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Abstract
The thesis objective was to determine the effect of mold thermal spatial variations

on the reduction of polymer residual stresses in injection molding. An aluminum mold
with a rectangular cavity constructed with lamination layers and Plexiglas windows was
employed. The spatial thermal variations were manipulated with cartridge heaters and
cooling channels perpendicular to the direction of the melt flow front. The polystyrene
melt temperatures were directly measured to determine the effects of the thermal profiles.

In conventional molding, without heating or cooling, direct melt temperature
measurements showed that the temperature profile of the melt had a skewed parabolic
thermal profile. In a rectangular part the middle (flowlength) region had the highest
temperatures, the sprue region cooler, and the end of the cavity coldest. A mold thermal
profile inverse to this skewed parabolic melt thermal profile should balance the cooling,
thereby reduce residual stresses. Experimental results validated this hypothesis.

Furthermore, correlations were developed which use the latent heat of fusion as a
basis of the thermal analysis. These correlations calculate the skin layer thickness during
injection and the solidification front speed after filling. Warpage calculations were based
on those calculations.

The melt temperature distribution in the injection unit nozzle was nonuniform and
had temporal and spatial variations of 100 F and 150 F, respectively. Additionally, thermal
inertia imbalance between mold halves was established to be as great as 300 F. These
nonuniform initial conditions represent a hazard to rapid thermal cycling of the mold that
may create greater variations in melt temperatures. Thus, the application of low thermal
inertia injection molding with rapid temperature cycling heavily relies on an in depth
analysis and understanding of heat transfer mechanisms in injection molding. Such a
treatment is presented in this thesis.

Furthermore, an alternate method of observing thermal spatial variations on the
mold was developed. Photoelastic methods were employed to observe the development
of birefringence patterns (caused by stresses in the melt) in a rectangular cavity
constructed with a transparent window on each side. These birefringence patterns can be
correlated with the residual stresses in the part that caused the warpage. The evolution of
the birefringence patterns facilitates the generation of appropriate thermal profiles to
balance these fringe patterns, thereby reducing residual stresses.
Thesis Supervisor: Dr. David E. Hardt
Title: Professor of Mechanical Engineering
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CHAPTER I

Introduction

1.1 Motivation

Injection molding is one of the most commonly used methods of processing

polymers. The process uses plastic pellets or powders that are melted and formed in a

mold to allow rapid, automated production of a wide variety of complex, three-

dimensional parts in large production volumes at low cost. The process is capable of

producing compound curvatures, snaps, hinges, bosses, threaded holes, gear teeth and

many other features. With proper design, these complex parts can be produced in a single

molding operation, automated to increase production rates, and replace heavier and more

costly metal components.

The injection molding process was patented by John and Isaiah Hyatt in 1872, but

the process was not used extensively until World War II. The low cost and high

production rate have made the injection molding process a very important manufacturing

method. From 1972 to 19781, the volume of injection molded materials grew 15 fold or at

an average rate of 57% per year. In 1980 injection molding was used to produce more

than 5.4 billion pounds of thermoplastic parts with a material cost of more than $2.8

billion 2. In 1981 more than 7.8 billion pounds of thermoplastic material was injection

molded in the United States3 . It is estimated that in the U.S. alone consumption of

injection-molded polyethylene, polypropylene and polystyrene will rise to 11 billion

pounds by 19974. Critical to the expanding adoption of this high volume, low cost

process technology is the ability to consistently produce quality parts. At the same time

Frados, Joel, ed., Plastics Engineering Handbook, fourth edition, Van Nostrand Reinhold Co., New
York, 1976, p. 89.
2 Modern Plastics, Vol. 58, No.1, (January, 1981) pp. 67-73.
3 Modem Plastics, Vol. 59, No. 1, (January, 1982) pp. 77-87.



the need to improve the process to allow it to be applied to an ever increasing range of

parts will become more important.

Although the rapid growth of this industry is a reflection of the benefits to be

gained from injection molding, there are also some costs and some limitations on the

application of the process. The direct costs of injection molding are the costs of the

machines, molds, operators, materials, and energy. Injection molding tools (molds and

related equipment) vary greatly in cost from perhaps $1,000 for a simple tool up to

hundreds of thousands of dollars for multi-cavity molds for complex parts. Machines are

also expensive and vary in price according to the maximum mold clamping force. Mold

manufacturing time, final part quality and energy usage must also be considered when

evaluating the costs versus benefits of injection molding. The typical temperature mold

control start-up costs are $45,000 for a standard Zone Controller unit (provides three

zones of control), $112-190 for mold temperature sensors, and $375-750 for induction

heating elements.5

Therefore, the expense of the mold and the increasing demands on production

cycle time reduction require a careful evaluation of all improveable processes. However,

the research focus should be on the mold half, because the art of mold temperature control

has only been recently investigated and the majority of the cycle time is on the mold

cooling phase. This thesis demonstrates that dynamic mold temperature boundaries

reduce residual stresses and warpage in the part while also improving the optical

properties and quality repeatability of the part. This is a departure from the conventional

thought and practice of injection molding that strives for an isothermal mold condition.

The isothermal mold concept drastically increases the cycle time of the part and induces

distortions in most parts, except in spherical parts or infinitely long bars where the

solidification conduction paths are equal. Furthermore, a reduction in cycle time and

cavity pressure can be realized using dynamic mold temperature boundaries because lower

melt temperatures can be used to achieve comparable quality levels in controls with higher

melt temperatures. This will translate to increased productivity of the mold through both

4 School, Rudy, "Markets for Thermoplastic Elastomers," presented at the Society of Plastics Engineers
52nd Annual Technical Conference, San Francisco, 1994.



greater output per length of time from the reduced cycle time as well as increased

operational life of the mold due to lower cavity pressure. Most importantly, dynamic

thermal boundaries can add robustness to the design of the mold by thermally controlling

the part as it solidifies. This technique can be used to bring parts into the range of

tolerance through thermal manipulation. This ability to control mold temperature and heat

transfer to obtain desired cooling rates will reap large savings in mold design costs on top

of the increased productivity due to the reduced cycle time.

1.2 The Iniection Molding Process

The injection molding process is primarily a sequential operation that results in the

transformation of plastic pellets into a molded part. In thermoplastic injection molding,

the plastic pellets are melted then forced under pressure through the barrel, sprue bushing,

runner, and a narrow gate section into a mold cavity that is clamped closed with

subsequent material solidification to retain the shape of the mold. The material freezes in

the cold mold and is then ejected.

Although the term injection molding is most often used referring to thermoplastic

injection molding, thermosetting materials and ceramic materials can also be processed by

injection molding. Throughout this thesis thermoplastic injection molding will be

discussed even though many of the concepts presented apply not only to injection molding

of other materials but also to many other molding processes such as blow molding,

transfer molding, compression molding, and casting.

An injection molding machine is composed of an injection unit, a clamping unit,
and a control unit. The injection unit consists of the hopper, the barrel, the barrel heaters,
the reciprocating screw and the nozzle. The clamping unit consists of the hydraulic

clamping mechanism and the mold platens. The hydraulic unit consists of the hydraulic

pump and all the associated plumbing and valving required to actuate the injection unit and
the clamping unit. The ways in which injection molding machines perform the functions of

5 Mould Control, REP, "Total Mould Temperature Control Systems," Reader enquiry number 208.



heating, injecting and clamping are the basis for the classification of injection molding

machines. There are two basic varieties of injection molding machines, the reciprocating

screw and the plunger type. In recent years the reciprocating screw machine has been

found to be much easier to control than the plunger machine and as a result the

reciprocating machine is used much more than the plunger machine and the most common

type of injection unit today is the reciprocating screw as shown in Figure 1.2.1. The

reciprocating screw machine will be treated as the conventional molding machine in this

thesis.

Figure 1.2.1: Schematic of the injection end of a reciprocating screw machine.
(Courtesy Rubin, 1972 and the Van Nostrand Reinhold Company)

One major injection molding goal is to produce parts of consistently high quality.

Part dimension consistency is the industry's standard measure of quality. This argues for

controlling plastic part shrinkage, which is dependent on the molding variables of cavity

pressure, mold temperature, melt temperature, and flow rate. Consequently, these

variables should be controlled again with the focus on mold temperature manipulation.

The injection molding machine does not permit direct control over these variables

but allows the operator to adjust machine settings that influence the molding variables.

The inability to directly set and measure the molding variables that affect part shrinkage

complicates the injection molding process. It is molding variables, properly defined and

measured, not necessarily machine settings, that can be correlated with part properties.

[



For example, if one increases barrel temperature, melt temperatures do not necessarily also

increase. Melt temperature is also influenced by screw design, rpm, back pressure and

residence time. It is much more accurate to measure melt temperature and correlate it

with properties than to correlate barrel settings with properties. Thus, the melt

temperature distribution cannot be easily determined. This hampers the determination of

the initial condition of the melt in the mold.

An injection molding process is characterized by four successive stages:

plastication, injection of molten polymer, packing, and part cooling. The cycle that the

machine executes is critical to understanding the molding process. During plastication,

polymer pellets are fed by gravity from the feed hopper to the screw. The rotating screw

causes material to be conveyed and to circulate in the screw flights. The conveyance and

circulation of the material causes viscous heating and melting of the plastic pellets. The

molten material collects in front of the screw as the screw is pushed backwards. The

pressure on the screw is then increased, which causes the rotating screw to move forward

by a hydraulic ram and the molten polymer is pushed through the barrel, sprue bushing,

runner, and gate into the mold cavity. At the end of the screw the material passes through

a one way valve and collects in the front of the barrel. In order to make room for the

melted material the screw moves back in the barrel against a back pressure. As the plastic

is transported along the barrel, heat is generated from the shear work done on the material

and heat is conducted into the material from electric heater bands which surround the

barrel. The polymeric material melts mainly due to the viscous heating effects as it moves

along the screw and the barrel heaters have a minor contribution to the melting. Thus, the

melting of the material is not limited by the low thermal conductivity of plastics.

The screw moves back because of the accumulation of plasticated material in front

of the screw. Then the screw stops turning and is pushed forward by the hydraulic ram.

The motion forward closes the one way valve near the screw tip which limits the polymer

back flow so that the screw effectively becomes a plunger and forces the molten plastic

into the mold. Plastication has transformed the solid plastic pellets into a melt which is at

an elevated and nonuniform temperature, and nonuniform viscosity.



Plastication affects the repeatability of the molding process by influencing the

viscosity of the melt. As previously discussed, viscosity is dependent on melt temperature

and flow rate. During plastication, these molding variables are influenced by barrel

temperatures and screw speed. Heat transferred from the barrel to the plastic results in

the melting of the plastic pellets. The screw speed controls the shear force applied to the

material. Shear force results in further heating-i.e., viscous dissipation-of the plastic.

Back pressure also influences repeatability of the molding process because it determines

the quantity of plastic in the barrel (it compresses the plastic). Ranges for these

temperature, speed and pressure settings are usually provided by the material suppliers,

and should be repeated accurately set-up to set-up.

During the injection the pressure applied to the hydraulic ram is very high. When

the injection timer times out the pressure is reduced to a lower hold pressure. The hold

pressure is maintained on the hydraulic ram until the hold timer times out. At this time the

screw begins turning, preparing the melted material for the next shot as the part in the

mold cools.

The injection rate must be carefully chosen. If the mold cooling effect is much

greater than the screw viscous heating effect, the plastic will solidify before the mold is

filled, resulting in a short shot. If the heating effect dominates, some of the material can

degrade. A pressure in the range of 5,000 to 20,000 psi is usually required to obtain this

rate. At the end of the injection period the flow fills the mold and stops, the pressure rises

rapidly and the material begins to cool. As the material cools it shrinks slightly and more

material is forced into the cavity by the hold pressure acting on the melt. This portion of

the molding cycle is called the hold or the packing stage and continues until the hold

pressure is released or until the gate freezes. After the gate has frozen the material

continues to cool, which at first causes a reduction in pressure (to atmospheric) and then

shrinkage of the material in the cavity. When the part has solidified sufficiently to remain

dimensionally stable during ejection and to retain the shape of the cavity (accounting for

shrinkage), the mold is opened and pins eject the part, runner, and sprue from the mold.

The mold then closes and the next injection cycle begins.



A more complete introduction to the injection molding process has been written by

Rubin6 and a detailed analysis of this type of plastization is given by Tadmor and Klein'.

The clamping units on injection molding machines are either hydraulic or

mechanical. Hydraulic clamps use the pressure in a large cylinder to hold the mold halves

closed. The largest molding machines use hydraulic clamps. Mechanical clamps consist of

an arrangement of moving bars that lock the mold halves together. The clamping forces

are very high which makes the clamping unit the most expensive part of the molding

machine.

A typical mold cavity pressure curve for an injection cycle is shown in Figure 1.2.2.

The cavity pressure is an important process variable since it affects the state of the

molding part directly. The four stages of the injection molding cycle can be readily

inferred from the cavity pressure curve.

The Spencer Gilmore equation8 relates pressure and temperature as follows:

(po + p)(v - v )= RT (1)

The equation indicates that a pressure variation causes spatial temperature

variations in the melt with the bulk melt temperature to be lowest near the front.

Furthermore, because the mold cavity pressure curve indicates that the pressure is both a

spatial and temporal function, the temperature within the melt must have this functional

form.

The pressure trace of a molding cycle recorded directly in the cavity is shown

below in Figure I.2.2. 9

6 Rubin, Irvin I., Injection Molding of Plastics, John Wiley and Sons, Inc., New York, 1973.
7 Tadmore, Z., Engineering Principles of Plasticating Extrusion, Van Nostrand Reinhold Co., New York.
1970.
8 Spencer, R.S., and D.G. Gilmore, "Equations of State for High Polymers," J. Of Applied Physics. Vol.
21, (June 1950).
9 Greener, J., and G.H. Pearson, "Orientation Residual Stresses and Birefringence in Injection Molding."
Journal of Rheology., 27(2), 115-134 (1983).
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Figure 1.2.2: Thin cavity filling pressure trace of one injection molding cycle.
(Courtesy Greener and Pearson, 1983)

The cycle begins at time to = 0 when the hot melt enters the cavity through a

narrow gate. During filling (to -* tfin ), the shear rate and the velocity decrease with

increasing time in the vicinity of the wall as a result of mold cooling. Therefore, to

maintain a constant flow rate, the velocity increases in the hot core region, with the

associated maximum shear rate moving continually inward from the wall with increasing

time. At time tfill , as the cavity is just filled, the flow in the mold virtually stops and the

pressure begins a rapid increase. This time marks the end of the mold-filling phase (I) and

beginning of the packing-and-cooling or postfilling phase (II). P 1il , the pressure at the

end of phase I, is the cavity-filling pressure, i.e., the pressure expended on filling the cavity

with molten polymer under the set conditions. To maintain a high pressure in the cavity

during phase II (to counteract shrinkage caused by cooling) some inflow through the gate

must continue beyond tfill . However, for low packing pressures (P, ), this flow is

confined to the neighborhood of the gate and is expected to have limited effect on the

overall level of molecular orientation in the molded part. P, is kept roughly constant until,

at tgf the gate "freezes-off." After tgf the pressure is controlled by the dynamics of cooling,

whereupon it decays unimpeded toward some asymptotic value Pr, the material in the

er



cavity is already solid. In fact, at to 1 the center of the cavity has reached the glass

transition point, beyond which no further long-range molecular reordering is possible.

Nearly complete thermal equilibrium is reached at some later time ture . Finally, at time te

the cycle is arbitrarily terminated when the mold is opened and the part is exposed to

ambient temperature and pressure. However, the pressure profile varies along the length

of the mold with lower pressure at the end of the mold due to greater shrinkage and the

reduced effect of packing. Since pressure is directly proportional to temperature the

temperature distribution will likely follow this trend. A typical pressure gradient profile is

shown below.

dP
dx
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Figure 1.2.3: Thin cavity filling pressure gradient trace of one injection molding cycle.

Development Of Residual Stresses In Molding

The buildup of stress components will now be discussed using the above figure by

dividing the process into the discrete time levels indicated in the above figure. During

filling (to -+ tfin ), the shear rate and the velocity decrease with increasing time in the

vicinity of the wall as a result of mold cooling. Hence, to maintain a constant flow rate,
the velocity increases in the hot core region, with the associated maximum shear rate

moving continually inward from the wall with increasing time. This leads to an increase in

the pressure gradient and consequently also to an increase in the normal stress and the

dP

dx



shear stress. The shear stress is linear in the thickness direction. Owing to the decreasing

temperature in the wall region, the skin layer relaxation time constants increase and the

developed stresses cannot relax anymore. This results in the stress profiles at the end of

the filling stage, tfia. The normal stress increases from the center of the channel to the wall

until a maximum is reached. From this maximum, which lies in the neighborhood of the

solidified layer, the normal stress decreases again. The major part of the stress in this

region is frozen in. The characteristic normal-stress profile close to the wall is completely

determined by the choice of the boundary condition at the melt front during the filling

stage. The normal stress increases in value toward the wall, with a maximum value at the

wall. When the front is passed, the normal stress starts to grow in that region where the

temperature is still high enough.

Just after filling, when the system changes to the packing stage, the high pressure

at the entrance of the cavity causes a sharp increase in the pressure gradient during a short

period of time (tfn -> tf ). This results in a small increase of the normal stress and the

shear stress, at least in that region where the temperature allows changes. In

approximately 3 x 10-2 s (tp - tfp ), the pressure gradients smooth out in the entire cavity

because of the supply of extra material. The normal stress, as well as the shear stress,

relaxes in the regions where the temperature is still high enough.

The decay of pressure, which starts at the end of the cavity, is determined by the

competition between cooling and additional material flow, caused by a developing

pressure gradient. The difference in the slope of the pressure decay of the transducers

shows that more material is supplied in the neighborhood of the entrance. The increase in

the pressure gradient, which starts at roughly t-, causes an increase in the stresses. During

this increase the stresses are frozen in at a certain level because of the decreasing

temperature. The stresses at tc,, are the final frozen-in values, which also determine the

final frozen-in birefringence. 10 The correlation between the pressure gradient and the

residual stresses might explain the observed disappearance of the birefringence patterns

shortly after filling (tp -4 tf ).

1o Flaman, A.A.M., "Buildup and Relaxation of Molecular Orientation in Injection Molding, Part I:
Formulation," Polymer Engineering and Science, 33, 4, (February 1993), p. 193-201.



1.3 Plastic Properties

The polymeric materials used in this process can reduce corrosion, can provide

electrical insulation, and can greatly reduce weight and cost. Polymers are generally

lighter (20%) than metals, less stiff (1%-5%), less thermally conductive (3%), not as

strong (10%), and more ductile (10,000%). They also have a greater coefficient of

thermal expansion (400%) than metals. Plastics are also less expensive than metals. On a

weight basis plastics cost about 25% of what metals cost and on a volume basis are only

5% as expensive. Plastic materials do have severe limitations at high temperatures or

under concentrated loads. "

The polymer chains that comprise the plastic intertwine with each other and are

held together by covalent and van der Waals bonding forces. Thermoplastics are classified

as either amorphous or crystalline depending on their molecular structure at room

temperature. Amorphous plastics have a random structure. Crystalline plastics have an

ordered structure, which takes up much less space than the amorphous state. Actually, no

material is perfectly crystalline; amorphous sections will occur throughout a crystalline

material. At melt temperature, all plastics are amorphous. The structure of the plastic is

important because it affects the plastic's properties.

Because the amount of crystallinity varies with the material and molding

conditions, it is much more difficult to hold tolerances in crystalline materials than in

amorphous ones. Plastics have several additional properties that influence the repeatability

of the molding process (Table 1.3.1)12. First, plastics are compressible. The pressure in

the mold cavity determines how much the melt is compressed. If all other variables are

held constant, a higher hydraulic pressure results in a higher cavity pressure and will force

more plastic into the mold cavities. Second, plastics shrink significantly when cooled.

Together these properties indicate the need for the packing stage during the molding

11 Rinderle, James R., "A Method for Precision Injection Molding," Master of Science Thesis, M.I.T.,
June 1979.
12 Budill, K.T.., "A Systematic Approach to Tool Qualification for Injection Molding," Master of Science
Thesis, M.I.T., p. 32, June 1993.



cycle. After the mold cavity is filled, continued pressure on the piston connected to the

screw forces more melt into the cavity to compensate for part shrinkage due to initial

cooling.

