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Abstract

In this thesis, the effect of volume scattering from the buried particles in half-space
random media on the radar backscattering cross section is investigated. The radar
clutter from a flat desert area is modeled as spherical scatterers randomly embedded
within a layered medium with flat interfaces. Three approaches are used to calculate
the backscattering coefficients.

The Monte Carlo method based on Transition matrix (T-matrix) approach is first
applied. The multiple scattering and the coherent wave interaction are included in
this approach. The couplings between scatterers and the interface are taken into
account by using the image method. The multiple scattering equation is solved using
the iterative technique. The solution process repeated for many realizations and
averaged to calculate the backscatter.

The Radiative Transfer theory (RT) approach is also presented. The RT theory is
based on the concept of energy transport and the assumption of independent scatter-
ing. The numerical solution of the RT equation is obtained using the discrete-ordinate
eigenanalysis method, which includes all orders of multiple scattering.

Finally, the First Order Analytical Approximation is applied to obtain the first
order solution of the multiple scattering equations derived based on T-matrix method.
The First Order Analytical Approximation assumes positions of particles to be inde-
pendent. The effects of coherent wave interactions are considered in this approach.
However, the multiple scattering effects are neglected. The Rayleigh scatterer is
assumed for each particle. A compact analytic expression for the backscattering co-
efficients is obtained.

The numerical calculations from all three approaches are performed and then
compared. It shows that the results using RT approach are in good agreement with
those of the Monte Carlo approach in this study. The First Order Analytical Ap-
proximation always gives higher returns than the other two methods, which may be
accounted for by the assumption of independent particle position. Thus, from this
study, though not including coherent wave interaction, the RT approach is a good
model in prediction the radar return from desert media. Some parametric studies



base on RT are also performed which shows that the particle size plays an important
factor in the high radar return level.
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Chapter 1

Introduction

1.1 Introduction

In the microwave remote sensing of earth terrain, there are two major sources which

give significant contributions to the radar backscattering coefficients. One is the

volume scattering. The other is the scattering from rough surfaces. In the volume

scattering problem, two theoretical models have been: (1) the continuous random

medium model in which scattering comes from a random fluctuation of the per-

mittivity, and (2) the discrete random medium model where discrete scatterers are

randomly imbedded in a homogeneous background medium. In the discrete random

medium approach, spheres, spheroids, ellipsoids, discs and cylinders are among the

most commonly used models of scatterers. The continuous random media model is

described by a random permittivity consisting of a mean part and a fluctuating parts.

The fluctuating part is usually described by its variance and its spatial correlation

function [23].

In the active remote sensing, there have been many works on the modeling of

the volume scattering [25], [14], [26], [28], [9]. These models can be categorized into

two classes: (1) wave theory, and (2) radiative transfer theory (RT). In the wave

theory models, the solutions are obtained directly by solving Maxwell's equations

for the electromagnetic fields. Thus, the solutions by the wave theory contain phase

correlations and coherent wave interaction among scatterers. Therefore such models



can be used in applications which require the phase relation of backscatter such as

Synthetic Aperture Radar (SAR) images simulation. On the other hand, the RT

theory is not derived from Maxwell's equations; it is based on the energy transport

equation. The fundamental quantities in the energy transport equation are not the

electromagnetic fields but rather energies. The RT theory assumes incoherent wave

interaction and ignores the phase relations between scattered waves from individual

scatterers. However a major advantage of RT theory is that it can be applied in a

more complicated configuration that are generally too complex to be solved by the

wave theory.

In June 1993, a ground penetration radar (GPR) experiment was conducted in

Yuma, Arizona [15], [16]. In this experiment, a number of SARs, including the SRI

SAR covered the frequency bands 100-300 MHz, 200-400 MHz, and 300-500 MHz, and

the Rail SAR covered the frequency band 250 MHz to 1 GHz, were applied to measure

the backscatters from buried targets, surface targets, and the desert radar clutter.

During the experiment, extensive clutter data were collected. The soil properties and

samples of surface profiles were also measured.

