
Processing Digital Television Streams

by

Eng Keat Khor

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1995

@ Massachusetts Institute of Technology 1995. All rights reserved.

'.4% .,Ae

Author
Department of Electrical Engineering and Computer Science

May 16, 1995

Certified by
Andrew Lippman

Associate Director, MIT Media Laboratory

A'
(1 ~

N A Thesis Supervisor

Accepted by... Maer......

oF rK~cNOLO;yV Chairman, Department Co mittee on Graduate Theses

J A 2 9 1996

LIBRARIES

Processing Digital Television Streams

by

Eng Keat Khor

Submitted to the Department of Electrical Engineering and Computer Science
on May 16, 1995, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, I designed and implemented a program which simulates a television
receiver on a workstation. The television receiver is connected to a network called
the Media Bank. The Media Bank is a distributed database which is being developed
at the MIT Media Laboratory. The program is written in C and runs on the OSF3.2
UNIX operating system. This software package simulates a future television environ-
ment where home users are able to browse through information with an easy-to-use
interface. The data comes from media servers, news servers, weather servers, con-
tent owners, service providers, and the Media Bank. The television receiver will be
equipped with MPEG and JPEG decoder chips and a multi-purpose microprocessor
which is used to run this software package. This simulation involves real time deliv-
ery of video/audio data and exploits today's digital network to exhibit the potential
of the Media Bank as a platform to provide home entertainment and personalized
information in the future.

Thesis Supervisor: Andrew Lippman
Title: Associate Director, MIT Media Laboratory

Acknowledgments

First and foremost, I wish to thank my thesis advisor, Andrew Lippman at the MIT

Media Laboratory, for his guidance and support throughout this study.

I would also like to thank the faculty, staff, and students in the garden for providing

a positive working atmosphere. In particular, I am indebted to Henry Holtzman, who

gave me the opportunity to work and learn from him as a UROP student.

Special appreciation also to the many people who provided technical assistance:

Klee Dienes, Daniel Gruhl, Michelle McDonald, Constantine Sapuntzakis (author of

DispImg widget), and Theodore Tonchev.

The support and understanding from my friends at MIT, in particular from Mar-

ilyn Chen, Leo Chun, Prodyut Dutt, Frank Kao, Yee Chuan Koh, Yulan Liao, and

Eva Tsai, have encouraged me to stay focused and motivated in my work.

I wish to thank my family for their continued support over these last few months.

Last but not least, I dedicate this thesis to the loving memories of my sister and

my grandmother.

Contents

1 Introduction

1.1 Thesis Overview

2 Context

2.1 The Media Bank

2.1.1 Cross Network.

2.1.2 Dispersed services

2.1.3 Access to primitives instead of programs

2.1.4 Programs on demand

2.2 M edia Servers

3 Specification

3.1 Media Bank layers

3.1.1 Content layer

3.1.2 Format layer

3.1.3 Transport layer

3.2 A network example

3.3 The Television Receiver

3.3.1 The TV widget

3.3.2 The VCR widget

3.3.3 File Format for TV and VCR widgets ..

3.3.4 The Movie widget

10

.. .. 11

.... 11

. . . . 12

. . . . 12

. . . . 12

.... 13

14

.. .. 14

.. .. 14

.. .. 15

.. .. 15

... . 17

18

... . 21

... . 22

. . . . 24

... . 27

4 Layout and User Interface 28

4.1 General Layout 28

4.2 TV viewing mode 29

4.3 VCR viewing mode 32

4.4 Movies selection mode 33

4.5 Movies viewing mode 34

5 Simulation Results 37

5.1 Performance 37

5.2 Functionality 39

6 Future Work 45

A Overview of the MPEG motion compensation 47

Glossary 49

References 50

List of Figures

3-1 Module Dependency Diagram for Layers in the Media Bank

3-2

3-3

3-4

4-1

4-2

4-3

4-4

4-5

4-6

Network connection among various users/providers . .

Module Dependency Diagram for the television receiver

Sample file hierarchy for recorded TV segment

Simulated Television Receiver Layout

TV viewing mode with "Live TV" status

VCR viewing mode with play status

Movies selection mode

Movie viewing mode with Pause status

Movie viewing mode with One frame forward status . .

5-1 Hardware components simulated by program

5-2 A scene from "Sleepless in Seattle"

5-3 An extended weather forecast for Seattle

A-1 Motion compensation for interframe coding

. 17

. 20

. 25

. 29

. 31

. 32

....... . 33

. 35

. 36

Chapter 1

Introduction

Construction of the information superhighway has already begun. Telephone com-

panies are spending billions of dollars to lay down new fiber optic cables while cable

companies are rushing to upgrade their coaxial cables. In addition to these technolog-

ical advancements, the government is relaxing rules on how companies can compete in

this industry. As a result, we are living in an era where major changes are occurring

in how information is brought into our living room.

At present, we treat televisions, VCRs, CD players, newspapers, and personal

computers (PCs) as separate entities. In the future, with technological advancements,

these entities will merge into a single system. We may be able to watch movies,

obtain weather forecasts, and read newspapers - all on demand. Furthermore, the

convenience of scanning stock prices, reading personalized news and electronic mail,

and shopping for food or clothing will be available at our fingertips.' This means we

will be experiencing a major change in how information is obtained: we do not have

*to watch what is fed by the cable or newspaper company.

The concept of a Media Bank fits into this new environment. The Media Bank is

a generalization of a distributed media database which enables applications to store

and access media objects on demand. The infrastructure available is assumed to

have variable bandwidth, distributed and diverse channels [1]. The Media Bank is

'For example, in the context of a TV controlled from a remote.

the main source of digital data and is currently a research topic at the MIT Media

Laboratory. The application built for this thesis is used to demonstrate a potential

interface between home users and a Media Bank.