Table 1.3.1: Plastic Properties which Influence Molding.
Properties Influences Critical Process

Variables
1. Plastics are * Higher hydraulic pressures force more * Cavity pressure
compressible plastic into the mold cavity

* Reduced viscosity allows more efficient
compression

2. Plastics shrink when * Higher compression results in less * Cavity Pressure
they cool shrinkage * Mold Temperature

* Faster cooling rates result in less * Melt Temperature
shrinkage * Flow Rate

* Less orientation results in less shrinkage
3. Plastic viscosity is * Higher flow rates produce greater shear * Melt Temperature
dependent on thinning and consequently lower * Flow Rate
temperature and flow viscosity
rate * Higher temperatures are an indication of

greater molecular motion and
consequently lower viscosity

The accuracy and the tolerances that are obtained in injection molding serve to

characterize parts that are molded. Polymer material shrinkage is compensated for by

building the mold oversize. Shrinkage varies from about 0.7% for PMMA molded at

20,000 psi to about 7% for Polyethylene molded at 5,000 psi'3 . It is simple in theory to

compensate for shrinkage, but the shrinkage depends on molding conditions and cannot be

calculated exactly. The shrinkage of nylon, for example, depends on the degree of

crystallinity which in turn depends on flow pattern and cooling rate. A faster cooling rate-

-i.e. colder mold temperature--results in less shrinkage. When a part is cooled very

quickly, the dimensions are "frozen-in" and, therefore, the part will shrink less. A slower

cooling rate gives more time for the molecules to align and, consequently, the part will

exhibit greater shrinkage. Tolerances of 0.001" over short sections and 0.009" over 6"

13 Middleman, Stanley, Fundamentals of Polymer Processing, McGraw Hill Book Co., New York, 1977.



lengths can be obtained when molding nylon' 4. Graphs of obtainable accuracy are

included in many molders handbooks. The variations in shrinkage and other properties

cause a distortion of shapes. Distortions show up as sink marks (surface depressions),

bending, and parts out of round. It is difficult to hold a roundness dimension closer than

0.7% or a concentricity dimension closer than 0.5%'5

Finally, shrinkage is affected by polymer orientation-the alignment of the

molecule and molecular segments in the direction of flow. Shrinkage is a result of two

factors-a normal decrease in volume due to temperature change and relaxation of the

stretching caused by carbon-carbon linkages. As there are more carbon-carbon linkages in

the direction of the oriented flow, there will be greater shrinkage. Any parameter that

affects the mobility of the molecular segments will affect orientation and consequently part

shrinkage. This indicates the need for accurate temperature control for a repeatable

molding process. Orientation is also affected by melt flow rate. A fast fill rate increases

orientation on the part surface and decreases orientation in the center of the part. A slow

fill rate results in a less locally intense but more evenly distributed orientation through the

whole cross section of the part.

The third property of plastic is that its viscosity is dependent on temperature and

flow rate of the melt. Viscosity is a measure of a material's resistance to flow and is

defined as the ratio of shear stress to shear rate:

-oy/y,' (2)

where rl = viscosity

a = shear stress

y' = shear rate

The viscosity of the plastic melt decreases as the shear rate increases. Fluids that behave

in this way are said to be shear thinning. Based on high shear rate data for a number of

polymers, an empirical "power law" expression has been suggested to describe the

dependence of viscosity on shear rate:

14 Frados, Joel, ed., Plastics Engineering Handbook, fourth edition, Van Nostrand Reinhold Co., New
York, 1976, p. 89.
5 Ibid.



n-==/y 'n - 1  (3)

The shear stress is then given by:

o=Ky'n  (4)

A Newtonian liquid is special case for which n=l. For molten polymers, n is usually

observed to be in the range of 0.3 to 1.016

The viscosity of the melt also decreases with an increase in temperature. A simple

expression often used to describe this effect is given by the equation:

7n(T) = A eE/RT (5)

where: T = temperature

R = gas constant

E = activation energy for viscosity

Mold filling software packages must model the dependence of viscosity on both shear rate

and temperature. One example of such an expression is :

,i(T) = A eE/RT I y' n- 1 (6)

A qualitative explanation for why an increase in temperature lowers viscosity is

related to the concept of free volume. This is the volume of space in the melt that is not

actually occupied by molecules and is thus available to permit the mobility of the

molecules. The greater the free volume, the easier it is for molecules to adjust to

deformations, and this will be reflected in a lower viscosity. An increase in temperature

results in thermal expansion and thus an increase in free volume. This explains the

decrease in viscosity as the temperature increases.

Therefore, increases in either flow rate or temperature reduce viscosity. An

increase in flow rate results in greater shear thinning and consequently lower viscosity.

Higher temperatures are an indication of greater molecular motion and consequently lower

viscosity. Constant viscosity is required to produce parts of consistent quality. Viscosity

affects how much the polymer is compressed in the cavity and therefore how much

shrinkage will take place. Lower viscosity results in smaller pressure drops along the flow

16 Dominick V. Rosato and Donald V. Rosato, Injection Molding Handbook (New York: Van Nostrand
Reinhold Company, 1986), p. 637.



path (runner and gate) and consequently higher cavity pressure. Higher cavity pressure

results in greater compressibility and consequently less shrinkage.

Although higher temperatures produce parts with reduced residual stresses and

molecular orientation, the part shrinkage induces distortions which needs to be accounted

for in the mold design.

1.4 Evaluation of Thermal Controls in Injection Molding

The suitability of injection molding to producing large numbers of parts at high

production rates resulted in an increasing use of the injection molding process. As the

process was applied to more and more products the demand to improve the consistency of

product quality grew. This thesis explore the role that spatially and temporally varying

mold temperature profiles have on process consistency. Thus, the focus of the analyses

will be on the various methods of mold temperature control.

J.N. Border 17 attempted to control the viscosity by changing the back pressure to

produce a change in melt temperature. He found the relationship between a change in

back pressure and a change in viscosity to be independent of material. Although his

viscosity control scheme was inconclusive because of problems in obtaining a consistent

measurement of the viscosity, his control scheme can be used to make an intelligent

injection molding machine.

J.R. Rinderle' 8 has indicated that a high quality, precision part can be produced if

the mold is preheated, filled at high pressures, and cooled at a variable rate. He presented

a possible mold configuration and techniques for constructing such a mold. His method of

heating the mold surface is by encapsulated resistance heaters. He tested a volume-

controlled variable-conductance heat pipe as a means of providing controlled mold

cooling. Since his mold surface is made of electroformed shell, the mold will deform

17 Border, J.N., "Intelligent Injection Molding," Master of Science Thesis, M.I.T., June 1981.
18 Rinderle, James R., "A Method for Precision Injection Molding," Master of Science Thesis, M.I.T.,
June 1979.



inevitably under the molding pressure. He presented an analysis of mold deflections as a

guide for the design of the mold structures.

Research has been done on the advantages of low thermal inertia injection

molding. It has been determined that frozen-in stresses are considerably reduced when

molds are thermally cycled 19' 20 . There is also the reduced injection pressure, lower plastic

injection temperature, lower cycle times, and potential energy savings.

On rapid temperature cycling of molds, however, there has been a limited amount

of research done. The approach used so far has been with the use of electric heaters 21.

This approach uses a thin layer of carbon resin as the heater element, sandwiched by two

layers of insulating material. One of these layers insulates the electric heater from the

molten plastic, while the other electrically and thermally insulates the metal mold from the

electric heaters. The thickness of this second layer is critical, because it balances heat

response in heating versus cooling response.

These molds have a very high initial thermal response at their surface, about 800C

increase in temperature in a few tenths of a second. A subsequent increase to a 1000C (an

additional 200C) takes a few seconds. The opposite applies in cooling, where after the

power is turned off, a similar temperature decrease rate is observed 22. These molds,

however, have a surface hardness (i.e., wear resistance) only as high as that of the

insulation layer applied. There is also the fact that high temperature response sacrifices

maximum temperatures. Variations in electric heating element causes variations in power

density, and therefore, in surface temperature 23. Therefore, rapid nonuniform thermal

manipulations can lead to increased thermal distortions.

19 Kim, Byung H., "Low Thermal Inertia Injection Molding," Doctor of Philosophy Thesis, M.I.T., July
1983.
20 Jansen, K.B., and A. Flaman, "Construction of Fast-Response Heating Elements for Injection Molding
Applications", Polymer Engineering and Science, 34, 7, mid-April 1994, p. 894-899.
2' Ibid.
22 Ibid, pp. 898.
23 Ibid.



1.5 Project Goal

The goal of this project is to focus on controlling the mold thermal spatial

variations in the reduction of residual stresses and warpage. The research effort has been

focused on development of a stepped lamination layer mold, whereby melt temperatures

can be measured directly and of a real time flow and solidification optical analyzer to

observe the effects of spatially varying temperature profiles on residual stress patterns to

achieve the goal. The heat transfer sensitivity of the two distinct solidification processes-

during filling and cooling will also be analyzed to determine which is the more dominant

residual stress contributor.





CHAPTER II

PROBLEMS IN INJECTION MOLDING

II.1 Introduction

Although the injection molding process has many advantages, there are some

inherent process problems. Distortions, warping, and excessive shrinkage are problems of

shape reproduction. However, due to its low cost of operation and ease of application to

large production volumes injection molding is being applied to parts which place ever

increasing demands on the process. Higher production rates reduce production costs. It

is at high production rates that problems are most prevalent. At low production rates

most problems can be solved using a conventional machine. However to be economically

competitive it is necessary to operate at the highest production rate possible. Thus,

dynamic temperature control was created to satisfy the required additional degree of

freedom to produce quality high production rate parts.

The experiments and models lead to a statement of the general injection molding

problem: The performance of a molded part depends on the processing history of each

element of material within the part. The processing history includes pressure,

temperature, and strain history of each material element during the entire molding process.

These variables affect the molded condition of the part and therefore the geometrical,

mechanical, optical and environmental performance of the part. Because premold thermal

melt history during molding determines the initial plastic state in the mold, the entire

plastic thermal history during molding should be considered and is described below.

The first step of the process is the melting of the material. This step can be

described as a material having certain material properties flowing into the system at a

certain flow rate. The output of the process is a mixed material at a certain pressure and

viscosity. The pressure on the material is related to the back pressure on the screw. The

back pressure affects the viscosity of the melt produced so the viscosity and back pressure



are coupled. However, by changing the temperature of the screw barrel different

viscosities can be obtained that effectively uncouples the back pressure and melt viscosity.

Finally the rate of rotation of the screw affects the rate of material transport through the

process.

The next step of the injection molding process as seen by the material is the

injection. The material output from the injection can be described by its viscosity,

velocity, continuity and the mass flow rate. The mass flow rate, the viscosity and the

continuity of the material were fixed by the previous step, but the velocity of melt must be

chosen for the process.

As the material flows into the mold cavity it takes the shape of the mold cavity, so

that there is a geometry associated with the material. The degree to which the material

takes the shape of the mold cavity is controlled by the peak pressure exerted on the

material before the pressure is reduced to the hold pressure and the shrinkage index of the

plastic. The material in the mold at the time the mold is filled can then be described by the

pressure, temperature and mold geometry or dimensions which together take the place of

the mass flow rate. Since the material at the surface of the part freezes as the mold is still

filling the characteristics of the surface are established by the time the mold is filled.

After the mold is filled the material cools. The commonly used state equation for

polymers is similar to the gas law. The form used in this thesis is the Spencer-Gilmore

equation which is shown as equation (7).

(P+7c)(V-Co)=RT (7)

where P = pressure
T = temperature
v = specific volume
7r, co, R = material properties

From equation (7) it can be seen that during cooling the reduction in temperature is

accompanied by a change in both pressure and specific volume. If the mass of material in

the mold is constant, a change in specific volume exhibits itself as a change in volume or

dimensions of the part. Conventionally, after the mold is filled a hold pressure is

maintained on the screw so that as the material shrinks more material is pushed into the

mold. The change in specific volume from the additional material results in a mass



increase rather than a volume change. There is a limit to the effectiveness of this type of

control because once the gate has frozen no further material can be added to the mold. At

this point the mold cavity becomes a closed system and the pressure, temperature and

volume become coupled.

The last step in the process is the final cooling of the part to the point where the

structural qualities of the part are developed. The structural qualities of the part come out

of the properties and the degree of homogeneity of the material itself At this point since

the pressure, volume and temperature cannot change, the three variables can be combined

into one variable, the mass of the part. When the process is examined over more than one

cycle the mass of the part can be replaced by a mass flow rate. Putting all the steps

together it is possible to trace the development of the different parameters of the injection

molding process (Figure II.1.1)24. However, the warpage or residual stresses cannot be

accounted for because these two parameters are determined by the interaction of many

points or the pressure and temperature fields.

Q
Figure II. 1.1: Functional Diagram for the Injection Molding Process

P- -e ---a---. v -I - -.........

24 Border, J.N., "Intelligent Injection Molding," Master of Science Thesis, M.I.T., p. 29, June 1981.



Throughout the process the temperature is not listed as a characteristic parameter,

instead the viscosity is given as the characteristic parameter. This is because both the

plasticating and injection are controlled by the way the material flows. The temperature

does not directly determine how a material flows. The viscosity describes the losses

associated with a flow of a material. Therefore, viscosity is the characteristic parameter

and not the temperature.

At this point further cooling of the part results in a reduction in both pressure and

volume. Furthermore, the cooling of the part does not occur at a uniform rate across the

part. Because of this nonuniform cooling, pressure gradients form25 and secondary flows

produce alignment of molecules and localized areas of large volume change which result in

residual stresses and a loss of dimensional accuracy. To control the secondary flows the

pressure gradients must be eliminated. Uncoupling the control of pressure, temperature

and volume of the material in the mold would allow the part to be cooled while

maintaining pressure and dimensions constant. As the section thickness gets smaller the

time the material is molten while in the mold decreases and the initial conditions as the

mold is filled become more important. From information obtained at Eastman Kodak 26

there are indeed variations in the melt flow index for the incoming material of as much as

±30%. The large variation range, the high production rates which necessitates high flow

velocities, the high plastic melt thermal inertia resisting rapid temperature control, and the

majority of the cycle time is the plastic cooling in the mold indicate that the most effective

control would be the dynamic control of mold thermal boundaries.

The filling process is coupled with the cooling process. As the molten polymer fills

the cold mold cavity it starts to cool from the mold surface where the melt comes in

contact. Since the polymer cannot be injected into the mold instantaneously, the melt at

every point undergoes different thermal history because of cooling while it is being

injected. This temperature change within the melt changes the thermodynamic state of the

melt. Because of the coupling it is difficult to control the state of the melt in the

25 Rinderle, James R., "A Method for Precision Injection Molding," Master of Science Thesis, M.I.T.,
June 1979.



conventional injection molding process. This coupling, therefore, directly results in

inconsistency of the molded part. One method for shrinkage and distortion compensation

is the alteration of the cavity shape. Unfortunately, the mold designer cannot accurately

predict the final shape of the part to fully compensate for dimensional inaccuracies.

Another major problem is that injection molding requires high temperature and

pressure to mold thin parts. As the melt comes in contact with a cold mold surface during

the injection stage, a thin layer of frozen plastic "skin" is formed. In molding a thin part

the thickness of the skin layer approaches the half thickness of the part. To overcome the

freezing of the melt, which blocks the flow path, extremely high pressure and temperature

are used so that the cavity is rapidly and completely filled.

The high temperature causes high thermal shrinkage and therefore requires high

packing pressure to compensate elastically the thermal shrinkage. The high pressure

causes high flow-induced molecular orientation which in turn increases residual stresses,

and the orientation freezes as the melt vitrifies. This frozen-in molecular orientation

imparts anisotropic residual stresses. Molded parts with anisotropic residual stresses

exhibit not only anisotropic mechanical and optical properties, but also poor impact

strength and poor resistance to heat-shrinkage. Moreover, the condition of parts can

change for weeks after molding as residual stresses relax. Eliminating these molding

problems comes about from understanding how the properties of a molded part depend of

the condition or state of a molding. This topic is discussed in the next section.

11.2 The Effect Of The Molding Condition On Mold Part Properties

The relationships between the condition of a molded part and the properties of the

part have been the object of study for decades. An understanding of the way in which the

state or condition of a molded part determines the properties of that part is useless without

also understanding how materials and processing affect the state, and ultimately how to

alter the state of a molding.

26 Border, J.N., "Intelligent Injection Molding," Master of Science Thesis, M.I.T., June 1981.



In 1943 Alfrey, Golfinger and Mark27 proposed two mechanisms to explain the

thermal expansion of polymers. One mechanism is almost instantaneous and the other acts

at a rate proportional to the difference between present volume and equilibrium volume.

In 1949 and 1950, Spencer and Gilmore published a series of papers based on the

Alfrey work. In the first paper 28, Spencer discusses the effect of heating and cooling rates

on the second order transition temperature, TG, and the resulting effects on volume. He

presents a model for predicting volume using temperature-time data. In the second 29 and

third30 paper Spencer and Gilmore propose a state equation to relate the temperature,

pressure, and volume of polymer materials through measurable material properties.

Equation (7), (P + 7 ) (v - co) = RT, was presented in the third paper with the values of the

material properties n, co and R for five polymers that are commonly injection molded.

This equation is only valid for amorphous materials above the glass transition temperature,

but it can be used to estimate volumes of semi-rigid bodies in certain conditions and to

estimate the pressure required to compensate for thermal shrinkage. The authors

discussed the origin of residual strain in injection molded pieces, means of relieving or

preventing residual strains, and their effect on crazing and on the mechanical properties of

the molding. They stated that reduction in the amount of frozen orientation resulted in

improved crazing resistance, dimensional stability on heating, and consistency.

In the same year, Spencer and Gilmore published a paper31 on residual strains in

polystyrene. The authors discuss the origin of residual strain and show that the state of

stress during cooling is often unstable and either the surface collapses forming a sink mark

or a void forms within the piece. They also state that residual strains are caused by

molecular orientation and that by reducing orientation (by reducing packing and

discharge) in the parts, crazing resistance, dimensional stability and consistency are all

27 Alfrey, T., G. Goldfinger and H.J. Mark, J. of Applied Physics. 14, 700, (1943).
28 Spencer, R.S., "Volume-Temperature-Time Relationships for Polystyrene," J. of Colloid Science. 4.
229, (1949).
29 Spencer, R.S., and D.G. Gilmore, "Equation of State for Polystyrene," J. of Applied Physics, 20,
(1949), p. 502-506.
30 Spencer, R.S., and D.G. Gilmore, "Equation of State for High Polymers," J. of Applied Physics. 21,
(June, 1950).
31 Spencer, R.S., and D.G. Gilmore, "Residual Strains in Injection Molded Polystyrene," Modern Plastics.
(Dec., 1950)



improved. They developed a procedure to predict filling time and maximum pressure in a

disk shaped mold32. They were able to predict the effects of mold temperature and

material viscosity on these variables. Spencer and Gilmore viewed the mold filling

through windows in the mold and observed the fountaining effect during mold filling.

They noted that the central region where flow occurred was only 40% of the total

thickness.

Two decades later Kamal and Kenig33 ,34 published a model of the injection

molding process and an experimental test of the model. The model predictions for

spreading radial flow of a power law fluid are in good agreement with the experiments.

The results for progression of the melt front, flow rate, velocity, temperature and pressure

profiles are good except during the filling stage near the gate where viscoelastic effects are

important.

Wu, Huang, and Gogos35 developed a model based on slightly different

assumptions. They present simulation results for PVC molding that show the effect of

mold temperature and filling time on temperature distribution through the cavity.

Neither Kamal and Kenig nor Wu, Huang, and Gogos considered the strain history

of the melt or attempted to predict the state of molecular orientation of the melt.

Tadmor36 did consider some of these effects in a semiquantitative model that he proposed.

Tadmor incorporates flow and heat transfer mechanisms with molecular theories to model

the shear and elongational flow that causes molecular orientation. The elongational flow

results from having a steady melt front and a velocity gradient behind the melt front as

described by Rose37 and because the flow is accelerated toward the wall after passing

32 Spencer, R.S., and D.G. Gilmore, "Some Flow Phenomena in the Injection Molding of Polystyrene," J.
of Colloid Science. 6, (1951), p. 118.
33 Kamal, M.R. and S. Kenig, "The Injection Molding of Thermoplastics Part 1: Theoretical Model,"
Polymer Engineering and Science, 12, 4, (July, 1972).
34 Kamal, M.R. and S. Kenig, "The Injection Molding of Thermoplastics Part II: Experimental Test of the
Model," Polymer Engineering and Science, 12, 4, (July, 1972).
"3 Wu, P.C., C.F. Huang and C.G. Gogos, "Simulation of the Mold Filling Process," Polymer Engineering
and Science, 14, 3, (March 1974).
36 Tadmor, Z., "Molecular Orientation in Injection Molding," J. Of Applied Polymer Science, 18, (1974).
p. 1753.
37 Rose, Walter, "Fluid-Fluid Interfaces in Steady Motion," Nature, 191, (1961), p. 242.



between solidified layers. Tadmor considered this "fountain effect" and the shear effects

with a temperature dependent relaxation process to estimate the final frozen orientation.

