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Abstract

In this thesis, we analyze three optimization algorithms designed to solve mathe-
matical programming problems. We prove useful results about them, and attempt
to implement some of the more promising ones. The optimization problems we con-
sider are all members of P, the class of problems solvable in polynomial time. They
are reducible to each other and the algorithms we study can be adapted to solve
any of the problems. The motivation for this thesis is the pursuit of algorithms
for optimization problems that are efficient in theory (in P) as well as efficient in
practice. However, to come up with such algorithms is not the goal of this thesis.
We hope that by studying the theoretical properties of, as well as examining the
practical perfomance of these optimization algorithms, we can get a step closer to
devising an algorithm that is efficient, both in theory and in practice.
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Chapter 1

Introduction

Many optimization problems are equivalent to each other. This is so because they

are members of a class of problems called P, the class of polynomial-time-solvable

problems. It has been proven that all problems in this class are (polynomially)

reducible to each other. Consequently, a known algorithm for a certain kind of

problem in P can be adapted to solve a different kind of problem in P. In this thesis,

we explore algorithms for different types of problems in P, learn from them, prove

useful properties that they might have, and implement some of the more promising

ones. We have the assurance, however, that progress toward any one of the algo-

rithms is progress toward the more efficient solution of all the various optimization

problems we study.

Once it has been shown that a certain kind of problem is in P, there is no guaran-

tee that there is a practically efficient algorithm that solves the problem. This might

seem to contradict what I mentioned above, that an algorithm which solves one type

of problem in P can solve any other. Although this is true, algorithms might have

an efficient implementation for one kind of problem, and yet, none for another kind

of problem. Moreover, efficiency is measured both from a theoretical and a practical

perspective. Theory asks the question "What is the worst-case performance of the
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algorithm?", while practice asks the question "How does the algorithm perform in

frequently encountered situations?"

We explore algorithms for different types of problems, learn from them and point

out their strengths and weaknesses. We will also be involved in the software imple-

mentation of some of the more promising algorithms. Specifically, we concentrate

on three mathematical programming algorithms:

1) Von Neumann's Algorithm for linear feasibility with a convexity constraint

2) the Relaxation Method for linear inequalities, and

3) the Ellipsoid Algorithm.

We first study these algorithms and their various properties, and prove some

useful results about them. We then focus on Khachiyan's Ellipsoid Method and

implement it for two different problems, system of linear inequalities and the semi-

definite programming problem. The program will take as input a system of linear

inequalities or a semi-definite program and will show the iterations of the Ellipsoid

Algorithm and return a solution if one exists, i.e. if the system is feasible. The

motivation for doing all of the above is the pursuit of algorithms for optimization

problems that are efficient in theory (in P) as well as efficient in practice. However,

to come up with such algorithms is not the goal of this thesis. We hope that

by proving relevant properties of, and implementing some promising optimization

algorithms to see how they run in practice, we can get a step closer to devising an

algorithm that is more efficient, both in theory and in practice.
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Background

2.1 Types of Problems

Although we mentioned in Chapter 1 that all problems in P are equivalent to each

other, we state here the different types of problems that the various algorithms solve

because these are the "modes" that they work in.

2.1.1 System of Linear Inequalities

Find an n-vector x satisfying

(2.1)Saijxj + bi > 0,
j=1

2.1.2 Linear Feasibility with a Convexity Constraint

Find x = (xl, x 2, ..., x) > 0, such that

n n

E Pj = 0, E = 1
j=1 j=1

(2.2)

where Pj E Rm and 1 P II=1 Vj



2.1.3 Semi-Definite Programming

2) Find an n-vector x satisfying

,xAi >- 0 (2.3)
i=1

where Ai are symmetric matrices.

In other words, find x such that the above summation yields a positive definite

matrix.

2.2 Motivation

Given an m x n matrix A, we know that one and only one of the following two

systems has a solution:

Ax > e (2.4)

or

ATy = O, y > O, eTy = 1 (2.5)

Consider the problem of devising an efficient algorithm that will attempt to solve

system (2.4) if it is feasible.

