trial and each scenario is plotted in

Figure 4.3. The trend of the graph suggests how the bandwidth has been expanded for each case in

its 10-trial history.

Next we are going to show the simulation results.

4.5.2 Simulation Results and Discussions

Simulations based on the these four scenarios are then performed. Figure 4.4-Figure 4.7

show the parameter history plot, the error plot, the phase plot, and the phase lag plot for the 4th

scenario which was based on the complete implementations of the model augmentation. The aug-
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Figure 4.2: Trajectory profile for the simulation
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mentation starts when w8 was determined to be around 6r/s on-line. Thus, the expansion of the

observer dynamics starts after Trial No. 2. Then, to demonstrate the robustness of the system, the

second stage reference model is not added until Trial No. 4.

40

30

10

.10

5
Time

Figure 4.4: Control parameter plot based on proposed complete algorithm

Figure 4.8 and Figure 4.9 show the parameter history plot, the error plot, the phase plot, and the

phase lag plot for the 2nd scenario which was based on only the full-order controller tuning.

Figure 4.10 and Figure 4.11 show the parameter history plot, the error plot, the phase plot, and

the phase lag plot for the 3rd scenario which is similar to the full scaled implementation of the model

augmentation, except not upgrading the observer ahead of the time.

Finally, Figure 4.12 shows the error plot, and the phase lag plot for the Scenario No. 1, which

was based on the reduced order controller only. As expected, the performance can be maintained at

low frequency and parameter can be tuned to the projected lower order controller parameter setting;

however, it can not be used to track at higher speed or higher frequency bandwidth.

Clearly, we see that the fourth scenario, which was based on complete implementation of the

augmentation algorithm, and the third scenario, which augments to the new stage all at once, show

623

-
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Figure 4.5: Error plot based on proposed complete algorithm
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frequency(r/s)

Figure 4.6: Phase plot based on proposed complete algorithm
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Figure 4.7: Phase lag plot based on proposed complete algorithm
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Figure 4.8: Results based on full-scaled controller implementation (error and parameter plot)
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Figure 4.9: Results based on full-scaled controller implementation (phase angle plot)
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Figure 4.10: Results based on model augmentation without augmenting the observer in advance
(parameter and error plot)

far superior results than the rest two scenarios. It is clearly to see that the parameters converge

faster and most important of all, the performances during the all of the trials have better tracking or

lower tracking error, which was the primary concern for the research. The reason for the complete

implementation of the model augmentation to have slightly better results than the third scenario is

due to the fact the observer dynamics is expanded earlier before the higher order controller has fully

been excited. The complete implementation uses the higher-order observer dynamics implemented

to observe the higher order unmodeled dynamics by initializing the higher order control parameters,

namely, 012, 013, 022, and 023, ahead of time, while the third scenario does not. Though in both cases
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(a) Phase plot

Figure 4.11: Results
(phase angle plot)
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Figure 4.12: Results based on reduced-order controller implementation

the parameters converge much faster than Scenario No. 2; nevertheless, parameter history plot for

the Scenario 3 does show some oscillation during the transition.

To confirm the results, we simulate an unit step input for the closed loop system based on the

full implementation of the model augmentation with tuned parameters at various stages as shown

in Figure 4.13.

Clearly, we see the step response improve as compared to each of its prior stage. We can see

both the settling time and rise time have been improved significantly.

Based on the simulation results, we see clearly that the proposed extended progressive learning

80

40 . .. ... . . .. . .... .. .

.. ............ i i i i i i ! i
4

.. . ...... ...... . . ....... : : : : : :i i ! i i !!il ! i : • i~ i ::::~ ~ ~i~ i :i i:i :! .i:i i:i
i : l i..•:9 Iii::il~~i8

""~

::::

'''

4.5. Siulaio Results~ an Discssions

s
I

10



4.5.2 Simulation Results and Discussions
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Figure 4.13: Step response based on simulation results

algorithm shows a better results than the conventional tuning. The main purpose of this chapter is

to suggest a procedure for the user who is interested the progressive learning algorithm with model

augmentation and trajectory synthesis to apply. Thus, some of the steps can be alter depending on

the user's preference and the actual application may be. Nevertheless, with this way of progres-

sively augmenting the observer dynamics, model dynamics, and expanding the parameter space,

we can guarantee the overall stability while maintaining fast convergence since at any instance,

only one mode is been "learned" or "adapted."

With this, we implement the extended progressive learning algorithm to three actual applica-

tions: direct-drive robot, linear slider, finally, and a two-dimensional coordinate measuring ma-

chine.
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Chapter 5

Implementation

In this chapter, the proposed research is implemented to three different applications: a ultra-

high speed direct-drive robot, a single degree-of-freedom linear slider, and a two degree-of-freedom

coordinate measuring machine. Within each section, experimental setup and results are presented.

5.1 Implementation I: Ultra-High Speed Chip-placement Machine

In this section, we are going to show our first implementation of the model augmentation and

trajectory synthesis through the use of progressive learning to an ultra-high speed chip-placement

machine that we designed here. The detail of the design concept and methodology together with

the priliminary experimental results for the chip-placement machine can be seen in [Li, et al., 1994],

thus are ommitted here. In this section, the experimental setup together with the results from the

chip-placement machine after we applied the extended progressive learning are presented.

5.1.1 Experimental Setup

From earlier section, we have shown our hardware in Figure 5.1. As shown in the figure,

the second link is driven through a steel belt. An encoder is mounted on each joint and a PSD laser

pointer is mounted at the tip of the second link for the use of a 2D PSD sensor that is located on a

target trajectory. For accurate trajectory control, we feedback the end-point sensor signals to control

the direct-drive robot. Therefore, our system results in a non-collocated system.

Endpoint Sensor

Figure 5.1: Experimental setup
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Figure 5.2: Lumped parameter models with different system orders

For simplicity, we assume the following conditions to the experimental setup:

1. All parameters involved are time-invariant,

2. The maximum operation speed is less than the excitation level of the flexible mode

of the link but high enough to excite the transmission belt dynamics,

3. The first link is maintained immobile,

4. The sensor noises are small, and

5. The assembly process and the system are all deterministic.

Based on these assumptions and simplifications, Figure 5.2 shows possible lumped parameter

models of the second joint control system. At low frequencies, the phase lag between the motor ro-

tor and the joint axis due to the belt compliance is negligible. Therefore, the whole movable part can

be modeled as a single rigid body, as shown in Figure 5.2A. Both the joint encoder and the endpoint

sensor provide basically the same position information, as long as the robot tracks a trajectory at a

low speed and the frequency spectrum of the trajectory is within a low frequency range. Tuning of

control parameters is rather straight forward for this collocated system. As the frequency spectrum

expands, the system model must be updated to the one involving the belt compliance. A shown in

Figure 5.2B, the single rigid body is now splitted into the motor rotor side inertia, mi, and the arm

link side inertia, m 2.Both masses are connected by the belt stiffness k, whereas bl represents the

viscous damping at the base of the second motor and b2 represents the viscous damping of the belt

structure.

Based on this simplified model, one can easily derive the following transfer functions:

X2W- = W

F p1



5.1.2 Plant and Control Structure

Smim2 S b2+
S4+[b+ 2 ] S3 + k +k+ bbS2 bk s(5.1)

mi 2 1 m2 mlm2J mlm2

5.1.2 Plant and Control Structure

At low frequency, the transmission dynamics can be ignored so the system is simplified to

be a second order system. At high frequency, however, the transmission dynamics can no longer

be ignored. Thus, the system model has to be changed into a fourth-order system model. Using

a system identification method based on the actual data provided from various data sheets and ex-

periments, we obtained the plant model using the second-order approximation and the fourth-order

approximations follows:
26418

W (s) = 26418 (5.2)
s2 + 301.13s

2.46 x 107(s + 0.76)
Wp2(S) (4 + 391.320s 3 + 57289s2 + 980350s)

A reference model for the adaptive control has to be chosen so that it represents a desired dynamics

while the relative order of the model is equal to that of the plant. To meet these requirements, we

chose the following second-order and fourth-order reference models, which are used for the second

order and fourth order approximations of the plant respectively:

101710
WmIs s 2 + 314s + 2467

9.94 x 107(s + 10) (5.5)
) = (s 2 + 314s + 2467)(s2 + 120s + 11700)"

The switching frequency is determined when w8 is equal to 14hz or when F,, is equal to 100.