White38 presented a hydrodynamic analysis of the filling of a rectangular cavity.

He considered the temperature dependence of the rheological properties and the effect of

rheological properties on jetting and channeling during mold fill.

Williams and Lord39, 40 used a numerical scheme to model flow in runners, sprues

and the cavity. Modeling runner and sprue flow freed them from a common assumption of

an isothermal melt entering the cavity. The model can be used in the design and

modification of molding equipment and for problem diagnosis. They demonstrated the

utility of their model by redesigning the runner system of a multicavity mold so that

simultaneous filling of the cavities occurs.

Kamal, Kuo and Doan41 presented two models, the second of which allows the

application of potential theory and the determination of streamlines and melt front shapes

during the filling of a thin rectangular cavity.

Stevenson, Wang et al42,43,44 developed numerical schemes to estimate clamp

force, injection pressure and temperature distribution during molding of ABS. They

presented the model in a nondimensional form and developed a graphical method for

estimating injection pressure and clamp force during the molding of amorphous polymers

into thin disks.

38 White, James L., "Fluid Mechanical Analysis of Injection Mold Filling," Polymer Engineering and
Science, 15, 1, (January, 1975).
39 Williams, G. and H.A. Lord, "Mold Filling Studies for the Injection Molding of Thermoplastic
Materials Part I: The Flow of Plastic Materials in Hot and Cold Walled Circular Channels," Polymer
Engineering and Science, 15, 8 (August, 1975).
40 Lord H.A., and G. Williams, "Mold Filling Studies for the Injection Molding of Thermoplastic
Materials Part I: The Transient Flow of Plastic Materials in the Cavities of Injection-Molding dies,"
Polymer Engineering and Science. 15, 8 (August, 1975).
41 Kamal, Musa R., Youti Kuo and P.H. Doan, "The Injection Molding Behavior or Thermoplastics in
Thin Rectangular Cavities," Polymer Engineering and Science. 15, 12, (December, 1975)
42 Stevenson, J.F., C.A. Hieber, A. Galskoy and K.K. Wang, "An Experimental Study and Simulation of
Disk Filling by Injection Molding," presented at the Society of Plastics Engineers 34th Annual Technical
Conference, Atlantic City, New Jersey, April 26-29, 1976.
43 Stevenson, James F., "A Simplified Method for Analyzing Mold Filling Dynamics, Part I: Theory,"
Polymer Engineering and Science, 18, 7, (May 1978).
44 Wang, K.K., S.F. Shen, J.F. Stevenson and C.A. Hieber, "Computer Aided Injection Molding System,"
Progress Reports nos. 1-4, Cornell University for NSF under grant APR74-11490.



Of these modeling efforts, only Tadmor considered the molecular orientation and

relaxation which greatly influences mechanical properties and part shrinkage. In an

experimental study using hot molds, Johnson 45 noted that high mold temperatures allow

relaxation of the melt during the molding cycle.

In 1976, Menges, Thienel, and Wubken 46 carried out experiments on relaxation of

molecular orientation. They found that relaxation of orientation in injection moldings is

governed by the Williams, Landel, Ferry Equation47 and that the state of orientation could

be estimated from a knowledge of the temperature-time history of the material. In another

paper48 the authors suggest that the computation of orientation relaxation can be used in

conjunction with other models to determine the final state of the molding.

In 1960, Jackson and Ballman49 conducted experiments on injection molded

specimens to determine the magnitudes of the effects of orientation on mechanical

properties. Their results show the influence of orientation on tensile strength, elongation

at failure, and notched impact strength. The data do not show a systematic effect of

orientation on modulus.

Johnson5 ° investigated strain free injection molding and published his work in

1963. Using molds that had been heated to near the melt temperature and by using very

high pressures, he was able to produce relatively strain free parts that were crack free.

The parts molded at high pressures had a smaller change in density during aging than other

parts which implies that the parts had greater long term dimensional stability. Johnson

used birefringence measurements to determine the condition of the moldings. He

determined that improved properties of the part result when orientation is allowed to relax

in the mold and when the part has greater density.

45 Johnson, L.I., "Strain-free Injection Molding," Modem Plastics, 40, (June 1963), p. 111.
46 Menges, G., P. Thienel and G. Wubken, "A Method to Estimate the Relaxation of Molecular

Orientation in Plastics," Kunstoffe, 66, (January 1976), p. 42-48.
47 Williams, M.L., R.F. Landel and J.D. Ferry, J. of American Chem. Soc., 77, (1955), p. 3701.
48 Thienel, P. and G. Menges, "Mathematical and Experimental Determination of the Fields of
Temperature, Velocity and Pressure During the Filling Stage in Injection Molding: Determination of
Disorientation During the Cooling Stage," presented at the Society of Plastics Engineers 34th Annual
Technical Conference, Atlantic City, New Jersey, April 1976.
49 Jackson, G.B. and R.L. Ballman, "The Effect of Orientation on the Physical Properties of Injection
Moldings," SPE Journal, (October 1960), p. 1147.
50 Johnson, L.I., "Strain-free Injection Molding," Modem Plastics, 40, (June 1963), p. 111.



Kodas" studied the effects of molding conditions on properties of polycarbonate.

He found that reduced orientation improved abrasion resistance and decreased heat

shrinkage at 1800C. Koda also found that hotter molds produced moldings with greater

solvent crack resistance and hardness, lower density and less heat shrinkage at 1200 C.

Increased holding pressure decreased shrinkage but increased density and caused a

decrease in solvent resistance.

Koda hypothesizes that moldings with low residual stresses could be molded at a

high mold temperature and at a low holding pressure. The hotter mold reduces

temperature gradients in the melt but the hot mold also allows relaxation of oriented

molecules. Molecular orientation has a strong effect on solvent resistance.

Menges and Wubken 52 studied the influence of processing conditions on molecular

orientation in injection moldings. They concluded that the main direction of orientation in

plane-shaped moldings is the flow direction. They also found that the orientation is highly

biaxial at the surface of the molding and that there is very little orientation in the center of

moldings. The frozen orientation is reduced when the melt temperature is increased.

Increasing cavity wall temperature has a similar effect in relaxing the orientation. An

increase in injection rate results in a slightly higher surface orientation while the internal

orientation is significantly reduced.

Y.T. Koita53 considered the effect of packing and discharge on the injection

molded parts. Photoelastic stress patterns suggested that packing and discharge give rise

to high frozen stresses due to molecular orientation in the gate area. Degradation of

mechanical properties of the specimen resulted from the high frozen stress region at the

gate.

51 Koda, Hiroyuki, "Effects of Molding Conditions on Properties of Injection Molded Polycarbonates," J.
of Applied Polymer Science, 12, (1968), p. 2257.52 Menges, G. And G. Wubken, "Influence of Processing Conditions on Molecular Orientation in Injection
Moldings," presented at the Society of Plastics Engineers 31st Annual Technical Conference, Montreal,
May 1973.
53 Koita, Y.T., "Packing and Discharge in Injection Molding," Polymer Engineering and Science. 14, 12,
(Dec. 1974).



Tadmor54 proposed a semiquantitative model to explain the complex molecular

orientation distribution observed in injection molding of amorphous polymers. The bead

and spring macromolecular theory was used to calculate root mean end to end distances of

macromolecules in the various flow fields and the relaxation process. The model assumes

that the orientation in the surface skin is related to steady elongational flow in the

advancing front and the orientation in the core is related to the shear flow.

Burkle 5" used a modified milling method to measure inherent stresses in U-shaped

moldings of fourteen different thermoplastic materials. His data on fourteen different

samples does not correlate well with the theory he presents to estimate residual stress

from the temperature gradients in the mold. He states that the inherent stress decreases

with increasing mold temperature. He also states that mold temperature has a significant

effect on residual stress but that the injection temperature does not. This seems

contradictory to earlier works56.

In 1976, Menges et al.57 published a study on relaxation of molecular orientation in

plastics. They found that the relaxation process in an injection molding die is governed by

the WLF (Williams, Landel, Ferry) equation58 . They reported a method to estimate the

relaxation of molecular orientation from a knowledge of the temperature-time history of

the material.

Han and Villamizar59 carried out an experimental study to investigate the

development of stress birefringence patterns of molten polymer during the mold filling and

cooling operation. Their study showed how molding conditions influence the distribution

of stress birefringence patterns. They showed that mold temperature influences the

54 Tadmor, Z., "Molecular Orientation in Injection Molding," Journal of Applied Polymer Science. 18,
(1974), p. 1753.
55 Burkle, Dieter, "Measurement of Inherent Stresses in Plastic Mouldings," Kunstoffe. 6, (January 1975).56 Menges, G. And G. Wubken, "Influence of Processing Conditions on Molecular Orientation in Injection
Moldings," presented at the Society of Plastics Engineers 31st Annual Technical Conference, Montreal,
May 1973.
57 Menges, G., P. Thienel and G. Wubken, "A Method to Estimate the Relaxation of Molecular
Orientation in Plastics," Kunstoffe, 66, (January 1976), p. 42-48.
58 Williams, M.L., R.F. Landel and J.D. Ferry, Journal of the American Chem. Soc., 77, (1955). p. 3701.
59 Han, C.D. and C.A. Villamizar, "Measurement of Pressure and Stress Birefringence Patterns During
the Mold Filling and Cooling Operation," presented at the Society of Plastics Engineers 35th Annual
Technical Conference, Montreal, 1977.



amount and distribution of residual stress in the molded part and that the residual stress is

intimately related to its mechanical properties and dimensional stability of heating.

In 1977, Bakerdjian and Kamal60 completed an extensive investigation of the three

dimensional variation of density, heat shrinkage, birefringence and tensile strength in

molded thermoplastic rectangular parts. They show that birefringence through the

thickness of polystyrene plaques is maximum at the surface and falls to a minimum at a

small distance from the surface. A local maximum of birefringence occurs at a distance of

about 15% through the section. Polyethylene moldings did not exhibit a local maximum of

birefringence. The density of polyethylene samples was minimum at the surface because

of low crystallinity in the quickly chilled region and was greater near the gate than at the

far end of molding. The tensile strength of polystyrene samples along the direction of

orientation was 45.6% greater than in the transverse direction. Polyethylene was 16.6%

stronger in the direction of orientation. The lowest heat shrinkage values, for example, are

found near the center of the molding, where the polymer chains have the greatest chance

to relax and assume a more random configuration.

Hoare and Hull6' attempted to describe properties of moldings in terms of

molecular structure. They studied the effect of orientation on the mechanical properties of

injection molded polystyrene and regarded the molding as a composite structure of

materials with different degrees of anisotropy and orientation. They present data relating

crazing stress and fracture stress to the angle between loading and orientation and to the

magnitude of birefringence. The authors data are in good agreement with a model they

propose for estimating properties of molded parts with complex orientation distributions.

The model is based on estimating the properties of a lamination of unidirectionally

oriented layers by applying experimental results for tensile behavior of oriented plaques to

each layer. They concluded that the crazing behavior and crack mechanism can be

predicted from the properties of hot drawn sheet.

60 Bakerdjian, Z. And M.R. Kamal, "Distribution of Some Physical Properties in Injection Molded
Thermoplastic Articles," Polymer Engineering and Science, 17, 2, (February 1977).
61 Hoare, Linda and Derek Hull, "The Effect of Orientation on the Mechanical Properties of Injection
Molded Polystyrene," Polymer Engineering and Science, 17, 3, (March 1977).



Dietz, White, and Clark62 presented a study of the development of orientation

distribution and relaxation of the orientation in injection molding of amorphous polymers.

Their predictions of orientation development are based on the assumption that the stress-

optical laws are valid in the molten state. They also assumed that the melt relaxes in a

Maxwellian manner. Their analysis predicts the birefringence distribution in injection

molded parts fairly well.

In 1982, Isayev63 reported a study of a coupled effect of the flow induced and

thermally induced orientation in the molded part. He measured three components of

birefringence and related these to the processing conditions. His work is based on the

constitutive equation of Leonov 64. The experimental results are in good agreement with

Leonov's theory.

Crouthamel et al.65 studied the effects of processing conditions on the residual

stresses of the molded part using the layer-removal technique of Treuting and Read66

They found that residual stresses in the molded part depend on the orientation with respect

to flow during cavity filling, and on the distance from the gate. They concluded that

injection rate and mold temperature have a minor effect on the level and distribution of

molding stress, while melt temperature has a significant effect. Their mold temperature,

however, varies only from 400 C to 60 0C.

Hubbauer67 stated that physical properties of a molded part can be improved by

optimizing processing conditions such as injection pressure, melt temperature, injection

rate and mold temperature. He did not, however, mention a method of optimizing

processing conditions.

62 Dietz, White, and Clark, "Orientation, Development and Relaxation in Injection Molding of
Amorphous Polymers," Polymer Engineering and Science, 18, 4, (March 1978), p. 273.
63 Isayev, A.I., "Orientation Development in the Injection Molding of Amorphous Polymers," presented at
the Society of Plastic Engineers 40th Annual Technical Conference, San Francisco, 1982, p. 288.
64 Leonov, A.I., Rheol. Acta, Vol. 15, 1976, p. 85.
65 Crouthamel, Isayev, and Want, "Effect of Processing Conditions on the Residual Stresses in the
Injection Molding of Amorphous Polymers," presented at the Society of Plastics Engineers 40th Annual
Technical Conference, San Francisco, 1982, p. 295.66 Treuting and Read, Journal of Applied Physics, Vol. 22, 1951, p. 130.
67 Hubbauer, P., "Effects of Processing Conditions on Plastic Parts," presented at the Society of Plastics
Engineers 40th Annual Technical Conference, San Francisco, 1982, p. 302.



Fritch68 studied the effect of mold temperature on impact strength. He concluded

that mold temperature influences the molded part properties to a significant degree.

However, he pointed out a need to compromise in raising mold temperature and in

minimizing cycle time. He showed that the improvement of impact strength is greatest at

low melt temperature and at high mold temperature.

Burke and Newcome69 made an assessment of the mold temperature influence on

molded part quality of semicrystalline polymer. Mold temperature can directly influence

the physical properties of semicrystalline material since it affects the degree of crystallinity.

They recommended higher mold surface temperature for a thinner part to ensure full

crystallinity.

Woebcken7o investigated the effects of processing on the dimensional accuracy of

parts. He shows that shrinkage and orientation depend strongly on the gating pattern.

Woebcken also measured the warping of molded specimens during annealing. He found

that less warping occurred when the parts were molded in a hotter mold. Woebcken

discusses the effects of the mold on corner shrinkage and warping in the vicinity of

variations in wall thickness.

In 1973 Menges and Wubken71 published a study of plane rectangular moldings.

Shrinkage measurements of microtomed samples show that the orientation is highly biaxial

at the surface of the molding and that there is very little orientation in the center of the

section. Increasing stock temperature decreases the orientation. Increasing the mold wall

temperature has a similar but smaller effect.

8 Fritch, L.W., "How Mold Temperature and Other Molding Variables Affect ABS Falling Part and Izod
Impact," presented at the Society of Plastics Engineers 40th Annual Technical Conference, San Francisco,
1982, p. 332.
69 Burke and Newcome, "Essential Parameters for Molding Modified PET Resins: An Assessment of
Their Influence on Molded Part Quality," presented at the Society of Plastics Engineers 40th Annual
Technical Conference, San Francisco, 1982, p. 336.
70 Woebcken, W., "The Effects of Processing on the Dimensional Accuracy of Thermoplastic Injection
Molded Articles," Kunstoffe, 67, 4, (1977), p. 179-183.
71 Menges, G. And G. Wubken, "Influence of Processing Conditions on Molecular Orientation in Injection
Moldings," presented at the Society of Plastics Engineers 31st Annual Technical Conference, Montreal,
May 1973.



Gutfinger, Broyer, and Tadmor7 2 worked on the problem of static melt

solidification and also considered the problem of solidification during flow in a narrow

gap. This problem is analogous to the mold filling stage in injection molding where rapid

cooling and solidification can result in a short shot and frozen-in orientation. Their

numerical scheme predicts solid layer thickness and temperature profiles as a function of

time and position in a cavity and is useful for designing flow paths in molds.

11.3 Current State Of Thermal Control

Review of the mentioned literature indicate that temperature control of the molds

is crucial to mold operation and part quality; however, mold temperature is currently not

directly controlled. As the plastic flows into the mold cavity, it begins to solidify. Heat

that has been transferred to the mold by the molten plastic is carried away by a coolant

that circulates through cored passages in the mold. This affects part quality in several

ways. The first and most apparent is the fact that mold temperature is a balance between

the cooling time and the melt length of flow. Colder mold temperatures results in shorter

cooling times, but it shortens the plastic melt path length because of solidification induced

flow termination. Since cooling time is a major fraction of the total cycle time of the part,

determination of an appropriate temperature of operation of the mold is crucial and most

effective when directly here.

The design of the mold cooling passages affects the ability to remove heat from the

mold. The mold surfaces closest to the cored water passages will cool first causing the

solidification of the outer regions of the part, while the inner regions remain molten. Since

plastic have relatively large coefficients of expansions, when the inner regions solidify,

they contract in a fixed volume, determined by the already solid outer regions. Hook-up

of the external hoses to the mold inlets and outlets will also influence cooling rate.

Furthermore, coolant temperature and flow rate determine the efficiency of heat removal.

72 Gutfinger, C., E. Broyer and Z. Tadmor, "Melt Solidification in Polymer Processing," Polymer
Engineering and Science, 15, 7, (July 1975).



Differences in mold temperature or mold temperature distribution will affect

reproducibility of part moldings. Consequently, repeatability in molding requires

optimizing and controling the temperature distribution in the mold to balance the

temperature distribution in the plastic.

Mold temperature also affects built-in stresses and geometric accuracy in the part.

As the plastic fills the mold, it experiences high shear in the velocity boundary layer. But

since it is also freezing, the long polymer molecules solidify in the stretched state, without

being allowed to return to its natural coiled form. This is one of the causes of built-in

stresses caused by mold filling. This also produces molecular orientation in the part73 .

The sources of built-in stresses explained above detract from part quality. The

more residual stresses in the part, the weaker the part. There is also the fact that sink

marks can develop in poorly cooled plastic parts.

There are basically three ways that mold temperatures are currently chosen to

minimize cooling time, 74:

1. Trial and error. Mold temperature is varied until a satisfactory compromise is

reached.

2. The formula of Ball and Shusman is used. It is the solution of the transient heat

equation in one dimension using infinite series and constant plastic properties. Although it

is a simple solution, it is used since it has been included in injection molding textbooks in

graphical form for a variety of plastics.

3. Proprietary solutions provided by specialized engineering firms. Since details

are not released, it would be a reasonable assumption that these solutions entail both

analytical and finite element methods.

The major flaw in current thermal control is the focus on maintaining a constant

mold surface temperature when what is desired is the uniform decay of plastic

temperatures. According to Cannock, UK-based mold cooling specialists REPS75, many

molders are using cooling systems that have changed little in the past 20 years. The

73 Brydson, J.A., Plastics Materials, fifth edition, pp. 252-282, Butterworth Books, London 1989.
74 Mekkaoui, A., and K. O'Brien, "Accurate Determination of Set-up Time for Faster Cycles," Injection
Molding of Plastics: Proceedings of the Injection Molding Conference, p. 26, El Segundo, California,
December 3-5, 1980.



company claims that 85% of molds in use today could run on a 10-25% shorter cycle time

and 98% could produce more consistent parts. The reason that such systems are still in

common use is simply that few, up until now, have questioned what goes on in the mold

during the molding process.

11.4 Research Applicable To Thermal Control

Kurosaki and Satoh76 investigated the relation between the development of stress

in a molded polymer and the injection molding conditions. They also estimated the frozen

skin thickness layer caused by the flow on the basis of the relation between the relaxation

time of the birefringence resulting from shear stresses and the solidifying time of injected

polymer melt. Their concept of flow visualization was adapted for this thesis. Another

important contribution was their observed disappearance of birefringence in the melt core

once flow terminated.

