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ABSTRACT

The uniformity variation of hardness across a test block, the reference material for calibrating a
Rockwell tester, is masked by the variation of the commercial tester system used to measure the block.
The sources of total measurement variation can be isolated by means of a statistical model introduced in
this thesis. Measurement feedback from a precision deadweight tester, as maintained and operated by
NIST', serves in the development of these models; it also plays a key role in achieving an effective
process control strategy for the manufacture of hardness test blocks.

The author develops the Calibration Capability index, Cc, to characterize the interaction between
variation sources in the stages of (manufacturer) block calibration and (customer) tester validation.
Along with the statistical process metrics of Process Capability, Cpk, and Range Capability, CR, the
performance of the test block manufacturing process can be adequately measured with respect to
customer requirements for the reference standard system. These metrics provide guidance toward the
future product and process improvements and may be applied in organizational goal-setting.

The application of statistical process control (SPC) methods using conventional Shewhart Xbar, R and s
control charts is shown to be practically feasible and beneficial in controlling the uniformity of hardness
test blocks. A methodology that cross-references a deadweight tester system distinguishes the causes of
'out-of-control' conditions between either the measurement system or the block process.

In order to benefit from SPC methods, management must tailor a production environment that fosters
problem-solving with communication along the entire process chain and that motivates conformance to
standardized procedures. Management methods for SPC introduction and related organizational issues
are presented.

Thesis Advisors: Roy E. Welsch, Professor of Statistics and Management Science
Kenneth C. Russell, Professor of Metallurgy, Professor of Nuclear Engineering
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Chapter 1 Introduction

Until the present time, the unofficial reference standard in the U.S. for Rockwell hardness was
developed and maintained by the leading commercial manufacturers of Rockwell hardness
testing systems. Wilson Instruments, a division of Instron Corporation, has been at the forefront
of technology development for commercial Rockwell testing systems for over 75 years.

The hardness standard for Rockwell hardness testing is embodied in the form of a flat, disk-
shaped block of reference material, called a test block. The material composition and states are
specifically controlled to yield a particular hardness level within the available Rockwell scales.
Instron manufactures the test blocks and calibrates them to their inherent hardness level in the
Wilson Standards Laboratory using a bank of six 'standards' testers. The calibrated hardness is
engraved on the edge of the test block and is also referenced in a calibration certificate supplied
with each test block. Refer to the calibration certificate of Appendix D.

The new Wilson 600 Series Rockwell tester was integrated into the laboratory early in 1996.
Refer to Appendix A. This tester technology, which replaced the 500 Series tester, represented
the commercial state of the art in the Rockwell testing industry available at the time.

The test blocks, calibrated to the Wilson Standard, are in turn used to calibrate the nominal
machine settings for production Rockwell hardness testers supplied to customers. Test blocks are
also applied in the set up the Rockwell testers that gage the acceptable accuracy of indenters in
their manufacture. A closed loop system of standard traceability thus exists in which the
manufacturer must control its reference master test blocks, indenters and standardizing testers in
order to prevent the presence of variation from causing a transient drift in the nominal hardness
levels of the reference standard.

Next to satisfying the internal production needs for a reference standard, Instron markets
calibrated test blocks to users of commercial Rockwell hardness testers, the majority for use with
machines supplied by Instron/Wilson. The purpose of the test block is to allow the customer to
verify the calibration set points of their hardness testing system which over time is subject to
mechanical wear and usage drift. This calibration verification process is termed 'validation'.

If the tester should fail the validation, a diagnosis of the equipment condition results in a series of
minor corrective actions as outlined in the user manual. Only once these corrective actions have
been exhausted, is a machine calibration adjustment, by a qualified Wilson service technician
performed.

Refer to Figure 1-1 for a schematic of how the Instron hardness reference standard is maintained
in the physical form of hardness test blocks.



Figure 1-1: Instron Reference Standard System through Hardness Test Blocks

1.1 The Rockwell Hardness Test
The Rockwell hardness test consists of a mechanical measurement for the relative displacement
of a diamond-tipped indenter (or ball penetrator) as it penetrates the surface of a test specimen
between successive minor and major loads [5]. Refer to Fig. 1-2. The 10 kgf minor load seats the
indenter at its starting reference (SET) position. The Rockwell scale (e.g. C, B, A) is determined
by the selection of major load. For the Rockwell 'C' scale of this study, the major load is 150
kgf. Following the application of the major load, the Rockwell tester switches back to the minor
load to allow elastic recovery at its final position. The resulting hardness number, which is read
from a digital display of the tester, represents a secondary linear calculation performed by the
tester logic, as follows:

HR = 100 - [(yf.. - Yst)/2 gtm] (for a diamond-tipped indenter)

Each Rockwell number constitutes a material penetration of 2 gim (8 x 10s5 in.). An infinitely
hard material thus has a Rockwell hardness of 100. The reader will note that the relevant
measurement increment is smaller than the grain sizes of most fine-grained heat treated steels of
mean grain diameters ranging from 8 glm (ASTM/ISO G 11) to 22 pm (ASTM/ISO G 8) [20].

The Rockwell hardness test is destructive by nature as it leaves a small indentation in the surface
layer of the test material. As the material location cannot be re-tested, no two sequential tester
operations sample the same group of material grains. Due to the restricted size of the standard
measurement area of 4.0 in.2 and the requirements for minimum spacing between indents, a finite
number of hardness measurements can be performed on the test block [4]. Depending on
hardness (indent diameter) the maximum feasible indent quantities range from approximately
120 to 150 indents per block depending on hardness [3].



The Rockwell hardness test
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1.2 Existing Models for Reference Standards of Measurement Devices
The generic cross-referencing to a known manufacturer's standard for a commercial
measurement device is depicted in Figure 1-3 below:

Figure 1-3: Block diagram showing a generic calibration procedure [1]

System of
Reference Standard Proper matching System Indicated Readout

(may involve a number of being calibrated to be compared with
identifiable uncertainties)e cthe'known' input

The uncertainty of the reference standard can be described as a combination of [1]:
* bias or accuracy error on the nominal calibration hardness, the average of n hardness readings
* precision error due to the variation of individual hardness readings

Refer to Figure 1-4 for a graphical representation of these error types.

A generic rule of thumb exists for measurement devices that the uncertainty of the standard
system should be no more than one-tenth of the system being calibrated [1]. As demonstrated in
the following chapter, the current state of technology in the Rockwell testing industry does not
allow this heuristic to be satisfied.

Figure 1-2:

e
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Figure 1-4: Bias and Precision Errors: (a) bias error larger than the typical precision error, (b)
typical precision error larger than bias error [1 ]

Frequency of occurence Frequency of occurence

Xtru, Xm X., Xm

Measured value, Xm Measured value, X,

1.3 Hardness (non-)uniformity of a Test Block
A constituent of the measurement precision error is the variation of hardness across the
measurement surface of the test block, termed non-uniformity [4]. Refer to Figure 1-5 for a
graphical representation of a possible irregular hardness distribution for a test block. The non-
uniformity of the block is treated as a material state that is to be determined by measurement.

It is thus the objective of Instron to minimize the block hardness non-uniformity in the
manufacture of the test block.

Figure 1-5: Representation of Hardness Variation across the Surface of a Test Block

0.06

0.00

o.qcn.04

4.00

.0.10

A416

-A -in·

I

.U



1.4 A New National Rockwell Hardness Standard
In 1994/95 the National Institute of Standards and Technology (NIST) of the U.S. Commerce
Department embarked on establishing a U.S. national standard for Rockwell hardness,
independent of those standards maintained by the respective equipment manufacturers. Rockwell
hardness reference standards in several other countries are similarly defined by a designated
government agency, for example JBS in Japan, DIN in Germany or IMGC in Italy.

The national standard will be maintained by NIST in Gathersburg Maryland, through strict
control of a specially designed deadweight tester. The key characteristics of the deadweight tester
are direct load application by a referenced mass, as well as low total measurement variation.

During his internship in the summer and fall of 1996, the author helped Instron develop an
improved process for a steel test block of high uniformity for the supply of high quality test
blocks to NIST. The blocks covered the hardness range of 25 to 63 on the Rockwell 'C' scale.
This special block, termed the 'Large' block, was thicker (0.63 in. vs. 0.38 in.) and had a larger
diameter than the prior block geometry of 'Regular' blocks sold by Instron. Refer to Appendix B.

Following an intercomparison study of candidate suppliers, NIST awarded their purchase of
uncalibrated test blocks to Instron Corporation on the basis of particularly tight specification
requirements for test block hardness precision or uniformity. NIST calibrates these blocks using
their high precision deadweight tester to create Standard Reference MaterialTM , referenced to the
U.S. national hardness standard. NIST determined the acceptable uniformity from the total
measurement range of a large number of distributed indentations (n = 25 to 77) using their
deadweight Rockwell tester.

In order for Instron to confirm the acceptable quality of their test blocks supplied to NIST, the
measurement data of block qualification from the deadweight tester was provided by NIST. A set
of Large grade blocks, which were measured using the deadweight tester at nominal hardnesses
of HRC 30, 40, 50 and 60, were also returned.

Figure 1-6: Information Feedback from National Inst. of Standards and Technology (NIST)

Uncalibrated Test Blocks

Measured Blocks &
Data



1.5 Standard Specifications for Rockwell Hardness Testing
Specification standard ASTM E-18 defines the Rockwell testing methods and the corresponding
specification limits for the equipment, to which the all manufacturers of Rockwell hardness
systems comply. The standard is established and regularly revised by a subcommittee of ASTM
that is largely comprised of the industry players in hardness testing, both manufacturers and
users, including Instron.

Allowable tolerances for test block accuracy at each nominal hardness level are specified in
ASTM E- 18. Refer to Table 1.1 below . Instron applies this maximum standard tolerance to the
average hardness calibrated for the block using n = 6 measurements. The standard tolerance is
provided on the calibration certificate supplied with every test block and is engraved on the edge
of each test block. The customer uses these tolerances as confirmation boundaries when
measuring the hardness of the same block using his/her testing system using maximum of n = 5
measurements in validation.

In addition, the precision error or degree of measurement variation is limited by the specification.
The standard refers to 'maximum non-uniformity of standardized test blocks'; these tolerances
are applied to the hardness readings, which are subject to measurement noise in addition to test
block non-uniformity. Non-uniformity of hardness for standardized test blocks is controlled by a
maximum allowable range for n = 5 randomly-placed measurements. The relevant 'non-
uniformity' specifications for the Rockwell 'C' scale of this study along with the standard
tolerance values for the calibration hardness are given in Table 1.1 below:

Table 1.1: Standard specification of ASTM E- 18 for test block measurement variation [4]
Rockwell 'C' Scale Allowable Range Maximum tolerance on the
Nominal Hardness for n=5 measurements calibrated average hardness

ASTM E-18, Table 22 ASTM E-18, Table 21
HRC 60 and greater 0.5 + 0.5

Below HRC 60 1.0 + 1.0

It should be noted that ASTM E-18 does not specify the type or condition of the Rockwell testing
system by which the non-uniformity is measured. Clearly, the allowable range that serves to
bound the precision error, includes components of variation attributable to the response of the
particular testing system.

The measurement and calibration methods of ASTM E-18 take into account the practicality of
industrial uses and the costs of expending test blocks. As a result, the metrics for variation are
simplified using Ranges. In addition, the variation is qualified using a low sample size of n=5
measurements to ensure block longevity.

The Japanese Rockwell standard JIS B 7730 [8] and the German standards DIN 51303 [6] and
51304 [7] also specify allowable ranges and mean tolerances. However, the application of
statistical methods is found in the NAMAS hardness standard document NIS 0406, in which the



variation of block and standards tester system is characterized using standard deviations (and
variances). NIS 0406 also provides a methodology by which to compute 95% confidence
intervals for the calibrated average hardness using the t-statistic for small sample sizes [9].

1.6 Measuring System Variability: Gage Repeatability and Reproducibility
Instron attempts to characterize the variation of the Rockwell measuring instrument using the
gage repeatability and reproducibility study (GRR), as applied to other conventional measuring
devices e.g. micrometers. The set of designed experiments varies operators and trials over a
larger sample of 10 different test blocks. The GRR study yields an assessment of how much of
the 'process tolerance' is used up by the variation of the Rockwell test system (repeatability or
within operator/device variability) and variation among operators (reproducibility or between
operator variability ) [2].

The shortcomings of this methodology when applied to Rockwell testing are:
* the inherent block hardness variation is not accounted for [2]. Unlike other measuring devices

the same locations of constant properties cannot be remeasured.
* it converts average measurement ranges, stemming from small sample sizes (n=3), to

estimates of sample variances using conversion factors. The conversion factors are based on
expected values for the assumption of a normal distribution of individual measurements.
Thus, the calculated sample variances used are subject to sampling error and estimation error.

* the resulting % R&R metric is dependent on a process tolerance subject to selection. In
industry applications, the tolerance reflects process specification limits for a particular part's
hardness; 5 to 6 Rockwell points is typical.

* the hardness variation is dependent on the hardness level, which is often not specified.
* the GRR procedure is sufficiently complex that it cannot be easily and frequently repeated as

an on-going performance metric.

As a result, it is difficult for the user (or even a trained statistician) to render any rooted meaning
from the results of the GRR study. In addition, a GRR evaluation applied to the process of test
block manufacture is subject to much tighter process specification limits, resulting in large %
R&R's (>> 10%). The GRR study is also not conducted often enough to understand the influence
of different types of blocks, hardnesses or tester conditions.

The Calibration Capability Index, Cc, is developed as an improved alternative to the GRR [Refer
to Chapter 5].

1.7 Problem Statement
In order to control the manufacture of a test block of low non-uniformity, the manufacturer must
be able to confirm its changes in state by measurement. Instron does not currently employ
statistical process control methods in the manufacture of hardness test blocks or for the control of
its standardizing testers used to measure the process blocks.

The measurement noise of the commercial hardness testers employed by Instron is sufficiently
large and potentially dynamic, such that the contribution of block non-uniformity to the total



measurement variation cannot be isolated. The very nature of a reference material of best-
possible quality prescribes that its manufactured variation is straining the limits of measurement
capability. This is particularly the case if a tester technology similar to that used by the customer
base is applied in test block production. The existing analytical methods of quantifying variation
through measurement ranges of small sample sizes have not sufficed.

As a result, improved methods for characterizing the sources and the nature of variation must be
developed in order to isolate and control the variation for test blocks of improved uniformity,
such as the Large grade blocks manufactured for NIST.

In their literature study regarding the state of knowledge on hardness test blocks, OIML (Bureau
International de Metrologie Legale) cites the challenges in controlling block uniformity with a
hint at a path toward a solution : "One could reduce the sampling uncertainty by increasing the
number of indentations but the cost of calibration would increase and the value of the block is
reduced, as the usable surface is reduced. Consequently, the only reasonable solution is to find a
perfect cooperation and interaction between production and calibration of the blocks. To find
ways and means to detect production deficiencies from small number of hardness tests. Sampling
plans, control charts and other methods of quality control should be employed" [3].

1.8 Thesis Statement
The exchange of measurement data from NIST's deadweight Rockwell tester can be leveraged to
characterize the relative sources of measurement variation using tools of applied statistics.
Statistical capability metrics can be developed from these models in order to better measure
product and process performance in a manner that accounts for the interaction of the variation
sources and in a way that captures the customer's validation needs. Statistical process control
(SPC) methods can be tailored to meet the challenges of measurement noise and small sample
sizes in controlling test block hardness uniformity. These control strategies can be consistent
with practical constraints, such that process control can feasibly serve as a foundation for future
process and product performance improvement. Organizational competencies and infrastructures
must be evaluated in order to assess the overall costs and benefits of SPC implementation for test
block manufacture. The author aims to support such planning and evaluation with this thesis.

1.9 Project Scope and Limitations
This study demonstrates methods for statistical analysis and process control using representative
sample data collected in the fall of 1995 and January of 1996. A large portion of the data was
derived from the process experiments of the UBE7 2 optimization program for the development of
Large grade test blocks. Some of the statistical relationships contained in this study have
therefore only been confirmed for steel blocks measured on the Rockwell 'C' scale. As the state
of process control and capability is subject to change over time, the author cautions that the
sample performance metrics contained herein reflect a snapshot in time. The statistical
methodologies are outlined in sufficient detail that the analysis can be repeated in order to assess
current states from more recent data.

2 The name 'UBET' was selected by the Uniform Block Excellence Team; they know who they are.



1.10 Terminology and Notes on Equipment Parameters
Terminology, that may be particular to this study, is used to express the different types of
equipment under focus. These equipment types constitute different parameters in the systems for
Rockwell hardness testing. Each equipment parameter is explored to ensure that the statistical
methods developed herein can be universally applied to the spectrum of Instron's product
offerings and standardizing equipment.

Test Block Process
Large Grade:

Regular Grade:

Types: (for Rockwell 'C' scale only)
The Large grade test blocks were the result of a process optimization
program conducted during 1995. Process samples were qualified by NIST
as high-quality test blocks that exhibit superior uniformity.
Large blocks are thicker than Regular grade blocks and exhibit a larger
outer diameter, which is greater than the effective measurement diameter
in order to avoid potential edge effects. See Appendix B.

The Regular grade blocks are derived from a manufacturing process prior
to the optimization program for the Large blocks. These blocks are
thinner and their outer diameter represents the outer bound of the available
measurement area. See Appendix B.

Rockwell Tester Systems: 150 kg major load, 10 kg minor load
Instron 500S: Standards Lab tester Model B523R, Serial No. 80195408;

Indenter Serial No. 940191
This represents a standardizing tester, that in January of 1996 was being
replaced in the Instron Standards Laboratory by the more current 600
tester technology. Refer to the equipment diagram of Appendix A.

Instron 600S. Standards Lab tester Model A653RMT-4, Serial No. 97328502;
Indenter Serial No. 95621105
The 600S is a new standardizing tester installed in the Instron Standards
Laboratory in January 1996. Refer to the diagram of Appendix A.

Instron 600R: Research 600 tester Model 653 C, Serial No. 97331502;
Indenter Serial No. 95621105
The 600R was a tester system used for internal process measurements of
Large grade blocks during the UBET optimization program of 1995.
Refer to the equipment diagram of Appendix A.

NIST Deadweight: The deadweight tester is maintained and controlled by NIST in
Gathersburg, MD, for purposes of establishing a national hardness
reference standard; as such it exhibits extremely low measurement noise.

The reader should note that all indenters used for the hardness measurements in this study have
been inspected to be of Instron Standards quality. Only one indenter was applied with each tester
system, as matched above. All measurements were conducted by a single operator, the author.



1.11 Reader's Guide

Four main parts make up the structure of this thesis.

The first part takes a fundamental approach to defining the sources of Rockwell measurement
variation and describes their empirical behavior using statistical techniques. Chapter 2 derives
the components of variances model with respect to simplifying assumptions. Chapter 3 uses this
model to show how uncertainty is propagated through the reference standard system from the
manufacturer to the customer. A global system model captures the interactions that are defined
statistically. Chapter 4 discusses the underlying assumptions that allowed the application of
particular statistical methods to the models; the basis for the development of the capability
indices and the use of SPC control charts are thereby justified.

The second part introduces three capability indices for measuring product and process
performance. Chapter 5 includes a rudimentary statistical development of the Calibration
Capability index, Cc, which captures the interactions of the global system model. Sections 5.7,
5.8, 5.9 and 5.10 are aimed at supporting the understanding of the Cc index for the reader that is
new to statistics. The final sections of Chapter 5 show how the Cc index can be used to make
decisions for product and process improvements. Chapter 6 demonstrates the application of the
known Process Capability index, Cpk, in gaging the feedback control performance of the test
block heat treatment process. Chapter 7 introduces the Range Capability index.

The third part looks at how the manufacturing process for Rockwell test blocks can be controlled
using statistical process control (SPC) methods using a feedback control perspective. Chapter 8
discusses the enablers and barriers to the application of SPC. Chapter 9 presents a comprehensive
strategy with tactical details for introducing SPC at Instron Corporation for test block
manufacture.

The fourth and final part addresses the organizational issues related to the introduction of
statistical methods into a firm with little prior SPC background. Section 10.2 discusses why SPC
makes sense as an integral part of the firm's competitive business strategy. Chapter 10 also
outlines the transformed roles of management, production associates and external players.

The thesis is concluded in Chapter 11 with recommendations for future work.



Part I

Chapter 2

Statistical Characterization of a Rockwell Hardness
Standard System

Modeling and Quantifying the Sources of Rockwell Measurement
Variation

2.1 The Lumped Tester Model
Hardness measurements performed on a test block, as any other material, are subject to
variability. The sources of this variation are aggregated into the tester machine, the indenter,
operator and test block. These sources of total measurement variation in the calibration of a test
block are depicted in Fig. 2-1. To date the relative contribution to the total measurement
variation from each of these sources has been unquantified by Instron. The variation contribution
due to the test block is termed its non-uniformity [See Section 1.3].

Figure 2-1: Sources of Measurement Variation for the Calibration of Test Blocks

TESTER
------------------- 1

STANDARDIZING
MACHINE

INDENTER { .- TEST BLOCK

PERATOPERATO e

The Gage Repeatability and Reproducibility (GRR) methodology applied by Instron and the
hardness testing industry in general attempts to minimize the contributions of block and operator
variation in an effort to isolate the nature of the combined machine and indenter variability.
Cieplak et al explain how this methodology is largely influenced by inherent non-uniformity of
block hardness over the measurement surface [2].

The key to improving tester and indenter technology lies in first being able to quantify and
control the hardness non-uniformity of the block. As summarized from the literature study on the
subject by OIML: " To assess the true performance of the hardness testing machines (including
standardizing equipment as well), it is necessary to take into account the behavior of the test
blocks in use, the sampling variability arising from the non-uniformity of the blocks and the
environmental changes that may have occurred" [3].

BLOCK CALIBRATION

SS(n= Rx
(n=6)



For the subsequent purpose of isolating the variation attributable to the block, the author
simplifies the model into two primary sources: the test block and the 'lumped' tester. The
'lumped' tester therefore includes the indenter, operator and tester mechanism sources of
variation.

Figure 2-2: The Lumped Tester Model for Sources of Measurement Variation

2.2 Measuring Variation
The author chooses the sample standard deviation, s, and its squared-value, the sample variance,
s2, as the metrics to describe variation. The sample standard deviation is given as:

S1 (x, - (1)
n-1 i=1

Though it requires more computational effort, the sample standard deviation is less susceptible to
outliers than the sample Range. In addition, the sample standard deviation is a more efficient
estimator than Range for the true standard deviation, a, of normal probability distributions
(which will be encountered later) [16].

2.3 General Characteristics of Tester and Measurement Variation

It is hypothesized that the tester variation differs between different types of tester technologies.
This is demonstrated by the relative measurement data from hardness measurements performed
on four common blocks by three different tester technologies: NIST Deadweight Tester, the
Instron 600S tester and the Instron 500S tester.

2.3.1 Relative measurement variation for a set of common blocks
A set of Large grade blocks, covering four hardness levels HRC 30, 40, 50, 60, where measured
under controlled conditions by a common operator (the author) using different indenters in each
tester. The measurement sample groups are statistically significant with n > 30; the NIST
measurements were conducted with n=68 to 76 indentations.

Figure 2-3 depicts the standard deviations of the measurement samples at each hardness level and
Figure 2-4 shows the variance of the same samples.

Since these measurements were conducted on a common block, the comparison of both s and s2

values at each hardness level allows the conclusion that, in general, the NIST deadweight tester



has lower total measurement variation than either the 600S or 500S testers. The 600S also seems
to exhibit less variation than the 500S. The conclusion is limited due to the sample size of one
block at each hardness level.

2.3.2 Relative Measurement Variation for Equivalent Process Samples
In the course of conducting process optimization studies for Large blocks supplied to NIST,
significant measurement data using a controlled 600R tester was collected on blocks that were
manufactured in parallel with those delivered to NIST. NIST tested one sample from every four
process lots at each hardness level, HRC 25, 45 and 63. Hence, the process samples measured by
the Instron 600R tester at n = 25 measurements could be compared to blocks from the same
process lots, measured by NIST at n = 25 indentations per block using the deadweight tester. The
sample quantity of 25 is deemed sufficient to yield statistically significant estimates of means
and standard deviations. Both the Instron and NIST Rockwell measurements were conducted
using a common indenter and operator for all of their respective measurements.

The variation of this measurement data given in Appendix C is shown in Figure 2-5 (standard
deviation). Figure 2.6 is a plot of the variances based on the average standard deviations shown
in Figure 2.5. This graph highlights the trends discussed earlier for the common block
measurements.

Two deficiencies in the comparison of NIST to 600R tester measurements are acknowledged:
* the low sample quantity of blocks measured by NIST, 4 vs. 16 to 19 blocks.
* the measurements are not conducted on common blocks

The blocks originated from the same steel material batch; they were heat treated in common lots,
and were finished together under a state of process monitoring. Therefore, the author deems the
data to be sufficient to provide genuine insights into the relative measurement variation. In
addition, the behavior of the data matches that of the common block tests of Figs. 2-3 and 2-4.

The error bounds (max./min.) on the standard deviations on Figure 2-5 demonstrate that the
measurement variation of the 600R tester has a rather large spread. The total variability for this
tester does not seem consistent from block to block. However, the dramatically decreased spread
on the NIST data suggests, though not conclusively, that the 600R tester variation in standard
deviation is not attributable to the blocks.

2.3.4 Conclusions on the General Nature of Measurement and Tester Variation
The results depicted in Figures 2.3 through 2.6 support the following conclusions:
* The measurement variation using the NIST deadweight tester is significantly lower than that

of the 600 and 500 testers. For a common block, it thus follows that the NIST tester variation
is substantially lower than that of the 6003 or 500 testers.

* The variation of 600 measurements decreases with increasing hardness. Figs. 2.3 and 2.4
allow us to extend this response behavior to the 500 tester. At the higher hardnesses of HRC

3 Note that the measurement results for the 600R and 600S systems are generalized as '600 Tester'.



24

60 and above, the spread on the 600 variance overlaps into the expected variance of the NIST
tester.