The pre-determined feedback component A(s) is chosen for each of the plant approximations as:

Al(s) = (s + 1), A 2(s) = (s + 1)(s + 1)(s + 10). (5.6)

The closed-loop plant characteristic equation are obtained for the second-order and fourth-order

MRAC in terms of control parameters as follows:

(Ipl(s) = (A(s) - O11)Rp(s) - kpZ,(02 + Al(s)o) (5.7)



5.1.3 Learning Procedure

2 (S) [A2(s) - ( + 012S --+ 1382)] Rp(S)

-kpZp [(021 -+ 228 + 02382) A 2 (s)00] (5.8)

where the control parameter vector for the second-order approximated plant is defined as:

02nd df [01, 02, 0o, ki]T (5.9)

and the control parameter vector for the fourth-order approximation plant is defined as:

04th d f [011, 012, 013, 021, 022, 023, 00, k2]T (5.10)

The parameters are tuned based on the progressive learning method. The tuned parameters

based on the estimated second-order system parameters are: kI, = -3.86, O1t = -13.0328, 02t =

-0.1461, 0to = -0.7752. The tuned parameters based on the estimated 4th-order system parame-

ters are: k 2t = -4.07, O1, = [9.1827, -86.5461, - 3 2. 8 4 6 1]T, 02t = [-10.4583, -16.7737, -8. 96 12 ]T,

00, = -0.1301. The feedforward gain kl and k2 were all initialized to 1 whereas the other control

parameters were initialized to zeros. Figure 5.3 shows the phase shift plots of the reference model

characteristic functions and the initial closed-loop characteristic functions.

5.1.3 Learning Procedure

The desired trajectory is generated based on the following set of target points in radius.

targ pts = [0, 0.106, -0.073, 0.439, -0.437, 0.443, 0.576,

0.537, -0.652, 0.416, -0.365, 0.319, -0.253,

0.071, -0.114, 0.012, -0.167, 0.012] (5.11)

In the experiments, a friction compensation was also employed independently from the MRAC

control loop in order to alleviate the non-linearity of the frictional effect as much as possible.

In order to demonstrate the effectiveness of the progressive learning, we ran the experiments

in three series: 1) uses only the second-order reference model, 2) uses the fourth-order reference



-50

-100

- -150

-200

-250

-300

350

5.1.3 Learning Procedure

10 100 101 102 103 104

Frequency(Hz)

Figure 5.3: Phase plot of various transfer functions

model; and 3) starts with the second-order reference model and switches to the fourth-order ref-

erence model after the excitation level reaches the bandwidth of the fourth-order dynamics. For

each series, the desired trajectory generated from the target points as presented earlier increases its

speed. This, in turn, increases the excited frequency bandwidth. The notation we used to denote

the speed is specified by its numerator; i.e., 10s/P denotes that each period is completed in 10 sec.

Figure 5.4 shows the excitation frequency bandwidth with various speed and Table 5.1 shows how

each series is run.

Table 5.1: History of the Experiments for DD-Robot

Series No. 10s/P 8,6,5 s/P 4 s/P 3,2 s/P
#1:1:2nd-od 4x 2x 2x n/a

#2:4th-od 4x 2x 2x 2x
#3:2,4th 4x 2x 4x 2x
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Figure 5.4: Excited frequency bandwidth for various speed

5.1.4 Results and Discussions

Figures 5.5- Figure 5.10 show the results for the three sets of experiments that we described

earlier. Based on these results, we can clarify three major points: bound on tracking error, stability

of the progressive learning, and parameter convergent speed with the use of gradual model aug-

mentation method.

8 I 1 I I -

6 10s/Period x4 8s/period 6s/p 5s/p 4s/p
x2 x2 x2 x2
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021

0 000k
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Figure 5.5: Control parameter history based on a 2nd-order MRAC formulation
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Figure 5.6: Error plot based on a 2nd-order MRAC formulation

Figure 5.6 shows the error plots for the first set of experiments which were conducted under

the assumption that the plant is a second-order system, and Figure 5.8 shows the error plots of the

second set of experiments which assumes that the plant is a fourth-order system, while Figure 5.10

exhibits the errors of the third set of experiments which started with the second-order plant model

and later augmented to the fourth-orderplant model. Our primary concern for this research is the

tracking accuracy. Although the desired trajectory was synthesized based on the inverse reference

model transfer function independently of the plant, the tracking errors quickly converged to within

the tolerance. Small errors, however, remain due to other non-linearity effect of the system and

sensor noise that we ignored in modeling.

Figure 5.5 shows the learning curves of the control parameters for the first set of experiments

which assume the plant is a second-order system. As shown in this figure, the stability and param-

eter convergence were acquired by the progressive learning. By gradually exciting the system, we

have achieved the stable adaptive control even though the excitation signals are band-limited with



5.1.4 Results and Discussions

2U

10

0

10

to

0
Q

-30

40
0 20 40 60 80 100

time(s)

Figure 5.7: Control parameter history based on a 4th-order MRAC formulation

respect to the overall system bandwidth and the relative order of the plant is two or higher.

Figure 5.7 shows the learning history of the eight control parameters for the second set of exper-

iments where the controller were constructed based on the fourth-order plant assumption. Due to

the fact that the phase discrepancy between the desired and actual system is large as shown in Fig-

ure 5.3, the control parameter convergence is quite slow. This result is consistent with the stability

analysis we have shown earlier. Figure 5.9 shows the history of the control parameters for the third

set of experiments. In this particular set, we constructed a low-order controller based on the as-

sumption that the plant is a second-order system, and, therefore, only four control parameters were

adapted. As we increased the excitation level through the increased speed of the trajectory tracking

command, the belt dynamics was excited. This happened when the excitation exceed 14hz or when

the period of the tracking reaches 4 second per period. Once the controller sensed this change, the

original second-order reference model was augmented to a fourth-order reference model. Thus,

the number of the control parameters to be adapted increased from 4 to 8. By comparing the re-

sults shown in Figures 5.7 and Figure 5.9, it is found that the convergence was accelerated by this
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method of augmenting the controller as well as the reference model. One explanation for this obser-

vation is that after learning a trajectory at a slow speed, the stable range of excitation frequency has

been expanded. More specifically, in the beginning of experiments, since the number of the con-

trol parameters is much less with a low-order assumption, it is easier for the parameter to converge.

Once the switching is made, the controller has already some information about the lower-order sys-

tem dynamics; thus, adjustment for the controller to expand from four control parameters to eight is

quite easy. Graphically, as seen in Figure 5.3, the phase discrepancy between the desired and actual

plant model is below 90 degrees, the maximum allowed phase shift to maintain parameter adapta-

tion stability and convergence. Thus, we can tune the system by fully exciting the system up to the

system bandwidth while parameter convergent stability is guaranteed and tracking performance is

maintained. Figure 5.9 shows clearly that eight control parameters converged smoothly and quickly

to their true values as compared with the results in Figure 5.7. These results clearly demonstrated

the effectiveness of the model augmentation method. Consequently, we achieved both trajectory

control and control parameter convergence by using progressive learning and trajectory synthesis

as demonstrated in these three sets of experiments. Finally, to have a fair comparison between the

traditional PD control and adaptive control, we performed a step response test as shown in Fig-

ure 5.11. As shown in [Li, et al., 1994], the best PD control step response we were able to achieve

is around 50ms. With the fourth-order adaptive control tuned using model augmentation method,

we are able to achieve 35ms. The position error is 0.0015rad. The step response result also shows

that adaptive control that assumed second-order system is better than the PD control due to the fact

that it has compensator built in as part of its control parameter space.
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5.2 Implementation-II: Single Degree-of-Freedom Linear Slider

5.2 Implementation-II: Single Degree-of-Freedom Linear Slider

In this section, we will describe how we implemented the extended progressive learning

algorithm to a single degree of freedom linear slider and the results we obtained. In this particular

experiment, our main point here is to show the effect of our new control technique with the use of

trajectory synthesis as described earlier. Thus, we choose a single dimension linear slider as our

experimental setup. The experimental setup and goal are first introduced, then they are followed

by the implementation results.

5.2.1 Experimental Setup

The high-speed single-axis bi-directional linear slider can be seen in Figure 5.12. It was

specially designed and built to replace the leadscrew type linear drive mechanism to minimize the

manufacturing cost. As shown in the figure, the leadscrew is replaced by a twin-gear drive and a

single reinforced rubber belt. The twin-gear drive mechanism was designed to have a large gear

reduction without a large physical gear ratios to save space and to have almost a zero bi-directional

backlash. The large transmission ratio helps to achieve high accuracy without using an expensive

high resolution encoder. One draw-back of using the reinforced rubber belt and twin-geartrain is

that the stiffness is much lower as compared to the leadscrew type drivetrain. At such high speed,

the belt dynamics can not be ignored. Since the feedback is based on the carrier's motion, this sys-

tem is in fact a non-collocated actuator/sensor system. Our purpose here is to demonstrate the use

of the trajectory synthesis. The complete setup can be seen in Figure 5.13. An IBM compatible

486/50Mhz computer and a torque controlled PWM servo amplifier are used for the experiments.

The targeted settling time after completing a full travel length of 50cm at full speed capacity is

30ms with accuracy of 50 pm and minimal overshoot. The prior experimental results show that the

slider can best achieve 50 um with the settling time of 50ms.