If (2.4) were feasible, the Relaxation Method could be used to find the solution.

On the other hand, if (2.5) were feasible, the Von Neumann Algorithm would be

applicable. However, the problem is that we do not have an a priori idea of which

system is feasible.

Since the two algorithms work on dual problems, it would be nice to know the

relationship between the variables local to them. This would allow us to start with

the Von Neumann Algorithm on a particular system, solve it if the system is feasible,

or detect infeasibility and return the current state of the variables. If the original

CHAPTER 2. BACKGROUND 2.2. MOTIVATION
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system is infeasible, the Relaxation Method could take over on the dual system from

the point where the Von Neumann Algorithm left off on the original system.



Chapter 3

The Relaxation Algorithm

Motzkin and Schoenberg's Relaxation Algorithm solves the problem:

Find an n-vector x satisfying

Saijx + bi > 0 (3.1)
j=1

Their claim is that each of the inequalities (3.1) defines a closed half-space:

Hi = {x E Rn j aijxj + bi 2 0}, i = 1,..., m (3.2)

Using (3.2), the set of all solutions to (3.1), i.e., the feasible set is, of the form

A = ni= Hi.

At this point, we must introduce a concept, that of pointwise distance. A point Pjm+

is pointwise-closer to set A than another point pj if pj - a 1>1 pj+i - a I Va E A.

The terms pointwise-equidistant and pointwise-farther are defined analogously. The

Relaxation Algorithm furnishes a sequence of points Pi, such that for j > 1, Pj+I is

pointwise closer to A[10].
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The Relaxation Algorithm works as follows. If Pk is the current point, the al-

gorithm chooses a violated constraint (i.e. a hyperplane 7ri that Pk is on the wrong

side of), defines qk to be the projection of Pk on the hyperplane 7r, and computes

pk+1 as pk+1 = Pk + A(qk - Pk) where A is a fixed number between 0 and 2.

This method can be summarized as
AAi(bi-Aipk)

Pk+1 -- Pk AiT A

Depending on the choice of A, we can get some interesting results about the termina-

tion of the Relaxation Method. These results are summarized in the following table:

0<A<l A=1 1<A<2 A=2

Does the YES YES YES YES

sequence converge? Proof 1 Proof 2 Proof 2 Proof 2

Does it NO NO YES YES

terminate? CounterEx 1 CounterEx 2 Proof 3 Proof 4

Can we choose any NO YES YES YES

violated constraint? CounterEx 3 Proof 2 Proof 2 Proof 2

Table 3.1: Summary of the properties of Relaxation Method

3.1 Proofs

3.1.1 Proof 1

The first thing to notice is that the Relaxation Method never produces duplicate

points. Also, since the polytope A has non-zero volume, the locus of all points

pointwise-equidistant from A is simply a point. We infer that the sequence of points

pi is getting STRICTLY pointwise-closer to A. It follows from this that pi must

converge to SOME point. Say the sequence converges to a point 1 ý A and the

3.1. PROOFS
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distance from I to the farthest violated hyperplane, w7, is x. Since the sequence of

points converges to 1, we know that, after a while, all points will violate 7r.

We are also guaranteed, because of convergence, that there exists a v, such that

I pj+j - p i j< E, for all i > v, and for any choice of E.

But if we choose E less than -, this will not hold true. Consider a point Pi, (i > v)

that violates 7r. Using the max criterion, it will be moved by at least •.

Therefore 1 E A.

0

3.1.2 Proof 2

It was established in Proof 1 that the sequence of points produced by the Relaxation

Method converges to some point, I (inside or outside A). We suppose that 1 V A
and reach a contradiction.

Case 1: 1 V A and I does not lie on any hyperplane

Figure 3.1: Sequence of points must converge to a point in feasible region

If 1 ý A, then it must violate at least one constraint, i.e. be on the wrong side of a

hyperplane. Let d be the distance from I to a closest hyperplane (not necessarily a

violated one). We can guarantee, since the sequence of points converges to 1, that

3.1. PROOFS
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after a while all points in the sequence will lie in the sphere S = {x I x - I= d/2}.