In general, the radar clutter from the desert terrain is a function of vegetation,

surface roughness, and soil inhomogeneities. From the Yuma experiment, the median

backscattering coefficients were approximately -29 dB, -27 dB, and -25 dB for the

100-300 MHz, 200-400 MHz, and 300-500 MHz bands, respectively. The standard

deviations were all about 6.9 dB [15], [16]. As expected, the backscatter was higher

at higher depression angles. The backscattering coefficient increased approximately

6 dB over the 30-60 degree depression angle range. It was found, even in an area

where the ground surface was flat and without any visible surface vegetation, that the

backscatter was significantly higher than both the noise level and the level predicted

by using a simple rough surface scattering model. It appeared that an appreciable

amount of volume scattering due to soil inhomogeneities may contribute to the total

backscatter.

In this thesis, we shall study the volume scattering due to rocks beneath the desert

terrain. The wave and RT theories are used in conjunction with a discrete particle



model. In the wave theory approach, the Transition Matrix (T-matrix) approach is

applied and extended to calculate the multiple scattering from randomly distributed

particles with different sizes [2]. The effects of particle-boundary interaction are

taken into account by using the image method to approximate the scattered fields

from buried objects which are further reflected at the boundary. An iterative solution

technique is applied to solve the multiple scattering equation [30]. Then, the Monte

Carlo simulation technique is used and the results are averaged over many realizations

to obtain the backscattering coefficients. The First Order Analytical Approximation

is another approach based on the wave theory. The First Order Analytical Approx-

imation is obtained from the first order solution of the multiple scattering equation

derived from the T-matrix formalism. By taking the configurational average over the

first order scattering amplitude, the scattered field is obtained in a compact form.

The RT approach is also presented in this work. The principal constituents of the RT

equation are the phase matrix and the extinction matrix which are calculated based

on the random discrete scatterer model. The RT equation is solved using the discrete

ordinate-eigenanalysis numerical method [30].

These three approaches will be applied to study the volume scatttering which

may be a possible cause to the high radar return from the 1993 Yuma experiment.

Numerical results will be presented using typical physical parameters. The backscat-

tering coefficients as functions of radar parameters and physical properties of the

desert terrain will be presented. Results calculated using the three approaches will

be compared. The appropriate conditions for the use of each approach will also be

discussed. The developed volume scattering models may be applied to predict the

radar clutter from desert media and to assess the possibility of locating and identifying

underground targets.

1.2 Model Configuration

In this study, scattering due to surface roughness is ignored, and rocks are replaced

by spherical particles. Figure 1-1 shows the geometrical model. The model consists
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Figure 1-1: Configuration of the model

of layered media with flat interfaces. The particles are randomly embedded in region

1, and they may have different sizes and permittivities. The upper half-space is

assumed to be air with permittivity Eo and permeability Mo. The surface between air

and soil is assumed to be flat. The background medium is a homogeneous half-space

with permittivity cm, permeability pm and, conductivity am. All the scatterers are

assumed to be of spherical shape.

1.3 Description of The Thesis

The remaining of the thesis has five chapters. Chapter 2 gives the detailed discus-

sion on the Transition matrix (T-matrix) approach. The derivation of T-matrix and
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multiple scattering equation is given. In Section 2.5, the multiple scattering equation

is modified using the image particle method to take into account the particle-surface

interaction when an interface is present. The iterative technique used in solving

the modified multiple scattering equation is described in Section 2.6. In Chapter

3, the radiative transfer equation is presented along with its main constituents, the

phase matrix and the extinction matrix and the numerical method for solving the

RT equation. Chapter 4 discusses the use of analytic method in solving the first

order multiple scattering equation by taking configurational average over particle po-

sitions. In Chapter 5, numerical simulation of the backscattering coefficients fir these

approaches is performed using the physical parameters used in Yuma experiment.

Discussions about the results from each approach are also given in this chapter. Fi-

nally, a summary and a conclusion as well as some suggested future works are given

in Chapter 6.





Chapter 2

Transition Matrix

In this chapter, the Transition matrix (T-matrix, also known as the System Transfer

Operator) approach is presented. The T-matrix method utilizes spherical wave ex-

pansions for both incident and scattered fields. The extended boundary condition is

used to derive a system of linear equations relating the coefficients of the scattered

fields to those of the incident field. The final relation between the scattered fields

and the incident field is cast into a matrix form known as the transition matrix or

the T-matrix. The multiple scattering equations have been established by extending

the T-matrix formalism to an arbitrary number of scatterers. For a large number of

particles, the multiple scattering equations can be solved using iterative technique.

The Monte Carlo simulation method is then applied to calculate the scatttering from

an assembly of particles by averaging over many realizations.