5.2.2 Plant and Control Structure

As shown earlier, it uses a plastic belt to transmit the power to the carrier. Since the feedback

signals are obtained based on the carrier position information, the system is in fact a non-collocated



5.2.2 Plant and Control Structure

Motor Encoder Passive
der Carrier pulleySlider

Figure 5.12: The single directional linear slider

system. At low frequency, the transmission dynamics can be ignored so the system is simplified to

be a second order system. At high frequency, however, the transmission dynamics can no longer

be ignored. Thus, the system model has to be changed into a fourth-order system model.

Using a system identification method based on the actual data provided from various data sheets

and experiments, we obtained the plant model using the second-order approximation and the fourth-

order approximations follows:
Gp (s) = 785.3982(s + 5) (5.12)

s2 + 30s
3.9243 x 106(s + 5)

GP2(S) = (s4 + 118.1139s 3 + 2.9743 x 104 s2 + 75s)

One thing needs to be clarify is that though we have obtained these coefficients for the two models,

we still assume that plant model is unknown. We never use these coefficients at any time during

the experiments. The models presented here are only for the purpose of validation of experimental

Figure 5.13: Experimental setup of the linear slider



5.2.2 Plant and Control Structure

results.

A reference model for the adaptive control has to be chosen so that it represents a desired dy-

namics while the relative order of the model is equal to that of the plant. To meet these requirements,

we chose the following second-order and fourth-order reference models, respectively:

4.7124 x 103(s + 5) (5.14)
1 2 + 179s + 8826

6.2788 x 107(s + 5)
2(S) = ( 2 + 179s + 8826)(s2 + 219s + 13324)

The pre-determined feedback component A(s) is chosen for each of the plant approximations as:

A 1 (s) = (s + 5), A 2(s) = (s + 5)(s + 5)(s + 10). (5.16)

The closed-loop plant characteristic equation are obtained for the second-order and fourth-order

MRAC in terms of control parameters as follows:

Ipl () = (Al() - 0ll)Rp(s) - kpZp (02 + Al(s)Oo) (5.17)

p2 (S) = [a2(s) - (011 + 0128 + 01382)] Rp(s)

-k,Z, [(021+ 228 + 23s 2) + A 2(s)o (5.18)

where the control parameter vector for the second-order approximated plant is defined as:

0 2nd df [01, 2, 00, k1]T (5.19)

and the control parameter vector for the fourth-order approximation plant is defined as:

04th df [011, 012, 013, 021, 022, 023, 00, k 2]T (5.20)

The parameters are tuned based on the progressive learning method. The tuned parameters

based on the estimated second-order system parameters are: kl, = 6.01, 01, = 0.0001, 0 2t =

-10.9307, 08o = -0.0758. The true parameters based on the estimated 4th-order system param-



5.2.3 Learning Procedure

eters are: k2, = 16.002, 01, = [-18.172, -41.88, - 11 .11]T, 02t = [-14.408, -36.74, - 2 5 .4 ]T,

00t = -0.3. The feedforward gain kl and k2 were all initialized to 1 where as the other control

parameters were initialized to zeros. The rmax is once again set to be 100, thus projected w, is 6hz.

5.2.3 Learning Procedure

The desired trajectory as shown in Figure 3.13 is generated based on the following set of

target points with unit of cm.

targ pts = [0, 1, 2, 2, 0, 0, 4, 4, 0, 0, -3, -3, 0, 0, -2, -2, -1, 0] (5.21)

In order to demonstrate the effectiveness of the progressive learning, we ran the experiments in

two series: 1) uses the fourth-order reference model and 2) starts with the second-order reference

model and switches to the fourth-order reference model after the excitation level reaches the band-

width of the fourth-order dynamics. For each series, the desired trajectory generated from the target

points as presented earlier increases its speed. This, in turn, increases the excited frequency band-

width. The notation we used to denote the speed is specified by its numerator; i.e., 10s/P denotes

that each period is completed in 10 sec. Table 5.2 shows how each series is run.

Table 5.2: History of the Experiments for the Linear Slider

Series No. 10s/P,7.5s/P 5, s/P 2.5 s/P 2. s/P 1 s/P
#1:4th-od 2x 2x 3x 2x 18x
#2:2,4th 2x 3x 3x 2x 13x

5.2.4 Results and Discussions

From the error plots for both experiment as shown in Figure 5.14 and Figure 5.15, we see

that both setups have surpassed the accuracy of 50p/m requirements at the end of experiments. As

the system is tuned to the desired system, the tracking error between the actual system and desired

system decreases as shown in these two figures. As shown in Figure 5.16 and Figure 5.17 where

the pole-zero plots for each set and Figure 5.18 and Figure 5.19 where the phase plots for each
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Figure 5.14: Error plot based on a 4th order MRAC formulation

set, the system is always stable throughout the whole duration of training. More importantly, the

parameters all converged toward the desired parameters as shown in Figure 5.21 and Figure 5.22.

The pole-zero plots obtained earlier, represents the snap shot of the closed-loop system pole-zero

locations as we varied the controller parameters. Figure 5.20 show experimentally, the existence

of e and gradual improvement as proposed by the progressive learning together with the trajectory

synthesis.

Earlier, we proposed that we can progressively learn the system at a faster pace by gradually

increasing the assumed model complexity as we gather more information about the system. By

comparing the results shown in Figures 5.21 and Figure 5.22, we have found that the convergence

rate was accelerated by this method of augmenting the controller as well as the reference model.

One explanation for this observation is that after learning a trajectory at a slow speed, the stable

range of excitation frequency has been expanded. More specifically, in the beginning of experi-

ments, since the number of the control parameters is much less with a lower order assumption, it is

easier for parameters to converge. Graphically, from Figure 5.19, we see the use of reduced-order

5.2.4 Results and Discussions

1
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reference model assumption allows the system to adapt to an intermediate state. As the excitation

reaches 5.5Hz, the experimental validated w,, we performed the augmentation when the tracking

period is equal to 5 sec. Once the switching is made, the controller has already some information

about the reduced-order system dynamics; thus, adjustment for the controller to expand from four

control parameters to eight or from reduced-order system to full-order system is quite easy. Graph-

ically, as seen in Figure 5.19, the phase discrepancy between the desired and actual plant model is
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Figure 5.19: Phase plot based on both a 2nd-order and a 4th-order MRAC formulation
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less, thus, we can tune the system by fully exciting the system up to the system bandwidth while

parameter convergent stability is guaranteed and tracking performance is maintained. Figure 5.22

shows clearly that eight control parameters converged smoothly and quickly to their true values as

compared with the results in Figure 5.21. These results clearly demonstrated the effectiveness of

the model augmentation method. Consequently, we achieved both trajectory control and control

parameter convergence by using progressive learning and trajectory synthesis as demonstrated in

these two sets of experiments.

Finally, in order to demonstrate the improvement we have made by implementing the trajectory

synthesis to the slider, we perform a tracking test. The length of travel is 50cm. A laser proximity

sensor is mounted at the end of the course to detect the settling time and tracking error. The results

between the prior result using the PD controller as compared to the newly improved system using

extended progressive learning method is shown in Figure 5.23. The x-axis represents time where

each grid represents 50ms. The y-axis represents the position of the end-point detector with each
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Figure 5.21: Control parameter history based on a 4th-order MRAC formulation
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Figure 5.22: Control parameter history based on both a 2nd-order and a 4th-order MRAC formu-
lation
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Figure 5.23: Step response plot

grid represeting 50 lm. We can see clearly that we have surpass our goal by achieving the settling

time of 30ms while maintains the accuracy bound of 25pm.

5.2.5 Conclusion

In this section, we showed through experiments that progressive learning together with the

trajectory synthesis is an efficient method for tuning a high order, non-collocated robotic system.

The main idea of progressive learning is to excite the system gradually in accordance with the

progress of the adaptation. By incorporating a trajectory synthesis, we developed a method of gen-

erating a series of tracking trajectories that satisfy the stability conditions of progressive learning.

As part of future works, our next step is to explore the controller augmentation method in associa-

tion with the progressive learning and trajectory synthesis. We need to optimize the time to perform

model augmentation and the way to transform the knowledge from the lower order model to higher

model with a better mathematical theory. Nevertheless, the results clearly show that the conver-

gence is much faster and tracking error is much smaller when the progressive model augmentation

is used.
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Figure 5.24: 3-D coordinate measurement machine

5.3 Implementation III: 2-Dimensional Coordinate Measurement Machine

The previous two experimental validation cases have focused on implementations of the

endpoint feedback control of single dimensional systems using progressive learning. In this section,

we have extended the study to control a 2 DOF coordinate measuring machine (CMM)). The CMM

is first introduced before we described the experimental setup and how we achieve the endpoint

control to this 2DOF CMM. Finally, we are going to show the single axis tuning results followed

by the two-axes tuning results.