Jacques77 illustrated that warpage is more sensitive to differences in cooling fluid

temperatures between mold sides than for differences in metal thickness between mold

sides and that their effects are additive. His computational analysis was restricted to flat

parts and requires experimental verification. He suggested that mechanisms that affect

warpage are differences in cavity pressure, differential orientation, differential crystallinity,

inhomogeneous thermal stresses caused by irregular geometry, and stresses frozen during

packing.

Bur, Wang, Thomas, and Rose78 measured the onset of polymer solidification

during injection molding. They used an optical sensor to detect characteristic fluorescence

radiation intensity, which are different between the solid and melt phases.

7 Mould Control, REP, "Total Mould Temperature Control Systems," Reader enquiry number 208.76 Kurosaki, Y. And I. Satoh, "Visualization of Flow and Solidification of Polymer Melt in the Injection
Molding Process," 1989 National Heat Transfer Conference, HTD-Vol. 113, Heat Transfer in
Manufacturing and Material Processing, p. 63.
77 Jacques, Michael St., "An Analysis of Thermal Warpage in Injection Molded Flat Parts Due to
Unbalanced cooling," Polymer Engineering and Science, 22, 4, (March 1982).
7 Bur, A.J., F.W. Wang, C.L. Thomas, and J.L. Rose, "In-Line Optical Monitoring of Polymer Injection
Molding," Polymer Engineering and Science, 34, 8, (April 1994).



Jansen and Flaman7 9,8 designed a fast-response heating element. They claim that

heating during, and shortly after, the filling stage will result in the highest amount of

orientation relaxation with minimum power consumption.

Sun"s used fluid passages conformal to the mold cavity surface to try to uncouple

the mold plastic filling stage from the plastic cooling stage. He investigated different

liquids to be used as heating/cooling working fluids. He observed a greatly reduced stress

pattern under birefringence with parts produced by the thermal cycling of his low thermal

inertia mold as compared to molds without thermal cycling.

Wylonis82 used three dimensional printing to create complex internal cooling

passages. The purpose of these passages were to maintain an uniform mold surface

temperature. He observed a variation of 70C with straight cooling channels as opposed to

only 4°C variation with his internal cooling channel.

11.5 Summary

In the previous section, literature regarding the effects of processing conditions on

the properties of injection molded parts was surveyed. Most of the researchers indicated

that processing conditions are interrelated to molded part properties in a complex manner.

Common processing variables were mold temperature, melt temperature, and injection

rate. Most of the works related molded part properties to the level and distribution of

molecular orientation. Many investigators attempted to predict an anisotropic residual

stress distribution resulting from the flow-induced orientation. Although the relationship

79 Jansen K.M.B., and A.A.M. Flaman, "Construction of Fast-Response Heating Elements for Injection
Molding Applications," Polymer Engineering and Science, 34, 11, (Mid-June 1994), p. 894-897.
so Jansen K.M.B., and A.A.M. Flaman, "The Influence of Surface Heating on the Birefringence
Distribution in Injection Molded Parts," Polymer Engineering and Science, 34, 11, (Mid-June 1994), p.
898-904.
"' Sun, E.S., "Implementation Of Low Thermal Inertia Injection Molds Using Conformal Passages,"
Master of Science Thesis, M.I.T., May 1995.
82 Wylonis, E.M., III, "Production Of Injection Molding Tooling With Conformal Cooling Channels
Using The Three Dimensional Printing Process," Master of Science Thesis, M.I.T., May 1995.



between part properties and processing conditions is complicated, increasing mold

temperature was established to improve molded part quality.

Mold temperature, of all the process variables, can have the greatest influence on

reducing residual stresses of molded parts. The general properties of the molded part are

improved when the residual stress is reduced. In other words, an isotropic and

homogeneous part has, in general, improved part qualities. The main cause of the residual

stresses is the frozen-in molecular orientation in the molded part. Therefore, the

minimization of residual stress through the relaxation of molecular orientation improves

the molded part quality.

Detailed examination of the recent technical literature will show that there are two

major contributors to residual stresses. One is the portion of the melt that solidifies during

the filling stage; the "skin layer". This layer is highly oriented similar to a strectched

rubber band and when heated this layer will relax and contract. The other contributor

results from the necessary polymer temperature gradient in order to solidify the melt

during the cooling stage. The question of which is the major contributor to residual

stresses remains highly controversial. The skin layer thickness is associated with the

contact duration between the polymer and the mold; thus, the skin layer is thickest near

the sprue hole and thinnest at the end of the cavity. Therefore, maximal residual stress

reduction requires temporal and spatial thermal variation between the filling and the

subsequent cooling stages.

These two stages - filling and cooling - represent unique challenges to thermal

control. The filling stage is only a fraction of the entire solidification stage; therefore, the

thermal response has to be rapid. On the other hand, the cooling stage comprises the

majority of the solidification stage. However, solidification causes the polymer to shrink

away from the mold wall thereby forming air gaps between the surfaces that increase the

thermal contact resistances. In this case time is less a factor than is the lack of perfect

contact that prevents efficient heat transfer. From just these considerations one can

appreciate the difficulty and infeasibility of accurately predicting warpage analytically.

Even the best models will serve mainly as guides because material properties are hard to

pin down, and the complex shapes limit the applicability of simplified models.



The general application of temporal and spatial thermal control requires that the

process be deterministic. Otherwise, thermal control is of little use because the final part

dimensions cannot be predicted, much less be manipulated. Mr. Dick Barlik83 and other

workers from Hasbro have observed that warpage is a deterministic phenomenon as

measured by same degree of warpage at consistent locations. If residual stresses are the

major causes of warpage, then residual stresses can be thought of as deterministic as well.

83 Barlik, Dick; Hasbro, personal conversation.



CHAPTER III

METHODS OF IMPROVING THE MOLDED PART OUALITY

III.1 Introduction

In reviewing literature on injection molding (Chapter II), it is clear that anisotropic

residual stress in the molded piece is the single most important cause of degraded part

quality. For example, impact strength, crazing resistance, dimensional stability, abrasion

resistance, and resistance to heat shrinkage will be improved by minimizing the residual

stress. In order to eliminate many molding problems, the residual stress must be

minimized.

Development of stresses via molecular orientation during the injection stage is

unavoidable. Reduction of the developed stress can be achieved by heating the mold;

thereby allowing the relaxation of the stress before the vitrification of the melt. Since the

same mold must be heated and cooled quickly to shorten the injection cycle time and to

improve the molded part quality, a low thermal inertial mold with spatially and temporally

varying temperature is needed.

Two special cases of isothermal filling and differential cooling will provide the

background for the discussion of a realistic case of nonuniform melt solidifying in a

nonisothermal mold.

I1.2 Isothermal Filling Process

When the surface of a mold is at the same temperature as the incoming molten

polymer, the filling process can be done isothermally. Upon the completion of filling, the

surface temperature of the mold is lowered to cool the part. A plot of the temperature



curve of the mold surface for an isothermal filling process is shown in Figure 111.2.1.

When the parts are produced this way, the quality of the molded part is improved because

of the relaxation of the flow-induced molecular orientation. In conventional molding,

however, the molecular orientation is frozen before it relaxes completely, thereby

producing an anisotropically oriented part. This anisotropical molecular orientation

degrades the mechanical and the optical properties of the molded part. Therefore, an

isothermal filling process can improve the general quality of the part.
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Figure 111.2.1: A plot of a mold surface temperature curve
for an isothermal filling process.

There are other advantages in injection molding with the isothermal filling process.

For example, the process is capable of producing a high quality optical part. An optical

part must have a uniform index of refraction across the whole section of the part. In

conventional injection molding, however, molding a part with a uniform index of

refraction is very difficult to achieve because of frozen-in molecular orientation near the

surface of the part. Figure 111.2.2 depicts a schematic comparison between the

conventional process and the isothermal filling process in molding an optical part. In

conventional molding, the macromolecules, elongates because of shear stresses near the

surface, freeze when they come in contact with the cold mold surface; consequently, the

index of refraction at the surface and the core section is different as shown in Figure

111.2.2 a). In order to make a part without frozen-in molecular orientation, it is necessary

to relax the orientation. The relaxation process can occur simultaneously as the molten

polymer fills the cavity isothermally. A complete relaxation of the flow-induced

orientation is possible if the surface temperature of the mold remains the same for some

time after the isothermal filling has been completed.
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Figure 111.2.2: Schematic comparison between a) conventional and
b) isothermal filling process in molding an optical part.

Since there is no solidification layer along the surface of the mold during the

isothermal filling process, the required pressure to fill the mold is less than that of the

conventional mold filling process. As the L/t ratio (L = length, t = thickness of the part)

increases, the solidification layer buildup increases in the conventional process and thus

the area that the molten polymer passes through to fill the mold decreases. The reduction

of the area directly results in an increase of the pressure requirement to fill the mold at the

same filling rate. When the L/t ratio is too large such that the reduction of the area

completely closes off the polymer passage, the mold cavity cannot be filled completely;

this is termed "short shot." In the isothermal filling process there is no pressure drop

resulting from the area reduction in the mold cavity. Moreover, shear stress will be

reduced because of the lesser pressure gradient. The reduced shear stress results in a

decrease of flow-induced molecular orientation.

Another advantage of the isothermal filling process is the lower packing pressure

requirement for zero thermal shrinkage. The density of polymeric material at solid state is

higher that that of molten polymer. In other words, the volume of polymeric material

becomes smaller when the molten polymer solidifies. Therefore, in injection molding a

high packing pressure needed for elastic deformation to compensate for thermal shrinkage

can be reduced if initial melt temperature can be lowered.



Rinderle 84 has considered the elastic and thermal expansion of steel molds and

plastics, and concluded that the volume changes of the mold can be neglected to obtain an

approximate solution of the volume changes in plastics during the molding process.

Rearranging the Spencer-Gilmore equation (7), and substituting the injection temperature,

Ti, and the average final temperature, Tf, the following two equations can be written:

Pi = RTi / (vi - co) - x (8)

Pf = RTf / (vf - c) - n (9)

For zero volume change:

vi = vf (10)

and

Pf = Pat. (11)

Pf << x (12)

Equations (2) and (3) can be combined to determine the injection pressure for zero volume

change in terms of the injection temperature and the average final temperature:

Pi = (Ti - 1) 7C (13)
Tf

The pressure required, Pi, can be reduced in the isothermal filling process because

the injection temperature, Ti, in equation (13) can be lowered since the freezing of plastic

during the filling stage is no longer an issue. With the decreased injection temperature, the

time required to cool the part is correspondingly shortened.

One more advantage of the isothermal filling process is the consistency of the part.

Since the temperature of the molten polymer in the mold cavity is the same throughout the

entire cavity upon cessation of the flow and the cavity volume does not change, the

pressure of the polymer melt must remain the same everywhere within the cavity. If the

injection temperature and the mold surface temperature can be controlled from one

injection cycle to the next, then the state of polymer in the cavity can be controlled thereby

enabling one to produce consistent parts.

84 Rinderle, James R., "A Method for Precision Injection Molding," M.S. Thesis, M.I.T., June 1979.



A disadvantage of this conservative method is the increased cycle time, the added

complication of the mold design, and the waste of energy. This model also makes the

unrealistic assumption that the melt is at a uniform temperature which is not the case as

determined by experiments which probed the plastic temperatures in the nozzle and barrel.

These problems represent an upper limit to the cycle time and the dimensional consistency

of continually more complex parts.

111.3 Differential Coolin2 Process

A differential cooling process is defined as a controlled cooling process in which

every section of the molded part is cooled uniformly (part temperature is independent of

the spatial coordinate) so as to maintain a constant pressure throughout the molded part.

In reality, the part can not be cooled uniformly by conduction since the heat transfer by

conduction itself requires a temperature gradient. Although completely homogeneous

parts can not be molded, one can minimize the deleterious effects of the secondary flow

caused by density variations within the part. A concept of a differential cooling process

that can eliminate the secondary flow of plastic from the thick to the thin sections is

illustrated in this section.

Consider molding the part shown in Figure 111.3.1. The part consists of a thin and

a thick section. When the part is cooled from the molten state in a constant temperature

mold, the thick section cools more slowly than the thin section because of the thermal

insulation properties of the plastic. The average temperature in the thick section,

therefore, is higher than that in the thin section during the cooling process. From the

Spencer-Gilmore equation (1), it can be seen that the pressure of plastic is higher at higher

temperatures of the plastic provided that the volume remains constant. Consequently,

there is a secondary flow of plastic from thick to thin sections during the cooling process

due to the pressure gradient. The secondary flow results in surface depressions known as

"sink marks".



Figure III.3.1: A difficult part to mold because of the change in part thickness.

The differential cooling process minimizes the secondary flow of plastic from one

section to another. There are two approaches to differential cooling of the part. One is to

change the heat transfer rate by controlling the surface temperature of the mold. The

other is to change the heat transfer coefficient through the thickness variation of the

insulation that surrounds the part. The first method will be referred to as an active control

method, and the latter will be referred to as a passive control method. Each method has

its own advantages and disadvantages.

When the vitrification rates are the same, the temperature gradient between the

two sections is minimized and thereby the pressure gradient is reduced. Consequently, the

secondary flow from thick to thin sections can be minimized. The surface temperature at

the thin section is lowered more slowly than that at the thick section in order to minimize

the vitrification rate difference between the two sections. This reduction in the pressure

gradient can be achieved with uniform part temperature rather than uniform mold

temperature. This is an example of an isothermal mold inducing distortions rather than

preventing them.

It is advantageous to use an active control method for a part of continuously

varying cross section. For example, optical parts such as lenses must have a smoothly

varying cross section. The vitrification rates in the varying cross section can be actively

controlled at the thinner sections. The cycle time, therefore, does not increase since the

thickest section of the part must also vitrify before ejecting the part.

The effects of an isothermal filling and a differential cooling process on the quality

of the molded part have been discussed in this chapter. The part quality can be improved

with active thermal mold control; otherwise, the isothermal filling and the differential

cooling processes cannot be achieved with the mold. These processes affect the residual



stresses in the final part. A detailed study of the stress relaxation is presented in the next

chapter.

111.4 Detailed Description Of The Filling And Cooling Staee

A detailed model will be developed that incorporates all essential information

building from the molecular structure which influences the macroscopic properties of

polystyrene. The models developed here can be used to determine warpage as well as

heating duration and intensity requirements to achieve the desired product dimensions.

The relation of these models with those discussed previously will illuminate the essential

discrepancies of the models currently employed in industry as well as in technical journals.

Furthermore, energy requirements to produce a part with temperature histories

independent of position will be formulated.

Polystyrene was the polymer used. It was chosen for its transparent optical

properties that will be exploited for later birefringence studies. Furthermore, polystyrene

is one of the most researched polymers; thus, formulations developed in this section can be

readily compared to the existing experimental data in the technical literature.

Figure III.4.1 provides the molecular structure of polystyrene. The benzene ring

side groups adds stability to the molecule.

H -- CH2H- CH2-H- CH23H-

H

styrene
C6H5CH=CH2  polystyrene

Figure III.4. 1: The molecular structure of styrene and polystyrene.

Heat induces polymerization of styrene to polystyrene. During the filling stage the

polystyrene is highly oriented with subsequent relaxation once flow terminates.



Figure 111.4.2 shows the spatial and temporal dependance of the skin layer

thickness as it develops during the filling stage.

skin
layer melt

y

flow
direction

2L2
i. -

L1 I xf.m I

cavity empty intermediate fill cavity filled
t=0 t = tl > 0 t = trin > tl

Figure III.4.2: Development of the skin layer.

The intermediate fill shows the dependence of the frozen skin layer thickness on the

injection speed that roughly correlates with the wave front speed in the mold, vij (melt

flow speed in the x direction). The total contact time of the mold and plastic interface (t,)

and the leading edge of the fountain flow front in contact with the cavity (xfrt) (assuming

melt solidifies at instant of contact) is given by:

Xfont - X

tc(x) = for xfot 2 x (14)
Vinj

During the filling stage the plastic and the mold should have perfect contact ' no thermal

contact resistance.

Figure 111.4.3: Molecular orientation Figure III.4.4: Relaxation of orientation.
induced by injection.

Injection induces preferential orientation of the polystyrene polymer chain. This

stretching and kinking induces warpage when relaxation occurs because the amount of

stretching is unbalanced between different solidification layers. The different solidification

I

dr43



layers are created by the inherently different solidification properties between the polymer

solidifying while flowing during injection and filling and further solidification once flow

terminates in the post filling stage.

There are three major parameters that characterize the energy requirement

necessary for part quality and produce a part thermal history that is independent of the

spatial coordinate. They are:

* skin layer thickness

* solidification front speed

* warpage tolerance

They are detailed below.

(a) Skin Layer Thickness and The Solidification Front Speed

Figure III.4.2 displayed the spatial and temporal variation in the skin layer

thickness. Because the energy requirement to uniformly reduce these thicknesses are a

function of the thickness, then the optimal energy requirement must also have the same

functional relationship as that of the skin layer thickness. Thus, the energy requirement

for skin layer reduction has both a spatial and temporal functional form.

Experimental evidence ( Section VI.2(b) ) has shown that a temperature gradient

along the path length exists in the part and that the initial melt temperature injected into

the mold is nonuniform. Therefore, the two melt solidification fronts (growing from y = ±

L2 towards y = 0 ) will not meet at the rectangular body's plane of symmetry. This is

another source of noniformity with has the same functional dependence as the skin layer

thickness that results again with a spatial and temporal energy requirement function. The

analyses quantifying these parameters are detailed below.



Semi Infinite body analysis of heat conduction in a region bounded by a moving

surface (phase change of a solidifying body) is given in Mills"8 and is summarized below.

These formulations provide an order of magnitude estimate of the skin layer thickness and

the solidification front speed.

The formulations assume constant properties. The properties are: ot (thermal

diffusivity), pi(density), ki (thermal conductivity), and Cpi (specific heat), for i = m

(mold) and p (plastic) and both bodies initially at uniform temperatures.

Figure 111.4.5 displays the heat transfer thermal circuit treating the mold as a semi-

infinite body and the melt as a moving flow front. The coordinate y = L2 -y'
mold:~'''' j~i~:~~~~:~:

":mold
p.- x cavity 2L2

flow
direction

Tm
L1

solidified plastic

Tm - To Tc - To Tm - Tc km s(t)
--=  ( ----- ( (15)

s(t) 8(t) Tc - To kp 6(t)
k k1

p &

6(t) s(t)

Aq - T. ~q Thermal resistance
To  8(t) s(t) Tm

km kp

Figure 111.4.5: Thermal circuit representation of the mold and the solidifying melt.

An estimation of s(t) is needed to determine the relative thermal resistance between the
8(t)

mold and the solidifying polymer where 699 - length of thermal penetration in the mold

such that Tm(, t)-T= 0.99 (16)
TC -To

85 Mills, A.F., Heat Transfer, Richard D. Irwin, Inc., Boston, MA, 1992.

To



Figure III.4.6 shows the temperature increase in the mold at an arbitrary time.

Figure 111.4.7 shows how energy transfer to the mold causes the moving flow front.

TC

shaded area
represents the energy
taken up by the mold

tra i·r+~a

Tc-T(h,t) T,-To
Pn on ,0 8 : P. TO8w99 (17)

2 2
for T(899,t) 2 To

r - 1 r... epL unL area

5(t)

Figure III.4.6: Energy balance on the heat absorbed by the mold.

solidified plastic

energy given up by plastic to the mold
melt = pp hsfp s(t)

s(t)

Figure 111.4.7: Energy balance on the heat released by the melt forming skin layer.

Thus, by conservation of energy, and reinserting and rearranging (15):

To - To
pm Cpm 2 - (t) 2 pp hsfps(t) (18)2

8(t) 2 pp hs Tm - To km pm Cpm (To - To)
s(t) pm Cpm (Tc- To) Tc - To kp 2 pp hsfp

There are three thermal resistance considerations. These cases provide insight into the

requirements of a specific low thermal inertia mold to the particular plastic being molded.