2.1 Solution of The Spherical Wave Equation

We begin the discussion of T-matrix approach with the derivation of the solutions

of the spherical wave equation. In a linear, isotropic, homogeneous and source-free

medium, an electromagnetic wave must satisfy the wave equation

(v + k) ={ 0 (2.1)



where k = wV1/ is the wave number of the medium with permittivity e and perme-

ability p.

The general solution of Equation (2.1) can be constructed from a scalar function

¢ which satisfies the following scalar wave equation

(V2 + k2) 0 = 0 (2.2)

and an arbitrary constant vector ?. The vector wave functions M, N, and L :

M=V x (Nb)

-- Vx M

(2.3)

(2.4)

(2.5)

can be shown to satisfy the vector wave equation

VxVx{ - k2 = 0 (2.6)

(2.7)

Therefore, the problem of finding solutions to the wave equation reduces to a

comparatively simpler problem of finding solutions to the scalar wave equation.

Let

S= R(r)E(0)4(¢) (2.8)

and transform Equation (2.2) into spherical coordinate, we obtain the following dif-

ferential equations for each spherical variable r, 0, and 4

+ [(kr)2 - n ( n + 1)] R = 0
d2

rT- (rR)dr2 (2.9)



1 d) m2Sd sin • + n(n + 1) i- M2  = 0 (2.10)
sin 0 dO sindO sin2 =

d2@
+ m 2 ¢ = 0 (2.11)

d02

The general solution of the Helmholtz equation in spherical coordinate system is

[13]
Rgomn(kr, 0, 0) = in(kr)Pm(cos O)eim) (2.12)

with n = 0, 1, 2, ... and m = 0, 41, +2, ..., ±n, in is the spherical Bessel function of

the n th order, PF(cos 0) is the associated Legendre polynomials, and Rg stands for

Regular which denotes that the solution is finite at the origin. The outgoing wave

solution, which is used to describe the scattered fields, has the following form

Omn(kr, 0, ¢) = hn(kr)Pm(cos9)e im o (2.13)

where the spherical Bessel function j, has been replaced by the spherical Hankel

function of the first kind hn. Then we use the relations (2.3) and (2.4) to construct

the regular vector spherical wave functions RgM, and RgN as [30]

RgMmn(kr, O, 0) = ymnV x (fRg 'mn(kr, 0, 0)) (2.14)

RgNmn(kr, 0, ) = kV x (RgMmn(kr, 9, q)) (2.15)

where
(2n + 1)(n - m)!7mn = (2.16)

Ym 47r (n + 1)(n + m)!

In terms of regular vector spherical wave functions, a plane wave propagates in

the direction ki can be expressed as [30]

Ei = (E,ii)i + Ehihi)ei



(2.17)= S [a•nm) RgMmn (kr, 0, q) + a(NjRgNmn(kr, 0, )]
mn

where a(M) and a(N) are the expansion coefficients

Ymn n(n + 1)

S1 (2n + 1) i (amNn )m n n ( n + 1)

( -C•-mn(0i, Oi)) + Ehi i C-mn(i, .18)

(2.18)
S(-i-mn(Oi, i Ci))) +

(2.19)
and

ki = sin Oi cos ¢i: + sin Oi sin j•j + cos 0o2

ii = cos 0i cos qi: + cos Oi sin qi ^ - sin Oi2

(2.20)

(2.21)

(2.22)hi = - sin ioj + cos qi)

with ij and hi begin the incident vertical and horizontal polarization vectors respec-

tively. The vector spherical harmonics B(0, q) and C(0, q) in (2.18) and (2.19) are

defined as [30]

Bmn(0, ) =

O~mn(0, ) =

SdPm(cos 0)
dO

0 im
sin 0

Sim m 0) eimo
sin 0

- dP (cos 0)d Pm(cos 0)) eim•
dO

(n= 1,2,3,...)

(n = 1, 2,3,...)

The vector spherical waves Mm,,(kr, 0, 0) and Nmn(kr, 0, ,) which will be used to

describe the scattered field from a particle can be obtained from (2.14) and (2.15)

by replacing the spherical Bessel functions with the spherical Hankel functions. The

asymptotic far-field expressions of Mmn (kr, 0, 0) and Nmn(kr, 0, q), for kr -+ oo, are

lim Mmn(kr, 0, 0) = mnCmn(O, )i-n-l eikr
kr-+oo kr

lim Nmn (kr, O, ) = -mn1Bmn (O, )i-n- e ikr

kr-+oo 'Yn m 07kr

(2.25)

(2.26)

(2.23)

(2.24)



2.2 Definition of T-matrix

The T-matrix which characterizes the scattering properties of the object is defined as

Es () = TE (') (2.27)

where EE () and ES (T) are the exciting and scattered fields for a particle respectively.