* The variation of NIST deadweight measurement is fairly constant with respect to hardness.
* In general, the degree and nature of measurement variation differs between tester

technologies and hardness levels.
* Because the measurement variation is a function of hardness for Instron's commercial tester

technologies, comparisons and analyses of variation must be performed at each respective
nominal hardness levels.

Given these results the question arises: Can we isolate the relative contributions to total
measurement variation between the block and tester ? The answer is yes, if we leverage the low
variation of the NIST deadweight tester.



Figure 2-3
Measured Hardness Variation by Tester System

using a common Large grade test block, qty.1 per HRC level
Sample Standard Deviation vs. Nominal HRC
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Figure 2-4
Measured Hardness Variation by Tester System

using a common Large grade test block, qty. 1 per HRC level
Sample Variance vs. Nominal HRC
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Figure 2-5
Average Standard Deviation vs. Nominal HRC

Common Process Samples for 4 consecutive lots per HRC Level
Instron 600 Measurements & NIST Deadweight Measurements
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Figure 2-6
Average Sample Variance vs. Nominal HRC
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2.4 Modeling the Components of Variances
'The variance of the sum is the sum of the variances'. This convenient statistical heuristic holds

true only if the two populations being summed are independent. The assumption of independence
is currently applied in many gage capability studies, most notably the GRR used for Rockwell
hardness testing [3].

For the assumption of independence, the total measurement variation may be expressed in its
generic form as a model of sums of variances [18]:

a total measure - a block + ( tester (2)

In our case the individual quantities, Oblock and tester, cannot be measured directly. In addition,
the assumption of independence is not guaranteed. Therefore, in order to isolate the variation
contributions of block and tester embedded in the total measurement variation, each 'quantity
must be modeled as a random, and estimated by a prediction interval' [10].

The general form for the components of measurement variation requires a covariance term for the
potential correlation between block and tester,

C total measure a (Yblock tester (+ 2 p ablock (tester) (3)

The correlation coefficient, p , is thus zero for the assumption of independence. For perfect,
positive correlation, p equals 1 and for perfect negative correlation p is -1. Hence, the
substitution of p defines estimation intervals for a total measure [10].

Positive correlation, 0 < p < 1: 2block 2tester 2total measure block + tester) 2 (4)

Negative correlation, -1 < p < 0: ( block - tester) < 2total measure < a2block + 2tester (5)

2.5 Estimates of Variation Components using NIST Deadweight Data
The components of variation models can be used to determine reasonable estimates of the
relative block and tester standard deviations for a commercial Instron tester system by the
following procedure:

The variances of the NIST deadweight tester measurements may be similarly modeled as:

( DW measure = ( block + ( DW tester (+ 2 p oblock (TDW tester) (6)

From this model it can be seen that the block variance is at its maximum possible value when the
tester variance is zero, such that

(a(2block)max = (2DW measure for assumption of aDW tester = O (7)
or (0(block)max = DW measure



Note that the maximum condition holds true even if there is a certain degree of dependence
e.g. p > 0.

If the unknown tester is used to measure a common block as the NIST deadweight tester, the
unknown tester variance can be estimated by a prediction interval. Treating the maximum block
standard deviation as known by the standard deviation of the NIST deadweight measurements,
the unknown tester variance can be expressed in terms of the measurement variation and block
variation using the common block. The nominal, maximum and minimum tester variation
therefore is given based on condition of correlation between block and tester:

Nominal, independence, p = 0: 2tester = 2tal measure - ( 2blocmax (8)

Lower Bound, positive correlation, p = +1: 'tester = atotal measure - (Oblock)max (9)

Upper Bound, negative correlation, p = -1: atester = atotal measure + (ablock)max (10)

Hence, by leveraging the low measurement variation found in the NIST deadweight testers, the
variation of the common test block and an Instron tester can be determined within prediction
intervals.

2.6 Graphical Analysis for Estimating Tester Variation
The reader will note that the expressions defined for the tester variation are well suited for
interpretation of graphs of 2 total measure VS. hardness or total measure vs. hardness , in which both
NIST deadweight and unknown (600) tester measurements are plotted. Refer to Figures 2-3
through 2-6.

The minimum tester variation is simply the vertical difference between the curve for stota measure
and the curve for SDW measure-4

The nominal tester variation is simply the vertical difference between the curve for S2total measure

and the curve for S2DW measure"

2.7 Block and tester variation components determined from sample data
This components of variation model was applied to the measurement data of Appendix C
presented earlier in Figs. 2-3 to 2-6 using the 600, 500 and NIST deadweight testers . Sample
standard deviations variances were used as unbiased estimators of the model's true standard
deviations and variances.

Tables 2.1 and 2.2 present the results from applying the model to the 600 and 500 testers where
the same block was measured by NIST (deadweight tester) and Instron. The results shown in
Figure 2-5 and 2-6 for cross-referenced samples from the same process run of four consecutive

4 The sample standard deviation, s, is an unbiased estimator of the true standard deviation, a.



batches were analyzed and are presented in Table 2.3. The test blocks of this study were solely
derived from the Large grade process.

Note that the author purposely abandons calculating the upper bound on tester variation for the
condition of perfect negative correlation. This is justified on the basis that the test block standard
deviation is conservatively estimated on the assumption that the NIST deadweight tester has zero
variation contribution. Only the nominal and minimum tester variations are thus pursued.

2.7.1 Quantifying component contribution to total measurement variation
The relative contribution of tester and block components to total measurement variation can be
calculated in two ways depending on the condition of tester and block correlation.

For nominal condition of independence, the relative variation contributions are defined in terms
of variances:

2 22
Stotal measure = (2 tester + (a 2block)max (11)

Hence, the contribution fraction for nominal tester variation is, a 2teste 2total measure such that
"2tester/ 2total measure + (2block/2 total measure =

For positive correlation of block and tester, the lower bound condition on tester variation, the
relative variation contribution is defined in terms of standard deviations:

ytotal measure = 0 tester + (0block)max (12)

For this case, the contribution fraction for minimum tester variation is, ateste, a/tot measure, such
that,

Ytester atotal measure + ablock/ (total measure =1

Most conventions for gaging relative variation contribution to total measurement error use
fractions of standard deviations [See 10% rules, 2.9.1 and 2.9.2]. Standard deviation fractions are
representative of the condition of negative correlation and minimum tester variation.

The author will remain with convention for purposes of comparison and will reference
contribution fractions of variation in terms of standard deviations (Eqn. 12).
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2.8 Conclusions from variation component modeling and applied results
The components of variances model was successfully applied with help from the NIST
deadweight tester; the results are significant. It is concluded that given the current state of block
variation of the Large grade blocks, the tester variation accounts for the majority of the total
measured variation. In effect, the tester variation masks our ability to measure the variation
attributable to the test block.
It can be concluded that on average the tester variation accounts for 50 to 90 percent of the total
measurement variation for the Large grade block, depending on hardness level and tester
type/technology. Refer to the Steste/smeasurement contribution ratios of Tables 2.1, 2.2 and 2.3.
These conclusions are drawn based on the modeling assumption that the NIST tester variation is
zero, such that it measured block variation directly.

The relative tester contribution to total measurement error may be dependent on the type and
technology of the tester, as the 500 tester seems to demonstrates a larger variation contribution.
The size of the sample data is insufficient to fully yield this inferred conclusion.

The degree of tester contribution to total measurement variation increases with increasing
positive correlation of block and tester. This correlation could not be determined within the scope
of this study.

It should be noted that these conclusions of variation contribution cannot be extended to Regular
grade test blocks. Subsequent data presented in this study (See Table 5.2) shows a clear response
by the 600 tester to what appears to be increased variation of the Regular grade test blocks. In
effect, the improvement of the Large grade test block has run into the next set of technological
control limitations of the measurement system.

2.8.1 Implications of Components of Variation Modeling
An implication of these results is that the future leverage for reducing the measurement variation
of the total system for Rockwell hardness measurement lies in the improvement of the tester
technology for reduction of variability. Tester technology encompasses the measurement
mechanisms, the indenter, as well as the contribution of remaining operator influence (See Figure
2-1).

Moreover it can be concluded that the commercial tester systems pose serious challenges for use
as measurement instruments for the purpose of process control in the manufacture of high
uniformity, Large grade blocks. The SPC control charts are likely not to be able to discern
significant process shifts in the block manufacturing process from the natural or systemic
variation arising from the tester at low measurement sample quantities e.g. n = 5 (Refer to
Chapter 8).

2.9 A common rule-of-thumb for the allowable variation of a measuring device
The variation performance quantified herein for the Instron hardness measurement systems can
be compared to an industry 'rule-of-thumb'. This heuristics reflect common expectations
stemming from the larger set of industrial measurement devices used to control manufacturing
processes.



For purposes of process control of a manufactured product, the tester variation is defined as a
fraction of the total measurement variation in testing the product [18]:

Steste/Stotal measure < 0.10

In other words, the standard deviation of the tester system must account for less than 10% of the
standard deviation for the readings of process samples (product) being measured. This relative
fraction is also applied to GRR studies applied to Rockwell hardness testers [2].

In this case study, our product of interest is the test block developed and manufactured by Instron
for use as a calibration reference standard. Since the variation contributions stester/stota measure
ratios given in Table 2.1 and 2.3 are generally greater than 0.5, this rule-of-thumb would
conclude that the commercial tester system is not suitable for process control of Large grade test
blocks.

In most industrial environments this rule of thumb is a lesser issue for Rockwell testing since the
manufactured parts tend to have a much higher degree of hardness non-uniformity than a
specially-manufactured test block. As a result, the variation contribution of the product
substantially increases the total measurement uncertainty.

The relative assessment of the current state of tester variation by this rule-of-thumb indicates that
more sophisticated tools and means of analysis are required for addressing the influence of
measurement noise in process control of high-quality test blocks. The improved tools may
require added rigor, particularly in the application of statistical methods, to yield improved
utility.



Chapter 3 Modeling the Propagation of Uncertainty in the Reference Standard

This chapter introduces a conceptual framework for the uncertainty of the reference standard, as
it is translated in the test block. This systemic framework models the interactions in the
calibration and customer use of the reference standard. From this framework an improved metric
is introduced in Chapter 5 that relates the customer's calibration needs to the variation seen in
both standardizing block calibration and customer tester validation.

3.1 The standardizing calibration process of the parent system
In the previous chapter a simple model was introduced that aggregated the sources of
measurement variation, as the tester, the indenter, the operator and the test block being measured.
These sources of variation all come to bear when Instron calibrates a test block for use as a
reference standard. The variation can be witnessed by a series of measurements as the

measurement values vary in magnitude. The average of the series, X, typically n = 6
measurements, is recorded on a calibration certificate and engraved on the test block. Refer to
Appendix D for a sample certificate. This value is assigned a specification tolerance, 8x, that

reflects the error in the average X due to the sources of variation. The specification half-
tolerance, 6x, is primarily dictated by ASTM E- 18, although the manufacturer may choose a
lower tolerance [4]. The goal is to bound the net variation from all of the sources in calibration.
A metric for variation, the sample range, is also recorded.

3.2 The tester validation process by the customerluser
In the process of validating their Rockwell tester, the customer measures the same test block as a
reference of the 'true' hardness standard. Again, the same sources of variation this time from a
different system all play a role in the variation of hardness readings. The set of customer
readings, usually of n=5 or smaller, also yields a measurement average, Y. Due to the relative
sources, both in calibration of the reference standard and measurement of the reference standard,
it is unlikely that the two averages X and Y are exactly identical. In the ideal, X = Y for perfect
validation. However, acceptable validation occurs when Y is measured to lie within the
tolerance, 6x, specified on X.

3.3 The Global System Model for the Rockwell Hardness Reference Standard
The sources of variation and their interaction of the standards calibration and referencing process
are depicted in Figure 3-1. The author terms the standardizing system in block calibration as the
parent system. The customer validation system is referred to as the dependent system. Note that
the test block, the reference standard, is common to both parent and dependent systems. Both
parent and dependent systems are linked within a global system in the capability of producing
two measurement averages, X and Y, that are equal.

Note that the hardness measurement response of the dependent system is matched to that of the
parent system, as depicted for the generic calibration process of Figure 1-2. As was demonstrated
earlier, this matching process must be performed for the different hardness levels being
evaluated, since hardness variation changes with nominal hardness level.



The Global System for the Rockwell Hardness Reference Standard

3.4 Application of the components of variance models to the global system
framework

The degree of variation in either the parent system or the dependent system is measured using the
standard deviation, s, (or its square, the variance, s2) of its measurement readings (as opposed to
the range).

When the components of variance model introduced in Chapter 2 is applied to the framework of
Figure 3-1, we can see that the variation attributed to the test block is common to both parent and
dependent systems. Refer to Figure 3-2 below. Note that the conceptual model assumes the
condition of independence of Equation (2), such that all component variances can be added to
yield each respective total measurement variance.

This statistical framework of the sum of variances indicates in general how the ultimate variation
of the standard results from the interaction of parent (X) and dependent (Y) systems. Note
however that the total variation of the reference standard as perceived by the customer is
modeled as the sum of the variances for the averages of a set of measurements,

a STANDARD= 2 +0r (13)

The variance of the average for n independent samples X and Y can be defined by equation (14)
[15]:

2 = 2x x/
nx 14

Figure 3-1:

(14)



The conceptual model for the propagation of uncertainty in the global system as
perceived by the test block customer
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Therefore, the total combined variation of the reference standard can be written as a combination
of the variances of the two measurement averages,

2STANDARD 2x /nX + 2 /ny (15)

In practice, in order to obtain sound estimates of the standard deviations, there exists an
underlying assumption that the number of measurements is significantly large, n>30. In such a
case, the sample standard deviation s can be assumed to equal the true standard deviation, a.

In addition, the sum of variances of equation (15) assumes that the parent and dependent
systems, X and Y, measure independent sets of hardness readings despite sampling from the
same common block. The underlying assumptions to the statistical models will be addressed in
the following Chapter 4.

Figure 3-2:



3.5 Calibration and Validation Objective of the Reference Standard
The calibration and validation objective of the global system depicted in Figures 3-1 and 3-2 is
defined by the following statement:

To reliably determine that the average ( Y ) of any set of measurements performed on
the standard test block by the dependent system (Y) is and will be within the tolerance
band +/- 8x of the average (X) of any set of readings previously measured by the
parent system (X) on the same block.

This objective implies that although two immediate averages of X and Y are measured within the
8x tolerance, this is does not suffice to satisfy the global objective of reliably ensuring that fuiture
measurement averages are also within the tolerance band. In order determine the reliability or
confidence regarding future measurements, the inherent degree of variation in both parent and
dependent systems must be related to the objective of equating X and Y within 8x. A
statistically-based capability metric, called the Calibration Capability index, that applies to the
global system is introduced in Chapter 5 for that purpose.

The objective also assumes that calibration uncertainty (half-) tolerance, 8x , is adequate for the
customer vis a vis the precision and accuracy required for their hardness measurements of
products in their industrial application. In other words, it is assumed that 8x satisfies the
customer's calibration needs since the variation of their measured product samples is
considerably larger than that defined by 8x.

This approach of defining the objective for the hardness reference standard differs from the 10%
rule-of-thumb of Section 2.9.2 in that the customer and manufacturer derive an explicit
agreement on what degree of uncertainty, 8x, is acceptable. This 'agreement' is brokered by the
standardizing organizations, such as ASTM, and documented in the form of a standard
procedure, e.g. E-18 [4].

The first simplifying step of quantifying the interaction between two independent systems of
measurement variation in terms of reliability or confidence is to characterize the nature of the
measurement variation in the form of a known and practical probability distribution, such as the
Gaussian normal.



Chapter 4 Discussion of Assumptions for the Statistical Models

The statistical models introduced thusfar are based on key assumptions that must be validated for
their application to the environment Rockwell hardness measurement.

The fundamental assumptions are:
* Randomness of individual hardness measurements

Independence of individual hardness measurements, X
Independence of hardness measurements from two different systems, X and Y.

The author will draw upon the analogy of a bag of marbles to describe the random and
independent sampling from a population as depicted in Figure 4-1 [1]. Each marble is of a
different and unique color. Thus, each colored marble represents an individual and unique
hardness reading using a tester machine if infinite precision that is randomly sampled from the
bag population, representing the test block.

Figure 4-1: Bag of Marbles Analogy for a Random Sample taken from a Population [1]
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Furthermore, the evaluations of inferential statistics in this study, for example the Calibration
Capability index [See Chapter 5] and control chart limits [See Chapter 8], require a
characterization of the probability distributions for the individual hardness measurement values.
The assumption of a Gaussian normal distribution significantly simplifies the statistical
arithmetic.

Therefore, this chapter investigates if the hardness measurement values can be approximated by
the normal distribution. The nature of the distributions of the measurement constituents of tester
and block are explored for purposes of decomposing the sources of variation using the
components of variances model of equation (3).
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Secondly, the validity of the Central Limit Theorem will be evaluated in characterizing the
distribution of measurement averages as normal for small measurement subgroup sizes e.g. n=5
or 6. Through proper application of the Central Limit Theorem, we can expect the averages of
measurement subgroups to be fairly normally distributed, regardless of the shape of distribution
for individual Rockwell measurements as long as the individual (random, independent)
measurements are identically distributed.

4.1 Randomness of Test Block Hardness Readings
Randomness in test block hardness sampling is supported by:
* Randomization of measurement location by operator influence
* Random orientation and composition of local material microstructure that determines

hardness

4.1.1 Randomization of Measurement Location
ASTM E-18 specifies that indentations are to be 'distributed uniformly' over the surface of the
test block in order to establish a basis for random material sampling.

By conducting the Rockwell measurements, the author learned of the difficulty in truly
randomizing the measurement location, since there exists a tendency to move away from the
point of the prior measurement. However, a well dispersed sequence of indentations is deemed
sufficient to provide for the effect of randomization if there should exist some geometrical
'topography' in actual block hardness as shown in Figure 1-4.

The data for the NIST measurements on Large grade blocks followed a prescribed pattern over
the full surface of the block. Refer to Appendix E, Figure E-1 for the NIST measurement pattern.
This non-random pattern did not significantly influence the superb fit to the normal distribution
of the NIST deadweight measurements. Significant patterns in the NIST measurement data were
not found in order to invalidate the assumption of random behavior.

4.1.2 Randomness in material micro-structure that determines hardness
The randomness in the particle distributions in the material microstructure under the penetration
area of the indenter helps to generate random behavior in hardness measurement. The reader may
get an appreciation for the random nature of grain and carbide dispersion within the test block
material when inspecting a 1250X enlargement (micrograph) of the measurement surface. Refer
to Appendix G for a micrograph that depicts the microstructure of a Large grade, steel test block.
The typical average grain size for the specialty steel accounts for an average diameter of less than
10 jim. For a typical indentation diameter of 2 mm, roughly 200 surface material grains influence
the resistance to indenter penetration and, hence, the hardness reading.



Thelning [20] describes a empirical model that describes how the microstructural composition
determines the (Vickers) hardness of steel based on the relative volume fractions of different
iron-carbon phases present5. The process of steel-making ensures for a random distribution of
individual iron-carbon phases, such as martensite, bainite, retained austenite, that are embodied
in individual grains, randomly dispersed amongst other grains of different phases.

The different tones in the micrograph of Appendix G reflect differences in the iron-carbon phases
present, as well as carbides, nitrides and small impurity elements in the boundary layers between
grains. Note that no two zones appear identical. The distribution of particle sizes and locations of
composition tones appears randomly distributed. Hence, it is hypothesized that the indenter
interacts with a random set of particles, resisting its penetration, regardless of operator influence.
The local hardness response is thus expected to be random.

One way of thinking about the random sampling behavior is using the bag of marbles analogy of
Figure 4-1: Each group of material particles subject to the indenter results in a hardness reading.
Each hardness reading is analogous to an individual, uniquely colored marble; each marble is
randomly sampled from the population of all possible marbles e.g. all groups of particles that
make up the test block.

4.2 Independence of Individual Measurements
The condition of independence between individual hardness measurements means that any given
hardness measurement Xl does not influence the probability of occurrence of any other hardness
measurements/values e.g. X2.

Since the Rockwell test is destructive by nature, every individual hardness measurement samples
a different set of microscopic material particles of independent properties, as introduced in
Section 4.1.2. Assuming a high degree of measurement precision (1/100th of a Rockwell point),
the possible hardness outcomes from a given test block is very large due to the large quantity of
possible grouping combinations of material particles for any given indentation.

Using the bag of marbles analogy of Fig. 4-1, if the number of marbles in the bag were small, the
removal of a marble without replacement would influence the probability of possible outcomes
of the remaining marbles6. However, if the quantity of marbles in the bag were very large, the
removal of any given marble has a negligible effect on the probability of other possible readings.
This latter situation is the case for large quantity of possible hardness outcomes, such that the test

5 Htotal = VmHm + V+f Hp•f + VbHb
where, H = Hardness (Vickers)

V = Volume fraction (wt. %)
m = martensite
b = bainite
p+f = pearlite + ferrite

Note that the basis of resistance to penetration is common to both Vickers and Rockwell hardness testing.

6 For R discrete samples from Q possible outcomes without replacement, the probability of occurrence of any
remaining sample is 1/(Q-R).



block hardness readings can be modeled as a continuous frequency/probability distribution and
the individual measurements may be assumed to be independent.

4.2.1 Effects of Previously Made Indentations
A basic concern is that an interaction between measurements may result due to a local strain-
hardening effect from the plastic material deformation of a prior indentation [3]. To avoid this
possibility of indent interaction, several standards organizations have published guidelines on the
minimum spacing between indentations on the surface of the hardness test block: ASTM E- 18
specifies a minimum distance of two and a half indentation diameters from the edge of a prior
indentation [4]; ISO specifies a slightly greater spacing of four times the mean diameter of the
indentation between the centers of two adjacent indentations [3, SR-1, SR-4].

All test block measurements taken in this study conformed to the ASTM E-18 spacing
requirement. It is assumed that this spacing suffices to avoid the effects of previously made
indentations. Statistical tests for independence (e.g. Chi-Square test [16]) between sample
groups were not applied due to insufficient quantity of sample measurements.

With application of these minimum spacing requirements, block measurements are constrained
by a maximum allowable number of indentations that can be placed on the limited surface area of
the block without theoretical interaction. Indentations into softer material (e.g. HRC 25) will
have larger mean diameters and hence a smaller number of measurements per surface area than
that of a harder material (e.g. HRC 63).

The maximum allowable number of measurements is representative of the upper limit of n that is
used to define the true block average, tx, and its true standard deviation, ax, for the test block. A
maximum measurement quantity of approximately 120 to 150 indentations can comfortably be
placed on a test block of 2.5 in. diameter surface area (4.0 in.2) for hardnesses from HRC 25 to
HRC 63 with conformance to the standards rules for interaction avoidance.

4.2.2 Potential Effects of the Tester
Note that independence also implies that the Rockwell tester machine does not exhibit transient
behavior within the sample series of measurements. For example, if profuse wear of the tester
components was the cause of a time-based drift in hardness readings, the individual
measurements could not be assumed to be independent, since they would be correlated by time or
sequence.

The author was not able to discern such any transient dependence within a given sample set of
measurements, regardless of tester or block type combination.

4.3 Independence of Measurements by Two Systems on the Same Block
The variation of the reference standard of equation (13) is based on the assumption that X and Y
are independent. The reader may ask: How can the measurement data sets X and Y be
independent if they are sampling the same common block ? Dependence between data sets
represents an added complexity for many measurement devices that sample a common feature



(e.g. micrometer measuring a part dimension) or that respond to identical material states (e.g.
ohmmeter measuring electrical resistor) [16].

However, since the Rockwell test is destructive by nature, no two sets of subsequent
measurements can be taken on the same sample of material particles of independent properties as
introduced in Section 4.1.2. Just as individual measurements from the same tester are
independent [See Section 4.2], if follows that individual measurements from two different tester
systems are independent. Because the samples X and Y are taken using two separate tester
systems, there is also no possibility for correlation between tester effects. For the high level of
measurement precision that we are interested in (e.g. within 1/100th of a Rockwell point), the
measurement sets X and Y from two testers are thus assumed independent.

4.4 The Distribution of Combined Measurement Variation
The components of variances model for hardness measurement variation of equation (13)
combines the variation sources of tester and block. The block variance (s2block) results from the
random locational sampling of the actual geometrical distribution of block hardness; s2 block is
thus the measure of block non-uniformity. What is the expected form of the distribution of
sampled block hardness, described by s2block ? How does this distribution form interact with the
distribution of tester variation ?

4.4.1 The Uniform Distribution for Block Hardness
The frequency distribution for hardness can be determined on the basis of geometric
considerations in the probability of hitting a zone K1 of particular hardness X1. Refer to Fig. 4-2
below. Suppose that we have a plane region of area K and a portion of it with area K1,
corresponding to hardness X1. Then the probability of hitting the region of area K1 by a random
sample is equal to K1/K, assuming that the probability of hitting the plane region K is unity [39].
This geometric basis for the probability of a hardness reading can thus be extended to the
hypothetical hardness distribution into numerous hardness zones as depicted in Figure 1-5.

A uniform distribution as depicted in Figure 4-3 is generated if all the possible hardness zones
are very small (e.g. smaller than indenter penetration area) such that they can be assumed to be of
equal area. For zero measurement error and high precision, each indent hardness reading has
approximately equal probability of occurring as any other reading.. The uniform distribution is
assumed to be the case for test block hardness samples if:
* indentations from the same indenter are approximately of equal size
* each indent area is comprised of a unique group of microscopic material particles that define

its hardness [See Section 4.1.2]
* the material particles are randomly distributed

The author distinguishes between the random sampling distribution of the actual block hardness
from the geometrical distribution ofa slice through the test block. There is no reason to expect a
geometric hardness distribution of a through-section slice to be normal or perfectly uniform in
shape.