The simulation work described herein can be supported by workstations, personal

computers or programmable settop boxes. These equipment include a few decom-

pression chips (eg. Motion JPEG2 or MJPG) and a general microprocessor. The

decompression chips are used to decode bitstreams where the compression format

must adhere to, international standards. The decoded images are then displayed in

real time. The general microprocessor runs a downloaded software which interfaces

with the human user.

The progress in the digital realm is aided by the availability of compression stan-

dards. For example, the Moving Pictures Expert Group (MPEG) has taken steps

towards significant cost reduction in the development of telecommunication applica-

tions such as teleconferencing, digital broadcast codec, and video telephony through

standardization ,of video and audio compression technology. Today, the industry and

the academia can concentrate on the development of such applications without having

to worry about incompatibility among various MPEG products. As a result, analog

applications are rapidly being transformed into digital applications.

1.1 Thesis Overview

This thesis demonstrates the capability of acquiring a movie on demand from the

Media Bank. In addition, the program upon which this thesis is based simulates a

powerful television receiver capable of by-passing news stations to obtain the most

recent weather forecasts. Together with the basic functions of a television receiver

and a VCR, it is envisioned that home users can obtain most services on demand,

under the roof of one system: the augmented television receiver.

Chapter 2 introduces the infrastructure of the Media Bank and its role in the MIT

Media Lab. This section also describes the characteristics of the Media Bank.

2 Joint Photographic Expert Group

Chapter 3 describes the specification of the Media Bank and the implementation

of the augmented television receiver. Data structures and important modules in the

implementation are discussed.

Chapter 4 describes the layout and user interface of the augmented television

receiver. It maps out in detail how to operate the television receiver from the stand

point of a home user. Examples from the simulation are illustrated.

Chapter 5 tabulates the results of this project. It describes system integration,

functionality, and performance of the augmented television receiver. The details of

additional functionality such as scene segmentation are also discussed.

Chapter 6 discusses future work and possible improvements to the simulation

program.

Chapter 2

Context

The traditional home entertainment paradigm involves watching television programs

from station broadcasts, renting a movie (VHS tape or laser disc) from a local rental

store, listening to compact discs on a CD player, playing video games on a game

machine, reading daily news from a local gazette, checking electronic mail from a

personal computer, and shopping at stores. This paradigm is rapidly changing with

the advent of digital telecommunication. Today we can read news from the World

Wide Web, play video games, order pizzas, and book flights using personal computers

which have access to the Internet. With the development of the National Information

Infrastructure (NII) under way, we can obtain all these and more under one system,

be it a personal computer or a television receiver with a sophisticated settop box, in

the near future.

A new home entertainment paradigm is to make use of various communication

media to deliver a product when requested. For example, a movie is produced from

video sequences delivered via satellite, audio data downloaded via telephone lines,

and commercials inserted' by a local supermarket [2]. With this application in mind,

the idea of a Media Bank is conceived at the MIT Media Laboratory and has been

the major research vehicle to test the distributed media storage/access environment.

'A movie is made up of many segments and is not put together until demanded. Based on this
model, firms are able to insert commercials in between segments before the movie reaches home
users.

2.1 The Media Bank

The Media Bank satisfies the demands of many data intensive applications such as

video on demand, video teleconferencing, and personalized newspapers. It is built on

the interconnected web of fiber optics, coaxial cables, and telephone lines in conjunc-

tion with devices and switches such as ATM, satellites and cellular phone. The Media

Bank is also an information powerhouse, where huge amount of data are stored away

in many access/retrieval points in the MIT Media Laboratory.

The theme of the Media Bank focuses on these four topics [3]:

* Cross network operation (2.1.1),

* Dispersed services (2.1.2),

* Access to primitives instead of programs (2.1.3), and

* Programs on demand (2.1.4).

These characteristics enable the Media Bank to be flexible enough to accommo-

date new as well as old applications on existing network. Entertainment television,

classroom communications, purchasing, accessing medical records, paying tolls or us-

ing credit cards are all potential applications. Furthermore, the Media Bank is ready

for the NII 2 which encompasses the bitways, the services, and the applications that

will support commerce, healthcare administration, and entertainment [4].

2.1.1 Cross Network

The Media Bank will grow such that it can be accessed throughout the MIT Media

Laboratory ancd may be extended to the non-laboratory community. Fiber optics,

coaxial cables, telephone lines, and ATM switches within the laboratory are currently

used to demonstrate the cross network capability. The quality or format of the data

which is accessed will vary with the bandwidth of the delivery medium from which it

is obtained. For example, a high quality video sequence with a high bitrate can be

delivered through fiber optics as opposed to the low quality video sequences delivered

21t is important to point out that the NII is not just a highway but a complete transportation
system

through telephone lines.

2.1.2 Dispersed services

The Media Bank can support a variety of services ranging from newswire feed to

real time video/audio delivery on demand. This requires many servers and services

such as authentication servers and audio servers to support the needs of a home user.

These supporting services as well as client applications are distributed throughout

the laboratory. A unique list is needed to indicate the services or elements that are

needed for a certain program demanded by the client program. This list or elements

can be stored in one machine or in many.

2.1.3 Access to primitives instead of programs

The primitives are media-objects which describe the image and the coded representa-

tion of the frame. With these primitives, an application program can reconstruct the

video sequence depending on some parameters such as bandwidth, screen space, and

image size [1]. As a result, the video sequence can be displayed full frame in a cinema

or cropped and centered on the actors and actresses in a small, portable television

where the screen size and resolution are limited.

2.1.4 Programs on demand

Movies do not exist until demanded by the home user. A requested movie is formed

when primitives are assembled while the movie is being played concurrently. Video

and audio can be rendered through coaxial cables from one location, commercials

downloaded before the beginning of the movie from a second location and billing and

authentication performed on a third. Essentially, the movie is packaged together only

when demanded [1]. Other products can also be generated in a similar manner.

