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Abstract
A real world image is a scene representation which captures many visual processes such as
texture, shading, motion, etc. To accurately understand such an image, complex models usually
have to be devised to account for all these different processes. For many machine vision systems,
image segmentation (which can be considered as pixel classification) represents the first and
perhaps the most important step in understanding an image because this procedure identifies the
locations and types of objects in an image. Most of the current popular segmentation techniques
address this problem from a single model viewpoint. This thesis presents an approach for image
segmentation that considers the problem from a multiple models perspective. These models are
supplied by different classification experts (or methods). The key problem that this thesis
addresses is how to combine these different experts in a robust manner.

This thesis proposes two classifier designs for combining different methods (or experts) in
the multi-experts approach. These two classifiers are based on two recently proposed statistical
techniques. The first one is a gating network approach based on the work of Jordan and Jacobs
(1994). The idea behind this approach is to weigh the outputs of different experts by appropriate
priors. These priors are determined by a gating network which partitions the input space to allow
the experts better suited for certain inputs to have higher weights for those inputs. At the same
time, the experts which perform poorly on certain input patterns automatically receive lower
weighting factors. The second proposed multi-experts classifier is based on Wolpert's (1992) idea
of stacked generalization. The stacked generalizer makes generalization to yield the overall
outputs by observing the predictions made by the classification experts.

Evaluations of these two classifiers are performed on synthetic as well as on real world
images. Results from these evaluations are very encouraging for the multi-experts approach on
many types of images. The multi-experts approach to image processing has many similarities to
the distributed processing of the human visual system [Marr, 1982]. This approach naturally
suggests a possible model for the computations in human vision.
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Chapter 1

INTRODUCTION

Image classification and segmentation are two important procedures in many

image processing and machine vision systems. These tasks can be performed by human

quickly, effortlessly, and in a robust fashion. Naturally, if researchers can find the

"algorithms" that underlay the human visual system, image classifiers and segmenters

would be able to perform just as well as human. For over thirty years now, much research

has been devoted to find "solutions" to these two problems, but a technique with the

capability approaching that of the human visual system is yet to be seen. However, many

approaches have been found to achieve good results for various types of images.

This thesis is mainly concerned with developing multi-experts techniques for image

segmentation. These segmentation techniques lend themselves naturally to image

classification tasks. The underlying idea of this thesis is the multi-experts approach

embedded in statistical framework. The performance of this proposed approach is

evaluated using phantom images and real world images. Comparisons are made between

the results achieved by the multi-experts approach and those achieved by commonly used

techniques.



There are two main reasons for favoring the use of the multi-experts approach.

First, segmenting real world images requires the use of methodologies that are robust for

complex scenes. A real world image is usually the result of a variety of image formation

processes such as illumination, texture, movement, etc. Most existing techniques approach

image segmentation by assuming one prominent image formation process and ignoring the

rest. These techniques usually operate well on images that are generated primarily by that

process. However, their results would likely be miserable for images outside their

expertise domains. When presented with real world images which are generated under

multiple image formation processes, these techniques are likely not to have robust

performance. If the goal of an image segmentation task is to obtain robust and quantitative

results, these techniques are likely to be inadequate1.

The multi-experts approach allows modeling of different processes in a single

system. When a complex scene is presented for input, the Multi-Expert Classifier (MEC)

(discussed in Chapter 3) automatically determines the likelihood that all the available

experts can handle the input in a robust manner. In other words, the MEC determines the

probability that an input pattern falls into the expertise area of each of the experts. This

probability is assigned as the prior for combining the expert' outputs in deriving the final

answer. Thus, the input space is partitioned, using soft boundaries 2, so that multiple

segmenters can contribute to the final results using their respective expertise.

The second reason for using a multi-experts approach is that such an approach

suggests a feasible model for the human visual system, especially with respect to scene

segmentation. Vision researchers have found that the human visual system is a distributed

system with many processes working together to yield higher level image understanding

For some applications in which the image formation processes for the inputs are fairly predictable, such as in
specific texture image analysis, algorithms that can handle different types of images might not be necessary.
Nevertheless, one of the main goals of computer vision is to develop techniques that mimic the human visual
ability, which definitely has this robust capability for handling multiple types of images.

2 Soft boundaries are discussed in the first section of Chapter 3. It has been well known in information theory that
soft boundaries are much more robust than hard boundaries. Essentially, soft boundaries allow a pattern to lie in
multiple classes (or states), while hard boundaries restrict the membership to one class per pattern.

INTRODUCTIONChapter 1



[Marr, 1982]. The distributed nature of the MEC, as will be discussed in Chapter 3, is a

practical implementation of such a collaborative system for modeling interactions among

different vision modules, of which the segmentation system is an important one. A real

world object such as a television set usually has visible surfaces with different shading,

textures, and other visual properties. Nevertheless, human observers can effortlessly

identify the TV set as a whole. Clearly, some kind of mid-level vision or higher level

processing must integrate the features extracted by simpler lower level modules to obtain

the higher level understanding. In this light, the multi-experts framework discussed in this

thesis provides practical mid-level vision schemes for combining lower level image

segmentation results.

Section 1.1 considers the problems of image classification and segmentation. The

following Section 1.2 discusses previous efforts in the fields related to this thesis. In

section 1.3, contributions of this thesis are given in the context of current image

classification and segmentation research. Section 1.4 gives an overview for the rest of the

thesis.

1.1 Image Classification and Segmentation Problems

Image classification and segmentation are two very similar problems. Their

distinctions are often blurred in many applications. Although this thesis is mainly

concerned with image segmentation, techniques developed here for segmentation should

easily be adapted for classification tasks. The following section first distinguishes the

differences between these two procedures before discussing their similarities.

Strictly speaking, image classification is a recognition task, by which we mean an

input image S is to be assigned a class label. For example, an image retrieval system is an

example of an image classification task. The system attempts to label all the images in the

database so that when a user enters an command such as "retrieve all images that look like

this one on the screen", the system can quickly retrieve appropriate images from its

INTRODUCTIONChapter 1



database to match the user's demands. This is an image classification task, not an image

segmentation task. Unlike text documents, images are difficult to label using vocabulary.

A clear example of this difficulty can be seen through the above command: "images that

look like this". Sometimes, the users do not even know what "this" (set of attributes) that

characterizes an image really is 3. The challenge to an intelligent image retrieval system is

to guess at the right set of attributes that the users want by using the contents of the image

such as texture, brightness, entropy, etc. Recently, several researchers have attempted to

tackle this problem and have achieved encouraging results. [Niblack, et.al., 1993;

Pentland, et.al., 1993; Picard and Minka, 1995].

Many examples of the image classification task exist in the medical domain

[Finette, et.al., 1983; Garra, et.al., 1989; Momenan, et.al., 1994]. Image classification of

medical images is not only a time saving procedure, it often outperforms human experts in

identifying diagnostic indicators such as breast tissue calcification, abnormal tissue growth,

tumor metastasis, among others. In an expensive health care environment such as ours

today, these automatic procedures can cut costs while maintaining the quality of care.

Just like image classification, image segmentation also involves recognition, but

generally at a much smaller scale than that of image classification. Usually, the scale of

concern to this thesis, as well as to other image segmentation applications, is pixel-size 4.

The goal here is to group pixels into homogeneous regions (where the characteristics of

homogeneity is context dependent). For example, given a chest X-ray, an image

segmentation algorithm could aim to find the size of the lung [Duryea, et.al., 1995].

Homogeneity in this case is the region associated with the lung on an X-ray film. Given

some aerial photos, such as the LANDSAT images, the goal is to find the size of certain

crop lands. Homogeneity is the brightness and textural properties of the crop lands.

3 For example, when one sees several variations of "brick wall", most people would not have the necessary
knowledge and sophistication to tell the difference among them. Another example, how can one describe the
"feeling" offestivity in a Christmas shot of the downtown? How about the empathy one has when a shot of an
African famine is shown?

4 Sub-pixel size image segmentation problems and techniques also exist.
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Clearly, the types of images in these two cases are very different. Even within a single

image, such as in the later LANDSAT case, the region corresponding to forest could have

very different image properties as opposed to that of the ocean. To accurately assign

pixels to different classes in these real world images, a segmenter has to take into

consideration different image features, and possibly different models. A point on language,

since image segmentation can be thought of as pixel classification, and many segmentation

methods can be applied for classification purposes, the usage of image "classification" and

"segmentation" are sometimes interchanged through the rest of this thesis. "Classification"

in this thesis refers to pixel classification, which involves classifying a sub-region

surrounding the center pixel.

1.2 Existing Approaches

Most image classification approaches can be categorized into model-based,

feature-based, or structural based methods. These methods are discussed in the

background chapter, Chapter 2. In classifying pixels, these approaches provide the basis

for many image segmentation algorithms. Usually, these algorithms assume a single

(arbitrarily complex) model for the image. They might perform very well on those images

generated by the image model they model after. However, most real world images are

highly non-stationary and in general cannot easily be modeled by a single model alone. For

example, a camera shot of a mountain during sunset would likely to have many different

regions with different brightness, textures, and shadings. A magnetic resonance imaging

(MRI) slice of the human inner ear region is another example. Such an image has different

tissues and bones regions with different sizes, textural properties, brightness, and

boundary distinctness. Accurate segmentation of these real world images is almost

hopeless with a single model approach. Clearly, a multiple models approach would be

much more appropriate for such real world images. The key problem is then, how can

these different models be combined?

Chapter 1 INTRODUCTION



For many years, statisticians have also been trying to solve a similar problem.

Many of them have pointed out that using a single model to make predictions and

inferences, no matter how elaborate, is not optimal [Howard, 1970; Self and Cheeseman,

1987; Kwok and Carter, 1990]. Several attempts have been made to average over many

prediction models using decision trees [Self and Cheeseman, 1987; Buntine, 1989; Kwok

and Carter, 1990]. The general result is that by averaging over different models, better

results are obtained than results from using any single model.

In the machine vision community, the researchers working on the Photobook

project in MIT for image database retrieval have recently proposed a multiple texture

models system for annotating images [Pentland, et.al., 1993; Picard and Minka, 1994].

Rather than using one elaborate texture model, their system chooses from a set of

available models the one that "best explains" an input image region. This approach

corresponds to making a hard decision in selecting the right model, and using that model

to make predictions. In the words of the statistician Breiman, such strategies is like

"wearing the less worn of two old suits" [Breiman, 1992]. As Breiman has shown in his

1992 paper, such an approach is inferior to those approaches that take all models into

considerations when making decisions.

Wolpert's stacked generalization was proposed in 1992 to reduce the

generalization error of a single or multiple generalizers [Wolpert, 1992]. A generalizer is

learning system that makes inferences or predictions based on learning done using a

separate learning set. The basic idea behind this approach can be illustrated by an example.

If a city C's weather is always sunny or cloudy, and if meteorologist A can correctly

predict the weather 90% of the time while meteorologist B always gets the prediction

wrong, which meteorologist gives a better weather prediction at any given day? Clearly,

whenever meteorologist B predicts sunny, the weather would be cloudy and vice versa. In

fact, B's prediction, if reversed, is 100% correct. Learning from the outputs of predictors

when given certain input patterns, instead of directly learning from those input patterns is

called first level learning [Wolpert, 1992]. Stacked generalization is uses this learning

INTRODUCTIONChapter 1



approach for making inferences or predictions. This thesis takes stacked generalization

and applies it to image segmentation. Discussions of our approach are given in Chapter 3.

Stacked generalization is a serial approach for combining different models in

making decisions. An alternate approach is a parallel approach that combines all these

models' outputs by some weighting factors. This is the approach taken by Jordan and

Jacobs in their Hierarchical Mixtures of Experts (HME) architecture [Jordan and Jacobs,

1994]. This thesis applies this parallel approach by using a gating network, which is a

learning system that determines the priors for individual models' outputs when presented

with a given input. The overall decision is a weighted sum of all the models' outputs. The

learning of this gating network is accomplished through a supervised learning scheme

derived in Chapter 3.

1.3 Main Contributions of this Thesis

To the best knowledge of the author, this thesis is the first piece of work that

applies the multi-experts approach in a statistical framework to image segmentation. These

techniques can also be adapted for image classification tasks. Real world images are often

results of different image formation processes. To analyze these images using a single

model is extremely difficult. The multi-experts framework advocated by this thesis

provides a possible solution to this difficulty.

This thesis considers two techniques for combining expert knowledge -- the gating

network method and the stacked generalization method. Comparisons are made on the

effectiveness of these two higher level generalizers 5. What is meant by higher level

learning is that these two methods learn to generalize based on information provided by

5 We have borrowd the term generalizer from [Wolpert, 1992]. A generalizer is essentially any system that can make
predictions or inferences based on learning performed on a learning set of patterns.
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other lower level processes, such as motion, texture, shading, and contours. In the context

of this thesis, these lower level generalizers are the individual image segmentation

methods. Implemented in a vision system, the gating network and the stacked generalizer

can be considered as mid-level visual processors that combine information from lower

level processes.

The structure of the Multi-Experts Classifier (MEC) presented in Chapter 3 is very

general. It can be applied to many other types of vision or pattern recognition tasks. The

MEC approach suggests a possible model for the human visual system. Vision scientists

have recognized that the complex human vision processing has to be distributed over a

series of stages [Marr, 1982]. Initial processing is handled by several different specialized

processes that provide information about visual properties such as texture, motion,

shading, and brightness of an input scene. The information provided by these lower level

vision modules has to be combined appropriately in order to yield meaningful higher level

understanding. The multi-experts approach advocated by this thesis provides a good

framework for modeling the serial and well as the parallel nature of the human visual

system.

In comparing the performance of the MEC with traditional techniques, this thesis

has also evaluated the performances of several commonly used image segmentation

methods for different types of images. These methods include both supervised and

unsupervised ones, which consist of K-nearest neighbors (KNN), multilayer perceptron

(MLP), K-means clustering, mixtures of Gaussians with parameters estimated by

expectation maximization, Lohmann's approach (1995) to co-occurrence matrices, and

various feature-based approaches. In addition, different types of features have been

evaluated, which include first and second order statistics, co-occurrence matrix based

features, Simultaneous Autoregressive features (SAR) features, and Markov random field

(MRF) features.
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1.4 Overview

The general flow of this thesis is from theory to experiments to results. The

beginning chapters are mainly concerned with the theoretical aspects of traditional

methods and the multi-experts approach. Experiments and results are presented later.

Many of the traditional methods can potentially be incorporated into the Multi-Experts

Classifier (MEC) construction -- as the experts. Therefore, extensions of some of these

methods are suggested so as to conform to the MEC architecture.

The main ideas of this thesis are presented in Chapter 3. This chapter describes the

theory of the MEC construction. It includes discussions on both the stacked generalization

approach and the gating network approach. Further discussions on how the MEC is

related to other works are also given in this chapter.

To understand the difficulty with many traditional methods in performing image

segmentation, this thesis spends several chapters discussing their theories and evaluating

their performances. The first type of such methods is discussed in Chapter 4, which is

about model-based techniques. Falling under this category includes Markov random field

methods, auto-regressive methods, and density estimation methods. Chapter 4 also

presents some of the recent development in parameter estimations for the models modeled

by these methods. Specifically, this chapter discusses a recently developed technique for

robust parameter estimation based on expectation maximization (EM) [Kashyap and

Chellappa, 1983; Geman and Geman, 1984; Derin, et.al., 1986; Besag, 1986; Liang, et.al.,

1994; Zhang, et.al., 1994].

In Chapter 5, we consider feature-based approaches. As will be discussed in that

chapter, almost all existing classification and segmentation algorithms can be considered in

some way to be "feature-based". What differentiates the feature-based classifiers discussed

in Chapter 5 from all of the other methods is the emphasis that these classifiers have on

choosing the optimal feature set for classification. A feature set can be used for other

purposes such as for simulating images, or for restoring degraded images [Hassner and
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Sklansky, 1980; Cross and Jain, 1983; Geman and Geman, 1984]. In fact, by visually

evaluating the simulated images, one can check the robustness of the feature parameter

estimation routines [Cross and Jain, 1983; Lohmann, 1994]. This chapter also describes

extensions proposed for augmenting traditional feature-based classifiers to become expert

classifiers for the MEC. Some experiments and results are reported for these methods.

The following chapter, Chapter 6, is a brief overview of other relevant methods.

Some of these methods actually fall under the model-based or feature-based techniques,

but are placed in this chapter because their approaches differ considerably from the more

traditional model-based or feature-based techniques considered in Chapter 4 and 5. These

methods include K-Nearest Neighbors, a novel probabilistic co-occurrence approach, a K-

means clustering based classifer, and a neural network approach.

Some of the details of the MEC implementation are described in Chapter 7. In

Chapter 8, experiments and results on applying the MEC to segmenting images are

reported. Image classification and segmentation are performed on a variety of images,

including both synthetic and real world images. Chapter 9 concludes the thesis with

suggestions on future works using the multi-experts approach.
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Chapter 2

BACKGROUND

There has been an enormous amount of research in both image classification and

image segmentation in the past thirty years. The breath and depth of this research makes

detailing all published techniques very difficult. More methods and descriptions of these

methods can be found in the many review articles already written, such as [Weszka, et.al.,

1976; Haralick., 1979, 1985; Ohanian, et.al., 1992; Bezdek, et.al., 1993; Reed, et.al.,

1993]. This chapter only intends to touch on those concepts and techniques relevant to

this thesis. This chapter also establishes some of the notations used throughout the thesis.

In addition, important background concepts are reviewed. Finally, brief descriptions are

given on the types of images used for testing and evaluating different classification and

segmentation techniques.

The first section gives some examples of how image classification and

segmentation are used in practice. Image classification and segmentation tasks permeate

many aspects of everyday life. This section aims to provide a glimpse of the possibilities.

In Section 2.2, the types of images used in this thesis for evaluating segmentation results

are described. Both synthetic and real world images are used. This section also describes

the methods used for generating the synthetic images. Concepts of neighborhoods and

vicinities are discussed next, which include discussions on the notations and basic concepts

used for the rest of this thesis. In the following section, relevant techniques for image



classification and segmentation are then reviewed in the context of this thesis. Finally, a

brief summary concludes this chapter.

2.1 Applications of Image Classification and Segmentation

There are many applications of image classification and segmentation techniques.

The application area ranges from the medical, military, to scientific domains. Their

importance in any image understanding task is great because these two techniques answer

two central questions about any vision system. These two questions are: what objects are

in an input image and where are they?.

Robot vision is perhaps the first application that comes to most people's minds

when they think of image segmentation. Recently, auto-pilot cars are being tested in

several research labs, most famous of which is the ALVINN in Carnegie Mellon

[Pomerleau, 1989]. Navigating these auto-pilot cars requires much image classification

and segmentation techniques.

In the medical community, image classification and segmentation methods are used

on a day to day basis for various diagnostic purposes. For example, in planning surgeries,

modern surgeons often need to review CT and MRI data sets, usually with segmented

parts, to help them plan their operations accurately. For radiologists and oncologists,

scanning mammograms for breast cancer are aided by image classification and

segmentation techniques [Dengler, et.al., 1994; Kilday, et.al., 1994].

Before the Berlin Wall fell, and before the collapse of the Soviet Union, image

classification and segmentation techniques developed for defense purposes were highly

guarded secrets, some of which are probably still so today. For quick and robust object

identification of tanks or nuclear warheads, or for analyzing landscapes from aerial

photographs or satellite images, image classification and segmentation techniques are

indispensable. During peaceful times, these techniques are still extremely useful for
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identifying wildfires, typhoons, tornadoes, and other natural phenomenon so that people

can be warned of any potential danger before the danger approaches.

This section considers one final application of image classification and

segmentation techniques. Marine mammals are known to have very good underwater

hearing capability. However, the exact mechanism of their great auditory competence over

a wide range of sound frequency have eluded many biologists and hearing experts for

many years [Ketten, et.al., 1992]. Currently, research efforts are underway to use image

classification and segmentation techniques to understand how sound is transmitted to the

inner ears of these animals through 3-D imaging studies of their auditory systems. The

proposed channel of transduction for marine mammals is a fatty tissue channel which

requires much more sophisticated techniques to detect than the commonly used intensity

thresholding for segmentation. This difficulty is caused by the extensive intensity overlap

among neighboring tissues.

The main point of this section is that currently, there exists many applications for

image classification and segmentation. The need is going to be even greater in the future.

In the medical field, for example, as nations are trying to cut health care spending and

upgrade their medical diagnostic capabilities, image classification and segmentation

techniques will be in increasing demand for providing fast, accurate, and inexpensive

means for analyzing and interpreting images.

2.2 Images Used for Performance Evaluation

This section describes the four kinds of images used for testing and evaluating the

performance of various image classification and segmentation techniques. Both synthetic

images and real world images are included. The real world images come from a variety of

sources, which include the Brodatz texture album [Brodatz, 1963], marine mammalian

images [Ketten, et.al., 1992], and the National Health Institute (NIH)'s Visible Man

images.
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2.2.1 Synthetic Images

Three types of synthetic images are generated for quantitative evaluation of

different image segmentation techniques. These synthetic images are based on three

different assumptions on the image formation process. These assumptions are: Gaussian

distributed intensities, Auto-regressive model based intensities, and Markov random field

based intensities. This subsection briefly describes the steps that have been used to

generate these images.

(i) Gaussian distributed intensities

Gaussian density is a common intensity characteristics of many images. An

example of a synthetic image produced by a Gaussian intensity process is shown in Figure

2.1. The intensity values are generated using the following familiar equation for a Gaussian

density [Fukunaga, 1990]:

f1 {-(Yi -- k )2 /(2yk2)1

T k
(2.1)

where gk and Ok are the mean and standard deviation of region k; yi is the intensity value at

pixel i. For all four quadrants in Figure 2.1, different means and variances are used to

Figure 2.1 An example of a synthetic image with Gaussian distributed intensity values. The means and variances of
the four quadrants are shown in Table 2.1.
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generate those regions. For this figure, the means and standard deviations of the intensity

values are shown below in Table 2.1.

Re ion Location Top-left Top-right Bottom-left Bottom-right

Mean (u) 120.09 139.80 159.97 179.87

Std. Dev. (a) 40.63 20.42 50.67 30.19

Table 2.1 The mean and standard deviation of the intensity values in the Gaussian mosaic image 1 of
Figure 2.1. Note the large overlap among the different regions.

(ii) Auto-regressive process based images

In a finite image lattice S, the intensity values generated by an AR process can be

described by the following generative equation for all intensity values {yi, i E S}

[Kashyap and Chellappa, 1983]:

y,= d• y + F-w(i) (2.2)

where p and dT's are unique parameters for each AR textural images. rli is the local

neighbors of pixel i whose intensity is yi. Chapter 5 will discuss in detail the image

generation process. Figure 2.2 shows several simulated images by applying this equation

with a four neighbors non-symmetrical half plane (NSHP) model. (The NSHP model will

also be explained in a later section -- see Figure 5.4.) [Lim, 1990; Grunkin, 1992].

(iii) Markov random field process based images

MRF has been used successfully for modeling both intensity and state processes of

various types of images [Hassner and Sklansky, 1980; Jain and Cross, 1983; Geman and

Geman, 1984; Besag, 1986; Zhang, et.al., 1994]. The intensity generation process using
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Figure 2.2 Synthetic images simulated using AR generative equation (2.2). The parameters of these generative
processes will be discussed in Chapter 5.

100 500

I UUU

Figure 2.3 Synthetic three-level Markov random field images generated by a Gibbs sampler with a 1 = 1.5. The
number below each figure represents the number of iterations that the Gibbs sampler underwent. Notice that
although a MRF used here is a localfield, it has long range interactions -- if the iteration continues, the
entire map would be of a constant color.
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the so-called Gaussian Markov random field (GMRF) is discussed in detail in Chapter 5.

This section considers a general three-level MRF process. An image generated by a MRF

satisfies the following Markov condition:

Markov condition: f(z1zil, ji) =f(zilzj, je ri). (2.3)

where ti is the local neighborhood of pixel i with state zi. MRF turns out to be the right

conditional structure to model any images provided that an arbitrarily large MRF is used

[Besag, 1972; Geman and Geman, 1984]. For most images, a second order MRF with a

local characteristics determined by a pixel's eight nearest neighbors suffices (refer to

Chapter 5 for more discussion on neighborhoods).

A MRF is related to a statistical mechanics energy called the Gibbs energy [Geman

and Geman, 1986]. Most researchers these days apply MRF modeling using the Gibbs

energy framework rather than directly with MRF because parameter estimation of the

MRF coefficients turns out to be computationally demanding [Hassner and Sklansky,

1980; Cross and Jain, 1983]. In dealing with the Gibbs energy equivalent expression for a

MRF, the implementation of algorithms using MRF becomes much more lucid and

requires less computational resources. This nice relationship between a MRF and a Gibbs

energy is made possible through a famous theorem proved by Hammersley and Clifford

[Besag, 1972]. Because of the general applicability of MRF to the intensities and the states

(or classes) of images, this theorem is explained in detail in a separate section (2.3). This

theorem will be used several times throughout this thesis.

Figure 2.3 shows several examples of MRF with three states. These images are

generated using a Gibbs sampler [Geman and Geman, 1986] with a P value of 1.5 (refer to

Chapter 5 for discussion of 0). The number of iterations used for each simulation is

indicated below each figure. Unlike Monte Carlo which uniformly samples from the

configuration space, a Gibbs sampler samples values from the local characteristics. This

locally dependent sampling idea was first used in the Metropolis algorithm for studying the

equilibrium states of dynamical systems [Metropolis, et.al., 1953]. This sampling

technique is much more efficient than uniform sampling because the state distribution of
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interest (Gibbs distribution, see equation 2.5) tends to have most of its energy near the

most likely states. As indicated by Figure 2.3, although the MRF used is a second order

locally dependent field, the effect of such a field is long range -- the tendency shown in

Figure 2.3 is toward uniformity.

2.2.2 Brodatz Album

The Brodatz album is a collection of 112 digitized real world textural images that

has become a standard set of images for performance comparisons [Brodatz, 1966]'. The

images were scanned with an 8-bit, 300 dpi scanner. The output is a 2400 x 1800 pixels

image, which is then reduced by a two steps Gaussian pyramid procedure to 600 x 450.

Some example Brodatz images are shown in Figure 2.4.

Figure 2.4 Example images from the Brodatz Album. The upper left hand image is D3, reptile skin; the upper right
hand image is D57, handmade paper; the lower left hand image is D93, fur; the lower right hand image is
D20, French canvas.

'The set of digitized Brodatz images used were graciously provided by Professor Michael Grunkin of the Institute of
Mathematical Statistics and Operations Research (IMSOR), Technical University of Denmark.

---- -
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Figure 2.5 Sample images from the marine mammalian image set. The left hand side is a CT slice of a seal temporal
bone immersed in a beaker of solution. The right hand side is another slice of a grey whale auditory system
(middle ear and inner ear region).

2.2.3 Marine Mammalian Images

Two sets of marine mammalian images are used in this thesis. The first set is an X-

ray CT scan of a seal temporal bone isolated in a beaker of solution. The second set

belongs to a grey whale CT head scan. An example of each of these two sets is shown in

Figure 2.5. These images are acquired for the purpose of studying the marine mammals'

unique auditory capability [Ketten, et.al., 1992]. The goal is to understand how marine

mammals such as seals and grey whales can listen in various frequencies.