Let p, be such a point inside S. We note that p, and 1 violate the same constraints.

Now, Ps+l will be the projection or reflection of p, on some hyperplane (since A is

between 1 and 2). In either case, p,+l is outside S and we have a Contradiction.

Case 2: 1 ( A and I lies on exactly one hyperplane

You simply let d be the distance to the next closest hyperplane and use an approach

similar to that of Case 1.

Case 3: 1 0 A and I lies on the intersection of multiple hyperplanes

We again let d be the distance to the closest hyperplane that 1 does not lie on,

and claim that after a while all points in the sequence will lie in the sphere S =

{z I x - 1 J= d/2}. However, we now need to show that some point in this sphere

will violate a constraint other than the ones that 1 lies on. Or equivalently, if we

temporarily limit our constraints to the hyperplanes that 1 lies on, we need to show

that the sequence of points terminates.

We use the property that S is compact, and the theorem -

HEINE-BOREL THEOREM: T is compact = Each open cover of T contains a

finite subcover.

We first give a brief background on open sets[11]. Define a topology on a set X to

be a collection of its subsets, T, having the following properties:

1) 0 and X are in T.

2) The union of the elements of any subcollection of 7 is in 7.

3) The intersection of the elements of any finite subcollection of 7 is in 7.

We say that a subset U of X is an open set of X if U belongs to the collection T.

A direct implication of the Heine-Borel theorem is that in order to show there

exists a finite cover, it suffices to show that there exists an infinite open cover, which

3.1. PROOFS
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is what we do below.

We provide a cover C for S in the following manner.

Let Ci = {x E S I x falls in A after i iterations}. If C is the collection C1, C2,...,

then it is straightforward to show that C is a topology on S.

Although C is an infinite cover, the Heine-Borel theorem guarantees that there exists

a finite subcover for S since S is compact.

Therefore, pi terminates in a finite number of steps.

0

3.1.3 Proof 3

Let p' be the sequence of points generated by the Relaxation Method. We know

that, since pi converges to a point 1 on the boundary of the feasible region A, there

exists a v, such that pi(i > v) violate only those constraints that I lies on. Let S be

the sphere S = {xj I x - 1 = p - 1 }. We know that there exists a w > v such

that pi E S(i > w). We have now reduced this problem to the termination problem

stated in Case 3 of Proof 2. Therefore, pi terminates in a finite number of steps.

3.1.4 Proof 4

We are at least guaranteed convergence on the boundary of A (see Proof 2). We

suppose that the sequence does not terminate and reach a contradiction. We note

that, because the sequence of points converges to a point I on the boundary of A,

after a while all points in the sequence will violate only those constraints that 1 lies

on. Let pv,,- be the last point that violates some other constraint. Let S be the

sphere S = {xl I -1 =1 pvo - I }. We note that every point p,(v > vo) lies on S

because it is the reflection of the previous point in a hyperplane through the center

of S, namely 1. Therefore, p, can never converge to 1.

0

3.1. PROOFS
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3.2 Counterexamples

3.2.1 Counterexample 1

Figure 3.2: Relaxation Method does not terminate for 0 < A < 1

Start off with P1. It only violates H1 , and so does every point thereafter.

3.2.2 Counterexample 2

Region A

feasible
region

Figure 3.3: Relaxation Method does not terminate for A = 1

H3

H 1 P9 ~ ~

CHAPTER 3. THE RELAXATION ALGORITHM 3.2. COUNTEREXAMPLES
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Since A = 1 corresponds to the projection method, the only way a sequence will

terminate is if some point is projected on to a hyperplane in the feasible region.

In the above example, there are only 3 hyperplanes. We see that H3 is never violated.

So our only hope is that a point be projected on to H1 or H2 in the feasible region.

We note that in order for a point to be projected on the feasible side of H2 , it must

be in Region B (and similarly for Hi in Region C).

Therefore, Pi in the figure above serves as a counterexample.