5.3.1 Control Problem of a Coordinate Measuring Machine

In this section, we apply the new adaptive control method to a three-dimensional (X-Y-Z)

Cartesian coordinate measurement machine(CMM) as shown in Figure 5.24. Though the machine

has three degrees of movements, we only focus on two dimensional movement, namely, the planar

movement that involves z and y axis. We will first describe the CMM and the experimental setup.

5.3.1.1 Experimental Setup

As shown in Figure 5.24, XYZ has three DOF. The x-axis has 2.0m travel length, y-axis has

1.6m travel length, and z-axis has 70cm travel length. Each linear axis is driven by an AC motor

through a leadscrew. Instead of conventional ball-screw typed rails, all axes are run on air bearings.

Each AC motor is equipped with a tachometer, and each axis has a Heidenhein linear encoder along

the rails. The linear encoder has 1 tpm resolution after the quadrature counter. Currently, the ma-
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5.3.1.2 Modeling of the CMM

chine is running under two free-move fixed speeds: 6m/min and 12m/min. The maximum speed is

limited by the maximum speed of the AC motor used. The AC motors are driven by a servo am-

plifier that has a PI controller built-in for the motor-side tachometer feedback signals. The outer

control loop has a P control on the position that is based on the differentiation of the tachometer

signals. The overall control block-diagram can be seen in Figure 5.25. Due to the assumption of

1
Structure
Dynamics

Figure 5.25: Current NC machine operation

the SISO system and the internal PI controller between the servo and servo tachometer, a low accel-

eration has been obtained; thus, during the actual scanning, the machine can best achieve scanning

speed of 4 m/min with accuracy of +25pm. To gain more physical insight of the system, we intro-

duce a lumped parameter model for the 2DOF CMM machine.

5.3.1.2 Modeling of the CMM

Our main objective is to design a stable control algorithm to control the position of the tip

of the CMM. Before designing the control algorithm, we will first study the effect of placing the

sensors and actuators on the overall performance of the system. We begin by describing the model

and the relevant assumptions we made to simplify the problem.

A simplified two-dimensional model of the CMM is shown in the Figure 5.26. The mass m

is attached to the rigid body M which is free to translate and rotate about its center of mass. The

following are the assumptions we made in formulating the equations of the model:

* The angle of rotation 0 of the mass about the center of mass is small so that sin 0 - 0 and

cos 0 , 1.
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5.3.1.2 Modeling of the CMM

* The actuator moves horizontally and does not rotate. The inputs to the system are the force

F, and F, applied on actuators in the x-axis and y-axis respectively.

* The motor inertia m. and my are small compared to the mass M and m and are thus ignored

in considering the center of the mass and moment of inertia, Icm

* The rotation due to the movement of y-axis is negligible.

Figure 5.26: Two-dimensional model of

x
3

a CMM with the force F acting at Q

The number of degrees of freedom for this system are five and the generalized coordinates can be

taken as x, 9, Y3, Yi and y2 or equivalently xl, x2, X3, yi and Y2. Physically, x, represents the x-axis

linear encoder reading, x3 represents the x-axis motor position reading, yl represents the y-axis

motor position reading, and y2 represents the y-axis linear encoder reading.
Based on these generalized coordinates, assumptions and model, we have obtained the follow-

ing equations:

(M + m)i = -(cl + c2)i - (kl + k2)z - (cl12 - c2 (L - y2))0
-(klY2 - k 2(L - y2))O + (c1 + c2)~3 + (k1 + k2)X3,

Mm
Ic = Y2Y20 - (Cly2 + c2(L - y2)2)

cm M+m

-(kly
2

+ k 2 (L - y2)
2
)O - (C1Y2 - C2 (L - Y2))i
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5.3.1.2 Modeling of the CMM

-(kIy 2 - k 2 (L - y2))X + (clY2 - c 2 (L - y2))X3

+(kly 2 - k2 (L - Y2))X3, (5.22)

Mmm92 = -k3(y2 - Y1) - C3(2 -j1) + M y2
M+m

-kl(x - X3 - (L - y2)0)0 - k2(x - x3 + y2 0)0, (5.23)

my = -k 3 (y1 - Y2) - (C3 + Cy)yl + C3y2 + Fy, (5.24)

mx,3 = F - (M + m)- - ci 3 . (5.25)

where Im = M a (X + yf), L = 2 x 1 is the point to point distance between the two linear

screws.

Clearly, these five equations shown here are highly coupled with non-linear terms, thus, any

SISO-type control may not work properly. This is also true even when we run only single axis at

a time while inmobilizing the other axis. For the case that y-axis is immobilize, we can simplified

these dynamics equations into the following:

(M + m).± + (cl + c2)i + (ki + k2)x

+ (cll1 - C212)6 + (kil - k2/2)0

= (c1 + C2 )i 3 + (ki + k2)x 3 ,

I•9m + (c1 1 + c21i)O + (kl12 + k21·)0 (5.26)

+ (cill - c212)i + (kill - k2i2)x

= (c111 - C212)Yi3 + (ki ll - k212)x 3, and

ma3 = F - (M + m) - ci-z.

where 11 is the distance measuring from A to the endpoint mass m and B is the distance measuring

from x 2 to the end point mass m. The position x1 of the point A is given by

X1 = X + 110.

By taking the Laplace transform we get the transfer function from actuator Q to sensor A as

(s) - R(s)(5.27)F(s) R, l(s)'
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5.3.1.3 Simulation of the open loop plant

where
Z11(s) = [Icm(c +cIC2)+11(M+m)(clll - c22) 8

3

+[Icm(ki + k2 ) + CLC2(11 +12)2

+1l(klll - k 2 12 )(M + m)]82

+ (cIk 2 + c2 ki)(1i + 12)28

+ kik2(1 + 12)2, and

Ri(s) = Icm(M + m)mas 6 + [Icm(Cl + c 2 )(M + + m+m,)
+ (cl + c21••(M + m)m + Icm(M + i)] 5

+ [(M + m + m.){clc2(l1 + 12)2 + Icm(ki + k2)} (5.28)
+ (k1Il + k212)(M + m)ma + c(Cl + c2)Icm
+c(cll + c2 12)(M + m)] s4

+ [(ii + 12 )2 (Clk2 + c2ki)(M + m + m,)

+ c{Icm(ki + k2 )

+ (ki12 + k2l%)(M + m) + 012(11 + 12)21] 33

+ [kik 2 (l1 + 12 )2 (M + m + m,)

+c(clk2 + c2ki)(ll + 12)2]S2

+ ckk 2 (11 + 12)28.

5.3.1.3 Simulation of the open loop plant

The values of the various parameters of the model are tabulated in Table 5.3. We are inter-

ested in examining the effect of variation of the location of the mass m in the y-direction on our

model. Figures 5.27 and 5.28 show the movement of poles and zeros of the plant as well as the

bode plot of the plant as the location of the mass m is varied from the bottom (x = 0) to the top

(x = 21). From Figure 5.27, we find that the second pair of poles and a pair of transmission zeros

move together as the location varies from bottom to top, and they almost cancel one another as well.

A similar effect is also observed in Figure 5.28. However, interesting point here is that at low fre-

quency range the plant dynamics is independent of the mass location since we have the high order

pole-zero cancellation. Even if we assume all the dynamics are active, i.e., the original five dynam-

ics equations, there exist a range they can be treated independently and separately, i.e., as a SISO

system instead of as a MIMO system. This is specially true when the endpoint mass, m is closer to

the center of the x-axis. Within the vicinity of this range, we observe the position-dependent pole-

zero cancellation and domination of four poles and one zero position-independent dynamics even

at higher frequencies range.

Based on this simulation, we see that we can train each axis independently at its nominal position
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Figure 5.27: Pole-zero plot of the CMM dynamics
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Figure 5.28: Bode plot of the CMM dynamics
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5.3.2 Experiments

Table 5.3: Parameter Values Used for the CMM

Xa 0.2 m c 50 N-sec/m
1 1.0 m cl 50 N-sec/m
M 200 Kg c2  45 N-sec/m
m 40 Kg kI 2000 N/m
mX 10 Kg k2 2000 N/m
a 0.4 m k 5000 N/m

at low speed where this multiple DOF system behaves as separated independent SISO sub-systems.

Thus, the number of the parameters to be trained can be reduced significantly so that it is possible

for actual implementation of such complex multi-degree system. We can add the adaptive gains

to compensate the cross-coupling after the independent tuning is completed. Due to this MIMO

conversion to the SISO at the nominal position, we can effectively train a complex MIMO system

with much lesser parameters more efficiently.

5.3.2 Experiments

5.3.2.1 Plant and Control Structure

Based on the model we obtained earlier and because of the PI inner loop in the servo am-

plifier as described earlier, the structure of the plant after combining the inner control loop to the

system, the system is a fourth-order system with relative degree of 3.