Tm(8,t) -Tec
TC - To

all the thermal resistance is in the mold * Tm(8,t) ; T,

q 8(t) ==> constant wall heat flux solution
8(t)
km

Case I:



Sq -To (20)
8flux
km

where flux = and 89ux -6
599 3.65

Solidification:

ds
S ppA(-) dsq = -h= dt hfp -pphsf (21)

A A dt

Equating the q's and integrating to solve for -- and s:

ds km(Tm -To) 2km(Tm - To) xfoont (22)
dt=hsa s(x)= s(x(t= 0))+ (22)

dt pphsfpJ pph EX

for t -L- and 699 < L1
Vinj

This s(x) overpredicts the thickness since the melt is at a temperature higher than the

solidification or glass transition temperature Tm. At t = L- the flow front has reached the
vinj

end of the cavity and for 899 > L1 the semi infinite body solution is no longer valid. After

the plastic stops flowing and packing, the plastic will start to shrink; thus, perfect plastic

and mold contact is no longer valid. These air gaps represent thermal contact resistant

regions which hampers heat transfer. Therefore, warpage is a greater problem in a part

with greater shrinkage capacity and possibly thinner section parts. Once the flow

completely stops birefringence patterns disappear in the interior sections indicating a

relaxation of stresses in the core region of the plastic. Intuitively this observation is

reasonable since the core region is the unsolidified plastic no longer subjected to the

shearing stress induced by the flow. Two additional cases are detailed below.

Tm(5, t)- To
Case II: >> 1 all the thermal resistance is in the plastic -= T.o T,, constant

Tc - To



This case considers a thermally controlled mold surface temperature. The

formulations developed for this case provides a heat transfer lower limit for low thermal

inertia injection molding.

temperature control element
(cooling channel)

- solidified plastic

Figure .4.8 Thermal profile of a thermally controlled mold surface.
Figure 111.4.8: Thermal profile of a thermally controlled mold surface.

Because to the size of the mold (infinite) relative to the rectangular part 1-D conduction

may be assumed. Therefore:=> d2T
dz2

1 dT where z = L2 - y
op dt

Boundary conditions: z=0: T(O,t) = T,

z=s: T(s,t)= Tm

Transforming to nondimensional variables:

Transformed

boundary conditions:

C=0: 0

s(t) : = 1ýW-

Initial condition:

ST(z,t)- Tc
Tm -T

Transformed

initial condition:

t=0: T(z,O) = Tm

zand L =7=-Ptp(24)

C -00o : 0 --+1

The interface surface balance between the melt and the solidified layer gives:

Tm - TC m ds Cpp(Tm - Tc) (q - hfp = -pphsfp Ja - =( )-ux A dt hf 2

The plot of equation (25) is given in Figure III.4.9.

(23)

e2 erf(·)2 (25)



Jacob number, Ja
0.14- -

0.6
o.s4

0.2

0 0.2 0.4 0.6 0.8 1 1. 1 4

Figure 111.4.9: Plot of equation Cpp(Tm- To)
(25), Ja - - = ,(-)

haf 2
e erf( ).2

(Courtesy Mills, 1992)

Therefore,
ds
dt ()'- and s= s•V pt (26)

which is valid for t > 0'

t=O' when the front has reached that location in the mold (xf ron= x)

The concept of variable wall temperatures can be applied to better simulate actual

conditions of the thermally controlled mold surface. This case would best model thin

sections where large ratios of thermal gradients to the thickness of the part exists.

Case III: Tm(8, t)-Tc 1- T
Te - To

thermal resistance of solidifying material

Assume Ja << 1

_- thermal resistance of the mold

=Ja Cpp(Tm-Tc) =
hsfp 2

:: J4 +6

Ja= ý + + +...2 12 120 as C -+ 0

e 2 erf( )2

(27)



2 2Cpp(Tm-Tc) Cp(Trp- Tc)p kn(Tc -.To) (28)
2 hsfp 2hs fp

> 7pp2 M•sfpCppaop(Tm - Tc)Cm =(Tc - To)2 (29)
2km2

let A- 7pp2hsfpCppoCp(Tm- Tc)OLm (30)
2km2

Expand and solve using the quadratic equation:

T.2= - b  - 4 ac  for aTc2+bTc+c=O where a= b=A-2To and C=To2 -ATm
2a

A physical constraint on the temperature range of T, (To < T, < Tm) eliminates one of the

two mathematical solutions to give the unique physical solution.

-b A b2I-ac A _b_-cSo with A > 0 - = To-- <To and 2 04 To--- <To
2a 2 2a 2 2a

T =To -A(1- -To) (31)
2 A

2Cpp(Tm-Tc) (32)

dsf¢

Therefore, = ( ) and s= pt (33)
dt 2 Vt

There will be two solidification fronts one from each of the mold surfaces along the y axis.

It is proposed that warpage is induced by unbalanced cooling which manifests in these

fronts meeting off center (y • 0).

(k) Warpage Development As Thermal Gradients Across The Part's Thickness

The objective of this section is to correlate a temperture gradient across the

thickness of the part with the warpage induced by this gradient. The formulations can be

used to determine the temperatuare gradient necessary to bring a given part warpage back

into tolerance. Planar elastic theory was assumed and the skin layer thickness and

solidification front speed calculated in one of the three above cases were employed.



The relevant background formulations are:

Hooke's Law (planar):

1
sx= -(ax - Vcy) + AT

E
1

sy = -(y -vax) + AT
E
txy

yxy =
G

E
where G E

2(1+ v)

Elasticity Theory (planar):

Force equilibrium (neglect body forces):

Compatibility of strain:

a
combining the above equations give: (

8 8
-Ox +-•xy = 0

a a8
c-y + •xy = 0

0y Ox

L2 a2 a2
-- 6 + "-T Y YXY

2 )2
+ - )({ax + oy + oEAT} = 0

&Jy2

For a rectangular part L1 >> 2L2 (=2s) >> W

where W is the width of the rectangular part into the page

Assuming the temperature gradient is in the y direction only (AT(y) only):

= No stresses in the z direction oz = 0, =, z = o= 0, o,= 0, and ox =ox(y)

S•2- {aox(y)+xEAT(y)}= 0

Integrating: = ax(y) = -aEAT(y) + Ci y + C2

(38)

(39)

When the mold halves open, the part's ends are unconstrained:

L2
2

Net force=0: Fx=0=W fcx dy
L2
2

(40)

(34)

(35)

(36)

(37)



Net moment = 0:

L2

M= 0 = W J yax dy
L2
2

L2 L2
12 2 1 2

= C 3 d aEyAT(y) dy and C2 - I aEAT(y) dy (42)
L2 L2 L2 L 2

2 2

More accurately, s (skin layer thickness at the time the solidification fronts meet) should

be used but s , L2 (half thickness of the part) and s = L2 for a completely balanced

cooling. An accurate calculation of s is needed to compute the final warpage of the part.

From beam theory: deformation
caused by one
solidification
front

thicker
deformation

warpage from
superposition

Figure III.4.10: Resulting warpage from the superposition of the two solidifiation fronts.

axis

Ex = x +aAT =
E <p (43)

where (p is the radius of curvature

Figure 111.4.11: Neutral axis deviation as a measurement of warpage.

By
ax2  2 2 L12

(p - for small distortions y
[1+- 8x2 2p 8(p

Ox

LI2 
axA = (-+ aAT)

8y E (45)

(41)

(44)

nitluser

la•s



where A is the warpage induced by the solidified skin layer and the additional solidified

layer at the point when the two flow fronts meet. There is one A on each side of the mold

just prior to the meeting of the two solidification fronts. (A is the y direction thickness

measured from the surface of the mold)

This can be applied for assumed mold surface temperatures at y = L2 and y = -L2

and the location where the two flow fronts meet which is approximately at y = 0.

Assuming linearity and using superposition give:

AnetA= l - A21 (46)

The above equation models the rectangular part as two halves each with individual

warpages associated with the thermal gradient. The plastic melt zone present in the

middle section (region around y = 0)after the mold fills allows this simplification. This

analysis explains the phenomenon of the plastic bending towards the hotter side after the

mold opens. The hotter side has a smaller A, so Anet pushes the plastic towards the hotter

side.

(c) Comparison Of Formulations

The following are relations commonly used in recent technical literature. The

formulations developed above can be compared to those currently used to estimate the

skin layer.

The assumptions used for a semi-infinite slab solution are: (1) 1-D heat transfer and flow

(end gated slab); (2) constant wall temperature To ; (3) uniform melt temperature Tm at the

time of fill, tfinl ; (4) isothermal Poiseuille flow of a power law fluid; and (5) viscoelastic

stress relaxation commencing at the instant of fill for a thermorheologically simple

material. The equation does not account for the latent heat of fussion.

T-T o _(m+1/2)22c/2 b2

Tm-To = 2 (m+1/2)X x e cos(m + 1 / 2) /b (47)

Implicit assumptions for the above equations are that the frozen layer next to the cavity

walls is negligibly small and that the thermal properties of the polymer are independent of



temperature and pressure. Not accounting for the skin layer underestimates the heat

requirement to reduce residual stresses and underestimates the level of warpage.

For a fully developed plane Poiseuille flow of a power law fluid, the velocity

gradient is given by:

Qb(2n+1) y un (48)
| 2Wn (b -6)3  b-c) (48)

where W is the width of the cavity and 8 is the thickness of the frozen layer of polymer

adjacent to the wall (the skin layer). Implicit in the above equation is that any extensional

stresses that may arise in the gate area decays rapidly and practically vanish at some small

distance downstream from the gate. The equation will not be able to account for the

velocity gradient once the leading edge of the fountain flow has reached the end of the

mold but the melt is continuing to fill the mold. The skin layer reduces the effective gap

for flow and thus increases the wall shear stress and the pressure drop in the cavity. The

skin layer (8) may be calculated from the solution of the heat-conduction equation for a

semi-infinite medium,

Tg - Tmold 1/2

Tmelt - Tmoid (4 aC) (49)

where t, is the time of contact of the melt wit the wall during the filling stage

(Figure 111.4.2). This time may be estimated from:

t = 2bW(L -x) (50)

The shear stress for a power law fluid is:

ar12 = K (51)

where K = exp(ao + a, /T + a2 P + a3 P/T)

The first normal stress difference is then calculated from an empirical relationship:

N1 = A a,12 (52)

where A and p are material constants.

The residual stresses can be expressed in terms of birefringence (stress-optical law):



Anf= nl - n 2 = C(N2+4 2)1/ 2  (53)

where C is the stress-optical coefficient of the material."6 (C = 4.5x10-10 cm2/dyn Dow

Styron 685D - commercial polystyrene)

Depending on the injection conditions the melt can either "jet" or form a front as it

flows in the mold. This will affect the skin layer thickness calculation. Fountain flow

deposits hot melt from the center of the mold onto the wall where it solidifies while jetting

fills the cavity more irregularly.

In either case, the hypothesis is that thermal control should be input after the mold

completely fills and immediately prior to the complete solidification of the melt in the

mold. This is because some shear stress that has built up during filling can relax because

there is a compliant melt core region. Relaxation of shear stress takes 0.1-1.0 seconds.

The relaxation time tR (the period required for the disappearance of stress birefringence in

the flowing region) rapidly decreases with increasing melt temperature Tm , but is hardly

affected by the injection velocity. From experimental results, an empirical correlation

between the relaxation time and injection temperature for polystyrene is as follows:

tR = 4980 exp(-0.0416 Tm) [sec] (54)

where Tm is expresses in OC

This relaxation time can be used to estimate the filling thermal control time.

The thermal input should be applied with the appropriate thermal lag time

accounted for such that the greatest energy input is imparted to that plastic region with the

longest mold residence time.

Further solidification produces stress variations that should also be reduced to

reduce warpage. The shrinking of the plastic produces gaps between the mold and the

plastic, which complicates the thermal treatment because thermal contact coefficients must

be calculated for the air gap between the plastic and the mold. A model of spatial and

temporal shrinkage or melting the skin region so that it is always in contact with the mold

may be possible solutions. The temperature gradients established during solidification

86 VanKrevelen D.W., and Hoftyzer, P.J., Properties of Polymers, Elsevier, Amsterdam, 1976.



have the greatest effect on warpage. For symmetric cooling the solidification fronts meet

at the center of the part; therefore, the forces are balanced with tensile strain in the center

and compressive strain near the surfaces. For asymmetric cooling the solidification fronts

meet off center of the part causing a shift in the strain distribution. Upon release, the part

will bend in the direction of the hotter side.

tension compression resulting deformation
upon mold release

Figure III.4.12: Effect of unbalanced thermal control on the part.

The final deformation of the part or the warpage can be calculated in a simplified

way if it is assumed that the elastic modulus of the material takes on a constant average

value at the specified glass transition temperature and that viscoelastic effects are

negligible.8 7 That is:

E=0, T>Tg (55)

E = E, T _ Tg (56)

where E is the elastic modulus, T is the temperature, Tg is the glass transition temperature

and E is the average value of the elastic modulus. The stress distribution is evaluated in

the following way.

n =ao E (Tn - T) (57)

where o, is the normal stress at the n h layer after all temperatures have reached ambient

temperature, Tn is the temperature of that layer at the time when the maximum plastic

temperature reaches the glass transition point, T is the average temperature at the same

time and oL is the average thermal expansion coefficient (assumed constant). A positive

value of ac indicates tension.

The stress distribution is then converted to an equivalent bending moment by:

87 Jacques, Michael St., An Analysis of Thermal Warpage in Injection Molded Flat Parts Due to
Unbalanced cooling.



M (58)

where M is the bending moment, An is the cross sectional area of the n'h layer and 8n is the

distance of the no layer from the center of the part.

Finally, the deformation is obtained using pure bending theory:

d =M L2 ( 1 _ - 2 ) / (8 I) (59)

where d is the maximum deflection of the plate or warpage, L is its length, 1 is Poisson's

ratio, and I is the moment of inertia in bending.

It must be noted that ignoring viscoelastic effects results in a more severe

deformation than actual. As the difference in cooling fluid temperatures between mold

halves increases, the predicted warpage increases linearly. The thinnest part warps the

greatest amount, because of its relatively small moment of inertia in bending. The

sensitivity of part warpage is greater for the design condition of asymmetric cooling fluid

temperatures than for the case of different distances of the cooling channel to the surface

of the cavity and the effects are approximately additive. Experimental verification is

required before the accuracy of the model can be conclusively evaluated.

The major difference between the correlations employed in current technical

literature and the correlation written in this thesis is that the latent heat of fusion is used

here, whereas, other literatures ignore the skin layer in their analysis.

After the solidification and ejection of the part, the cycle repeats as before. The

mold cavity is briefly exposed to the air which can be neglected in the heat transfer

analysis. Under the assumption of rapid cycle times and the high thermal inertial of the

typical mold, the time duration of ambient exposure is negligible compared to the time

constants of the mold temperature decay. The mold temperature decay time constants

obtained from experimentation indicate that this is a reasonable assumption.



CHAPTER IV

ANALYSIS OF STRESS RELAXATION

IV.I1 Introduction

In order to predict the residual stresses in the injection molded part, a rheological

constitutive equation that can characterize the nonlinear viscoelastic flow behavior of the

polymer melt must be used. Wagner's 8,8 9 integral type constitutive equation can predict

the stress relaxation from the instant the mold is filled by fully developed simple shear

flow. Leonov developed a differential type constitutive equation90, 91 which successful

describes the nonlinear viscoelastic behavior 92,93. However, both analyses are highly

dependent on property values; thus, they will not used in this research.

The stress-optical law will be described in detail in Sections IV.2. Section IV.3

provides a prediction of isothermal stress relaxation upon cessation of fully developed

simple shear. A nonisothermal stress relaxation of an injection molded part will be

discussed in Section IV.4.

These formulations and considerations enable the molder to determine the duration

and intensity of heating to remove the skin layer described previously as well as balancing

the heating requirement during the post-filling stage.

88 Wagner, M.H., Rheol. Acta, 15, 1976, p. 136.
89 Wagner, M.H., Rheol. Acta, 16, 1977, p. 43.
90 Leonov, A.I., Rheol. Acta, 15, 1976, p. 85.
91 Leonov, A.I., E.H. Lipkina, E.D. Paskhin, and A.N. Prokunin, Rheol. Acta, 15, 1976, p. 411.
92 Isayev and Hieber, Rheol. Acta, 19, 1980, p. 168.
93 Wang, K.K., S.F. Shen, C. Cohen, C.A. Hieber, and A.I. Isayev, "Computer Aided Injection Molding
Systems," Progress Reports Nos. 6-8, Cornell University for NSF under grant APR74-114990.



IV.2 The Stress-Optical Law

The theory that relates changes in the indices of refraction of a material to the

anisotropical state of stress in the material is known as the stress-optic law. These laws

are used to relate fringe patterns caused by phase shifting of the electric field to isostress

contour lines. The isostress contour lines are used to determine the residual stresses in the

part. Thus, the amount of orientation in an injection molded part can be determined by

measuring the birefringence. Maxwell94 reported that the changes in the indices of

refraction were linearly proportional to the loads. The relationships are expressed as

follows:

nl - no = cl ol + c2 (a2 + 3)

n2 - no = c 0+ 2 (01 + 03) (60)

n3 - no = c 03 + c2 (02 + 0I)
where

or, 02, 03 = principle stresses at a point

no = index of refraction in unstressed state

ni, n2, n3 = indices of refraction in stressed state

associated with principal stress directions

ci, c2 = constants known as stress-optic coefficients

Although equations (60) provide the complete state of stress at a point, practical

application has been limited because of the difficulty in measuring absolute changes in the

index of refraction. However, the more widely used method of photoelasticity makes use

of relative changes in the indices. The following equations are obtained by eliminating no

from equation (60):

ni- n2 = c (02 - ol)

n3 - n2 = c (02 - 03) (61)

94 Maxwell, J.C., "On the Equilibrium of Elastic Solids," Trans. R. Soc. Edinburgh, XX, part 1, 1853, p.
87-120.



ni - n3 = c (o3 - ai)

where c = c2 - c1 is the relative stress-optic coefficient, usually expressed in terms of

brewsters (1 brewster = 1013 cm2/dyn = 10-12 m2/N = 6.895 x 10-9 in2/lb) - c is taken as

4500 brewsters95.

For plane-stress situations, equations (61) reduce to:

An = nl -n2 = c (02 -01) (62)

From the Mohr's circle, the principal stress can be expressed in terms of normal stress and

thus equation (62) can also be expressed as
1

An = c [4~22 +(11 -22)2] 2  (63)

The relationship of birefringence (An) to the stress in amorphous polymers obeys

the stress-optic law. Oda, White, and Clark96 found that the molecular orientation in

polymeric parts is quantitatively related to the principal stress difference acting at the time

of vitrification.

IV.3 Isothermal Stress Relaxation

An isothermal stress relaxation after the termination of a fully developed one-

dimensional shear flow is considered in this section. Analysis of this section is useful in

describing the stress relaxation behavior of the injection molded part when the isothermal

condition is maintained some time after the filling stage has been completed.

Consider the situation in which a polymer melt is initially at a uniform temperature

Tm and flowing as a fully-developed flow between parallel plates. From time t = 0- to t =

tfin, the temperature of the plate remains the same as that of the melt, namely Tm. Thus,
the fully developed isothermal flow condition is identical to the initial condition. At t =

95 Dietz, White, and Clark, "Orientation, Development and Relaxation in Injection Molding of
Amorphous Polymers," Polymer Engineering and Science, 18, 4, (March 1978), p. 273.
96 Oda, K., J.L. White, and E.S. Clark, Polymer Engineering and Science, 18, no. 1, 1978, p. 53.



tfan, the flow stops and the flow-induced stress starts to relax while the melt temperature

remains constant at Tm, assuming that viscous heating is negligible.

The isothermal relaxation of shear stress, primary normal stress difference, and

birefringence exhibit similar behavior.97 A decrease in the pressure gradient results in the

lower initial values of the three, but higher values for later times than the higher pressure

gradient. The steady state values can be reached in about one fifth the time for the higher

pressure gradient.

In this case no skin layer should form and a uniform melt temperature can be

assumed for the initial condition. When solidification begins, however, the part corners

cool faster than the middle of the part. This should not result in warpage, because residual

stresses are relaxed shortly after filling phase. The thermal requirement would still be to

maintain a nonuniform mold surface temperature trajectory because of the differing

solidification environments encountered by the ends versus the middle of the part as

discussed previously.

IV.4 Nonisothermal Stress Relaxation

In practice, the stress will relax in a nonisothermal environment. The molten

polymer in the mold cavity must be cooled below the glass transition temperature before it

can be ejected. The stress relaxation rate at a lower temperature is slower. In analyzing

the nonisothermal stress relaxation, one must take this variation of the relaxation rate

caused by temperature changes into account. In thermoplastic materials, however, the

changes in temperature can be easily compensated for by the appropriate changes in the

relaxation time using the WLF temperature-shift factor9 . A variation of temperature

corresponds to a shift in time scale; thus, all relaxation time changes with temperature are

proportional to the shift factor.