2.2 Media Servers

The distributed Media Bank can be accessed through media servers. Media servers

are programs dedicated to organizing, storing, managing, and distributing multimedia

content such as text, audio and video. These servers are installed in many machines

in the MIT Media Laboratory. Generally, they contain information about movie

objects/segments which are stored locally. For specific queries, for example, they

can provide us with information about the categories of available movies (eg. action,

horror, and romance) and their ratings (eg. G, PG, and R). A unique list of movie

objects is also available when requested. If not, a new list is generated to suit the

needs of the client program.

Besides media servers, there are other servers such as news servers and weather

servers. These servers provide services to client programs (home users) which in-

teract with the Media Bank. The news server provides personalized news to home

users. It recognizes the user, searches through the database for the user's interests,

processes the request, and distributes news article of interests to the user. It must be

emphasized that the personalized newspaper contains not only text and images but

also video clips from TV stations, movie previews from local cinemas, and up-to-the-

minute stock prices.

The weather server provides weather forecasts for any major city in the world. A

potential application may access weather information for a traveller's itinerary. The

information gathered will list weather forecasts for the cities outlined in the itinerary.

The traveler can also monitor traffic and scheduled flight information from other

service providers. These services can be bundled effortlessly by the user.

Chapter 3

Specification

The focus of this thesis is to simulate the capabilities of television receivers as an

interface between home users and the Media Bank. The simulation work is done on the

DEC Alpha running OSF3.2 (Open Software Foundation). This simulation involves

processing live audio/video feed and accessing/storing media objects in the Media

Bank. In addition, the simulated television receiver is capable of accessing/displaying

weather information/forecast from a weather server run by the Center for Meteorology

and Physical Oceanography.

3.1 Media Bank layers

The application program will interface mainly with media servers in order to access

objects in the Media Bank. These media servers contain all the information regarding

the objects. The information is stored in different layers - the content layer, the

format layer, and the transport layer [1].

3.1.1 Content layer

The content layer is used to distinguish the different uses of the media objects. For

example, it distinguishes between movies and their different ratings (G, PG, R, etc.)

home shopping, stock prices, and weather forecasts. When a new application is

needed, the new characteristics can be added to the content layer. The information

can be gathered by a client program from the name server. This server contains

information such as the location of the requested media objects, the size of these

objects, and the quality of the objects. The media servers can then be queried with

object names, object formats, and/or object qualities.

3.1.2 Format layer

The format layer encapsulates many of the standards available (MJPG, MPEG, DAT,

TIFF, etc.). With this configuration, the application program can be written on

various platforms. The open environment is highly desirable because this strategy

avoids dependency on any particular vendor and is also transparent to the user.

3.1.3 Transport layer

Finally, the transport layer supports the format layer. The NFS is chosen as the

backbone of data movement around the network. Relying on NFS has its advantages

because we can use existing hardware and software systems. Current protocols such

as IP/TCP running on fiber interconnected through ATM switches will be used [1].

As a result, it eliminates the necessity of building a separate transport system which

requires considerable amount of work.

Figure 3-1 below is the module dependency diagram for the discussion above.

Media Bank

Content Layer

Format Layer

Transport Layer

Figure 3-1: Module Dependency Diagram for Layers in the Media Bank

3.2 A network example

In addition to the modules above, the network is interconnected with content providers,

service providers, and home users. Figure 3-2 below illustrates this network:

NFS/ATM NFS/ATM

NFS/ATM NFS/ATM

Figure 3-2: Network connection among various users/providers

Content providers gather information in a raw format and are the main source

of digital information. For example, the weather observatory station in Michigan

gathers weather information and makes forecasts which are made available through a

weather server. The information provided by this server is not thoroughly processed.

The service providers or the home users must then process the raw data gathered

from the content providers. Service providers such as newspaper companies and news

stations provide value added information to the raw data and distribute their services

to the home users.

In the network described above, the home users can directly access the raw data

from the content providers. This is what the application program of this project

demonstrates. This program pools current weather information from the Center for

Meteorology and Physical Oceanography. Up-to-date hourly weathers report of all

major cities in the United States are instantly available.

3.3 The Television Receiver

XToolkit and Motif are used to build the application program which binds all the

various applications together, chosen because of their ease of use. When functionality

must be added to the application program, a widget (an extra module) can be built

and inserted into the main program without changing much of the original code.

The application built for this thesis models a TV and a VCR on an Alpha work-

station which is connected to a network. This home entertainment unit of tomorrow

enables the user to watch TV and/or video on demand at the same time, to read

weather forecasts, to shop for food, clothes, jewelry, etc., all at the convenience of

a remote control. The remote control is modeled as a mouse with user preferences

inputted as mouse clicks. The simplicity of the user interface should appeal to the

home user.

A widget is written for each of the application models discussed above, ie. there is

a TV widget, a, VCR widget, and a few movie widgets which are capable of decoding

bitstreams of different formats (eg. MPEG vs. MJPG). The TV widget is capable of

capturing raw video data off the coaxial cable and buffering the digitized video/audio

data before displaying the images on the screen in real time. Furthermore, a second

buffer can be used to encode the digitized images in JPEG if the user wishes to record

the TV segment. The TV widget is built using Multimedia Services for DEC OSF/1

AXP, Digital's standard Application Programming Interface (API) to multimedia

functionality on the DEC 3000 series Alpha AXP workstations running the DEC

OSF/1 AXP operating system. The API provides software support for the built-

in audio hardware on TURBOchannel Alpha AXP workstations and the Sound and

Motion J300 option module [5].