If the differences in hardness between zones becomes so small that their hardnesses are assumed
equal (e.g. XI=X2=Xn), then the ideal uniform distribution of probability 1 (called impulse
function) is attained by a pseudo-single hardness zone, whereby area K1 equals K. In this
hypothetical case of ideal uniformity, only a single hardness value is measured in any random
sample of the block.

Figure 4-2:

Figure 4-3:

Geometric Probability for Hardness Distribution across a Test Block

Uniform distribution for hardness across the surface of the test block
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The expected distribution of material hardness for any series of random samples over the block
measurement surface is therefore the uniform distribution as depicted in Figure 4-3. It is desired
that the range of possible hardness values (Xa -Xb) is a very narrow band7. The ideal goal of
uniformity is one where Xb is approximately equal to Xa and the frequency of occurrence
approaches 1.

7 For uniform distribution, the variance, a2 = (Xb-Xa)2/12 [39]



4.4.2 Combined Block and Tester Distributions
With the effects of tester variation on hardness measurements, the actual distribution of hardness
by random sampling cannot be directly determined. The best we can currently do is to study the
measurement distribution resulting from the lowest measurement variation of the deadweight
tester.

Measurement noise (tester variation) is often modeled as a normal distribution [1] due to the
large quantity of simultaneous effects. If the block distribution is uniform and of small hardness
range relative to the tester variation, the normal form of the measurement noise will dominate the
resulting combined measurement distribution. Refer to Figure 4-4 below.

Figure 4-4: Normal tester variation dominating a narrow uniform block distribution
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Now hypothetically suppose that the hardness distribution of the test block was largely bimodal
with two distinct and dominant hardness outcomes, Xl and X2 as shown in Figure 4-5. In such a
case, the distribution of hardness would be bimodal in shape. The combined measurement
variation would thus follow some combination of the bimodal and normal distributions.

Figure 4-5 Bimodal Block Hardness Distribution combined with Normal Tester Variation
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Thus, if analysis of the resulting hardness measurements displays a normal distribution, we may
conclude that we are largely witnessing several possible effects:

ar ne'ss,·1



* the normal tester variation is superimposed on a normal block distribution. Combined normal
distributions yield a normal distribution.

* the normal tester variation dominates a narrow block distribution that is approximately
uniform (tester > Cblock).

* there are no gross variations in block uniformity to cause the combined distribution to be
non-normal e.g. the different zones of Fig. 4-2 are small and numerous and the differences in
their hardnesses are small.

4.5 Literature Study on the Random Normality of Test Block Measurements
In a 1984 literature study on hardness test blocks and indenters, the OIML summarized published
results addressing the question of normality for the distribution of individual hardness
measurements [3]. Their synopsis is to some extent repeated here.

Many of the studies explored if there exists a geometrical 'topography' of hardness over the
surface of the test block. The practice of how the individual measurements are randomized by the
operator then becomes a central issue.

4.5.1 The Normality Cons
Yamamoto [3, Y-4] and Cutka [3, C-l] found cases where there exist fields of concentric
contours of common hardness numbers on the test block, in some cases parallel contours. It is
cited that only in rare occasions do the hardness readings not follow a discernible pattern and can
be considered randomly distributed over the surface. This conclusion supports the representation
model of Figure 1-4 for a geometrical hardness dispersion.

Yamamoto [3, Y-4] further concluded that only in rare cases can the distribution of hardness on
the surface of a test block be assumed normal, even when test points are selected at random; thus
the mean of the population cannot be estimated accurately.

Marriner [3, M-4, M-7] shares the opinion that distribution of hardness values over the test block
is not Gaussian. However, 'the sampling variability from the test block contributes largely to the
spread of measure values', as determined for subgroups of n= 10 randomly disposed over the
whole surface. Note that Marriner distinguishes between normal measurement behavior, resulting
from normal measurement noise (tester variation) and actual block hardness sampling
distribution.

4.5.2 The Normality Pros
Cutka [3, C-1] created a histogram that supported the hypothesis of a normal distribution of
values with certain limiting conditions, such as distributing the applied indentations across the
surface of the block.

Petik [3, P-11] performed statistical tests on 212 sets of n=25 measurement values. The
hypothesis of normal distribution of the measurement values over the 212 data sets could not be
rejected at the 5% significance level.



4.5.3 Partial conclusions from the literature
The OIML study [3] concludes on the basis of disagreements in these references regarding
normality that the question of normality for 'hardness values' is still disputed and thus
inconclusive. "Consequently some restrictions are to be employed at applying certain statistical
methods for the evaluation of hardness standardizing measurements"[3]. Clearly, the dispersion
of indentations across the block surface is taken as a necessary requirement for achieving
randomization of measurement values.

In addition, there appears to be a conflict of trying to characterize the expected sampling
behavior due to the block's inherent geometrical hardness distribution versus the response
behavior of the measurement system under the influence of measurement noise (tester variation).
The effect of measurement noise is that it masks the true sampling distribution of block hardness.
Hence, while the measurement variation may behave normal, it does not preclude that the block's
hardness distribution from random sampling is normal.

4.6 Statistical Methods in Literature Reflect Implicit Assumptions of Normality
The statistical methods that other standardizing organizations and industry experts apply on
hardness measurement values also reflect their implicit assumptions of the probability
distributions, even though their assumptions may or may not be explicitly stated.

NAMAS, an independent British accreditation organization, in their document NIS 0406
'Hardness Testing Equipment' [9] define a methodology for the expression of uncertainty for the
measurement average. In addition, a calibration uncertainty between the mean value from the test
block certificate and the sample average is introduced with formulae. The methodology applies
the tabulated t-statistic at a 95% confidence level to define the uncertainty for the measurement
average. Only examples of measurement quantities less than 10 are given. Hence, NAMAS
implicitly assumes that we are sampling from a normal distribution and applying the t-statistic to
correct for small sample quantities.

A 1993 Cornell Master's project with Wilson Instruments Delcourt et al define the components
of variability on the basis of :"the readings in order to label a block are assumed to be from a
normal distribution with mean ýt and variance a 2L" [12].

Finally, the GRR studies applied to Rockwell hardness testing apply conversion factors on the
sample Range to provide estimates of the standard deviation; these factors are implicitly based on
the normal distribution for a defined sample size [2].

4.7 Goodness-of-Fit of the Normal Distribution for Test Block Hardness
Measurements

The author studied the hypothesis of the Gaussian normal distribution for hardness
measurements in sampling a test block of the Rockwell 'C'-scale using several analysis tools:



* Q-Q plots of the individual measurements converted into standard normal variables (Qi) vs.
standard normal variables (Zi) [14]. For normality the plotted points lie on a 45 degree slope
through the origin.

" Measures of Skewness (yi) and Kurtosis (Y2) describe the shape of the underlying distribution.
Bell-shaped frequency distributions will have a coefficient of skewness y' = 0 for symmetry
and a coefficient of kurtosis Y2 = 0 for the relative concentration along the tails or 'degree of
peakedness' [16, 39].8

" Histograms in order to match the shape the bell- curve of a normal distribution. This method
is invoked when the round-off error of the tester read-out inhibits the interpretation of the Q-
Q plot, e.g. measurements by the 500 tester with one significant digit (X.X).

. Comparison of the range to standard deviation (R/s) behavior of the measurement data
against the theoretical behavior for a normal distribution.

Note that the applied tools do not include the chi-squared test for normality using parsed data
sets [14]. In general, the data sets were not sufficiently large (less than 75 points) to draw
statistically significant conclusions.

In evaluating the Q-Q plot, normality is confirmed if the data points lie on a 45 deg. slope
through zero. In addition, the 'S'-shape of the sloping curve gives some indication if the variance
is over- or underestimated [14]. If the data point line deviates from the zero, it is an indication
that the mean is in error. For a normal distribution the points are tight near zero and their spacing
grows the further away from zero.

Devor [14] also cites that the Q-Q plot facilitates relative assessments of goodness-of-fit between
several sets of sample data. Hence, the Q-Q plots can be directly compared. Q-Q plots are
generally more versatile in their application than histograms as they do not require determination
of a rational bin size; both tools, however, require large data samples for significant conclusions.

The hypothesis of the normal probability distribution is not directed at the nature of the test block
per se; instead, the distribution of the individual hardness measurements are treated as a response
from the entire measurement system, consisting of the tester mechanism, the indenter, the
operator influence and the test block. Only the total system response is available to the
investigator. Therefore, the measurement distribution is representative of the particular tester
system.

The author studied several types of tester systems and two block types over 3 to 4 hardness levels
in addressing the normality hypothesis. Three different tester systems were applied to a set of
common Large grade blocks at 30, 40, 50 and 60 HRC. In addition, the method of measurement
may in certain cases have followed prescribed patterns over the surface of the block. Refer to
Figure E-l of Appendix E; in other cases the measurement locations were randomized.

s Coefficients of skewness and kurtosis are defined by nth order moments moments (g). See [16] where,
Yi = (32/ 923)
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The actual measurement data is provided in Appendix C. Refer to Table 4.1 for a summary of
the investigations.

Table 4.2: Summary Table for Normality Goodness-of-Fit Investigations

Nominal Block Block Tester Indent Pattern Skewness Kurtosis Q-Q Histogram
HRC Type Serial System Qty. Y1 Y2 Plot

No. (1) n (Fig.) (Fig.)
30 Large 95130005 NIST DW 68 Fig. E-1 -0.01 -0.34 F-1 --

INSTRON 600S 30 Random 0.44 -0.49 F-2 --
INSTRON 500S 30 Random 0.29 -0.07 F-3 --

40 Large 95140004 NIST DW 76 Fig. E-1 -0.40 -0.03 F-4 --
INSTRON 600S 30 Random -0.31 -0.60 F-5 --
INSTRON 500S 30 Random 0.51 -0.10 F-6 --

50 Large 95150005 NIST DW 75 Fig. E-1 .065 0.30 F-7 --
INSTRON 600S 30 Random -0.48 0.00 F-8 --
INSTRON 500S 30 Random -0.25 0.12 F-9 --

60 Large 95160001 NIST DW 75 Fig. E-1 0.15 0.02 F-10 --
INSTRON 600S 30 Random 0.40 0.57 F-11 --
INSTRON 500S 30 Random 0.63 3.1 F-12 --

25 Large 125016 INSTRON 600R 60 Random 0.17 -0.28 F-13 --
45 Large 145005 INSTRON 600R 60 Random -0.36 0.85 F-14 --
45 Large 145006 INSTRON 600R 60 Random -0.56 -0.15 F-15 --
63 Large 163020 INSTRON 600R 60 Random -0.23 1.96 F-16 --
25 Regular H00128 INSTRON 600S 30 Random -0.16 1.38 F-17 --

INSTRON 500S 30 Random 0.27 -0.21 F-18 F-23
45 Regular G00390 INSTRON 600S 30 Random -1.11 0.17 F-19 --

INSTRON 500S 30 Random -0.53 -0.58 F-20 F-24
63 Regular R02539 INSTRON 600S 30 Random -0.52 1.82 F-21 --

INSTRON 500S 30 Random -0.73 0.98 F-22 F-25

NOTES:
Tester Types:

NIST DW = NIST Deadweight tester
Instron 600R = Research 600 tester (Model 653 C, Ser. No. 97331502); indenter 95621105
Instron 600S = Standards Lab tester (Model A653RMT-4, Ser. No. 97328502); indenter 95621105
Instron 500 = Standards Lab tester (Model B523R, Ser. No. 80195408); indenter 940191



4.7.1 Results on Goodness of Fit to Normal Distribution
The following findings are drawn from the goodness-of-fit results given in Table 4.1:
* The Q-Q plots of the NIST deadweight tester data for Large grade blocks allows the

conclusion that measured NIST deadweight variation is normal for hardnesses HRC 30 to 60
despite the non-random measurement patterns. Due to the low degree of total variation seen
earlier for this data in Chapter 2, this provides the closest indication that the variation of the
block may itself be approximately normal, although not conclusively [Refer to Section 4.4.2].

* The increased measurement quantity (60 to 76 data points vs. 30) appears to result in an
improved fit to the normal distribution. This is evidenced for the Large blocks tested with the
600 unit e.g. serial no. 125016. This improved fit with increased n is expected using the Q-Q
plot methodology. [14,15].

* All of the Q-Q plots demonstrate several outliers at the tails that deviate from the general
normal behavior. Their cause is unknown. These must be accounted for in use of the
measurement data for inferential statistics and in setting up control charts limits.

* The 500 tester results are subject to round-off error in the tester read-out or measurement
algorithm to the nearest tenth e.g. XX.X. As a result, 'lumps' of common hardness
measurements are seen on the Q-Q plots. At low n=30 data points, this round-off is deemed
to significantly impact the quality of the goodness-of-fit tests for the 500 tester. The 500
tester results for the Regular blocks were therefore confirmed with histograms binned at the
round-off accuracy level of XX.X for the read-out. These histograms show a general
tendency toward normality.

* The Q-Q plots for the 600 testers at higher hardnesses of HRC 60 and 63 also show a slight
lumping of 3 to 5 data points. This lumping is also attributed to a rounding or binning in the
tester algorithm/read-out due to the lower degree of variation at the higher hardness.

. One pair of data sets for Regular block of serial no. G00390 at HRC 45 shows particularly
poor fit results for both 600 and 500 tester at n=30. The 600 tester has both mean and
variance errors with poor distribution (skewness). The same poor fit for two different testers
may indicate that gross variations in hardness of the Regular block is influencing the
normality of the total measurement variation.

" There is no detectable pattern in skewness, either positive (shift left) or negative (shift right).
" In general, the skewness measures indicate that the measurement distributions are fairly

symmetrical with the exception of the Regular block, serial no. G00390 measured by the
600S system.

* The goodness-of-fit is not consistent across different testers applied to the same block. There
is insufficient data to suggest that the goodness-of-fit is attributable to the true hardness
distribution of the block vs. the influence of tester variation.

4.8 R/s Behavior for Sets of Individual Measurements
The range-to-standard deviation ratios, R/s, were calculated for 158 different test blocks that
were measured on the common Instron 600R tester set-up. These blocks were of all types, both
Regular and Large grade, and constituted a spectrum of hardnesses from HRC 25 to HRC 63. Up
to 25 measurements were taken per individual block following a prescribed geometrical pattern.
Refer to a Appendix E, Figure E-2.



The R/s measurement results are plotted against the predicted R/s values from a normal
distribution with respect to number of measurement samples, n [16]. Refer to Figure 4-6 below.

The estimates from the normal distribution are based on confidence limits. For instance, the 95%
limit means that 95% of the data points taken from a normal population are expected to lie below
the 95% limit curve. It should be noted that the average 50% curve for a normal population is the
expected R/s value. It also represents the common d2 factor used in calculating the Shewhart
control chart limits for range data on the R-chart [16].

The reader will note that the block measurement values are well distributed above and below the
50% curve and generally remain within the 95% R/s limit and lie above the 25% limit. At
increased n > 20 the R/s spread shifts up slightly, such that at n=25 there are 5 blocks that
exceeded the 95% limit.

Hence, the R/s behavior of measurement subgroups is representative of that for the Gaussian
normal distribution with some indication of non-conforming outliers.

Figure 4-6: R/s behavior of test block measurements vs. the normal distribution

R/s Behavior for Instron 600 Rockwell Measurements
vs. R/s Estimated by Normal Distribution
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4.9 Conclusions on the Probability Distributions of Individual Measurements

The measurement distribution can be assumed approximately normal
The author concludes that the assumption of normality for the random sampling distribution of
individual measurements across the surface of the block is reasonable on average. There exists a
likelihood of extreme non-normal outliers within each measurement data set, as well as isolated
instances of particularly poor goodness-of-fit between measurement trials/data sets.

The block hardness distribution is unknown
A theoretical justification for a uniform distribution for block hardness for random locational
sampling can be made [See Section 4.4.1]. The normality of NIST deadweight measurements for
the Large blocks fit the model of normal and low measurement noise (tester variation)
superimposed on a narrow uniform block hardness distribution. However, their is no empirical
evidence to suggest that the Large block hardness distribution is not normal for random
sampling. Literature references are not conclusive on the issue.

Non-normal outliers in measurement data sets
The outliers that deviate from the normal distribution at the tails must be accounted for when
considering statistical use of test block data of individual measurements, such as the Range
Capability index of Chapter 7.

Hardness non-uniformity of Regular blocks is unknown
The Regular blocks have not been tested by the NIST deadweight tester of low tester variation.
Thus, conclusions on the form of the sampling distribution for actual hardness of the Regular
blocks cannot be made. In general, gross variations in hardness across the block will invalidate
the assumption of normality. The single example of non-conforming behavior of HRC 45 block
G00390 would support the notion of gross hardness non-uniformity.

However, in general the measurement variation for Regular blocks with the influence of
measurement noise from commercial Instron testers behaves approximately normal. Therefore,
measurement data from Regular blocks can be used for statistical methods and SPC control
charting.

Randomization in locational sampling is good practice
In general, the requirement for randomization in measurement location for Large grade blocks is
not deemed significant as demonstrated by the patterned NIST data. The theoretical model for a
random dispersion of microstructural constituents that define local hardness of Section 4.1.2
supports the notion that randomization is predetermined.

However, given the literature findings for zones of common hardness, the current policy of
randomly distributing the measurements across the block surface is concluded to be sound and of
good practice. In addition, since the degree of hardness non-uniformity is not known for Regular
blocks a well-distributed measurement sequence is important.



R/s measurement behavior behaves markedly normal for small n
For small measurement quantities of less than 10, the R/s behavior, as depicted in Figure 4-6,
supports the conclusion that total measurement variation can be practically assumed normal. The
implication of such predictable behavior for individual measurements of small sample groups is
that estimate conversions between Range R and Sample Standard Deviation s can be made.

4.10 Normality of Averages: The Central Limit Theorem

The Central Limit Theorem states that for n independent observations of X with theoretical true
mean and variance of p and ax2, the sum of the averages X will be normally distributed with a
mean of x,, and a variance a X2 = crx2/n, regardless of the distribution of the parent population
[15].

Hence, by taking measurement subgroups from the population of all possible block
measurements, their averages may be assumed to be normally distributed even when their parent
population is not as normal as we would like. Hogg and Ledolter [15] cite that the theorem
requires the sample size to be sufficiently large (n 2 30) to approximate the distribution of the
sample average X as a normal distribution. In a large-sample setting, sample standard deviations
sx and sy can be used as sound estimates of true standard deviations ax and ay. For small
subgroups (e.g. n= 5 or 6), the estimates of ~x and ry by sx and sy may therefore be in error.

Since most hardness measurement subgroups are less than n=1 0, the robustness of the Central
Limit Theorem may be questioned for most practical applications.

However, Hogg and Ledolter demonstrate through simple simulation sets of random samples
from a uniform parent distribution that the C.L.T. results in a distribution of averages that is
closely normal for n=5 subgroup sizes [15].

Duncan applies the normal z-test for samples sizes less than 6. He also states that the assumption
of normality is fairly robust, because even if universes are moderately non-normal, means and
differences of means tend to be normally distributed [16].

The Central Limit Theorem is used for achieving normality of means in Shewhart control
charting methods even when samples are small. A sample size of 5 is typical for Shewhart
control charts. If the parent populations are non-normal, the averages of small sample sub-
groups are assumed normal. As a result, the Gaussian z-statistic is applied for confidence
intervals on these subgroups.

Devor et al cite on the basis of Shewhart control charts that the sample size generally should be 4
or more to ensure good approximation to normality. Note that a small subgroup size is desirable
for control charts to ensure responsiveness to common-cause variation and to be 'economically
appealing' from a collection and measurement standpoint [14].



4.10.1 A Simulation of the Central Limit Theorem on Sample Data
A simple simulation was conducted on the measurement data for the Large block 145005 (See
Appendix C). The data was parsed into 12 subgroups of size n=5. A second Q-Q plot was
constructed for the subgroup averages. The new Q-Q plot for subgroup averages is compared to
the Q-Q plot of individual measurements. The averages Q-Q plot shows a slight improvement in
fit compared to the plot for individual measurements. However, the fit for the conclusion of
normality is not expected to be perfect, partially due to low quantity of data points.
Note that the actual standard deviation of 0.090 for the distribution of averages over-estimates
the theoretical standard deviation of 0.070 of equation (14). Clearly, accurate estimates of the
true standard deviation remains an issue for small subgroups.

4.10.2 Conclusions for Normality of Subgroup Averages
It was demonstrated earlier that individual block measurements tend to behave fairly normal with
instances of non-conformance or inferior fit. Thus, if measurement distributions X and Y are
moderately normal, then the additional influence of the Central Limit Theorem (even for small
samples less than 10) would support the conclusion that subgroup averages, X and Y, and their
differences, X- Y, may be treated as normally distributed.

The simulation example of Figures 4-2 did not provide overriding evidence for the effect of the
Central Limit Theorem in achieving normality of subgroup averages; this is perhaps a sign of
weak independence for this particular data set. Another reason is the limited number of data
points available for the evaluation.

Generally the use of subgroup averages in statistical evaluations allows the assumption of the
normal distribution due to the Central Limit Theorem. Therefore, the questionable normality of
Regular block hardness non-uniformity for low tester variation is not a limiting factor in using
normality-based statistical methods that employ subgroup averages. Thus, the capability indices
Cc, Cpk and CR [See Chapters 5, 6 and 7] and conventional SPC control chart limits [See
Chapter 8] are founded on a reasonable assumption of normality.



Figures 4-2: Normality goodness-of-fit: Individual measurements (Before)
and Subgroup Averages (After)

Q-Q- Plot for Individual Test Block Measurements
HRC 45, Large grade

Serial No. 145005

Q-Q Plot for Measurement Subgroup Averages
Subgroup Size n = 5
HRC 45, Large grade

Serial No. 145005

Qi





Part II Capability Metrics for Product and Process Performance

Chapter 5 Development and Definition of the Calibration Capability

The author developed the Calibration Capability index from statistical foundat-ions of hypothesis
testing, as is the case with the foundations of the more common process capability indices, Cp
and Cpk. This metric gages how well the stated objective of Section 3.5 is fulfilled from the
viewpoint of the customer/user.

A hypothesis test is applied for the difference of two population means i.x and ty. These
populations reflect measurement data from two separate tester systems, the parent system X and
the dependent system Y. Although these populations are derived from measuring the same
common block, each tester system yields indentation measurements stemming from two discrete
sets of material 'grains', randomly distributed over the block's surface.

The hypothesis test depends on a set of underlying assumptions that were successfully validated
in the previous chapter. These assumptions are summarized:
* Independence of the measurement sample populations of the parent and dependent test

systems, X and Y.
* Hardness measurements behave as random variables that tend to the normal distribution with

increasing sample quantity. Averages of measurement subgroups are expected to conform to
the normal distribution due to the Central Limit Theorem.

The following development shows different test and index formulations based on the varying sets
of assumptions regarding the estimates of the standard deviations, a, and ay. The author studies
the effect of these assumptions on the basis of two simulation scenarios. The goal is to formulate
the Calibration Capability index in its simplest, most practical form without significant penalty
for taking liberty in simplifying the assumptions.

5.1 The One-Tailed Hypothesis Test

For condition where tx > p, the null hypothesis to be tested is stated as,
HO: Rx - ty > 8x or ry 5 4x -8x (16)

The alternate hypothesis, representing a favorable validation condition, is therefore,
H1: g - ýy < Sx or ýLy > tx -8x (17)

The critical rejection region for HO is defined by:
T < - t(a;u) (18)

Otherwise, the alternate hypothesis H is accepted.

Note that this test is equivalent to testing if the true average p, lies within a -6x tolerance on the
true average gtx which has a +/- 6x tolerance.



This test represents a one-tailed test using the Student's t-distribution, where the test statistic is
given by:

T = Y where X - Y is positive for X > Y (19)

List of Variables:

x : theoretical true mean of the parent system measurement population, X
.y : theoretical true mean of the dependent system measurement population, Y

t: critical value of the Student's t-distribution
ac: significance level or the probability of Type I error9

o : degrees of freedom of the Student's t-distribution
X : Computed average hardness of nx measurements of the parent system X calibrating

the test block.
Y : Computed average hardness of ny measurements by the dependent system Y of the test

block in validation use.
x : Specification half-tolerance on the block calibration average X of parent tester system X,

as engraved on block by the manufacturer (e.g. X +/- 8x )
sX- : Equivalent standard deviation for the distribution of X - Y

Thus, if
X - Y -6x<- t(a;u) (20)

sx-l

then the null hypothesis HO (the difference between the measurement averages is greater than the
half-tolerance) is rejected AND the alternate hypothesis (the difference is less than the half-
tolerance) is accepted.

The reader will note that the favorable condition of tester Y validation (within the -6x half-
tolerance on X) is represented by the alternate hypothesis H1.

5.1.1 Absolute value on X - Y
Recalling that the half-tolerance is on both sides of X e.g. +/- 8x, the condition is evaluated for

Ly > tx where the +6x half-tolerance is applied to X. In this case, the hypothesis to be tested is
stated as follows:

HO: i - gx, => 6, or ,y => p + Sx (21)

9Note: Type I error exists if HO is rejected when HO is true in the state of nature.
Type II error exists if HO is accepted when H1 is true in the state of nature.



H1: ty - [x < 8x or [ty < tx + 6x (favorable validation condition) (22)

The critical rejection region for HO is similarly defined by,
T 5 - t(a;u) (23)

except that Y and X are reversed in the formulation of T such that,

Y - X - Sx < - t(a;u) (24)
x-y

where Y - X is positive for Y > X.

Note that in this case for gty > g, Y - X replaces X - Y in the otherwise identical formulation

for px > gy. Therefore, the test may be written for both conditions of Y > X and X> Y using
the absolute difference between sample averages, IX- Y .

< - t(a;u) for all X and Y (25)
Sx-y

The above formulation with an absolute value on the difference X - Y for the critical region t-
test has the advantage that it reduces the number of t-statistic checks from two to one.

5.1.2 Statistical Formulations of s._, and t(a;u)
The degrees of freedom of the Student's t-test statistic, u, and the form of the equivalent standard
deviation are subject to the number of individual measurements, n, used in determining X and
Y.