2.2.4 NLM's Visible Man

The Visible Man (VM) is the first of a series of ambitious projects initiated by the

United States National Library of Medicine (NLM) in 1989. The goal is to create a digital

atlas of the human anatomy [Lorensen, 1994]. The VM data set is composed of three

types of whole body images -- X-ray CT, MRI, and histology scans. This thesis considers

only several slices from the CT data set, although plans are underway to process some of

the MRI and histology scans. An example image from the VM is shown in Figure 2.6.

That image is a head CT slice showing part of the external auditory canal and the middle

ear region.

I
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Figure 2.6 An example head slice from the Visible Man fresh CT data set. The main area of interest for this thesis
is areas related to the auditory system, such as the external auditory canals, the middle ear, and inner ear.

2.3 Neighborhoods and Vicinities

This thesis considers different spatial constraints in classification and segmentation

using different neighborhood and vicinity systems. In this section, definitions of

neighborhood and vicinity systems are given. The important Hammersly-Clifford Theorem

concerning spatial systems described by a MRF is also discussed.

Consider an image lattice S = {S, st, s...SN), where there are N lattice points, the

neighborhood of each of the lattice point s1 is denoted by rl7, where 11 = {rll, "12, ... *1N} is

the whole neighborhood set of the image. A neighborhood system for pixel i satisfies the

following conditions:

Conditions for neighborhood

11iof pixel i:{is E 0j1 then s E (2.4)

The simplest explanations for what a neighborhood system is probably through figures 2.

Figure 2.7 shows three types of neighborhood, a first order neighborhood with 4

neighbors, a second order neighborhood with 8 neighbors, and a third order neighborhood

2 We consider only the lattice points neighborhoods and refer the readers to other literatures on other types of
neighborhood [Geman and Geman, 1984].

Chapter 2 BACKGROUND



Chapter 2 BACKGROUND

Figure 2. 7 Symbolic diagram of several neighborhood systems. The one on the left is the familar
nearest neighbor system (or first order neighborhood). The middle one is a second order
neighborhood. The one on the right is the third order neighborhood.

Ist Order Cliques

2 nd Order Cliques

Figure 2. 8 Illustrations offirst and second order cliques.Every pixel in a clique is a neighbor to every
other one in the same clique.

with 12 neighbors. (The first order system is also known as the nearest neighbor system.)

In a group of pixels, if every pixel in that group is a neighbor to each other, then this

group is called a clique, C. Shown in Figure 2.8 are examples of cliques associated with

first and second order neighborhood systems.

The concept of vicinities is used later in Chapter 4 to describe the intensity process

of an image. The definition of a vicinity is almost exactly the same as that of a

neighborhood, with the extension of membership to the center pixel also. For example, a

first order vicinity v, for a given pixel i has five members, the four nearest neighbors of

pixel i, plus the pixel i itself. A second order vicinity has nine members, and so on.

A final preliminary concept before the discussion of the Hammersley-Clifford

Theorem is the Gibbs distribution, which is a statistical mechanics concept related to the

0

O
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energy of a system. Let U be defined as the system energy function, then the Gibbs

distribution of the energy is expressed as:

1 -U(o)/Tf(w0) = - e (2.5)
Zn

where Z, is the partition function that normalizes the function (2.5) to sum to one over all

o's. 0 represents a particular configuration of states in the system. For example, in a

greyscale image of with 256 greylevels, the space of all possible images is Q = {yl, y2,

...yN} where every yi can take 256 different values. o0 is a particular instance of 2.

Discussions of the energy function U(w) is deferred to Chapter 4, where several variations

of U(0c) are discussed. There is one more quantity -- the temperature T -- in (2.5) that

needs to be explained. T shapes the Gibbs distribution by either making the probability

distribution (2.5) more concentrated near the most likely configuration co or spreading the

distribution more evenly over all configurations. To make the likelihood of sampling a

configuration near the mode of the Gibbs density higher, the system temperature has to be

lowered -- this is the process of simulated annealing [Geman and Geman, 1986].

Conversely, to spread the distribution, T has to be raised. In a statistical mechanics

system, higher temperature means that the particles have higher mean velocities and tend

not to settle down to any particular energy state as easily as a lower temperature system.

By controlling T appropriately, the lowest energy states can be isolated within finite

iterations. i.e., the most likely state (with the lowest possible energy) can be found.

A lucid form of the Hammersley-Clifford Theorem can be stated as follows

[Besag, 1972; Geman and Geman, 1984]:

Hammersley-Clifford Theorem: If iT is a neighborhood system, then
o is a MRF with respect to 1l if and only if f(w) is a Gibbs
distribution of the form 2.5.

This above theorem makes calculation of the joint distribution f(w) fairly easy to compute.

With f(w), modeling images with MRF becomes quite straightforward, as will be done in

Chapter 4.
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2.4 Classification Methods

There are three main groups of image classification methods: feature-based

methods, model-based methods, and structural methods. Sub-section 2.4.1 discusses the

commonly used features for feature-based classification. Feature-based methods group

pixels with similar features together and separate pixels with dissimilar features. Model-

based methods estimate the underlying models of an image and use these models for pixel

classification. Model-based methods can be considered a subset of feature-based methods

since classification is performed over the model parameters 3, which can also be considered

as features. Nevertheless, model-based methods emphasize the modeling part much more

than the feature extraction part of classification. Structural methods assume a primitive

which is repeated throughout an image. Classification is performed by identifying the right

primitive for an image. These methods are only suitable for images with repeating

patterns.

The meaning of classification in this section is pixel classification, which is the first

step in most image segmentation procedures. Further segmentation rules are applied to

this initial segmentation. ML and other procedures are discussed in section 2.5.

2.4.1 Feature-based Methods

The most important aspect in a feature-based technique is obviously the feature set

that is used for classification. This sub-section describes a set of commonly used features

that have been found to be useful in many applications. One way these features can be

used for pixel classification is by simply grouping pixels with similar features. This

technique, as will be discussed in Section 2.5, is like a maximum likelihood (ML) region-

based method since pixels are grouped according to how likely their feature sets can be

3 Sometimes, the features are transformed to other domain for classification purposes.
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described by the prototype feature sets of different classes. (A contrasting viewpoint to

classify pixels by separating the pixels with dissimilar feature sets. This corresponds to

boundary-based segmentation method discussed in 2.5.)

(i) first order intensity statistics

First order statistics include mean, variance, skewness, kurtosis, and other

histogram based features [Lim, 1990; Gonzalez and Wood, 1992; Pitas, 1993]. Although

very useful for simple images, these features have been found by the author to be fairly

ineffective for natural textures, complex scenes, and other "not-so-simple" images. Below

is a list of the commonly used first order features:

Mean: I = yp(y) Variance: 02 = (y _ )2p(y)
Y y

Entropy: s = - p(y) log p(y) Energy: E = (p(y))2
y y

Skewness: 13 = 3
a

Kurtosis: 3 = 1p(y) - 3

(2.6)

where p(y) is the normalized image histogram, which sums up to 1.0 for all y values.

These features represent the most commonly used of the first order statistics.

(ii) co-occurrence matrix features

Since early 1970's, researchers have been using the co-occurrence matrices and the

related gray-level difference statistics for image classification and segmentation, especially

for textural images. Review articles [Haralick, 1979] and [Weszka, et.al., 1976] give fairly

extensive accounts of various attempts. Briefly, a co-occurrence matrix of an image is

defined for a given displacement d and a given orientation angle 0. The usual choices of

(d, 0) are : (1, 00), (1, 450), (1, 900), and (1, 1350). Assume that a greylevel image has m

greylevels. Each choice of (d, 0) results in a co-occurrence matrix of size m x m. For a
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usual image with 256 greylevels, the sheer sizes of the co-occurrence matrices prohibit

one from using their coefficients as features for classification -- this feature space is of

extremely high dimension. Usually, one derives much smaller dimensional features from

the co-occurrence matrices and, at the same time, attempts to capture as much of the

original image information as possible.

A few of the often used features from a normalized co-occurrence matrix are (the

co-occurrence matrix coefficients satisfy the conditions 0.0 5 cij 5 1.0 and 0 5 i, j < m,

where m is the number of greylevels):

Entropy: -1 cij log(c, ) Max. probability: max(c, )
i,j

mth-order contrast: i- jlm (c)
i,j

mth-order inverse difference: cij
Si - jm

Correlation: (i - ')( - t)c U
i,j

(2.7)

These derived features reduce the information in the original texture to several numbers.

Desirably, they would contain the necessary information for classifying a given region to

the right class. Unfortunately, they often fail to retain all the information originally in the

co-occurrence matrices. Nevertheless, co-occurrences matrix based features often rank

among the best textural features available [Weszka, et.al., 1976; Haralick, 1979; Ohanian,

et.al., 1994]. Recently, Lohmann (1994) proposed a new approach to extraction features

from the co-occurrence matrices. These features seem to retain all the information in the

original co-occurrence matrices. We discuss his novel method in Chapter 7 as well as in

Appendix A.

(iii) grey-level difference and grey-level sum histograms
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For a displacement d=(dl, d2), the grey-difference between two image pixels is

defined as follows [Pitas, 1993]:

D(d) = ly - yi+dil,j+d2 (2.8)

Grey-level difference histogram (GLDH) is essentially computed by summing over

a co-occurrence matrix over constant grey-level difference Im-nl. As Carstensen (1992)

has pointed out, greylevel difference histogram is a measure of the "distance" to the co-

occurrence matrix diagonal. So, GLDH can be considered as a derived feature from a co-

occurrence matrix.

Grey-level sum histogram (GLSH) is defined similarly as follows:

S(d) = lyij + Yi+dl,j+d21 (2.9)

Again as pointed out by Carstensen, (2.9) is really computing the co-occurrence

matrix coefficients over constant grey-level of (m+n). GLSH is also a derived feature from

the corresponding co-occurrence matrix.

Some commonly used GLDH and GLSH features are defined as follows (where

for avoiding redundancy, the generic G represents either D(d) or S(d)):

Energy: E = Gk2 Entropy: s = -X Gk log Gk
k k

GLDH Inertia: I = k2Gk Local Homogeneity: H = k
k k l+k

GLSH Sum Avg: A = kGk Cluster Shade: A = (k - A) 3 Gk
k k

(2.10)

where k stands for the greylevel sum or difference index for calculations done using a

given d [Carstensen, 1992]. As this list of features shows, there are many variations of

features that can be computed from GLDH and GLSH. Since GLDH and GLSH are

derived features from the co-occurrence matrix, these features in (2.10) can also be
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considered as features of the co-occurrence matrix. If the right classification methods

using the co-occurrence matrices are used, these methods should be a superset of other

methods using features in (2.10). In fact, Weszka (1976) has found that co-occurrence

matrix features usually perform better than GLDH and GLSH features. The reason behind

his observation could be that the later features are derived from the former co-occurrence

matrices.

(iv) Fourier spectral features

Over the past three decades, the effectiveness of spectral features have frequently

been debated. The pros and cons of these features are not discussed in this sub-section.

These discussions can be found in [Weszka, et.al., 1976; Chen, 1972; Wilson and Spann,

1988; Grunkin, 1993]. If the power spectrum is estimated correctly, and if the right set of

spectral features are used, many researchers have found these features to be quite useful

and theoretically sound. The quantities in (2.11) represent a few of the commonly used

features (given the power spectrum of an image is P(r, 0) [Lim, 1990], where r and 0 are

the polar units in the frequency domain):

2 i r
Avg. Power: AP = d f P(r, )rdr

.=O r=O

Ring from r, to r2: R(r,r2) = p(r,4)dr

Wedge from ; to 02: W( 2 ) = p(r,4)rdo

(2.11)

From (i) to (iv), this sub-section has discussed a few of the most common and

useful features. There are many other features that have been invented for various

applications. Interested readers should refer to the references quoted in the beginning of

this chapter for further details.

2.4.2 Model-based Methods
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The model-based methods use features derived from modeling parameters of a

given image. The commonly used models include Gaussian models, Simultaneous Auto-

regressive (SAR) models, and Markov random field models. These are discussed in the

introductory section on model-based classification experts (Chapter 4) and are skipped

here to avoid redundancy. The parameters extracted from these models are used for

classification just like the features described in the previous sub-section. The general

classification rules for this operation are discussed later in this thesis.

2.4.3 Structural Methods

Structural methods assume repeating primitive patterns over a given image with a

specific placement rule. Therefore, these methods apply only to specific types of textural

images because of the tight spatial constraints assumed by these methods. Due to this

restriction, these methods are of limited utility.

The main ideas behind structural methods can be understood from a spatial-

frequency point of view [Jayaramamurthy, 1980; Reed, et.al., 1993]. Consider a given

textural primitive h(x, y) and a placement rule d(x, y) composing of a set of delta functions

defined as follows:

d(x, y)= X(x - Xm,Y - Ym) (2.12)

The entire texture image is then the convolution of h(x, y) and d(x, y):

S(x, y) = h(x, y)*d(x, y)
S(u, v) = H(u, v)D(u,v)

The lower equation in (2.13) is the frequency domain equivalent of a convolution process

and u and v are the frequency coordinate variables. Clearly, we can find the placement rule

by taking the inverse transform of the following deconvolution process in frequency:

D(u, v) = H-(u, v)S(u,v) (2.14)
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The deconvolution filter HI(u,v) is simply the inverse of the texture primitive frequency

transform. So, to classify a given pixel and region is nothing more than finding the class

with prototype pixels and regions with similar placement rule and the textural primitive.

Lee (1983) describes a pyramid averaging scheme. His key idea is that by

averaging over the size of a texture primitive, the texture regions in the image would be

turned into uniform sections. By carefully manipulating the pyramid structure, regions that

are not textures would be unaffected. On texture portions, classification of different

regions can be performed by locating the different constant regions.

2.5 Segmentation Methods

There are several different ways to describe segmentation methods such as

supervised versus unsupervised methods, region-based versus boundary-based, maximum

likelihood (ML) versus maximum a posteriori (MAP) or other maximization procedures,

among others. This section attempts to use the supervised versus unsupervised paradigm

to give an overview of many of the existing segmentation methods. Note that this

paradigm can also be used to classify classification methods.

2.5.1 Supervised Methods

(i) Bayes' methods

This sub-section considers a parametric method, which means that assumptions are

made about the underlying data generation models. Consider an image that can be

modeled by a mixture of several densities f(ylZk) where k = {1, 2, ...K} represents the class

labels. The image has the following joint probability density function (pdf):

K

f(y, zi () = gkf(y Zk, I ) (2.15)
k=1
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where z represents the class label, D represents all the parameters of the mixture model

and gk is the prior for class k. Consider a learning set XL = { yj,jk} where j = { 1, 2, ...L I for

a total of L learning pairs, modeling the underlying densities is performed using XL. The

estimation of the model parameters (Q is often performed by either maximum likelihood

(ML) or maximum a posteriori (MAP) methods [Besag, 1986; Derin and Elliott, 1988;

Silvermann and Cooper, 1988; Zhang, et.al., 1994; LaValle and Hutchinson, 1995].

In particular, the feature-based methods discussed in the last section could assume

a multivariate normal density function for estimating the feature parameters, which is the

approach taken in Chapter 5. In this case, the parameters of interest: 4D = { gk, lk} where k

= { 1, 2, ...K) and gk and 1k are the mean and co-variance for class k. From the learning set

XL, the parameters for each class 4 ) k can be estimated directly without any iterative

procedures. A maximum likelihood (ML) classifier would classify a given pixel with its

local region map by maximizing the following quantity:

Z *(ML) - arg max f(ylzi,D) (2.16)
zi

As Bezdek, et.al., (1993) have pointed out, this supervised ML procedure is unstable in

the sense that slight changes in the input would yield outputs that are very different from

the learning set XL. Therefore, in the case of a 3D data set, parameter estimations have to

be done on every slice of the image. This problem is ameliorated by using the maximum a

posteriori (MAP) approach instead. Using Bayes's theorem for the posterior probability of

the state zi, the following expresses the MAP classification of pixel i:

Zi*(MAP) = arg max f(zl y, D)
zi

gf (ylz,, 4) (2.17)
= arg max

Z, J., gjf(yl zj, (D)

The denominator of (2.17) can be ignored because it is a constant that is independent of

the state zi. The prior gi is problem dependent and can be obtained in various ways, some

of which are discussed in Chapter 4 for the model-based expert. Both the ML and MAP
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classification procedures are applied to the feature-based classification expert of Chapter

5. The density models used for the model parameters are the multivariate Gaussian

densities.

(ii) K-nearest neighbor (KNN)

The previous section has discussed a parametric approach, this section considers a

non-parametric method known as K-nearest neighbor (KNN) [Fukunaga, 1990; Bezdek,

et.al., 1993]. KNN is non-parametric in the sense that no prior assumptions are made on

the underlying data. The only parameter in KNN is the K value, which is usually

determined through some kind of cross-validation methods (Breiman, et.al., 1984). This

method's success relies on a large set of correctly labeled learning sets XL. To classify an

input pattern, KNN collects the class labels belonging to that input's K closest neighbors.

The class that predominates in this collection is assigned to be the class of the input.

The usual distance metric for measuring similarities between an input to its

neighbors is the Euclidean distance d(xi, xj ) = Xi-Xj = (x - x - x) , where xi is

the input feature vector and xj is the feature vector of a neighbor. However, there exists

many other more appropriate distance metric for many applications, such as the

Mahalanobis distance discussed in Chapter 5.

It is well known in the pattern recognition field that KNN has an upper bound on

its classification error. This upper bound is twice the optimal Bayes' error [Fukunaga,

1990]. Wolpert (1992) experimentally shows that KNN is a stable method that does not

have widely oscillating outputs as its inputs or parameters are perturbed. Because of the

simplicity of implementation and the robust classification capability, KNN is often used for

various classification and segmentation tasks.
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Hidden Nodes

xl X2 X3 XN-1 XN
Figure 2.9 An schematic diagram for afeedforward network. This diagram shows a one hidden layer

network that receives input x = [xi x2 ... N]T and produces an output vector z = [Zl Z22...ZK .

(iii) neural networks

Neural network approaches have received much attention in the pattern

recognition field recently. Many theories have been developed about neural networks.

Perhaps the most famous, and often quoted, result is the Hornik, Stinchcombe, and White

(1989) proof of multilayer feed-forward networks being universal approximators. In other

words, this proof shows that such an architecture is able to approximate arbitrarily close

to any reasonable functions. This result is quite reassuring since most functions that

people encounter fall into the reasonable functions category. Unfortunately, even with this

proof, no guarantee can be made about whether a learning problem can be learned by such

a network. The main culprits lie with the imperfect training algorithms. For example, the

popular delta rule [Rumelhart, et.al., 1986], or backpropagation (BP), is a stochastic

gradient descent method. Like other gradient based methods, BP is prone to be trapped in

local minima [Hertz, et.al., 1991]. Once learning gets stuck in a local minimum, another

initialization of the network weight vector has to be done in order to place the weight

vector away from the local minimum. In other words, even though the feed-forward

network structure has the potential to learn all reasonable functions, in practice, the

learning procedure required could take an infinite number of trials.
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An example a feed-forward neural network is shown in Figure 2.9. The (2.9)

network is a so-called a one hidden layer network since one of the layer of "neurons" is

not connected to any of the inputs nor the outputs. This is the structure of the neural

network expert used later in Chapter 6 as another expert.

2.5.2 Unsupervised Methods

Unsupervised methods try to discover the underlying structure of a set of

unlabeled learning set XL using iterative methods. Like other iterative procedures, the

learning process of an unsupervised method is prone to be trapped in local minima and

tends to converge very slowly. Recent application of the expectation maximization (EM)

algorithm to the iterative learning procedures have alleviated some of the problems that

usually come along with these iterative algorithms [Dempster, et.al., 1977; Kelly, et.al.,

1988; Liang, et.al., 1994; Zhang, et.al., 1994; Jordan and Jacobs, 1994]. The EM

algorithm is discussed in Appendix B and is used for estimating the model-based

classification experts' parameters in Chapter 5.

(i) unsupervised Bayes' methods

The unsupervised Bayes' methods are straightforward variations of the supervised

Bayes' methods in the last sub-section. The main difference among them is that the

unsupervised methods receive a learning sets XL that do not have labels while the XL for

the supervised methods do. The consequence of this difference is that the prior

probabilities of the different classes p(zk) are now unknown. In the case of the multi-

variate normal densities discussed in the supervised Bayes' methods section, all the

parameters 9 = {p(Zk), gk, k }, where k = { 1, 2, ...K}, are now coupled across different

classes. In order to constrain the parameter space for the estimation problem, Lagrange

multipliers can be applied to regularize the solutions. Chapter 4 shows a recent

development in using the EM algorithm for estimating the multi-variate normal parameters

in a maximum likelihood fashion [Bezdek, et.al., 1992; Zhang, et.al., 1994].

(ii) K-means clustering
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The K-means clustering algorithm [MacQueen, 1967] has been a standard

algorithm for performance comparison for many years. This algorithm is guaranteed to

find the local minimum, if it exists. Numerous variations of this theme have been

proposed, such as the recent generalized K-means algorithm of [Pappas, 1992].

The essential idea of a K-means algorithm is to iteratively find cluster centers in the

input space. Mathematically, every step of the algorithm recomputes the cluster centers,

Ilk, in the following fashion:

k k(t+l) = ' _Xi (2.18)
k x ESk

where Nkt is the estimated number of inputs xi's that belong to class k during iteration t.

The set of all inputs in class k is denoted by Sk. Implementing (2.18) is fairly

straightforward.

For classifying an input xi, which could be a set of features discussed earlier in this

chapter, all that is required is to find the most similar cluster to xi. The performance of the

K-means algorithm is compared against other algorithms in Chapter 5 as well as Chapter 8

of this thesis.

The above unsupervised methods assume that the number of classes, K, is known.

Methodologies now exist to estimate this parameter. This research problem is called

cluster validation. Several recent publications in this area are: [Zhang and Modestino,

1990; Li, et.al., 1992].

After the unsupervised learning algorithms discussed above have learned their

parameters and have clustered the inputs, feedback must come from the user in order to

reassign the class numbers for the inputs that have been randomly chosen. This class

reassignment task forms an extra post-processing step for unsupervised methods.
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2.6 Summary

The classification and segmentation schemes reviewed in this chapter represent

only the most commonly encountered schemes. The scope of research in these two fields

is very large. Nearly all of these techniques approach image classification or image

segmentation from a single model point of view.



Chapter 3

THE THEORY OF MULTI-EXPERTS APPROACH

This chapter proposes an image segmentation (or pixel classification) scheme using

multi-experts approach and "soft splitting" of the data space. The scheme is based on two

recently proposed ideas in statistics, the stacked generalization of Wolpert (1992), and the

Hierachical Mixture of Experts (HME) of Jordan and Jacobs. The main advantages of this

classifier are two-fold. First, the scheme avoids the problems generally associated with

hard decision-making classifiers such as sensitivity to noise, instability when given large

and complex data sets, and poor performance given small numbers of examples. Second,

the proposed classifier intelligently utilitizes all available expert knowledge concerning a

given data set. This later point will become clear as the chapter progresses.

We start in Section 3.1 by reviewing the background for the multi-experts

approach for image segmentation (or pixel classification). The proposed segmentation

scheme is presented in Section 3.2, with both the gating network approach and the

stacked generalization approach. Section 3.3 discusses the parameter estimation issues

involved with the Multi-Experts Classifier (MEC), which includes a a learning algorithm

for the scheme. Finally in Section 3.4, related works are discussed.



3.1 Introduction

This section considers the general problem of data classification. The most popular

techniques for classifying a given data are maximum likelihood (ML) and maximum a

posteriori (MAP) methods based on some estimated underlying parameters of the data.

This thesis shows an alternative approach based on optimal soft Bayesian decisions made

with all knowledge derivable from a data set.

Consider an input data set y = [yl, y2, ... yN]T, for which one can propose a series

of models for characterizing the data set. These models are based on the set of possible

hypotheses W = { IW, W2, .*.. K I about the data. Each of these models contains a set of

parameters cDi EI Q I,c{ 0 2, *... DK } to be estimated. For hypothesis Hk, assume that the

model has been determined to have a joint density function f(ylck,A). The ML

classification scheme for an input value yi, after the model parameters are estimated, can

be expressed as the following maximization of its likelihood:

i*( =ML) = arg max f(yi Qk,'q) (3.1)

Equation (3.1) says that given the estimated model parameters for all the available

hypothesis, the ML hypothesis is selected as the one with the highest likelihood value. The

model parameters for each hypothesis qi are obtained by maximizing the likehood of the

observed data assuming at each stage the particular hypothesis qi is correct.

Similarly, the MAP approach for classification can be expressed by a maximization

process. In addition to maximizing the likelihood of the observed data for each hypothesis,

MAP also takes into consideration the prior probability for each hypothesis, f(l(i'), which

can be obtained through a variety of ways that can be found in many operations research

or statistics books [Drake, et.al., 1978; Fukunaga, 1992]. Given the prior probability

density function f(diI/), the MAP approach can be expressed as:

i*(MAP) = arg max f(yl Q(D, q)f(i I -) (3.2)0i'qSl
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The expression on the right hand side is the same expression as the a posteriori probability

distribution. Therefore, this procedure is exactly the same as maximizing the a posteriori

probability (MAP). Classifying an input value yi is done by simply choosing the hypothesis

with the highest a posteriori probability. In general, MAP estimations are superior to

those obtained by ML.

In both of the methods presented above, the classification step has two parts: first,

the selection of the best model, and second, the determination of the class assignment for

the given data yi based on the best model. Perhaps a more lucid way to consider this above

classification procedure is: make a hard decision on what the best model is and based on

that decision, choose the best class for an input. (A hard decision makes an input yi belong

to one model and that one only. In constrast, a soft decision allows yi to belong to multiple

classes simultaneously.) Within the information theory and neural network communities,

hard decisions are well known to be less robust than soft decisions. In order to improve

the classification performance of a classifier, we must avoid making hard decisions during

classification.

The next section gives an overview of the multi-experts approach. Two methods

are presented. In the gating network approach, not only does the classifier takes all

available models into consideration when classifying an input, the decision is made by soft

partitioning of the input space. The soft decision nature of this approach in utilizing all

available expert knowledges should become quite apparent to the readers as the discussion

progresses. The stacked generalization approach, all models are also considered when a

decision is made on a given input; however, the stacked generalizer (SG) that combines

the different models does not deal with the input space. Instead, this SG learns from the

output of different experts. Therefore, outputs are results of a higher level abstraction

from the input than outputs obtained from the experts. Technically, Wolpert (1992) called

this learningfirst level learning, in contrast with the zeroth level learning by the experts in

learning to map inputs to outputs.
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3.2 Multi-Experts Classification

Consider an input image S with intensity vector y, our goal is to assign every pixel

in S to one of K classes in a meaningful fashion, the definition of which is problem

dependent. We have several algorithms, each of which classifies certain types of image

very well. However, outside their "expertise" domain of image, they perform poorly. This

situation is very common in image segmentation. For example, Simultaneous

Autoregressive models (SAR) have been shown to be very effective for many types of

stationary textural images [Kashyap, et.al., 1983; Mao, et.al., 1992; Grunkin, 1993; Hu,

et.al., 1994]. If a noisy brickwall image with strong deterministic patterns is given to a

SAR classification "expert", the expert's performance cannot be predicted. In a later

chapter on a feature-based expert, experiments will be described in which a good feature

set for one type of image may not be so good for another type of image. If an expert E,,

has been "tuned" to do well on certain brickwall type images, E,, might not perform well

on the textural domain. No doubt that any image classification task is best done when the

"right" set of features and the "right" set of methods are used for particular images.