3.2.3 Counterexample 3

.P1
H3

Figure 3.4: Relaxation Method needs max criterion for 0 < A < 1

Point P1 violates H 1 and H3 . Using the max criterion, you'd move it closer to H3.

However, if you do not use the max criterion and keep moving it closer to H1, the

sequence of points does not converge to a feasible solution.

0
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Von Neumann's Algorithm

4.1 The Problem

Von Neumann's Algorithm tries to solve the homogeneous form of the Linear Fea-

sibility Problem with a convexity constraint, namely, find x = ( 1, X2, ... , xn) Ž 0,

such that

_ Pjxj = 0, E x = 1 (4.1)
j j

where Pj E Rm and II Pj jj= 1 Vj.
The geometric interpretation of this problem is that Pj E Rm are points lying on

a hypersphere S with radius equal to 1 and the center at the origin[6]. The problem

then becomes that of assigning non-negative weights xj to the points Pj so that

their weighted vector sum is the origin.

4.2 The Algorithm

The algorithm is initiated with any approximation to the origin:

U1 = A 1 = CPjxl, where



CHAPTER 4. VON NEUMANN'S ALGORITHM

xl1 = 1, x 1 = 0 for j : 1. (4.2)

Then, the algorithm improves its initial guess iteratively with the following steps

until it finds a solution that is good enough, i.e., until 11 At 11= e, where 6 is the

desired precision.

On iteration t,

* Among directions from the origin, find the point Pj which makes the largest angle

with the residual vector At- 1.

* Stop if v = (At-_)TPj is positive for all j.

* At is the closest point to the origin on the line segment joining At-1 to Pj. Update

At = AAt- 1 + (1 - A)Pj

ut2 = Av + (1 -A)

xti = Axt-li for i # j and xtj = Axzt-1 + (1 - A)

where A = (1 - v)/(Ut-_ 2 - 2v + 1)

The above can be summarized as the update formula:

+ = (1 -I Aixt) + (I2-Aizt
Xt+l = xt(1 -Ill-A4) + (lt A ')ei.JJAi- t l[ I" Ai _Xtl1

2

4.2. THE ALGORITHM
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The Ellipsoid Method

The Ellipsoid Method is the first known polynomial-time algorithm for linear programming[4].

However, it has been criticized for being inefficient in practice. Our goal is to ex-

plore this conjecture by implementing the Ellipsoid Method for the following two

problems, and running some average-size test cases:

1) Find an n-vector x satisfying

ATX < b, (5.1)

where AT is m x n and b is an m-vector.

2) Find an n-vector x satisfying

Ex Ai > 0 (5.2)

where Ai are symmetric matrices.

In other words, find x such that the above summation yields a positive definite ma-

trix.
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The basic idea of the Ellipsoid Method is to generate a sequence of ellipsoids

until the center of the current ellipsoid is a solution. In this way, it is similar to the

other algorithms we have come across since it starts out with a guess, the center of

the first Ellipsoid, and keeps modifying it as necessary.

5.1 System of Inequalities

For problem (6.1), the method generates a sequence E 0, El, ..., Ek, ... in the following

manner:

1) Let Ek be represented as Ek = {l(x - zk)TJ- (X- Xk) < )}. Start with

Eo = {(x(x - O)TI(x - 0) < 1} and 6 = 2.

2)Check to see if the center Xk, of the current ellipsoid Ek is a solution. If not,

some constraint violated by Xk, say oaTx <_ is chosen and the ellipsoid of minimum

volume that contains the half-ellipsoid {xz EklaTx < aTXk} is constructed. This

involves updating Xk and J.

3)Run until you find a feasible point or you hit the stopping criterion determined

as follows:

4)Factor J = MTDM and stop if Dii > 6 for some i.

5)If you stop, reset 6 = ý and restart.

In order to implement the above method in Matlab, I created the following five

modules:
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*emethod: This is the main module that gets the system to be solved from the

user, does the necessary initialization, and calls the required modules.

*iterate: This module is responsible for performing the iterations in an organized

fashion, and for printing the results of each iteration.