For the assumption that the number of measurements of nx and ny tend to infinity, the Student's t-
distribution is equivalent to the Gaussian normal distribution. This reaching assumption would
allow the use of a simplified normal test statistic, z(ca).

Table 5.1 shows the formulation of sx,_ and t(a;u) for three different sets of underlying
assumptions, termed Method A, B and C, respectively. For all three methods the form of the
equivalent standard deviation is the same:

(26)S _- =



The only remaining difference is the choice of the test statistic (z vs. t) and the degrees of
freedom in its selection.

The appropriate values for t(a;u) and z(a) may be found in common reference tables for the
Students t-distribution and Gaussian normal distribution in texts on basic statistics [15,16]. Note
for the t-statistic that the degrees of freedom may not result in an integer value. Hence, the
computed real value should be rounded up to next integer value found in the reference tables
[17].

Clearly, Table 5.1 demonstrates that the choice of assumptions reflects onto the calculation
complexity of the test statistic of equation (25).

The question toward the end of simplification arises: How much do the test statistic and resulting
test outcome vary when each formulation method of Tabele 5.1 is applied to real data? The
author addresses these questions in the following Section 5.5.

5.1.3 Alternate Interpretations of the Hypothesis Test
The author presented the hypothesis tests to reflect the forms which are common in basic
statistical literature. The hypothesis test may be interpreted in several different fashions:
The difference between the true measurement population averages, g., and p, , which are

estimated by X and Y, is less than the half-tolerance, 8x, to a confidence level of (1-a)100 %, if

X- YI- x
the critical rejection region on HO is confirmed e.g. if < - t(a;u).

5T-Fx-y

The reader may find that an alternate interpretation better suits the sequence of calibration and
validation procedures:
The true measurement average gL, estimated by Y, is within the acceptable tolerance band

defined by gx +/- dx, where L.x is estimated by X, to a confidence level of(1-a) 100 % if the

IX - Y -6x
critical rejection region on HO is confirmed e.g. if - t(a;u).sX-F
A third interpretation of the hypothesis tests for validating the true averages as 'equal' is derived
as follows:
The true averages, estimated by X and Y, are 'equal' within a maximum diference of 8x to a
confidence level of(1-a)100 %, if the critical rejection region on HO is confirmed e.g.

if - t(a;u).sx-F
This third interpretation reflects the objective of the validation process for the dependent system
validation. In the dependent system Y validation, the average of Y is compared to the block



average previously defined by tester system X in the favorable expectation of equating
calibration conditions.

Table 5.1:
Formulation Methods for the Hypothesis Test Statistic of the Calibration Capability Index 10

Calibration METHOD A METHOD B METHOD C
Capability
Formulation Method
Hypothesis Test Smith-Satterthwaite/ Small Sample Normal Z-test
Name Aspin-Welch Test t-Test
Null Hypothesis HO: gx - y 2 8x HO: ix - gy > 8x HO: p, - py > 8x
Alternate Hypothesis H1: x -vy < 8x H1: p, - ýy < 8x H1: tx - gy < 8x
Assumptions * independent X and Y * independent X and Y * independent X and Y

* normal random * normal random * normal random
variables variables variables

Sacx and a, unknown * ax and ca known * ax and cy known
(estimated by sx and sy) (ax = sx and ay = sy) (ax = sx and ay = sy)

* a, and a, not equal * ax and ay not equal * ax and Oy not equal
* small nx and ny, large nx and ny

Test Statistic and Student's t: Student's t: Normal z:
Critical Value t 5 -t(a;u) t 5 -t(a;u) z - -z(a)
Degrees ot Freecom

V

02 2 2Js
sx y

n n
x y

n -1 n -l
x y

* rounded up to integer
value

Equivalent Standard 2
Deviation s s

s-Y-F n n
x y

v=nx +ny-2 v=o

to The common method of pooling variances is not an option for this application, since cx is not likely to equal ry.

Ease of Use Difficult Moderate Easy
(extra calcs. & tables) (tables)

References 16, 17 18 16



5.2 The Development of the Calibration Capability Index, Cc

The Cc index is derived from the formulation of the hypothesis test developed in 5.1:

Eqn. (25): Y - <- - t(a;u)

Multiplying both sides by -1 results in flipping the comparator,

5x -X -Y1
sx-- > t(a;u)

Dividing both sides by t(a;u),

> t(a;u)/t(a;u)

t(a;u)'Sx_

Therefore,

x-Y-Y > (27)
t(a;u)- s _g

Hence, for the favorable validation condition of [X - j y < 8x, the above relationship of

equation (27) must hold true.

The author defines the Calibration Capability Index as the left-side of the equation (27):

Cc = (28)
t(a;u)"s r

Substituting for the common equivalent standard deviation from Table 5.1 yields the expression
and critical value for the Calibration Capability Index,

Cc = 1 2 1 (29)

t(a;u) S2x + SY

From the development of the hypothesis test, the limiting condition of calibration capability thus
occurs when Cc = 1. The capability of the global system of Fig. 3-1 is therefore increasing as Cc
exceeds 1. Increasing capability above 1 improves the confidence for the alternate hypothesis,
H1: ,(x-ýpy < Sx, beyond (1-a)100%.



Note that the equivalent standard deviation in the denominator is equivalent to the component
model for variation of the reference standard of Equation (15) after applying the Central Limit
Theorem.

5.3 Cc measures bias and precision errors
The Cc index includes the difference in X and Y from measurement data taken in a snapshot in
time. The difference between X and Y may be viewed as a snapshot estimate of the bias error,
4tx-Iy, between the two tester systems [1]. It is only an estimate of the bias error since the values
of the p.x and p.y are not actually known.

The denominator in turn is an estimate measure of the potential precision error between the two
systems. Again, the sample standard deviations, s, and sy are only estimates of the true standard
deviations, ax and a,. Therefore, the Cc index is a cumulative, but local measure of both bias and
precision errors in the nominal average hardness between the two reference systems.

Estimates of xx and py, as well as ax and ay, improve with increasing number of measurements.
Their final best-estimate values are determined to the highest degree of confidence when the
tester system has placed its maximum allowable number of measurements on the reference block
with roughly 120 to 150 measurements.

5.4 Development of the Zeroed Calibration Capability, CcO
Because the measurement averages X and Y are estimates of the p, and py, it is possible that
the true block means, pix and py, are not actually within the band of the half-tolerance even
though X and Y are momentarily measured to be identical e.g. the absolute difference X- Y
goes to zero. Although the reader may intuitively perceive such a condition to be odd, the
probability that the two means are not within 8x at (1-a) 100% of the time may result due to the
large variation on both X and Y (e.g. s, and sy large). That is, it was just momentary chance
that X and Y were identical in the snapshot when the measurements were taken.

When px and pLy are not identical, such a bias error may be attributed to human error in
calibrating the dependent tester system to the nominal average hardness of the block. Large
variation in the distributions of X and Y will cause the operators to make a faulty initial
calibrations.

It might also be the case that ,, and py, the centers of their respective block measurement
distributions, are indeed equal. However, the large variation spread in their distributions may
cause future snapshots in time to yield subgroup averages Xi and Yi 's that differ by more than
the half-tolerance band.

It may therefore be of interest to remove the contribution of bias error from the Calibration
Capability index to attain only relative measure of the potential precision error.



The author terms this treatment for X - Y = 0 the Zeroed Calibration Capability, CcO. It is
defined as,

CcO = > 1 (30)

t(a;u) -Sx + sy

The term 'zeroed' reflects the condition of calibration verification where the measurement
average of the dependent system Y is adjusted to be identical to the measurement average of the
parent system X, such that their nominal calibration points are 'zeroed'.

A CcO of 1 reflects the likelihood of approximately a % that the average Y' of the subsequent
sample group will be outside of the allowable half-tolerance band, even though the testers were
calibrated to be identical with equal true averages gx = gy. Note that Y' is from the same
population as Y defined by the block and the dependent system.

The CcO is an improved metric for measuring only the precision error resulting from the
combination of two local tester systems. It is also a measure of the 'best possible' Calibration
Capability achievable assuming no mean offset, e.g. X - Y = 0.

5.5 Referencing Measurement Quantity
The significant influence of measurement quantity on Calibration Capability suggests that for
practical application or comparison between tester systems the Calibration Capability index
should be stated on the basis of the number of measurements. The index includes two subgroups
of nx and ny measurement quantities. The author suggests that these be included in the index
terminology to allow for equivalent comparisons between systems.

The index terminology must account for varying quantities of measurements performed in
calibration of the standardized blocks, as well as to the discretion of the user in validation.

The author proposes the following terminology for the Calibration Capability index to make
specific reference to the measurement quantities:

CC nxny

For example, C65 represents nx= 6 measurements performed in block calibration for the parent
system and ny = 5 by user tester validation of the dependent system.

5.6 Referencing Hardness Level
It was demonstrated in Chapter 2.0 that the measured hardness variance tends to decrease for
increasing hardness using commercial tester technologies over the spectrum of hardnesses levels
from HRC 25 (soft) to HRC 63 (hard). Refer to Figure 2.6. Hence, to draw meaningful
comparisons between global measurement systems only Cc indexes computed at equivalent



nominal hardness levels should be compared. In order to ensure that global systems of different
nominal hardness levels are not falsely or inadvertently compared, the author recommends the
following reference to the nominal hardness level in the index terminology:

Cc(scale/nominal H-value)nxny

For example, Cc(C45)6 5 for the Calibration Capability at HRC 45 nominal hardness. Note that
nominal hardness levels are specified in ASTM E-18 [4].

5.7 Interpretation of Calibration Capability
The Calibration Capability allows for the determination of the following undesirable conditions.
In these conditions the total calibration system consisting of two tester systems and a common
reference block is not 'capable' of satisfying the hardness half-tolerance specification by the
manufacturer. These conditions describe the relationship of the averages of two measurement
subgroups taken on the same test block:

Conditions of Non-Calibration Capability

Condition 1: The two measurement systems are off-center from nominal at a difference greater

than the block half-tolerance e.g. I X- Y > 8x

Condition 2: The local system variation for the measurement averages of system X and system
Y is too large relative to the specified half-tolerance. e.g. s, and/or sy are large or nx and/or ny are
small.

Condition 3: The two local measurement systems X and Y are off-center and have large
variation.

The reader may better understand the respective conditions by studying graphical representations
of each. Note that the bell-shaped curve for the normal distribution of subgroup averages was
previously validated in Chapter 3. By inspection of Figures 5-1, 5-2 and 5-3 the reader will attain
an improved understanding of how the Calibration Capability gages the probability that subgroup
averages X and Y will be equal within the half-tolerance.

The limiting condition 2 of Figure 5-2 shows the condition of Zeroed Calibration Capability.
Although the two test systems are centered at the identical true average, they may demonstrate a
difference in measurement averages that falls outside of the half-tolerance. This condition stems
from excessively large variation in one or both of the test systems (relative to the tolerance). As a
result of Condition 2, a user may be falsely inclined to adjust the mean setting of their tester
since X and Y.



Figure 5-1:
Condition 1: The two measurement systems are off-center at a difference greater than 6x.

A= X-Y---

Figure 5-2:
Condition 2: The local system variation is too large relative to the specified half-tolerance, 6x.

II

Figure 5-3:
Condition 3: The two local
variation.

measurement systems X and Y are off-center and have large

X Y
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The favorable condition of calibration capability for the global system is depicted in Figure 5-4
below. Note that the capability is shown to be marginal as the distribution of Y has a small tail
that extends beyond the half-tolerance, 6x.

Figure 5-4: Condition of (marginal) calibration capability (Cc > 1).

Y L4y F

5.8 Illustration of the Effect of Sampling Error in Quantifying Variation
The reader should note a key assumption underlying the simplified graphical: The inherent
standard deviation of the block, ax, equals the sample standard deviation, sx. Due to the small
number of measurement data points, the sample standard deviation represents an estimate of the
underlying true standard deviation for large n. Therefore, the standard deviation of the subgroup
averages s. through conversion by the Central Limit Theorem of equation (14) also includes
this estimation error. As a result, the 'true' shape and width of the distribution for subgroup
averages may deviate slightly, as depicted in Figure 5-5 below.

Figure 5-5: Estimation of a X by s.

U

S. SX

Distribution of Individual Measurements Distribution of Sample Averages



Not only does the estimate of a , improve with increasing number of subgroup measurements,
but a X also decreases with increasing n by the C.L.T. equation of equation (14). The bell curve
of the subgroup averages therefore becomes narrower with increasing n. Refer to Figure 5-6
below.

Figure 5-6: The reduction of standard deviation for subgroup averages, s, , with increasing
subgroup size.

In more practical terms, the subgroup average is more likely to be closer to the grand average of
the block with increasing number of measurements. In the limit as n goes to its maximum, the
subgroup average equals the grand average. The Calibration Capability reflects this property of
the Central Limit Theorem as increasing number of subgroup measurements improves the
likelihood that the user can validate their tester system within the prescribed tolerance engraved
on the block without (unnecessary) adjustment to their system.

5.9 Interpretation of the Calibration Capability using the Distribution of X - Y
The previous graphical representations are intended to assist the reader who is new to statistical
thinking. A description that better reflects the development of the hypothesis test on Rx-t (on
which the Cc index is based) is one that characterizes the Conditions of Non-Capability in terms
of the distributions of X - Y. It should be noted that on the assumption that X and Y are
normal, then so will their difference (or sum) be normal.

Figure 5-7 depicts Condition 1 in which the distribution of the true mean difference, ýLx-,L is
centered far beyond the half-tolerance band + 6x about 0. As a result, any sample difference of
X -Y is likely to be out of the tolerance specification.

Figure 5-8 represents Condition 2 in which the true mean difference ýx'-• is centered at 0.
However, because of the large variation in X - Y the sample difference X- Y is probable of
falling outside the half-tolerance band. The large variation may be due to a large standard
deviation s, or sy in either the X or Y sample or due to a small number of measurements.



Figure 5-9 shows the combined Condition 3 in which the true mean difference Rx-ýy is offset and
the variation is large. The large area under the distribution curve that is outside the half-tolerance
band represents a high probability that the subsequent sample differences X- Y will fall outside
of the half-tolerance band about 0.

Figure 5-7: Condition 1 where Lx»>> gty

Figure 5-8: Condition 2 where x = jLy, but the variation s_,- is large.

Figure 5-9: Combined Condition 3 where ýx -ý.y is offset and the variation sx,- is large

gLx- y o



5.10 Practical Definitions of Calibration Capability
What does it mean when the global calibration system is capable ? The author presents the
following three viewpoints that support comprehension and applicability of the Calibration
Capability index:

One interpretation is that the half-tolerance is sized large enough in relation to the variation of
the manufacturer's and user's tester systems (including that variation attributed to the block) that
it can be reliably expected that a small difference in measured averages will not exceed the half-
tolerance.

Conversely, the combined variation of the manufacturer and user test systems (including the
block variation) is small enough so that the user can reliably calibrate within the hardness range
specified by the manufacturer (engraved on the block) even though there exists some offset in
true means between the test systems. After all, calibration by sampling a block of variable
hardness in tester production precludes that there will be some offset even without tester usage
drift (wear).

Finally, the author applies the perspective of the Central Limit Theorem: The quantity of
measurements taken on the same block in both the parent and dependent system are large
enough so that the effects of tester variation are reduced. In addition, the resulting improved
estimates of their local grand averages result in a smaller possible difference in subgroup
averages. The differences are thus more likely to lie within the specified half-tolerance.

5.11 A Simulation Study of the Calibration Capability
A simulation was conducted using real measurement data from two tester systems on seven
common blocks of two types, Regular and Large, over a variety of HRC hardness levels and
measurement quantities. The Instron 600S was used to represent the parent system X calibrating
the block; the Instron 500S represented the dependent system Y of the customer environment.

The objectives for the simulation are to:
* evaluate the Calibration Capability indices of the 3 candidate methods (A, B and C) of Table

5.1 for the test statistics t(a;u). This comparison demonstrates the effect of loosening the
underlying assumptions, while assessing the penalties for simplification to the normal Z-test
of Method C.

* study the effects of varying sample sizes/measurement quantities on calibration capability.
* investigate the system effects of combining measurement subgroups of high variation with

low variation, as well as joining high sample sizes with low sample sizes.

The original measurement data sets consisting of 30 measurement per block by each tester
system may be found in Appendix C. The half-tolerances applied in the study are those specified
by ASTM E- 18 as the +/- tolerance for test blocks for the respective hardness level ( +/- 0.5 for
HRC 60 and above, +/- 1.0 for below HRC 60). Refer to Table 1.1 of the Introduction in Chapter
1.



The significance level applied for the test statistics was chosen as a = 0.005, corresponding to an
equivalent confidence of (1-a)100% = 99.5%. Note that the z-statistic for the normal test of
Method C uses a z-value of 3, representing the common 3-sigma level. True conversion of z=3
yields a significance of a=0.0025 or 99.75% confidence level for the one-tail test.

Note that a is used here as a measure of relative risk in having the two tester calibration points
(averages) differ. The effect of relaxation of the underlying assumptions is deemed to outweigh
this nuance in a 0.25 % difference in significance level.

The simulation results are tabulated in Table 5.2.

5.11.1 Results from the Cc Simulation Study
It is apparent that the sample standard deviations from the same local tester system may change
dramatically over the varying measurement quantities. For instance, at n = 6, s,x= 0.343 vs. 0.282
at n = 30. The same HRC25 block with a subsequent subgroup of n = 6 demonstrates a
dramatically lower s, = 0.148. Thus the fact that the sample standard deviations are only
estimates of the true standard deviation (of maximized n) is reflected in the inconsistent nature of
the simulation data. This is also clearly a violation of the assumption of Method C that assumes
that the true population standard deviations are known.

In turn, the differences in measurement averages from a common block are also not consistent.
The notion that both the averages and standard deviations are probabilisticaly distributed and that
their sample values reflect estimates of the distribution grand average at a snapshot in time is
thus supported by the simulation data.

As expected the system sets with nx and ny of 30 data points have the lowest equivalent standard
deviation and hence the highest Cc values..

In comparing the t-test statistics between method A and method B, it is apparent that the degrees
of freedom for the Aspin-Welch test (Method A) are never the highest and are generally lowest
when compared to the other two methods. Method B thus has higher t-values than Method A.

Note that the applied values for the t-statistics resulted as follows for the three methods over all
hardnesses:
Method A: Average t = 3.25 6-5 n-combination t = 3.25 to 4.03
Method B: Average t = 3.01 6-5 n-combination t = 3.25

In general, Method C using the test statistic z=3 yields calibration capabilities that are higher.
The average and maximum differences in Cc between Methods A and C are 11.5% and 25.6%,
respectively.

One may therefore conclude that the use of z-statistic, z=3 in relaxing the underlying
assumptions results in slightly inflated calibration capabilities.
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By inspecting the standard t-values on a table for the Student's t-distribution for the global
system of nx = 6 and ny = 5 (u = 5+6-2 = 9), an a = 0.01 still yields a t(0.01;9) of 2.821.

Therefore, we may conclude that the Method C using a normal test statistic of z = 3 is more than
adequate for use in a relative capability measure for varying sample sizes with converted
confidence levels greater than 98% instead of 99.5%+.

The effects of increasing nx
The simulation of Table 5.2 demonstrates that increasing the parent system's measurement
quantity n, from 6 to 10 does result in the expected increase in Cc. However, the increase in
measurement quantity alone is not a very high leverage for Cc improvement. This is particularly
the case at the higher hardness levels of HRC 50 and above. The main reason for this is that at
the higher hardnesses the dependent system's variance (sy2) is large relative to that of the parent
system, as shown in the table (refer to sources discussion). In general, the parent system is often
at a state of higher technology and is operated and maintained in a more controlled fashion. As a
result, the variance of the dependent system (sy2) dominates the equivalent variance. Therefore,
increasing nx yields improvements with diminishing returns.

The effects of increasing n,
It is also shown by the simulation that increasing the dependent system's measurement quantity
ny to 10 does yield significant improvements in Cc. The Cc index can be used by both users
(dependent systems) and manufacturers (parent systems) to evaluate the benefits against the costs
of increasing the users measurement quantity from 5 to 10.

Examples of Cc less than 1 due to mean offsets
The Cc results for the HRC 60 block simulations demonstrate conditions of non-capability, as Cc
is less than 1. This is attributed to the large average difference (X- Y ) and the large standard
deviation of the dependent system (sy), both working against the tighter half-tolerance (8x = 0.5).
The CcO values greater than 2 allow us to conclude that a reduction in the average difference X -
Y would make the system capable at all measurement quantities.

In such an instance, it may be tempting to achieve calibration capability by a machine offset
adjustment. The other hardness levels show us that a reduced difference X - Y is feasible. The
author cautions about haphazard use of this method. Frequent and unwarranted tester adjustments
in reaction to the natural variation (defined by sy) may result, a behavior Devor et al term 'over-
control' [14].

5.11.2 General Conclusions from the Cc Simulation Study
The simulation study yields the following conclusions:

1. The normal test statistic, z = 3, works for small sample sizes. The Calibration Capability
Method C using the Z-test statistic of z = 3, assuming a Gaussian normal distribution of hardness
measurements is an adequate approximation with respect to the other Methods A and B. Method
C still provides effective confidence levels greater than 95% for Cc = 1. The benefits of



simplification, e.g. ease of calculation without the use of statistical tables, outweigh the cost in
equivalent significance level for use as a relative metric..

The simplified and final form of the Calibration Capability, Cc is therefore:

Cc = 2 P? - >1 (31)

3.[sx Sy
nx  n

and the Zeroed Calibration Capability, CcO is thus:

8x
CcO = 2 1/2 1 (32)

nx ny

2. Perform several permutation trials to calculate Cc. The sample averages and standard
deviations for small subgroups of n less than 10 behave as random estimates of the true block
averages and average standard deviations. The measurement subgroups represent snapshots in
time that were shown to vary significantly. As a result, the estimates of sx and sy will not remain
constant over a series of trials or applications.

For the application of the Cc index it is therefore recommended to calculate an average or
minimum Cc (and CcO's) index over several trials with measurement data of identical sample
sizes. The goal is to achieve an index that is representative of the total variation present. A
practical and effective number of trials is proposed as 3 for a Cc 5.

3. Increase the measurement quantity with the system of highest variance. If the parent's system
has a significantly lower variance s,x2 than the dependent systems sy 2, increasing the parent
measurement quantity nx alone is a low leverage policy for achieving improvements in
calibration capability.

A more effective policy is to increase the measurement quantity on the local system with the
highest variance, which is expected to be the dependent system of the users/customers. The
benefits and costs of this additional burden on the users may be evaluated using the Calibration
Capability with quantifiable trade-offs in confidence by varying the controllable parameters of
nx, ny, Sx.

4. Calibration Capability is feasible with the current state of technology. The Zeroed Calibration
Capabilities (CcO) of the simulation demonstrate that for a representative 600 and 500 global
system, system calibration capability can be achieved with respect to standard half-tolerances in



all cases if the initial mean offset X - Y can be minimized. Refer to Table 5.2 comparing Cc with
the corresponding CcO value. The offset may be controlled by Instron prior to shipment or may
require more frequent monitoring of the customer tester by the customer. However, any change
to either the parent or dependent system, for example the change-out of the indenter, can cause a
mean offset with an adverse effect on marginal capabilities.

5. Use caution in adjusting for mean offsets. The author also cautions about 'over-control' of the
tester systems that may result from relying on machine offsets to improve Cc by reducing the
average difference X - Y. Reaction to the natural variation (defined by sy) of the total system by
frequent and unwarranted tester adjustments makes the it more difficult to maintain control of the
tester's calibration settings. General characterization of the global system using the Calibration
Capability requires the tester systems to be in statistical control.

5.12 Comparison to Another Statistical Methodology
NAMAS, the European standardizing body, employs similar statistical techniques in their
expression for uncertainty in hardness measurements in specification NIS 0406 [9].
For example, the random uncertainty on the measurement average is determined by multiplying a
mean deviation, s/n 1/2, by the tabulated t-statistic for small measurement subgroups (less than
10).

NAMAS uses a uncertainty (U) value for the inter-comparison of the measurement average to the
calibration certificate value [9]. The uncertainty value is a calculation of the mean difference
plus/minus an equivalent 95% confidence interval.

This method differs from this author's approach of the Calibration Capability in that:
* it treats the average uncertainty, stated as the 95% C.I. tolerance on the certificate, as known

and constant based on a single measurement trial
* it does not provide an acceptance criteria e.g. is a uncertainty value for X - Y of 0.83 to -0.37

good or bad ?

5.13 Assessing the Returns from Variation Reduction using the CcO Index
The (zeroed) calibration capability index is a useful tool to answer to the question: How much of
an improvement in total measurement variation is detectable by the user ? What is important to
the user is not the amount of variation per se, but rather the ability of his tester to precisely
measure the average hardness recorded on the calibration certificate within the allowable
tolerance.

The previous 600/500 system simulation of Table 5.2 demonstrated that the use of Large grade
blocks results in Cc 065values greater than 2 at the C60 level and greater than 3 at the lower
hardness levels. The components of variance framework of Chapter 2 showed that a reduction in
block variance affects both the variation seen in the parent and dependent systems, s"2 and sy2.
Hence, the denominator of the Cc index is reduced.



C>1

where sx2 = S tester2 + Sblock and Sy2 = Sy tester2 + Sblock2

For the example, for the HRC 30 block, 95130005 (Refer to Table 5.2):

(S block)max = S2DWmeasure = .0672 = 0.00449

S 2 2= S2block + Stest r
.1612 .067 + .146

Similarly,
2 2 2Sy = S bloc + S teser

.1702 = .067 + .156

Note that the measurement variance terms are dominated by the tester variation.