Realistically, however, such an approach is not always feasible. Should a complex real-life

image be considered a textural image? A fractal image? A constant plus additive noise

image? Multiplicative noise image? How about non-linear chaotic image? Clearly, no

single model can be perfect.

The central idea in the proposed Multi-Experts Classifier (MEC) is to intelligently

combine the expertise of several experts with different image models to achieve accurate

classification results. The combining process has to be handled carefully to ensure a robust

and well justified scheme. The multi-experts approach presented here has some

resemblence to the adaptive modular network of [Mui, Agarwal, Gupta, and Wang, 1994],

except the later approach uses hard splits of input space and is not grounded in a rigorous

framework. The theory of MEC can be traced to the several recently proposed ideas in

statistics -- "Stacked Generalization" (SG) of David Wolpert (1992), "Bagging

Predictors" (1994) and "stacked regression" (1992) of Leo Breiman, and the Hierachical

Mixtures of Experts (HME) of Jordan and Jacobs (1994). To the best knowledge of the
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Figure 3.1 Multi-experts scheme for data (y) classification by soft decisions through priors calculated by the gating
network for outputs of all experts or through 1st level learning by the stacked generalizer..

author, this thesis is the first attempt to apply the multi-experts approach to image

classification and segmentation.

3.2.1 Overview of the MEC

The architecture of the MEC is shown in Figure 3.1. Every expert En receives an

input intensity vector y. For example, y can be range measure, intensity of X-ray

attenuation, amount of backscatter of an ultrasound echo, proton density, TI, or T2

acquisition time of a magnetic resonance image (MRI). Expert En takes in y and produces

an output vector p(ylz,An) = ln = [ Pn(ylI,CIn), Pn(yIZ2,Dn), ... Pn(ylZKA, n)]T , n { 11, 2,

...N . gn is in the form of a vector of probabilities of observing y given in state zi, i E { 1,
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2, ... K). In image classification, state vector z represents the class labels for the input

vector y. These class labels can be from class 1 to class K.

In accordance with objective probability theory, the state vector in produced by

expert n must contain elements that satisfy the following criterion:

0.0 5 p(yl z,I(D, ,,) 1.0
Kp(ylz, ) = 1.0 (3.3)

This criterion precludes the use of classification experts or methods that do not produce

confidence indices for the classification results. Examples include simple region growing,

intensity thresholding, and split and merge algorithms [Lim, 1990; Gonzalez and Woods,

1992; Russ, 1993]. In order to have a statistical framework for image classification and

segmentation, we have to have a way to assess the classification and segmentation results.

The probabilistic requirement (3.3) is a sensible way to provide this assessment.

Selection of experts will be dealt with in later chapters. For now, assume the

experts El, E2, ... EN have been chosen. We consider how to combine their classification

results here. As hinted by Figure 3.1, this thesis considers two ways for this combination

process. The gating network approach and the stacked generalization approach.

(i) gating network approach

This sub-section considers two ways to view the combination of experts' outputs

problem through the gating network. The first way is suggested by Jordan and Jacobs

(1994). If y is an observable obtained by one of the N generative processes model by the

experts E1's, then finding the best expert for classifying y is an N-way classification

problem. A natural probability model then is the multinomial density. In other words, for

a given input y, a classifier based on the multinomial density attempts to assign y to one N

classes.
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Consider m input vectors yl, y2, -.. Ym, for each of these, each expert outputs a

state probability vector I, = [p,(ylz,,QA), Pn(YIz2,A,), ... Pn(yIZK, n)]T, where iE { 1, 2,

...K}, n 11, 2, ...N}. The joint probability density of the states under aa N-way

classification scheme can be expressed by the following multinomial density [Jordan and

Jacobs, 1994]:

f(zl,z 2,...Z Ily,) = m!" P(Zn Y')z (3.4)
n=l Zn

Appendix C details the derivation for the so-called link function in statistics associated

with this distribution [McCullagh, et.al., 1983]. As shown in that appendix, the link

function turns out to be the appropriate output function for the gating network. The link

function is the well known softmax function [Bridle, 1989]:

w',ye
p(znIl)= = g,(y) (3.5)

where WT is the transpose of a vector of parameters associated with expert n. This

function partitions the input space using soft splits, which allow a given point in the input

space to belong to more than one class of experts. From another perspective, the input y is

projected onto different parameter vectors w,'s. The magnitude of this projection

(ýn=wTny) is passed through a nonlinear function (,)= " . The greater the

magnitude of the projection, i.e., the greater the resemblence of y to the expert class n, the

greater the gn value for that given y. The magnitude of gn is a measure of how close an

input y falls near the expertise area of an expert classifier. Notice that gn provides a

probabilistic estimate given that Xn g, = 1.0.

Another probabilistic model for a gating network approach is proposed in this

thesis. We approach the combination problem as determining how likely y is generated by

each one N processes modeled by the experts. In other words, we divide the selection
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problem into N separate problems, and assess the probability of y being in the "expertise"

area of each expert separately. Here, we have N binary classification problems and the

natural probability model is the Bernoulli process.

For most natural images, the likelihood that a given image is generated by a single

process is extremely small. Most of the time, a real life image is produced by many,

perhaps an infinite, number of simple processes that are easy to be modeled. Therefore, for

assigning the credit for how likely a given region of the image is generated by one process,

a Bernoulli trial with outcome being a success or a failure is appropriate. A collection of

such trials can be attempted to model all the processes simultaneously.

Given the outcome zi is either a success (1) or a failure (0), and the probability of

success is 0, a Bernoulli process is characterized by the following density:

f(zily, )=0 z'(1-0) -zi (3.6)

This equation is actually a special case of equation (3.4), for when N = 2, which makes

sense since a binary classification is just N-way classification with the "N" being 2.

Therefore, through a similar derivation as Appendix C ', the output function for a gating

network with a Bernoulli process assumption is:

1
p(z,,I4 )  -- g,(y) (3.7)

1- e-We Y

Just like the softmax function, this is a very familiar function in the machine learning

community -- the logistic function [Rumelhart, et.al., 1986; Hertz, et.al., 1991].

(ii) stacked generalization approach

'An easy way to derive this output function is to substitute 2 for every N in Appendix C.
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Other than the gating network approach, combining the experts' outputs can be

seen as a first level learning problem, which has already been introduced. The name of

stacked generalization was coined by Wolpert (1992) for higher level learning than zeroth

level learning, by which he means learning using inputs directly. First level learning is then

learning using outputs of generalizers who generalize the inputs directly. Breiman (1992)

has applied this idea in his stacked regression to regression problems and obtained very

encouraging results. Here in this thesis, we consider classification problems.

By using first level learners such as the stacked generalizer of Figure 3.1, the aim is

to reduce the generalization error of a generalizer, as opposed to the learning error. In

addition to learning the input space by the different experts, the MEC uses the stacked

generalizer to learn the output space of the experts. Even if all the experts miss certain

input patterns, by observing their mistakes, the stacked generalizer can still output the

correct output by generalizing from the usual mistakes made by the different experts. This

is the crux of the argument for using stacked generalization for classification tasks. An

interesting illustration of a stacked generalizer through the weather forcast example is

given in Section 1.2.

3.2.2 A Probabilistic View of the Gating MEC

The MEC with the gating network for combination of experts can be viewed from

a probabilistic perspective. The gating network serves a special role of providing the prior

probability for each expert network. We can see this role through the following expression

for the total output vector (where Rtn's are the output probability vectors of the experts):

N

p(zly,I) = I g. (y) n, (3.8)
n=l

This final classification result is another vector p(z) = [ p(z=J) p(z=2) ... p(z=K) ]T, where

the dependence on y and D are omitted for succinctness. Note that this final output vector

is a result obtained through all available experts, combined using a probability framework.

The selection of the best class can be done in several different manners. A simple and
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reasonable method is to choose the class k with the highest posterior probability

p(z=kly,A). Discussions of other methods is done later in this chapter as well as in Chapter

8, which also shows some experimental results.

We can rewrite (3.8), the output probability vector, as:

N

p(zly, D) = : g, (yp(p(yl zn, ) (3.9)
n=I

where Q represents all MEC parameters, which include those of the gating network as

well as those of the expert classifiers. The posterior probability given the input y and the

classifier parameters is p(zly,Q). gn(y) serves as the prior probability for expert n, while

p(ylzn,@n) is the likelihood vector given by expert n with parameters In. This likelihood

vector could be a result of a ML (3.1) or MAP (3.2) estimation procedure. If we consider

the input y being generated by one of the experts, gn(y)p(ylzn,,n) is the posterior

probability of this event. Instead of a ML or MAP procedure which chooses either the

maximum of p(ylzn,~Dn) or p(znly,In), MEC considers an a priori process modeled by a

multinomial probability function with output gn(y). This approach considers all available

posterior probabilities of the classification provided by all the experts. Every expert's

opinion is taken into consideration in making the final classification decision.

Equation (3.9) provides a means to combine all the output vectors from all

available experts through an optimal Bayes' decision rule -- optimizing the posterior

probability of the output given the output results from individual experts. No hard

decision is made here for choosing the final classification of an input pixel. In this sense, a

given scene can be generated by multiple processes at the same time. The modeling of this

mixed scene is done through the prior probability assignments gn's.
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3.2.3 The Stacked Generalizer

Two different types of stacked generalizer (SG) are attempted to learn the outputs

from the experts. These two types are the coincidence matrix based SG and the network

based SG.

Consider thefirst level learning task 2 of learning from the outputs of the experts, a

generalizer attempts to learn certain structure from these data. In the case of two experts,

a straightforward way is to construct a coincidence matrix (or tensor if the number of

experts is greater than 2). This matrix has vector elements cy where i andj are the outputs

from expert I and expert 2, respectively. cy is a vector of K components, corresponding to

the K different classes for classification. Component ci,k represents the number of times

expert 1 and expert 2 has outputs i and j but the actual class of the input is k. These

coefficients are learned during the training stage. The ones with no training data receive a

class label of REJECT. The actual classification is then simply a table lookup operation

using the coincidence matrix. An example of this approach is shown in the chapter on

experiments -- Chapter 8.

Another more sophicated way to perform the first level learning is to use a

network, just like the gating network. In fact, this thesis also attempts the two

probabilistic models discussed in the last section for this first level learning task. Recall

these two probabilistic models are the multinomial density and the set of Bernoulli

processes. The performance of these first level learners will be shown in Chapter 8.

2 Refer to the last section for the definition of a first level learning task, or to Wolpert's paper (1992).
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3.3 Parameter Estimation for a MEC

3.3.1 Gating Network Parameter Estimation

This subsection derives a gradient descent based learning algorithm for estimating

the parameters in a MEC. Parameters are estimated in a maximum likehood fashion. For

the gating network parameter estimation, the methodologies used are comparable to the

approach taken by Jordan and Jacobs (1994) for their HME architecture. Given E number

of examples provided for learning, { (ye, ze) }, for e = 11, 2, ... E}. (The output z' is a unit

vector with the component corresponding to the target class equal to 1.0.) For E

examples, we maximize the log likehood of a given MEC in estimating the parameters D,

which is given by :

E N

1(ye, z e , ()= log g, (y)p(yeIZ ,  ) (3.10)
e=l n=l

Here two sets of parameters are to be estimated, Q = { Wn, On } where n = 1, 2, ... N.

The parameters associated with the gating network are represented by the vector w,, and

the parameters associated with each expert are represented by the vector On. The ML

estimates of these parameters satisfy the equations :

V l(ye,ze, 2) = 0
(3.11)

V, l(ye, ze, () = 0

To avoid excessive notation, we consider the case for a single pair of examples (ye, Z),

we substitute the symbol rn=wTny. Let's first calculate the ML estimates for the gating

network using ýn and a pair of example:

1(y, z', I) = g (3.12)
yz j.=Y agir
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where gj is given by equation (3.5) and (3.7). We first consider the partial derivative of the

softmax output gjS:

gis

agS,

• ne • j ei
)2

a=1 (3.13)

= g S(6. -gjS)

where 8•• is the Kronecker delta function. Now, let's calculate the derivative of the log

likelihood function in (3.12):

N

Ze •n
j=l

p(yeI Z, Qj)
(3.14)

N1= gm P(Ye Iz, em)

s N g sp(yelz' ' c j )

= p(ze I ye,) m=,ms - elz m)

= p(zelye, I n)_ g S

where we have used the definition of posterior probability of:

gS (ye)p(yejIz, ,)p(zJye, )= -- gS(ye)p(ye 'iZ c m) (3.15)

So now, we can write down the gradient of the log likelihood (3.10) with respect to w, ,

and we consider all E example pairs:

Vw1 ( y e z e , ) ( = ) V
e=1 n )

(3. 1)

= (p(ze ye, eln)- gn S(ye ))y

e=l

For the logistic output case, the partial derivative logistic function in equation (3.12) is:

=gjL= gL(1--gjL)
Dt~n (3.17)

CHAPTER 3

Y
(g Son _ gjs))



THE THEORY OF MULTI-EXPERTS APPROACH

By substituting this gradient quantity to (3.12) and manipulating the outcome in a similar

fashion as (3.14), we can derive the corresponding log likelihood (3.10) for the logistic

function output case, which is:

E

V,1(ye,ze',D)= y (p(zly, n)-g (y)X1-_ g L (y))g (ye)y (3.18)
e=l

Equation (3.16) and (3.18) provide us "greedy" means of learning the parameters to

maximize the likelihood in (3.10). It has been well known in the machine learning

community that such methodologies are inferior to incremental stochastic techniques in

many real life learning tasks. To convert (3.16) and (3.18) to stochastic estimation

techniques simply involves two steps. First, we consider each example pair individually --

drop the summation sign. Second, we introduce a learning rate constant 0 < 17 < 1 to the

parameter update equations. Ti changes the values of wn by a fraction of what (3.16) and

(3.18) dictate. So, our learning algorithms for the gating network that go up the gradient

of the likelihood surface are as followed for the softmax output and the logistic output

cases:

AwnS = r(p(Ze I y', ,n) - gS (ye ))ye (3.19)
(3.19)

AwnL =rl(P(zely e , 9n)- gnL(Ye))(1 - gnL(ye))gnL(ye)ye

The usual value taken for Ti is around 0.1. A hack can also be used to accelerate the

stochastic learning process in (3.19) through the use of momentum [Rumelhart, et.al.,

1986; Hertz, et.al., 1990] This momentum term is essentially a fraction of the previous

iteration's weight change. This term helps learning if the gradient surface has long ravines

or large constant surfaces, which are fairly common in real world learning problems. The

implementation of the gating networks used in this thesis adopts this momentum idea.
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3.3.2 Stacked Generalizer Parameter Estimation

Parameter estimation for the coincidence matrix (or tensor if the number of

experts is greater than 2) is fairly trivial. This matrix has vector elements cij where i and j

are the outputs from expert 1 and expert 2, respectively. cy is a vector of K components,

corresponding to the K different classes for classification. Component ci,k represents the

number of times expert 1 and expert 2 has outputs i and j but the actual class of the input

is k. During the learning stage, the coincidence matrix vector coefficients corresponding to

the learning outputs from the experts and the actual class are incremented. By the end of

learning, there are most likelihood coefficients which have not received any learning

increment at all. The vector elements, cy, which do not receive any learning increment

automatically are associated with the REJECT class. As mentioned previously, the actual

classification is performed in a table lookup fashion. The inputs who receive a REJECT

status are classified by K-nearest neighbors approach [Fukunaga, 1990].

Parameter estimation for the networks used in the network approach in first level

learning is done in a similar stochastic fashion as the gating networks. The key learning

equation is again (3.15). The details will be discussed in Chapter 8 along with performance

evaluation results.

3.3.3 Experts Parameter Estimation

For estimating the parameters of the expert classifiers in a MEC, there are two

ways to approach the estimation problem. One way is to estimate the parameters by

maximizing the overall MEC log likehood. In other words, all the parameters of all the

experts QD are estimated at the same time. The second approach is to approximate the

maximization of the overall log likelihood process by maximizing each 4n for each expert

individual and combining them through the ML gating network derived above.

There are two main reasons for not using the first approach, which is again:

Vql(ye,z'e, ) =0. First of all, many of the experts that are used for this thesis are

nonlinear systems. Optimizing some of these experts already takes approximation steps
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that the error incurred in those steps is already bigger, maybe much bigger, than a non-ML

procedure. Secondly, if the first procedure is used, modularity of the MEC is severely

compromised. A modular classifier allows experts to be added on and taken away easily,

with only adjustments of the gating parameters. The addition or deletion of an expert has

no effect on the parameters of other experts. Such a modular classifier can easily be used

for different applications without going through parameter estimations for every

component of the classifier. The first approach for estimating all the parameters at the

same time by maximizing the overall likelihood requires re-estimation every time an expert

is added or deleted from the overall system in order to yield maximum likely results. These

two disadvantages point to the need for a better approach than the first for estimating the

experts' parameters.

A second approach for estimating the parameters is to estimate each expert's

parameters individually and to combine the results by adjusting the gating network

parameters. Consider for expert n, our goal is to maximize its posterior probability given

the input y:

On = arg max log f(ylk )f(D,) (3.20)

This expression is essentially (3.2) for maximum a posteriori probability estimation given

hypothesis n is correct. For every n E 1 1, 2, ... N 1, the parameters Q,, are optimized in

the MAP sense. The next several chapters will shown how the MAP optimizations for

different expert classifiers are accomplished. The main learning steps for the overall MEC

is then to find parameters for the gating network that satisfy the following relation:

V, l(ye,ze,4D)= 0. The only assumption here is that the MAP estimates for the individual

experts' parmeters are given. The learning procedure for achieving this goal was already

shown in the last sub-section for the gating network parameter estimation '

3 Jordan and Jacobs (1994) suggested an expectation maximization (EM) based learning algorithm for their HME
architecture and have obtained very encouraging results in terms of speed of convergence to the (local) ML. EM
can potentially be useful for estimating the parameters of the MEC. The author is currently considering applying it
to the MEC.
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3.4 Related Works

The Multi-Experts Classifier (MEC) presented in this section can be related to

several existing statistical schemes. All these schemes have in common their divide-and-

conquer nature in processing the input data space. Wolpert (1992) first explicitly proposes

a general framework for combining several generalizers (which we refer to as experts) to

reduce the generalization error of an estimator. In statistical terms, the bias (or roughly the

inconsistency of estimation) of the estimate is reduced. Earlier methods along similar ideas

are several well-known methods such as the Classification and Regression Tree (CART)

algorithm, developed by Breiman, Friedman, Olshen, and Stone (1984), the ID3 algorithm

of Quinlan (1986) and the Multivariate Adaptive Regression Splines (MARS) algorithm of

Friedman (1991). These algorithms use "hard splits" of input space with additional

constraints on the orientations of these splits with respect to the coordinate systems. Hard

splits have negative consequence on the variance of the estimations. Soft splittings, on the

other hand, reduces variances. Jordan and Jacobs (1994) therefore adopted a soft-splitting

scheme with a softmax function-based gating network, which they call the Hierachical

Mixtures of Experts (HME). They have demonstrated clearly the superiority of their

approach to the former three methods through experiments cited in their paper.

The MEC follows the HME's example in using soft-splittings of the input space,

with arbitrary orientations of these splitting surfaces 4. However, unlike the HME, the

Multi-Experts Classifier (MEC) is designed strictly for classification purposes, not also for

regression. HME is a generalized linear model (GLIM) for supervised learning. On the

other hand, the MEC presented in this section is in general composed of non-linear

components for both supervised and unsupervised learning. From experimental results

shown later on in the thesis, classifying highly complex and noisy signals require much

more discriminating power than that offered by most GLIM models, which include many

connectionist schemes such as multi-layered perceptrons (MLP). MEC is not hierachical

4 For the "single" layer softmax function or logistic function discussed earlier, these surfaces turn out to be
hyperplanes.
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as HME since only one "layer" of experts is employed. The author of this thesis sees no

obvious ways to combine the experts sensibly above this first layer except to combine all

of them to form the output. In the following chapters, the uses of MEC are illustrated in

the context of image classification and segmentation.



Chapter 4

MODEL-BASED CLASSIFICATION METHODS

Modeling the configuration of an image can be a very involved process. The non-

linearity of the acquisition device, the quantization effect due to digitization, the

bandwidth limit of the transmission medium from a transducer to a storage device, among

other causes, all contribute to the error in forming an "exact" image. The detailed physics

of image formation is virtually impossible to model. Given this fact, any model-based

image processing techniques can at best be based on approximations. How good these

approximations are depend on the validity of the assumptions and the appropriateness of

the methodologies resting on these assumptions.

This chapter describes a model-based image classification and segmentation

scheme, which is used for performance comparison with the MEC results in Chapter 8.

This scheme can potentially be incorporated into the MEC as an expert. The chapter starts

by explaining the assumptions made on the image formation process and the resultant

image models used. The models are all statistical models that are based on extensively

studied techniques in statistical pattern recognition. These models include Markov random

field models (MRF), Gaussian distribution models, and simultaneous auto-regressive

(SAR) models. We present improvements to some of these approaches, as well as

extensions for potential incorporation into the Multi-Expert Classifier (MEC) presented in

the previous chapter. Because the model-based classifiers in this chapter are all parametric



classifiers, parameter estimation is a very important step in using these models. This step is

viewed from an incomplete data perspective. An expectation maximization (EM)

procedure for estimating these models is presented. Finally, some experimental results are

reported along with discussions.

4.1 Notations and Assumptions

Given an image S with N grid points, the intensity values can be represented by a

vector y = { yl, y2, ... y, } which is a realization of the intensity random vector Y = { Y1, Y2,

... YN). The number of intensity levels is denoted by C. In other words, every yi can take

C different values. The space composing of all possible images is ={ (yi)c, (y2 )C, ...

(y,)C}. Clearly, for any moderate size image, such as one with 128x128 lattice points S,

this space of all possible images is enormous.

Assume every pixel i in the image S belongs to one of K classes* , then the random

vector Z = { Z1, Z2, ... Zn } designates the underlying classes random process that an

intensity random vector Y belongs to. The goal of image classification and image

segmentation is to find the true class vector z* = { z*,, z'2, ... z'n} , where zi = {1, 2, ... K}

and i = { 1, 2, ...N}. To formalize our goal, we would like to estimate the true z* by

maximizing the joint probability density of y and z:

this can be considered as a necessary assumption within the objective probability theory where a given random
variable xi satisfies the following probability relations :

0 • P(xi) 5 1.0

P(certainty) = 1.0

P (xi or x2) = P(xl) + P(x2)

Recently, there have been criticisims of the objective probability theory approach to model probabilistic events.
Many recent publications dealing with subjective probability theory and fuzzy logics have received much attention.
Interested readers are referred to [Kosko, 1992] and [Bezdek, 1993]. Nevertheless, objective probabilistic theory is
still an excellent and rigorous theory for dealing with uncertainties and beliefs [Pao, 1989], [Fukunaga, 1992],
[Duda and Hart, 1972].
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z = arg max P(y, z)z (4.1)

With this goal in mind, we make two basic assumptions on the images. The rest of this

chapter will approach image classification segmentation based on these two fairly general

assumptions.

Assumption I :

Assumption 2 :

the intensity random variables (Y's) depend on local class assignments (z's)

through the conditional probability density function (pdf) p(yilzj, je vi)

where vi the vicinity of pixel i, which includes i. (This assumption is

essentially stating a common fact that the point spread function for most

images has a small spread.)

the true class assignment z* is locally dependent and can be modeled by a

conditional probability density function at pixel i as : f(zi) = f(zilzs\i),

where S\i denotes all pixels in an image S except pixel i. As Julian Besag

remarked in [Besag, 1987], S\ is the only natural conditioning set for any

spatial distribution where the pixel ordering provides no causal

constraints.

These assumptions are frequently made by researchers in the fields of image

classification and segmentation [Besag, 1987; Derin, et.al., 1987, Zhang, et.al., 1994].

These assumptions have been found to be fairly general and robust for many types of

images. Based on them, we can rewrite our goal (4.1) as:

z* = arg max f(y, z)

= arg max f (yl z)f (z) (4.2)

= arg mzax I f(y , I,je v )f(z)
i=1

Essentially, (4.2) has separated our problem into two parts, the state process represented

by f(z) and the intensity process represented by the product term. The rest of this chapter
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will focus on applying different probability distributions for f(ylz) and f(z) to find the

optimal classification z' for different images.

4.2 Model Specification

An image realization f(y,z) = f(ylz)f(z) is done in two separate parts. First, the

class (or state) distribution f(z) can be a realization of various processes. The two main

ones have been the simultaneous auto-regressive (SAR) models and the conditional

Markov (CM), or more commonly, the Markov random field (MRF) models [Besag,

1974; Kashyap and Chellappa. 1983; Geman and Geman, 1984; Mao, et.al., 1992;

Grunkin, 1993; Hu, et.al., 1994; Lundervold, et.al., 1995]. SAR is a subset of MRF. In

other words, for every realization of SAR, there exists a unique MRF with equivalent

spectral density function [Besag, 1974; Mao, et.al., 1992]. SAR is generally more

parsimonious in its representation of an image than MRF is. If SAR is extended to include

the moving average [MA] part, then the resulting SARMA is no longer a subset of MRF.

However, SARMA is computationally very expensive.

Secondly, the intensity process, f(ylz), can be realized through various probabilistic

processes. For a variety of other images, f(ylz) can be modeled as a Gaussian distribution

very well. But in some specific applications, other models are more appropriate. For

certain types of textures, Simultaneous autoregressive (SAR) models are very effective

[Grunkin, 1993]. In nuclear medicine, such as images derived from single-photon

emmission computed tomography (SPECT), the Poisson distribution represents the data

intensity from first principles. For ultrasonic backscatter images common in medical

echocardiography, Rayleigh distribution seems to be an excellent model [Melton, et.al.,

1992].

4.2.1 State Process

For the state process, we are concerned with specifying the distribution f(z). Since

f(z) depends on all pixels, expressing this joint distribution f(z) in closed form is in general
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very difficult. Besag has shown in his landmark paper [Besag, 1972] that the most general

form forf(z) can be written in the expansion:

Inf(z)-ln f(O) = ziG,(z,)+ _ zizG 1 (zi,zi)+...
15in 15i<j5n (4.3)

Z1Z2..znG1,2,...n(Z1 ,22,"', Zn )

where the function Gi,,...(zi,z,...z is any arbitary function that is non-zero if and only if

ij,...c forms a cliquet . This representation holds as long as f(0) > 0, which is the positivity

condition that is used to prove the Hammersley and Clifford theorem mentioned in the

previous background chapter.