Consider an incident wave i~nc(T) impinges on a particle which is characterized

by permittivity e,, Figure 2-1, it gives rise to a scattered wave ES (f). We can express
gnc (T) and Es (f) in terms of vector spherical waves as

E () = n() = [amn Rgiimn (kr) + an RgNm (kf)] (2.28)
mn

" () = Z [as~M mn(kf) + a•N) mn (kT)] (2.29)
mn

with am, and as, being the expansion coefficients for the exciting and scattered fields

respectively.

The T-matrix is then used to describe the linear relation between scattered field

coefficients an and the exciting filed coefficients am

aS(M) [ 1 E(M) ~=(12) E(N)

,,E,•,T + T ,a 1,1, (2.30)
m n

r(rN) (21) E(M) + (22) E(N)] (2.31)

a')=ZTmnm, a IIn

The summations in (2.30) and (2.31) are usually truncated with a finite terms at

n = Nma,., A combined index 1 is used to represent the two indices n and m as follows

[30]:

l= n(n + 1) + m (2.32)

Thus, the corresponding Lmax is

Lmax = Nmax(Nmax + 2) (2.33)



inc
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Figure 2-1: Incident wave on a particle with a circumscribing sphere.

Upon using the new combined index 1, the relations (2.30) and (2.31) can be

rewritten as s(M) (11)(12) -E(M)

dS() =(21) (22) E(N) (2.34)

where -E(M) and E-E(N) are column matrices of dimensions Lmax x 1 representing the

coefficients aE (M) and aE (N) respectively, and -S(M) and -ds(N) are column matrices of

coefficients a S (M) and aS(N) respectively. We further let

-S(N) -E(M) ;
~~. NE

-(11) =(12)

T T2122T (21)ý(22)-T T

Equation (2.34) becomes

aS = TýaE (2.36)

where T is of dimension 2Lm,,, x 2L,,,ma. Thus, Equation (2.36) implies that once

the T-matrix of an object is obtained, the scattered field may be calculated from a

m

Q ! B

(2.35)



knowledge of the exciting field.

2.3 T-matrix for a Sphere

In the case of spherical scatterers, there is no coupling between different multipoles of

the incident wave and the scattered wave, the T-matrix for a sphere is of a diagonal

form [30] = T 0
T = =(22) (2.37)

0 (T

where the matrix elements are

T ,,, = 6mmnn T,(M) (2.38)

T22), n mmnn 6,, Tn" )  (2.39)

and

T(M) - - jn(k a)[kajn(ka)]' - j,(ka)[ksajn(ksa)]' (2.40)
jn(ksa)[kah,(ka)]' - hn(ka)[ksajn(ka)]'

T(N) [k 2 jn(ksa)][kajn(ka)]' - [k2a2j (ka)] [kajn(ksa)]'
n [k2a 2jn(ksa)] [kahn(ka)]' - [k2a2hn(ka)][ksajn(ka)]' (2.41)

For small dielectric spheres, ka < 1 and ksa < 1, the electric dipole term Ti(N)

dominates and is the term that needs to be retained in the T-matrix. However, in

order that the optical theorem be satisfied, it is important to keep the leading term

of the imaginary part and the leading term of the real part of TN). Using (2.41), it

can be shown that for ka < 1 and ksa < 1

T(N) T N) + iT N)  (2.42)

where TI(N) and T (N ) are both complex for lossy scatterers, and

T(N) 2 (ka)3y (2.43)

25



y - (2.44)
es + 2E

Tir = -(TN) 2  (2.45)

Note that since ka < 1, we have ITI < IT (N)I. The extinction cross section is

e = 6-r [Re T( N) - Im T N)]
k2 1r 12

4_ 2= 4(ka)3[Im y + (ka)3Re y2] (2.46)

The scattering cross section is

a = - kITN) 2 = (ka)61y 2  (2.47)

The optical theorem is satisfied with (2.46) and (2.47) because the T N) term in (2.42)

has been included in spite of the fact that it is much smaller than T (N).