*check: This module checks to see if the proposed solution, or the center of the

current ellipsoid is a feasible solution. If not, it checks to see which constraint the

proposed soltion violates and returns that constraint.

*update: If the proposed solution does not work, a new ellipsoid must be created.

The update module takes care of that by updating the current center, J matrix and

the other related parameters.

*pump: This module checks to see if the stopping criterion has been reached. If so,

it updates the 6 and instructs the iterate module to start from afresh with the new 6.

5.2 Semi-Definite Programs

Here we are concerned with problem (5.2), the semi-definite programming problem.

The implementation of this problem is similar in a number of ways to that of

the System of Linear Inequalities. However, finding the hyperplane that separates

the proposed solution from the feasible set is a great deal more challenging in this

case. In what follows we provide a way of computing such a hyperplane.

Consider the feasible set X = {x I ExjAi >- 0}, where As are symmetric matri-

ces. Define A * B = tr(AB), where tr(M) = Cl 1 Mii [8].

Let the proposed solution be z. We let Q = fiAi, and factorize Q = MTDM,

where MTM = I.

Let d = diagonal of D. If d > 0, then Q > 0 and we are done. If not, there exists a
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j such that dj O0. Let E be the matrix with 1 in the jth diagonal element and the

rest of the matrix elements 0, and let P = MTEM. Also let yi = Ai*P, i = 1, ... , m.

Proposition tTy • 0.

Proof Ty = E £Y -

Proposition xTy > 0 Vx

Proof If xz X, E zA >

and P >- 0, and P # 0.

EZiA1 P = Q P= D E=d O 0.

E X.

0. xTy = ziAiP =( xiAi)-P > 0 since E zAi >- 0

9

Therefore, the hyperplane {x I yTx = 0} separates t from X.

Once we have the separating hyperplane, the implementation is almost identical

to that of the System of Linear Inequalities. We simply have one additional mod-

ule, namely, separate, in addition to the emethod, iterate, check, pump and update

modules. The actual matlab code for both problems is included in Appendix A.
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Results and Further Extensions

Our purpose behind studying the Relaxation Method and the Von Neumann Algo-

rithm was the pursuit of devising a single, efficient algorithm that would solve the

feasible system among the following pair:

Ax 2 e (6.1)

and

ATy = O0, y 0 O, eTy = 1 (6.2)

We knew that such an algorithm would need a criterion to determine which sys-

tem was feasible and "switch modes" appropriately. The Von Neumann Algorithm

provided us with a way of determining infeasibility. Therefore, it sounded like a

good idea to start the algorithm mimicking the Von Neumann Algorithm, stopping

with a feasible solution if the latter did, or continuing with mimicking a different

algorithm suitable for the dual system if the Von Neumann Algorithm declared the

original system infeasible. This is where the Relaxation Method came into action.

We proved that it was guaranteed to solve the dual system and stated the condi-
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tions under which it terminated in a finite number of iterations, among other things.

However, it was not clear where the Relaxation Method would start. The idea was

to not re-invent the wheel and, if the Von Neumann Algorithm declared infeasibility,

convert the current state of the variable to their corresponding dual variable state.

One of the major extensions of this thesis can be in the area discussed above.

Specifically, if the duality relationship between the variables of the Von Neumann

Algorithm and the Relaxation Method is articulated, then the goal of devising a

combined algorithm can be achieved. Although this combined algorithm would be

a very general one, it would not be an efficient one in theory since neither the Von

Neumann Algorithm nor the Relaxation Method are polynomial-time. For this rea-

son, we researched the Ellipsoid Method.

The Ellipsoid Method was the first known algorithm for mathematical program-

ming that was in P, i.e. polynomial-time in its worst case. However, this was no

guarantee that it would be able to solve the average everyday problems efficiently.