We can use a Markov random field to realize f(z). As defined in the background

section, a MRF satisfy the following condition : f(zi) = f( ziIzj, j E li) where ri is the

neighborhood of pixel i, which obviously does not include i. The size of the neighborhood

determines the order of the MRF. We now relate the conditional pdf f( zil zj, j E-ii ) to the

joint distribution f(z) through the same pseudo-likelihood as Besag [Besag, 1986] and

Zhang [Zhang, et.al., 1994] to approximate the joint distribution f(z) :*

f(z)= f (z,Ilz, j Eli) (4.4)

where again 7i is again the local neighborhood of pixel i, Now, f(ztlz,, j ETi) has the

form as that of MRF. We can now write the state marginal conditional pdf for every pixel

in the image as :

t The concept of a clique was discussed in Chapter 2.

This pseudo-likehood makes use two concepts, the coding scheme and Iterated Conditional Model (ICM) of Julian
Besag [Besag, 1972, 1986]. The approximation is justified by the rapid convergence of the likelihood estimation
(in less than half a dozen cycles.)
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f(zi)= Xf(z)
zj ,j i

= ••f(zjlz,,lErlj) (4.5)
zj,jai j

= f(zilz,,l 1 Emi)

Now, we can find the state probability at any pixel i by using the above conditional pdf

given the states of the pixel's neighborhood pixels.

We are now concerned with specifying the conditional pdf f( zilzj, j E 71i ), which a

locally dependent field. Various spatial interaction models within this setting have been

studied extensively [Besag, 1972, 1986; Kashyap, et.al., 1983]. We will concentrate on a

powerful pairwise interaction model defined as :

1 { G,(z,)+ Y. G,(z,,z,)}
f (zilz, j jErli)= -e 1!i_5n li<j<_ (4.6)

Zn

where the normalizing factor Z, is called the partition function in the statistical mechanics

community. G(z) is still the same as defined in a previous paragraph. When we define the

energy U as :

U(zitz,j-Elij)=-( CG,(z,)- Gi(zi,z,))T (4.7)
l<iin l5i<j5n

where T stands for temperature, we have made a link to statistical mechanics through the

Gibbs distribution [Geman and Geman, 1984]:

1 -U(z.Izt,lerl)/T
p(zil1z,l e ,li)= -e (4.8)

Zn
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We now see that our pairwise interaction MRF specifies a measure of the energy of a

spatial system. Maximizing the pdff( z z,l z rl, ) is equivalent to finding the state of pixel

i that has the minimal (Gibbs free) energy.*

Now, let's consider in more concrete terms the MRF model used in this thesis for

specifying the state random vector z. If the current pixel is i, with state zi, Gi(zi) is taken

to be the product of a constant specific for each class k, with the number of the local pixels

(nk) that also have class label k, i.e. Gi(zd) = cknk. Gij(zi, zj) is taken to be the product of

another class specific constant ( 3kt) with the number of neighboring pixel j (j e T) that have

class label 1, i.e. Gij(zi, zj)=IPknt. We now have the following conditional pdf for realizing

the MRF:

1 1aknk k- fkl)
f(zi = klzj, jEn;)= -e tk (4.9)

Z,

where k = {1, 2, ... K} is the value of the state random variable zi at pixel i. ak's and P•k'S

are the parameters to be estimated for a given MRF. The ak's controls the prior

probability of class k while PA, controls the local smoothing around pixel i. This local

smoothing effect is in the spirit of conditioning the ill-posed nature of an early vision

problem such as image segmentation I Poggio, et.al., 1986; Marroquin, et.al., 1987].

4.2.2 Intensity Process

The intensity process is dependent on the state process through the conditional

probability distribution f(ylz). In our assumption 1, we have specified that the random

variables Y's are dependent on state Z's in their vicinities. We consider two types of

vicinity for the intensity process. First, the intensity at pixel i, Yi is dependent only on that

*More specifically, the most likely statistical mechanical state is one with the minimal Gibbs free energy, which is a
measure of both the internal energy E and the entropy S of a system. Let U represents the Gibbs free energy, then
U = (E - TS) where T is the temperature of the system. Note that the state with minimal Gibbs free energy has
maximal entropy.
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particular pixel's class assignment (vi only contains pixel i which means that the intensity

random variable Y, is independent of neighboring state assignments). This simple intensity

process can be represented by the pdf: f(ylz) = f( yi z). In the second case, Y,
i=1

depends on class assignments in a larger vicinity: p(yilzj, jE vi). These two cases will be

discussed separately below.

(1) single pixel vicinity case:

For the former case where Yi depends only on a single Zi, we model the pdf using a

Gaussian density. Image S has lattice points indexed by i. The pdf equation is presented

for a single pixel i with state zi = k as follows:

(yi - k )2

f(yilz = k)= 1 e 2 (4.10)

The Gaussian density has been used by many researchers and has been found to be

a good model for many real world images, at least as a first order approximation [Besag,

1986; Zhang, et.al., 1994]. If an image has K classes, we would use K different Gaussian

densities to model all K classes. Essentially, we are treating this intensity modeling

problem as a Gaussian mixture (or mixture of Gaussian) problem [Fukunaga, 1990].

(2) multiple pixels vicinity case

Now, let's consider the later case in which the intensity random variables Y's

depend on their local vicinities (v)' state values through the relation: p(yilz)= p(yilzj, je vi).

A natural choice to use to model this intensity process is again MRF. We again use the

pairwise interaction model presented in the state process section, with appropriate changes

to account for the intensity process :

f(YilZj j 1 -U(y Zj,jEv)IT (4.11)
(y), jv -- e (4. 11)

z,
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Again, Z, is a normalizing factor and T is the temperature of the system. The local energy

measure U is defined as follows:

U(Yi lzj,je v,)= uj(yilz,)+ u2(yi,yjlzi,z j) (4.12)
(i,j)EC 2 ,i j

C2 represents second order clique (see clique definition in the background chapter). ul and

u2 are pairwise energy functions just like those of the state process in (4.9). Note

particularly the dependence of this intensity process on the vicinity of pixel i includes pixel

i, in contrast to the MRF state which depends only on the neighborhood of pixel i, which

does not include pixel i. Now, let's consider the conditional joint pdf for this intensity

process f(ylz). Although the intensity yi of a pixel i depends on the class assignment in its

vicinity, yi is independent of yj for j e v, (see Assumption 1). The dependence of y1 on its

vicinity's state value can be expressed as:

f(ylz)= lf (yilz ,j e vi)

1 -U(ylz) (4.13)
=-e

Zn

where the Gibbs energy is defined by the following U function:

U(ylz)= uu(y(ilZi)+ u (yi yj1zi,zj)l
i - (ij)EC2,' i

With the single pixel and multiple pixels intensity models, assume the parameters

are estimated, we now have all the information we need to classify an image through the

following maximization. (Parameter estimation is considered in the next section.) For the

single pixel vicinity intensity process, the goal stated at the beginning of this chapter can

now be written as :
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z*= arg mnx f•f(yi z,)f(z)
(4.14)

= arg nax f(ylzi)f (zizI J, EI ;)
i=1

And for the multiple pixels vicinity case, the goal can be written as :

z* = arg mnax f (y I z)f(z)
a ir l (4.15)

= arg mx xl f(yilz1 , j e vi)f(ziIzj, je E )
i=1

Note that these are maximum a posteriori (MAP) classification rules, maximizing f(y,z)

through its likelihood functionf(ylz) as well as through its priorf(z).

4.3 Parameter Estimation

Estimation of the state and intensity model parameters is presented through an

incomplete data problem viewpoint. Let D stands for all the parameters of interest.

Estimations of 4 are done using maximum likelihood (ML) by expectation maximization

(EM). A brief introduction to the incomplete data problem and the EM algorithm is given

in Appendix B. Details of the algorithms and various applications can be found in the

references [Dempster, et.al., 1972; Kelly, et. al., 1988; Liang, et.al., 1994; Jordan and

Jacobs, 1994; Zhang, et.al., 1994].

EM is an iterative optimization procedure. As explained in Appendix B, the EM

algorithm consists of two iterative steps: first, calculate the expection of the log likelihood

(represented by Q) of the complete data x = ( y, z ) based on current estimates of the

parameters 4~P' at iteration p. Second, maximize the next iteration's parameter estimates

with respect to the true parameters 4, ~"+1) = argmax Q(01'P))). The log likelihood of

the complete data x given the parameters of the model is:
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f(xl ) = f(y, zli )
log f(xl ) = log(ylz, ) + log(zl) (4.16)

The function Q is the conditional expectation of this log likelihood given y and ). Let's

first consider the part of Q that comes from the second term log(zlI). Recall our earlier

expression (4.8) for the conditional pdf of the state process:

1 {aknk- k klnl}I
f (zi = klzj, j E71)= -e I*k (4.17)

Zn

Finding the expression for the expectation of the second term on the right hand side can be

obtained through the introduction of the vector V(Q) (V was first proposed by Zhang

[Zhang, et.al., 1994] for finding Q; the rest of this section follows his argument closely).

The vector V is defined as:

V(Q)=[logf(k=l 11) logf(k=21Q) ... logf(k = KlD)]T  (4.18)

where T stands for vector transposition. Note in particular that V(Q) is a function only of

the true parameters (D and does not depend on any estimated parameters and therefore can

be taken out of the expectation brackets of E[log(f(zl1))]. With the V vector, we can now

write the conditional expectation of the state log likelihood as follows:

E[log f(zlD)ly,D("P)]= E[log C(zilzt,l e ri~p,)ly,c ")]

= E[Y z,'V(1)Iy, (•)] (4.19)
i

= JE[zDly,(P']V(D)

If a single pixel i has state zi = k° . When we consider all the possible k values that zi can

take, we can think of zi as a vector, zi e { el e2 ... eK } where ek stands for the k'h unit

vector [ 0 0 ... 1 ... 0 ]T. When zi = k' is dot-producted to V(c1), the result is the koth

component of V(C1). This trick reduces the problem to finding the expectation of zi over
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all the pixels. Finding the expectation of the state at pixel i, zi=k where k e 11, 2, ... K } is

essentially finding the likelihood of pixel i being in state k. Therefore, along with Bayes'

theorem, we can express:

f (ylzi = k)f (z, = k) (4.20)
E[z, = kl y]= f(zi = kly)= yik (4.20)f (ylz, = j)f (zi = j)

The significance of this quantity is that E[zi=kly] is equivalent to the posterior probability

of pixel i in state k (we will label this quantity zik, where the caret means "estimated" ).

Later on, we will use this posterior probability for soft-splitting a feature space when

classifying an input pattern.

In the same way, let's consider the conditional expectation of the intensity log

likelihood. Similar to the definition of V((), we will another vector quantity U(yillI).

Let's consider the single-pixel vicinity process first and define U,(yil4) as :

Us(yil0)=[logf(yl1zi =1, ) logf(ylz, = 2,1) ... log f(yil z, = K, Cf)] T

(4.21)

Just like V(Q), U,(yjlQ) is a function of the true parameters 4Q and does not depend on

any estimated parameters and therefore can be taken out of the expectation brackets :

E[log f(yl z, c)ly, (P'] = E[log f(z, lz,, 1 E v,, ~Q)ly, ~C"]

= E[X z T,'U,(yI )ly,~Pp')] (4.22)

= X E[z,' ly, '(P)]Us(yjiCD)

For some books in statistics, the caret usually refers to an "estimator", or a rule for estimation [Dougherty and
Giardina, 1987]. The estimated quantity is usually represented by a star such as: z*. We avoid making this
distinction so as not to introduce too many notations, which are already plentiful in this chapter.
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In a single pixel vicinity, yi at pixel i depends only on state x, at at pixel i. So, we can

rewrite equation (4.21) :

E[z, = kly] f(y,1z= k)f(z= k) ,
fE[zy = = jkyf= Zik
Sf (yiIz, = j)f (zi = j)

(4.23)

This conditional expection (4.26) yields an estimate of the state value at pixel i.

With the two defined vector quanties Us and V, we can now write down the

function Q for the EM algorithm. ML parameter estimations are found by taking the

gradient of Q with respect to the true parameters and setting the result equal to 0:

(4.24)x E[z1ily, ~(PI ]( V, U(yil))+ E[zi'ly,c(P](Vq V()) = 0

For the multiple pixels vicinity intensity process, recall the MRF used to model the

1 -U(ylz)/T
process has the Gibbs distribution of the form: f(ylz)= -e where T is the

temperature term and U(ylz) is the Gibbs energy of the system and is defined as :

U(ylz)= a uYilli)+ (4.25)2 (YiI, yjI z, z j)
(i,j)eC2 ,iJ j

To find the expectation value of the log likelihood of this multiple pixels intensity

process, let us first define a vector, Um1, and a matrix, and U.2, in the same manner as for

the single-pixel vicinity case:

Um,=[u1(yizi=l) 1(yilz = 2) ... u (y I z = K)]T (4.26)

[u2(y,, yjIz = 1,zj = 1)

S= (yI , y I zy= 2 , z = 1)

U2 (yi, yjIz1= K, z. = 1)

u2(Yi, yjzi =u2(y i, yilZ, = 1, z = 2)

u(y,, yjil z = 2, zj = 2)

... 2(y ,yJlz =

(4.27)
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where T stands for transposition. We have not denoted the dependence on 0 for notational

conciseness. Nevertheless, both Um1 and Um. are functions only of the true parameters (F

and do not depend on any estimated parameters. We can now write the expectation of the

state log likelihood (Q) as follows:

E[log f (ylz, D)ly, y'&P)]= E[log f (zl z, 1 v , D)Iy, DP]

= E[ z, Um,( y(ID)l y,~ (P)]+ E[ zrUm2(yi, yjID)zly, I P )]

= Um1(Yi)' + -E[Zi zIlyI y J)]Um 2( y i ' Y YI'o )
i (i,j)EC 2 ,iij

(4.28)

the quadratic dependence on z in the second term (4.28) is a result of the chosen clique

size. Essentially, ziT and zj function together to choose the (ij)th element from the U2

matrix since both of them are unit element vectors. To estimate the state of pixel i, we

have to calculate the posterior probability of the state of pixel i. Now that we are in

multiple pixels vicinity case, we can no longer use (4.23) to calcuate the posterior

probability of the state of pixel i, equation (4.20). An approximation is in order here

because the evaluation of (4.20) is not a recursively computable process, which generally

means nonlinear techniques are involved. For computational efficienty, we will

approximate (4.20) by :

f (yil y,y j Eri; zi = k)f (z, = k)
E[z, = kl y]= Zik (4.29)

, f (l Yi, j E qi;Zi = m)f(zi = m)Zik
m

Essentially, this approcimation reduces the intensity dependence to a local neighborhood

of pixel i. In [Zhang, et.al., 1994], a detailed discussion of this approximation is offered.

Finally, if we can evaluate the second term of equation (4.28), we would have

finished the E-step of the EM algorithm. That second term is a conditional joint

expectation of zi and zj. In genera, zi and zj are dependent if i and j are in the same

(second order) clique. Zhang, et.al., (1994) have observed that if z, and zj are
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approximated to be conditionally independent, good estimations can still be obtained.

This is also the approach taken here. i.e.

E[z, = k, zi I m] - ikZjm (4.30)

Now, just like equation (4.24) for the single pixel vicinity case, we can do a ML

estimation of the multiple pixels vicinity model parameters by solving:

XE[z,'Iy, P'"](VV U,,(yi,I))+ (V, E[zi Um2 ( )Zjy, ('])= 0 (4.31)
i (i,j)EC,iJ j

With the parameters for both the intensity and state processes, pixel classification

can be done through equation (4.14) and (4.15). We now have MAP classification rules.

Incorporating this classifier into MEC of Chapter 3, we now have an optimal Bayesian

decision maker, which can potentially be used as an expert in the MEC.

4.4 Some Experiments and Results

This section describes an experiment on the EM based mixture of Gaussian

described in this chapter. The problem that this section is concerned with is segmenting

the image in Figure 4.2. That image is a phantom image generated with a MRF state prior

and a single vinicinity Gaussian intensity process. The goal of these experiments is to

evaluate the performance of the EM based parameter estimation schemes versus the

traditional unsupervised clustering method of K-means.

4.4.1 Creating a Phantom Image

In order to quantitatively evaluate the segmentation results of different

segmentation algorithms, the underlying class labels for the input pixels have to be known.

The only way this can be done easily is to create a phantom image. Such an image is

simulated and is shown on the right hand side of Figure 4.1.
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Class 2

Class I-
Class 3

Figure 4.1 The left hand side image is the underlying class label values for the image on the right. This class label
image is generated through a Gibbs sampler with 3=1.5 with 2000 iterations. The right hand image is a
Gaussian density images. The means and variances of the three different classes are tabulated in Table 4.1.

The right hand image in Figure 4.1 is synthetic image whose underlying class label

is generated by a MRF. The underlying class labels are shown in the left hand image of

4.1. Recall that Chapter 2 has described three-level MRF simulation procedure using a

Gibbs sampler (see Figure 2.3). The underlying class labels in Figure 4.1 is generated in

exactly the same process. The number of iterations for the Gibbs sampler is 2000 while the

[3 value is 1.5 (These parameters are described in [Geman and Geman, 1984]).

The intensity values in the phantom image are sampled from three different

Gaussian densities (equation 2.1). The parameters of these three Gaussian densities are

tabulated in Table 4.1. below:

Parameters Means Variances

Class 1 120 1600

Class 2 150 400

Class 3 180 900

Table 4.1 Gaussian density parameters of Figure 4.2 for the three different
classes

One of the advantages of working with phantom images is that we can view the

intensity data in the image class by class because we know exactly which class a particular

pixel belongs to. We consider the histograms of the three different classes in Figure 4.2.

These histograms shows that a difficulty involved in segmenting the phantom image in

Figure 4.2 is that the intensity overlap among the three classes is quite severe. Also note
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HItmgrin Pbn of *h* I Rqeg Type

10 100 ISO 200
InmNl Value

20 300 350

Figure 4. 2 Histogram plots of the three different regions in the phantom image on the right hand side of
Figure 4.1. Note the severe overlaps among the three different classes.

the underlying class labels in 4.1 that there are two small regions, one lies at the upper

right hand corner while the other one lies near the bottom center. Small regions often

create new challenges to a segmenter.

4.4.2 Maximum Likelihood Results

We first consider results obtained by the K-means clustering methods. (K-means

was described in Chapter 2 and in more detail in [Fukunaga, 1990].) From an input image,

K-means iteratively clusters the intensity values of the image into three clumps according

to equation (2.18). This is an unsupervised process. At the end of the clustering, class

labels chosen by K-means could be different from what the user wants. Therefore, a

K-means, ML EM, ML

Figure 4.3 ML K-means results on segmenting the Phantom in Figure 4.1. The left hand image is the result
after 10 iterations of the K-means. The right hadn image is the result after 50 iterations of the K-means.

_·~
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10 Iterations 50 Iterations

Figure 4.4 MAP K-means results on segmenting the Phantom in Figure 4.1. The left hand image is the result
after 10 iterations othe K-means. The right hand image is the result after 50 iterations.

postprocessing step is required to do this class label conversion for the K-means

segmentation results.

Figure 4.3 shows the maximum likelihood K-means and EM results (with no

spatial priors; refer to Equation 3.1) after both algorithms has gone through 10 iterations

of clustering. We can see that the results is not very good. The error of pixel classification

is plotted in Figure [4.6].

4.4.3 Maximum A Posteriori K-means Results

The problem with the ML result is that no spatial contraints are imposed on the

ML classification results. Let zY*ML) be the ML estimate of the class label for pixel i with

local region intensities represented by the vector yi, then zia*ML) is:

zi ML) = arg max f(y Izi = k) (4.32)
k

zi*ML) does not depend on local pixels' class values. As we have seen in Section 4.2, the

natural step to take for improving the ML results is to apply a MRF on the class estimates.

MRF imposes spatial constraints on the classification results through the Gibbs

distribution (4.8). The new class estimate can now be described as:

zi(MAP) =argmaxf(y, lz = k)f(zlzj,jE jji) (4.33)
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10 Iterations 50 Iterations

Figure 4.5 MAP results after 10 and 50 iterations of EM for estimating the parameters of the underlying Gaussian
densities. Comparisons between these results to those of the K-means results shown that the EM algorithm
can more robustly estimate these parameters than K-means can.

This is equivalent a maximum a posteriori class estimate. The results of using (4.32) to

segment the phantom image in Figure 4.1 are shown in Figure 4.4. These MAP results are

definitely much better than the ML results. This big improvement is due entirely to the

spatial constraints imposed by the MRF on the class labels.

4.4.4 Maximum A Posteriori EM Results

Finally, we consider the results of this chapter. The EM based unsupervised

estimation of the Gaussian parameters are performed using (4.31). The posterior

probabilities of the class labels are found using (4.29). These results are shown in Figure

4.5. Clearly the segmentation results in Figure 4.5 are much better than those obtained by

K-means algorithm.

Quantitatively, the classification error of the approaches we have seen in this

section is plotted in Figure 4.6. Clearly, we can see that ML K-means methods perform

worst of all. In comparing the two MAP classification results obtained by K-means and

EM, we can see that K-means does not perform as well as EM. Further experiments and

results regarding K-means and EM are described in Chapter 8.
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Model-based Methods Classification Error
• AI• flf%

0 +.UU

Lu 40.00

.2 35.00

30.00

" 25.00

0 20.00
0
0 15.00

S10.00

2 5.00
0 0.00

Kmeans (ML) EM (ML) Kmeans (MAP) EM (MAP)

Figure 4.6 Performance evaluation of several model-based pixel classification schemes in the
segmentation of image in Figure 4.1.



Chapter 5

FEATURE-BASED CLASSIFICATION METHODS

Chapter 2 of this thesis has briefly discussed the vast amount of feature-based

methods for image classification and segmentation. It is probably fair to say that most

published techniques on image classification and segmentation are in some way featured-

based since any discriminating rules have to utilize some kind of "characteristics" of a

region to differentiate it from another region. Another name for the "characteristics" is

the feature set that represents the region. For example, even the statistical model-based

techniques of Chapter 4 can be considered a subset of the feature-based techniques since

the actual classification and segmentation are performed using the estimated model

parameters, which are the "features" that characterize the region model of interest.

The feature based classifiers developed in this chapter will be used for performance

comparison with the Multi-Experts Classifier (MEC) in Chapter 8. In addition, the

techniques developed in this chapter for selecting an "optimal" feature set of a given image

will also be used in Chapter 8 for providing input features to the gating network version of

the MEC. In that respect, the gating network is partitioning the whole feature space

provide by the "optimal" features.

Section 5.1 briefly reviews the use of features for image classification and

segmentation. An approach to construct a feature based classifier is described in Section
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5.2 with discussions on the different types of features used and their estimations. Feature

selections, along with classification and segmentation rules, are then discussed Section 5.3.

Also presented in Section 5.3 is an extension of the feature-based classifier to include a

spatial contraint modeled by a MRF. The chapter is concluded by discussions of some

experiments and the results.

5.1 Introduction

For feature-based classification and segmentation techniques, choosing the "right"

set of features is clearly the most important step. Numerous researchers have proposed

many different types of features, which include spectral features, mth order statistical

features, syntactic image features, and sets of "complete" features ' [Weszka, et.al., 1976;

Fu, 1981; Kashyap and Chellappa, 1983; Wilson and Spann, 1988]. Each type of proposed

features have their advantages and disadvantages for different types of images. Features

that are very good for characterizing textures might not perform so well when applied to

cartoon-type images. Features that have been optimally chosen for a certain level of

granularity might fail miserably when the input image is composed of different sizes of

primitive structures 2.

For a given image, the goal of feature selection is to choose a small set of features

that can capture the essence of an image for discriminating different pattern classes. A

small set of features is desirable for two main reasons. First, redundant features can

unnecessarily increase the computations required. Second, as will be shown later on in this

'The set of "complete" features is refering to the Finite Prolate Spheroidal Sequences (f.p.s.s.) used by Wilson and
Spann (1988) for characterizing tationary images. What is meant by "complete" is that by an appropriate choice of
the f.p.s.s. for representing an image, the set of f.p.s.s. can form a basis for the entire space of images. In other
words, any image can be reconstructed from its representation in terms of f.p.s.s., in principle. But as Wilson and
Spann have pointed out, general this approach is, it is perhaps too general since the appropriate tessellations of the
spatial and frequency domains is difficult to define. For details of this approach, the reader is refered to [Wilson
and Spann, 1988].

2 A primitive is the basic pattern which repeats over a texture image.
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chapter, a larger feature set does not automatically results in better performance. In fact, a

large set of features can deteriorate the performance of a classifier [Fukunaga, 1990;

Hertz, et.al., 1991; Ohanian, et.al., 1992]. As Section 5.4 will show through experiments,

larger feature sets usually lead to higher classification error (when the number of features

is greater than an optimal number).

This chapter describes the selection of features for a feature-based classifier, as

well as estimations of the feature parameters. This feature based classifier can be used as

an expert in the MEC architecture, and is used in Chapter 8. Clearly, more than one

feature-based expert can be used for MEC, which might be the desirable step to take.

Section 5.2 discusses the choice of several commonly used features. A feature selection

scheme is described for selecting a set of optimal features. As all researchers in this field

would concur, there does not exist a best set of features for all images. However, for a

particular image, a best subset of all available features can potentially be obtained. The

methologies described in this chapter aims to choose the optimal set of features for a

given image.

5.2 Features for Classification

The optimal features for a given image is selected from the features described in

this section according to a prescribed procedure. Not only are these features used for a

feature based classifier, they will also be used in Chapter 8 for the inputs to a gating

network version of the MEC. In that chapter, two feature-based experts will be used to

illustrate the principles behind the multi-experts approach to image segmentation.

The feature-based expert described in this section extracts four main types of

features for classification, which include first and second order statistics such as mean and

co-occurrence matrix features, SAR and MRF model-based parameters. These features are

discussed in the following section. We consider feature selection in the next section.
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5.2.1 First Order Statistics

Four first order statistics are considered to be used as features. These statistics are:

pixel intensity values, local mean intensity value, local intensity standard deviation, and

local median intensity. The definition of these statistics are as follows given an image with

N number of pixels:

Pixel Intensity: Yi = { Y2 ... YN } (5.1)

1 N"
Local Mean Intensity: =9i y (5.2)

71 i j=1

Local Variance: iY2  C2 (5.3)
ni j=I

Local Median Intensity: mi = {m, m2... N } (5.4)

where Ni is the number of local neighbors of pixel i, and mi is calculated by taking the

median value of the local neighbors of pixel I. (N11 is sometimes denoted by the cardinality

CARD(S) where S is the image lattice.) Equivalent definitions of these first-order statistics

can be given in terms of the normalized histogram [Carstensen, 1992; Pitas, 1993].

For ease of explaining the feature selection process in the next section, these first

order statistics are given feature numbers as shown in Table 5.1.

Feature Pixel Intensity Local Mean Local Std Dev Local Median
Number 0 1 2 3

Table 5.1 First Order Statistics and their number assignments for classification

5.2.2 Co-occurrence Matrix Features

Co-occurrence matrix features have been found to be among the best features for

textural image classification [Weszka, et.al., 1976; Haralick, et.al., 1979; Ohanian, et.al,

1992]. These features have been found to outperform a variety of other features such as
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run-length statistics, gray-level difference statistics, power spectrum features, fractal

features, Garb r filter features and Markov random field features.