For nx = 6 and ny,= 5 and 8x= 1.0, the CcO index is,

1.0
CcO = 3.3

.161 2 .1702 13. -+-
6 5

Now let's presume that another 30% improvement is achieved in block variation,

In this case, S2block = 0.7 * .0672 = .0562

The measurement variation components are thus computed:
2 2 +2

Sx 2  = Sbloc + S tester
.1562 =.056 + .146

and
2 2 2

SY 2 =S bloc +S tes r
.1662 .056 + .156

The resulting CcO index is therefore,

1.0
CcO = = 3.4

= [.156 2 .1662]
3. -+6

Cc =



For the 30% improvement in block variation, only a 3% improvement in CcO was achieved.
Thus it is shown that due to the larger contribution of tester variation over block variation,
further focus on improving the block (beyond the current Large grade) will yield only marginal
returns in calibration capability.

5.14 Simulation of improvements in tester technology
In the previous section it was demonstrated that future improvements in calibration capability are
to be attained by improving the variation attributed to the tester. As a reminder, 'tester'
represents the combined sources of the machine, the indenter and the operator influence.

A good model of technology enhancement for reduction in machine variation is the deadweight
tester operated by NIST. The measurement data for the Large blocks at HRC 30, 40, 50 and 60
can linked to the dependent systems of the 500 and 600 tester for measurements taken on the
same blocks.

The simulation using the NIST deadweight tester data to represent the parent system is presented
in Table 5.3 in combination with the 600 and 500 dependent systems. The target Cc is
established for this simulation as 1.5 in order to compensate for the outliers in hardness
measurement and the inferior estimates of the standard deviation at low sample sizes.

Note that the large improvement in tester variation of the parent system for the deadweight tester
compared to Table 5.2. The DW/600 and the DW/500 global systems also show a dramatic
improvement in CcO. Note that at the HRC 60 level the Cc index is less than zero because the
mean offset, X - Y, is larger than the allowable tolerance.

Both the NIST Deadweight and 600 systems display such low total measurement variances at
HRC 60 that they have a significantly higher CcO than the DW/500 system at the same hardness
level. The CcO is almost sufficient enough to compensate for the large mean offsets, 0.325 to
0.377 relative to a 0.5 allowable half-tolerance.

The CcO improvement for the DW/500 system at the highest HRC 60 hardness is negligible in
comparison to Table 5.2. This is because the 600 tester previously demonstrated very low
measurement variation relative the 500 tester system.

5.15 Improving the mean offset vs. reducing variation
The previous simulation demonstrated the trade-off embodied by the calibration capability
between reduction in measurement variation and reduction in the mean offset X -Y. The
calibration capability allows for the assessment in performance improvement relative to the costs
associated with either reduction in mean offset or reduction in global variation. Note that the
Calibration Capability is measured between the parent system of the Standards Testers and
dependent system of testers supplied to customers.
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Determining the right strategy for improving Cc depends on which factor provides the greatest
leverage. The following summary Tables 5.4 and 5.5 identify candidate causes of non-capability
and their proposed candidate solutions. The causes are divided between mean offset causes and
variation causes. These causes are not rank ordered based on leverage, but rather provide
suggestion of focus areas for directing improvement attention.

Table 5.4: Non-Calibration Capability due to Mean Offset (Condition 1)

Cause for Mean Offset Proposed Solution

Excessive block variation Use blocks of higher block uniformity
(Large grade blocks)

Standard drifting over time * Increasing nx used to calibrate internal blocks
used for initial calibration of production
testers prior to shipment

* Cross-reference standards testers with more
stable, lower variation deadweight tester

Sampling error in initial tester Increasing ny of the production testers for initial
calibration calibration to the reference standard
Adjustment error Increase number of measurements by service men

when adjusting the calibration settings on
customer units in the field

* Non-controlled state of Use statistical control chart methods for tester to
tester detect mean shifts with appropriate cause

* Mechanical wear over time correction
Measurement Round-Off error Increase the significant digits of the read-out

display in parent and dependent system
True Mean Offset Dependent system mean adjustment by 'dipping'

with caution of over-control

Table 5.5: Non-Calibration Capability due to Variation (Condition 2)
Cause for Variation Proposed Solution

Excessive block variation Use higher uniformity blocks (Large grade)
Low number of subgroup Increase n for system with largest variance
measurements
* Non-controlled state of Use statistical control chart methods for tester to

tester detect patterns in s or R with appropriate cause
* Mechanical wear over time correction
Mechanism Error * SPC during tester production

* Enhanced tester technology





Chapter 6 Metrics for Process Capability

A capability assessment of a process, such as the one for manufacturing hardness test blocks,
aims to determine if the random variability in the process is sufficiently small such that the
product can be consistently manufactured to meet customer needs. The customer needs are
'translated' by the manufacturer in the form of product specifications, for example maximum and
minimum hardness values or allowable hardness range (Refer to Table 1.1).

Two capability metrics are proposed for the manufacture of hardness test blocks:
* the process capability, Cpk
* the range capability, CR

The Cpk Will seem familiar to the student of statistical process control methods. The Cpk is
discussed with regard to its application to Instron's block manufacturing process. The range
capability, CR is derived by the author to satisfy the context by which the customer is currently
accustomed to assessing hardness measurement variation: the allowable range per block [4].

6.1 The Process Capability Index, Cpk
The Cpk index measures if the average block hardness is within the acceptable hardness
specification limits desired for that process. In addition, the index detects if the average block
hardness for the process are centered (or otherwise shifted off-center) between the upper and
lower hardness specification limits (USL and LSL). The Cpk index thus detects mean shifts in
the process.

The Cpk is given as [14]:

Cpk = (33)

The reader will note that a normal probability distribution for the block average is assumed based
on the application of the Central Limit Theorem. Refer to Chapter 3.0. Hence, a z-statistic of 3 is
used as the critical value of the normal test statistic, representing 99.7% confidence with perfect
estimates of s and X.

Current benchmarks for an acceptable Cpk are 1.33 [18]. Rockwell International boasts a plant
with a minimum Cpk of 4.09 [28]. In order to account for sampling variation in Cpk, critical
values greater than 1 are desired.

While the goal of the metric is to measure the process performance on achieving the target
hardness of the block, the variation of the tester used for the hardness measurement plays a
significant role in the Cpk value. It was demonstrated in Chapter 2 that for Large blocks the

1)



tester accounted for the major portion of the measurement standard deviation, s. Hence, the
metric emphasizes the importance of tester control used for process measurements.

6.2 Cpk achieved through Feedback Control in Heat Treating
From discussions with Instron management, the ability to achieve an acceptable average
hardness is not deemed a significant challenge since the specification limits are quite large. In
general the specification limits to the customer are 2 Rockwell points on either side of the
nominal hardness. The reason why this is not held as very critical is that if a process batch of
blocks falls outside the specification limit, it can be substituted into another nominal hardness
level or part number. However, this salvage policy does not account for the considerable costs
brought about by increased inventory levels and expediting measures in order to satisfy customer
demand.

The ultimate tactical burden for achieving Cpk lies with the heat treater. Fig. 6-1 shows the
feedback control representation of the tempering process used for achieving target hardness in
heat treating. The hardening and tempering of blocks is a batch process of 25 to 100 blocks per
batch depending on block type. When the blocks are initially placed in the tempering furnace
they are at their maximum hardness, resulting from austenizing and quenching. The hardness of
the blocks is lowered during tempering. The process batch is then tempered for a fixed time
interval of 2 hours at a specific temperature. This temperature parameter is determined from the
heat treaters experience or is estimated from a time-temperature curve to yield a specific
hardness.

For the general classification of tool steels, of which the specialty steels of hardness blocks are a
subset, hardness during tempering is a function of both time and temperature [20] " . Time only
becomes a significant parameter for hardness levels greater than HRC 45 with tempering
temperatures greater than 450 C. Refer to Appendix H, Figure H-l, for a typical tempering curve,
that relates hardness to both time and temperature parameters; the upper temperature curve is
deemed sufficient as a practical heat treating reference.

After the two hour interval, the heat treater removes a sample from the batch which is air-cooled
and prepared for hardness tests on the surface. If these in-process sample measurements indicate
that the batch is within the target hardness range (Xmin< X 1 < Xmax) , the batch is removed from
the furnace and rapidly cooled. A final post-process hardness measurement ( X 2) is conducted
by the heat treater on a different batch sample prior to shipment to Instron.

A final acceptance sample measurement is conducted by Instron upon receipt of the batch (X 3).
The ultimate determination of block hardness occurs after the blocks have been finished and are
calibrated in the Instron Standards Laboratory ( X 4).

" Thelning [20] introduces empirical equations of the form:
H = T (k + log t)

where, T = Temperature in Kelvin; t = Time in hours; k = constant
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The heat treater selects the initial temperature parameter for the tempering process target based
on the upper end of the allowable hardness specification, as a safety margin rule. On average,
two to four 2-hour intervals of adjusted (decreasing) temperature parameters are required in order
to achieve the target sample hardness [interviews]. The heat treater tries to aim for the mid-point
of the hardness spec range [interviews].

As of December 1995, the heat treater was given the same allowable hardness range for the
nominal target hardness for the tempering process as was used in the Instron Standards
laboratory for calibration sorting.

6.2.1 Challenges to Achieving Cpk
Several factors make achieving the Cpk more complex despite the large specification range:
* Block hardness measurements for batch qualification are conducted by three sets of different

testers: the heat treaters testers (TI), the Instron sample inspection (T2) and the block
calibration (T3). In order to avoid measurement discrepancies, all testers must be calibrated
with respect to the final Standards tester (X4). Calibration errors are natural, given the
variation demonstrated earlier.

* Surface condition of the measured samples is not the same for each measurement sampling at
each inspection stage. The heat treatment scale must be removed by the heat treater.
Differences in flatness and parallelism also account for measurement noise.

* If the heat treater is under time pressure, the tendency by the safety margin rule is to err on
the high side of the specification tolerance. The remedy for non-conformance is further
tempering, as opposed to the potential penalty of batch rejection.

* Heat treater decisions are governed by comparing individual measurements of n=5 to the
specification limits, instead of the sample average. Individual measurements are expected to
have large variation due to poor surface condition of the tempering samples.

* For HRC 50 and above: The process batch continues to soften in the furnace while the in-
process sample is being measured. The time delay associated with cooling and preparing the
block sample for measurement can reach 30 minutes. During this time the batch is still in the
tempering furnace. The tempering curve of Appendix H shows that this time delay is not
insignificant at high temperatures. A 0.5 Rockwell point discrepancy can be expected for
tempering temperatures greter than 1000 F. Refer to Figure H-1. The heat treater must
therefore account for the difference in hardness between the lot sample (coupon) and the
batch.

6.2.2 Proposed Cpk Enablers
Several modifications to the existing methods are proposed in order to improve Cpk:
* Develop tempering curves from historical data points for the particular material employed for

test blocks. This will allow the reduction of required tempering intervals, as the initial
estimate of the output hardness will be improved.

* Ensure that the heat treater and in-process testers are of adequate state of technology and are
well maintained so as to minimize the variation attributed to the tester. As a result, the
reduction in measurement variation (denominator) will serve to enhance capability.



* All in-process testers should be frequently monitored in accordance with the standardizing
testers used for block calibration. This aim is to avoid drifting of the relative calibration
settings. This cross-referencing can be achieved with sets of master reference blocks
calibrated and dispatched by the Instron Standards lab.

* Develop consistent methods for surface preparation both at the heat treater and Instron
sample inspection. The consistency in surface condition, albeit poor, allows for the
determination (over time) if the surface condition accounts for mean shifts or added
variability.

* Increase the number of measurements at all stages from n=5 to n=10. This strategy can be
used to compensate for the enhanced variation due to poor surface quality of in-process
samples and tester variation in order to improve the estimates of the block average.

* Use averages not individual measurements for assessing the target hardness. The heat treater
and the production associate performing the in-house sample inspections must be cautious in
reacting to outliers in a set of 5 measurements. The outliers are natural given the poor surface
quality or otherwise. The average allows extremes to cancel each other out. All decisions
with respect to the acceptable hardness specification should be based on the sample average.

* MEASURE, record and track the measurement averages X and standard deviations, s, at
each measurement station for each batch over time. A simple run chart is a great process
control tool for relating different sets of testers. If the heat treater finds consistent
discrepancies between X 1 and X 2, investigation into the root causes must be aimed at both
disturbances acting on the tempering process, as well as noise disturbances acting on the
tester.

* Use offsetting spec ranges to compensate for in-process measurement error. In effect, the heat
treater would be given tighter specifications than those of the Standards laboratory which
reflect the customer requirements. This tighter working hardness range may increase the
number of tempering intervals due to caution and subsequently cost. However, the improved
control measures proposed thusfar are expected to reduce the number of required tempering
intervals.

It is shown in this example, that both the production systems, e.g. the tempering process, and
measurement systems must be closely linked in order to achieve a satisfactory Cpk.

6.3 A simple Cpk simulation from actual data
A simulation was conducted using available data which we assume to represent 'typical' values
of combined tester and block variation. Cpk values are calculated at different measurement
quantities, n = 5 and n = 10.

In addition, using the criteria of an allowable Cpk = 1.5, the minimum allowable difference
between a specification limit and average reading, SL- X, is determined at n = 5 and n = 10.
Refer to Table 6.1.

The simulation shows that on occasion the standard deviation at n = 10 is larger than at n = 5.
The reader should not be tempted to pursue whatever sample size gives a smaller standard



deviation and hence higher capability. Rather, an increased number of measurements gives an
improved estimate of the actual block standard deviation.

The simple simulation shows that most Cpk values are considerably larger than 1, except for one
instance of HRC 25 block measurements.

In general, the standard deviations for the samples show that to achieve a reliable Cpk of 1.5, the
minimum allowable difference USL- X or X -LSL may not be less than 0.5 for any hardness
level. This is concluded on average based on the assumption that the simulation values are
'typical' of the process.

6.4 Using Calibration Capability to achieve Process Capability
From the above simulation we may be tempted to conclude that as long as the heat treater does
not produce a block within 0.5 of either upper or lower customer specification limit, the customer
spec limits should not be violated in the vast majority of time. Let us take the case when
customer spec limits are +/- 2.0 points above and below the nominal hardness value e.g .HRC 47
to 43 for a nominal HRC 45. If the heat treater supplies a specification range of 46.5 to 43.5, the
process capability with respect to the customer requirements is guaranteed. Right ? Well, not
exactly. If there exists a calibration offset between the Standards testers and the heat treater
tester, there is still a potential for a violation of the customer specification limits. Therefore, the
policies and cross-referencing methods for aligning the mean hardness levels of the Standards
and heat treater testers are critical.

On the basis that a system is implemented by which these testers are well maintained and cross-
referenced, we may be able to bound the likely mean difference ( X 4- X 1) between testers using
the calibration capability. This will require monitoring and recording the cross-referenced X
and s behavior of both Standards and heat treater testers over time. Refer to Figure 6-2.

Calibration Capability between the Standards tester and heat treater tester may be successfully
determined to be greater than 1 using a high-quality grade test block. Clearly, the mean offset
X 4- X 1 may not be as large as the allowable standard half-tolerances given on the reference
calibration blocks e.g 8x = 1.0 at HRC 45. However, a Cc of 1 means that the mean difference
(X 4- X 1) is consistently less than 8x = 1.0 [See Equation (31)]. For such a half-tolerance, 1.5
points of the customer specification limit would be absorbed leaving an unacceptable window of
+/- 0.50 HRC for the heat treater to aim for in tempering.

However, suppose that the Cc was determined to be consistently greater than 2.0 for 3 separate
trials of Cc at n=10 measurements, as we have seen in several simulations ? In this case, we
could bound the maximum level of the mean offset X 4- X 1 as 0.5 Rockwell points, assuming
good estimates of the standard deviations and averages. In this case, the heat treater could be
given specification limits that lie within 0.5 + 0.5 = 1 Rockwell points inside the customer
specification limits. As a result, the heat treater would target HRC 46 to 44 leaving a 2.0 point
window for tempering to hardness.
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A 2.0 point window is within the limits of feasibility for the heat treater. The heat treater's
incentive for working with a tighter specification window is the assurance that batch rejection is
extremely unlikely, assuming that everyone in the process chain ensures that their testers are in
control.

This hardness control scenario demonstrated how the process capability and calibration
capability measures can be used to make policy decisions in order to enhance the working
reliability of the process and in turn the quality of the reference standard supplied to the
customer.

Figure 6-2: Relationship of Tempering Target Window to Customer Specification Limits
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Chapter 7 The Range Capability Index, CR

Manufacturers and customers of test blocks alike currently evaluate the measurement variation of
the block on the basis of the allowable measurement ranges defined by the applicable standard
specification e.g. ASTM E-18 per Table 1.1 [4] is thus appropriate to evaluate the performance
of the block manufacturing process with regard to this quality characteristic.

The Range Capability Index, CR, is proposed as the appropriate metric with regard to standard
range specifications:

CR spec 1 (34)

The author developed this metric on the basis of the classic process capability index, Cp which is
written [14] as,

USL - LSL
Cp = Ž_ 1 (35)60

The reader will note that in equation (35) the difference between upper specification limit and
lower specification limit USL-LSL is equivalent to a specification on Range. Both CR and Cp
metrics work on the basis that the subject measurement distribution is centered between the
specification limits. The generally false centering assumption represents a serious deficiency of
the Cp index, prompting the more informative Cpk index. However, in the CR assessment if the
total measurement variation fits inside the specification range (the difference between upper and
lower specification limits), the centering deficiency is not of consequence.

The CR index determines if the majority of the normal distribution that describes the individual
and potential hardness measurements fits inside the range window. Refer to Fig. 7-1 below.
Normality of individual measurements was confirmed to be a reasonable approximation in
Chapter 3.

CR is calculated on the basis of 95.5 % probability (4-sigma, two-tail) vs. 99.73% (6-sigma, two-
tail) for Cp that at all the measurements on a block will fall inside of the specification range. The
95% level is common for reporting methods of uncertainty in measuring equipment [1,9].

For a CR= 1, there exists a 95% probability that the hardness measurements will lie inside the
range specification, assuming that:
* the sample standard deviation detected for the process, s, is a good estimate for the true block

standard deviation, a.
* the sample standard deviation is 'typical' or 'average' for the process.
* the measurement variation is normally distributed. Refer to Chapter 3.



For small sample sizes less than 30, there exists larger sampling error. The first two assumptions
can be achieved if the s-values are taken as the average standard deviation 3 taken from the
appropriate control chart for standard deviation s. The average std. deviation I of numerous
(N>30) blocks of small measurement subgroups of n = 5 or 6 is a strong estimate of the true
process a. [Refer to Chapter 8].

Figure 7-1: Range Capability for 4-sigma fit inside the Range Specification

. Range Specification

LSL USL

If it is known that the a-estimates and thus CR are to sampling error due to small sample sizes, it
is typical to increase the critical CR value, for example CR > 1.33 [18].

It should be noted that the standard deviation, s, in practicality represents the total measurement
variation of a local measurement system. The block variation is masked by measurement noise.
Thus, for different measurement variation of the parent and dependent tester systems
respectively, it is possible that the customer will measure a different (larger) CR for an identical
block previously characterized by the manufacturer (Instron), even though it was derived from
the same process lot.

7.1 A CR simulation from actual data

A simulation for CR is shown in Table 6.1 on the assumption that the sample blocks
measurements yield standard deviations that are "typical" and good estimates of a.

The simulation demonstrates that the base criteria for CR= 1 may be not be currently fulfilled with
state of total measurement variation using a 500 tester and Regular blocks at HRC 25, 45 and 63.
There is an indication that the Large blocks have considerably improved the Range capability,
despite some potential difficulty at HRC60.

In general, the purpose of the Range Capability, like the other capabiltiy indices, is to be used as
a tool for measuring and driving improvement rather than confirming compliance. For the 4-



sigma range coverage (CR= 1), there still exists a 5% probability that a measurement set can fall
outside of the range specification.

7.2 An Exercise for the Critical CR Value

The understanding of the CR index is supported by the following exercise based on empirical
data.

From the measured R/s behavior of a 600 tester as depicted in Fig. 4-6, it can be concluded that
for small measurement sample sizes of 5 or 6, that the maximum theoretical (95%) R/s ratio is 4.

Hence it follows:

Since, R/s < 4 for n < 6 (See Fig. 4-6)

Therefore, s < R/4 or smx = Rmax/4

Substituting into the CR expression (34),

CR = RSPEC /( 4 * max) > 1

CR = RSPEC /( 4 * (Rmx/4 ) > 1

CR = RSPEC / Rmax > 1

Therefore, a CR Of 1 means that the range specification just equals the maximum sample range.





Part III Statistical Methods for Process Control

Chapter 8 Statistical Process Control for Manufacture of Hardness Test Blocks

Thusfar, we have focused on measures of calibration capability and process capability. Process
capability is defined, in short, as the ability of the process to reliably produce parts that conform
to engineering specifications. The assumption is made that these specifications properly reflect
customer needs.

Determination of capability requires assurance that the process is in a state of control: '... it is
both inappropriate and statistically invalid to assess process capability with respect to
conformance to specifications without being reasonably assured of having good statistical
control. Although control certainly does not imply conformance (to specifications), it is a
necessary prerequisite to the proper assessment of conformance" [14]. The requirement of
statistical control before capability, while strongly advocated by this author, is still subject to
debate in the SPC community [30].

The capability metrics contain representative quantification of the system's output performance
taken at an instant of time: the measurements averages, X, and the sample standard deviations, s.
The capability metrics are only useful if they represent reliable predictions of future
performance. Unless the X and s statistics are 'typical' of the system under study and the system
is not known to vary or drift significantly over time, the capability metrics may be misleading
about the state of the process variation.

In this chapter the feasibility and utility of statistical methods for process control (termed SPC)
for the manufacture of hardness test blocks are investigated. These statistical process control
methods are tools for determining if the process is operating in a state of statistical control and to
gage the improvement of the process over time.

Four main challenges are addressed in controlling block hardness characteristics:
* Measurement noise from the hardness testers in detecting out-of-control conditions of block

process
* Small batch sizes for each part number/hardness level (short runs)
* Minimizing required control chart quantity and charting effort, as a result of the variation

behavior particular to hardness level/part number (Refer to Chapter 2)
* Distinguishing systemic, special causes for variation of the block process from those of the

measurement testers

An SPC strategy that addresses these constraints is proposed.



8.1 Control of Measurement Testers for Statistical Control of Block Process
The author extends the requirement of statistical control to the measurement systems used to test
the blocks in production, the Rockwell testers of the Standards Laboratory. "The measuring
system may also include poorly controlled processes that lead to (random) variations in the
system output"[1].

Figure 8-1 depicts a process control perspective of the Instron test block manufacturing and
calibration process [19]. The standards testers are an integral part of the producing the final
customer product: a reference material + reference information (X, s, R). In addition, it was
determined in Chapter 2 that the tester system is a major source of measurement variation in the
Rockwell measurement of test blocks. Because they are an integral part of the total process and
they account for a large portion of the measurement variation, the testers must also be ascertained
to be in statistical control. "Understanding and quantifying this measurement error is an
important aspect that is often overlooked when one is charting the performance of a process"
[18].

The testers in the Instron Standards laboratory currently play two important roles. First they
calibrate the test blocks for the customer providing hardness reference information. Secondly,
they serve as a diagnostic instrument for the manufacturing process to determine that the process
satisfies customer-based specifications. It will be explored if they can perform a third role: to
serve as a diagnostic instrument in order to achieve statistical process control of the total block
manufacturing process.

8.2 Definitions of Statistical Control: Random and Systemic Variation
Variation of a manufacturing process can be divided into two types: random and systemic.
Systemic variation is also referred to as special-cause variation (Deming), or disturbances,
meaning that its sources can be traced to known causes that disturb the natural random behavior
of the system. The random variation, also called common-cause or natural variation,
distinguishes the variation that can be expected for the system and behaves in a random fashion
between bounded limits. The variation attributed to the tester system used to measure the test
blocks is commonly referred to as measurement noise. Measurement noise also consists of
random and systemic variation.

A process or measurement system is in statistical control when non-random systemic
disturbances are not present.

The control chart, the diagnostic tool of SPC, has the basic purpose "to provide evidence of
whether a process has been operating in a state of statistical control and to signal the presence of
special causes of variation so that corrective action can be taken" [18].

Random variation may be modeled by probability distributions of random variables, such as the
Gaussian normal, by which the block measurement variation is characterized [See Chapter 4].
Special-cause variation does not behave like a random variable. It is this non-random
characteristic that allow control charts, to detect that systemic, special-cause variation is present.



8.3 Feedback control system view of SPC applied to the test block process
The purpose of control charts is to examine the output data for the process, and to detect if
disturbances are present. It is further implied that the special cause for any detected disturbance
should be diagnosed and eliminated. This detection and corrective action process for achieving
statistical control is depicted as a SPC feedback loop containing five steps: Observation,
Evaluation, Diagnosis, Decision, Implementation [14]. Refer to Figure 8-1. Table 8.1
summarizes the definition and tools for each step. The data collection (observation) is conducted
using the testers in the Instron Standards laboratory.

Evaluation of the feasibility of SPC for the Instron block manufacturing process must therefore
extend beyond the enablers and barriers of control charting. The organizational capabilities,
infrastructure and skills required for all of thefive steps ofSPCfeedback leading to corrective
action for the removal of process disturbances must be addressed. "The importance of
cooperation between the manufacturer and the calibrating laboratory cannot sufficiently be
underlined" [3].

Table 8.1: Five Steps of SPC Feedback [14, 24]
Feedback Step Definition Available Tools

Observation Data collection Segmentation
Data Acquisition Systems

Evaluation Data analysis Control Charts
Histograms
Scatter Diagrams
Pareto Diagrams

Diagnosis Fault discovery Cause-and-Effect (Ishikawa)
Diagrams
Traceability Records

Decision Formulate action Action Planning

Implementation Take action Confirmation Experiments
Procedures
Specifications

8.4 Selection of Summary Statistics for Control Charting
The next question to be addressed: 'Which characteristic statistics should be charted ?"