The VCR widget is also built using the Multimedia Services for DEC OSF/1

AXP. It differs from the TV widget in its ability to capture video/audio real time

data. However, it is capable of synchronous audio and video playback. In addition,

it provides the user with the conventional VCR functions of fast forward, pause,

etc. These functionality are supported by Buflmg widget. The display capability

is supported by DispImg widget. The video format is JPEG and audio format is

MULAW. The VCR widget and the TV widget capture and playback video/audio

using the same format.

There are two movie widgets. The first movie widget is capable of decoding MJPG

bitstreams and displaying video images in real time. The second movie widget decodes

MPEG (MPEG-1 and MPEG-2) bitstreams. The MPEG movie widget displays video

sequences in a slower rate because the decoding is done in software. The MPEG

code is copyrighted by the MPEG Software Simulation Group. The modularity of

writing widgets is advantageous because the slow running MPEG software decoder

can be replaced with a MPEG hardware decoder when it is available. The MJPG

movie widget uses the Multimedia Services for DEC OSF/1 AXP and thus is capable

of delivering synchronous audio/video data. The MPEG widget however can only

deliver video images.

Figure 3-3 below illustrates the widget dependencies in the discussion above.

TV Widget

MPEG

MJPG

D

Multi]

Sound and Motion J300

Figure 3-3: Module Dependency Diagram for the television receiver

N

3.3.1 The TV widget

The TV widget inherits from DispImg widget which is essentially a display widget.

It has a function called DispImgSetImageI which accepts a widget and an x-image

as arguments. When DisplmgSetlmage is used with proper arguments, the DispImg

display widget will place the x-image at the appropriate screen.

The function TVInitialize is called when the TV widget is created. TVInitialize

sets up both the video and audio devices of the Multimedia Services for recording

and playback. A default colormap is used and the corresponding colors are allocated

and merged with the J300 device palette. The stream buffer and image buffer are

initialized. A maximum of four image buffers are queued for display after decoding

the incoming MJPG bitstream.

The following functions can be accessed from the application program: TVLoop

and TVQuit. TVLoop is the main function of the TV widget. As the name suggests,

it controls the loop of the main program as long as the state remains as TVState.

This loop occurs when TVLoop adds itself to the application queue whenever the

state is TVState. When a new event arrives and the state changes to another state,

the loop exits (ie. TVLoop is no longer added to the application queue) and control

is transfered to another widget.

Within the TVLoop, there are a few states which allows for different behavior.

One such state is the Recording state which captures video and audio bits into the

stream buffer. When the stream buffer is full, the bits are flushed into the hard disk.

The information captured are recorded into seven different files. They are discussed

in Section 3.3.3.

The TVLoop function also keeps track of the time taken to display all the decoded

frames. This is performed in order to obtain frame rate information at the end of the

program.

TVQuit is called by the application program during exit. Before the program

exits, the devices of the Multimedia Services are reset and all allocated memory are

1Words in italic are function names.

freed. The stream buffer and image buffer are closed. Shared memory used for display

are detached from the display screen. Frame rate is computed and results are tallied

before the program exits.

The TV widget has the following resources: filename2 , recording, end recording,

brightness, and contrast. These resources are used to affect the widget's behavior.

The widget records live TV onto the tape using the given filename. Recording is set

to TRUE when the user requests to record live TV. Endrecording is set to TRUE

when the user requests to end recording. Hence, the TV widget also behaves like a

VCR in this respect. The brightness and contrast levels are set according to inputs

from the user.

The TV widget also allows for a callback function which display the current status

of the display. This status is either "Live TV" or "Recording" and it may interchange

depending on the user input.

3.3.2 The VCR widget

The VCR widget inherits from Buflmg widget. Buflmg widget is a general vehicle to

display video sequences. It accepts pointer to functions for the following functionality:

initialization, currentimage, nextimage, previous-image, and seektoNimage. It

also has the following actions: play forward, play backward, fast forward, fast reverse,

stop, pause, one frame forward, and one frame backward. These actions can be

accessed by the user through callbacks in the application program.

In addition to the above, Buflmg widget also has the following resources: max-

imum-framenumber, currentframe_number, play-state, and state-callback. Maxi-

mum_framenumber is used to detect the end of the movie segment during playback so

that the movie continues at the beginning of the movie. Play-state is used to inform

the widget which state it is in. State_callback is used to display the current play state

at the VCR panel (eg. Play, Pause, etc.).

A callback function is needed to inform the main program of the current playback

2Widget resources are also in italic.

state of the VCR. This function is called in the control loops of the Buflmg widget.

This callback function will be ignored if it is not registered with the main program.

Similar to the TV widget, the function VCRInitialize is called when the VCR

widget is created. VCRInitialize sets up both the video and audio devices of the

Multimedia Services for video and audio playback. A default colormap is used and

the corresponding colors are allocated and merged with the J300 device palette. The

stream buffer, audio buffer, and image buffer are initialized.

Furthermore, the five pointer to functions and the filename are registered with

Buflmg as shown in the Mjpglmglnitialize function below:

static void

MjpgImgInitialize

(Widget req, Widget cre, ArgList args, Cardinal *num args)

{
MjpgImgWidget miw = (MjpgImgWidget) cre;

MjpgImgPart *mip = (&miw->mjpgimg);

XtVaSetValues ((Widget) miw,

XtNnextImage, (XtPointer) MjpgImgNextImage,

XtNprevImage, (XtPointer) MjpgImgPreviousImage, to

XtNcurrImage, (XtPointer) MjpgImgCurrentImage,

XtNseekImage, (XtPointer) MjpgImgSeekImage,

XtNinitDecoder, (XtPointer) MjpgImgInit,

XtNmjpgFilename, (XtPointer) args->value,

NULL);

MjpgImgInit ((Widget) miw);

DispImgSetImage ((DispImgWidget) miw, MjpgImgCurrentImage ((Widget) miw));

20

With this set up, a different widget viewer can be written that displays pictures

of other formats (eg. MPEG, TIFF, DAT, GIF) as long as the widget has the five

functions: NextImage, Prevlmage, Currlmage, Seeklmage, and Init. This structure

simplifies the integration of the entire program because the play, pause, stop, and

other control functions only need to be written once.