The co-occurrence matrix has already been presented in Chapter 2. The set of co-

occurrence matrix features that are used for feature selection are shown in Table 5.2. A

total of four types of co-occurrence matrices are used, and they are (d, 0) = { (1, 00), (1,

450), (1, 900), (1, 1350) }, where d stands for pixel displacement 3 and 0 stands for the

direction of the displacement. From these four matrices, we extract five features from each

one. These five features have been found by several researchers to be effective co-

occurrence features [Weszka, et.al., 1976; Haralick, et.al., 1979; Ohanian, et.al., 1992].

Assume the co-occurrence matrix coefficients are represented by ciie 's, which are

normalized frequencies that pixels with intensity value i in the sub-image of interest are

neighbors to pixels with intensity value j. The intensity range has been divided into G

different bins, of which we have chosen G = 8 4

G G

Entropy (ENT): - 1 ceo log(c o) (5.5)
i=1 j=1

G G

First Order Contrast (ICON): i - jcio (5.6)
i=1 j=1

G G

Second Order Contrast (2CON): I I (i - j) 2 c02 (5.7)
i=1 j=1

G G

Angular Second-Moment (ASM): c 2  (5.8)
i=1 j=1

3 The displacement for diagonal directions (450 and 1350) is actually sqrt(2) but for the sake of simplicity, as most
researchers do, we take the displacement to be 1.

4 G is an important parameter of the co-occurrence features. We will show in a later section that G = 8 is a good
tradeoff between computational speed and accuracy.
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Correlation (COR): 1 ic e - ) (5.9)
i=1 j=l •r • c

where in the definition of the correlation feature, gt, and wc are the means of the row and

column normalized co-occurrence coefficients, ar and ac are the corresponding standard

deviations of the means. For a given pixel i, the co-occurrence matrices calculations are

done over a region of size (2L+1)x(2L+1), where integer L is dependent the particular

image of concern. This size of the region is determined through tradeoff between

computational speed and accuracy. In the case of border values, the smaller the region

size, the more pixels there are with similar features because the smaller region size make

fewer pixels with regions touch the boundaries. Therefore, although larger regions are

better for image recognition and classification tasks than smaller regions, arbitrarily large

region is not necessarily more conducive to better image segmentation results than smaller

region size is. This additional tradeoff results in our choice of 17 x 17. Experimental

results for this choice will be shown in Section 5.4.

Before co-occurrence matrices are calculated, we found that if histogram

equalization is performed on the image, pixel classification results are superior to results

obtained without histogram equalization. We believe this observation is caused by the

spreading effect of histogram equalization on the coefficients of the co-occurrence

matrices. Histogram equalization spreads the intensity values across the entire range

available to an input image [Lim, 1990; Gonzalez and Woods, 1992; Pitas, 1993], which

enhances the dynamic range of an image, thereby making subtle details clearer than

without equalization.

Again, just as the first-order statistics, these co-occurrence features are given

feature numbers for ease of explaining the feature selection process in the next section.

These feature number assignments are shown in Table 5.1.
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Co-occur. Matrix (1, 0) (1. 45) (1 900) (1. 350 )

Feature Number 4, 5. 6. 7, 8 9, 10, 11, 12, 13 14, 15, 16, 17, 18 19, 20, 21, 22, 23

Table 5.2 Co-occurrence matrix features and their respective feature numbering5 .

5.2.3 Gaussian Markov Random Field Features

Markov random field (MRF) features have been used by various researchers for

image classification (especially texture) and simulation, examples are [Hassner and

Sklansky, 1980; Cross and Jain, 1983; Chellappa, et.al., 1985; Zhang, et.al, 1994]. There

are two commonly used MRF models that people use for grayscale images, the bionomial

and the Gaussian MRF (GMRF). The latter model is used in this thesis because of its

ability to simulate images that are very realistic, especially in the medical domain. Some

example of simulated GMRF images are shown in Figure 5.1. The parameters in the

captions are for a second order symmetric toroidal GMRF with eight neighbors. A GMRF

can be characterized by its conditional probability density [Kashyap and Chellappa, 1983]:

1 ( - , by
1 2 2 2a2 ijeby

f (y, l yj, je 7) = e 2y (5.10)

where i1i is the local neighbors of pixel i with intensity yi. ai2 is the local intensity variance.

Figure 5.1 is generated through the following conditional Markov model equation,

assuming that the observed intensity values I yi, i E S } of image lattice S is zero mean

(which can always be satisfied by shifting all pixels by a constant value):

Yi = I bjy, + e(i) (5.11)

5 The ordering of the features within each co-occurrence matrix is the same as the feature definitions in equation (5.5)
- (5.9).
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Figure 5.1 Simulated textural images using Gaussian Markov random fields. The upper left image has
parameters: (0.25, 0.25, 0.25, 0.25); the upper right image has parameters: (0.2, 0.2, 0.2, 0.21;
the lower left image has parameters: (0.6, -0.1, 0.0, 0.0); the lower right image has parameters:
(0.0, 0.5, 0.5, 0.0].These are images generated by equation (5.11).

Figure 5.2 Second order neighborhood of a Gaussian Markov random field (GMRF). bij represents the
parameters of such a model. We consider a symmetric toroidal GMRF, which means that bij = b-i,.

b.I..; bo,-. bl,.;

b.l,o yi bl,o

b.,,, bol b-,,o
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where e(i) represents an innovation process that generates Gaussian noise with the

following properties:

E[ e(i) I y(j), j li] = 0

E[ e 2(i)] = 0 2

Woods (1972) shows that the infinite lattice version of (5.11) generates a series of y1 that

satisfies the Markov condition that f(yilyj, j i) = f(yilyj, je rli).

The parameters of the GMRF (bj's) satisfy the symmetry condition that bi = byj,

where bj and b-j are diametrically across from each other. An example of second order

GMRF neighborhood is shown in Figure 5.2. To use these parameters as features for pixel

classifications, these parameters have to be estimated. However, because of the intractable

normalization factor of the MRF [Besag, 1972], calculating the exact parameter estimates

are virtually impossible in practice. Besag (1972) has proposed a coding method for

estimating these parameters in an approximate maximum likelihood fashion. This coding

method has been discussed in the background chapter of this thesis. Hassner and Sklansky

(1980) have used the coding method to estimate the parameters of binary Markov random

field. Cross and Jain (1983) have also used this coding method to estimate the parameters

of a MRF with intensity values described by a bionomial distribution. The coding method

seems to give good results for many applications, as attested by the number of researchers

who have successfully used it. Unfortunately, Kashyap and Chellappa (1983) have pointed

out that the coding method is not an efficient and not a consistent estimation scheme for a

non-causal system such as the second order GMRF in Figure 5.2. This thesis follows their

proposal for a more consistent least squares estimation scheme than the coding method,

which is the following least-square estimate6:

6 Although this is an improvement, this estimate is still not consistent as pointed out by Grunkin (1993). A consistent
estimate requires the use of non-linear techniques, which means the computation could be very burdensome
[Grunkin, 1995].
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l- -
b* = jq(i)q (i) q(i)y, (5.13)

where b* stands for a vector with all GMRF parameters, in our second order case, there

are four parameters, as shown in Table 5.3 below. q(i) is a column vector = col [ yi+r + Yi,-r

; r = (0, 1), (1, 0) ] 7. The indexing of the pixels iE 2, is defined through another QB, viz.:

B, = {i: i : S and (i + r) 0 S, for at least one rE'i} (5.14)

1 =S-OB

where S is the whole set of lattice points of the image. QB represents all the boundary

points while QI represents all the interior points which do not contain any neighbors

outside S.

We assign feature numbers in the same fashion as we do for the first order

statistics and the co-occurrence cases. These assignments are shown in Table 5.3. bo is

equivalent b,-,o = bl,o in Figure 5.2. The same equivalency applies to b, <: bo,-l = bo,1, b2 :

b-,, = bl,-,, and b3 :* b 1..1 = b,,1.

Feature Horizontal (ba) Vertical (b,) Diaronal 1 (b) Diagonal 2 (b.)
Number 24 25 26 27

Table 5.3 GMRF feature number assignments for classification purpose.

5.2.4 Simultaneous Auto-Regressive Features

Just like Markov random field (MRF) features, Simultaneous Auto-Regressive

(SAR) model features are commonly used by various researchers for textural image

classification and simulation, examples are [Kashyap, et.al., 1982, 1986; Chellappa, et.al.,

1985; Grunkin, 1993; Zhang, et.al, 1994; Hu, et.al, 1994]. SAR models can be divided

7 In reality, the GMRF parameters are estimated by solving a linear equation, which is an equivalent procedure as

equation (5.13). Expliciting, the linear equation is: [[ jq(i)qT(i)]b* = Yq(i)y iicfl Ii
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into causal and non-causal models. Causal SAR models contain neighborhood definitions

that are recursively computable [Lim, 1990], while non-causal SAR models contain non-

recursively computable neighborhood systems. Causal models are preferred over non-

causal models because of two main reasons. First, the parameter estimations can be

performed using a least-squares method, which provides a consistent estimate of the

parameters. For non-causal models, although some researchers also applied the least-

squares method [Kashyap and Khotanzad, 1986; Mao, et.al., 1992] for parameter

estimation, this method does not provide a consistent estimate of the parameters [Kashyap

and Chellappa, 1983; Grunkin, 1993]. The second reason for favoring the use of causal

model is that a consistent parameters of a non-caual model require non-linear techniques.

(Such a scheme has been proposed by [Grunkin, 1995]. Such non-linear techniques take

much more computation than least-squares methods.

There are two main types of causal SAR models, the ones with quadrant support,

or quarter-plane models (QP), and the non-symmetrical half-plane (NSHP) models [Lim,

1990; Grunkin, 1993]. Most researchers would agree that NSHP models outperform QP

models in almost all cases. This thesis therefore uses the causal NSHP to derive features

for pixel classifications. Some examples of simulated textural images using such models

are shown in Figure 5.3. (Note that the simulated textural images use a NSHP model that

has only a 4 dneighbors system. The actual feature extraction is done using a NSHP SAR

model that has 12 neighbors.)

Let's first consider the support systems for the SAR models. Figure 5.4 illustrates

a four neighbors NSHP system that is used to simulate the textural images in Figure 5.3,

as well as the twelfth neighbors system that is used to extract features for pixel

classification later on in this chapter. In a finite image lattice S, the intensity values of a

SAR textural image can be described by the following generative equation for all intensity

values { yi, i e S I [Kashyap and Chellappa, 1983]:

Yi = djy, + -pw(i) (5.15)
jErhl
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Figure 5.3 Simulated Simultaneous Auto-Regressive (SAR) textural images. The SAR model is one of NSHP
with four neighbors (this model an instance of the eight neighbor NSHP with 12 neighbors). The upper
left image has parameters: (0.05, -0.05, 0.2, 0.7); the upper right image has parameters: 0.1, 0.1, 0. 1,
0.1/; the lower left image has parameters: (0.2, 0.2, 0.2, 0.2/; the lower right image has parameters:
(0.8, 0.0, 0.0, 0.0). These are simulated by applying equation (5.15).

000

4-neighbors NSHP 12-neighbors NSHP

Figure 5.4 Two types of NSHP support systems used in SAR models. Dark circles represent the current pixel
of concern; white circles represent the neighbors of the center pixel. The 4-neighbors NSHP has been
use to simulate the textural images in Figure 5.3 while the 8-neighbors NSHP is used later to extract
features for classification.
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where p and di's are unique parameters for each SAR textural images. 1i is the local

neighbors of pixel i with intensity yi. Figure 5.3 is generated through this equation with a

four neighbors NSHP model in Figure 5.4. Note that equation (5.15) is remarkably similar

to equation (5.11) for generating GMRF textural images. However, as cautioned by

Kashyap and Chellappa (1983), the intensity values yi 's generated through (5.15) do not

satisfy the Markov property. i.e. f(y 1ily, j#i) # f(yilyj, je rj1). We use least-squares (LS) to

estimate the NSHP SAR parameters. These SAR parameters would be part of the feature

set being considered for the optimal features.8

d* = z(i)z (i) z(i)yi
S S ies (5.16)

p = Is (yi- d*Tz(i)) 2

where the vector z(i) is a column vector: z(i) = col [ yi+,; re i ]. Recall that local variance

is our Feature #2, so, we do not use the p estimate in (5.16). We assign feature numbers

to the SAR features in the same fashion as we do for the first order statistics, the co-

occurrence and the GMRF features. These assignments are shown in Table 5.4.

Feature SAR Model Coefficients

Number 28, 29, 30, 31, 32, 33, 34, 35, 36, 37. 38

Table 5.4 SAR feature number assignments for classification purposes.

5.3 Features Selection and Classification

With the features described in the last section, this section illustrates a feature

selection procedure to get the "best" set of features for classifying both synthetic and real-

8 As several researchers have pointed out, these SAR parameters are not really robust since they are sensitive to
rotation of the image, additive noise, and small perturbations of the textural image [Kashyap, et.al., 1986; Mao,
et.al., 1992; Grunkin, 1993]. However, for illustration of feature selection of the feature-based expert in the MEC,
this feature set is adequate. Current effort is under way to extract robust paramaters such as the spectral density
features as discussed in [Grunkin, 1993].
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world images. The feature selection procedure is performed by a Whitney feature

extractor [Whitney, 1971; Ohanian, 1992]. Then, two classification schemes are

presented, along with extensions of these schemes to fit the MEC approach.

5.3.1 Selecting the Optimal Feature Set

To evaluate the quality of a set of features chosen for a given image, we need

some example sets for estimating the parameters as well as for comparing them. Let's call

the example learning set with EL number of learning sets as XL = I y/, zi }, where i E { 1, 2,

... ELI, and the example testing set with ET number of testing sets asXT = {Yi, zi }, where i

{ 1, 2, ... ETr.

The goal of the feature selection stage is to choose the optimal set of features '*

that minimizes certain cost function. So, our first goal is to determine the appropriate cost

function for selecting the features. For illustrating the feature selection process, consider

the example images of interest are the 256 x 256 pixels images shown in Figure 5.5. The

left image is a mosaic of constant regions with additive Gaussian noise of different

variances. The image on the right is a mosaic image composed of four Brodatz textures

(D29, D57, D93, D100). The optimal pixel classifier would generate four equal square

regions for each image, which would give zero classification error. Since we know a

priori the true class of each pixel, we can formulate the our goal as followed:

arg min{S = X (zizi),) (5.17)

where 8(.) is the Kronecker delta. Equation (5.17) essentially states our goal as minimizing

the total number of misclassified test pixels. The example learning sets (XL) are chosen

randomly (such as by a user with a mouse) and are used for estimating the parameters. For

each class, the user randomly chooses 20 points in the region which belongs to that class.

The test set XT is selected similarly. However, for some experiments such as the Brodatz

mosaic image in Figure 5.5, test sets of less than 100 are inadequate for comparing the

performance of different feature sets. Therefore, in comparing feature sets in these cases, a
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large testing set is required for meaningful results. Large testing sets take a lot of manual

labor to collect. This thesis has used an automatic random process for selecting 1024

points in the entire image for testing (or 256 test points per class). Since the underlying

class memberships are known a priori, such automatic selections can easily be done.

Feature selection is done in a serial manner. Consider a total of N features. The

first step in feature selection is to individually estimate the feature values for different

classes and for testing the estimated features using the testing set XT. The one feature with

the lowest testing error 5 is selected as the first optimal feature F, in F7 . The next feature

F2 is chosen from among the remaining (N - 1) features which, in combination with the

first feature F1, produces the next smallest testing error 5, which is usually smaller than

any single feature can attain. The next feature is chosen similarly. This process continues

until the minimal testing error is reached. An important point to be observed here is that

the second best (individual) feature in the first feature selection process might not be the

second optimal feature F2 selected in combination with the first optimal feature. This

result might at first seems strange until one realizes that the first optimal feature might in

some way contain much of the information in the second best (individual) feature. This

point will become clear when the results are presented later on in this chapter.

Figure 5.5 These two sample 256 x 256 images are used to evaluate the performance of the feature-based classifying
expert. The left image is a mosaic offour constant patches with additive Gaussian noise of various magnitudes
of variance. (The patches have respectively, from top-left patch clockwise, mean 120 and variance 900, mean
140 and variance 400, mean 160 and variance 2500, mean 180, variance 900.) The right hand side sample
textural. This image is mosaic of four Brodatz textures, which are real life textures (D29, beach sand, D57,
handmade paper, D93, fur, D100, ice crystal).
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5.3.2 Pixel Classification

Once the set of optimal features has been found for a given image, we can perform

pixel classifications. We consider a maximum likelihood approach here. The next section

presents a maximum a posteriori approach. Before we begin the classification discussion,

let's rethink what we want of an optimal feature set. Such a feature set should be one that

captures the essense of an image region very well. In other words, just from the feature

set, one can tell which image region is represented. The quantification of "well" can be

viewed from the standpoint of a classification problem. Given just the feature set of an

image, how likely could we identify the original image amid many other images? If the

answer is extremely likely, then the feature set is very good for representing that image.

So, for classifying a pixel, given its local region, we need to find the best prototype feature

set 7k that represents the local region well. (?k can be characterized by a mean vector gk

and a covariance matrix Ek). This last statement is then the goal of the feature-based

classification methods presented here.

Now, we have the problem of comparing the feature set 7i of a subimage local to

pixel i to several prototype feature sets 71, 72, ... 7K, and find the prototype feature set

that is closest to 7i. For this problem, we need a distance measure for comparing different

feature sets. A commonly used distance measure is the Euclidean distance,

IIi- =5- l / - 2-kl . As illustrated by Figure 5.6, the Euclidean distance measure does

not take into account the correlation between elements of the feature vectors. A more

sensible measure than the Euclidean distance for pattern recognition is the Mahalanobis

distance, which is defined as [Fukunaga, 1990]:

- = ( T - Rk k -1 k ) (5.18)
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Figure 5.6 These two sketches are for illustrating why Mahalanobis distance measure is more sensible than
Euclidean distance measure for pattern recognition tasks. Assume that we are interested in measuring the
similarity between the two points shown in each graph (black and white dots). The ellipses represent iso-
contours for the equiprobable lines of the two identical density functions shown. Clearly, if Euclidean
distance measure is used, the black and white points would have two very simiar distances. However, if
Mahalanobis distance measure is used, the two points in the left hand graph would have a much smaller
distance than those on the right hand side because of the use of the density covariance matrix.

where pAk and Yk-1 are the mean vector and the inverse of the covariance matrix associated

with class k, respectively. The mean vector and the covariance matrix are estimated from

the example learning set XL. The Mahalanobis distance is a better distance measure for

multi-variate problems than Euclidean distance because Mahalanobis distance takes into

consideration the correlation between different elements of the feature vector through the

covariance matrix. As illustrated in Figure 5.6, the Euclidian distance between two feature

sets (represented by dots in the figure) might not represent the actual similarity between

the two feature sets very well while a Mahalanobis distance measure differentiates the two

cases clearly.

With an appropriate distance metric, the function that specifies the likelihood a

given feature set 7i (for pixel i) belongs to a particular class can now be made explicit.

Notice that the Mahalanobis distance measure is the same as the exponential factor in a

multi-variate Gaussian density function. Essentially, by using the Mahalanobis distance, the

parameters of interest are being modelled as Gaussian distributed. Earlier we mentioned

that model-based methods can be considered feature-based methods. Here, we see that

actually, feature-based methods can equally be considered as model-based methods. The
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model we use is the Gaussian density. The function that specifies the likelihood of a given

pixel to class k is then:

p(yilz, = k, k) = ( (5.19)

Equation (5.19) is the likelihood we use to classify a given pixel i with its local subimage

as input. The classification rule is a maximum likelihood approach:

zi =arg max p(y, I z, ) (5.20)
Zi

This classification rule does not take into account the spatial correlation between adjacent

pixels. In the next section, a better classification rule will be presented in terms of a MAP

approach that explicitly takes into consideration the spatial correlation between adjacent

pixels.

5.3.3 Enhancing the Feature-based Classifier for MEC

As noted in Chapter 3, MEC takes the a posteriori probability vectors from the

available experts. The previous section on pixel classification describes a maximum

likelihood (ML) classification approach, yielding the probability vector p(ylz,A), which is

not the maximum a posteriori (MAP) probability vector p(zly,A) that MEC needs. (QD

represents all the parameters of interest.) So, we need to somehow transform the ML

results we have so far to a better one -- the MAP solution.

Image segmentation (or pixel classification) is an ill-posed problem [Poggio, 1986;

Marroquin, 1987]. Given an input image, finding the homogeneous regions can be done in

many ways. To regularize this problem, one way is to apply spatial constraints. To restate

the problem in the previous paragraph, the ML pixel classification scheme presented in the

last section does not take into account the spatial correlation between neighboring pixels.

In order to improve the results, we have to impose some spatial constraints on the
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classification results. This sounds like the problem we were trying to solve in the previous

chapter on model-based methods. As discussed in that chapter, an effective way to impose

spatial contraints on the classifcation results is to construct a prior based on the maximum

likelihood results. As was also discussed in that chapter, this prior can take a variety of

forms. A conditional Markov (CM) process has been shown to be an effective and

efficient prior. Therefore, a CM process is used here for imposing the spatial contraints

on the classification results.

Consider a given pixel i with an intensity conditional probability function p(yilz,4),

we would like to find the posterior probability of pixel i in class zi*. Our classification

procedure is to find the class z assignments that maximize the familiar MAP equation:

z* = arg max p(yl z, A)p(zl D) (5.21)

As pointed out by Julian Besag (1986), such maximization is extremely unwieldy due to

the awkward normalization factor generally associated with the state (or class) priors. So,

we take the same approach as he did for his Iterated Conditional Mode (ICM) algorithm --

by the use of an approximation technique [Besag, 1986]. In explicit terms, we find the set

of state assignments that individually maximizes the following:

zi* = arg max p(zl y,zj, j # i)2

= argmax{p(yilz)p(Ziz, j Ei)} (5.22)

where just as in Chapter 4, rli is the neighborhood of pixel i. p(yilzi) can be found using the

Mahalanobis distance measure given in the last section. A pairwise interaction Markov

process is used to model p(zilzj, je rli) in the following way:

P(z, = klzj,j eli)= -e (5.23)
Zn

where Z, is the so called partition function for normalization. Si,(k) is the Kronecker delta

which is equal to 1.0 when the neighboring pixels i and j have the same class value of k,
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and 0.0 otherwise. f3 is usually chosen to be around 1.5, which has been found to work

well with many types of images. As pointed out by Besag (1986), this value is not crucial

to the final outcome. In other words it can take a wide range of values without affecting

the final outcomes.

The classification scheme expressed by equation (5.22) is a maximum a posteriori

(MAP) approach since the right hand side is exactly the a posteriori probability of the

pixels in class z*. The resulting posterior probability vector p(zly,A) is the contribution of

this feature-based classification expert to the Multi-Experts Classifier of Chapter 3.

5.4 Some Experiments and Results

This section describes two kinds of experiments. One type is conducted to choose

the parameters of the feature-based expert classifier. The other type is for demonstrating

the image classification and segmentation using the estimated classifier parameters and the

optimal set of image features.

5.4.1 Estimating Classifier Parameters

In addition to the optimal features set selected for classification, the parameters of

the co-occurrence matrix features are also estimated using the Whitney procedure

described in the last section. There are two main parameters to be estimated for co-

occurrence matrix features. First, the dimension G of the co-occurrence matrix, a square

matrix, is to be chosen. G represents the number of graylevel bins for dividing the intensity

values into. Second, the local region size SL = (2L + 1)2 for calculating the co-occurrence

matrix has also to be determined. L is the one-sided neighborhood length of a given pixel

(which is located in the middle of the region). In the following illustration of how G and L

are found for a given image, the Brodatz mosaic image in Figure 5.5 is used. The

following procedure can be applied to any type of image.
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Figure 5.7 plots the minimum classification error on the Brodatz mosaic image as a

function of the dimension of the co-occurrence matrix. What is meant by "minimum" is

that the classification error is obtained with the optimal (co-occurrence) feature set with

the estimated parameters (G and L). The optimal feature set is selected through the

Whitney feature extractor, exactly as described in the last section. (An example of the

feature selection process using only the co-occurrence matrix features is plotted in Figure

5.9, which will be discussed shortly.) The region size used in Figure 5.7 is 41 x 41 pixels,

the selection of which will be discussed in the next experiment. As shown in Figure 5.7,

the lowest classfication error belongs to a G value of 8, although the margin of error for

this G estimate is definitely great enough to prevent laying any claim to this G value as

being the best of all values. In fact, there seems to exist a plateau in error curve of Figure

5.7 between values of G = 8 and G = 24, which suggests that G can take a pretty wide

range of values without significantly degrade the classification performance of the co-

occurrence feature-based classifier. Since G = 8 is on the lower part of this range, from a

computational point of view, choosing G = 8 for the test image (Figure 5.5) has the

additional advantage of reducing the computation requirement.

The next figure, Figure 5.8, shows the minimum classification error as a function

Selection of Number of Co-occurrence
Graylevel Bins
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Figure 5.7 Plot of classification error on the test set XT belonging to Figure 5.5 as a function of the G value
(number of Graylevel bins) of the co-occurrence matrices.

101

Chapter 5 FEATURE-BASED CLASSIFICATION METHODS



of the region size (SL = (2L + 1)2). (The plot again shows the result for the Brodatz

mosaic image in Figure 5.5.) For small regions, the classification performance of the co-

occurrence features degrades because the co-occurrence matrices cannot be estimated

consistently from one region to another belonging to the same class. Recall that a co-

occurrence matrix records the probability of co-existence of two pixels with two given

intensity values. The larger the region for estimation, the more accurate the estimate for

these probabilities.

At the same time, the minimum classification error should also increase as the

region size becomes very large due to boundary effects. Larger region size, no doubt, is

good for recognizing homogeneous and stationary regions. However, given the goal is

segmentation of an input image with multiple region classes, larger region size is a

disadvantage. This point should be clear when one considers pixels near boundaries

between different region types. The extreme case is when the region size is on the order of

the image size. In that case, the co-occurrence matrices would be usd to describe the

whole image composed of different image types. Clearly, the classification performance

suffers greatly. Therefore, larger region size does not necessarily mean better performance

for image segmentation, contrary to image recognition tasks.

From Figure 5.8, we see that after L gets larger than around 16, the classification

error stays at around 5-6 percent. For region size with L > 24, the computation required is

extremely high. Balancing accuracy and computational speed, we choose L = 20 as the

region size parameter for this image.
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Figure 5.8 Plot of classification error on the test set Xras a function of the region size used for calculating the co-
occurrence matrices.

We have been talking about the optimal feature sets for choosing the co-

occurrence matrix features throughout this section. An example of how this optimal

feature set is chosen is shown in Figure 5.9, which is plotted for parameter values of G = 8

and L = 20. There are several interesting points about the generation of this plot that

worth paying attention to. First of all, we can see clearly that more features does not mean

better classification performance. Secondly, the best individual features are usually not the

ones chosen. To illustrate explicitely what this second point is refering to, let's look at the

best individual feature performance in classifying the image. Using each individual feature

for classifying the pixels in the Brodatz moscaic image, the classification error is tabulated

in Table 5.5.