The author maintains the following key statistics are relevant in determining statistical control
for block manufacture. In addition, they directly map into the customer requirements (Cc),
existing standards specifications and capability metrics:
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* Calibration average, X, for individual blocks
* Calibration range, R, for individual blocks
* Calibration standard deviation, s , for individual blocks

The X -chart for calibration averages would primarily determine the how well the heat treater is
able to consistently zero-in on the nominal hardness via the feedback control sub-process of
tempering discussed in Chapter 6. It would also serve as a detector of other currently unknown
systemic causes for shifts in the mean hardness, some potentially attributable to the tester e.g.
worn-out indenter.

Statistical control of calibration averages is the alternative to sorting blocks to their nominal
hardness level after heat treating. Clearly, the costs of excess inventory and the impeded delivery
responsiveness of the latter policy make statistical control of block averages the preferred
alternative.

The standard deviation is in many ways a superior metric of block variation than range for
control charting. Standard deviation is less susceptible to outliers and sample size [16]. The
average standard deviation, 5, can be directly taken from an s-chart and applied in defining other
key statistical metrics on process and product performance, such as the Cc, Cpk and CR.

However, the range is still the means by which the governing standard in the U.S. for Rockwell
hardness testing, ASTM E-18, characterizes variation [4]. It is assumed that customers' general
expectations are for conformance to the practices used by this standard. Range is also
fundamentally easier to compute than standard deviation. Note that the Range Capability, CR,
requires a best estimate of s [See Chapter 7] .

Therefore, the author reluctantly advocates initially charting both standard deviation and range,
each for their own merit.

Over time, if the R/s relationship becomes known within predictable limits, the range chart may
be phased out [Refer to Section 4.7]. A tight R/s behavior for small sample sizes as depicted in
Figure 4-6 would potentially allow the standard deviation to serve as a sufficient means for
statistical variation control of the process.

8.5 Enablers to Statistical Process Control for Test Block Manufacture

8.5.1 Data collection through calibration measurements
Every block supplied by Instron is calibrated in the Standards Laboratory by n=6 measurements
per block using the latest 600 tester technology. The digital 600 tester, depicted in Appendix A,
automatically calculates summary statistics of mean, range and standard deviation. Currently,
these summary statistics of measurement average and measurement range are manually recorded
on the customer calibration certificate.



The 600 tester also features a RS232 data port that allows the measurement data in ASCII format
to be downloaded to an external database. Each measurement data stream is accompanied by a
descriptor for the particular Rockwell scale measured, e.g. 'HRC' for Rockwell C -scale. This
descriptor is an ideal sort variable for a database to manage control chart data. These features are
offered in the 600 tester to allow customers to conduct SPC from product hardness
measurements.

Thus, a suitable foundation for data collection within the flow of production therefore already
exists. This is particularly advantageous since Rockwell testing is a destructive test; additional
measurements would otherwise use up the measurement area available to the customer.

8.5.2 Rational subgrouping
The calibration subgroups of n = 6 measurements for an individual block serve as ideal sample
sizes for control charting. The subgroup passes the criteria established by Devor et al [14]:
* Subgroups should be subject to common-cause variation
* Subgroups should ensure the presence of normal distribution for the sample means. In

practice, sample sizes of 4 or more generally ensure a good approximation to normality.
* Subgroups should ensure good sensitivity to the detection of special/assignable causes.
* Subgroups should be small enough to be economically appealing from a collection and

measurement standpoint.

The central limit theorem can be directly applied on subgroup averages such that the control
limits on the X, R and s chart are determined on the basis of the normal probability distribution.
Refer to the discussion on normality of Chapter 4.

8.5.3 Specification Limits on Control Charts
In many industrial SPC applications, conformance to specifications and statistical control each
require different sets of statistical data. The former deals with populations of individual
measurements for comparison to specification limits; the latter traditionally works with summary
statistics for a subgroup made up of individual items, one measurement per item. As a result,
Devor states that "we should never place tolerance/specification limits on an X -chart" [14].
However, this not the case for the sampling scheme proposed herein for test blocks.

The summary statistics of X, R and s are representative of the individual block, as are the
specifications. Hence, the author maintains that in this case it is acceptable and potentially useful

to place specification limits on X, R and s on the control chart, as long as the users do not
confuse the identity and meaning of control limits vs. specification limits. There is the potential
to directly witness the how capability and control interact as a means of learning.

8.5.4 Responsiveness of Shewhart Control Charts
Because the subgroups of n = 6 each represent individual blocks, the responsiveness in detection
of special causes variation is ensured using the simple Shewhart X, R and S control charts.
Sensitivity to changes in the process are also gained by charting every block calibrated, as
opposed to occasional samples.



Often more elaborate and complex charting methods are necessary in manufacturing
environments of small production quantities (short runs) to attain chart sensitivity, for example
CUSUM or EWMA charting techniques [14]. As a result, often 'short run SPC is advanced SPC'
[31].

The common eight tests for detecting out-of-control conditions from patterns on Shewhart
control charts can thus be applied [14].

Refer to Figure 8-2 for an example of the Shewhart control charts based on subgroups of n=6
calibration measurements per data point.

8.6 Barriers to Statistical Process Control for Test Block Manufacture

8.6.1 Independent charts required per hardness level
It was determined in Chapter 2 that the measurement variation response for the Instron 500 and
600 testers is a function of hardness level being measured (or the displacement of penetration).
Refer to Figure 2-6. A robust model for conversion of statistics between hardnesses is currently
not available. Therefore, the control charts for each hardness level must be treated
independently.

8.6.2 Many part numbers for many hardness scales and levels = many charts
Each combination of Rockwell scale and hardness level contained in it has a different part
number. Calibration is performed per part number using the exact scale designated for customer
validation. Conversions between superficial and regular scales are regarded as approximate only.
Therefore, since variability is a function of the tester response, it follows that each part number
requires its own chart set. That would not be a problem if the set of possible part numbers were
small.

However, Instron currently offers 120 different major part numbers, 60 for the regular scales
('A', 'B', 'C') and 60 for the superficial scales ('T','N'). In addition, the firm offers minor
hardness scales and levels with extremely low usage (e.g. 3 per year) and Large grade blocks of 3
hardness levels HRC 25, 45 and 63.

For three charts (X, s and R) per part number, up to 360 individual charts would be required.
Someone would also have to look at them all for diagnosis purposes.

The author maintains that statistical control for the general process can be established on the
basis of fewer, higher usage part numbers.
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8.6.3 Chart set-up for small lot sizes/short runs

The average manufacturing lot size for block production ranges from 50 to 200 blocks, with a lot
size of 100 for a particular hardness level being the most common. Shewhart traditionally
advocated setting up charts and calculating control limits with 100 to 125 data points [31]. Devor
suggests: "As a good rule of thumb, one should select 25 to 50 samples to provide a solid basis
for the initiation of control charts"[14].

Typically, control charts are set-up in order to achieve an initial basis of statistical control from
which to diagnose out-of-control conditions [14]. This set-up provides initial estimation of the
process mean and variability for the determination of control limits. "Once control is established
the charts may be employed to monitor the future behavior of the process" [14].

8.6.4 Inventory control and traceability
The five steps of SPC of Table 8.1 require that the transient flow of blocks through the process
and into calibration measurement maintains its time-based integrity e.g. blocks are processed in
sequential order. Refer the process control viewpoint, Fig. 8-1. Otherwise, it becomes more
difficult to go back into the process and to recreate the history of a particular production lot for
the purpose of investigating and removing common systemic causes. As a result, it is imperative
that work-in-process is controlled with disciplined conformance to clear inventory control
policies. For example, uncalibrated blocks are separated by production lot and sequenced on a
first-in-first-out (FIFO) basis.

To allow diagnosis and corrective action, information regarding the parameters of manufacture
must also be compiled and maintained with traceability to the production lot (or ideally to an
individual block). Examples of such information include:

* Material test certificates on composition, purity, grain size
* Heat treating process records and furnace temperature traces
* In-process hardness measurements
* Machine parameters in finishing, for example grinding speed, feed and depth of grind

Such traceability requires process documents to be related to process lot numbers and these in
turn to be linked to serial numbers of individual blocks contained in them. The complexity and
quantity of information must be efficiently managed.

8.6.5 Feedback Delay and Information Quality for Corrective Action

Fig. 8-1 depicts the feedback perspective of statistical process control of the block manufacturing
process. It is assumed that traceability to the systemic cause becomes more difficult as time
passes. It is more difficult recreate history as the interval between present and the distant past at
which the systemic event took place becomes longer.
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There are several delays that will influence the feedback response:
* The cycle time of the process itself, Tp

The time in which the blocks remain in inventory prior to measurement, Ti
* The delay associated with differentiating tester variability from block/process variability, as

well as completing the observation-evaluation-diagnosis-decision-implementation feedback
loop, Tf.

All of these delays undermine the ability and effectiveness of corrective action and hence
decrease the utility of SPC application as a whole. These delays are enhanced by the number of
operations, locations, and parties along process chain.

8.6.6 Tester variation masks block variation
The tester is part of the process and has its own sources of systemic and random variation. The
goal is to measure and control the variation in the block process. With the large portion of
measurement error attributed to the calibration tester, it becomes difficult to discern if an out-of-
control condition is to be attributed to block or tester variation.

As long as the standard deviations attributed to the tester is a significant fraction (e.g. greater
than 25%) of the standard deviations attributed to the block, we cannot distinguish one source of
an out-of-control condition from the other. A special process control strategy must be thus
devised to leverage the enablers and to deal with the challenges.
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Chapter 9 A Comprehensive SPC Strategy

A comprehensive approach for achieving statistical process control is proposed in light of the
stated challenges. This strategy is treated independent of a formal cost/benefit analysis in the
context of the competitive business strategy.

9.1 Process optimization using designed experiments (DOE) and deadweight
measurement data.

This approach to process improvement for the manufacture of blocks is performed on the outset
as a focused project of limited duration. As such, it allows for a larger number of indentations to
be performed on the blocks. Thus, sampling error in characterizing block and process variation is
reduced.

The experimentation for process optimization would have three primary goals:
* Minimize the block variation (non-uniformity) at each hardness
* Define a set of process parameters and procedures for robustness12 to hardness variation
* Improve controllability of the nominal block hardness through tempering or otherwise

A fourth goal to relate the behavior of block variation to hardness level in the form of a verified
model can be considered. This would allow the scope of future process control efforts to be
reduced.

Because of the focused nature of this process optimization activities, it is possible to parse and
characterize block variation (Sblock) from tester variation (stester) by leveraging improved tester
technologies, such as the deadweight tester from NIST. Refer to the parsing procedure using the
components of variances models of Chapter 3. The deadweight tester would need to provide a
statistically significant quantity of block measurements in order to sufficiently reduce sampling
error. As a minimum n=15 measurements per block are required, whereas n=30 measurements is
ideal.

As an output of the designed experiments, a set of parameters and procedures for machine,
material, methodology would be defined with a identification of which parameters carry more
weight than others. For instance, parameters in material may have more influence on block
variation than changes in heat treating parameters. As many of the known process parameters and
methods must be documented as a foundation for maintaining statistical process control through
constancy.

It should be noted that Design for Robustness methods, e.g. Taguchi experiments, require
purposeful parameter changes (high and low) from the current operating points in order to detect
how the block variation is influenced [21]. For example, an alternate material supplier with
measured changes in composition may be tested. In some cases, this will result in blocks of

12 Robustness is defined as the process' resistance to disturbances in material, machine, methodology, environment
e.g. small fluctuations in process parameters [21]



102

increased variability that do not meet customer specifications and hence cannot be sold. The cost
or risk of non-revenue yielding experiments would need to be considered.

This study was in part the result of such process optimization experimentation. Chapter 3
describes how the feedback of NIST deadweight measurement data on Large blocks of higher
quality was used to isolate block variation from tester variation in order to study the causes of
block uniformity.

The parameter results of this DOE process should be verified with confirmation experiments.

9.2 Focus on a select few, high-usage part numbers and Copy Exactly
Several types of scales and nominal hardness levels within them are subject to significantly
higher customer demand than other part numbers of the 120 offered. Refer to Section 8.6.2. The
author proposes that a select few Rockwell hardnesses/part numbers are chosen for achieving
control of their batch processes. The part numbers are to be chosen based on the following
characteristics:

* high-usage
* distributed over the different tester scales
* distributed over the equivalent hardness levels
* representative of the different material and process alternatives.

For example, 3 superficials, 3 regulars, of low to high hardness, brass and steel would result in
24 part numbers. This would require approximately 24 x 3 = 72 control charts or an 80%
reduction in chart quantity (See Secion 8.6.2).

The parameters and methods for the in-between part numbers and hardnesses not directly
measured and for which control is not explicitly determined must be continuously adjusted and
indirectly monitored to reflect those of the focus part number that are subject to SPC. The author
uses a term Copy Exactly developed by the Intel Corporation [41] for starting up new production
lines as mirror copies of the pilot processes. The discipline of the Copy Exactly method implies
that every minor detail of the source process is duplicated, even aspects that are deemed as
inferior or are held to be systemic causes of variation. Only in this manner, can a substantial
probability exist for extending process control from representative focus blocks to those not
directly monitored.

9.3 Automate chart-making and chart pattern diagnosis
Even though the number of charts has been reduced, manual creation and interpretation of 72
charts represents a considerable workload for skilled production associates. Hence, it is
imperative that the data collection, data management, control chart creation and, in part,
diagnosis of control charts be computerized.

Commercially available database and SPC software packages readily accept the ASCII data that
can be downloaded from the respective standards testers. [26]. Diagnosis aids, though not a
substitute for SPC training, can be helpful in detecting patterns and out-of-control conditions in
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the control charts that are evidence of systemic causes variation. The equipment feasibility for
automation of data collection and control charting was confirmed by the author in a pilot tester
set-up at Instron.

9.4 Gradual chart set-up with reference to specification limits and chart
continuation between process batches

The control chart set-up with sufficient number of initial data points in a low volume
environment is in part aided by focusing on the higher usage part numbers [See Section 9.2].
However, we are still dealing with maximum calibration lots 40 blocks for process lots of 100 to
200 blocks. 13 Every block measurement subgroup of n = 6 measurements is to be charted.

The limited batch sizes (short runs) require that charts are transferred from lot-to-lot within the
same hardness level and scale. In doing so, it is important to designate the calibration and process
lots in order to support investigation for special causes. Much can be learned by recognizing
shifts in variability (s and R) that occur between either calibration or process batches. For
example, mean or variation shifts between calibration lots for blocks stemming from the same
process lots would indicate that there may be special causes associated with measurement noise
in the tester system. This chart transfer between lots and designation of block serial numbers to
process lot number is easily accomplished within a computerized database system [See Section
9.3].

Hence, a gradual chart set-up procedure is required over the first two or three lots in order to
ascertain reasonable estimates of the grand means, average range, average standard deviation and

the respective control limits on the X, R and s charts. This challenge also exists for EWMA and
CUSUM charts for low sample quantities [14]. The chart is started with trial limits based on
'typical' values from individual samples reflecting the amount of variation that could be
expected; for instance using the values found in the process optimization studies [18].

In contrast to most applications, it is recommended to plot the specification limits on the X and
R control charts, particularly in the early phases of chart set-up. As was cited in Section 8.5.3 the
summary statistics of the n=6 subgroups charted can be directly compared to customer
specifications e.g allowable range or average nominal hardness for n=6 measurements. This will
help determine if isolated extreme points are cause for immediate process investigation action.

For instance, the X -chart depicted in Figure 8-2 shows two immediate extreme points beyond
the 3-sigma upper control limit, although these do not exceed the allowable tolerance range on
nominal block hardness specified in Table 1.1 for HRC 25.

The benefit of showing specification limits is that the X and R control charts also serve as
immediate reports on product performance and quality levels.

13 A process batch may incorporate approximately 100-200 blocks that are inventoried after final polishing. A
calibration lot may on the other hand only range from 5 to 40 blocks.
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Thus, the chart control limits (UCL and LCL) are not regarded as fully functional until at least
two process lots have been calibrated and charted. The data is compared with the trial control
limits to see whether the variation is stable and appears to come only from common causes.
Investigation of special causes may begin right in the outset. In the early phases, it is more
effective to look for patterns or trends in the data points as signals of systemic variation as
opposed determining violations of control limits. This is the procedure employed for EWMA
charts where 'the detection of shifts is based primarily on trends in the data' [14].

9.5 Separate control charts by tester and assign testers to hardness scales
Statistical control and special cause investigation can be achieved only if each of the 24 focus
Rockwell scales and hardnesses (of Section 9.2) to be charted is assigned to a specific tester
system in the Standard laboratory. This constraint is required since the tester variation is part of
the total measurement variation seen on the control charts. In order to develop a functional
control chart history between process lots, the measurement variation must be characterized with
a tester variation that is held as constant as possible over time.

Another reason for matching the hardness scales and corresponding charts to a specific tester, is
that the commercial tester variation is dependent on hardness level [Refer to Section 2.3.4]. It is
currently not known if the correlation behavior of tester variation to hardness level is the same
between testers. Therefore, mixing of Standards testers for a given hardness chart over lots may
make the chart control limits meaningless for continuously changing tester variation.

There are currently six available Standards testers. Due to the even partition of part numbers
between superficial and regular scales, three testers can be assigned for Regular scales and three
for the Superficial scales with balanced distribution of representative hardnesses, materials and
processes. This would results in approximately four major part numbers per tester of three charts

(X, R and s).

Assigning the block part numbers to individual testers in this manner carries one fundamental
requirement: All six testers must be maintained in proper operating condition. Also immediate
response by a qualified technician if a tester failure or a tester-attributed systemic cause has been
detected is required.

9.6 Parse-out tester variation using deadweight tester measurement feedback
If an out-of-control condition is detected, the first step is to determine if the tester system used to
measure the blocks in question is in a state of statistical control before engaging on the more
arduous task of investigating the block process.

In order to determine the control/variation condition of the tester when an out-of control
condition during block calibration is detected, reference blocks and a Rockwell tester of
considerably lower total variation (Large grade blocks and a deadweight tester) can be used as an
effective leverage tool to parse tester variation from block variation. The following scenario
determines if the tester variation has gone out-of-control and become excessive due to special
causes:
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Process for Detection of Special Cause Sources:
1. Instron supplies 'best' blocks of lowest non-uniformity available (e.g. Large grade) to

NIST; at least one block is supplied for each of the part number/hardness types (qty. 24)
under SPC focus along with a matched indenter for each.

2. NIST measures the blocks using the low variation deadweight tester with the paired indenter
provided. A statistically significant number of measurements of n= 15 to 30 indentations is
required to attain good estimates of block variation.

3. NIST returns the measured block, the matched indenter and corresponding measurement data
to Instron.

4. The Instron Standards tester that detected the apparent out-of-control condition is used to re-
measure the same best block using the same matched indenter. Again, a statistically
significant number of measurements (n = 15 to 30) at the focus hardness level serves to
provide a sound variation estimate.

5. The components of variance model (See Fig. 3-2 and Equation 8) is applied in order to parse
the Standards tester variation (stester) from block variation. Refer to Figure 9-3.

6. The stester is compared to previous levels determined by this method (initially during process
optimization 9.1) to evaluate if stester is excessive. A separate s-chart for tester variation must
thus be maintained. Each stester-chart is linked to each specific Standards tester (See 9.5)

7. If the tester variation stester has not significantly changed (e.g. using a chi-squared test), the
out-of-control condition may be attributed to the test block. If the special cause variation has
been attributed to the test blocks, investigation into the block process for special causes by
the feedback loop of Figure 8.1 is warranted.

8. Otherwise, the special cause can be attributed to the Standards tester. The special cause
investigation can begin with indenter used to calibrate the production blocks.

This special cause detection process for the tester systems is depicted in Figure 9-3.

Since a test block can only fit up to 120 to 150 indentations on average, approximately 5 sets of
internal tester verifications of n = 25 measurements are possible per special deadweight
calibrated block. The larger number of measurements are crucial to minimize sampling error and
give better results of the chi-squared test for equal variances [15].

The tester diagnostic process of Figure 9-3 is performed reactively to an out-of-control condition
on the control charts. Proactive tester monitoring entails performing the tester check at frequent,
regular intervals, for instance daily or weekly to establish the tester control condition in advance.
Given the substantial cost of the test blocks that are calibrated by a (NIST) deadweight tester, the
proactive approach does not seem feasible. The reactive approach requires a higher level of
operator responsiveness during the regular production routine in order to immediately evaluate
the tester control condition when a control chart determines an out-of-control condition.

The feedback process defined above with deadweight calibration by NIST provides an added
benefit: It serves as a vehicle for ensuring continually updated cross-reference of commercial
standards testers to the national standard, developed and maintained by NIST.
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Production calibration using a deadweight tester is assumed not feasible
The reader may ask: Why not bypass the complex strategy of variation parsing by using a
deadweight tester to calibrate test blocks in production ? Wilson Instruments formerly operated a
deadweight tester in order to maintain their commercial hardness standard at a time when the
commercial Rockwell tester technologies were not as precise. Wilson Instruments previously
determined that direct production calibration with a deadweight tester is not to feasible due to the
additional processing time and cost required for deadweight tester operation. [13].

Consideration of an alternative strategy for isolating special causes
An alternative strategy for determining if the Standards tester is the main source of the measured
out-of-control condition was considered: Suppose that three different Standards testers were
used to calibrate a lot of production test blocks of the same part number/hardness level at the
same time. It is intuitive that it is less probable that two or three testers would go out-of-control
(develop excess tester variation) at the same instant in time. Hence, if only one out of three
testers signals an out-of-control condition, probability strongly suggests that the special cause is
attributable to the block process.

The author abandoned this alternative strategy for the following reasons:
* In order to provide sufficient sampling quantity to detect a condition of out-of-control, each

Standards tester would have to calibrate a significant number of blocks, e.g. a minimum of 25
to 30, each time the particular hardness level/part number required calibration due to demand.
Calibration quantities of 50 to 90 blocks at a single calibration interval are prohibit
maintaining a flexible and cost-effective policy for finished, calibrated block inventory.

* It is necessary to match each control chart to a specific tester in order to maintain constancy
in tester contribution to charted process variation, as discussed in 9.5. The minimum quantity
of required control charts is thus magnified to 216 charts (3 charts x 3 testers x 24 part
numbers).

* Every time a part number requires calibration for production demand, all three Standards
testers must be in full operational condition. This does not allow for convenient rotational
scheduling of special cause tester investigations and regular tester maintenance.

9.7 Use tighter internal specification limits or determine CR and Cpk > 1.5
The tester technology of the customer base may be significantly inferior to the Instron standards
testers from a tester variation standpoint due to lower state of technology or maintenance and
control conditions.

Let's take the case, in which the Instron tester demonstrates a lower measurement variation s,
than the total measurement variation sy measured by the customer. Refer to process diagram of
Figure 8.1. If Instron references the customers' specification limits on range (ASTM E-18) and
ships a block that measured just within those range spec limits, it is probable that the customer
will measure a range that exceeds their specification range limit due the higher tester variation of
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the customer's tester. They will more than likely perceive that the block has exceeded the
allowable range limits established by the standards institutions [See Table 1.1] Thus, the
customer will deem the test block to be unacceptable.

This highlights the notion that both specification limits and control limits can and probably
should occur on the same chart for hardness test blocks [See Sections 8.5.3 & 9.4]. One approach
is to place tighter internal specification limits on the control charts.

Another approach to the problem is to apply the capability metrics Cpk and CR for nominal
hardness and range, respectively. These are useful metrics to gage the likelihood of exceeding the
customer's requirements/specification limits.

The example of Section 7.2 showed that a CR value of 1 exists when the maximum range just
equals the specification using the Standards tester. To compensate for the variation of the
customer's testers the critical value of CR (and similarly Cpk) can be increased in order to
determine if the process is currently meeting customer requirements. From the capability metric
equations (33) and (34), it can be seen that the critical values can be scaled in direct proportion to
the ratio of customer (Y) to standards measurement (X) variation. For example, for a sy/sx of
150% the critical capabilities are 1.5. Hence, as long as the process exhibits CR and Cpk grater
than 1.5, Instron can be assured that the customer requirements are satisfied.

It is to be noted however, that the measurement variation must still be random in nature. Signs of
systemic causes (e.g. patterns) may be early signals of a deteriorating control; the out-of-control
progression of blocks can continue right beyond the specification limits.

9.8 Computerized Process Traceability and Inventory Management
In order to minimize the delay associated with the root-cause investigation when/if an out-of-
control condition is encountered, the author advocates using bar-codes to link the block serial
number to the measurement data and its process history.

Bar-code stickers can be placed on the bag container of a test block after its has been polished
and is placed into inventory waiting to be calibrated to a particular scale and hardness. Note that
simple bar code stickers cannot be placed on the block itself without interfering with the
hardness measurement. The bar code would contain the serial number and a letter digit
representing one of the possible 'blank' part numbers representative of the particular heat treating
process.

Each tester can be fitted with a hand operated bar-code reader or wand, wired in parallel to the
Rockwell tester and the data acquisition system. As such, each hardness measurement data
stream can be linked with a part number from the calibration technicians bar-code scan.

This bar-code set-up was successfully piloted by the author for the data taken in this study. In
addition, Instron has in the past engineered and supplied automated tensile testers that operate
under this same model.
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The part number identified as representative of an out-of-control condition could thus be
identified by the SPC control charting program [27]. A simple database search would identify the
process lot number of which the part number belonged. The process lot number can quickly link
to the documentation of process history described in Section 8.6.4.

All blocks should be processed and inventoried according to process lot grouping and time
sequence to facilitate transient trend diagnosis. [See Section 8.6.4]. A simple first-in-first-out
(FIFO) policy goes a long way to maintaining processing sequence.

The author also points out that the information systems defined for the purpose of statistical
process control also provide complementary benefits with little extra work. These complements
include:
* database access of block calibration measurements to support customer service in helping

customers with tester validation issues.
* computerized calibration certificates to eliminate transcription errors by technicians and

additional inspection of summary statistics and individual measurements [27].
* customized calibration certificates to customer name. A whole market potential exists for

specialized and replacement certificates of reference standards.
* rapid and reliable inventory auditing and usage tracking by part number. Outgoing quantities

can easily be tracked with a bar-code scan of the block container. End of term inventory
counts by part number can be accomplished by bar-code scan.