Video and audio synchronous playback are controlled by a callback function called

Sync_audiovideo. Audio playback is performed at a normal rate and video frames

are displayed with respect to the audio playback. If video frames are displayed faster

than audio playback, the VCR widget will redisplay the same frame until audio has

caught up to that particular frame. If video frames are displayed slower than audio

playback, the VCR widget will drop a few frames in order to catch up with the audio

playback. The callback function determines any asynchronous playback by checking

the time stamps for video frames and audio blocks respectively. These checks are

performed every quarter of a second.

Video playback is accompanied by audio playback only in the play forward VCR

state. Audio is turned off in other VCR states in order to conform to the functionality

of a real VCR. Audio playback in the reverse mode has been experimented with but

without intelligible or coherent results.

Recording from the VCR has not been implemented because this simulation in-

volves only one VCR. If two VCRs are involved, recording can be performed easily by

copying the source file to the target file. If only a portion of the source file is copied,

the VCR widget can mark the requested video segment and the appropriate segment

is then copied to the target file.

3.3.3 File Format for TV and VCR widgets

Each recorded TV segment has the following structure: It is a directory containing

seven files - the descriptor file, the video data file, the video header file, the video

time stamp file,, the audio data file, the audio header file, and the audio time stamp

file. Figure 3-4 below gives an example of this structure.

descriptor file:
descriptor

video data file:
sample.mjpg

video header file:
sample.hdr

video time stamp file:
sample.vidtime

audio data file:
sample.audwave

audio header file:
sample.audhdr

audio time stamp file:
sample.audtime

Recorded directory:
sample

Figure 3-4: Sample file hierarchy for recorded TV segment

The descriptor file contains information about the height, width, number of audio

blocks, and maximum number of frames in the video sequence. Two bytes each are

used for the storage of height and width of video frame. Four bytes each are used to

store audio block and maximum number of frames. If the video sequence is appended

onto this directory, the descriptor file is concatenated with a new twelve bytes of

information. This new information will be used in place of the old information when

this file is accessed again.

The video data file consists of concatenated JPEG frames. The size of JPEG

frames varies, for example, a 480x360 size image is approximately 64K bytes. Fur-

thermore, the JPEG frames depends on the video quality - the higher the quality,

the more number of bits are required to encode the frame. As a result, the frame size

is proportional to the video quality.

Since each JPEG frame size varies, there is a need to store the size information.

This information is stored in the video header file. The sizes of each frame are con-

catenated into this file where each frame size is represented by four bytes. Therefore,

in a sequence, the first four bytes correspond to the first frame, the second four bytes

correspond to the second frame, and so on. These frame sizes can also be used to

compute the offsets for the video segment. Random access can be achieved since we

can choose to display any frame of the video segment.

Furthermore, each JPEG frame is accompanied by a time stamp. The time stamp

is a positive integer and is stored in the video time stamp file. The time stamps

are four bytes each with the first four bytes corresponding to the first frame, etc.

These time stamps are necessary because they are used in conjunction with audio

time stamps in order to synchronize video and audio data. When video frames are

displayed faster than audio playback, inter-frame display will be slowed down. When

video frames are displayed slower than audio playback, frames are dropped so that

video can catch up with audio.

Audio data is stored in the audio data file in blocks of 1024 bytes each. These

blocks are concatenated in the audio data file. Audio is encoded in MULAW format

at the rate of 8000 samples per second.

The size of audio blocks is recorded as four bytes each in the audio header file.

Since audio is encoded in blocks of similar sizes, the audio header file is not as useful

as the video header file.

Similar to the video time stamp, the audio time stamp is recorded when each

audio chunk is recorded. The audio time stamps are also positive integers and they

are concatenated corresponding to the number of audio blocks in the audio header

file. Each time stamp is represented by four bytes.

Ideally, the components of the display widgets (TV, VCR, and movies) and the

file access routines are separated. In this project, the file access and the bitstream

buffer system are written so that they are incorporated into the display widgets. The

file access component is written in a modular way such that it can be re-implemented

without affecting the other components in the display widgets.

3.3.4 The Movie widget

There are two movie widgets to play the two different bitstream formats - the MJPG

movie widget and MPEG movie widget. The MJPG movie widget is essentially

the VCR widget with the capability of switching from a VCR bitstream to a movie

bitstream since both bitstreams are in MJPG format. The VCR widget is discussed

in Section 3.3.2.

The MPEG movie widget is based on the software written by the MPEG Soft-

ware Simulation Group. Some global variables of this software are internalized in

order to convert the software into a widget. The functions used by the main program

are Mpeg ViewerInitialize, Mpeg ViewerPlayLoop, Mpeg ViewerPause, and Mpeg View-

erQuit.

Mpeg Viewerlnitialize is called at the creation of the MPEG movie widget and

initializes the widget resources. A MPEG stream buffer is set up and the first frame

of the default MPEG bitstream is decoded. The image is in CCIR 601 resolution

4:2:2 format and is dithered to eight bit x-image format before display.

The MPEG bitstream does not contain information about the size of each frame.

As a result, it is very slow to search for start codes which are used to jump to a

particular frame in the bitstream. Hence, only the play and pause functions are

implemented. These functions are MpegViewerPlayLoop and MpegViewerPause re-

spectively. Other control functions such as fast reverse and fast forward are not

implemented. If implemented, these functions need to search for proper start codes

in the bitstream and thus will make the decoding process even slower. The decoding

rate is between 1-5 frames per second, depending on picture size. If the picture size

is not 480x360, the DispImg widget will automatically scale it to that size. With this

scheme, the quality of the picture is inversely proportional its size.