Percentage of Classification Error for Individual Feature (4-13):

4 5 6 7 8 9 10 11 12 13

49.5% 42.6% 36.2% 52.9% 56.5% 54.6% 40.8% 38.0% 54.6% 54.1%
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Percentage of Classification Error for Individual Feature (14-23):

14 15 16 17 18 19 20 21 22 23
36.4% 31.9% 32.6% 40.4% 69.8% 38.9% 40.7% 39.7% 38.2% 56.9%

Table 5.5 Individual co-occurrence matrix feature classification performance. Note that the best feature is # 15 and
the second best is # 16.

As expected, the first feature selected using the Whitney feature selection method is

feature # 15 -- the first order contrast of the (1, 900) co-occurrence matrix. Naturally, we

would think the second best individual feature # 16 -- the second order contrast of the (1,

900) co-occurrence matrix might end up being chosen next. The classification performance

of co-occurrence based classifier with feature # 16 and one of the the other co-occurrence

features is shown in Table 5.6.

Percentage of Classification Error for Feature # 15 and Feature (4-13):

4 5 6 7 8 9 10 11 12 13
12.6% 20.1% 15.9% 17.6% 33.1% 12.7%1 17.3% 12.7% 19.1% 24.6%

Evolution of Test Classifcation Error during
Feature Selection using only Co-occurrence Matrix Features

CM " t o N tO r I• CO v v S

Number of Features (with one new feature at a time added)-Number of Features (with one new feature at a time added)

Figure 5.9 This graph shows an example of the classification error as more features are added to be used
for classification. Note that these features are only those that belong to the co-occurrence matrix.
The numbers in parenthesis are the corresponding feature numbers added. (The test image here is
the Brodatz mosaic image in Figure 5.5.)
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Percentage of Classification Error for Feature # 15 and Feature (14-23):

14 15 16 17 18 19 20 21 22 23
15.4% n/a 27.1% 21.8% 37.1% 15.7% 22.7% 20.8% 22.1% 29.5%

Table 5.6 Classification performance of Features # 15 together with one of the other co-occurrence feature. Note the
the best performance is by Feature # 15 together with # 4, not with the seocond best individual feature, # 16.

Surprisingly, the next feature chosen, in combination with # 15, is feature # 4 -- the

entropy of the (1, 00) co-occurrence matrix, which is not even close to being the top

individual feature in Table 5.5. On the other hand, the second best individual feature, # 16,

when combined with # 15, does not reduce the classification error as much as many other

other combination. Therefore, as we have pointed out earlier, the best combination of

features could consist of features from an unpreditable set of features which individually

might not perform that well. One reason could be that some essense of the feature # 16 is

already contained in feature # 15. So, the combination does not span9 a greater space

than does the combination of feature # 4 with feature # 15.

5.4.2 Image Classification and Segmentation Results

With all the features presented in this chapter, the first step in classifying an input

image is to determine the optimal set of features to use. For comparing performances of

the pure maximum likelihood feature-based classifier (denoted by ML classifier) and the

enhanced maximum a posteriori feature-based classifier (denoted by MAP Classifier), we

also apply two other standard classifiers to the images in the following experiments. The

two standard classifiers used are the multi-layer perceptron (MLP) classifier trained using

the backpropagation algorithm [Rumelhart, et.al., 1986], and the K-nearest neighbors

(KNN) classifier [Fukunaga, 1990].

SWe borrowed the linear algebra term of "span", which refers to the combination of vectors [Strang, 1988]. This is
purely for illustration purpose. For the two feature vectors case, when two features sets are more "orthogonal", a
larger space can be represented by the features than otherwise
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We first consider a phantom image composed of four constant patches with

additive Gaussian noise on the left hand side of Figure 5.5, which we will refer to as

Gaussian mosaic image from now on. The histogram of the image is plotted in Figure

5.10. The four different regions have plenty of overlapping intensity values. The mean and

variances are tabulated in Table 5.7.

Region Location Top-left Top-right Bottom-left Bottom-right

Mean 120.09 139.80 159.97 179.87
Std. Dev. 40.63 20.42 50.67 30.19

Table 5. 7 The mean and standard deviation of the intensity values in the Gaussian mosaic image I of Figure 5.5.
Note the large overlap among the different regions.

These sample mean and standard deviation values are calculated with the a priori

knowledge of the underlying class assignments. For quantitative evaluations of different

segmentation techniques, we must know the true underlying class labels of an input image.

Most of the time, any real world images are not fitted for quantitative evaluations since

their underlying class labels are not clear. Some pixels in these images could belong to

more than one class (consider a satellite image whose pixel size could correspond to

several kilometers of real distance on earth). Phantom images such as this Gaussian mosaic

image are necessary for these quantitative evaluations.

With the parameters of the feature based classifier discussed in the previous

section estimated, we first find the optimal set of features for the Gaussian mosaic image.

The evolution of the classification error as more and more features are added is shown in

Figure 5.11. This evolution process proceeds as follows: the first feature is chosen as the

best individual feature; the second feature is chosen in combination with first chosen

feature to yield the best classification result; the third is chosen in combination with the

.first two chosen features, and so on.
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Hlllogram Ploat of ihe 4 Gauslaln Region Types
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Figure 5. 10 Histogram plots of the Gaussian mosaic image of Figure 5.5. Note the severe intensity
overlaps among the four different regions.

Evolution of Test Classification Error during
Feature Selection (Gaussian Mosaic Image 1)

30

- 25

0
S20

Uo

.915
. 15

C10

0

0

U I C'V 1 ) W M0 C')C
C0 M N N ' CCM C\)

Number of Features (with one new feature at a time added)

Figure 5.11 This graph shows how the classification error changes as more features are added to be used
for classifying the Gaussian mosaic image in Figure 5.5. The numbers in parenthesis are the
corresponding feature numbers added. The minimum error occurs with 6 features (1, 20, 30, 37, 15,
and 29).
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The minimum testing error -- 0.48% of all pixels -- occurs with 6 features chosen,

which are : 1, 20, 30, 37, 15, and 29. Clearly from Figure 5.11, we can see that the

synergy among different features greatly increases the discriminatory power of the

classifier. Another way to view Figure 5.11 is that the information of the original image is

"projected" differently into each types of features space since the best set of features

consists of features from different feature extraction techniques.

Let's compare the results of the feature-based segmentation with two commonly

used methods we discussed earlier -- multi-layer perceptron network (MLP from now on,

with two hidden layers, 60 nodes and 20 nodes each), and the K-Nearest Neighbors (KNN

from now on where K = 24). Like the feature-based classifier, both of the later classifier

receive local intensity regions as inputs for segmenting an image. For the images here, we

found that 17 x 17 for MLP and 5 x 5 for KNN regions of intensities serve quite well. In

training the MLP network, the criterion for stopping is for the mean square error (MSE)

of the output nodes to be less than 0.05 [Rumelhart, et.al., 1986; Mui, et.al., 1994]. The

actual MSE after complete training is 0.035. Before we look at the results, we have to

Figure 5.12 Classification of input image Gaussian Mosaic Image (Figure 5.5). Top-left is classified by MLP;
top-right is classified by KNN; bottom-left by ML feature-based classifier; bottom-right by MAP feature-
based classifier.
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Evolution of Test Classification Error for Selecting
Features for the Brodatz Mosaic Image
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Figure 5.13 This graph shows how the classification error changes as more features are added to be used for
classifying the Brodatz mosaic image in Figure 5.5. The numbers in parenthesis are the corresponding
feature numbers added. The minimum error occurs with 6features (15, 4, 14, 9, 33, and 29)

admit that the MLP and KNN are applied blindly without any substantial optimization of

their parameters. Nevertheless, we do not expect that the most optimized MLP or KNN

using only an intensity map as input would perform much better than what are presented

here. For some images to be presented later on in this section, MLP and KNN do perform

very well. In the case of a whale temporal bone CT image, MLP performs better than both

of the feature-based techniques (ML, MAP). That phenomenon again points out that a

single expert, no matter now well "optimized" for an image, cannot expect to perform

better than all other methods for other images. Again, a multi-experts approach is needed

for robust segmentation on many types of images.

For the Gaussian mosaic image of Figure 5.5, the segmented results are shown in

Figure 5.12. Clearly, both MLP and KNN using only the intensity values have difficulties

in differentiating the four regions with different intensity means and variances. However,

both versions of the feature based classifier seem to do quite well. Quantitatively, the

classification errors of all these classifiers are tabulated in Table 5.8.
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Classifier MLP KNN ML Feature MAP Feature
Error 43.90% 72.27% 3.07% 3.02%

Table 5. 8 Classification error of different classifiers on the Gaussian Mosaic Image of Figure 5.5. It is quite clear
that the terrible results of MLP and KNN are because of their blind usage; however, we have to admit that if
some careful parameter adjustments of MLP (such as number of hidden layers, number of nodes, etc) and of
the KNN (the size of K), their performance could improve, but probably not by very much.

We now consider some naturally formed textural images -- the Brodatz textural

image in Figure 5.5. Again, we apply the feature selection process described earlier in this

chapter to find the optimal set of features to use for segmenting the image. The resulting

evolution of the classification error is shown in Figure 5.13. The best feature set consists

of 6 features, which are: { 15, 4, 14, 9, 33, and 29). This set of features achieves a

minimum testing error of 5.08%. Again the feature set consists of features from different

feature extraction techniques -- no single set of features is the best. Nevertheless, for

comparing different feature types, we have to concur with the observations made by many

researchers that for textural images, the co-occurrence matrix features seem to perform

bettern than most of the other known features [Haralick, et.al., 1979; Ohanian, et.al.,

1993]. The segmented images are shown in Figure 5.20. Only the two feature-based

results are shown because both the MLP and the KNN fail to do any sensible

classification. During training, MLP's MSE fails to fall below 0.50 (which translates to

roughly 50% error of the testing set XT). KNN with intensity map as input yields random

outputs. The "classified" images by these two method are therefore omitted. The

quantitative comparison between the ML and MAP results are tabulated in the following

Figure 5.14Classification of the Brodatz mosaic image of Figure 5.5 by ML and MAP feature-based classifiers using
the optimal set offeatures derived through Figure 5.13

110

Chapter 5 FEATURE-BASED CLASSIFICATION METHODS



table:

Classifier MLP KNN ML Feature MAP Feature
Error (100% (100%) %) 7.21% 6.98%

Table 5.9 Classification error of the feature-based classifiers on the Brodatz mosaic image of Figure 5.5. 100% for
MLP and KNN indicates that both of these methods give meaningless results. For the feature-based classifiers,
the MAP approach is clearly better than ML approach.

Last but not least, we consider classification of a real world image -- a CT slice

image of a whale temporal bone immersed in a beaker of solution, as shown in Figure

5.15. The dark region is air and glass region; the gray area is the solution; the bright area

is the temporal bone. Some part of the image is not very clear, such as the left portion of

the image -- the bone/solution boundary is not clear. The resulting soft edges are always

challenges to any classifier. Even human experts might not agree on the exact location of

these edges [Bartlett, 1994]. The question naturally arises about the validity of any

classification around such edges. We will address this question directly in the discussion

section of Chapter 8.

From the feature extraction procedure, we have chosen the optimal set of eight

features, which are : 3, 4, 10, 15, 16, 31, 22, and 32, in the order of the selection process.

Figure 5.15 A CT temporal bone slice. The dark region is essentially air; the gray region is solution; the bright
region belongs to the actual temporal bone slice.
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The example learning set is composed of 60 points picked by a human expert to fall within

the respective class regions. For each of the different regions, 20 test points are chosen for

learning the optimal feature parameters for that region. The same applies to the testing set.

The minimal testing classification error is 11.82 %. Since even human experts do not

know exactly where the boundaries are, evaluation of the different results can only be

done qualitatively.

The classified results are shown in Figure 5.23. The KNN with K = 24 seems not

able to differentiate the bone and solution at all. Initially, we also encountered difficulties

in classifying the temporal bone image with MAP feature-based classifier. We found that

the class labels assigned for all pixels belong to the air class. By looking at the likelihood

equation (5.19), we realize that for classes that do not have much variation in their

parameter space, the determinants of their covariance matrices are small. For the temporal

bone image in Figure 5.21, the determinants of the respective classes are shown in the

following table:

Class Air Solution Bone
IDeterminantl 3.25e-34 3.04e-19 1.2e-8
of Covariance

Table 5.10 Magnitudes of covariance matrix determinants for the three different
classes in the whale temporal bone image.
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Figure 5.16 Evolution of test classification error during selection offeature for the image in Figure 5.21. The
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Figure 5.17 Temporate bone classification results. Top-left is the KNN result; top-right is the MLP result; bottom
left is the feature-based ML results; bottom-right is the feature-based MAP result. Note that in this case the
feature based methods do not perform as well as the MLP technique. In situation like this, the multi-expert
approach advocated by this thesis combining both the MLP and the feature-based techniques could take
advantage of both in this image as well as the previous images of this chapter.

Since the air region has a determinant at least 25 orders of magnitude smaller than the

closest determinant, no wonder that the likelihood for air doiminates over those of other

two classes.

Subsequently, we found that if we assume all determinants to be the same for all

classes, we get much better results than otherwise, as shown in figure 5.17. Even so, the

MLP result is better than both the feature-based ML and MAP results. In situation like

this, the multi-expert approach advocated by this thesis can take advantage of both the

MLP results for this image and the feature-based results for the images presented earlier in

this chapter. Results from the MEC approach will be presented in a later chapter.

In this section, we have seen classification and segmentation results for using

feature-based classifiers on synthetic as well as real world images. Powerful though it is,

feature-based classifiers cannot expect to perform well for all types of images, even when

113

Chapter 5 FEATURE-BASED CLASSIFICATION METHODS



the "optimal" feature set is derived for a given image. An advocate for feature-based

classifier might argue that the reason that a feature-based classifier fails in certain cases is

because the set of features for choosing the "optimal" feature set is not optimal. From his

viewpoint, a feature-based classifier fails on a given image because we do not truly

understand the image under study. This argument can always be put forward to justify

spending time and resources to find a better feature set, which might never be found.

Perhaps a better alternative than the never ending cycle of finding a better feature

set is the multi-experts approach advocated by this thesis. By incorporating all the existing

knowledges we know about a given image, we can be sure that we could perform at least

as well as the best of the feature set on any given image (provided the right MEC

construction has been made). In fact, ignoring the computational burden, we can

incorporate all types of "optimal" feature sets for all kinds of images into a MEC and

create a "universal" feature set that can handle all of these kinds of images. Some

preliminary results on using MEC to create such a universal can be found in Chapter 8.

We will see that segmentation by the MEC approach achieves more accurate segmentation

than the feature based methods presented in this chapter.
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Chapter 6

OTHER CLASSIFICATION METHODS

This chapter describes four other segmentation methods (or pixel classification)

that have been implemented for comparing with the performance of the MEC using

various images. Obviously, the algorithms presented here are in no way the only possible

set, nor the optimal set. These algorithms only represent a few of the commonly used

techniques. All these methods can be incorporated into the MEC structure as experts.

Extensions to some these traditional algorithms have been made and are described in the

following sections.

6.1 K-Nearest Neighbors

KNN has been used in the pattern recognition field for over thirty years. Various

theoretical results exist for this method. The most famous of these is probably the upper

bound on the classificaition error of KNN. This upper bound has been proved to be twice

the optimal Bayes' error [Fukunaga, 1990]. KNN is also related to several other well

known pattern recognition methods such as the Parzen windows and kernel regression

[Duda and Hart, 1972]. Due to KNN's intuitive approach and ease of implementation,

KNN is often used as a first cut classification method. In this section, a simple extension to
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KNN is proposed using MRF as a spatial constraint. This constraint is in the same spirit of

regularizing low level vision discussed in [Poggio, et.al., 1986; Marroquin, et.al., 1987].

The KNN classification expert is implemented in two parts. The first part is the

density estimation part, while the second is a smoothing operation, which is refered to as

spatial estimation part hereafter. The spatial estimation is similar to applying a MRF prior

as a spatial constraint on the solution.

6.2.1 KNN Density Estimation

Given the learning set XL, the KNN classifier estimates two features for each class -

- the mean (g) and the standard deviation (a), which can be done directly without any

iterations since the class labels are known. These two parameters serve as the parameters

for the underlying class density.

When a new pattern y is presented for classification, the pattern is compared to the

prototypes class features -- g and aY. A z-norm distance is calculated as followed:

dk k (6.1)
ak

Classification is done simply by choosing the class from which the input pattern is closest

to. This classification scheme corresponds to a ML approach.

6.2.2 KNN Spatial Estimation and MRF Prior

The classification performed through the density estimation of the last sub-section

is usually very noisy, dotted with pepper noise class assignments. Some type of noise

remover that considers the spatial distribution of class assignments is necessary to

eliminate this extraneous noise.

This noise removal consideration is a different viewpoint of the same problem that

has been addressed through MRF priors throughout this thesis. For example, the MRF

prior used for the feature-based classifier is essentially doing noise remover on the
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classified image (refer to Chapter 5). Noise in that case refers to the mislabeled pixels.

Therefore, the same strategy is used here to impose some spatial constraints on the

classification results. The MRF used is second order MRF with the following local

characteristics:

eB6ij (k)
f(zi = kIij,) = (n) (6.2)

where rli is the local neighborhood of pixel i (refer to Chapter 2). Class assignment, or

perhaps more appropriately class reassignment, is performed for pixel i by finding the k

with the highest f(zi=klTij).

6.2 Multi-layer Perceptron Network

A feedforward neural network with intensity map input can potentially be used as

one of the experts of the MEC. In Chapter 8, we will see its segmentation performance in

comparison with those achieved by other methods as well as by the MEC.

The network is a three layer network, with an input layer of (2L+1)2 nodes, one

hidden layer of H nodes, and a final output layer with K nodes'. Each of the output node

represents a class. The values of L, H, and K are problem dependent. The learning

algorithm for training the weight vectors of the MLP netowrk is the generalized delta rule

[Rumelhart, et.al., 1986]. Usually the right approach for estimating the optimal number of

training iterations is through cross validation [Breiman, et.al., 1984], however, such a

'Strictly speaking the universal approximation proof mentioned above applied to one-hidden layer network with
hidden nodes > (2 * # input nodes) [Hornik, Stinchcombe, and White, 1989], the training and testing of which
usually take a long time. As mentioned in the background chapter (Chapter 2) even if such a network is
constructed, good results are not guaranteed since most learning algorithms cannot train such a network without
getting stuck in some local minima or failing to converge. For computational reasons, a network with less than
this number is usually used.
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technique would create a big computational burden on the overall response of the MEC.

From experiments done on different types of images, we found that the following stopping

criterion seems to work fairly well:

stopping criterion for learning:

Stop learning when either
1) number of iterations = MAX_ITERATIONS
2) output mean square error • MIN_MEAN_SQ_ERR

where MAX_ITERATIONS and MIN_MEAN_SQERR are problem dependent. The

often used MIN_MEAN_SQ_ERR for one hidden layer logistic output networks with

about 80 input nodes (covering a region of size 9x9 pixels) and less than 5 output nodes

are usually around 0.2 and the MAX_ITERATIONS is usually never greater than 50.

When there are no hidden layer in a network, learning generally would not improve too

much after two or three iterations of generalized delta rule training. The implemented

softmax output function MLP has much more difficulty than the logistic output function

MLP in the learning tasks considered in this thesis 2. Therefore, only logistic output MLP is

used for performance evaluation. We will see in the next section examples concerning this

observation.

The inputs to the MLP network can also be the features described in Chapter 5.

However, this version of the MLP network is not implemented at the time of writing this

thesis. The author expects this MLP network based on the optimal feature sets described

in Chapter 5 to outperform the intensity map input MLP network of this section.

The MLP structure has already been described in the neural network subsection in

the background chapter. Interested readers are also refered to the following references for

more detailed discussions [Rumelhart, et.al, 1986; Hertz, et.al., 1990; Hornik,

Stinchcombe, and White, 1989].

2 Even though the structure of a softmax output MLP is almost identical to that of a logistic output MLP, the failure
of the softmax output to learn could be results of the particular implementation. Since MLP is not the main focus
of this thesis, no further investigation is conducted in this direction.

118

OTHER CLASSIFICATION METHODSChapter 6



6.3 K-Means Based Classifier
An unsupervised method known as the K-means clustering method can been

implemented as an expert for the MEC. A K-means based segmenter is evaluated in

Chapter 8, along with other methods, for segmenting synthetic and real world images.

Given the number of classes K, this clustering method iteratively estimates the K

most prominent centers in the input space. Recall equation (2.18) for finding the clustering

centers:

9k(t+ )  Yi (6.3)
k xiESk

Equation (6.3) expresses the updating rule for locating the K centers of inputs yi's. At

iteration t, the number of inputs in class k is represented by Nkt.

Similarly, the variances of the inputs y, can be iteratively estimated in the following

fashion (the term (Nkt- 1) in the denominator is to ensure that the variance estimator below

is a consistent one [Mendenhall, 1990]):

k (Nk (Yi -k) 2 (6.4)

After the means and variances of inputs y1 are estimated for the K classes, class label

reassignments have to be done since any unsupervised methods have no a priori

knowledge on what the true class labels should be.

The K-means classifier classifies input pixels by applying a z-norm distance metric

to eliminate the difference in variances between different input features. The z-norm

distance metric is defined in (6.1). The class k with the lowest z-norm distance to the input

y is the class label for y.
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6.3.1 Regularizing the K-means Outputs

Just as the smoothing operation for the outputs of the KNN, a MRF prior is

applied to the outputs of the K-means classifier. This MRF prior takes the same form as

equation (6.2). In this sense, the K-means algorithm used for this classifier is a modified

version the one proposed by MacQueen (1967).

6.4 Probabilistic Co-Occurrence
The detailed algorithm used in the probabilistic co-occurrence classifer is described

in Appendix A. The algorithm is based on a novel concept proposed by Lohmann (1995).

The co-occurrence matrices associated with an input pattern are classified into one of K

classes. The essential idea of Lohmann's idea is to consider classification of the co-

occurrence matrix coefficients as an N-way classification problem. Naturally, the

probabilistic model is the multinomial density.

For input region with the pixel to be classified in the center, four co-occurrence

matrices are computed. These four co-occurrence matrices have displacement vectors (1,

00), (1, 450), (1, 900), and (1, 1350) (refer to Chapter 5 for details on these displacement

vectors). For learning the prototype co-occurrence matrices for a class k, the labeled

learning set XL with L pairs of inputs and outputs is used. The prototype co-occurrence

matrices is computed as the average of the co-occurrence matrices of all the learning sets.

In other words, for class k, the prototype co-occurrence matrix coefficients for class k

(Ci,k) are:

1 L
ci,k i, C (6.5)

L 1=1

When a new input pattern is given, the classification is done by computing the mutual

information I(x,z) below for each class:
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I(x, z = k) = I xi (log cu,k - log ci) (6.6)
i,j

This is the same equation as Equation (A.4) in Appendix A. The class with the highest

mutual information I(x,z = k*) is assigned the class label k* for that new input pattern.

Perhaps the most impressive aspect of this novel approach is that no "optimal"

features set is required be chosen first before a good classification results can be obtained.

In this respect, this approach is like the non-parametric approaches, but it is definitely a

parametric method. But the parametrization operations are done automatically without any

intervention from the algorithm designer. Performance evaluation of this probabilistic co-

occurrence classifier is done in Chapter 8, along with other classifiers.
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Chapter 7

DETAILS OF THE

MULTI-EXPERTS CLASSIFIER

The discussion on the Multi-Experts Classifier (MEC) presented in Chapter 3 has

left out some of the details of an actual implementation. This chapter documents the

portion of implementation that has been left unexplained. No theory is presented in this

chapter. Only practical considerations during implementation are described.

This chapter is divided into two sections. Section 7.1 discusses the implementation

issues of the gating network. Section 7.2 is concerned with the implementation issue of the

stacked generalizer for learning from the outputs of different segmentation experts.

7.1 Gating Network

Chapter 3 has explained the construction and functions of the gating network in

the context of the MEC. Several issues have been left untouched. These issues include the

type of inputs to the gating network and the variations on the gating network architecture

for learning.
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7.1.1 Input Feature Sets

The function of the gating network in the MEC architecture is to provide priors for

the outputs of each of the experts. As we have shown in Chapter 3, the gating network

outputs a number between 0.0 and 1.0 and assign that as the prior for a particular experts.

However, what we did not explicitly specify in that chapter is the type of inputs to the

gating network.

For the current implementation of the MEC, the gating network receives two sets

of feature inputs. There are two ways that these two sets of features are selected:

(i) exclusive optimal features

One set is the optimal feature set from the feature based classifier. The other set of

inputs is also a feature set, but is completely different from the optimal feature set. This

second set is obtained in exactly the same way as the optimal feature set, namely, through

the feature extraction process described in Chapter 5. However, the second feature set is

obtained by excluding the features in the optimal feature set from the feature selection

process.

(ii) inclusive optimal features

Inclusive optimal features are used in Chapter 8 for selecting features of a multiple

regions image. For example, there are two types of images in Figure 8.1 -- two Gaussian

intensity images, and two Brodatz texture images. One optimal set of features are chosen

for distinguishing the two Gaussian intensity images while another optimal set of features

are chosen for distinguishing the two Brodatz texture images. Because there is no

constraint on the selection during these the selection processes, there could be common

features in the two feature sets.

The gating network receives an input vector that is the union of either of these two

optimal feature sets.
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7.1.2 Network Architecture

The gating network presented in Chapter 3 can be considered as a (no hidden

layer) network with output function being either the softmax function or the logistic

function. Such network construction has been shown to be not very general [Minsky and

Papert, 1969]. Interestingly however, we have observed that the performance of a gating

network MEC does not vary significantly with either implementation. Results shown in

Chapter 8 will show this point more explicitly.

7.2 Stacked Generalization

A stacked generalizer (SG) learns from the outputs of different segmentation

experts. Naturally, the inputs to the stacked generalizer have to come from the outputs of

the segmentation experts. But, we still have a choice in terms of what kinds of outputs.

The first sub-section below discusses this selection of inputs. For a given input, a SG does

not have to give a label under all circumstances. As discussed in Chapter 3, SG can also

assign an input to the REJECT class. The last two sub-sections considers under what

circumstances should inputs be assigned to the REJECT class.

7.2.1 Inputs to a Stacked Generalizer

Each segmenter outputs a vector with K elements, each of which indicates the

confidence (or probability) that the segmenter has toward classifying the input to the

corresponding class. Since the SG takes inputs from the outputs of the segmenters, there

are two immediately obvious ways to provide inputs for the SG. One possible input format

could be the entire probability vector. The other possible input format could be the class

label with the highest confidence. There are a variety of variations between these two

extremes.
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At first, we thought that if the inputs were the entire probability vectors, the

performance of the SG would be better than otherwise. However, after several

performance evaluation of this first probability vector approach and of the second highest

confidence class label approach, we found that the second approach almost always

outperforms the first probability vector approach. After some speculation, we believe the

reason is likely to be that the SG we have used do not have the generalizability to

discriminate the different probability vectors. For this approach, the dimension of the input

space is K times higher than that of the class label inputs case.

Because of its better performance, we adopt this second approach of using the

class labels as inputs to the SG. This is an area of research for the multi-experts approach

that deserves further investigation.