Therefore, we tested the Ellipsoid Method to see how it would work in practice. We

implemented the algorithm for two types of problems - set of linear nequalities, and

semi-definite programming - and then ran it on a set of medium-size problems. On

an absolute scale (since we did not have implementations of other algorithms to test

it against), the Ellipsoid method behaved well. It certainly solved the problems in

a number of iterations that was polynomial in the size of the problems. Another

possible extension of this thesis is to determine exactly how the Ellipsoid Method

performs relative to the commonly used optimization algorithms.
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E-Method Code

A.1 System of Inequalities

A.1.1 emethodl

1 function [x] = emethodl

% EMETHODi

0/

X

%

Solve Ax <= b using the Ellipsoid Method.

EMETHOD1 prompts the user for an m x n matrix A and an m-vector b.

It returns an n-vector x if a solution to Ax <= b exists.

Otherwise, it declares the system infeasible.

See also EMETHOD2

8 global j x a b t s d m n counter del;

%%% Prompt the user for the input

a = input('Please enter a matrix in the form [rowl; row2; ... ]');

b = input('Now enter the ri ht hand side vector in the form [comDonents]'):
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m = size(a,1);

n = size(a,2);

del = 1/2;

j = (1/del)*eye(n);

x = zeros(n,1);

t = 1/(n + 1);

s = 2/(n + 1);

d = (n^2)/(n^2 - 1);

%%% m is the number of rows of a

%%% n is the number of columns

X%% initialize ellipsoid

%%% initialize center of ellipsoid

20 iteratel;

A.1.2 iteratel

1 function [] = iteratel

I ITERATE1 Perform the iterations of the Ellipsoid method for the problem

X Ax <= b. Continue performing iterations until the proposed

X solution. x. works

5 global j x a b t s d m n counter del;

proposed = '1';

i = 1;

while i < n+1

temp = num2str(x(i));

if size(temp,2) < 4 proposed = [proposed, temp];

else DroDosed = [rDronosed_ temn(1 1:3)]

APPENDIX A. E-METHOD CODE A.1. SYSTEM OF INEQUALITIES

e e =
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12 end

13 if i < n proposed = [proposed, ' '];

14 end

15 i = i+1;

16 end

17 proposed=[proposed,']'];

18 fprintf('Iteration 7g --- Soln: %s\n',counter,proposed);

19 y = checkl;

20 if y == 0 return

21 else updatel(y);

22 end

23 pumpl;

24 counter = counter + 1;

25 iteratel;

A.1.3 checkl

1 function [y] = checki

2 % CHECK Look for a violated constraint of the form a(i)x > b(i). If one exists,

3 % return i. If none exists, then x is a solution to the system ax <= b.

4 % In the latter case, return 0.

5 /

6 % Works in conjuction with optimization functions for the problem

7 % ax <= b which have declared x a b and m as global variables
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8 global j x a b t s d m n counter del;

9 i=1;

10 while i < m+1

11 if (dot(a(i,:),x)) -= (b(i) + .0001) W/%%. does x violate a(i)x <= b(i)

12 y = i;

13 return;

14 end

15 i = i+1;

16 end

17 y = 0;

A.1.4 pumpl

1 function [] = pumpl

2 % PUMP1 Check to see if the given stopping criterion has been reached.

3 % If so, "pump" the volume of the ellipsoid and restart.

4 global j x a b t s d m n counter del;

5 [M,D] = eig(j);

6 dia = diag(D);

7 minim = min(dia);

8 if ~(minim > del)

9 del = del*2;

j = (1/del)*eye(n);

x = zeros(n,1);

A.1. SYSTEM OF INEQUALITIES
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12 end

A.1.5 updatel

1 function [] = updatel (i)

7 UPDATE1 Adjust the proposed solution and the corresponding ellipsoid after

% an unsuccessful iteration of the Ellipsoid method for the problem

% Ax <= b

5 global j x a b t s d m n counter del;

= a(i,:);

= (j'*v')/dot((j'*v'),(j'*v'));

= j*y;

= x - (t*w);

= sqrt(d)*j*(eye(size(j))+(y'*y));

A.2 Semi-Definite Programming

A.2.1 emethod2

1 function [x] = emethod2

X EMETHOD2 Solve the problem Sigma(x(i)A(i)) 
is p.d. using the E11ipsoid

X Method. EMETHOD2 prompts the user for a collection of i

X symmetric matrices of size n. It returns an i-vector x if a% vmerc arie f ie .Itrt n -eco xi
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solution to the above system exists. Otherwise, it declares

the system infeasible.