MpegViewerQuit is called by the application program during exit. The stream

buffer and image buffer are closed and all allocated memory are freed. Finally, shared

memory used for display are detached from the display screen before exit.

Chapter 4

Layout and User Interface

The layout of this simulation is implemented using Motif. Many of the objects such

as scroll bars, push buttons, and labels are provided in the Motif library. Motif is

an excellent choice for graphical user interface because of its ease in manipulation

of graphics. Furthermore, its event driven programming methodology is suitable for

this application. The end result is a simple and easy to use interface.

4.1 General Layout

The microprocessor can be downloaded with an application program which interfaces

with the home user. Once the system is switched on, the screen is initialized to the

television setup as shown in Figure 4-1 below.

Video Screen

Options

Movie Title

TV

VCR

MOVIES

WEATHER

QUIT

Weather Panel Brief weather information displayed here

TV, VCR or Movie Playback controls status

Figure 4-1: Simulated Television Receiver Layout

The mouse is used to model the remote control which has only one button. The

user can select any item on the television set simply by clicking the appropriate

buttons. The buttons on the right are used to select the viewing mode.

Mouse clicks are chosen as the only interface to the television receiver because it

models a remote control with one button. When the user points the remote control

towards the television screen, an arrow appears to indicate the corresponding position

on the screen. User requests are made when the user depresses the button of the

remote control while pointing at the appropriate options on the screen.

4.2 TV viewing mode

The initial viewing mode is TV. Live video feed is played on the video screen. The

accompanying TV panel at the bottom of the television layout has record and stop

buttons, brightness control, and contrast control. On the bottom right hand corner,

the TV status will display "Live TV." This status will be changed to "Recording"

when the user has chosen to record the current video segment. The default values

for brightness and contrast are 5000 and 5500 units respectively. They can be incre-

mented or decremented by ten until the values reach the minimum (0) or the maximum

(10000). All selection icons are incorporated from bitmaps. A brief weather infor-

mation on a random city will also be displayed on the weather panel. This weather

information are pooled from the weather server. Figure 4-2 below illustrates the

initial TV viewing mode with "Live TV" status.

Figure 4-2: TV viewing mode with "Live TV" status

Users are able to move to other viewing modes by clicking the appropriate buttons

to the right of the screen. The specific movie icon will not be available for selection

before a movie is selected. A new movie can be selected from the movie menu by

clicking on the movie button.

31

4.3 VCR viewing mode

In the VCR viewing mode, the video screen will play the video and audio content of

the current VHS tape. The accompanying VCR panel has play, reverse, fast forward,

fast reverse, pause, stop, one frame forward, and one frame backward. The VCR

status will display one of the modes described.

Figure 4-3 below illustrates the VCR viewing mode with play status.

Figure 4-3: VCR viewing mode with play status

4.4 Movies selection mode

In the Movies viewing mode, the user selects one movie from the media library. The

requested movie will be shown momentarily and the current movie title is displayed

at the corresponding button on the right side of the television layout.

In this simulation, short and medium length movie sequences are requested from

the media servers. Figure 4-4 below illustrates the movies selection mode.

Figure 4-4: Movies selection mode

In this menu, we can select one movie by clicking on the movie name. Once a movie

is selected, this menu will give way to the display of the new movie. This simulation

model is simplified because billing information and authentication is ignored.

Sometimes, the movie list can be longer than the height of the screen. As a result,

scroll bars are used in the menu to accomodate the long list. The return button can

be clicked to return to the previous viewing mode.

4.5 Movies viewing mode

In this viewing mode, the panel below the weather panel contains different icons.

The displayed icons depend on what format is the bitstream displayed. If the movie

displayed is of the MJPG format, then this panel displays all the icons exactly like

the VCR panel (described in Section 4.3). Otherwise, the movie is encoded with

MPEG format and the panel displays only two icons: play or pause. The other icons

are not made available because the MPEG software decoding is slow. As a result, the

other icons are rendered impractical.

Figure 4-5 below illustrates the movie viewing mode with pause status. Note that

the current display is decoded from the "flower garden" MPEG-2 bitstream.

Figure 4-5: Movie viewing mode with Pause status

The colormap of the MPEG movie widget differs from the other display widgets.

As a result, the color component of the screen is emphasized but its surrounding is

not. Therefore, the panels and buttons are not clear in this viewing mode. This

condition can be observed in Figure 4-5.

If the selected movie provides information about the location of the scene, the

weather panel will display the corresponding weather information for that location.

Figure 4-6 below illustrates the movie viewing mode with one frame forward

status. Note that the current display is decoded from the "Sleepless in Seattle"
MJPG bitstream.

Figure 4-6: Movie viewing mode with One frame forward status

Baltimore is the location of the scene illustrated in Figure 4-6. The televi-

sion receiver detected the geographical segmentation information in the "Sleepless

in Seattle" MJPG bitstream. As a result, the weather panel displayed the weather

information for Baltimore. In this particular case, the weather server does not have

the weather information for Baltimore. If no geographical information is available in

the bitstream, then the weather panel would continue to display weather information

for cities selected randomly.

The user can switch back and forth these viewing modes. The system will return

to the position where the user has left off. In effect, this television setup keeps track

of three viewing channels simultaneously.

Chapter 5

Simulation Results

The TV simulation is capable of performing live audio

cable. The size of the TV screen is 360 by 480 pixels.

rate and bit rate are recorded throughout the duration

is computed from the total number of pictures displayed

Mathematically,

and video, direct from the

Various data such as frame

of this project. Frame rate

and its duration in seconds.