7.2.2 Selection of the REJECT Threshold

In Section 3.2.3, we have discussed the assignment of the REJECT class to those

inputs whose entry into the coincidence matrix is zero. The reasoning is that if there are no

learning examples to indicate what class such inputs should belong to, the SG would have

no such knowledge to assign labels to inputs belonging to this category.

What is the vector entry in the coincidence matrix has conflicts? By conflict we

mean when two elements of the vector entry have the same number of learning examples,

or very nearly the same. In this latter case, the SG would not have the built-in knowledge

to choose among the two possible outputs. Such inputs suit perfectly into the REJECT

class. Essentially, we are suggesting the use of a reject threshold. This threshold assigns

those classes that the SG is not sure of to the REJECT class.

The REJECT threshold criterion has been implemented as follows:

if max < THRESHOLD, assign input to be REJECT, where i = {1,2,... K}
Ci

or if Cmax = O, assign input to be REJECT
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where ci represents a scalar element in the coincidence matrix vector element and cm,,

represents the largest such scalar element (refer to Sub-section 3.2.3).

7.2.3 Post-Processing

After an image has been segmented by a SG MEC, those pixels whose

classifications by different experts result in REJECT have to be post-processed before the

image can be called completely segmented. This post-processing stage is performed by an

iterative process described in this sub-section.

The iterative process to deal with REJECT pixels continues until all REJECT

pixels have been converted to have class labels. During each iteration, only those REJECT

pixels near at least one labeled pixel are processed. The processed pixels are classified as

the most frequently occurring label in its second order neighborhood (see Chapter 2 for

the definition of a second order neighborhood).
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Chapter 8

EXPERIMENTS AND RESULTS

This chapter describes experiments for testing the Multi-Experts Classifier (MEC)

using synthetic as well as real world images. Performance comparisons are made in two

respects. First, the MEC's performance is compared to those achieved by commonly used

image segmentation methods. Second, different designs of the MEC's are compared

against each other. Of special concern is the performance of the gating network approach

versus the stacked generalization approach to the MEC design.

The first section in this chapter describes the experimental setup and procedures

common to all experiments performed here. The most significant section of this chapter is

probably Section 8.2. In this section, quantitative evaluations of different segmentation

methods are performed. Here, the results of a MEC are quantitatively compared with

those achieved by other methods using phantom images with known underlying class

labels. These phantom images are synthesized from various types of image formation

processes, such as Gaussian Markov random field, simultaneous autoregressive model,

Gaussian densities, and natural textures -- from the Brodatz Album. The following Section

8.3 applies the MEC and other methods to real world images described in Chapter 2.

Finally, a brief discussion of the results concludes this chapter.
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8.1 Experimental Setups and Overview

Consider a generic image S, the experiments performed in this chapter follows a

straightforward procedure for segmenting S. This standardized procedure is adopted to

ensure that the condition under which every segmentation method is tested is as similar to

each other as as possible.

The first step is to choose the number of classes, K. Recently, progress in cluster

validations have made it possible to estimate this number reasonably well [Zhang and

Modestino, 1990; Li, et.al., 1992]. Nevertheless, for two reasons, such automatic methods

are not adopted in this thesis. First, these methods are still far from being reliable. Second,

for the type of problems we consider here, selecting the number of classes is not a major

problem and can easily be estimated by an expert user.

After the number of classes is selected, a user has to choose the learning set XL and

the testing set XT. The learning set XL is used for parameter estimations and the testing set

is for performance comparisons. Instead of selecting two data sets, we could have chosen

to use bootstrap methods to perform parameter estimation as well as testing [Efron and

Tibshirani, 1993]. However, two independently chosen sets are always better than any

equivalent sized data sets obtained by bootstrap methods. Since an image commonly has at

least tens of thousands of pixels, choosing two such sets should not be a problem.

The functional distinction of XL and XT can best be illustrated by an example. In the

case of the feature based classification expert (Chapter 5), the optimal feature set is

selected through an iterative process during which both the XL and the XT are used. During

the selection of the first optimal feature, the parameters of the classifier are learned using

XL. (The parameters here refer to the mean vectors and the co-variance matrices of the

different classes.) Each feature is then benchmarked against each other using the XT. The

feature that performs best on XT is then selected as the first optimal feature. The second

optimal feature is chosen similarly in combination with the first optimal feature.
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The process of selecting the learning set and the testing set is performed only once

by a user (for example, by the use of a mouse pointer). The chosen pairs are recorded to a

file which is read automatically every time that image is loaded. A simple parser is written

to parse the file for every segmentation test thereafter. An example learning set file is

shown in Appendix D. In choosing XL and XT, the user is assumed to know the

approximate location of different classes. (Usually, it is the boundaries that most expert

users fail to identify accurately. However, identifying pixels in other areas of a reasonably

sized region should not be very difficult [Bartlett, et.al., 1994].)

With the parameters estimated from XL, different segmentation algorithms are then

applied to the images. The output of each algorithm is a probability vector of how likely

each input belongs to the different classes. These output vectors are the inputs to the

stacked generalization (SG) module and the gating network (GN) module of the MEC.

Using Wolpert's language, the individual segmenters are zeroth level learner while the SG

and GN are first level learner [Wolpert, 1992].

For comparing the performance of different algorithms, a scoring system is

devised. For every test pair in XT that an algorithm correctly identifies, that algorithm gets

one point. If there are T testing pairs of input vectors and output labels, the maximum

score an algorithm can get is T. Obviously, the higher the score, the better is an algorithm

and the lower the score, the worse is an algorithm for a given image. This scoring system

does not penalize or award scores on the difficulty of classification different types of

pixels. For example, classifying a boundary pixel is usually much more difficult than

classifying a pixel in the center of a region. This difficulty is caused by the spatial

dependency assumption made by most segmenters (and human as well). In the case of a

MRF model, the local field could be greatly changed near a boundary as the local

characteristics over a finite size region changes from one region to another. Nevertheless,

the user has the control to choose whether he or she would like to put greater weight on

the boundary classification ability of a segmenter by simply choosing more training and

testing pairs near region boundaries.
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After XL is first used to estimate the individual expert's parameters. the testing set

is used for learning the parameters of the SG module and the GN module. From the

output vectors of the experts, parameter estimations of the SG and GN are performed

using XT. The parameters of interest for the SG are the coefficients in the coincidence

matrices or the weights in a SG network. The parameters for the gating network are the

network weights. The algorithms for estimating these parameters are the gradient descent

algorithms derived in Chapter 3.

8.2 Experimental Proof of Concepts: Quantitative

Results

This section tests the basic ideas behind the Multi-Experts Classifier (MEC). The

underpinning concept of the MEC is intelligent combination of expert knowledges during

image segmentation. To quantitatively show how MEC achieves this goal, we have to

consider an image that is generated by region processes with known class labels, and

check whether MEC could correctly estimate these class labels at the right locations. In

the next section, we will show segmentation results on real world images. This section is

imporant because quantitative evaluations are performed on the various classifiers and the

MEC. For most real world images, evaluation of these results can only be done

qualitatively due to lack of known class labels for those images.

8.2.1 Problem Definition

One example image that is used in this section to quantitatively test the basic

concepts behind the MEC is shown is Figure 8.1. This image is formed by two distinct

types of image formation processes (texture regions and Gaussian density regions). Since

we know a priori the class assignments of all the pixels in the image, we can quantitatively

evaluate different techniques' performance. Also since the image is a mosaic of two
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Figure 8.1 An example phantom image for proof of the MEC underlying concepts. There are two types of images
there. Upper left hand quadrant and lower right quadrant are two patches with Gaussian distributed
intensities (mean 120, variance 1600, and mean 180, variance 900). Upper right hand quadrant and lower
left quadrant are two fairly stationary natural textures from the Brodatz Album (D9 and D68).

different types of images, we can carefully examine the claims we have made on the ability

of a MEC to segment such an image.

Consider Figure 8.1, diagonally across from each other, the upper left hand

quadrant and the lower right hand quadrant are generated by a Gaussian process with

means and variances indicated in the figure caption. The upper right hand quadrant and the

lower left hand quadrant are two natural textures from the Brodatz Album [Brodatz,

1967]. These two textures have been chosen because their textural properties seem to be

fairly stationary throughout the quadrants.

Clearly there are four classes of images in Figure 8.1. For each class, 20 random

points are chosen for that class' learning set and another 20 random points are chosen for

the testing set. As we have found out after some initial experiments, 80 testing pairs are

not enough to differentiate the different methods' performance. So, the nearest neighbors

and the nearest diagonal neighbors of the testing sets are also included in the test set,

assuming that they also belong to the center pixel's class. This is not a bad assumption

since users generally cannot distinguish any two pixels at 1 pixel length anyway. Even if

users can identify 1 pixel length, it is not clear whether the imaging modality used has that

clear of a resolution to warrant these special user' unusual ability. When the learning and

testing sets are chosen for experiments in this chapter, pixels very close to the boundaries

are therefore avoided. As a result of this expansion of the testing set, the maximum score
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for any particular segmentation is 720. Classification results are given in percentages of

number of pixels correctly classified over 720 maximum pixels correct.

8.2.2 Scope of the Problem

To limit the scope of the problem to an easily interpretable one, we first consider

only two experts, both of which are feature-based experts with their own optimal feature

sets. One of these experts have an optimal feature set learned using only the Gaussian

patches and the other one have an optimal feature set learned using only the Brodatz

texture patches. Thse optimal feature are chosen according to the procedure described in

Chapter 5. These two feature sets are:

Gaussian patches set: (1, 20, 30, 37, 15, 16)

Brodatz patches set: {15, 4, 14, 9, 33, 29}

where the numbers are the ones corresponding to the features described in Chapter 5.

These features include first order statistics, co-occurrence matrix features, Simultaneous

Auto-regressive model and Gaussian Markov random field features.

To provide standards for comparison, we take the two optimal feature sets

separately and perform segmentations according to the method prescribed in Chapter 5 for

the feature-based classification experts. The results are shown in Figure 8.2. Different

regions after segmentation are given in different greylevels. The left hand image

corresponds to that of using the Gaussian patches feature sets while the right hand image

corresponds to that of using the Brodatz patches feature sets only. The classification error

Figure 8.2 Segmentation results of Figure 8.1 by two feature based classifiers. The left hand side has a feature set
that is optimal for the Brodatz patches of Figure 8.1 and the right hand side has a feature set that is optimal
for the Gaussian patches of Figure 8.1. These segmentations are performed using the MAP method (Chapter
5)..
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of the segmentations is tabulated in Table 8.1 below:

Feature Set Gaussian Brodatz Combined Set

Classification Error 5.89% 5.19% 5.19%
Table 8.1 Segmentation error of the two feature-based classifiers, whose segmentation

results are shown in Figure 8.2.

What happens if we use all the features in the two optimal feature sets? Table 8.1

also shows the combined feature set results. No improvement is made.

As shown in Figure 8.2, most of the error occurs near the boundaries, which

makes sense since most feature extraction procedures requires the use of a local region for

feature extraction. This local region, when comes near an edge, becomes highly non-

uniform, and violates the stationarity assumption that most feature extraction routines

make. Nevertheless, the feature based classifiers perform pretty well overall.

8.2.3 Segmentation by Single Model Methods

We consider the performance of single model methods on this phantom image in

this sub-section. Figure 8.1 is an image type that most single model methods would fail to

segment because the multiple image formation processes for the four different patches

canot be easily modeled by any single image formation processes. Figure 8.3 shows the

results of K-nearest neighbors (KNN), multilayer perceptron (MLP), K-means, Gaussian

mixtures with EM estimated parameters and a MRF spatial prior (MRF), and the

probabilistic co-occurrence approach.

For generating the segmentation results in Figure 8.3, the K-nearest neighbors' K

parameter is determined to be 241. The MLP has an input layer of 81 nodes, taking in an

image area of 9x9 pixels, one hidden layer of 40 nodes, and an output layer of 4 nodes

which correspond to the four different classes. Training for the MLP took 50 epoches,

The K values for KNN, as well as the parameters for other single model methods are not estimated carefully. Their
values are adjusted to yield the a good "eyeballing" segmentation results. To estimate these parameters in a more
prudent fashion would most likely require a lot more computational resources.
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KNN

K-Means Gaussian Mixture Probabilistic Co-Occurrence

EM Gaussian Mixture

Figure 8.3 Segmentation results by single model methods on Figure 8.1. Clearly 8.7 is
composed of several different types of images and most single model methods
fail to perform well on these images (refer to Table 8.2).

with a final mean square error (MSE) of 0.28. No further training is performed since no

improvement in the output MSE is observed. The output function used for the MLP is the

logistic function. Softmax output function MLP does not converge during learning for this

image and so no result is shown for this case.
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The probabilistic co-occurrence classifier uses co-occurrence matrices of size 8x8,

corresponding to 8 intensity level bins. The best region size used for calculating the co-

occurrence matrices is estimated to be 13x13, with the pixel of interest in the center. Both

the EM trained Gaussian Mixture (EMGM) and the K-means trained Gaussian Mixture

learned their respective parameters in 10 epoches. The MRF model used for the EMGM is

a second order Markov model, likewise for the output smoothing MRF of K-means.

Because these two methods assume Gaussian distributed images for their inputs, their

results are expected not to be very good on the Brodatz texture patches.

The segmentation error of these algorithms are tabulated in Table 8.2.

Alkorithm Name Classification Error

KNN 55.7%

MLP 48.0%

K-means 65.2%

Probabilistic Co-occurrence 10.1%

Gaussian Mixture (EM) 65.5%

Table 8.2 Classification error of different experts on the image in Figure 8. 1

The poor performance of some of these methods shows that blind application of an

image classifier, no matter how sophisticated, is a mistake. When an image is composed of

multiple types of regions, such as the one shown in Figure 8.1, simultaneously modeling all

these types is very difficult with a single expert. For example, we certainly do not expect

the EM trained Gaussian Mixture (or K-means classifier) that uses the pixel intensity and

intensity variance to perform well on the texture type images. Once again, we see the need

for a multi-experts approach when confronted with an image such as Figure 8.1 which

contains several different types of images.

8.2.4 Gating Network Combination Methods and MEC Results

Finally, this sub-section considers the results of segmenting Figure 8.1 using the

multi-experts approach. The gating network approach to combining the expert results is

attempted first. Coincidence methods are discussed in the next sub-section.
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Figure 8.4 The upper two are classification by MP and MAP using the logistic output gating network, respectively.
The lower 2 figures are the "expertise map" where black is feature expert 1 and white is featuer expert 2.
Notice the nice partition of the expertise map according to the type of image there are in the test image,
especially for the MAP case on the right. i.e. the MEC successfully partition the input space into expertise

The results are shown in Figure 8.4 for the logistic output function. The upper left

hand figure is selected by maximizing the prior beliefs of the gating network. Therefore,

we call this network the maximizing prior (MP) gating network. Recall the definition of

gn(Yi) in equation (3.5) and (3.7), the MP class estimates are performed by applying:

z*(MP) = arg max g,(y,,zj) (8.1)
n,j

Essentially (8.1) describes a maximization process of jointly selecting the largest gating

network output, gn and the class label zj. Another viewpoint of this procedure is: select the

largest class of the expert corresponding to the largest gating network output zi*.

The upper right hand side of Figure 8.4 shows the MAP segmentation result of a

MEC with a logistic output function gating network. (This network has been trained for

two epoches on the testing set XT to achieve a output mean square error (MSE) of 0.096.

Further training did not improve the MSE significantly -- less than 0.001 changes.) This

classification result corresponds to a maximum a posteriori selection of the class label for
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an input. To see this MAP connection, consider the maximization process below for

deriving the segmentation result:

Zi*(MAP) = arg max g (yi)f(yilz, dI)
i (8.2)

= arg max p(zjl 4)f(yilzj , Q~)

where the substitution of gn(yi) by p(zjl) is justified by equation (3.5) and (3.7). The last

equation in (8.2) is equivalent to a MAP estimate of the output states with the gating

network output as the prior.

The lower part of Figure 8.4 are the "expertise map" chosen by the gating network

according to the type of expertise the MEC has. For our case here, the two experts are the

two feature based classification experts whose feature sets are described in Sub-section

8.2.2. Especially for the MAP case, notice that the gating network has divided the input

space into two divisions almost along the true boundaries. In the expertise map, black

represents feature based classifier 1 and white represents feature based classifier 2.

The results in Figure 8.4 are better than results obtained by any of the methods

discussed so far. Quantitatively, the results of applying (8.1) and (8.2) are tabulated

below:

Logistic Gatinr Network MP Classification MAP Classification

Classification Error 4.71% 4.08%
Table 8.3 Logistic Output Function Gating Network classification results.

These results quantitatively shows that not only are the gating network MEC results look

better than those achieved by any of the single expert, they are actually better in terms of

pixel by pixel count for the segmented image.

Recall in Chapter 3 that we have made a conjecture that a series of Bernoulli

processes are better probabilistic models for the gating network than multinomal densities.

Recall that the function g for the former case is the logistic function, while g is the softmax

function for the latter multinomial case. The results in Figure 8.5 and Table 8.4 using the
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Figure 8.5 The upper two are classification by MP and MAP using the softmax output gating network,
respectively. The lower 2 figures are the "expertise map" where black is feature expert 1 and white
is featuer expert 2. Notice the nice partition of the expertise map according to the type of image
there are in the test image, especially for the MAP case on the right. i.e. the MEC successfully
partition the input space into expertise regions!

softmax output gating networks prove that our conjecture is inaccurate for this phantom

image.

Softmax Gatinr Network MP Classification MAP Classif•'ation

Classification Error 3.65% 3.46%
Table 8.4 Softmax Output Function Gating Network classification results.

For the softmax output case, the same set of experiments as the logistic output

case is done. (The softmax gating network has been trained for two epoches on the test

set XT and achieves an output mean square error of 0.707, with less than 0.001 decrease

after this second epoch.) The results of which are shown in Figure 8.5 and numerically

tabulated in Table 8.4. As mentioned earlier, the results from the softmax output gating

network are better than those achieved by the logistic function based gating network. This

result not only specific to this image per se and will be shown to be true for other images

later on in this chapter. Note that the improvement in accuracy of segmentation over the

feature-based classification experts is impressive, dropping from 5.19% error of the best

138

_~ __

Chapter 8 EXPERIMENTS AND RESULTS



Chapter 8 EXPERIMENTS AND RESULTS

Figure 8.6 Segmentation result of a MEC using the stacked generalizer. The left hand image is segmentation result
of a logistic output stacked generalizer; the middle image is the segmentation result of a softmax output stacked
generalizer; the right hadn image is the segmentation result of a coincidence matrix based stacked generalizer.

single expert to 3.46% error in the case of MAP classication using softmax output gating

network. This drop (33%) is significant.

8.2.5 MEC Results Using Stacked Generalizers

Three types of stacked generalizers have been tested -- the logistic output network

stacked generalizer, the softmax output network generalizer, and the coincidence matrix

based stacked generalizer. For both the logistic output network and the softmax output

network, the network architecture shown in Figure 2.9 is used. We have attempted to

implement a network approach to SG without any hidden; however, the resultant network

does not converge for over 100 epoches training using the training set. Therefore, we

adopt the Figure 2.9 architecture with one hidden layer, which does converge. The inputs

are the output vectors of the two feature-based experts, with a total of 11 input nodes

because there are a total of 11 distinct features (refer to Section 8.2.2). The hidden layer

for each of the two networks is composed of 40 hidden nodes. Finally, the output layer

consists of 4 nodes, corresponding to the four classes. Training the softmax output

network took 10 epoches to with a final output mean square error (MSE) of 0.77. Further

training does not improve the output MSE significantly (less than 0.01). For the logistic

output network, only two epoches were necessary to achieve a final output mean square

of 0.12. Further training does not improve the output MSE significantly but causes

osccillations in the training output MSE (at least up to the 100 epoches).
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Figure 8.7 Phantom image composed offour different regions. The upper left hand image is simulated by a SAR
process with coefficients [0.2, 0.2, 0.2, 0.21. Likewise, the lower right hand image is also simulated by a SAR
process with coefficients (0.8, 0.0, 0.0, 0.0). These coefficients belong to equation 5.15 (refer to Figure 5.3).
The upper right hand image is simulated by a Gaussian MRF process with coefficients [0.25, 0.25, 0.25,
0.251. Likewise, the lower left hand image is also simulated by a Gaussian MRF process with coefficients
(0.0, 0.5, 0.5, 0.0). These coefficients belong to equation 5.11 (refer to Figure 5.1).

For the coincidence matrix version of the SG, we mentioned in the last chapter that

the segmentation results are nearly always robust against variations of the REJECT

threshold parameters. For the phantom image segmentation here, as this threshold is

varied from the minimum of 1.0 to the maximum of infinity, the segmentation results stay

the same -- classification error remains at 2.94%.

Table 8.5 below shows the segmentation performances of the three possible SG

approaches to MEC introduced in this thesis:

Stacked Generalizer Logristic SG Softmaxr SG Coincidence Matrix SGI

Classification Error 3.35% 3.35% 2.94%
Table 8.5 Classfication results of a MEC with three different stacked generalizer (SG) -- logistic

output single layer network, softmax output single layer network, and coincidence matrix
stacked generalizer.

Shown in the segmented image of Figure 8.6 and in the numbers in Table 8.5 are evidence

that the SG approach to MEC is feasible and performs better than other methods

attempted in this section. The classification error has been dropped to 2.94%, which is a

44% drop from the result of the best of the experts -- one of the feature-based classifiers.
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8.2.6 Segmenting More Phantom Images

The results in the last sub-sections show that the MEC approach is able to segment

the phantom image in Figure 8.1 better than any other method. Is this result generalizable

to other images? To answer this question, we have to apply the MEC to other phantom

images and observe the results. The segmentations performed on phantom images in this

section follow the same procedure as the segmentation of the phantom image in Figure 8.1

described in Sub-sections 8.2.1-8.2.5.

(i) phantom image with synthetic GMRF and SAR patches

Figure 8.7 shows a phantom image with four patches of different classes. The

upper left hand patch and the lower right hand patch are simulated by applying equation

5.15 for the simultaneous auto-regressive (SAR) model. Their corresponding coefficients

are {0.2, 0.2, 0.2, 0.2), and {0.8, 0.0, 0.0, 0.0). The upper right hand patch and the lower

left hand patch are simulated by applying equation 5.11 for the Gaussian Markov random

field (GMRF) model. Their corresponding coefficients are {0.25, 0.25, 0.25, 0.25) and

{0.0, 0.5, 0.5, 0.0) respectively.

The two optimal feature sets for the two SAR and Gaussian MRF are:

optimal feature sets for:

SAR: {28, 11, 5, 1, 10]
Gaussian MRF: (10, 20, 14, 17, 16, 291 (8.3)

These two feature sets are the inputs to the two feature-based experts as well as to the

MEC gating network. These features numbers correspond to those given in Chapter 5.

Segmentation of Figure 8.7 by various single model methods are shown in Figure

8.8. Note that the phantom image in Figure 8.7 is one of the cases we claim in Chapter 1

that most single model methods would fail on because of the multiple image formation

processes for the four different patches. We certainly do not expect methods such as the

K-means classifier that rely on the mean and variance of image to perform well at all.
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VNTN MT P

K-means Probabilistic Co-occurrence

Figure 8. 8 Segmentation results by single model methods on Figure 8.7. Clearly 8.7 is composed ofseveral different types of images and most single model methods fail on these images.

Of the single model methods, as shown in Table 8.6, the probabilistic co-
occurrence method has obtained the least classification error. The parameters for these
methods are: KNN has a K of 24, MLP has an input map of 9x9, a hidden layer of 40
nodes, and has been trained for 50 epoches to obtain an output mean square error of 0.29.
The probabilistic co-occurrence has an input size of 25x25 to yield the 4 co-occurrence
matrices described in Appendix A. Both K-means and EM Mixture of Gaussian have been
iterated for 10 epoches each.
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Feature-based Classifier 1

SG Network

Gating Logistic 0 Hidden Nodes

Feature-based Classifier 2

SG Coincidence (2.0)

Gating Logistic 20 Hidden Nodes

Gating Softmax 0 Hidden Nodes Gating Softmax 20 Hidden Nodes

Figure 8. 9 Segmentation results of applying different MEC related algorithms to Figure 8.7. The top two are results
of applying the two feature-based experts with their respective optimal feature sets in (8.3). SG stands for
stacked generalization approach, and Gating stands for the gating network approach.SG Network refers to the
use of a single hidden layer with 40 hidden nodes) MLP trained for 5 epoches. The parenthesized numbers next
to the SG Coincidence represents the REJECT threshold of 2.0. Finally, the Gating network either has no
hidden layer (0 hidden nodes) or has I hidden layer (with 20 hidden nodes).
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Algorithm Name Classification Error

KNN 77.01%

MLP 60.56%

K-means 67.12%

Probabilistic Co-occurrence 15.26%

Gaussian Mixture (EM) 61.05%

Table 8.6 Segmentation results on the phantom image in Figure 8.7 by various single model methods.

In Chapter 1, we have mentioned that the difficulty for these single model methods

in segmenting Figure 8.7 lies in the single-model nature of their method while the image is

generated by multiple models. The Multi-Experts Classifier (MEC) is designed to deal

with these types of difficulties. Figure 8.9 shows segmentation results of several variations

of the gating network and stacked generalization MEC. We have tried different variations

of the MEC approach here to see how the segmentation results would be affected by

changes in the parameters of the MEC. The classification error for these various methods

are tabulated in Table 8.7. For segmenting the image in Figure 8.7, the segmentation

results seem to be robust against variations in the parameters of the MEC.

For the MEC approach, just as what we have described in Sub-section 8.2.1-8.2.5,

we use a two feature-based classifiers as the experts. Table 8.7 shows the segmentation

results for the various MEC schemes. SG stands for the stacked generalization approach

while Gating stands for the gating approach. The various versions of the MEC are

annotated in the caption for Table 8.7.

As shown in Table 8.7 once again, with the exception of the SG Network version

of the MEC, the multi-experts approach segment the image in Figure 8.7 better than any

single-model methods. No doubt that there are single model methods we have not

implemented that could perform very well in segmenting Figure 8.7. Nevertheless, the

MEC used here has inputs that are exactly the same as the feature-based experts. So, if

another method could perform well on Figure 8.7, its inputs are likely not to be the same

as those of the feature-based classifers considered here. That new method's inputs could

also be fed into the MEC to help the MEC to obtain even better results. Of course, this is
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Alrorithm Name Classification Error

Feature 1 (SAR) 3.92%

Feature 2 (GMRF) 4.03%

SG Network 4.22%

SG Coincidence (1.0) 3.56%

SG Coincidence (2.0) 3.30%

SG Coincidence (5.0) 3.30%

SG Coincidence (Infinity) 3.30%

Gating Logistic 0 hidden nodes 3.54%

Gating Softmax 0 hidden nodes 3.40%

Gating Logistic 20 hidden nodes 3.53%

Gating Softmax 20 hidden nodes 3.53%

Table 8.7 Segmentation results on the phantom image in Figure 8.7 by various MEC classifiers with
two feature-based experts. The top two rows show the feature-based expert segmentation
performance. SG stands for stacked generalization approach, and Gating stands for the gating
network approach.SG Network refers to the use of a single hidden layer with 40 hidden nodes)
MLP trained for 5 epoches. The parenthesized numbers next to the SG Coincidence represents
the REJECT threshold. Finally, the Gating network either has no hidden layer (0 hidden nodes)
or has I hidden layer (with 20 hidden nodes).

all speculation because we have not encounted such a method for testing yet. To test out

the speculation we just mentioned should be top priority for any futher work in this multi-

experts area.