2.4 Multiple Scattering Equations for N Particles

In this section, we will consider the scattering from multiple particles. The multi-

ple scattering equations can be derived by extending the T-matrix formalism to an

arbitrary number of particles [30].

Consider N scatterers bounded by surfaces S1, S2, ..., SN occupying regions V1, V2, ..., VN.

The scatterers are centered at r, T2, ... , TN. It is also assumed that the scatterers are

enclosed by circumscribing spheres that do not overlap each other (Figure 2-2). We

consider a coordinate system with origin 0 outside the particles. Let the background

region be denoted by Vo. The i th scatterer has permittivity equal to Ei, wavenumber

ki, and permeability p. For an incident plane wave, the multiple scattering equations

of the system of scatterers (Figure 2-2) can be expressed in terms of T-matrix as [30]

E(a) = {(kT r-- (E ei(ki.)inc (2.48)

fPa



S1

SN

Figure 2-2: Particles 1, 2, ..., N occupying regions V1, V2 , ..., VN. and bounded by sur-
faces S1, S 2 , ..., SN, respectively. They are enclosed by non-overlapping circumscribing
spheres.

with a = 1, 2, 3, ..., N. Equation (2.48) is known as the multiple scattering equation

using T-matrix. In Equation (2.48), dE(a) is a column vector that represents the final

exiting field of the scatterer a, dinc is a column vector that contains the coefficients of

the incident wave, T is the T-matrix that describes scattering from the scatterer /,

and 7(kr--rp) is a transformation matrix that transforms the vector spherical waves

centered at T(8) to the spherical waves centered at Y(,). The physical interpretation

of Equation (2.48) is that the final exciting field at the scatterer a is the sum of the

incident field and the scattered fields from all other particles except itself. Note that

in Equation (2.48), the exciting field dE(Q) depends on the exciting field -E(d ) on the

right hand side. Equation (2.48) includes multiple-scattering effect among particles.

The near-, intermediate-, and far-field interactions are all included too. Equation

(2.48) is a system of N equations for N unknowns ZE(a) and in principle it can be

solved.

S2

s

2
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After the exciting field ZE(a) is solved, the scattered field ~s(a) of particle a is

calculated from

-s(a) (a)E() (2.49)

The total scattered field from all particles in the direction ks,

k, = i sin 9, cos q, + ± sin 8, sin O, + ; cos 8, (2.50)

at an observation point R, for kR -+ oo, is

Es = i(k- ) E 7Ymn [as(M)-Cmn (8s, O )in-1 + a (N)Bmn(Os )i-n]
mn

(2.51)

where k is the wave number of the background medium,Bmn and Cmn are vector

spherical wave functions, and ymn is a coefficient given in (2.16).

We can combine Equations (2.48) and (2.49) to calculate directly the multiply

scattered field coefficients ds(a)

N
s(a) =-

0=1#Oct
T( )(kTa •) } + T •n

The equation (2.52) describes the relationship between the scattered fields from the

a particle and the 3 particle.

2.5 Multiple Scattering Equations for Buried Par-

ticles

In this section, we shall derive the multiple scattering equations for buried scatterers.

Due to the presence of boundary surface, we have to consider the interaction between

scatterer and boundary. However, if we want to obtain the rigorous solution for this

case, we have to express the half-space Green's function in terms of vector spherical

wave functions to construct the multiple scattering equation. In order to simplify

the model, we apply the method of image [15] to account for the coupling between

(2.52)



incident wave

Figure 2-3: Wave contributions on a particle.
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particles and interface, and then add this new contribution into the multiple scattering

Equation (2.52).

The total contributions to the exciting field of particle ac may be separated into four

terms as illustrated in figure 2-3. The first term is the contribution from the incident

wave. The second term is the direct scattering from other particles. The third

contribution is from the scattering from other particles which are further reflected

by the interface. And the last term is the contribution from the boundary-particle

interaction of the particle itself. The first and the second terms are already included

in Equation (2.52). The third and the fourth terms will be derived based on the

method of image in the following.