#pictures (5.1)
framerate = (5.1)#seconds

The system is expected to run at significantly below 30 frames per second due

to limitation in simulation speed. As a result, the program drops a few frames a

second in order to catch up. The performance of the augmented television receiver is

discussed in Section 5.1. The high level functionality is discussed in Section 5.2

5.1 Performance

The 360x480 screen size is chosen over 240x320 and 480x640 because it is a compro-

mise between frame rate and screen visibility. Although the 240x320 screen size runs

at a higher frame rate (29-30 frames per second), the screen is too small for pleas-

ant viewing. The 480x640 screen size provides comfortable viewing size but it runs

too slowly (10-11 frames per second). Currently, the simulation for "Live TV" runs

between 20 to 21 frames per second when the load averages of the Alpha machine is

very low which is the peak performance. A sample low and high load averages (using

the top command) of the Alpha machine is tabulated in Table 5.1 below:

Table 5.1: Sample load averages using the UNIX command: top

The performance of the simulation relies heavily on the load of an Alpha machine.

When the load of the Alpha machine is high, the simulation only manages about two

frames per second. At this slow frame rate, the motion picture is jerky. Furthermore,

response to a user request (eg. channel switching) may be delayed. As a result, it is

recommended that the simulation be performed when the load average is low.

The simulation for VCR and movie playback has a lower performance than "Live

TV". The primary reason for the difference in performance is due to i/o interface.

The VCR and movie playback requires the program to access bits from the hard

disk. Due to the slow nature of the i/o interface, the simulation for VCR and movie

playback inevitably slows down. As a result, the maximum frame rate attained is 18

frames per second. The maximum bit rate for the MJPG bitstream is between 14 to

15 Megabits per second.

Compared to a MPEG bitstream of comparable bit rate, the MJPG bitstream

delivers pictures of lower quality. MJPG is essentially a MPEG bitstream with only

I-frames encoded. I-frames requires the most bits to code compared to B-frames and

P-frames.' Hence, MJPG does not provide as much compression as MPEG. As a

result, a MPEG bitstream delivers higher quality pictures than a MJPG bitstream of

comparable bit rate.

'An explanation for these terms is provided in Appendix A.

The machines which serve as media servers are all located in the Media Lab. As

a result, requests for movies are granted almost immediately. The simulation runs as

if the movie stream is in the local machine. Hence, the user would not notice where

the movie stream comes from.

The simulation program is written based on event driven programming. Motif

is an excellent tool to support this concept since it easy to build an efficient user

interface. Keyboard and mouse inputs are acceptable but the inputs are limited to

mouse clicks because it is simple to build a remote control which has only a button

to model a mouse. Users can navigate through menus efficiently and requests are

handled almost immediately.

5.2 Functionality

The TV is connected to the VCR or laser disc. The system is capable of recording live

audio and video using the VCR. The recording is always recorded to the files specified

by the user. However, the user is able to append multiple segments of a TV/movie

session onto the same file. When the user specifies another file for recording, this

translates to exchanging the old video tape with the new video tape for recording.

Now, the disk space available is the limit, as the length of a VHS tape was before.

Figure 5-1 below illustrates the connections between hardware components for this

simulation.

Cable

VCR/Laser disk

Media Server

Figure 5-1: Hardware components simulated by program

Other functionalities include video playback, play reverse, fast forward, fast re-

verse, pause, stop, one frame forward, and one frame backward. Audio accompanies

video only in the playback mode.

The above represent almost all the capabilities of a present day TV and VCR. A

TV of the future should be capable of playing video and audio on demand. Instead

of getting information from a broadcast station, the user is able to watch any movie

in the media library at any time. Although there are many media servers, a movie

on demand is delivered across the network from a server which is closest to the user.

"Closest to the user" is one way to resolve ambiguity due to multiple media-objects

residing at different sites. At present, the Media Bank is not capable of supporting

live video.

In order to obtain a list of movies of interest to the user, the simulation program

sends out queries to the media servers. The query categories can be movie ratings

(G, PG, or R), movie length (30 minutes, one hour, or two hours), or movie content

(adventure, romance, or horror). If the requested movies are available, the servers

respond by returning a list of media objects to the simulation program. The user

then makes a final decision as to which movie to watch. If the movie is stored at two

Media Library

different location, the first location which is returned by a media server will be used.

The microprocessor on board of a settop box (or a PC) can be used as an intelligent

analyzer. It is able to "watch" the data stream coming into the settop box and

process the information. Detection of people's location in a movie can be performed.

The information about these locations comes together with the video stream. A

brief weather forecast for that particular location will automatically be displayed.

This action instills the sense that the television is watching together with the users.

Furthermore, users have the option to view an extended weather forecast for that

location.

For example, the last 30 minutes of the movie "Sleepless in Seattle" was digitized

to test the program. The story revolves around the cities of Seattle, Baltimore and

New York. When the scene is in Seattle, the weather of Seattle will be displayed on

the weather panel. This is made possible because the movie is segmented according to

geographical locations. These locations are provided as a part of the movie package.

When the television receiver detects a change in location of the scene, it will query for

the current weather information of that particular location or city. It is particularly

interesting when the main characters are having a conversation over the telephone.

The scenes change very frequently between the cities of Seattle and Baltimore. As a

result, the weather panel will display the appropriate weather information accordingly.

Figure 5-2 below illustrates the screen display from "Sleepless in Seattle" and the

corresponding weather information on the weather panel.

>1 41 1 1 4 E 4 II 11 41

Y'igure 5-2: A scene from "Sleepless in Seattle"

The location of this scene is Seattle. The microprocessor of the settop box (or
PC) processed this information and queried the weather server for Seattle. The cor-
responding weather information is displayed on the weather panel once it is obtained.