See also EMETHOD

9 global ina j xv del

10 a = [] %%% a will consist of all input matrices side-by-side

11 7%% Prompt the user for input

12 i = input('How many symmetric matrices are there in the problem?')

13 temp = input('Enter the next matrix and hit return')

14 n = size(temp,2)

15 a = [a temp]

16 del = 2

17 for jk = 2:i

18 temp = input('Enter the next matrix and hit return')

19 a = [a temp]

20 end

21 j = (1/del)*(eye(i))

22 x = zeros(i,i)

%%% initialize ellipsoid

%%% initialize center of ellipsoid

33

5 %

6 %

7 %

8 %
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23 pump2

24 iterate2 %%% now ready for first iteration of E-method

A.2.2 iterate2

1 function [] = iterate2

2 % ITERATE Perform the iterations of the Ellipsoid method for the problem

Sigma(x(i)A(i)) is p.d. Continue performing iterations until

the proposed solution, x, works

5 global i n a j x v

6 M = check2

7 if v == 0 return

8 else separate2(M)

9 update2

%%% Check to see if the current solution works

/%% If it works, return to caller function

%%% If not, update the parameters, and

10 end

11 iterate2 X%% Perform iteration with the updated parameters

A.2.3 check2

1 function [M] = check2

3 0

4 %
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CHECK Look for a violated constraint of the form d(i) <= 0 (i.e. an

eigenvalue of the sum matrix is non-positive). If one exists,

return i. If none exist, then the current x is a solution, in

which case, return 0.

6 global i n a j x v ys

7 Q = zeros(n)

for jk = 1:i

temp = a(:,[((jk-1)*n + 1):jk*n])

Q = Q + x(jk)*temp

end

[M,D] = eig(Q)

d = diag(D)

for k = 1:n

if d(k) <= 0

v=k

return

%, Q is the sum of the

% individual A(i)
X

C

X Check for an eigenvalue <= 0

X
X
X

end

end

20 v = 0
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A.2.4 pump2

1 function [] = pump2

2 % PUMP2 Check to see if the given stopping criterion has been reached.

If so, "pump" the volume of the ellipsoid and restart.3 %

4 global i n a j x v del

5 [M,D] = eig(j)

6 dia = diag(D)

7 ind = 1

8 while ind < i+1

9 if dia(ind) > del

10 del = del/2

11 j = (1/del)*eye(i)

12 pump2

13 end

14 ind = ind + 1

15 end

A.2.5 separate2

1 function [] = separate2(M)

2 % SEPARATE Find the hyperplane that separates the current proposed solution,

3 % x, from the feasible region
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4 global i n a j x v q

5 E = zeros(n)

6 E(v,v) = 1

7 P = M'*E*M

8 for z = 1:i

9 temp = a(:,[((z-l)*n + 1):z*n])

10 q(z) = trace(temp*P)

11 end

.%%%%%%%% q'x = 0 is the desired separating hyperplane. %%/O%%%%%%%%

A.2.6 update2

1 function [] = update2

2 % UPDATE Adjust the proposed solution and the corresponding ellipsoid after

3 / an unsuccessful iteration of the Ellipsoid method for the problem

4 % Sigma(x(i)A(i)) is p.d.
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5 global i n a j x v q

6 B = j*j'

7 al = (q*x)/sqrt(q*B*q')

8 t = (1+i*al)/(i+1)

9 s = 2*t/(1+al)

10 d = (i^2)*(1-(al2))/((i^2)-1)

11 y = (j'*q')/dot((j'*q'),(j'*q'))

12 w = j*y

13 x = x + (t*w)

14 j = sqrt(d)*j*(eye(size(j))-pi*dot(y,y))

/%% adjust the current solution, and

/%% the corresponding ellipsoid
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