Consider two particles (a) and (3) buried in a homogeneous half-space medium

with permittivity c1 and conductivity ao. The upper half-space region is assumed to

be air with permittivity co. Let the particle (a) be the receiver and the particle (0) be

the scatterer. The boundary-reflected scattered field from / to a1 can be calculated by

first putting a image particle of (a) denoted by particle (-cz) in the upper half-space

region and then calculating the scattered field from (0) to the image particle (-ca)

(Figure 2-4) by (2.51), assuming far field approximation,

e-, =1 k)nn Ymn [asns)(m)nmn(Os, 0s)i - n - + a(N)(P) Bmn(Os, s)i - n] (2.53)
mn

where E(-a) is the scattered field at the image particle (-o) due to particle 0, r" ,3 is

the of the reflected ray path from / to c; (0s, 0,) is the direction of the scattered field

from (0) to (a) (see Figure 2-4), ms(f)(P) and as(N)(P) are the expansion coefficients

of the scattered field from particle /, and k is the wave number in region 1.

The field at the image particle (-c) can be converted to a wave impinging on the

particle ac by multiplying it with a reflection coefficient matrix R , which describes

the reflection of the scattered wave from the interface. Then the field exciting the

particle (a) from this contribution is



incident w4

Figure 2-4: The use of Image particle (-a) to approximate the contribution from

boundary reflectd term.



e-ei(krc',P) 'R (a,8) E .am [ lY( - amn ~ (P)Ra)%'si 0)i-n]
-kra,3  Ymn mn mn

(2.54)

We can further expand this field (2.54) in terms of the regular vector spherical

wave functions by taking the dot product of (2.54) with RgM and RgN and denote

this new expansion coefficient to be a's(p)

n(a ) - (M))M 1 (2n + 1) in -mn (Oi, ki) + i C-mn (i, 0)

a'S(N)() 'Ymn n(n + 1) i - (-iB-mn (i, qi)) + i (-iB-mn(Oi, qi))

ei(kr"a ,) =(a,,#) m'' ( I 0) N) a O (2.55)
kr , m 'n' [amn, (mn ,)i- a I mn, (, s)i (2.55)

Equation (2.55) is the expression for the contribution from the boundary-reflected

scattering from the particle /. Also let

[WS(M)(3) 1
dis( )= -S(N)(3) (2.56)

as usual. By adding this contribution to Equation (2.52), we obtain the multiple

scattering equations for buried particles,

N N
s(a) T (a) { (kr-a-) s ( ) + e i(kir) () inc + (a) as ( )  (2.57)

P=1 -=1

Note that the summation over the new term 'S(SO) added starts from 1 to N which

means that the contribution of the boundary-reflected scattering from the particle a

itself is already included in (2.57).

2.6 Monte Carlo Simulation

In this section the Monte Carlo technique will be applied to calculate the backscat-

tering from a layer of buried particles. The model configuration used in this approach



will be specified first. Then the multiple scattering equation will be solved using an

iterative technique. The solution process will be repeated for many realizations and

averaged to calculate the backscattering coefficients.

2.6.1 Configuration for The T-matrix Approach

The model configuration used in this approach is shown in figure 2-5. Then, in the

Monte Carlo simulation, for each realization, the model consists of finite number of

particles with deterministic locations. However, the positions of particles will vary

with different realizations. The locations of particles are generated using random

number generators and the overlapping between particles is checked.

2.6.2 Iterative Solution

The multiple scattering equation (2.57) is solved using an iterative technique. For

each iteration, the scattered field expansion coefficients are obtained from the previous

calculation as

~s(a)(v+1) =_ ( ()(krarP)=s()() + ei(kir,) (ca) Nin + N ( S(()(v) (2.58)
_=1 f=1

where ds(')(v+1) is the solution of the (v + 1)th iteration, and is(P)(v) is the solution

of the (v)th iteration. Once the result from the vth iteration is obtained, it will be

substituted back to right-hand side of the equation, where the /S(13)(v) represents

the contribution from the reflected scattering term and can be obtained from zS(s()(v)

by using (2.56); and (2.55). Thus for the zeroth-order iteration, the contribution to

S(03)(1) is only the incident wave ainc. The iterative process can be carried on up to

the desired order. Then the scattered field is obtained by using (2.29) given in Section

2.2.