110



111

Part IV Organizational and Management Issues

Chapter 10 Organizational and Management Issues to Introducing Statistical
Methods

If what we know about our processes can't be expressed in numbers, we don't
know much about them.
If we don't know much about them, we can't control them.
If we can't control them, we can't compete.14

10.1 Statistical Methods for Product and Process Improvement

The statistical methods described in this study are tools that aid in the search for product and
process improvements. Improvement entails continuously addressing the sources of variation as
they are detected. Control charting serves to detect potential problems so that action can be taken
BEFORE the quality of the product is compromised.

Due to the close relationships between the components that make up a Rockwell tester system
[Refer to Figure 2-1] and the variation contributors to the Reference Standard [Figure 3-1], the
product subject to control and improvement extends beyond the test blocks. The control charting
also monitors the state of the standards testers; these in turn influence the quality of indenters,
production testers and calibration information provided to the customer. It was also demonstrated
that achieving statistical control of the block manufacturing process requires attaining control of
the measurement standards testers, as part of it. The Calibration Capability links the
improvements in the state of block technology and the parallel improvements in the tester system
and its subcomponents in a metric of combined result.

The process for diagnosing, investigating and eliminating sources of variation was introduced in
Chapter 8 as a feedback loop of SPC. This process is often termed independently as SPS,
statistical problem solving. Over time, the iteration of this root-cause elimination, in conjunction
with off-line process optimization studies, should result in a decrease in overall variation. As a
result, the control limits of the X, R and s control charts require adjustment. Refer to Figure 10-
1 below. Note that the appropriate time for adjustment is signaled by the control chart diagnosis
rule number 8: When 15 successive points fall within +/- one standard deviation of the centerline
[14]. The decision to decrease the specification limits with regard to customer requirements and
expectations should be treated as an independent one.

14 Dr. Mikel Harry, Research Director at Motorola University [18]
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Figure 10-1: The effect of process improvement activities on SPC control charts
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10.2 SPC as an integral part of the business strategy
SPC clearly requires investment in new skills and in the early phases will require much resource
commitment. In order to maintain constancy of purpose and justify the up-front investment, it is
imperative that management can clearly relate the SPC activities to the business strategy. 'The
purpose of justification is to get commitment from top management' [29].

The author imparts several viewpoints on how SPC can be used as a competitive weapon:
* The competition is using SPC. Yamamoto, a leading Japanese competitor, uses SPC for the

production of their hardness testing systems [3].

* Customers are using SPC. Instron routinely supplies testers with special SPC features that
are supported by computerized information systems. In addition, the firms of Instron's
customer list include world-class manufacturers that are known for their application of SPC.
Developing the in-house capability for SPC can serve to better understand customer's needs
for the measurement systems in the future. This learning can be translated into improved
product offerings.

* SPC improves process and product knowledge in order to stay ahead of the competition. The
learning that is gained through the investigation and removal of causes of variation can result
in improved quality products. The learning will be not only be with regard to the test block
processes, but the sources of variation in the tester system as well.

* Improved product quality results in higher market share. This assumption holds true if:
(a) customers can adequately perceive the product improvement relative to the competition
(b) improvements do not sacrifice the equilibrium price/performance relationship
The product performance differentiation of (a) can be accomplished by empowering and
educating the customer base with the Calibration Capability metric and the statistical
underpinnings.

x
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The costs associated with achieving the appropriate price/performance relationship can be
reduced if adequate regard is given to overall operations costs.

* Cost reduction. The learning about the internal production processes can be initially
translated into cost reductions by eliminating redundancies and improving
efficiency/throughput. This was the result of the process optimization work leading up to this
study. The view of cost reduction opportunities must include those costs that aren't readily
apparent and that don't appear on internal accounting records. Refer to Table 10.1 that
summarizes the costs of quality from Devor [14] and Shecter [25], respectively, that need to
be assessed in order to confirm positive SPC benefit. It must be evaluated if the prevention
and appraisal costs can offset the costs of internal and external failures.

* Barriers to entry. The strategy for statistical control encompasses the global measurement
system of blocks, tester, indenters and operator influence. A potential market entrant cannot
viably supply only one element of the system, as they do not control the necessary elements
to achieve process control. It follows that without control, capability is vague and quality is
happenstance.
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Table 10.1: Costs of Quality [14, 25]

Cost Of Quality Cost Items General Definition

Prevention Quality planning Maintaining a quality control system
Training and motivation
Process planning
Vendor selection
Design review
Parts selection
Qualification
Reliability analysis
Control Charting"
Root-cause investigation
and elimination"

Appraisal All inspection: Incoming, Maintaining a quality assurance system
in-process, and final
All tests: Incoming, in-
process, and final
Quality audit
Calibration

Internal Failure Rework Manufacturing losses , scrap and rework
Retest
Scrap
Troubleshooting
Failure analysis

Extra Operations Corrective action costs
Excess inventory costs

External Failure Warranty Warranty, repair, customer, and product service
Customer complaints
Customer returns
Added services for field
corrections
Lost customers

15 Cost of setting up, maintaining and diagnosing control charts was added by author as an individual item of quality
control costs.
16 Cost of root-cause elimination was added by the author as a prevention item from a proactive perspective, as
opposed to internal failure, corrective action, which is reactive.
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10.3 Data-driven Decision Making
The statistical methods for capability and control require collection and analysis of process data.
The return of these efforts is the ability for production associates and management to make
decisions that are based on more factual data than judgment and inference.

Because managers cannot be immersed in the routine activities of block production or
calibration, there exists a natural tendency to focus on that data that is readily available (e.g.
occasional probing into the work of subordinates) or to anchor on sample data from an unusual
event or crisis. The concepts of availability and anchoring are familiar hurdles to objective risk
assessment [36].

The proposed control charts plot every block that is calibrated and they allow for specification
limits to be placed on them directly [See Section 9.4]. In conjunction with the added calculations
of the capability indices, the control charts provide a concise status report on the product and
process performance that also show the transient changes over time. As a result, the manager
gains a more complete and representative view into the state of the production system. This
improved view features a sense of average performance, as well as the bounds of variation.

10.4 Other External Benefits to SPC
The introduction of methods and systems in order to conduct statistical process control for
Instron's test block production carry external benefits of considerable merit.

The computerized data collection and management systems for control charting purposes also
allow for:
* customer calibration certificates to be automatically generated without transcription or

calculation errors [27]. Secondary inspection of certificates can thus be avoided. Customized
certificates by customer name would also provide added value to the reference standard.

* a database that can be accessed by customer support personnel to better service customers
with tester validation issues.

* rapid inventory and product usage tracking for production scheduling and capacity planning.

These benefits map into the costs of quality of Table 1.1 as cost reducers.

10.5 Probabilistic Significance Levels relate to Acceptable Customer Quality
Calibration capability is assessed based on a level of significance greater than 99% for a test
statistic z = 3 [Equation (31)]. This means that less than 1% of the time the assessment that the
parent average and dependent average differ by less than block half-tolerance may be wrong
(Type I error). Control chart limits are similarily based on a +/- 3 sigma level, representing that
99.7% of the block variation is expected to lie within the control limit value.

It is important that management and production associates understand the meaning of these
inferential probability assessments. The significance levels and choice of the critical test
statistic, implicitly define what is the acceptable quality (number of defects) that may pass to the
customer. The author thus has taken some liberty in choosing significance levels deemed to be
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adequately conservative with regard to industry benchmarks and that are commensurate of other
known statistical metrics e.g. Cpk.

In addition, these inferential assessments are made on the basis of small samples (e.g. n=6)
whose estimates will be subject to sampling error. The role of sampling error and the
assumptions made in the representative metric must thus also be considered in the 'risk'
assessment. In order to compensate for sampling error the capability metrics can be used in there
existing form with the modified requirement that the minimum allowable capability is greater
than 1 e.g. 1.5.

10.6 Customer Focus of the Calibration Capability
The systems perspective embodied in the Calibration Capability (Cc) index provides a
perspective with particular attention to the customer's environment and needs. [See global
system model, Figure 3-1] For the block to maximize its customer utility as a reference standard,
the degree of variation not only in the calibrating tester, but also the customer tester must be
sufficiently controlled. To make the Cc index work, sufficient sample data from the customer
measurement system(s) must be gathered.

It follows that through close customer interaction over time customers will become informed
about the Calibration Capability index and what it represents. The customer may be provided
with sufficient data on the calibration certificate to perform the Cc evaluation themselves. The
customer's quality perception not only of the blocks, but also of their tester systems and that of
the standardizing laboratory could thus be formed by the Cc index.

The Cc index may become the yardstick by which the customer is empowered to evaluate
suppliers of the hardness reference standard. Those competitors who in the past have been able to
mask their true block and tester performance, will be forced to uncover the true nature of product
performance. As a leader in Rockwell testing equipment, Instron can better present the value of
their measurement systems and reference standard products in relation to the competition. The
Cc index may thus serve as a tool for gaining competitive advantage.

For Instron the data collection process associated with the customer's tester performance
provides an opportunity to learn about the customers environment and needs. The 'Customer In'
transfer of information from the customer's environment is strongly advocated by Total Quality
Management principles for product and business improvement [24].

10.7 SPC requires processes for corrective action
The feedback perspective for SPC presented in 8.3 highlighted the importance of diagnosing,
investigating and correcting special causes of variation. This feedback loop in itself is a process
that must be defined for the Instron production chain.

The field of TQM provides useful analytic and communication tools within a process framework,
called the 7 Steps process, to aid in the team-based root-cause investigation [24]. Refer to the
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other tools presented earlier in Table 8.1. An example of such a tool, the Ishikawa diagram,
applied to the block manufacturing process (surface grinding defects) is depicted in Appendix I.

It is important not to lose regard for applying engineering knowledge and basic science in the
investigation of special causes. Data-driven decision making must be balanced with established
scientific models and experience that can be readily applied. "There is no substitute, statistical or
otherwise, for firsthand knowledge of the process that needs to be controlled" [34].

Communication and cooperation between the Standards laboratory and the production personnel
is fundamental to this corrective feedback. The communication must be efficient yet effective.
Instron is faced with the added challenge in that block machining, heat treating and
measurement/calibration are performed in three distinct locations. Many case examples in
industry show that co-location of the process activities is a key communication enabler,
particularly as the removal of organizational boundaries help remove subgroup loyalties and
affinities. In addition, a closer business partnerships that extends beyond an arms-length contract
may be required with external vendors.

Standardization of process operations (See following Section 10.8) tasks demands
communication between production shifts. At NUMMI17 one hour is scheduled between shifts to
accommodate meetings for the two shift teams to evaluate tasks for common standardization
[40].

The role of management involvement in the improvement activities is underscored. "Only a
relatively small number of process troubles - industrial experience suggests about 15% - are
correctable locally by people directly connected with the operation; the majority are correctable
only by management action on the system" [18]. The real leverage thus lies in arming
management with the skills in statistical problem solving [32].

10.8 The Discipline of Statistical Control
The SPC strategy of Chapter 9 presents the importance of establishing standardized process
parameters and procedures in sufficient detail to ensure that they can be consistently repeated.
This entails documentation of how work is performed in the form of process and operation
procedures. These procedures must also allow for continual updates to reflect the removal of
special cause sources. "Once tasks have been standardized they can be improved" [40]; root-
causes can be more easily investigated and solved since they are subject to less noise.
These standardized procedures also serve as a communication tool to pass information up and
down the process chain, as well as up and down the structures for managerial decision-making.
Finally standardized procedures serve as a training tool for new production associates and
engineers. Such standardization of work, information flows, and business processes is the
cornerstone of ISO 9000 [37].

17 The New United Motor Manufacturing auto assembly plant in Fremont, CA is a GM-Toyota joint venture with a
work system based on the Toyota Production System.
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Establishing standardized procedures in itself is not sufficient, although a first step. Achieving
and maintaining statistical control demands strict conformance to operational procedures and
conformance requires the discipline of individuals. Management must therefore support that
discipline by stressing the importance of consistency in work even when at times that it may
conflict with production scheduling pressures.

The strategy for achieving statistical control of the test block production process [See Section
9.2] is based on the ability to 'copy exactly' the process methods and parameters used for the
selected focus part numbers to the other part numbers. In order to 'copy exactly' the process
procedures for the focus blocks must be well documented. Discipline is required in carrying over
practices in explicit detail; even those that may have apparent deficiencies or bear apparent
special causes of variation. The systemic interaction of these shortcomings with other parameters
are unknown or cannot be sufficiently modeled and tested. Management must therefore be rigid
in emphasizing this discipline in order to make the 'copy exactly' strategy work.

In addition, management must motivate against haphazard adjustment of the process. Devor et al
use the term "over-control" for the case when operators prematurely adjust the process while it
may still be in control [14]. Over-control can occur when associates falsely interpret a natural
fluctuation in a machine or process as the effect of a special cause of systemic variation.

10.9 Standardization of tasks requires adjustment of production roles
Klein points out that the standardization of tasks that is so beneficial in controlling variation in
the (block) process also eliminates variability in the way production associates may approach and
think about their daily tasks [40]. Thus, standardization removes a certain degree of autonomy
and variety in the job functions of associates; key aspects to individual job satisfaction are
thereby eliminated.

One solution to the inherent conflict between process consistency and the individual's job role
needs is employed by Toyota [40]. Operators are involved in controlling the design of tasks
together with other operators as a team. As such, a collective autonomy is generated in
determining work methods, although flexibility in individual task execution is strictly limited.
Variety on the job is provided by the activities associated with improvement problem-solving.
However, improvements are collectively made by teams or Kaizens in a selective and structured
manner of decision-making that involves management.

10.10 Using the capability metrics to drive improvement
When applied correctly, the three capability metrics (Cc, Cpk and CR) are both encompassing
and founded in sufficient detail to serve as meaningful and brutally objective assessments of
overall product and process performance. They are thus suited for management to track
improvement and to use these metrics as goals for the future desired state of the process and
organization.

The process capability index, Cpk, is being successfully used by world-class manufacturers to
continually track and motivate process improvement, including Ford, Kodak and Rockwell
International.
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The capability metrics are also well suited for use with a TQM management approach, known as
hoshin management or policy deployment. Hoshin management uses explicitly defined goals
which are used to quickly align all people, tasks and functions within the organization [24].
Hoshins are statements of the desired outcome for the year combined with the definition of
means of accomplishing the desired outcome and the metrics for accomplishment.

Hoshin = statement of the desired outcome for the year
+ focused means
+ metrics to measure progress
+ target value of the metric
+ deadline date

The hoshin is furthermore translated into the roles of the respective functions. For instance,
product development for tester improvement, purchasing for vendor improvements etc. Hoshin
management has another purpose: "it forces managers to run the Plan-Do-Check-Act cycle
themselves as a part of their daily job" [24].

The capability metrics Cc, Cpk and CR are well suited for use as hoshin metrics if their founding
data is objectively gathered. Even the simple hoshin goals are subject to the influences of bad or
tainted data. It must be reemphasized that management cannot gage capability without having
confirmed the condition of statistical control.

10.11 Planning for Changes in Introducing SPC
Before answering the question of whether or not to commit to the pursuit of SPC, Instron
management needs to define a clear perspective of 'what we are getting into'. The purpose of
such a planning activity is to ensure that resources have been adequately accommodated,
challenges are anticipated and change processes are initiated. For instance before collecting any
SPC data, it is important to ensure satisfactory training of statistical methods for the right
individuals has been accommodated. Kiemele et al emphasize the importance of ensuring that
'an environment for improvement' has been created' [18]. While there exists no single magical
recipe for the adoption of effective SPC and continuous improvement, there is sufficient
literature on case studies and lessons learned to be gained. The necessary changes will also
involve the learning by management itself, as it will need to converse and decide on issues of a
statistical nature.

New levels of overall performance require new methods to approach the overall problem. The
author maintains that the statistical methods proposed herein provide the basis for dealing with
the technical aspects for solving the performance problem. However, these statistical methods
demand new skills and new ways of conducting work that lie at the heart of the Instron's
business processes. For these methods to be effective management must also provide the means
and leadership for learning and adaptive change required of the organization [35].

The scope of the many of the technical capabilities required for implementation of the SPC
currently exist within Instron's organization; many of the individuals that possess the particular
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expertise are however committed to other departments and products. For instance, trouble-
shooting for systemic variation in a standards tester will require the expertise of an experienced
tester technician from the production line. The computer system for SPC data management
requires know-how harbored by the IT department. Instron electrical engineers have also
previously set-up automated SPC systems for customers.

Due to the interrelated nature of the tester and block sources of variation, the continuous
improvement activities for producing blocks cannot be an isolated responsibility of those parties
associated with block production and calibration. The entire Instron Rockwell hardness
organization must therefore be aligned in these efforts.

An effective tool for planning for organizational change was developed through the LFM
program at MIT, called the 'Matrix of Change' [38]. This tool engages management to identify
its current state and capabilities and to identify the new state and capabilities required or desired.
Relationships between existing practices can be made to the target practices of the future in order
to predict the difficulty and challenges and to anticipate unsuspecting interactions.

10.12 Relationship with NIST and the national standard
This study demonstrates how the deadweight tester measurement data supplied by NIST was
used to model the sources of measurement variation. It is also cited as a crucial element to
achieving statistical control of the block manufacturing process in the future [See SPC strategy,
Chapter 9]. NIST currently calibrates test blocks produced by Instron to the new national
standard, using the deadweight tester, to provide Standard Reference Material (SRM)TM . Refer to
Figure 10-2.

In order to make the SPC strategy feasible, the NIST calibrated blocks must be measured with a
statistically significant quantity of indentations in order to reduce sampling error e.g n = 15
minimum. This quantity may extend beyond the quantity that NIST supplies to its customer base,
many whose requirements are in the context of less stringent industrial applications. Hence,
Instron may need to make a case to NIST for attaining blocks of higher measurement quantity.

The reduced sampling error would also yield a higher quality cross-referencing of the
commercial (Instron) standard to the national standard. Accurate alignment to the new national
standard will be an issue in Instron's calibration capability assessments with the general
customer base. As customers trace to SRMTM blocks from NIST in setting-up their testers, there

is the potential for large mean offsets ( X - Y ) if the Instron standards testers are not well aligned
to the NIST standard.

If the current relationship with NIST cannot be maintained, Instron must consider establishing its
own deadweight tester system of lower tester variation in order to effectively verify statistical
control of its block manufacturing process through the SPC strategy defined. Wilson
Instruments, prior to purchase by Instron Corporation, operated a deadweight Rockwell tester
[13].
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Figure 10-2: The relationship of NIST to commercial standardizing laboratories

Wilson Standard
Calibrated Test Blocks
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Chapter 11 Conclusions and Recommendations

In order to arrive at a means to consistently control the non-uniformity of test blocks in their
manufacture the influences of measurement noise of the available commercial Rockwell testers
had to be addressed.

This study provided a framework to statistically characterize the systemic combination of
variation sources in Rockwell hardness measurement, called the components of variances model.
This model reduces the complexity of the variation problem by lumping the variation sources
into two groups: block and tester. It was confirmed that Rockwell C-scale hardness
measurements from either commercial or deadweight testers behave as random variables that for
practical purposes can be approximated to follow a normal distribution.

The commercial testers display a measurement variation that decreases with increasing hardness
(Rockwell C). As a result, statistical models and metrics must be evaluated at a prescribed
hardness level. The correlation of tester variation to hardness level also adds significant
complexity to the prospect of SPC control charting; control chart sets must be allocated to
hardness level and part number, as well as to individual Standards testers.

The deadweight tester measurements conducted by NIST on a common test block served as a
vital external leverage in estimating the relative contributions of block and commercial tester to
total measurement variation. In doing so, the maximum possible standard deviation of the block
was efficiently bounded by the standard deviation measured by the deadweight tester (of low
measurement variation).

The variation of the commercial tester technologies was thereby found to be significantly greater
than the inherent variation of a Large grade test block. A tester contribution fraction stestersmesure
greater than 50% for the commrecial standardizing testers was determined due to the relatively
low variation of the subject product.. This result compares to industry rules-of-thumb for
contribution fractions of less than 10% for suitability of process control measurement. Thus, a
unique (statistical) approach is required to counter the tester measurement noise in the control of
the test block process

Statistical methods for ensuring that the block production process is both in statistical control
and capable with respect to customer specifications are tailored to the unique constraints of the
Instron test block production process. Although the majority of the data for this study was
derived from the measurement behavior using Large grade blocks, the general conclusions and
methods can be extended to Regular grade blocks

Statistical capability metrics were developed to measure product and process performance:
Calibration capability (Cc), Process capability (Cpk)19 and Range capability (CR). These indices

18 Confirmation experiments of the statistical methodology for Regular grade blocks is recommended.
9 Cpk is an existing, well-known capability metric that is employed to measure process accuracy for nominal

hardness and was adapted to the block production environment [14].
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are deemed superior to the conventional methods of direct comparison against specification
ranges and tolerances in that they incorporate the probability of non-conformance over the entire
measurement space. Current performance measurement of the reference standard also does not
account for increased sampling error as a function of decreasing measurement sample size (e.g.
for n < 6).

Calibration capability, Cc20, measures the product performance of the global reference standard
system produced by Instron. Its strength lies in that it relates the manufacturer's and customer's
contribution to the overall uncertainty in the reference standard. As a result, Instron can
determine the best means of satisfying customer needs by trade-off decisions of the parameters
contained in the metric. The leverages for achieving capability extend beyond the reduction of
block variation; opportunity lies in increasing measurement quantities, reducing tester variation
and avoiding initial mean offsets. The Cc index thus serves as a guide as to where and how much
to improve with an estimate of the expected result to be seen by the customer.

The Cc index simulations of actual measurement data support the following noteworthy
conclusions:
* Increasing the number of measurements on the local system with the lowest total

measurement variance is a low leverage policy e.g. increasing the Standards lab calibration
indent quantity from 6 to say 10. Instead, more capability is marginally gained if the
customer/user were to increase their measurement quantity21,assuming the customer tester
system exhibits a larger variation contribution.

* Further reduction in the nominal level of variation of the Large grade blocks of this study is
an ineffective policy toward improving the customer utility of the Instron reference standard.
Instead, improvement focus on the variation of the Standard tester systems, including
indenter and operator influences, represents a higher Cc return policy.

* Significant Cc improvement opportunities in reducing non-uniformity of Regular-grade
blocks exist.

Process capability, Cpk22 , in the context of test block manufacture measures the process accuracy
in achieving the desired nominal hardness levels given as a process input. It is shown through a
process control perspective that Cpk is primarily aimed at the heat treater's ability to control the
hardness of each block batch through an output control feedback process in tempering.

20 Equation (32): Cc = 5x -jX - Y

3. s + sy2]1/2

n. ny
21 The conflict of imposing the precision burden on the customer is recognized.

22 Equation (33): CPk mn USL -X X-LSL
S s

n /2 1n2
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Range capability, CR 23, determines if the total expected measurement variation is contained
within the range specification most commonly found in hardness standards such as ASTM E-18.
This capability formulation was shown to be consistent with current range-based quality levels
using the predictable R/s behavior found for Rockwell measurement of many blocks using a
Instron 600 tester. Refer to Figure 4-6. It was determined that satisfying the range capability
criteria at HRC 60 and above represents a challenge due to the tighter specification (half-)
tolerances of ASTM E- 18 at the higher hardness levels.

If low sample sizes (n < 15) are used for the capability metrics, it is suggested to compensate for
the poor estimates of averages X and standard deviations s by increasing the critical capability
value greater than 1.0; a criteria value of 1.5 is recommended. Otherwise, multiple replications of
the capability metrics are warranted in order to minimize sampling error. In the case where the
customer tester variation is determined to be significantly larger than that of the parent tester
system in the Standards Laboratory, an increase in the critical value greater than one for Cpk and
CR is also suggested; such an adjustment would be made in order to avoid negative (though
flawed) customer perception regarding test block uniformity

A good practice for using the capability metrics is to apply the average statistic values taken from

an X or s control charts of sufficient process history, as these values can be assumed typical for
the process despite the small subgroup measurement size. For capability metrics to be
representative of the process, statistical control must be ensured a priori.

The single biggest challenge in controlling the non-uniformity of test blocks using SPC methods
is the measurement noise of the tester variation. Due to the large relative contribution of tester
variation for both Large and Regular test blocks, measurement noise masks the fluctuations
attributed to the block production process. As a result, the state of control for the block process
cannot be directly determined using the current commercial tester technologies available in the
Standards laboratory.

However, existing enablers support the conclusion that statistical process control (SPC) using
conventional Shewhart control charts for X, s and R is both feasible and beneficial. The total goal
of SPC when applied to the test block process is predicated not only on detecting, identifying and
eliminating special causes of variation in the block process, but also in the Standards lab testers
used to measure them. Once again, a lower variation tester system such as a deadweight tester
must be leveraged in order to ascertain if the special cause is attributable to the tester or the block
process.

A detailed SPC strategy is outlined by the author in Chapter 10 that addresses practical
constraints of detail complexity. Several key aspects of this strategy stand out:

23 Equation (34) : CR = Rspec

424
24 Another alternative was shown to be a reduction of internal specification requirements.
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* Initial process optimization with designed experiments using deadweight tester measurement
data for arriving at best-estimates of block variation.

* Control charting and root-cause feedback of a focus group of high-usage part numbers.
* Linking control charts to individual testers and to individual hardness scale levels and part

numbers.
* Copy Exactly of process parameters and procedures for non-controlled part numbers.
* Computer automation for data acquisition and control charting.
* Bar-coding and computerized process histories to facilitate traceability and root-cause

analysis.

It is also suggested to place specification limits directly on the control charts for use as real-time
inspection reports on product and process performance, since (in this non-typical instance)
rational control chart subgroups represent individual blocks.

The assumption should be noted that continuous operation of a deadweight tester for process
measurement is cost prohibitive and impractical. In addition, a financial cost/benefit analysis is
deemed necessary with regard to the investments and returns for the proposed SPC program.