The estimated plant equations for both x-axis and y-axis are obtained from the experimental

bode-plots. The plant transfer equation for the x-axis is shown in Eqn.(5.29) and that for the y-

axis is shown in Eqn.(5.30). Figure 5.29 shows the final computer-based NC controller based on

progressive learning and MRAC adaptive control.

S- Kpx (S + b) (5.29)
-' S4 + aX3S 3 + az2S 2 + axS + axo

yea Kpu (S + by)
-r S4 + ay3S3 + a2 S 2 + a.,S + ayo
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5.3.2.1 Plant and Control Structure

The description of the above plant is under the assumption of single axis operation. When we

extend to the multi-axes movement, cross-cou•ling effect needs to be incorporated. Instead of full

MIMO system based on the simulation and modeling described earlier, a simplified MIMO system

is considered and implemented. Here, we treat the input from the other axis as a disturbance to the

system. The modified input is shown in Eqn.(5.31).

Utot -= ? + -Uo, (5.31)

where uitot represents the final total input for each axis, 2ic represents the estimated input with the

single axis assumption, and u^o, represents the estimated input results from the cross-coupling effect.

Further,

Utot = OTw (5.32)

where 0 = [0' OT]T and regressor, w = [w W ] T. Oc is the control parameters based on the

SISO MRAC formulation and the 80 is the control parameters involve in the cross-coupling dy-

namics. w, is the internal dynamics of the current axis and Wo is the internal dynamics from other

axes. It can also be seen in a block diagram form as shown in Figure 5.30. Therefore, there are 32

parameters for the overall MIMO system based on the MRAC formulation. It is almost impossible

to train all of them and guarantee stability for the reasons given earlier. By taking into account the
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5.3.2.2 Reference Model

Figure 5.30: Block-diagram for the dual axes movement of CMM-XYZ under MRAC control

simplification we made earlier about converting the MIMO into a SISO system at nominal position

and low speed, we can train the 8 parameters relating to the dynamics of its axis for each axis sepa-

rately before we train the final 16 cross-coupling effect parameters. Next we are going to introduce

the reference model before we show the tuning results.

5.3.2.2 Reference Model

Based on the plant structure and the required performance criteria, a reference model is for-

mulated. Before we start introducing the reference model we used, we would like to introduce the

definition of the position error in our case here. During the dual-axes movement, the resultant er-

ror is caused by the differential movements between each axis, or the relative position difference.

Thus, if the dynamics of each axis is different, then each axial output will arrive to its target point

for the same given set of inputs at different times, thereby giving rise to a position error. To demon-

strate the effect, we simulate a two-DOF system that has a different second-order dynamics for each

axis and subject to the same sinusoid input as shown in Figure 5.31 and Figure 5.32 where the na-

ture frequency of the x-axis dynamics varies from 50% to 150% of the y-axis dynamics. Due to the

fact that the input to each axis is the same, the temporal outputs, or the geometric outputs, should

be a straight 450 line; however, as shown in Figure 5.32(a), the outputs for various x-axis dynam-

ics result in an elliptical shape. Figure 5.31(b) shows the relative error at each given instant and
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5.3.2.2 Reference Model

Figure 5.32(b) shows the maximum percentage relative error for various x-axis dynamics.

400

300

200

100
5o

-100

-200

-300

-400

-500

(a) X-axis output (b) % of relative position error

Figure 5.31: Relative position error resulted for system with different dynamics for each axis

Based on this simulation, we can clearly see that it is important for each axis of the multiple

DOF system to have the same closed loop dynamics to minimize the relative position error.

To meet these requirements, we chose the following fourth-order reference model:

3.36 x 107(s + 147)

(s 4 + 537s3 + 1.1 x 105s2 + 1.0 x 107s + 3.68 x 108) .

tM
% nature frequency of x-axis w.r.t. nature frequency of y-axis

(5.33)

(a) X-axis and Y-axis outputs (b) Maximum % of relative position error

Figure 5.32: Maximum relative position error resulted for system with different dynamics for each
axis
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5.3.2.2 Reference Model

The transfer function for the X-axis is

WP =
p

5.72 x 107(s + 147)
s4 + 159.7s3 + 56205s 2 + 1.45 x 106s + 8.677 x 107 (5.34)

The transfer function for the Y-axis is

5.5465 x 107(s + 128.15)
s4 + 145.2974s3 + 59764s2 + 1.75 x 106s + 1.22 x 108 (5.35)

The pre-determined feedback component A(s) is chosen for each of the plant approximations as:

A = s3 + 162s 2 + 2255s3 + 7350 (5.36)

Based on the above transfer functions, the reference model characteristic equations are obtained as:

4mX (S) = S7 + 69986 + 200 x 10585 + 2.9 x 10784

+(0.23s 3 + 8.382 + 90.6s + 270.5) x 1010

Dm, (s) = s7 + 68086 + 1.89 x 105 55 + 2.7 x 107s4

+(0.218 3 + 7.4s2 + 79.2s + 235.9) x 1010

(5.37)

The closed-loop plant characteristic equation is obtained for the MRAC in terms of control param-

eters as follows:

Op(s) [A(s) - (011 + 0128 01382)] R(S)

-kpZp [(021 + 0228 + 0238 2 ) + A(s) 0]

where the control parameter vector for the fourth-order approximation plant is defined as:

0 def [011, 012, 013, 021, 022, 023, 00, kc]T

(5.38)

(5.39)
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5.3.2.3 Learning Procedure

The tuned parameters based on the estimated 4th-order system parameters for the x-axis are: k,, =

1.287, 01x, = [21.4882 - 55.49 - 3 7 .7 5 ]T, 02xt = [-17.29 36.74 - 3 0.3 4]T, 00., = 0.2 and for

the y-axis are: ky, = 1.327, O1, = [32.1 - 49.95 - 3 7.31]T, 092, = [-15.94 - 16.13 - 27.58]T ,

00, = 0.197

The feedforward gain kc, and kY were all initialized to 1 whereas the other control parameters

were initialized to zeros. Thus, the closed-loop characteristic polynomial is defined as follows:

We,(0) = s7 + 307.29s86 + 8.55 x 104s5

+(0.0012s 4 + 0.05464s 3 + 2.418s2 + 28.82s + 87.9) x 1010 (5.40)

and

Wos(0) = s 7 + 321.7286 + 8.43 x 104s 5

+(0.0011s 4 + 0.045s 3 + 1.775s 2 + 20.64s + 63.78) x 1010 (5.41)

5.3.2.3 Learning Procedure

The desired trajectory as shown in Figure 5.33 is generated using trajectory synthesis based

on the following set of target points and is given in Table 5.3.2.3. During the training, the speed of

Table 5.4: Desired Target Points Used in the Trajectory

Pt. No. (x,y) Pt. No. (x,y)
1 (0,0) 2 (69,61)
3 (122,97) 4 (167,91)
5 (193,47) 6 (199,-16)
7 (183,-73) 8 (147,-99)
9 (95,-83) 10 (32.9,-32)

11 (-32.9,32) 12 (-95,83)
13 (-147,99) 14 (-183,73)
15 (-199,16) 16 (-193,-47)
17 (-167,-91) 18 (-122,-97)
19 (-64,-61) 20 (0,0)

the desired trajectory generated from the target points as presented earlier increases, thus increases
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5.3.3 Results and Discussions for the Tuning of Each Axis Independently
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Figure 5.33: Trajectory Profile

the excited frequency bandwidth. Here 10s/P is used to denote that each period is completed in 10

sec. Figure 5.34 shows the excitation frequency bandwidth for various speeds.

5.3.3 Results and Discussions for the Tining of Each Axis Independently

Figures 5.35 to Figure 5.38 show the results for experiments that we described earlier where

the x-axis or y-axis are operating with the other axis being locked at its nominal position.

Figure 5.35(a) shows the parameter history plot, Figure 5.35(b) shows the error plot, Figure 5.36(a)

shows the phase plot, and Figure 5.36(b) plot shows the pole-zero plot of the x-axis with the y-axis

locked at its nominal position, or the center position. Figure 5.37(a) shows the parameter history

plot, Figure 5.37(b) shows the error plot, Figure 5.38(a) shows the phase plot, and Figure 5.38(b)

plot shows the pole-zero plot of the y-axis while with x-axis locked at its nominal position, or

the center position. The obtained nominal parameters for the X-axis and Y-axis are shown in Ta-

ble 5.3.3.