97 Kim, B.H., "Low Thermal Inertia Injection Molding," Ph.D. Thesis, M.I.T., p. 74-76, July 1983.
9 Flaman A.A.M. "Buildup and Relaxation of Molecular Orientation in Injection Molding. Part I:
Formulation"



Kim99 found that the flow-induced stresses relax on the order of a second for the

isothermal filling and nonisothermal cooling process, and the residual stresses can be

minimized without difficulty. Because of the viscoelastic nature of the polymer melt, the

more strain the melt undergoes during filling (within the longest relaxation time period)

the faster it will relax. Hence the cavity should be filled as rapidly as possible for

molecular relaxation and for decreasing total cycle time. If the molding machine cannot

provide the rapid filling then the isothermal condition can be maintained beyond the

completion of filling to allow orientation caused by small strain from the slow filling

process to relax. Therefore, molding a part with the minimum residual stress can be

achieved if molecular relaxation takes place before vitrification by using a heated mold

surface. This heating restores the condition of the plastic to that of the isothermal stress

relaxation shortly after filling. Thus, both the isothermal and the nonisothermal stress

relaxation processes require the same mold temperature variation rather than a constant

mold surface temperature.

99 Kim, B.H., "Low Thermal Inertia Injection Molding," Ph.D. Thesis, M.I.T., p. 81, July 1983.





CHAPTER V

Development Of Injection Molding Tooling

V.1 Introduction

The first step in the design is to define the desired plastic part geometry and

location of cooling channels and heater locations in the mold. The thermal control ideally

should be close to the surface for two reasons. First, the relatively low thermal

conductivity of mold materials could make heat diffusion through the metal walls longer

than desired. Second, since the mold cavity is the only part of the mold that the plastic

comes in contact with, any thermal cycling in the mold that does not happen at the surface

of the mold cavity is wasted.

Determination of an optimal test part geometry was based on several required

characteristics which are based on the objectives of this thesis. A geometry was sought

that contained the following features:

1. The geometry of the part should lend itself to one-dimensional analysis and

corroborate information published by other researchers using the same geometry.

2. The part geometry should be sensitive (in terms of warpage or distortion) to the

mold surface temperature.

3. The geometry should have characteristic features that can be easily measured to

distinguish the amount of distortion that may exist. In this case "distortion" refers to the

deviation of the plastic part dimensions from the mold cavity shape accounting for

shrinkage.

4. The effects of the dynamic thermal boundary inputs on residual stresses can be

readily visualized.



The most common geometry used in the technical literature was a thin rectangular

bar. Because this geometry satisfied all the research requirements, the thin rectangular bar

was used.

The plastic chosen for the test parts is clear polystyrene (DOW 678). Polystyrene

was chosen because it is the plastic used in numerous other research studies; thus, a

comparative analysis can be made. Furthermore, it is commonly used in industry.

Experimentally, it remains clear during both the flow and solidification stages of molding

which is a prerequisite for flow visualization. Other properties are rigidity, good

dimensional stability, good moldability and low moisture absorption, which precludes the

need for predrying the plastic pelletso00.

Polystyrene, compared to other thermoplastics, is hard, rigid, and has a distinct

metallic sound when dropped. Its specific gravity is around 1.06, it is brittle, has medium

resistance to oil and is unable to withstand temperatures around that of boiling water.

Polystyrene is widely used in injection molding and vacuum forminglo0 .

Table V. 1.1: Thermophysical Data Of Polystyrene.

Temp. [K] Thermal Linear Expansion Temp. [K] Thermal
Diffusivity [m2/s] [x 10-6 /K  Diffusivit [m2/s]

295 1.29 x 10-' 71 420.3 8.4 x 10-8
311.8 1.19 71 432.9 8.21
326.6 1.12 71 440.9 8.22
338.7 1.13 71 451.0 8.2
350.2 1.12 71 460.6 8.2
361.4 9.87 x 10-8 71 473.2 8.2
383.2 8.85 71 485.4 8.19
393.2 8.57 493.1 8.21
403.2 8.41

Melt Temp. Mold Temp. Specific Specific Heat Latent Heat of Flow Path
[0C] [oC] Gravity [J/Kg K] Fusion [J/kg] Ratio
200 20 1.05 1720 71,400 150

•00 Brydson, J.A., Plastics Materials, fifth edition, pp. 252-282, Butterworth Books, London 1989.
101 Ibid.



The flow path ratio is a rough "rule of thumb" first approximation of the

moldability of a plastic part. It is the ratio of flow distance / section thickness. If in a

particular mold, the flow path ratio is less than the table values the part will fill. This

assumes typical mold temperatures conditions and relatively constant cross sections.

Some factors that have to be considered when using polystyrene as a molding

plastic arel12:

1. Polystyrene has a comparatively low specific heat, which makes it easier to heat

in the plasticizing cylinder. It therefore cools faster that other polyolefins, which means

faster cooling times.

2. It has a strong viscosity dependence on shear rate. This means that care has to

be taken when designing molds with comparatively narrow sections.

3. It has low shrinkage because of its lack of crystallization on freezing.

4. Since it is relatively rigid, it is difficult to produce parts free from internal

stresses. Although this is true of all thermoplastics, it is especially so for polystyrene.

5. It is recommended, in order to obtain a polystyrene part with minimum strain,

to inject the plastic in a homogeneous melt state into a hot mold, at an injection pressure

that will drop to zero when the melt solidifies.

V.2 Desi2n Considerations For The Dynamic Thermal Boundary Mold

The purpose of thermal spatial and temporal control is to reduce warpage or

increase part consistency while maintain a reasonable injection molding cycle. The effect

of these varying temperature profiles can be visualized using a specially built mold with

windows. The birefringence can then be observed using photoelasticity. Different

temperature profiles can be generated by using a heating surface.

The parameters to consider are the passage separation distances, and cooling

channel and cartridge heater placements. From earlier analysis it was shown that the

solidified plastic skin development during the filling stage resembles that of an boundary

102 Ibid.



layer with the leading edge at the end of the cavity. Therefore, the optimal thermal input

that strives to reduce the variation in the skin thickness or eliminate it entirely is a linear

temperature gradient along the flowlength with the highest temperatures at the beginning

of the cavity where the contact time is longest. However, once the plastic fills a

rectangular cavity the ends of the part have a greater contact area to volume ratio with the

mold than the center of the part. Heat conduction will be greatest at these ends, so the

optimal thermal input is warm near the gate area, cold in the middle region, and hot at the

end of the cavity. The reason for warm temperatures instead of hot temperatures is that

the melt near the gate has a lower mold residence time in the cold mold than the plastic

reaching the end of the cavity. Thus, the plastic at the end of the cavity has already

solidified to some extent. Furthermore, there has been more heat transfer near the

entrance so the mold temperatures near the entrance should be higher than those near the

end of the cavity. However, a different temperature gradient is required for this

combination effect for both the developed skin layer and the packed plastic. The new

profile depends on which mode is more dominant. If the skin layer effects are more

dominant, then a skewed parabolic profile with the gate region at the highest

temperatures, the end of the cavity at medium temperatures, and the center of the cavity at

the lowest temperatures should be used. Otherwise, the profile used for the packed plastic

with an change in intensity of the thermal profile applies.

In order to maximize the heating rate of the mold, while minimizing the energy

consumption, fluid passages are placed conformal to the mold cavity, as close as possible.

As was already explained, this would allow a one-dimensional heat flow assumption

possible, while increasing thermal response and decreasing energy expenditure.

Once mold dimensions are finalized, passage evaluation begins. The chosen fluid

properties and cartridge heater power outputs can be manipulated to desired levels to

produce reproducible and significant results.



CHAPTER VI

EXPERIMENTAL SETUP AND RESULTS OF

DYNAMIC THERMAL BOUNDARY MOLDING

VI. 1 Introduction

The objective of the thermal control experiments is to demonstrate its utility in

reducing residual stresses, thereby reducing warpage. The evaluation of the thermal

control efficacy consists of a conventionally molded part without thermal control

compared to that of the same part molded with thermal control. Experimental procedures

and results are discussed for the conventional molding and the molding under thermal

control in Section VI.2 and Section VI.3, respectively.

The thought process behind the implementation is as follows:

1. Observe the warpage locations in a part without thermal control. This is measured

directly from the part dimensions after ejection from the mold.

2. Correlate (if possible) the birefringence patterns (residual stresses) observed from the

photoelasticity experiments to the observed warpage.

3. From correlation "guess" a possible thermal input with spatial and temporal variations

that will reduce the number of birefringence patterns. Compare predicted reduction with

observed.



VI.2 Conventional Molding

(a) Experimental Setup and Procedure

The experimental setup consists of three major parts: (1) the injection molding

machine, (2) the test mold with transparent windows made of Plexiglas, and (3) the optical

system.

(1) An Engel EC88, 30 ton injection molding machine located at MIT was used to

mold the polystyrene parts with the aluminum molds. Melt temperatures were controlled

by setting the nozzle and barrel temperatures to 4500 F.

clamping unit -
injection unit

,- control unit

Figure VI.2. 1: Engel EC88, 30 ton injection molding machine.

(2) The design of the mold avoids undulating flow for comparative experimental tests.

Thus, the flow front advances in a straight line over the whole cavity breadth which gives

parallel flow. A laminated aluminum mold for a thin and flat rectangular part was used

with three components-female, male, and lamination layer. The details of the test mold

are shown in Figures VI.2.2 through VI.2.4. The lamination layers vary in thicknesses

from 2, 4, to 6 mm. The mold will produce parts that are 65 mm x 12 (15) mm x 2 (4 or

6) mm. Plexiglas windows will be used to view the 65 mm x 2 (up to 6) mm area that will

be illuminated by the laser. If stress build-up and relaxation is understood in simple

shaped injection molded parts, then the analysis can be extended to explain the

thermorheological history of complex parts using the formulations and the method of

birefringence observation developed in this thesis.



lamination layer

male 7K7
Figure VI.2.2: Components of the test mold.

The lamination layers and Plexiglas windows are sandwiched between the male and

female blanks when the mold halves are in the closed position; however, both the

lamination layers and Plexiglas windows are secured only to the male blank. Plastic shims

where used to offset the windows from the lamination layers. Width flexibility was

obtained by changing the orientation of the windows as shown in Figures VI.2.3. This

increased the width range from 12 mm to 15 mm.

u--u,

12mm 15mm

Plexiglas
windows laminati(

laye

Plastic
qhim •

Figure VI.2.3: Two widths are possible by changing window orientation (plane view).

Further versatility was achieved by using the different thickness lamination layers

in different combinations and/or stacking them for a maximum part thickness of 12 mm

(6+4+2). For example, two different sizes of the lamination layers were used to allow

placement of thermocouples within the melt stream as shown in Figure VI.2.4. The 6mm

lamination layer was placed on the top mold end (near the sprue) and the 2 mm lamination

layer was placed on the other mold end (near the end of the cavity) with 6 mm thick

Plexiglas windows to complete the enclosure. The top region (where the plastic initially

touches the cold mold) is entirely enclosed but the bottom portion of the mold now has a

gap of 4 mm that allows a thermocouple to be placed between the molds.



A five inch ruler was placed in Figure VI.2.4 and was used in most of the pictures.

DlPv i l
5 inch n

2mm
lamination

layer

windows
6mm
lamination 6 nun
layer thermocouple

2 mm . Plexiglas
window

flow direction
Figure VI.2.4: Stepped lamination layers for thermocouple insertion.

As the plastic fills the mold, the melt stream envelops the thermocouple placed

along its path. The final position of the thermocouple is difficult to control but the "frozen

in" coordinates can be determined precisely after the part is removed from the mold as

shown in Figure VI.2.5. This allows the measurement of the thermal history of any spatial

location can now be identified, and also the plastic surface temperature. The lack of

packing pressure magnifies the effects of the residual stresses. Thus, the general

applicability makes this a powerful technique to directly measure the effects of differing
temperature profiles on the part. Recalling that perfect contact enhances heat transfer,
then the increased number of air gaps and sink holes on the surface of the part formed due
to lack of packing will decrease the heat transfer compared to the packed in polymer that
has better contact with the mold. Thus, the difference in temperature readings between
the packed in and the nonpacked as time increases but there is an limit to this error since
the plastic has cooled down, which reduces the heat transfer, thereby, reducing the
temperature range which directly translates into a temperature error range reduction.



sprue

Thermocouple tip

Y

Figure VI.2.5: Thermocouple 'frozen in' using the stepped lamination layer method.

The thermocouple does not interfere significantly with the flow because its tip and

diameter (0.020 inches - 0.5 mm) are much smaller than the 6 mm thick part being

molded. However, as the part thickness decreases the utility of this method becomes

increasingly questionable as the thermocouple might obstruct the flow or become a

significant heat sink for the molding part.



(3) Photoelasticity will be used to determine the distribution of residual stress in the

injection molded specimen. A schematic of the setup is shown below in Figure VI.2.6.

He-Ne
laser

1era
laserline
filter

1" polarizing
cube

1/4 waveplate

1/4 waveplate
on rotating

mount

1"collimating
lens

,-- 45 mirrors - jig plate

Figure VI.2.6: Laser setup used for birefiingence illumination of the mold.

The He-Ne (632.8 nm) laser emits a randomly polarized 1 mm diameter beam.

This beam goes through a polarizing cube that vectorizes the polarization into orthogonal

vectors. The cube is oriented such that the purer form of the linearized beam is

transmitted to the quarter waveplate. The quarter waveplate breaks the linearized beam

into orthogonal vectors of equal magnitudes and out of phase by 90' (circularly

polarized). This circularly polarized beam is then expanded 3X then another 20X to a 60

mm diameter beam. The beam is then redirected at 450 by a mirror. This 60 mm diameter

beam now illuminates the sample. Vitrification of the polymer melt creates stresses in the



part. Differences in principle stresses are linearly proportional to differences in indices of

refraction as discussed in Section IV.2. After the beam is transmitted through the part, it

now has additional phase changes induced by the differences in the index of refraction. A

two lens system is used next to reduce the image to the size of the CCD camera sensor

area. The first lens focuses the beam to its focal point while the second lens placed at its

focal length away from this focal point collimates the beam. This reduced image now

strikes another quarter waveplate then a linearly polarizing cube that relinearizes the beam,

causing amplifications for certain phases and total annihilation for those vectors 1800 out

of phase. This accounts for the alternating bands of light and darkness. Before the image

is received by the CCD camera a laserline filter is used to screen out the ambient light.

The CCD camera is connected to a monitor and the monitor is connected to a VCR.

Images recorded on the VCR was retrieved using framegrabber.

Optical holders were machined to a tolerance of ±0.005 inches. These were

specially designed such that the centerlines of all the components could be aligned and

offset to properly illuminate the part. Rotation about the axis of the beam is required for

the polarizers and the quarter waveplates to obtain the proper orientation for birefringence

patterns. However, the rotation can also be accomplished by the relative difference in

rotation of the polarizer set and the quarter waveplate set. Thus, only one polarizer and

quarter waveplate need be rotated while the other can sit with a fixed rotation. Therefore,

only two rotating mounts were used in the setup--one for the 1/2" polarizing cube and the

other for the 1" quarter waveplate. Beam expansion of 60X on the left side of Figure

VI.2.6 required the two expensive beam expanders. However, only a 10X reduction of

the image was needed to fit the image onto the CCD camera sensor area; therefore, the

inexpensive two lens system was employed.

Furthermore, all the optical components were secured onto a jig plate which was

fashioned to fit onto the bolster and within the security doors of the injection molding

machine. The upper right area of the jig plate was band sawed off so that the injection

molding machine's security doors could close as seen in Figure VI.2.7 c) below.



a) Bolster. b) Laser setup on bolster. c) Security door closed.

Figure VI.2.7: Laser secured to bolster with and without the doors closed.

Figure VI.2.7 a) shows the location where the optical equipment must sit. The

shape of the jig plate was constructed to use the bolster, which is fixed to the injection

molding machine, and the top two horizontal cylindrical bars as support.

The observed birefringence patterns can now be correlated to stresses. The

calculated stress birefringence can be compared to the observed using the following

relation: 103

An= w (64)

where N is the fringe order, % is the wavelength of the light source (.He.-Ne = 632.8 nm),
and W is the optical path (= 12 mm)

(b) Results

The parts made below were molded without any thermal control and injections

were spaced such that the mold temperatures reached the same initial conditions through

natural convection (air) cooling. The waterline was shut off and the heaters were not

turned on. Seven 6 mm thick parts were molded to exploit the thickness difference

between the larger and the smaller lamination layers and to obtain enough data samples to

characterize the temperature field in the entire part.

103 Kurosaki, Y. And I. Satoh, "Visualization of Flow and Solidification of Polymer Melt in the Injection
Molding Process," 1989 National Heat Transfer Conference, HTD-Vol. 113, Heat Transfer in
Manufacturing and Material Processing, p. 63.



The coordinate system used to chart the location of the thermocouples is shown

below. The approximate thermocouple final locations are labeled on a schematic of a

typical part divided into three zones: entrance, middle, and end.

sprue

entrance

XxYxZ

nominal part dimensions (inches): 2.553 x 0.236 x 0.654

Figure VI.2.8: Coordinate system used for thermocouple locations and final thermocouple
locations for experiment sample numbers 1 to 7.

The part was sectioned into three equal volume regions as shown in Table VI.2.1.

The top region accounts for the region near the sprue. The middle region accounts for the

following one third region. The end region accounts for the last third region which

includes the end of the cavity. The experiment numbers are included for reference, and

coordinates of the thermocouple tip are also listed. Figure VI.2.9 shows the temperature

decay of the respective thermocouples.

It has been observed that the majority of the residual stress buildup occurs during

solidification (after filling). Therefore, the temperature of concern is the temperature after

the polymer fills the mold.

"



Table VI.2.1: Coordinate of thermocouple tip in the conventionally molded parts.

Thermocouple final location Comments Region (entrance, middle, end)

1. 1.308 x 0.020 x 0.0220 extreme end middle

2. 2.536 x 0.187 x 0.600 end

3. N/A inner cone of sprue, not in part N/A (sprue - above top)

4. 2.312 x 0.237 x 0.088 top surface in Y end

5. 0.253 x 0.112 x 0.153 entrance

7. 0.212 x 0.170 x 0.537 entrance
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Figure VI.2.9:
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Thermal response of the solidifying plastic in conventional molding.

Figure VI.2. 10: Polymer thermal response (Post filling)
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These experiments confirmed the need for the relatively warm temperatures near

the gate region, relatively cold temperatures in the middle region, and relatively hot

temperatures at the end of the cavity skewed parabolic thermal profile as discussed at the

end of Section V.2. From Figure VI.2. 10, the middle region of the polymer (Experiment

1) was observed to be the hottest of all seven trials (143±2 0F) with the top region

(Experiments 3, 5, and 7) (101.3+3.7 0 F) having significantly lower temperatures.

Furthermore, the end region (Experiments 2, 4 and 6) (94.2±4.80 F) had the lowest

temperatures which justifies maintaining the mold cavity end at the highest temperatures.

VI.3 Dynamic Thermal Boundary Molding

The type of dynamic control needed to produce part with uniform spatial

temperatures depends on the determinacy of the process. The two options are closed and

open loop control. If the process is random, then closed loop control is necessary.

However, if the process is determinant (cyclic pattern) then open loop control is

appropriate. The determinacy was determined both experimentally and experientially

through consultation with Dick Barlik from Hasbro (Section 11.5) to be relatively

determinant depending on the tolerance.

Warpage was visually examined on parts made at Hasbro. The warpage was

determined to be localized to the same general area; therefore, warpage appears

deterministic. Because residual stresses are directly related to warpage; thus, residual

stress distributions must also be a deterministic.

The determinacy was examined experimentally by assessing the uniformity of the

incoming melt from the nozzle of the injection unit to the mold. The implication of a

nonuniform incoming melt temperature is that maintaining the surface at a constant

temperature will not reduce the stresses in the part. The premise is that if the melt

temperature is not uniform prior to injection, then it cannot become uniform during

injection.