SPC implementation requires investment in infrastructure, automation and personnel training.
Management involvement, using the capability metrics to measure and drive improvements, is
concluded to be critical in fostering statistical problem-solving and data-driven decision making.
Process improvement is only gained by management focus on the corrective feedback process for
eliminating root-causes of the out-of-control signals detected. Communication in problem-
solving between the different parties and locations in the block manufacturing chain is regarded
as a substantial hurdle to effective SPC.

There also exist many positive externalities to the methods and systems of SPC, such as process
and product learning for future improvements in technology leadership, product quality and cost.
In addition, the data management infrastructure can be used for enhanced customer service, to
avoid errors in calibration certificates and for inventory control purposes.

Significant discipline is required in maintaining control and consistency of standardized process
procedures across all test block types in order to reap the improvement benefits of SPC-driven
root-cause analysis. It is also the essence of the 'copy exactly' strategy. Such task standardization
of individual operations will require adjustment in designing the work roles of production
associates who may feel their autonomy and variety in defining work methods is threatened. The
managerial approach advocated by the author is to increase the involvement of production
associates in task design and improvement problem-solving.

The Calibration Capability index empowers the manufacturer and customer to make better
decisions on the quality and performance of their commercial reference standard system for
Rockwell hardness testing. Comprehensive SPC will allow Instron to perpetually improve in
order to continue in exceeding customer expectations relative to the competition. The keys to
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improvement lie in statistical modeling and the low variation of a secondary deadweight tester. A
continued relationship with NIST is thus deemed important to fulfill the latter ingredient.

'Through discipline lies freedom' 25

11.1 Recommendations for Further Investigation

As this study focused only on the Rockwell 'C'-scale, validation of the statistical models on
other hardness levels is recommended. Development of statistical regression models in order to
predict the level of measurement variation as a function of hardness would be beneficial in
understanding the response behavior of the commercial Rockwell testers.

It is recommended that the predictable R/s behavior (See Figure 4-6) at the small measurement
subgroup sizes of n = 5 or 6 should be confirmed with more block samples or SPC data, such that
the R-chart can be eliminated. The R-chart's purpose is only to directly ensure specification
conformance; the s-chart suffices to control and characterize block and measurement variation.
The condensed R/s behavior would allow the R-chart to be replaced by an equivalent
specification limit on the s-chart e.g. SUSL= Range Spec/4.

Since Regular blocks were not measured by a deadweight tester in this study, the relative
contribution of block non-uniformity is estimated only by the results of the measurement
variation from the commercial testers. If the Regular grade blocks are maintained as a product
offering, it is recommended to test Regular blocks over the full hardness spectrum using a
deadweight tester. The components of variances model can thus be applied as demonstrated in
this study.

Application of the Calibration Capability index to characterize a representative sampling of field
tester systems in customer environments is further recommended. Analysis of the input
parameters to the index will help Instron determine where the leverages for global system
improvement in the commercial reference standard lie.

A financial cost/benefit analysis for the elements of the SPC strategy proposed in this study is
necessary for managerial decision-making. In order to do so, some formal layout of the
information system (data acquisition, control charting and data management) is required. Finally
it is recommended to test the communication ability of the current production system for the
critical root-cause analysis and problem-solving activities of SPC. Co-location of output
measurement and key process operations may be called for in order to enable a rapid feedback
process.

25 Author unknown.
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APPENDIX A Equipment Diagrams of Instron Rockwell © Tester Systems

Figure A-I: 500 Series Standards Tester

Digital Readout

Test Block

Manual
Elevating
Unit

Rockwell
Hardness
Tester

Indenter

Model 540

:I

Ref.: Series 500 Rockwell Hardness Testers, Catalog 1817, Wilson Instruments, Division of Instron Corporation
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Figure A-2: 600 Series Instron Tester
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APPENDIX B Diagrams of Instron Standard Rockwell© Test Blocks

Figure B-1: Large Grade Test Block

SIDE VIEW
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Figure B-2: Regular Grade Test Block
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Test Block Rockwell Measurement Data

Table C-l: NIST Measurement Data using a Deadweight Tester
Measure Block Ser. No. Block Ser. No. Block Ser. No. Block Ser. No.

No. 95130005 95140004 95150005 95160001
HRC HRC HRC HRC

1 29.96416 40.49616 49.94792 60.77507
2 29.97702 40.60641 49.87524 60.76864
3 29.93499 40.54659 49.93753 60.75826
4 30.08232 40.54857 49.87821 60.75529
5 29.98641 40.57329 49.95237 60.76518
6 30.02843 40.53324 49.85201 60.77012
7 29.99877 40.49764 49.93655 60.77902
8 30.02547 40.53967 49.85942 60.76024
9 30.09419 40.46254 49.93902 60.73947
10 30.09270 40.51989 49.94001 60.77507
11 29.99976 40.51989 49.99736 60.71080
12 29.98443 40.49517 49.88117 60.76221
13 29.96021 40.40915 49.94248 60.75331
14 30.01558 40.58911 49.88266 60.74540
15 29.91522 40.49023 49.86881 60.73650
16 30.07342 40.47045 49.92171 60.77606
17 30.02349 40.46155 49.96028 60.75035
18 30.12286 40.44623 49.91430 60.75529
19 29.94933 40.53324 49.88958 60.76370
20 29.96861 40.46551 49.87228 60.75529
21 29.98789 40.35922 49.92468 60.75480
22 30.01261 40.50012 49.84904 60.74095
23 29.99432 40.39283 49.89452 60.76815
24 30.02893 40.36663 49.91034 60.78149
25 29.98938 40.47985 49.88414 60.75035
26 30.00915 40.41063 49.84212 60.75183
27 29.97553 40.48331 49.86634 60.75974
28 30.08875 40.48973 49.83174 60.74046
29 29.90533 40.51940 49.85942 60.72563
30 30.08430 40.43980 49.93012 60.74540
31 29.97257 40.51445 49.88117 60.73749
32 29.91176 40.43436 49.91875 60.73700
33 29.97801 40.40124 49.89897 60.77012
34 30.05068 40.48973 49.88266 60.73057
35 30.04425 40.42349 49.89353 60.71574
36 29.94983 40.44722 49.95731 60.72217
37 30.00668 40.54461 49.87277 60.75529
38 29.97059 40.46007 49.86783 60.75035
39 30.13671 40.51940 49.88958 60.76024
40 29.92115 40.45216 49.85794 60.76765
41 29.92362 40.45414 49.89848 60.75974
42 29.99580 40.44277 49.89057 60.75875

APPENDIX C



APPENDIX C

Table C-1: Continued
Measure Block Ser. No. Block Ser. No. Block Ser. No. Block Ser. No.

No. 95130005 95140004 95150005 95160001
43 29.95526 40.51099 49.92864 60.77902
44 30.06650 40.41409 49.89601 60.78100
45 29.97108 40.45760 49.88216 60.73799
46 30.12088 40.41805 49.87376 60.75134
47 30.11396 40.56439 49.90837 60.74194
48 30.03338 40.50704 49.96621 60.77704
49 29.93499 40.53621 49.90194 60.73799
50 30.07787 40.51149 49.85893 60.74046
51 30.08183 40.55450 49.88908 60.78940
52 29.95526 40.46798 49.91825 60.80325
53 29.98938 40.39976 49.89798 60.72612
54 29.98295 40.46749 49.86881 60.78495
55 29.90039 40.43288 49.89353 60.76073
56 29.92461 40.49863 49.93061 60.75826
57 29.82969 40.38740 49.92913 60.79484
58 30.04030 40.46452 49.91578 60.72859
59 29.84996 40.45859 49.88464 60.81165
60 30.01904 40.55747 49.91133 60.75035
61 30.04376 40.30088 49.88760 60.77210
62 29.93005 40.29742 49.88365 60.73848
63 29.92610 40.30928 49.87870 60.77507
64 30.08133 40.36564 49.88859 60.73700
65 30.08529 40.49666 49.88859 60.76122
66 29.89050 40.45760 49.88859 60.76765
67 29.96268 40.38492 49.86881 60.77210
68 29.98839 40.37059 49.88464 60.72662
69 - 40.38492 49.84953 60.75084

70 40.30681 49.85695 60.74145

71 - 40.44277 49.85794 60.75925

72 40.44475 49.90639 60.76370

73 40.38888 49.88908 60.78693

74 40.47144 49.89699 60.79089
76 40.39580 49.86733 60.75826
77 - 40.48034 - -

Summary Statistics:
Average 29.99839 40.46234 49.89599 60.75728
Max 30.13671 40.60641 49.99736 60.81165
Min 29.82969 40.29742 49.83174 60.71080

Range 0.3070 0.3090 0.1656 0.1009
Std.Dev. 0.0673 0.0680 0.0325 0.0202

Note: Refer to the measurement pattern of Figure E-l, Appendix E



Test Block Measurement Data

Table C-2: 600S Measurements of Large Grade Blocks
Date 1/26/96 1/26/96 1/26/96 1/26/96
Tester A653R MT-4 A653R MT-4 A653R MT-4 A653R MT-4
Serial No. 97328502 97328502 97328502 97328502
Indentor SN 95621105 95621105 95621105 95621105
Operator HJL HJL HJL HJL
Block SN 95130005 95140004 95150005 95160001
Measure No. HRC HRC HRC HRC

1 30.10 40.49 49.88 60.32
2 30.62 40.62 49.89 60.41
3 30.30 40.41 49.90 60.41
4 30.08 40.61 49.79 60.58
5 30.22 40.45 49.95 60.49
6 30.07 40.43 49.99 60.40
7 30.20 40.45 50.04 60.53
8 30.26 40.61 49.87 60.38
9 30.66 40.55 49.96 60.38
10 30.42 40.48 49.94 60.38
11 30.40 40.51 49.90 60.38
12 30.49 40.44 49.96 60.38
13 30.22 40.60 49.89 60.43
14 30.47 40.34 49.96 60.43
15 30.18 40.48 49.81 60.26
16 30.25 40.53 50.00 60.36
17 30.47 40.41 49.92 60.38
18 30.45 40.65 49.94 60.41
19 30.24 40.63 49.89 60.45
20 30.36 40.63 49.96 60.49
21 30.18 40.46 50.01 60.41
22 30.07 40.55 49.88 60.30
23 30.47 40.52 50.00 60.34
24 30.29 40.53 49.98 60.35
25 30.31 40.45 49.96 60.32
26 30.20 40.64 49.89 60.39
27 30.11 40.31 49.97 60.43
28 30.41 40.61 50.02 60.52
29 30.11 40.59 50.01 60.23
30 30.32 40.48 49.92 60.44

Summary Statistics:
Average 30.30 40.52 49.94 60.40
Std. Dev. 0.16 0.09 0.06 0.08
Max. 30.66 40.65 50.04 60.58
Min. 30.07 40.31 49.79 60.23
Range 0.59 0.34 0.25 0.35
25 Pctle. 30.19 40.45 49.89 60.37
75 Pctle. 30.42 40.61 49.98 60.43

Randomized measurement locations

APPENDIX C
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Test Block Measurement Data

Table C-3: 500S Measurements of Large Grade Blocks
Date 1/26/96 1/26/96 1/26/96 1/26/96
Tester B523R B523R B523R B523R
Serial No. 80195408 80195408 80195408 80195408

IndentorSN 9401911 9401911 9401911 9401911
Operator HJL HJL HJL HJL
Block SN 95130005 95140004 95150005 95160001
Measure No. HRC HRC HRC HRC

1 30.1 40.3 49.3 60.2
2 30.4 40.2 49.5 59.8
3 30.3 40.3 49.4 60.2
4 30.4 40.5 49.7 60.0
5 30.1 40.4 49.7 60.1
6 30.3 40.2 49.6 60.0
7 30.0 40.5 49.5 60.0
8 30.3 40.4 49.8 60.5
9 30.1 40.2 49.6 60.1
10 30.1 40.3 49.6 60.0
11 30.7 40.4 49.6 60.0
12 30.3 40.6 49.6 60.0

13 30.3 40.5 49.5 60.1
14 30.4 40.3 49.7 60.1
15 30.2 40.4 49.7 60.2
16 30.3 40.2 49.5 60.2
17 30.4 40.7 49.6 60.1
18 30.3 40.2 49.8 59.9
19 30.1 40.2 49.6 60.1
20 30.5 40.4 49.7 60.0
21 30.4 40.3 49.8 60.2
22 30.5 40.2 49.4 60.2
23 30.2 40.4 49.5 60.1
24 30.2 40.4 49.6 60.1
25 30.3 40.3 49.7 59.9
26 30.0 40.2 49.6 60.1
27 30.3 40.1 49.6 60.1
28 30.2 40.5 49.5 60.1
29 30.6 40.5 49.6 60.1
30 30.5 40.3 49.5 60.2

Average 30.3 40.3 49.6 60.1

Std. Dev. 0.2 0.1 0.1 0.1
Max. 30.7 40.7 49.8 60.5
Min. 30.0 40.1 49.3 59.8
Range 0.7 0.6 0.5 0.7
25 Percentile 30.2 40.2 49.5 60.0
75 Percentile 30.4 40.4 49.7 60.2

Randomized measurement locations
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Test Block Measurement Data

Table C-4: 600S Measurements of Regular Grade Blocks
Date 1/26/96 1/26/96 1/26/96
Tester A653R MT-4 A653R MT-4 A653R MT-4
Serial No. 97328502 97328502 97328502
Indentor SN 95621105 95621105 95621105
Operator HJL HJL HJL
Block SN H00128 G00390 R02589
Measure No. HRC HRC HRC

1 26.40 45.96 63.69
2 25.78 46.13 63.61
3 26.83 46.04 63.76
4 26.21 45.80 63.77
5 26.18 46.13 63.77
6 26.20 46.20 63.71
7 26.43 46.09 63.68
8 26.31 46.12 63.65
9 25.95 46.08 63.74
10 26.30 45.80 63.66
11 26.18 46.14 63.67
12 25.96 46.08 63.70
13 26.14 46.15 63.73
14 26.26 46.16 63.77
15 26.44 45.97 63.67
16 26.05 46.02 63.76
17 26.46 46.11 63.72
18 26.38 45.73 63.70
19 26.26 46.07 63.71
20 26.26 46.14 63.70
21 25.71 45.97 63.62
22 26.40 45.74 63.49
23 26.42 46.08 63.63
24 26.42 46.13 63.67
25 26.30 45.78 63.89
26 26.04 46.15 63.80
27 26.36 46.04 63.53
28 26.21 46.16 63.74
29 25.98 46.01 63.75
30 26.23 45.97 63.72

Summary Statistics:

Average 26.24 46.03 63.70
Std. Dev. 0.22 0.14 0.08
Max. 26.83 46.20 63.89
Min. 25.71 45.73 63.49
Range 1.12 0.47 0.40

25 Percentile 26.15 45.97 63.67
75 Percentile 26.40 46.13 63.75

Randomized measurement locations
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Test Block Measurement Data

Table C-5: 500S Measurements of Regular Grade Blocks
Date 1/26/96 1/26/96 1/26/96
Tester B523R B523R B523R
Serial No. 80195408 80195408 80195408

Indentor SN 9401911 9401911 9401911
Operator HJL HJL HJL
Block SN H00128 G00390 R02589

Measure No. HRC HRC HRC

1 25.9 45.6 63.2
2 26.0 45.6 63.6
3 26.2 45.5 63.5
4 26.3 45.9 63.7
5 26.2 45.7 63.4
6 26.9 45.9 63.6
7 26.4 45.9 63.5
8 26.2 46.0 63.5
9 26.6 45.9 63.5
10 26.7 46.1 63.5
11 26.1 46.2 63.5
12 26.4 46.1 63.5
13 26.4 46.2 63.4
14 26.3 45.9 63.2
15 26.3 46.2 63.6
16 26.6 45.9 63.6
17 26.4 45.7 63.6

18 26.5 45.9 63.5
19 26.3 46.1 63.4
20 26.4 46.0 63.5
21 26.6 45.9 63.4
22 26.4 46.1 63.6
23 26.0 45.7 63.6
24 26.4 46.1 63.6
25 26.1 46.2 63.7
26 26.9 45.6 63.4
27 26.5 46.0 63.5
28 26.8 46.0 63.7
29 26.5 45.9 63.5
30 26.1 46.1 63.4

Summary Statistics:
Average 26.4 45.9 63.5
Std. Dev. 0.3 0.2 0.1
Max. 26.9 46.2 63.7
Min. 25.9 45.5 63.2
Range 1.0 0.7 0.5
25 Percentile 26.2 45.9 63.4
75 Percentile 26.5 46.1 63.6

Randomized measurement locations
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APPENDIX C Test Block Measurement Data

Table C-6: 600R Measurements of Large Grade Blocks
Date 10/26/95 10/25/95 10/25/95 10/24/95
Tester 653 C 653 C 653 C 653 C
Serial No. 97331502 97331502 97331502 97331502
Indentor SN 95621105 95621105 95621105 95621105
Operator HJL HJL HJL HJL
Block SN 95125016 95145005 95145006 95163020
Measure No. HRC HRC HRC HRC

1 25.53 45.35 45.44 63.60
2 25.54 45.40 45.54 63.40
3 25.67 45.40 45.37 63.41
4 25.33 45.32 45.60 63.36
5 25.48 45.32 45.70 63.55
6 25.34 45.57 45.21 63.52
7 25.52 45.41 45.32 63.68
8 25.48 45.41 45.39 63.65
9 25.67 45.67 45.47 63.60
10 25.43 45.73 45.54 63.59
11 25.62 45.68 45.59 63.59
12 25.54 45.70 45.49 63.62
13 25.35 45.59 45.41 63.64
14 25.31 45.66 45.61 63.70
15 25.49 45.23 45.71 63.58
16 25.48 45.68 45.36 63.62
17 25.49 45.83 45.59 63.60
18 25.41 45.66 45.53 63.60
19 25.50 45.62 45.40 63.52
20 25.54 45.64 45.55 63.71
21 25 74 45.40 45.43 63.66
22 25.62 45.61 45.65 63.60
23 25.49 45.71 45.64 63.65
24 25.62 45.19 45.48 63.62
25 25.63 45.44 45.32 63.65
26 25.61 45.74 45.58 63.56
27 25.80 45.63 45.23 63.60
28 25.73 45.80 45.52 63.91
29 25.55 45.32 45.50 63.61
30 25.55 45.61 45.41 63.71
31 25.57 45.63 45.59 63.79
32 25.61 45.31 45.47 63.55
33 25.58 45.59 45.48 63.61
34 25.54 45.59 45.64 63.68
35 25.59 45.42 45.66 63.69
36 25.74 45.43 45.73 63.68
37 25.86 45.62 45.62 63.72
38 25.43 45.62 45.47 63.66
39 25.67 45.67 45.59 63.65
40 25.63 45.71 45.46 63.57
41 25.78 45.69 45.48 63.63
42 25.53 45.51 45.52 63.59
43 25.67 45.47 45.64 63.70
44 25.44 45.67 45.62 63.76
45 25.56 45.62 45.64 63.57
46 25.88 45.49 45.59 63.66
47 25.56 45.55 45.46 63.64
48 25.72 45.57 45.41 63.75
49 25.62 45.45 45.27 63.68
50 25.58 45.48 45.52 63.64
51 25.81 45.57 45.57 63.60
52 25.56 45.27 45.62 63.59
53 25.40 45.69 45.58 63.69
54 25.40 45.34 45.32 63.76
55 25.71 45.33 45.64 63.76
56 25.42 45.79 45.47 63.58
57 25.53 45.35 45.67 63.79
58 25.72 45.46 45.53 63.65
59 25.62 45.67 45.55 63.51
60 25.73 45.65 45.67 63.66

Summary Statistics:
Average 25.58 45.54 45.52 63.63
Std. Dev. 0.131 0.156 0.121 0.092
Max. 25.88 45.83 45.73 63.91
Min. 25.31 45.19 45.21 63.36
Range 0.57 0.64 0.52 0.55
25 Pctle. 25.49 45.41 45.455 63.59
75 Pctle. 25.67 45.67 45.6125 63.68

Note: Randomized measurement locations
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APPENDIX D Sample Calibration Certificate

son Ro
HARDNESS TES'
f.STANDARD

Imweff
T BLOCK
AA CLASS

: HR CR:c"R: 0-2~
CERTIFICATE of CALIBRATION

The Wilson Standards Laboratory cetifes that
the calibration results recorded on this certi-
ficate are true and correct. and that this test block
has been manufactured and standardized in
accordance with ASTM standard E 18.

This test block was calibrated on a verified lab-
oratory standard tester with load and depth
measuring devices traceable to NIST (NSS)'.
The Wilson calibration program conforms to
MIL-STD-45662A. The hardness standards main-
tained by the Wilson Standards Laboratory are
th originly developed by Stanley P. Rockwell
in 1919.

SERLNO. O. 25 N

L MN. U. a07 51 J 5

-. No. 8211252017 1 9 3
WISOXO Instruments

Divsion of Instron Corporation
100 Royal Street, Canton, MA 02021
(617) 575-6000 FAX: (617) 575-5770

CERTIFIED CALIBRATION RESULTS
1 &" 4 f-A

Use this standardized hardness test block
to verify the operation of a tester in accor-
dance with ASTM E18. A verified tester
meets both Repeatabliity and Error
criteria set forth in the standard.

As established by ASTM E18.
the tolerance to be used
for Error calculation at
this hardness value is: t

In use, this biLck should be supported on
a pedestal spot anvil. Tests must not be
made any closer together than 3 diameters
since previous indentations distort the hard-
ness of the surrounding area. Only the
surface with the Wos9m Standards Labor-
atory mark is standardized. No other surface
should be used. The standardized surface
must not be reworked.

DATE (01. 23. 9Y

wmee, aoAwkw, am webrtb No
registered trademarks of Instruments. Inc.
Madin USA
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APPENDIX E

Figure E-1:

Test Block Measurement Patterns

Typical NIST Sequential Measurement Pattern (68 to 77 indents)

25d

Ref.: Courtesy of the National Institute of Standards and Technology, Gathersburg, MD

149

0.04
0.02
0.004104

-0,02

-0.0

-0.10
-0,12
0.14

-0.12

-o.20



APPENDIX E

Figure E-2: I

Test Block Measurement Patterns

nstron Measurement Pattern (25 indents)
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APPENDIX F 0-0 Plots for Normality Goodness-of-Fit

Figure F-1:

Figure F-2:

.. .. .. .. .. ... .. .. .0i . .. .. . .. .. .. .. . . .

Figure F-3:

Q-Q Plot for HRC 30 Measurements, SRM 965130005
NIST Deadweight Tester, Large grade test block

Q-Q Plot for HRC 30 Measurements, 96130006
Instron s008 Tester, Large Grade Block

)



0-0 Plots for Normality Goodness-of-Fit

Figure F-4:

Q-Q Plot for HRC 40 Measurements, SRM 95140004

Figure F-5: Figure F-6:
Q-Q Plot for HRC 40 M uremnnts, 940004Q-Q Plot for HRC 40 MIwasurements, 9140004
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0-0 Plots for Normality Goodness-of-Fit

Figure F-7:

Q-Q Plot for HRC 0 Measurements, SRM 961560005
NIST Deadweight Tester, Large Grade Test Block

Figure F-8: Figure F-9:
Q-Q Plot for HRC EO MHmsuremnats, S91000
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0-0 Plots for Normality Goodness-of-Fit

Figure F-10:

Q-Q Plot for HRC 60 Measurements, SRM 95160001
NIST Deadweight Tester, Large Grade Test Block

Figure F-11:
Q.Q Pot for HRC 0 Mmsurenanus, OO

Instron oO Mmsuranmls. Lre Grade Block

Figure F-12:
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APPENDIX F

Figure F-13:

Q-Q Plot for HRC 25 Measurements, 95125016
Instron 600R Tester, Large Grade Block

Figure F-14:

Q-Q- Plot for HRC 45 Measurements, 95145005
Instron 600R Tester, Large Grade Block



APPENDIX F

Figure F-15:

Q-Q Plot for HRC 45 Measurements, 95145006
Instron 600R Tester, Large Grade Block

Figure F-16:

Q-Q Plot for HRC 63 Measurements, 95163020
Instron 600R Measurements, Large Grade Block

I



APPENDIX F

Figure F-17:

0-0 Plots for Normality Goodness-of-Fit

Figure F-18:

Q-Q Plot for HRC 25 Measurements, H00128
Instron 500S Tester, Regular Grade Block

Q-Q Plot for HRC 25 Measurements, H00128
Instron 600S Tester, Regular Grade Block
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Figure F-19:

0-0 Plots for Normality Goodness-of-Fit

Figure F-20:

Q-Q Plot for HRC 45 Measurements G00390
Instron 600S Tester, Regular Grade Block

Q-Q Plot for HRC 45 Measurements, G00390
Instron 500S Tester, Regular Grade Block
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Figure F-21:

0-0 Plots for Normality Goodness-of-Fit

Figure F-22:

Q-Q Plot for HRC 63 Measurements, R02589
Instron 600S Tester, Regular Grade Block

Q-Q Plot for HRC 63 Measurements, R02589
Instron 500S Tester, Regular Grade Block
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Figure F-23:

Histograms for Normality Goodness-of-Fit

Figure F-24:

Histogram for HRC 45 Measurements, G00390
Instron SOOS Tester, Regular Grade Block
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APPENDIX F Histo2rams for Normality Goodness-of-Fit

Figure F-25:

Histogram for HRC 63 Measurements, R02589
Instron 500S Measurements, Regular Grade Block
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APPENDIX G Test block microstructures showing random distribution of
steel iron-carbon phases and other constituents

Figure G-1: Typical test block microstructure, 500X, Large grade, 2% nital etch

Figure G-2: Typical test block microstructure, 1250 X, Large grade, 2% nital
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APPENDIX H Tempering Curve for Block Heat Treatment to Target
Nominal Hardness Level

Figure H-l: Tempering curve showing interdependence between time and temperature
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APPENDIX I

MAN

Example Ishikawa Diagram for Root-Cause Investigation
in the Test Block Manufacturing Process

MATERIAL METHOD

Ref.: Shiba, A New American TQM
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