After this is obtained, we run tests to include the cross-coupling parameters. Since they are po-
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5.3.3 Results and Discussions for the Tuning of Each Axis Independently

.. ··-~ii. 3·.g~~

S6

4 Experiment no.

Figure 5.34: Excited frequency bandwidth for various speeds
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Figure 5.35: X-axis tuning results (parameter and error plot)

sition dependent, they do not have any fixed value as the nominal motion does. Thus we chose not

to show the results of the tuning here but will show later in the validation test. Neverthelss, based

on these results, we clearly see the effectiveness of progressive learning in tuning of complicated

MIMO systems even using the simplified tuning method. More importantly, once the system is

tuned, the results are task-independent which means that it will give the same relative performance
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5.3.4 Validation Tests and Results Based on the Dual-axes Tuning
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Figure 5.36: X-axis tuning results (phase and pole-zero plot)

(a) Control parameter (b) Error plot

Figure 5.37: Y-axis tuning results (parameter and error plot)

regardless of the tasks. Most important of all, the final control scheme shows the computerized uni-

fied approach to the NC/servo controller and the synthesized desired trajectory. Next, we are going

to validate the tuning results that include the cross-coupling effects on various test requirements

that are different from the tuning task to demonstrate this "task-independence".

5.3.4 Validation Tests and Results Based on the Dual-axes Tuning

In order to validate the tuning results for the complete MIMO system, we ran a validation

test. The test requires the endpoint to travel diagonally 50cm and to follow a trapezoidal velocity
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5.3.4 Validation Tests and Results Based on the Dual-axes Tuning
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Figure 5.38: Y-axis tuning results (phase and pole-zero plot)

Table 5.5: Obtained Nominal Parameters for X- and Y-axis
011i 20.99 Oi1, 32.0
012x -55.49 012, -49.95
013, -36.15 013y -37.2
021, -16.75 021, -15.94
022. 36.74 022, -16.7
023. -29.06 023y -27.58
Oo, 0.2 023k 0.197
kc, 1.287 k 1.327

profile. In the test, we mounted accelerometers both in the direction of the motion and perpendicu-

lar to the motion to monitor the cross-coupling effects, even though our tuning results are based on

the sensor information from linear encoders along the x- and y- rails. The test results are compared

to the improved PD controller as opposed to the P controller originally installed. The tests are re-

peated for two types of accelerations and speeds. Figure 5.39 and Figure 5.40 show results based

on constant acceleration in the beginning and deceleration in the end at 5kgm/s 2 for 0.1 second and

constant velocity of O.lm/s or 6m/min during the intermediate time. Figure 5.41 and Figure 5.42

show results based on constant acceleration in the beginning and deceleration in the end at 4kgm/s 2

for 0.2 second and constant velocity of 0.2m/s or 12m/min during the intermediate time. Clearly,

we see that all the results shows a great improvement as compared to the original 4m/min scan-
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5.3.4 Validation Tests and Results Based on the Dual-axes Tuning

ning speed with ± 25pm accuracy. The tuned system using progressive learning and simplified

MRAC shows even better improvement as shown in Figure 5.40 and Figure 5.42 since the idea of

using the cross-coupling parameters is to decouple the motion for the off-axis dynamics which can

be observed in term of minimal acceleration from the accelerometer mounted perpendicular to the

motion. The accuracy we can achieved is within 8pm for the fast motion and within 5Am for the

slower motion. Both cases show a greater improvement as compared to the old scanning speed and

accuracy. The major cause of the jump in the beginning and the end of the motion is due to the use

of the trapezoidal velocity profile. Since there is acceleration discontinuity present at each corner

of the trapezoidal velocity profile, we will expect a jump in acceleration measurement. However,

by correctly tuned the system, we can minimize the jump in acceleration.
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(a) Full motion (b) Steady state

Figure 5.39: Relative position error at half speed

As shown in these validation test results based on the proposed dual-axis MIMO tuning method,

we can see that through the use of the MIMO high-order controller we can control the dual axis mo-

tion of the CMM at much higher speed and accuracy. This also validates the assumption we made

based on the simulation that the dual axis MIMO system we have here can be divided into SISO

subsystem and cross-coupled subsystem and train each one of them separately. Thus, in fact we

have successfully taken a first step of applying a high-order adaptive control with a large number

of the parameters that need to be tuned to a real physical system. Through our modification of the

MIMO tuning method by the way of the extended progressive learning we have in fact "progres-

sively" stable tuned each sub-set of the total parameters at a given time to complete once impossible
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Figure 5.40: Cross acceleration at half speed
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Figure 5.41: Relative position error at full speed

on-line tuning of a large number of the control parameter space.

5.3.5 Conclusion

In this section, we have shown through experiments that the extended progressive learning is

a better method for tuning a higher order, non-collocated multiple DOF robotic system compared

to the conventional method. The main idea of the extended progressive learning is to excite the

system gradually in accordance with the progress of the adaptation. By incorporating a trajectory

synthesis, we developed a method of generating a series of tracking trajectories that satisfy the sta-
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5.3.5 Conclusion

(a) Full motion (b) Steady state

Figure 5.42: Cross acceleration at full speed

bility conditions of progressive learning as well as reflect the dynamics of the system. Together,

we have shown a new unified approach to replace the conventional separate NC/servo controller

method. Also, we have extended the extended progressive learning to "progressively" tune a mul-

tiple DOF system by tuning first its dominating single axis before considering the cross-coupling

effect to complete tuning of a MIMO MRAC controller which was an impossible task to do for a

real complicated physical system and implemented it successfully.
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Chapter 6

Conclusion and Future Works

In this research, we have successfully developed an algorithm to perform on-line adaptive control

and tuning of endpoint feedback controlled systems. In particular, we have developed the theoreti-

cal analysis of two newly added concepts to the original work of progressive learning into its final

form named the extended progressive learning. The two newly added components are the model

augmentation which we partake a complex dynamics system into stages and train each of them in-

dividually and sequentially according to its progress of improvement, and the trajectory synthesis

which generates stable reference signal for the system based on the desired task. Together, a dy-

namics adjusted reference trajectory can be generated for stable tuning of the system and for vast

operating conditions. With modification of controller complexity on-line, the algorithm can adapt

to vast operating conditions and perform on-line tuning automatically. The algorithm offers the first

implementable high-level controller that can self-adapt both set values and its own complexity for

superior performance under vast operating conditions. In this research, we have shown the theory of

the extended progressive learning and successfully implemented to three different industrial-related

systems: a high-speed chip-placement machine, a linear slider, and a dual degree coordinate mea-

surement machine. The results have shown and demonstrated the effectiveness of the newly devel-

oped extended progressive learning in improving the systems' performance and adaptation speed.



Appendix A

Suplemented Theorems for Robustness

Within this chapter, we restated the robustness theorems originally stated in [Sastry and Bodson, 1989]

in dealing with the external sensored noises and unmodeled dynamics. For complete original ref-

erence, please refer to [Sastry and Bodson, 1989].

A.1 Exponential Convergence and Robustness

In this section, we will define a the property of a perturbed system as

. = f(t,x,u) x(0) = xo (A.1)

and its counterpart, the unperturbed system as

. = f(t, x, 0) x(0) = xo (A.2)

where t > 0, x e IRn , u E Rm . Here, we shall restrict the solution of the x and u belonging to

some arbitrary ball bh E WR" and B, E lRm .

Theorem 3 Consider the system in Eqn.(A.1) and system in Eqn.(A.2). Let x = 0 be an equilib-

rium point of Eqn.(A.2), i.e., f(t, 0, 0) = 0, for all t > 0. Let f be piecewise continuous in t and

have continuous and bounded first partial derivatives in x, for all t > 0, x E Bh, u e B,. Let f be

Lipschitz in u, with Lipschitz constant lu, for all t > 0, x E Ba, u E Be. Let u E Lo.

Assume that there exist a Lyapunov function v(t, x) for the system in Eqn.(A.2) satisfying the

following inequalities

allX2 < v(t, Z) 2ll 2  (A.3)

dv(t, z)dt ( Eqn.(A.2) 5 -C3 X12 (A.4)



A.1 I Exponential Convergence and Robustness

xv(t, 1 • 4XjI a x4 x1 (A.5)

Then there exists similar situation for the perturbed system stated in Eqn.(A. 1):

dv(t,x)dt ( Eqn.(A.1)dt

where

dv(x, t) &v(t,x)
-- di t)l Eqn.(A.2) + 1Zv( -X

dt i=1

< -aa x12 + a41Xllu II u II1

II u o0 = supt>o

[i (t, , u)- fi(t, z, 0)1

and define
def a 4

Yoo = ,3
a3

1

6 def Yoo U 1100
1

def a 2 ]

[a,
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A. 1 Exponential Convergence and Robustness

If x = 0 is an exponentially stable equilibrium point of the unperturbed system

Then

1. The perturbed system is small-signal Lo-stable, that is there exists yoo, coo > 0,

such that 11 u II,< coo implies that

II x Iloo yjoo uI j Iloo< h (A.12)

where

I a Iloo = sup Ix(t)l, (A.13)t>O

and x is the solution to Eqn.(A.1) starting at xo = 0;

2. There exists m > 1 s.t., for all Ilxo < h/m, 0 <1j u IIoo< coo, implies that x(t)

converges to a B6 ball of radius 6 = To I u Iioo< h, that is: for all e > 0, there

exists T > 0 s.t.,

Ix(t)l _< (1 + 0)6 (A.14)

for all t > T, along the solution of Eqn.(A.1) starting at xo and also for t > 0,

xI(t)l < h.