The weather button can be clicked to obtain an extended weather forecast for
the city displayed on the weather panel. For example, the accompanying extended
weather forecast for the weather panel in Figure 5-2 is illustrated in Figure 5-3
below.

Figure 5-3: An extended weather forecast for Seattle.

If a movie is segmented according to geographical locations such as with "Sleepless

in Seattle", the program is capable of displaying scenes from Seattle only, scenes

from Baltimore only, or a combination of them such that the story will be told with a

different flavor. When a movie is segmented into objects, it is possible to create many

versions of the same movie. Each of them caters to specific categories of audience.

Furthermore, this flexibility enables the audience to "edit" the movie to suit their

taste.

Film editors welcome the object oriented video structure. The availability of

objects simplifies editing like never before. Producers can produce one movie with

multiple ratings because the movie content is altered to fit the ratings. For example,

if the movie "T2" is segmented into violent and nonviolent scenes, and the violent

scenes are edited, the ratings can change from R to PG-13. Of course, the flavor

to the movie will be different. However, the flexibility of using objects enables this

movie to reach a wider audience.

This simulation shows that current technology is capable of delivering movies on

demand to the user. However, for simplicity, the issues of billing, privacy, authenti-

cation, etc. have been ignored. Furthermore, the simulation program interacts with

the media server one to one. This is a very unlikely scenario in the real world because

many potential users will try to access the same media objects at the same time.

These issues can be addressed as possible future work.

Chapter 6

Future Work

This simulation introduces some aspect of the Media Bank. The Media Bank may be

taken literally as a bank. This idea forces us to deal with tracking all the transactions

between home users and the Media Bank. Furthermore, in order to avoid fraud and

abuse of the system, security and authentication are required. Therefore, structures

for authentication and billing need to be explored.

The simulation program in this thesis interacts with one server at a time. This

is not a realistic reflection of possible implementations of the Media Bank because

there will be many home users competing for limited resources. As a result, there is a

need to experiment with multiple programs which query media servers from multiple

machines in order to test the efficiency and performance of the overall system. This

experiment is performed to test the durability of the servers in the face of huge

demand.

Additional functionality could be added to the program. For example, shoppers

can browse through an online fashion outlet to purchase a birthday gift. Service

vendors such as hair stylists enable us to "try on" a new hair style online before

going for the actual cut. The program may learn the shopping patterns of the user

and inserts commercials at the right time. The program may also offer personalized

newspaper which contains articles of interests to the home user.

A prototype network which consist of many home applications, media servers,

service providers, and content providers need to be built in order to show the potential

of the Media Bank. The components of this network should not comprise of fiber

optics alone but also telephone lines, co-axial cable, satellites, and conventional aerial

broadcast. The general model will thus be flexible enough for implementation in

many environments.

Appendix A

Overview of the MPEG motion

compensation

The MPEG video compression algorithm relies on two basic techniques - block-

based motion compensation for temporal redundancy reduction and DCT-based com-

pression for spatial redundancy reduction[6].Temporal redundancy reduction can be

achieved by employing motion compensated interpolation. There are three types

of pictures considered in MPEG - Intrapictures (I-frames), Predicted pictures (P-

frames) and Interpolated pictures (B-frames).

I-frames are employed as access pointed for random access. However, they only

provide moderate compression. P-frames are coded with reference to a I-frame or P-

frame, and they generally will be used as a reference for future P-frames. The highest

level of compression is achieved by coding B-frames. However, B-frames require both

a past and a future reference for prediction. Furthermore, B-frames are never used

as reference.

The relationship between I-frames, B-frames, and P-frames is shown in Figure A-1

below.

Forward Prediction

Bidirectional Prediction

Figure A-1: Motion compensation for interframe coding

Examples of forward predictions are shown in Figure A-1 where P-frame (#5)

predicts from I-frame (#1), B-frame (#2) predicts from I-frame (#1), and B-frame

(#8) predicts from P-frame (#5). For backward predictions, B-frame (#2) predicts

from P-frame (#5) and B-frame (#8) predicts from I-frame (#9). In the illustration

above, an I-frame is inserted every eight frames, and the ratio of B-frames to I-frames

or P-frames is three of four.

Glossary

ATM Asynchronous Transfer Mode

B-frame bidirectional prediction frame (refer to Appendix A)

CCIR International Radio Consultative Committee

DAT a directory containing one or more files which contains

data organized in a rectangular matrix with any

number of dimensions

DCT Discrete Cosine Transform

GIF Graphics Interchange Format

I-frame Intra frame (refer to Appendix A)

IP/TCP Internet protocol / transmission control protocol

MPEG Moving Pictures Expert Group

MULAW p-LAW, a cellular phone encoding standard

NFS Network File System

P-frame prediction frame (refer to Appendix A)

TIFF Tagged Image File Format

widget a reusable, configurable piece of code that operates

independently of the application

References

[1] Lippman, A.; "The Distributed Media Bank," IEEE First International Workshop

on Community Networking, July 13-14, 1994.

[2] Lippman, A.; "The Distributed ATM Media Bank," MIT Media Laboratory, July

27, 1994.

[3] Lippman, A., Holtzman, H.; "The Distributed Media Bank: Specification," MIT

Media Laboratory, April 20, 1994.

[4] Lippman, A.; "Notes on the National Information Infrastructure," MIT Media

Laboratory, May 19th, 1994.

[5] "Multimedia Services for DEC OSF/1 AXP Programmer's Guide," March 1994,

Digital Equipment Corporation.

[6] Le Gall, D.; "MPEG: A video compression standard for multimedia applications",

Communications of the ACM, April 1991/Vol 34, No. 4

[7] Committee Draft; "Coded Representation of Picture and Audio Information",

ISO/IEC JTC/SC29/WG11 (CD 11172-4 Nov 2 1993.)