(ii) phantom image with MRF states

We now try to segment a phantom image with a different topology from what we

Class 2

Class 1LClass 3s

K~lass 3

Figure 8.10 A phantom image with the underlying labels as a MRF. The left hand image is the true underlying labels
for the right hand image. Class 1 is a simulated SAR region with parameters {0.2, 0.2, 0.2, 0.2/. Likewise,
Class 3 is also a simulated SAR region with parameters {0.0, 0.5 0.5, 0.0/. These parameters correspond to
Equation 5.15. Class 2 has intensities from a Gaussian density of mean 150 and variance of 900.
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have been using in this chapter to ensure that the topology of the different regions does

not affect the relative performance of different segmentation methods.

Shown on the right hand side of Figure 8.10 is a phantom image whose underlying

class regions are generated using a Gibbs sampler with a 3= 1.5 for 2000 iterations. (The

MLP

Probabilistic Co-occurrence

EM Gaussian Mixture

Figure 8. 11 Segmentation results on Figure 8. 10 by various single model methods.The true underlying
class labels are given in Figure 8.10
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Gibbs sampler was originally introduced to restore images by imposing a MRF priors on

the local spatial field [Geman and Geman, 1984]. So the class labels actually form a MRF.)

A brief introduction of Gibbs sampler has been given in Chapter 2.

Segmentation of Figure 8.10 by various single model segmenters are shown in

Figure 8.11. The K in KNN is 24. MLP has an input intensity map of 9x9, one hidden

layer of 40 units and has been trained for 100 epoches to achieve an output mean square

error of 0.15. Both K-means and EM Gaussian mixtures have 10 iterations to estimate

their model parameters. Finally, the probabilistic co-occurrence approach used 4 co-

occurrence matrix with 8 uniform bins and an input region size of 25x25 [Lohmann,

1995].

Algorithm Name Classification Error

KNN 17.92%

MLP 29.48%

K-means 5.25%

Probabilistic Co-occurrence 5.07%

Gaussian Mixture (EM) 8.05%

Table 8.8 Segmentation results on the phantom image in Figure 8.10 by various single model methods.

Table 8.8 shows the numerical results in segmenting Figure 8.10 by various single model

methods.

In selecting the two optimal feature sets for the phantom image in Figure 8.10,

another technique is attempted since we only have an odd number of classes. The first

optimal set of the features is chosen in the usual way. The second optimal set is chosen

also in the same as the first feature set with the condition that no feature in the second

optimal feature set can also be in the first optimal feature set.

By following the above two steps, the two optimal feature sets for the phantom

image shown in Figure 8.10 have been chosen to be:

optimal feature sets: (1, 4, 13, 10)
{3, 11, 21, 7, 16} (8.4)
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Feature-based Classifier 1 Feature-based Classifier 2

SG Network SG Coincidence (2.0)

Gating Logistic 0 Hidden Nodes Gating Logistic 20 Hidden Nodes

Gating Softmax 0 Hidden Nodes Gating Softmax 20 Hidden Nodes

Figure 8.12 Segmentatin results on phantom image in Figure 8.10. For the meaning of the notation below each
figure, refer to Figure 8.9.
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Algorithm Name Classification Error

Feature classifier 1 2.91%

Feature classifier 2 3.30%

SG Network 3.64%

SG Coincidence (1.0) 2.64%

SG Coincidence (2.0) 2.64%

SG Coincidence (5.0) 2.64%

SG Coincidence (Infinity) 2.64%

Gating Logistic 0 hidden nodes 3.28%

Gating Softmax 0 hidden nodes 3.28%

Gating Logistic 20 hidden nodes 3.30%

Gating Softmax 20 hidden nodes 3.30%

Table 8. 9 Segmentation results on the phantom image in Figure 8.10 by various MEC classifiers with
two feature-based experts. For the meaning of the algorithm name, refer to the caption in Table
8. 7.

Table 8.9 shows the MEC segmentation results. Comparing with the results in

Table 8.8 for the single model methods, we once again see that all the MEC approaches

achieve low classification error while only a few of the single model methods -- the two

feature-based classifiers -- achieve such low error.

Refering again to Table 8.9, we see that for the coincidence approach to SG and

the gating network approach to MEC, the classification performance is not affected very

much by changes in the MEC's parameters.

8.2.7 Comments on the Segmentation Results

This section has evaluated several single model segmenation methods and the

MEC approach. The general observation is that on average, MEC outperforms every

single model approach.

In the following section, the MEC will be applied to different types of real world

images. Unfortunately, unlike the phantom images we have considered in this section, the

true class labels of real world images are unknown. Therefore, performance comparison

among different techniques can only be done qualitatively -- through visual inspection.
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8.3 Real World Image Segmentation

With the quantitative segmentation results on various types of images shown in

Section 8.2, we expect the MEC to perform better than most single model methods. In

this section, we apply the MEC, along with those single model methods to segment two

real world images. Both of these images are related to the auditory system. The first one is

a slice of an X-ray CT of the Visible Man's outer and middle ear region, with a clear view

of the external auditory canal. The second image is also a middle ear CT slice of a gray

whale.

(i) Visible Man Ear

From the Visible Man data set, we have chosen one image (top of Figure 8.13) to

demonstrate the segmentation performed by different algorithms. The results are shown in

the lower portion of Figure 8.13. An expert user randomly chooses 20 learning sets and

20 testing sets for each of the four classes before training the MEC. Two sets of optimal

features are chosen according to the method described for the phantom image with MRF

state labels in the last section. These two feature sets are:

optimal feature sets for the Visible Man Ear image
Optimal Feature Set 1 : { 1, 17, 13}
Optimal Feature Set 2 : {3, 22, 9)

Although no quantitative information can be obtained about the segmentation

results, by just looking at the segmented images, we can see that all the MEC approaches

have obtained pretty good segmentation results compared to the single model methods.

(ii) Gray Whale Ear

To convince ourselves that the good segmentation performed by MEC in Figure 8.13 is

not just luck, we will try all the segmentation algorithms on another real world image. This

second image belongs to a CT slice of a gray whale middle ear region. Just like the Visible

Man ear case, the two optimal feature sets chosen are:
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Original Image

KNN MLP

K-means Probabilistic Co-occurrence

EM Mixture of Gaussians Feature-based Classifier 1

SG Coincidence (5.0)

Gating Logistic (0 Hidden Nodes)

Feature-based Classifier 2

Gating Softmax (0 Hidden Nodes)

Figure 8. 13 Different segmentation results on segmenting the Visible Man X-ray CT slice at the top of the page.
For the meaning of the notation below each figure, refer to Figure 8.9.
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optimal feature sets for the Visible Man Ear image
Optimal Feature Set 1 : {3, 7, 8, 2}
Optimal Feature Set 2 : { 1, 6, 0, 5, 1, 16, 17, 19}

The segmentation results performed by the different segmentation algorithms are shown in

Figure 8.14. The top figure in 8.14 is the original image. An expert user randomly chooses

20 learning sets and 20 testing sets for each of the four classes before training the MEC.

Although we cannot have a quantitative evaluation of these segmentation results, we can

see from 8.14 that all the MEC segmentations are pretty good, relative to all other

availabel methods.

8.4 Discussion of Results

We have presented experiments and results on both synthetic and real world

images. In every case, the MEC approach consistently performs well on different image

segmentation tasks. Quantitatively, we have measured the classification error of various

image segmentation techniques on several different phantom images. We have seen that in

every case, the MEC implementations have achieved either the lowest or one of the lowest

classification error. By varying different parameters of the MEC, we have also observed

that the segmentation results are not changed significantly. This observation suggests that

the MEC approach to image segmentation is a robust and stable approach.

In segmenting real world images, only qualitative observation can be made because

the underlying class labels are generally unknown. For segmentation tasks on these real

world images, we have also observed that the MEC implementations have achieved

encouraging segmentations on these images, in comparison with the other single model

methods we have available.
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Original Gray Whale Ear Image

Probabilistical Co-occurrence

EM Gaussian Mixtures Feature-based Classifer I

Gating Logistic (0 Hidden Nodes) Gating Softmax (0 Hidden Nodes) Featuer-based Classifier 2

Figure 8. 14 Image egmentation by various techniques on the CT gray whale ear image at top of the page. For
the meaning of the notation below each figure, refer to Figure 8.9.

153

MLPKNN

K-means

Chapter 8 EXPERIMENTS AND RESULTS



Segmentation of real world images always raises the question of how do we know

when we have found the true region boundaries? The fact is, unless we have a priori

knowledge about the image, there is no way we can verify our segmentation results. For

example, for certain medical images, a histology study of the actual organ, cells, or other

objects in the image could verify within certain error bound the accuracy of a

segmentation task. However, this procedure is very time consuming and is generally

unavaiable to most image processing practitioners or to most physicians.

Another way to obtain the a priori knowledge of the true underlying class labels is

to construct phantom images, as we have done in this thesis. By consistently verifying that

a segmentation technique performs better than other technques by the use of phantom

images, image processing practitioners can build up their faith in that technique. Of

course, if the qualitative evaluation of this technique on real world images is not good,

even if it performs well on phantom images, people would probably be reluctant to use this

method.

In this chapter, we have verified by using several different types of phantom

images that the MEC approach consistently performs well with respect to the other

segmentation techniques considered in this thesis. Furthermore, we have shown that the

qualitative observation of the MEC segmentation results on real world images are very

encouraging.

154

Chapter 8 EXPERIMENTS AND RESULTS



Chapter 9

CONCLUSION

A multi-experts approach to image classification and segmentation has been

proposed. This thesis has argued that this approach is more appropriate than many single-

model approach for processing real world images. Real world images are likely to be

results of various image formation processes. Modeling all these process simultaneously is

a very challenging task and no method proposed so far can claim success in this respect.

This thesis presents a possible approach to deal with such a task through the multi-experts

architecture. The key problem addressed by this thesis is how to combine different experts

to yield sensible combined results.

This thesis has proposed two classifier designs for combining different methods (or

experts) in the multi-experts approach. These two classifiers are based on two recently

proposed statistical techniques. The first one is a gating network approach based on the

work of Jordan and Jacobs (1994). The idea behind this approach is to weigh the outputs

of different experts by appropriate priors. These priors are determined by a gating network

which partitions the input space to allow the experts better suited for certain inputs to

have higher weights for those inputs. At the same time, the experts which perform poorly

on certain input patterns automatically receive lower weighting factors. The second

proposed multi-experts classifier is based on Wolpert's (1992) idea of stacked
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generalization. The stacked generalizer makes generalization to yield the overall outputs

by observing the predictions made by the classification experts.

Experimental comparisons have been made on the performances of many

traditional image segmentation methods as well as the Multi-Experts Classifier (MEC).

We have quantitatively tested these methods on various phantom images and have

observed that the MEC, on average, does better than any of the other methods. The

quantification of "better" is measured by the number of corrected labeled pixels. These

preliminary results are very encouraging for the multi-experts approach to image

segmentation (or pixel classifications).

Future Works

To the fields of image classification and segmentation, this thesis is like an explorer

who has just landed on a big tropical island. He is only able to gather only a few items on

the island to bring back with him because his ship is not big. There could be many valuable

resources on this island, but the explorer is not able to find out about them because his

stay on the island constrained by time. Nevertheless, based on those resources he can see,

the explorer has a strong feeling that this island has tremendous development potential.

This thesis has only explored a small territory in using the multi-experts approach

to image classification and segmentation. As mentioned in the introduction, robust

processing of real world images is likely to require more than one single model because

real world images are rarely entirely composed of stationary signals. Real world images

have regions that are results of different image formation processes such as shading,

texture, motion, etc. There are many possible directions for future works, which include

the following:

Perhaps, the most straightforward extension to this work is to explore the

incorporation of additional experts. Several issues have to be resolved in this respect,

this bullet point considers one of them. For the gating network approach, the current

inputs to the gating networks are the optimal feature sets. These features are the entire
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set of inputs to all the experts available. Using these features make sense because the

function of the gating network is to partition the entire input space to the different

experts. Now, for example, if the probabilistic co-occurrence method is to be included

as an additional expert. It is not immediately clear how to add features to the gating

network to accommodate for the co-occurrence method. In the case of the K-means,

on the other hand, the inputs to the K-mean could be changed to the optimal feature

sets. No additional to the gating network input is required. Nevertheless, investigation

has to be conducted on how to add new input features to the gating network as new

experts are added.

* For the stacked generalization approach of the MEC, when a new expert is added, no

difficulty as the gating network approach is encountered here. However, as more and

more experts are added while the learning set remains constant, the resulting learning

problem could be quite difficulty. Therefore, investigation has to be conducted to

explore how to deal with this increased complexity in the learning algorithm. In the

case of the coincidence tensor approach of the stacked generalizer, more experts

means that the dimension of the coincidence tensor is increased more and more. If the

learning set remains constant, many elements of the tensor would be zero. Sparse

entries could lead to error in generalization. Therefore, research is definitely needed to

deal with this problem.

* From the parallel nature of the gating network and the serial nature of the stacked

generalizer, one can see that these two methods can be combined. For example, results

from the stacked generalizer could be considered as another expert. In the gating

network framework, if there are N experts originally, an additional stacked generalizer

would increase the number of inputs to the gating network to N+1.

* A more theoretical question is what is the limit of the multi-experts approach. By the

limit, we mean if there exists a minimum error that this approach cannot eliminate

either by further partitioning the input space or by learning from the output of

additional experts. A related question is, how do we know whether by incorporating
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an additional expert, the performance of the overall system would be increased or

decreased?

This thesis has only demonstrated the application of the multi-experts approach to the

image classification and segmentation tasks. As a general framework for approaching

pattern recognition or vision tasks, the multi-experts approach could serve to advance

algorithms for more robust pattern recognition or image processing. The potential of this

approach is yet to be fully realized.
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Appendix A

A PROBABILISTIC APPROACH
TO CO-OCCURRENCE MATRIX

In Chapter 2 and Chapter 5, features based on co-occurrence matrices have been

discussed. This appendix details a novel approach proposed by Lohmann (1995) using

multinomial distributions to parametrize the co-occurrence matrix coefficients.

The key argument that Lohmann used to support his approach is that all of the

popular features derived from the co-occurrence matrices fail to retain the sufficiency to

represent a textural image without losing any information. In other words, the extracted

features cannot by themselves be used to derive the original co-occurrence matrix. These

features can definitely not represent the texture information completely. An assertion of

his paper is that the four co-occurrence matrices contain sufficient information to

represent textural images sufficiently. Justification of his new approach is given by the

observing the striking similarity between an original texture and a simulated texture using

the co-occurrence matrices. Initial results on Brodatz textures and LANDSAT images are

very encouraging and have aroused the author to adopt it for robust texture classification.

Most impressive about this approach is that no feature-selection is required while the

technique seems to work very well with a variety of images. In the following paragraphs, a

brief description of this new approach is given. The background of using co-occurrence

matrix for classifying images has been given in the second chapter of this thesis.
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A PROBABILISTIC APPROACH TO CO-OCCURRENCE MATRIX

For simplicity of notation, consider a texture with only one co-occurrence matrix

with the normalized coefficients ci such that i,j c, = 1.0 . Let xi1 be the number of pairs of

pixels with gray values (i, j) or (j, i) in a population of n pixels, then xij = [n x cij] and

iijx U = n. For classifying any pattern into N classes, the natural probability model to

use is multinomial density. For this problem, the multinomial density can be used to model

the probability of selecting xi number of pairs given the co-occurrence matrix. If cy is the

co-occurrence matrix coefficient for the entire image, then the likelihood of finding the

feature vector x is:

p(x)= n! r1 (A.1)
i=1,j= •j1 Y

A given feature vector x can be regarded as evidence supporting or refuting a

classification hypothesis. To quantitatively measure the strength of the evidence, one can

apply Bayesian concepts. Let z represents a class or state variable identifying x to a certain

class k, then,

p(xlz = k)p(z = k) p(xlz = k)p(z = k) (A.2)
p p(xlz = m)p(z = m) p(x)

m

Usually the prior probability p(z) is known and is taken to be equal across all

classes, i.e. p(z=k) = 1/K for all K classes. To classify x into one of K classes, Lohmann

applies a concept in information theory known as mutual information, I(x, z), which is

essentially the log likelihood of the Bayesian probability p(z=klx). If I(x, z) > 0, the x

supports classification hypothesis z. If I(x, z) < 0, the x refutes hypothesis z. Finally, if I(x,

z) = 0, the x neither supports nor refutes z. Using the multinomial distribution as the

parametric model for modelling the co-occurrence matrix coefficient features,

mC

p(xlz = k)=n! - ',k (A.3)
x.
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A PROBABILISTIC APPROACH TO CO-OCCURRENCE MATRIX

where Ci,k represents the normalized co-occurrence matrix coefficient for class k.

Now, we can express the mutual information as the following:

I(x, z = k) = logp(xlz=k) = (log cU,k - log c, ) (A.4)
p(x) ij

This quantity can be readily calculated provided that qij,k and cij are both greater

than 0. For dealing with multiple evidence from several co-occurrence matrices of a given

image, Lohmann assumes that the coefficients between different co-occurrence matrices

are independent. For two co-occurrence matrices, the mutual information can be

expressed as,

p(x',x 2 1z = k) = (xolz = p(x(x21z = k)
p(x',x 2) p(xl)p(x 2)

p(x'Iz = k) p(x 2Iz = k)= log + log = I(x',z = k)+ I(x 2, z = k)
p(x i ) p(x 2 )

where xl and X2 are the feature vectors for two different co-occurrence matrices.

Although the coefficients' independence assumption is highly doubtful, Lohmann observes

that the error incurred by this assumption is small and can be tolerated. Generalization for

more than two co-occurrence matrices is obvious.

As we have mentioned briefly earlier, the most impressive aspect of this novel

approach is that no "optimal" features set is required be chosen first before a good

classification results can be obtained. In this respect, this approach is like the non-

parametric approaches, but it is definitely a parametric method. But the parametrization

operations are done automatically without any intervention from the algorithm designer.

161

Appendix A



Appendix B

THE INCOMPLETE DATA PROBLEM
AND EXPECTATION MAXIMIZATION

This appendix describes the incomplete data problem and its application for finding

the maximum likelihood (ML) estimates of incomplete data through expectation

maximization (EM). This EM approach was first formulated by Dempster, Laird and

Rubin in their landmark paper [Dempster, et.al., 1977] and has been the most successful

method for approaching the incomplete data problem. Such approach has been extensively

used by many researchers for finding the ML estimates of incomplete data in various

problems. A few recent applications can be found in [Jordon, et.al., 1993a, 1993b; Liang,

et.al., 1994; Zhang, et.al., 1994]. This thesis has used EM to find the ML parameter

estimates of various image models, Details of which can be found in Chapter 4.

Consider an image with observed intensity vector y, for every pixel i there exists

both the observed intensity value yi and the unobserved class label zi. Since y does not

directly give information about the values of z, the observable y is often called the

incomplete data. The set of random variables x = { y, z }, which includes both the

observed y and the unobserved z, is called the complete data. We model the incomplete

data y by the probability density function (pdf) f(ylD) where D is the set of parameters to

be estimated for the pdf. The ML approach for estimating the parameters through the

incomplete data y can be expressed by the following estimator:
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THE INCOMPLETE DATA PROBLEM AND EXPECTATION MAXIMIZATION

V*" = arg max f(yl ).

Dempster and his colleagues in [Dempster, et.al., 1977] presents solution to this

ML problem in an iterative fashion through two steps, the (E)xpectation step and the

(M)aximization step. Assume an initial estimate of the parameters is (o and p stands for

the current iteration:

E-step: estimate the expectation of the log-likelihood of the complete data using

the current parameter estimates 4 *('). Let Q(41I V*P) ) represent this

expectation:

Q(oI • *p ) = E[log(f(xl )l y, (Q*(p)]

M-step: maximize the expectation of the log likehood by finding the next best

parameter estimate (P):

*(p+l)= Y)

The paper [Dempster, et.al., 1977] also presents derivation of the EM

convergence results. The E and M steps turn out to monotonicly increase the

E[log(f(xlF)] in every iteration.
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Appendix C

A PROBABILISTIC MODEL
FOR THE GATING NETWORK

In this appendix, the gating network discussed in Chapter 3 will be discussed in a

probabilistic framework. This framework is derived from first principles based on Bayes'

theorem. Much of the discussion here is quite intuitive and has very likely already

appeared quite extensively in the statistical and learning community such as in [McCullock

and Nelder, 1984; Dobson, 1989].

The problem we are concerned about here is the N-way classification of a given

input vector y. Assume that each of the N different classes is parametrized by a set of

parameters, D, E { CI, 42, ... 4 N }. The probability of input y in state n can be represented

by the state variable z, where 0.0 • z 5 1.0. We can view the classification problem as

finding the best state z with parameters 0Q% to be associated with the given input y, which

can be expressed as :

z* = arg max p(zly, D) (C.1)

where p(zly,4) is the posterior probability of the data in state z. Let's consider a very

general class of probability distribution for the input data y -- the exponential family which

includes the normal, multinomial, Poisson, gamma, and many of the other familiar

distributions. The general form of the exponential family distribution can be expressed as

[Jordan and Jacobs, 1994]:
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A PROBABILISTIC MODEL FOR THE GATING NETWORK

f(ylg,o)= kexp{(g(g)y -b(g))/o +c(y,g)} (C.2)

where k is a normalizing constant, g represents model parameters called the "natural

parameters", and a represents some dispersion constants of the distribution. g(.), b(.), and

c(.) are functions that depend on the type of exponential disbributions involved. With the

data distribution function, we can write the posterior probability as :

f (Ylz, D,)P(z, D~,n)p(zly)= f(ylz,cD,)p(z, O)

J

e (gQ(n)Y-b(gn))/ +c(y,4,)}elog p(z, D) (C.3)

e (g())Y- b(gn))l / +c(Y, ,)}elog p(z, On)

To illustrate concretely what the above expression is, we consider the Gaussian

distribution family. Here On = { gn,, on }. To avoid excessive notations, we assume that the

covariance matrices are diagonal :

ey2 n n 2 e log p(z,4D)
f(, Ix) = (C.4)2e 2 n(Y ) 2 log p(z, (I,)

For N = 2, the above equation is reduced to the following familiar expression when we

compute the posterior probability of input y being in class 0 :
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Y2 0 (Y o)2 log p(zo, o)

p(Zolx,Ao)= e

e Y 2 2 (Y-0 PgO)2 logp(zo, o)+e Y 2 2 (Y )' log p(z,,)

1
(C.5)

1+eI(Y- _o)2 /2)_ (y _ 2 /y21 e log p(zI, GD,) / p(zo, (o)

1

1+ ewTIY y+wo

where wTI is the transpose of (go/ao-gi/ai) and wo is the constant I (121j/1L20/o 20)-

logp(zo,'Dj)/p(zi,0o) }. The simple expression (5) above is the well known logistic

function. p(zjly,A,) has a similar expression with appropriate subscript changes.

For N-way classification where N > 2, a natural choice for the state likelihood is

the multinomial distribution as discussed in Chapter 3 of this thesis. Consider m trials, the

likelihood of the states has the form:

f(zz2 ,...l p(z (C.6)
i=1 Zi

where 1 p(z i ) =1.0 , i z = m, and for classification problems, m is one. The

exponential form of this likelihood is :

f (zl, z2, ... z•ZN )=eXpln y =m. + zi ln p(zi Iy,') (C.7)

The posterior probability in class zi = k is derived in [Jordan and Jacobs, 1994]. The

probability of state zi can be expressed as the so-called softmax function:

&WTi y + Wio
p(z~l y, (,) = e (C.8)

w eW lyIY + W
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This function is a reasonable expression when we consider expression (C.3), which is

already in the form of (C.8). When we incorporate the constant exponential factors wio into

the vector dot product term by augmenting the y vector by a constant 1 element, we get

the following simple form for the softmax function :

p(zix, i ) = e (C.9)

This softmax function soft-partitions an input space because a given y has non-

trivial membership in all of the classes since Equation (C.9) is never zero for any wi.

Equation (C.9) gives a probability measure of how likely input y is in each of the K

classes.
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Appendix D

EXAMPLE OF A LEARNING SET INPUT FILE

Here is a sample learning sets input file for evaluating the performances of different

segmentation algorithms on the image whale.abd. The first column of the learning pairs section represents

the class label, the second column represents the learning pair number in the class. Finally, the coordinate

of the learning point is written, the value of which is obtained directly from the image.

image file: whale.abd
number of classes: 4
number of learning set for class 0: 20
number of learning set for class 1: 20
number of learning set for class 2: 20
number of learning set for class 3: 20
1 (1) (33, 16)
1 (2) (22, 42)
1 (3) (45, 35)
1 (4) (68, 26)
1 (5) (83, 21)
1 (6) (96, 41)
1 (7) (104, 23)
1 (8) (106, 110)
1 (9) (68, 112)
1 (10) (25, 109)
1 (11) (28, 82)
1 (12) (70, 84)
1 (13) (44, 88)
1 (14) (36, 52)
1 (15) (64, 62)
1 (16) (88, 41)
1 (17) (87, 82)
1 (18) (104, 66)
1 (19) (121, 51)
1 (20) (74, 123)
2 (1) (201, 56)
2 (2) (184, 40)
2 (3) (164, 60)
2 (4) (153, 92)
2 (5) (136, 95)
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2 (6) (173, 121)
2 (7) (186, 86)
2 (8) (203, 104)
2 (9) (222, 86)
2 (10) (226, 55)
2 (11) (194, 34)
2 (12) (157, 30)
2 (13) (146, 48)
2 (14) (184, 19)
2 (15) (226, 17)
2 (16) (240, 21)
2 (17) (237, 88)
2 (18) (217, 94)
2 (19) (157, 16)
2 (20) (193, 108)
3 (1) (53, 142)
3 (2) (45, 164)
3 (3) (27, 152)
3 (4) (18, 185)
3 (5) (42, 191)
3 (6) (79, 176)
3 (7) (93, 149)
3 (8) (92, 199)
3 (9) (105, 177)
3 (10) (116, 192)
3 (11) (110, 222)
3 (12) (85, 224)
3 (13) (46, 220)
3 (14) (42, 246)
3 (15) (27, 215)
3 (16) (20, 234)
3 (17) (100, 238)
3 (18) (113, 206)
3 (19) (28, 193)
3 (20) (54, 234)
4(11)(218, 156)
4 (2) (190, 155)
4 (3) (164, 166)
4 (4) (148, 193)
4 (5) (148, 151)
4 (6) (174, 144)
4 (7) (188, 199)
4 (8) (216, 191)
4 (9) (185, 233)
4 (10) (157, 235)
4 (11) (211, 242)
4 (12) (211, 215)
4 (13) (241, 206)
4 (14) (236, 154)
4 (15) (199, 200)
4 (161) (196, 150)
4 (17) (149, 138)
4 (18) (139, 171)
4 (19) (185, 147)
4 (20) (200, 225)
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