The detail proof is done in [Sastry and Bodson, 1989]. The implication of the Theorem 3 is

that it relates internal exponential stability to external input/output stability. The term -a31x 12,

where originates from the exponential stability of the unperturbed system, acts like a restoring force

bringing the state vector back to the origin. The term a4xil,u II u Ilo acts like a disturbing force,

pulling the state away from the origin. This is caused by the input u where in this case is the distur-

bance acting on the system. While the first term is square in norm of x and the second term is only

proportional to the norm. the restoring term will equal the disturbing term when xIx = 6/m =

yoo/m II u Io. Though the size of the ball Bh and ball B, vary depending on each of their choices

and that the system satisfies a constant Lipschitz condition with a constant I, with varying yoo,

the Loo gain, and the coo, the stability margin, will vary but remain bounded. Also pointed out by

[Sastry and Bodson, 1989] that when the rate of the convergence rate increase, the Loo decreases,
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A.2 Robustness to Ouput Disturbance

and the stability gain increases.

A.2 Robustness to Ouput Disturbance

Theorem 4 Consider the direct adaptive control system stated earlier with measured output y, of

the plant, where n E Loo. Let h > 0.

If Wm is PE

Then there exists yn, cn > 0, and m > 1, s.t. | n [ •< cn and Ix(0) 1 < h/m implies that x(t)

converges to a B 6 ball of radius 6 = 7, I| n II., with Ix(t) I 5 mxo I < h for all t > 0.

Through the use of the Theorem 3 as a component of u and then translates into n, we can proof

the theorem. The detail proof can be found in [Sastry and Bodson, 1989].

A.3 Robustness to Unmodeled Dynamics

Theorem 5 Considered the system described earlier that includes the unmodeled dynamics

If wm is PE.

Then for xz , 0a, ,a sufficiently small, the state trajectory of the adaptive system remain

bounded.
where

7a = ha(T)IdT, (A.15)

and ha(T) is the impulse response of Ha and 3a depends on the initial conditions in the unmodeled

dynamics.

To prove Theorem 5, Let T > 0 s.t. x(t) < h for all t E [0, T]. Define n = Ha(u), so that, by

assumption

II nt loo< Ya 1I ut Iloo +/a (A.16)

for all t E [0, T]. The input u is shown below:

U = OTw = O*Tw + Tw (A.17)

= O*TWm + o*TQe + O*Tqnn + qTWm + qTQe + pTqnn (A.18)
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A.3 Robustness to Unmodeled Dynamics

Since x E Bh, then there exist ,, ~, > 0 sufficiently smalll that

-1(aY < 1 (A.19)

< c, (A.20)
1 - 7a7Y

where cn is defined in Theorem 4 and II nt (Io< Cn. Thus, Theorem 4 implies that xI(t)l < h for

all t E [0, T]. Since none of the constrains y,,a, -y, , and /3 is depending on T, Iz(t)I < h for all

t > 0. If it is not ture, then Iz(t) I 5 h for all t E [0, T] and x(T) = h. Then the theorem would

then apply and result in a contradiction since Iz(t) I < h. c.
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Appendix B

Notation Used in the Thesis

In this chapter, we summarize all the variables used in the thesis from Table B-1 to Table B-6.

Table B. 1: Constant
Notation Description

n Order of the system
nq Order of the system at stage q
nn Order of the system at stage n (overall)
Ri amplitude of the ith ref. exc. spectrum
vi amplitude of the ith noise. spectrum

Table B.2: Transfer Function
Notation Description

W, True open-loop plant transfer function
Wm Desired system transfer function
Gmq Estimated desired transfer function at stage q
Gp, Estimated open loop transfer function of the system at stage q
Grq Residual open-loop transfer function at stage q
Gtq Estimated tuned closed loop transfer function of the system at stage q
FGq Estimated closed loop transfer function of the system at stage q
Fq closed loop transfer function of the system at stage q
Fr, Residual closed-loop transfer function at stage q
Frtq Residual tuned closed-loop transfer function at stage q

Ftq closed loop transfer function of the tuned system at stage q
S characteristics polynomial
k gain of the transfer function
Z zero polynomial of the open loop trans. func.
R characteristics polynomial of the open-loop trans. func.

*, H complex conjugate transpose



B Notation Used in the Thesis

Table B.3: MRAC
Notation Description

Aq observer characteristic polynomial at stage q
r ref.
u system input

yp measured system output
y, desired system output
wl input observer
w2 output observer
el output error
w regressor
Cq input feedback controller at stage q
Dq output feedback controller at stage q
Ct, input feedback tuned controller at stage q
Dtq output feedback tuned controller at stage q

Table B.4: Control Parameters
Notation Description

0 full-order control parameter E IRun _
Oq control parameter E JR2nq at stage q

parameter error
Otq tuned control parameter E JR2n q at stage q
0q projected optimal control parameter E R 2nq at stage q

Table B.5: Frequency
Notation Description

w frequency
w, switching frequency
WH maximum allowable stable exc. frequency
wi excitation frequency at ith spectrum
E increment in frequency of the matched phase region

129



B Notation Used in the Thesis

Table B.6: Phase Shift
Notation Description

Z { }. phase of the argument
(p. phase shift angle

Fmax maximum allowable phase
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Appendix C

Derivation of the Tuned Characteristics Polynomial

In this chapter, we show the derivation of the phase angle relation obtained from the stability

condition to the measured phase angle output relation.

Ft def km krq Zmq Zrq (C.1)
S Rmq Rq(.1)

= kpktqZP q Zm (C.2)
(Aq - Ct)p - kpZpD

By equating Eqn. C. 1 and Eqn. C.2, we can obtain the following relationship:

def ZpAoqRmqRrq (C.3)Zrq(C.3)

ptqd (Aq - Ct)Rp - kpZpDt (C.4)

ktq =- kpk = kmqkrq (C.5)

imt = •tq (C.6)

Then by simple algebraic manipulations, we obtained the following relationships:

ZpAoq Rmq Rrtqt• = (C.7)
Zrtq

= kpkcZpAoqZmqRMqR, 
(C.8)

km krt Zmq Zrtq

[kpkcZpAOqZmq] k RMtn P (C.9)
mq, Zmq, krtq rtq

= [kpkcZAoZm] 1 (C.10)
G,, Frtq



C Derivation of the Tuned Characteristics Polynomial

Finally using result presented in Eqn. C. 10, we obtain

t_, _ kpkcZpAoqZmq 1
G=q 4 (C.11)•p, (Pq Gm4 F,

- Fpq (C. 12)
G,q Frtq

The angle of ±- can then be derived as

Z f })tq = L{F,,}- Z{Gmq}-Z{Fr } (C.13)
p{q
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Appendix D

Model Reduction

In this section, we state underlining assumptions that we made when we model any real physical

system. Due to the nature of the real physical system's behavior, unless we made some justifica-

tions, assumptions, and operating conditions, we can not obtain a "model" for the system. As the

operating conditions expand, we usually change the assumed model of the system to a more com-

plex model in practice. In practice, the relationship between the model complexity in terms of its

order and operating conditions have been always stated in the form of the "rule of thumb" or widely

practiced without any formal statements. Since major research here is to "progressively" learn the

model structure, we need to formally establish these "rule of thumb" rules in the form of Proposi-

tion 1 and Proposition 2.

As shown in Figure D. l(a) and Figure D. 1(b), we can always use lump parameter model to rep-

resent any physical single-input-single-output (SISO) linear time invarient (LTI) system. We are

going to state the two propositions in order for the model augmentation of the progressive learn-

ing to be valid. Each proposition is given an valid example to illustrate the proposed proposition.

Proposition 1 is used to validate the argumentation in an open-loop sense and Proposition 2 us used

to validate the closed-loop model argumentation.

Proposition 1 For a physical system witha transferfunction Wp to represent the overall system and

a simplified transfer function Wp, to represent the reduced-order system, and a given set of bmax,

the maximum allowable phase shift and pmax, the maximum allowable DC-gain, there exist an w,

(a) Plant (b) Model (c) Cascade lump-
parameter model

Figure D. 1: Various representation



D Model Reduction

s.t. 3 w8 s.t. larg{Wp(jw)} - arg{Wps(jw)}l < qmaxforV w E {wJO < w < w,,}

Illustration For an given transfer function Wp(s) which is a forth-order system, that has a form

of two cascade second order transfer function, Wp, and Wp2, can be correctly reduced into just a

single second order system Wp,, (s) in the frequency range w8 as long as the ratio of the two nature

frequencies are greater than (2 2 a2 max where f is the ratio of the excitation

frequency to the nature frequency of W, (s), (2 is the damping ratio of the W 2 (s).