A thermocouple was inserted into the nozzle of the injection molding machine and

it was allowed to reach steady state. The first few measurements were taken by first

feeding the plastic then inserting a thermocouple into the nozzle tip, then pulling out the

thermocouple. After refeeding the plastic, the thermocouple was inserted to about 1/2"

into the nozzle. This process was repeated except the thermocouple was inserted to about

1" into the nozzle. A second procedure where all three spatial measurements of tip, were

recorded without refeeding between measurements was used. Therefore, the two

procedures are:

* feed polymer to obtain a steady polymer stream from the nozzle

* record temperatures at (1) tip or 1/2", or 1" OR (2) tip and 1/2", and 1"

Procedures (1) and (2) tabulated and displayed in Table VI.3.1 and Figure VI.3.1 are

labeled different and same, respectively.

. -thermocouple

ti~j
L heater

lp Ii / -

Figure VI.3.1: Steady state temperatures for the plastic melt in the injection unit nozzle.

The barrel and nozzle temperatures were all set to 4500 F on the Engel injection

molding machine computer controller with a tolerance of +140 F. Temperatures higher
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than 450 0 F resulted from the viscous heating effects of the reciprocating screw. The

general trends are the increasing temperature going into the nozzle and towards the heater.

The expected melt linear temperature variation is seen. The variation at any location

(standard deviation) is a fixed variation of approximately 100F. This is an indication of

temporal random variations. The variation between locations (difference between mean

values) is a linear profile with a gradient (slope) of approximately 150F / 0.5". This

nonuniformity becomes increasing critical as the tolerance decreases.

The experimental setup for dynamic thermal boundary manipulation includes the

setup used for conventional molding as well as the cartridge heater/variac thermal control

unit. Furthermore, the mudframe (Figure VI.3.4) was machined to obtain a smaller sprue

hole for faster solidification and to create an access space to connect the cartridge heaters

and the waterline to the mold.

The variable controlled is the duration and intensity of the cartridge heater energy

flux imbedded within the mold for a given configuration. The cost of constructing a mold

of this type is much less than those proposed with passive insulating layers or the typical

mold start up cost given in Section I. 1. For every application the cost versus benefit

trade-off study should be examined on the basis of tolerance requirements, cost of

fabricating a mold to satisfy the given tolerance, and the mold operational life. Some

materials have a higher warpage index implying these materials will benefit more from the

use of thermal control because of the greater efficiency in warpage reduction.

Irregularities in shape and paper thin sections suffer severe temperature gradients which

can be countered by thermal control. An understanding of the heat transfer between the

part and the mold is vital to reducing residual stresses; otherwise, technologies such as

low thermal inertial injection molds will worsen, not reduce, distortions. However, low

thermal inertia injection molds must be used for thermal spatial and temporal

manipulations required by the two distinct solidification modes.
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(-) Experimental Setup

Three parallel passages were drilled and pipe tapped into each of the male and

female die parts. Each passage can have either tap water flowing through it or a cartridge

heater sitting in the core and there are three passages in each of the male and female molds

for a total of six passages as shown in Figure VI.3.2; thus, there are 26 = 64 different

combinations accounting for only the interchange between the heater or the cooling line.

If high, medium, and low levels of heat input or water pressure is considered, the number

of different combinations increases to 66 = 46,656 different combinations. However,

balanced heating requires symmetry between the male and female mold temperatures,

thereby reducing the number of different combinations to 63 = 216. Previous arguments

concerning the best cartridge heater and waterline arrangement and levels (waterline

sandwiched between the heaters as shown in Figure VI.3.3) further reduce the number of

different combinations to 33 = 27. Further arguing that only two types of thermal profiles

either linear (three combinations) or a skewed parabolic profile (four combinations) should

be used reduces the number to seven.

male mold
only

0
0

C/ passage for
water flow
or cartridge
heater

mold
(male or female)

Figure VI.3.2: Mold with three passages for the cartridge heaters and waterline.

The water cooling channel is used as a heat sink to establish and maintain the

steady state temperature gradient. The cartridge heaters used were 3/8" nominal diameter,

2 1/4" sheath length, 350 Watts, and 172 W/in2 . Each cartridge heater is connected to a

separate variac set at 120V for independent variation of surface temperatures. At a

particular voltage setting and flow rate the system will eventually reach steady state. Once
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steady state has been reached a temperature probe will survey the initial surface

temperature conditions.

cartridge
heater

mold with three
passage holes

- middle passage
reserved for the
waterline

Figure VI.3.3: Mold passages for two cartridge heaters and a waterline cooling channel.

Figure VI.3.4 displays the male mold with the windows and lamination layers and

the female mold placed in their respective mudframes.

male female

mudframe

- mold

,/-- lamination
layer

Figure VI.3.4: Molds in mudframes with lamination layers and windows on the male.

(b) Experimental Procedures and Results

It is desired to establish steady state thermal profiles and assume that they hold

during the actual heat control experiments. The first thing that will be done is a test of the

repeatability of thermal control. Next, any general profile can be generated from a linear

combination of independently generated profiles which will form the bases for the space of

all thermal profiles. The effects of these bases should be quantified and a novel technique

of measure the plastic not mold surface temperature will be described. Ultimately, the

desired uniform temperature distribution is that of the part not the mold. However,

measurements of both the mold and the plastic temperature fields correlates the effects of

a temperature profile to the subsequent part qualities.
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Experimental description:

Each mold has three circular holes equally spaced and in cross flow with the flow

path of the polymer. Two of the three holes have cartridge heaters inserted inside and the

middle hole between the cartridge heater holes is reserved for water cooling. Each

cartridge heater was attached to its own variac for independent heater control. The variac

switch was set for 120 Volts which is the recommended maximum voltage specified for

the cartridge heaters. The voltages was varied throughout the experiment to observe the

effect of various energy requirements. The heat flux varies as the square of the adjusted

voltage setting. For example, if a 50% variac setting was used then only 25% of the rated

heat flux (172 W/in2 ) is generated.

An independent test determined that the heat generated was concentrated at the

center of the cartridge heater rather than evenly distributed along its sheath length; thus,

the heat flux is nonuniform. However, the nonuniformity should have insignificant effect

because the region of heating is 12 to 15 mm compared to the sheath length of 2.25

inches.

Part I: Repeatability of Thermal Control

Thermal decay of the mold temperature is an extremely slow process. It is also

important to determine the system response and approximate thermal effects to facilitate

experimental planning. Therefore, an initial thermal response test was performed to

investigate the difference in measured temperatures of an easily controlled system. The

results determine the number of trials needed to secure reproducible results and the

expected differences in temperatures between runs for an identical setup.

One cartridge heater was placed in the female mold hole closest to the sprue hole.

A linear profile was assumed; thus, only Two thermocouples were placed on the surface of

the mold with each thermocouple placed at the ends spanning the entire length of where

the molded rectangular part would contact the mold surface. The mold and

thermocouples were sandwiched between two Nomex insulating boards to prevent heat

104



transfer out of the system. The thermal response should be approximately the same

between the two molds although the male mold has a slightly greater thermal mass due to

the addition of the lamination layers and the Plexiglas windows. Figure VI.3.5 shows the

setup described above.

Nomex board

male mold with
lamination layers

- thermocouples

female test
mold

Figure VI.3.5: Female mold thermocouple sandwiched using two Nomex boards.

Figure VI.3.6 shows the thermocouple assignments. Channel A corresponds to the

region near the sprue. This region is subjected to the highest temperatures because this

thermocouple is placed directly above the only heater in the system. Channel B

corresponds to the region at the end of the cavity.

Figure VI.3.6: Thermocouple channel assignment of female mold surface.

The variac settings were 50%, 75%, and 100% of the rated 120 Volts. The power

was left on until system reached steady state. The temperature decay was also measured.

Figure VI.3.7 shows the results. In the legend the nomenclature is as follows:

'voltage level' - 'trial number' 'channel assignment'.
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For example, 50%-3B represents 50% of the maximum voltage level (120V)set by the

variac of trial number 3 on channel A which corresponds to the region near the sprue.

800

700

6oo

500

400

300

200

100

0

0 50 100 150

time (mii
200 250 300 350

Figure VI.3.7: Repeatability of thermal response on the female mold.

The three trials at 50% show close agreement in the temperature response curves,

as do the two trials for 75% and another two for 100%. Furthermore, the thermal inertia

of the mold is relative small due to the close agreement in temperatures between channels

A and B. This implies a rapid heat diffusion occurred within the mold. From these

experiments, it can be assumed that the heater and mold assembly thermal controls are

repeatable. Thus, reproducible results can be expected with only one run.

Part II: Determining Bases For Arbitrary Thermal Profiles

The dynamic thermal boundary thermal control implementation uses two cartridge

heaters and a water line for each of the two molds as shown in Figure VI.3.8.
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heater #3 -

male side

heater #4 -

__ heater #1

heater #2

female side

- waterlines

Figure VI.3.8: Cartridge heater and waterline arrangement.

Mold surface temperatures in the region where the plastic is molded were the

objectives of the setup shown in Figure VI.3.9. Six thermocouples were used to analyze

the thermal response. The thermocouples were sandwiched between a 6 mm Nomex

insulating rectangular piece resembling the shape of the molded part. Three

thermocouples were pressed against the surface of each mold face. Because each set of

three thermocouples contacts different mold faces and is insulated from the others, the

imbalance from inputting equal amounts of heat flux can be measured. The 6 mm

lamination layer was used to create the necessary gap for the thermocouples and the

Nomex rectangular piece to not be crushed during mold closing. This 6 mm lamination

layer provided the only thermal bridge between the male and the female parts. The six

thermocouple locations were the region nearest the sprue (where the plastic first forms),

the region in the middle of the part, and the region near the end of the cavity.

...- magnified
region

6mm
thick

nomex
rectangle -

....

6 thermocouples
3 contacting each
mold surface

(a) Experimental setup. (b) Magnification of sample region.
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Figure VI.3.9: Setup for characterization of steady state thermal profile bases.

Figure VI.3.10 displays the channel assignment on a molded part. The

temperature readings are of the mold surface temperature, not the plastic surface

temperature. The measured steady state mold temperatures can be correlated to its effects

on part qualities. These temperatures were assumed to be those experienced by the melt

flow during subsequent experimentation.

3B

Nomex
rectangular
piece

Figure VI.3.10: Thermocouple channel assignment of Nomex rectangular piece.

Figure VI.3.11 schematically combines the heater arrangement and thermocouple

channel assignments. A channels register the surface temperature of the female mold

while B channels register the male mold temperatures. Channel numbers 1, 2 and 3

correspond to the top, middle, and end regions of the plastic and mold contact surfaces,

respectively.

22

heater 2 -f j yJ-

female - A male - B

heater 3

cooling
channel

heater 4

Figure VI.3.11: Cartridge heaters and waterline locations and channel assignments.
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The following considerations were used in devising the type and number of

experiments performed. The first consideration is how many variables are in the system

and what are the controllable parameters. The controllable parameters were the heat flux

as controlled by the variac, water flow rate, and which of the four heaters should be turned

on. From earlier discussions (Section 11.5) it was determined that two major modes of

solidification schemes are involved in injection molding so to effect constant plastic

temperature those areas cooled first should be heated by the heaters to effect a more

uniform cooling of the part. The experiments performed below allow the determination of

the necessary profiles needed for the objective of this thesis. The experiments were not

repeated because repeatability was already established and only general trends are sought,

not explicit formulas, so accuracy was sacrificed without loss to the fulfillment of the end

experimental objective.

The initial conditions of the system are as follows. The initial uniform temperature

of the entire system without heating or cooling was 78.9 0 F. Temperature with water flow

rate at maximum was 77.40 F. Additionally, the polymer melt was manually injected at the

feed speed of 20mm/sec and the nozzle and barrel temperatures were set to 4500F.

Nine experiments were performed to establish the required bases:

The nomenclature of Table VI.3.2 is as follows. The experiment numbers are

incorporated in the same area as the varying flow rate and voltage settings in boldface.

The data set consists of a 3X2 matrix corresponding to the experiment number directly

above or horizontally adjacent. The thermocouple channel assignments are MA, IB, 2A,

2B, 3A, and 3B in italics and all steady state temperatures are in 'F. The intersection of

the horizontal voltage level and the vertical flow rate determines the settings used.

For example, (area shaded in Table VI.32)

The steady state temperatures 151.6, 161.2, 138.6, 147.8, 152.5, and 159

corresponding to channels JA, JB, 2A, 2B, 3A, and 3B are for experiment number 5 where

intermediate flow rates and 100% variac setting were used.
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The numbers in italics were steady state temperatures linearly extrapolated from

the seven experiments.

Table VI.3.2: Steady state temperatures for various voltages and water flow rate.

nahc nel and region #

Variac
voltage
level
(%
of
max.)

3.
100

1
2

2
3

temperatures OF)
6. minimal4. maximum

A
131.6
118
133.1
109.5
101.7
110.8
94
90
94.9

B
136.9
122.8
136
114.5
105.3
112.9
96.9
91.8
95.7

130
122
131
114
110
115

140
130
138
122
117
121

A
225.7
214.9
223
204

S194
201
188
176
185

B
238.5
226.6
230.2
218
/207
210
200
192
195

7. no flow
A

362.1
360
362.1
340
339
340
324
321
324

B
395
393
384
374
373
364
356
355
349

Figure VI.3.12 shows that the maximum gradient that can be generated is 150 F.

This gradient is insufficient to produce the spatially uniform part for the following reason.

The temperature difference between the middle and the entrance section was observed to

be approximately 400F. Because the thermal resistance of the plastic is higher than that of

the mold, then the minimum temperature gradient required is 400 F. Thus, the maximum

of 150 F that can be generated with the current setup is insufficient.

a) Variable heat flux with max. flowrates. b) Variable flowrate with max. heat flux.

Figure VI.3.12: Steady state temperatures for various voltages and water flow rate.
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Figure VI.3.13 displays the difference between the male and female bolsters. The

female has a smaller mass and a greater surface area contact with the injection molding

machine than the male bolster. This causes an imbalance between the thermal inertias of

the male and the female die halves which is evident from the data from Table VI.3.2. If

the thermal inertia was the same between the two mold halves then the temperatures as

well as the thermal response from channels A and B should be relatively close. However,

Table VI.3.2 shows that as the voltage level increases or as the flow rate decreases there is

a greater divergence between the temperature readings of channels A and B, with B

channel temperatures consistently higher than those of channel A. Thus, the male

mudframe had a much higher thermal inertia which made cooling down a lengthy process.

Consequently, rapid unbalanced thermal cycling from low thermal injection molds can

induce distortions.

a) Male bolster. b) Female bolster. c) Mudframes in bolster.

Figure VI.3.13: Bolster and mudframe assembly.

Experiments 1, 2, and 3 set up a correlation of temperature effects of varying the voltage

while maintaining maximal waterline flow.

Experiments 4, 5, 6 and 7 complete the picture of the effects of flow rate at 100% voltage

setting and can be extended to the other two voltage level percentages (75% and 50%).

Figures VI.3.14 and VI.3.15 display the thermal profile leading to the steady state

temperatures in Table VI.3.2 as well as the temperature decay after power shutoff. The

numbers in the figures correspond to the labels in the legend with 1 referring to the top

label in the legend and subsequent numbers refer to labels from top to bottom. For
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example, in Figures VI.3.14 the number 4 refers to 75%-1(2 and 3)B. Channel

assignments were previously discussed.

From the above experiments it was determined that the minimal flow rate provides

the best profile based on the trade-offbetween being close to but not too close the glass

transition temperature (4000 F)and high enough to produce an appreciable gradient so the

gradient effects can best be seen. The objective is to produce a uniform melt/plastic

temperature decay not heating up the mold to the glass transition temperature. Thus, the

temperature range around 2000F (provided by the minimal flow rate) was assumed to

provide the most desirable thermal profile in terms of relaxation of the skin layer and

sufficient retarding of heat diffusion to effect a semi balanced cooling.
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The next set of experiments will establish the basis of an exaggerated profile and

will not maintain balanced cooling while keeping the flow rate at the minimal level.

The numbers in the grid are heater numbers and only the shaded portions indicate

the heater voltage level and the nomenclature of Table VI.3.3 is as follows:

Experiment number. Shape of thermal profile

Steady state temperatures- 1A, IB, 2A, 2B, 3A, 3B (OF)

For example, (area shaded in Table VI3.3)

9. skewed parabolic (hottest near end of cavity)

155.2, 178.7, 165.3, 183.2, 176.8, 191.9

indicates that experiment 9 has heaters 1 and 3 at 50%, and heaters 2 and 4 at 100% of

V.. (120V) with minimal flow rate and the steady state temperatures are 155.20 F,

178.7 0F, 165.3 0F, 183.2 0F, 176.8 0F, and 191.9 0F from thermocouple channels lA,

IB, 2A, 2B, 3A, and 3B, respectively.

Table VI.3.3: Steady state temperatures for minimum flow rates but
varying thermal profiles.

Experiment number. Shape of thermal profile
Steady state temperatures (OF) - IA, IB, 2A, 2B, 3A, 3B
8. skewed parabolic (hottest near sprue)
186.6, 205.6, 164.5, 180, 160.2, 174.8
9. skewed parabolic (hottest near end of cavity)

551 2 1 78 7 165 3 183 2 1768 191 9

heater voltage level (% of 120V)
100 50 0

2 1
4 3

1

1 2
3 4

2 1 2
4 3 4

10. linear (sprue region hottest)
167.6, 187.2, 142.4, 158.6, 137, 150.6
11. linear (end of the cavity hottest)
138.2, 156.1, 153.9, 169.3, 166.4, 179.1
12. unbalanced heating of female only
195.5, 103.1, 193.9, 102.9, 192.5, 102.5
13. unbalanced heating of male only
101.3, 216.9, 93.9, 199.3, 101.6, 205.6

2 1 2 1
4 3 4 3

1 2
3 4
1 2

13 413 4
1 2

S3

The thermal profile in experiment 8 was not a skewed parabolic as expected. It

was a decay in temperature with the top region hottest. Furthermore, experiment 9

displayed the same trend except the decay start from the end of the cavity. Thus, the

water flow rate must be increased to establish a stronger heat sink in the middle of the
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cavity. The variacs at the 100% level overwhelmed the waterline heat removal capability.

Thus, the effect of the waterline was obscured.

The linear profiles for experiments 10 and 11 are actually two separate linearly

profiles for two different sloped regions. The region where the heaters are at the 100%

variac setting to the waterline has a very steep drop in temperature while the region from

the waterline to the end with the heaters set at the 0% variac setting has a fairly flat slope.

Experiments 12 and 13 were included to observe the maximum temperature

difference between the two mold halves. Using these profiles, the expected warpage is in

the direction of the hotter mold.

Figures VI.3.16 and VI.3.17 displays the thermal profile leading to the steady state

temperatures in Table VI.3.3 as well as the temperature decay after power shutoff. The

numbers in the figures refer to the top label in the legend and subsequent numbers refer to

labels from top to bottom. For example, in Figures VI.3.16 the number 4 refers to

1,3X.5;2,4X1-1(2 and 3)B which represent heaters 1 and 3 at the 50% variac setting and

heater 2 and 4 at the 100% variac setting. Channel assignments were previously

discussed.

The B channels (male side) all have higher temperatures than the A channels

(female side) which, as discussed earlier, resulted from the higher thermal inertia of the

male side. The higher male side temperatures resulted from the retention of heat from

previous experiments. The female side dissipates the heat much faster relative to the male

side; thus, the male side heats up faster upon subsequent experiments.
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Part III: Direct measurement of thermal profile effects on the part.

Eight 6 mm thick parts were molded with dynamic thermal boundaries. These

eight will be compared to the seven molded conventionally in Section VI.2.

Y

Figure VI.3.18: Final thermocouple locations for experiment sample numbers 8 to 15.

The results in Table VI.3.4 and Figure VI.3.19 can be compared to those given in

Table VI.2.1 and Figure VI.2.9 (Section VI.2 b).

Table VI.3.4: Coordinate of thermocouple tip in the dynamic thermal boundary parts.

Thermocouple final location Comments Region (entrance, middle, end)

8. 2.285 x 0.196 x 0.064 1, 3 100%; 2, 4 50% min flow end
6mm; badly warped

9. 1.208 x 0.043 x 0.529 1, 3 50%; 2, 4 100% min flow middle
6mm

10. 1.130 x 0.066 x 0.170 1, 3 100% min flow 6mm middle
11. 1.003 x 0.113 x 0.587 1, 3 100% max flow 6mm middle
12. 2.168 x 0.082 x 0.615 1, 3 100% max flow 6mm; end

(extreme side)
13. 0.175 x 0.111 x 0.645 1, 2 100% min flow 6mm entrance
14. 0.950 x 0.020 x 0.618 1, 2 100% min flow 6mm middle
15. 1.771 x 0.043 x 0.582 2, 4 100% min flow 6 mm end

Figure VI.3.19 shows the temperature decay of the respective thermocouples.