Proof

For and given W, such that

WP= 2w2 + 22w s + w2 n• 2  (D.1)
S2 + 2(lwn, s + W2 S2 + 2(2 n2

can be represented using two lumped parameter models W,, and WP2 where

W = 22 S+ W2 (D.2)

and

2= S+W 2 ). (D.3)( 
2

WP2 82 + 2(2n 2 n2

The phase angle of Wp, q(Wp) at a given excitation frequency w is

2(1wu1 w 2(2wn2w
{Wp}= -arctan{ 2 2 }--arctan{ 2 _ 2}. (D.4)

ni n2

By using the small angle approximation to approximate arctan in Eqn.(D.4) and the given maxi-

mum allowable phase shift, max, of the higher order transfer function at the frequency w, we can

obtain the following relation:

If { WP2} < 'max, then 4{ Wp} O{ Wp, } at the w. (D.5)

or
2~ (1wnw
W -w • <  max (D.6)

ni
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D Model Reduction

Now, we further assume that wL, 2 , the nature frequency of W,,2 is

Wn2 = aw 1, (D.7)

and the excitation frequency w is

W = OWnl, (D.8)

then we can simplify Eqn.(D.6) into

2C 2 <  max, (D.9)

then Eqn.(D.9) can lead to Eqn.(D.10) as below:

aC 2 max (D.10)> max

Eqn.(D.10) establishes the lowest separation requirement between the nature frequencies of the

two second order systems in order for the simplification to hold true in the open loop sense. Fig-

ure D.2(a) shows how this separation a, in z - axis varies with different damping ratio (2 and

excitation frequency w that represents in term of the ratio, 0, of the first nature frequency and for a

given maximum allowable phase lag ,max. Figure D.2(b) show the contour representation of Fig-

ure D.2(a). More importantly, what these two figures show besides just how far apart the two nature

frequencies have to be in order for the simplification to work, but how high the excitation frequency

we can excite the system for the simplified system representation to be valid even the separation of

the two falls below the requirement. As demonstrated in Figure D.4(a) and Figure D.4(b), we see

how the phase lag q varies as we start to excite the system with different damping ratio for a given a

that is clearly in violation of the separation requirement presented in Proposition 1. By re-deriving

Eqn.(D.9) we can derive the maximum allowable excitation frequency ratio, Omax that the higher

order dynamics can be sufficiently ignored despite the low separation ratio:

S(22a2 + max.a2 - 2a (D.11)
Orax
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0.

0.

0.

0.

0.

It,'-

(b) Contour

Figure D.2: Minimal separation

(b) Contour

Figure D.3: Maximum allowable excitation

This is also been validated using an example as shown in Figure D.3(a), the mesh representation,

and Figure D.3(b), the contour map representation, for a given #max = 100 there are region where

Eqn.(D.11) holds though the separation ratio a is low as well.

In another example, we fixed the separation ratio, a to be 1.5, we again see that for a given

damping ratio and excitation frequency there exists some region that the simplification still holds

as shown in Figure D.4(a) and Figure D.4(b) the mesh and contour map representation respectively.

Next, we are going to use results from Proposition 1 to extend the finding of minimal bound

for the open-loop transfer function to closed-loop transfer function. In general, based on the open-
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damping ratio
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Figure D.4: Phase lag with varies excitation ratio and damping ratio

Inputi . 1 F OutputGc(s) Plant

(a) Plant

Input ni I Output

H(S)

(b) Lump-parameter
model

Figure D.5: Various representation for the closed-loop system

loop system, Gp(s) as represented in Figure D.1, Figure D.5(a) and Figure D.5(b) show the block

diagram representations of the closed-loop system.

Proposition 2 For a physical system with transferfunction W, to represent the full system and sim-

plified transfer function Wp, to represent the reduced-order system, together with a feedforward

and/or feedback controller Ge(s) and H(s) respectively, for a given maximum allowable phase

shift, qmax and pmax, the maximum allowable amplitude ratio, and a region offrequencies, wV w E

{w|0 < w < w,,}, such that,

Gc(jw) W,-Xjw)
(D.12)

1 + Ge(jw)Wp(jw)H(jw) 1 + G,(jw)W, (jw)H(jw)

Proof For an given transfer function Wp(s), with a feedforward controller, Ge(s), and a feedback

controller, H(s), we can write its closed loop transfer function,W,p, between its input and output
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D Model Reduction

as shown in Figure D.5(a) for the block diagram representation or as follow:

- Gc(jw)Wp(jw)
W - 1+ Gc(jw)Wp(jw)H(jw)

If we can further assume the transfer function Wp(s) can be represented in the cascade form based

on Proposition 1, or W,(s) = H•= 1Wp (s) where n is the number of the cascaded transfer function

then we can rewrite Eqn. D. 13 as follow:

Gc (s) (TV , Wp, (s))
Wp,( (s) W () (D. 14)

s 1 + Gc(s)(l'1 Wp, (s))H(s)

Then first by separating Gp(s) into two jth and n - jth transfer functions such that Wp(s) =

(ZH- 1 Wp, (s)) (I+ 1 W p, (s)), then we can always find an equivalent transfer function representation

by performing block-diagram algebra to Eqn. D. 14 or in Figure D.5(b) to a new equivalent form in

Figure D.6 or below:

Gc (s) (IIj=l Wp, ((D) )Wp(s) = 1+G(s)x Wp (D.15)(s) l1Wp,(9))(s)1 + G %(s)(II =W, (s))H(s)

where

1 + Gc(s)(H•I1 Wp(s))H(s)wir(=) (nU j+nwP.(s) (D.16)
Wpr S =1 + Go(s) (IIl1 W,, (s)) H(s) = ()(D1

= x Wpr (s), (D.17)
1+ Ge(s)(Ili= Wp,(s))H(s)

I Wpr (j) I exp - ang( w pr (j ) }  (D.18)

Then for any w E {wj0 < W < w s.t.

Wpr(Jw)lI exp - ang{W p, (j w)i} _ IPmaxl exp-a ng{•max } (D.19)

Then

Wp,(,s) = G(s) ( x W (s) (D.20)
1 + Ge(s)(II= Wp,(s))H(s)
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Ge(s) WSx W, (s) (D.21)1 + G,(s)W,,(s)H(s) r

PCL((jw)) ( Wp, (jw))WI,.( (D.22)
1 + G(ij)(wII)(=1Wp, (jw))H(jw)  r

Gx(j)W W U(jw) (D.23)
1+ Gc(jw)Wp,(jw)H(jw)

Gc(jw) (II: Wp, (jw))

1 + G(jw) (Ii=1 W,, (jL))H(j)24)

where Wp, = II Wp,,, or the reduced-form transfer function, Wpr = IIVjL, +W,, which is the

residual transfer function or the higher-order transfer function that is been ignored. Thus, based on

the condition stated in Proposition 1, Proposition 2 is proved. o

Input

output

Figure D.6: Reduced-form closed loop transfer function representation

Illustration For an given transfer function W,(s) which is a forth-order system, and has a form

of two cascade second order transfer functions, Wp,, and W,2, it can be correctly reduced into just a

single second order system Wp, (s) in the frequency range between 0 < w < w. following criteria

of Proposition 1. It has a feedforward controller that has a form of Ge(s) = 01 and a feedback

controller H(s) = 0a6+02 where A is a first order transfer function. The value of o00, 01, o00 are set

to the values such that

Ge (s) W,, (s) km (
1 + G,(s)W,, (s)H(s) s 2 + 2(mw,r s + W2m (D.25)

where (m = 0.707, Wnm = 1.5 x w (1 - 2)0.5 /(1 _ 2 )0.5, C1 and Wn~ are the damping ratio and

nature frequency of W,, (s). Figure D.7(a) and Figure D.7(b) show the mesh and contour map of

how the phase lag varies by varying the damping ratio (2 and separation nature frequency ratio, a as

defined before for the next second-order transfer function W,2 (s) when we excite at the nature fre-

quency of the reduced transfer function. These two figures illustrate the existence of Proposition 2

that for a given larger separation ratio as obtained by Proposition 1 since the phase lag introduced
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Figure D.7: Extra phase lag by making the reduce-order assumption

0 0

0damping rt 0.5
damping ratio excitation ratioI I

(a) Mesh (b) Contour

Figure D.8: Phase lag with varies excitation ratio and damping ratio

by the "residual transfer function", or the ignored high-order transfer function is less than the max-

imum allowable phase lag. Similar to the first illustration as done for the Proposition 1, we can still

use the result from Proposition 2 even when the separation ratio is less than specified bound stated

in Proposition 1 when the excitation frequency is within the range specified in Eqn.(D. 11) as shown

in Figure D.8(a) and Figure D.8(a).

These illustrations have established the model reduction propositions for both the open and

closed loop proposition.
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