Experiment number nine gave erroneous values of constant temperatures due the a short
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in the thermocouple, so those values were excluded from the figure. Figure VI.3.19 a)

shows the effect of the two parabolic and the two linear profiles on the polymer

temperature decay. Figures VI.3.19 b) through d) show these decays for the three

different regions discussed earlier. These profiles are shown only as references. The

analyses of these profiles are compared to the no thermal control profiles in Figure

VI.3.20.

The part was sectioned into three equal volume regions as discussed previously.

The top region accounts for the region near the sprue. The middle region accounts for the

following one third region. The end region accounts for the last third region which

includes the end of the cavity. The experiment numbers are included for reference, and

coordinates of the thermocouple tip are also listed.

It has been observed that the majority of the residual stress buildup occurs during

solidification (after filling). Therefore, the temperature of concern is the temperature after

the polymer fills the mold. The polymer temperature profile for the two skewed

parabolics and the two linear profiles are all shown in Figure VI.3.20 a). The average

temperature for all the profiles (190 0 F). The elevated mean temperature reduced the

quenching effect of the hot polymer entering a cold mold. Consequently, the polymer

temperature gradient should decrease regardless of the temperature gradient imposed on

the mold. This reduced quenching effect can be seen in Figures VI.3.20 b) through d).

The various polymer temperature profiles had a smaller maximum deviation than those

without increasing the mold temperature. Therefore, to obtain more conclusive results it

is necessary to reduce the mean temperature of the polymer and produce substantially

larger temperature gradients than those that were achieved with the current system.
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Experiment samples 8 and 9 both had large sink marks of comparable sizes on the

surface facing the female mold except sample 8 had its sink mark start from the middle

region to the end while sample 9 had its start from the top region to the middle.

Comparing this observation to the steady state temperatures in Table VI.3.3, the hottest

side of the cavity fills more completely and the colder side produced the sink marks. The

sink marks appeared on the colder side because greater shrinkage occurred there and

without pressure the plastic detached from the walls to relieve the stress buildup in that

region. The desired skewed parabolic profile was not generated only an exponentially

decaying profile was created with the variac settings.

Experiment sample 10 had a uniform sinking of the surface facing the female mold,

but the higher flow rates experienced by samples 11 and 12 produced smaller uniform sink

surface not only on the side facing the female but also on the male side of the part. These

sink surfaces were comparable to those found in samples 1 through 7 from conventional

molding. A hypothesis was made as to how these sink marks and sink surfaces are

produced. Higher flow rates produce cooler and more balanced male and female mold

surface temperatures. The lower surface temperatures produce the sink surfaces as

evidenced by the more pronounced sink surface of sample 10. Thus, a minimum

temperature is needed to prevent these sink surfaces which can be determined by adjusting

the variac settings.

Experiment samples 13 and 14 provide further evidence that sink surfaces are

caused by the cooler mold face. In these experiments only the heaters in the female mold

were on, and the observed sink surface is now only on the male side.

Experiment sample 15 had a uniform sinking of the surface facing the female mold

comparable to that of sample 10. Samples 15 and 10 had inverse mold temperature

profiles where sample 15 had the end region hottest and sample 10 had the top region

hottest. Sample 15 exhibited greater bireffingence near the gate (top) region than sample

10; however sample 10 exhibited greater birefringence near the end region than sample 15.
These established steady state gradients might eliminate the need for low thermal

inertia injection molding as it maintains the plastic at a uniform temperature during the
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solidification portion of injection molding. However, low thermal inertia injection molds

are needed for thermal profile manipulations. These gradients slow the heat transfer in

some areas so that the overall process can produce parts that solidifies near the same

temperatures. Again note that the melt is initially nonuniform in temperature as measured

directly by the thermocouple so a constant surface temperature will not remedy the

problem of warpage.

Figure VI.3.21 shows the thought process behind the implementation. Because the

skin layer thickness is thicker near the entrance and acts as an insulator, the expected

polymer temperature must be monotonically increasing. However, during the subsequent

cooling phase the melt temperature was determined to have the profile shown in Figure

VI.3.21 b). The hypothesis is that a mold thermal profile inverse to that of the polymer

will produce a spatially isothermal part. The spatially isothermal part is hypothesized to

minimize residual stresses.

part-1 mold
mt i

Temp Temp T+ =im part
y y

a) Temperature profiles during the filling phase.

mold cavity filled
t = tfili > ti

Temp Temp TOM+ in pal

b) Temperature profiles during the post-filling (cooling) phase.
Figure VI.3.21: Temperature profiles during the filling and post-filling (cooling) phases.

The inverse mold thermal profile hypothesis has not been verfied because of the

inability to generate mold temperature gradients higher than those observed in the

polymer. The mold temperature gradients must be higher because the polymer is an

insulator with respect to the metal mold; thus, the polymer has a higher thermal resistance.
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Part IV Correlation of birefringence to residual stresses.

The following birefringence patterns shown in Figure VI.3.22 were taken using the

optical system described in Section VI.2. The part observed was 2 mm thick. Selected

regions (all near the sprue) were focused on to provide a comparison of the different

patterns observable in the part.

a) Corner birefringence. b) Gate birefiingence.

c) Opposite corner birefringence. d) Center region birefringence.

Figure VI.3.22: Birefringence patterns of various locations in a part.

Figure VI.3.22 a) shows gradual disappearance of fringe patterns away from the

corner. Similar patterns were observed in the opposite corner in Figure VI.3.22 c). The

gate region (near the sprue) shows an unusual pattern. This pattern might be a result of

the flow turning 90" (stagnation flow). The center region in Figure VI.3.22 d) is relatively

free of residual stresses.
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CHAPTER VII

Conclusions

VII.1 Summary Of Observations And Results

The end goal of injection molding research is to optimize the process to produce

parts of consistently high quality. The focus of this research was on the manipulations of

mold temperatures to achieve the goal. From the formulations developed in this thesis and

backed by experimental evidence, a skewed parabolic thermal profile using warm

temperatures near the gate region, colder temperatures in the middle region, and relatively

hot temperatures at the end of the cavity maximally reduces the temperature gradients in

the part; thus, maximally reduces the temperature nonuniformities that lead to residual

stresses or warpage. The remainder of this thesis focused on quantifying this skewed

parabolic profile and observing the effects of other thermal profile on final part

characteristics. This chapter provides a overview of the results obtained in this

investigation and discusses areas where potential for further research may lie.

Formulations were derived for three thermal resistance considerations. These cases

provide insight into the requirements of a specific low thermal inertia mold to the

particular plastic being molded. The original equation numbers were used.

* Case I: Tm(8,t)-TC <<1 all the thermal resistance is in the moldTo - To

ds km(Tm - To) 2km(Tm - To) __ront -xd = - hs - S(x)= s(x(t= 0))+ (22)
dt ph pphsrsv vnj

for t - and 89, , L1
vmj
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This s(x) overpredicts the thickness since the melt is at a temperature higher than the

solidification temperature Tm. At t = L- the flow front has reached the end of the cavity
vinj

and for 899 > Li the semi infinite body solution is no longer valid. After the plastic stops

flowing and packing, the plastic will start to shrink; thus, perfect plastic and mold contact

is no longer valid. These air gaps represent thermal contact resistant regions which

hampers heat transfer. Therefore, warpage is a greater problem in a part with greater

shrinkage capacity and possibly thinner section parts. Once the flow completely stops

birefringence patterns disappear in the interior sections indicating a relaxation of stresses

in the core region of the plastic. Intuitively this observation is reasonable since the core

region is the unsolidified plastic no longer subjected to the shearing stress induced by the

flow.

Tm(8,t)- T-
* Case II: T -T >> 1 all the thermal resistance is in the plasticTc -To

This case considers a thermally controlled mold surface temperature. The

formulations developed for this case provides a heat transfer lower limit for low thermal

inertia injection molding.

ds ) and s = ;pt (26)
dt 2at

where C is found from Ja CPp(Tm-T )= ) e erf( ).

which is valid for t 2 0'

t=O' when the front has reached that location in the mold (xeft = x)

The concept of variable wall temperatures can be applied to better simulate actual

conditions of the thermally controlled mold surface. This case would best model thin

sections where large ratios of thermal gradients to the thickness of the part exists.
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SCase IIL Tm(8,t)-Tc
To - To

thermal resistance of solidifying material thermal resistance of the mold

ds =( ) and s= if (33)
dt 2 ct m -

where 2Cpp(T-Tc) (32)
hsf

A 4(Tm - To)and T = To (1- 4(T To) (31)
2 A

and A - 7pphsfpCppcp(Tm - Tc )Om (30)
2km2

Furthermore, a formulation for warpage was also developed incorporating the

calculated skin layer thickness calculated in one of the three above cases.

Anet =IAl-A21 (46)

where A is the warpage induced by the solidified skin layer and the additional solidified

layer at the point when the two flow fronts meet.

There is one on each side of the mold just prior to the meeting of the two solidification

fronts. (A is the y direction thickness measured from the surface of the mold)
L12  x y ........... mold .

where A = (-+AT) (45)
8y E x cavity 2L 2

flow

direction
where ox(y) = -aEAT(y) + Ci y + C2 (39) L1

L2 L2
12 2 1 2

SCI12 - aEyAT(y) dy and C2 - • aEAT(y) dy (42)
L23 L2 L2 L2

2 2

More accurately, s (skin layer thickness at the time the solidification fronts meet) should

be used but s z L2 (half thickness of the part) and s = L2 for a completely balanced

cooling. An accurate calculation of s is needed to compute the final warpage of the part.
This formulation is restricted to rectangular parts Li >> 2L2 (=2s) >> W
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where W is the width of the rectangular part into the page and the temperature gradient is

in the y direction only (AT(y) only):

This analysis explains the phenomenon of the plastic bends towards the hotter side

after the mold opens. The hotter side has a smaller A, so Ant pushes the plastic towards

the hotter side.

Figure VI.3.21 shows the thought process behind the thermal implementation.

Because the skin layer thickness is thicker near the entrance and acts as an insulator, the

expected polymer temperature must be monotonically increasing. However, during the

subsequent cooling phase the melt temperature was determined to have the profile shown

in Figure VI.3.21 b). The hypothesis is that a mold thermal profile inverse to that of the

polymer will produce a spatially isothermal part. The spatially isothermal part is

hypothesized to minimize residual stresses.

part
miimold

t.1* \

+ = in part

a) Temperature profiles during the filling phase.

Smold- cavity filled
t = tfn > tl

Temp Temp Temp+ = in part

b) Temperature profiles during the post-filling (cooling) phase.
Figure VI.3.21: Temperature profiles during the filling and post-filling (cooling) phases.

The inverse mold thermal profile hypothesis has not been verfied because of the

inability to generate mold temperature gradients higher than those observed in the
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polymer. The mold temperature gradients must be higher because the polymer is an

insulator with respect to the metal mold; thus, the polymer has a higher thermal resistance.

A summary of observations and results obtained from the conventional molding follows:

* Utilizing the stepped lamination layer method to obtain part temperatures during

solidification, the middle region of a rectangular molded part was determined to be the

hottest, followed by top region, then the end region was the coldest by directly

measuring the part's temperature.

A summary of observations and results obtained from the dynamic thermal boundary
molding follows:

* The melt temperature distribution entering the mold from the injection unit nozzle is

nonuniform because the melt temperature distribution in the nozzle and barrel of the

injection unit is nonuniform prior to injection. The temporal and spatial temperature

variations can be as great as 10'F, 150F respectively

* Typical heaters can have heat flux nonuniformities; thus, rapid cycling of the mold may

present a detriment to part qualities.

* Thermal inertia of the two mold halves might be unbalanced; thus, inputting the same

heat flux will not produce the same effects. A simple test was developed in this thesis

to quantify the degree of imbalance using a thermocouple-mold-Nomex (insulator)

sandwich.

* Arbitrary thermal profiles can be generated using linear combinations of independent

bases of thermal profiles generated from different voltage levels and water flow rates

(Table VI.3.2).

* Using the stepped lamination layer method, which exaggerates distortions, allows the

relaxation of stresses to be directly observed on the part (no packing pressure). Thus,

different combinations of temperature profiles and flow rates can be investigated to

produce parts without sink marks or surfaces and provide reduced residual stresses.
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VII.2 Future Research

Mold temperature gradients in the mold must be greater than those in the polymer.

These mold thermal gradients were not achieved with the present thermal control system.

It is possible to achieve higher gradients using conformal heating and cooling passages.

It might be possible to design an optical sensor that can detect the onset of

polymer solidification and residual stress levels using fibre optic techniques similar to

those developed by Bur, Wang, Thomas, and Rosel 04. Then an optical controls algorithm

could be developed where the level of energy input would be proportional to the residual

stresses recorded (register the total intensity of birefringence of an area) as well as switch

the type of thermal profiles used during the switch for filling, just prior to complete

solidification and cooling. The higher intensity correlates with more fringe patterns which

is an area of greater stress concentration. These higher intensity areas can be mapped out

and heating units can become more active or cooling water flow rates can be reduced in

these areas.

A more detailed model of heat transfer effects can lead to not only producing

reduced residual stresses in injection molded parts, but also the thermal profiles might be

used to manipulate the plastic into complex shapes (preferential warpage) that cannot be

realized by current injection molding methods. An example would be a burst of heat flux

might induce convection in a local region allowing the incorporation of air bubble in the

plastic; therefore, the part will have a bubble or any complex enclosed shape at a preset

location. This phenomenon was observed in Earl Sun's research.' 05

14 Bur, A.J., F.W. Wang, C.L. Thomas, and J.L. Rose, "In-Line Optical Monitoring of Polymer Injection
Molding," Polymer Engineering and Science. 34, 8, (April 1994).
105 Sun, E.S., inplementation ofLow Thernmal lnertia Injection HAolds Using Conformal Passages, Master
of Science Thesis, M.I.T., 1995.
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A. Property Data

A collection of property data for polystyrene was gathered from various technical papers.
They can be used to compare and/or corroborate the formulations given in this thesis. Mold
properties are also included.

Table of Rheological Parameters for Dow

Power law fit:

Styron 685D 10 6

B .- (n-l)

rl=A eTy

A = 80.1 poise s"n-

B = 3635 (K)
n =0.32
N = A'crA' = 12
A' 1.432 x 103 (dyn cm2 )1'P

Constitutive law:

WLF constants (T < 2050 C):

Arrhenius constants (T > 2050 C):

mro = 1.05 x 105 poise
aM = 0.07
to = 0.94 s

C1 = 24.26

D = 6.131 x 10-"1

C2 = 309.40 C

AE = 2.26 kcal

Stress-optical coefficient: C = 4.5 x 10,10 cm 2 dyn'

Table of Rheological Parameters for Dow Styron 678E 107

Leonov: N = 2 s = 0.009
r91 = 5142 Pas
h2 = 1622 Pas

Tait: Vg,o = 0.9758 cm 3/g;

Trf = 1900 C
01 = 0.66 s
q2 = 0.025 s

T,o =100 0C

Spencer Gilmore:

p = 1.86 x 108 N/m2;

(p +p) (v-v)=RT

v = 8.2 x 104 m3/kg; R = 80 J/kg K

106 Greener, J. and Pearson, G.H. "Orientation Residual Stresses and Birefringence in Injection Molding"
107 Flaman A.A.M. "Buildup and Relaxation of Molecular Orientation in Injection Molding. Part I: Formulation"
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Ci = 24.26

k =0.17 W/m K

C2 = 309.40C

cp = 2100 J/kg K

Trf = 190"C

Stress optical coefficient: C:

Power law with pressure dependencels":
m = 3873.9 Pa sec C:

Tait

= -4.8 x 10-9 N/m2

. n-1

il=m epPeCTy

= -0.0136379 3 = 3.5 x 10"' m2/N n = 0.395

p = Vo' [1 - C In( l +  )]
B(T)

vo(T) = b, +b2(T - bs)
B(T)= b3 e-b4T

bi = 9.6 x 10'4 m3/kg, b2 = 2.2 x 10-7 m3/kg K, b3 = 2.44 x 10' N/m2, b4 = 4.14 x 10"3 1//C
and b5 = 1000C

Isotropic Material Properties of an Amorphous polymer (polystyrene)' 09

Mechanical properties of solid polystyrene:
elastic modulus E
Poisson's ratio v

Thermal Properties
thermal expansion coefficient a
glass transition temperature T8
heat conductivity k
material density p
heat capacity C

2.431 x 109 N/m2

0.35

50 x 10"6 m /m K
1000C
0.126 J/s m K
1.05 x 103 kg/m3

2100.0 J/kg K

Thermophysical Data Of The Mold.

Mold material Mold Thermal Specific Density Thermal
Temp. conductivity Heat [kg/m3] Diffusivity
1[C] [W/mK] [J/Kg K] [m2/s]

Aluminum 27 237 903 2702 97.1 x 10-'
Stainless Steel 27 14.9 477 7900 3.95 x 10-6
(AISI 304)

loS Chen, S.-C., Cheng, N.-T., and Jeng, K.-K., "Post-Filling Simulation and Analyses of Shrinkage and Warpage
of the Injection Molded Parts"
0o9 Rietveld, J.X., and Liu, S.-J., "Simulation of Warpage Caused by Thermal and Geometric Asymmetries in
Injection Molded Articles"
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B. Optics Background and Calibration Procedure

The calibration procedures and the background theory for the optical instruments are as follows:

The polarizer plane of vibration should be at 450 to the optic axis of the quarter-wave
plate for an emerging circularly polarized light. The second quarter-wave plate should be aligned
with the first so that without the sample a phase difference of either zero or 1800 emerges. In
either case the light will now be plane-polarized and can be made to suffer complete extinction by
rotating a polarizer in its path. Circularly polarized light cannot produce interference effects (the
intensity of the resultant light wave, averaged over one or more cycles of oscillation, is the same
no matter what phase difference exists between the two waves).

If linear polarized light passes through a transparent polymer, the light will interact with
the electrons of the polymer. Under the influence of the electric field E, the mobility of the
electrons relative to the positive core creates a dipole moment p. The coefficient a = p /E is
called the polarizability, which is directly related to the refractive index n of the polymer.
Birefringence materials are characterized by the fact that the polarizability has different values in
different Cartesian coordinate directions and, therefore, a is a tensor.

By definition, the refractive index is linked to the phase velocity c as well as to the
wavelength X: Increase in refractive index results in a decrease of phase velocity and a shortening
of the wavelength:

n = n/no = co/c = %o/k
no,, Co, X, :in vacuum (air), no = 1
n, c, 1: in polymer

For a circularly polarized light the electric vectors are equal in magnitude and are oriented
orthogonally in x- and y- directions and the light propagates in the z-direction. As the light pass
through the sample, the electric vectors see different polarization of the electrons, and experience
different refractive indices nx and ny. This results in a phase difference in the waves as they pass
through the medium. This phase difference remains constant after both beams leave the medium
and depends on the difference between nx and ny as well as the path length d through the medium.
Its sign may be positive or negative. 110

"o Siebourg, W., et al. Birefringence-An Important Property of Plastic Substrates for Magneto-Optical Storage
Disks.
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C. Machine Drawings Of Test Mold Components

The components of the test mold consist of the female and the male molds, and the 6, 4,

or 2 mm laminations layers with the accompanying Plexiglas windows. Drawings of the jig plate

to hold the optical equipment and a drawing of the laser components are also included.

The drawing for the female part includes a view of section A-A which cut the plane where

the sprue hole sits.

The drawing for the 2 mm lamination layers is included but the drawings for the 4 mm and

the 6 mm lamination layers were excluded. The latter drawings are redundant except for the

change in thickness of the lamination layer.

(Note: 2 mm = 0.07874 inches, 4 mm = 0.15748 inches, and 6 mm = 0.23622 inches.)

The autocad drawings of the jig plate hole locations generated the coordinates and the

hole sizes for the CNC machine. The precision of the maching was ±0.0005. Thus only the

fourth decimal (±+0.0001) was specified for the dimensions. The dimensions had to be accurate to

ensure proper alignment to each other as well as through the sample.

The dimensions of the drawings on the following pages are all in inches. Furthermore, the

drawings are not to scale.
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