In the i - th realization, we denote the backscattering field to be E. Then the
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Figure 2-5: Configuration used in T-matrix approach.
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backscattered intensity for the i - th realization is

P = E-. Er4' (2.59)

where the * denotes the complex conjugate. The averaged field ( E) and the averaged

intensity Icoh are obtained by averaging over M realizations,

1-

E = M (2.60)
i=1

Icoh = M E (.)- (2.61)
i=1

The incoherent backscattered intensity lincoh is calculated as

Iincoh = Icoh - I( 1 )12 (2.62)

The backscattering coefficient is

a 41rr 2 Iincoh
a = lim (2.63)r-,oo A Eo E 0





Chapter 3

Radiative Transfer Theory

The radiative transfer theory (RT) has been used to model microwave scattering

from geophysical media extensively, [7], [8], [10], [11], [19], [20], [21], [22], [27], [29],

[31], [36]. Even though it deals only with the intensities of the field quantities and

neglects their coherent nature, it accounts for the multiple scattering and obeys energy

conservation. The propagation characteristics of the Stokes parameters are described

by an integro-differential equation. Iterative and numerical (or discrete eigenanalysis)

methods have been used to solve RT equations. The iterative method is convenient

for the case of small albedo when the attenuation is dominated by absorption. It also

gives physical insight into the multiple scattering processes since there is a one-to-one

correspondence between the order of iteration and the order of multiple scattering.

The discrete eigenanalysis method provides a valid solution for both small and large

albedo cases. There are two principal constituents in the RT equation. The first one

is the extinction matrix, which describes the attenuation of specific intensity due to

absorption and scattering. The other is the phase matrix which characterizes the

coupling of intensities in two different directions due to scattering. Although RT

does not take into account the coherent wave interactins, it can be applied to deal

with scattering problems having much more complex geometry, such as snow terrain,

sea ice and vegetation canopies. Rough or flat surface boundary conditions can be

imposed at each interface of the layered structure [30],[23].

In this chapter, the radiative transfer theory approach will be presented. First in



Section 3.1, the radiative transfer equation is given as well as the definition of the

Stokes vector. The constituents of the RT equation and the boundary conditions are

also derived in Section 3.3 and Section 3.2 respectively. Then the numerical method

of solving the RT equation is given in Section 3.4 using planer surface boundary

conditions.

* *

region 2 $m •rOom Es O Os

Figure 3-1: Configuration for the two-layer with discrete spherical scatterers.

The configuration used for the RT approach is shown in Figure 3-1. The model

consists of a layer of discrete scatterers embedded in a homogeneous half-space

medium. The discrete scatterers are characterized by their fractional volume (f),

permittivity (es) and size (a). The background medium in region 1 is described by

its thickness (d) and permittivity (E1). Region 0 is assumed to be free space with

permittivity E0 . The region 2 is homogeneous half-space medium characterized by



permittivity (E2), which may be the same as that of region 1.

3.1 Equation of Transfer

In this section, the radiative transfer equation is first introduced along with the

definition of the Stokes parameters.

The Stokes vector associated with the incident wave is given by

Ii =

Ivi

Ihi

Ui

1

'7

EviEv*i

EhiEhi

2 Re (EviE;i)
2 Im (EviEhi)

(3.1)

Similarly, the Stokes vector associated with the spherical wave scattered from a

random medium is

1 lim r2

Sr-+ A cos Os

(EvsEv*s)

(EhsE*,)

2 Re (EvsEs)

2 Im (EvsEh)

where q is the characteristic impedance, A is the illuminated area and () denotes

ensemble average.

For a two-layer structure, the radiative transfer equation inside the particle layer

can be written as [30]:

dcos d (0, 1, z) = -~e(, ) -1(0, 0, z)

+ j dQ' (0O, ,; 0', 0') . 7(0', 0', z) (3.3)

This equation is based on the energy transport and can be interpreted in the

following way. As the intensities propagates through an infinitesimal length ds =

7,

'vs

'hs

Us

Vs

(3.2)



dz/ cos 0, there is a attenuation (Ke) due to the absorption loss and scattering loss,

but they are also enhanced by the scattering from all other direction (0', 0') into

the direction of propagation (0, q). The coupling is taken into account by the phase

matrix P and the integration over solid angle 47r in Equation (3.3).

3.2 Boundary Conditions

In order to completely solve the intensities inside the layered structure, we must

specify the boundary conditions at interfaces z = 0 and z = -d.

For planar surfaces, the boundary conditions have the following form [23]:

Interface 1 (z = 0):

I(rF - 0, ¢, z = 0) = To1(80) . Ioi(7 - 0o, 0o) + Rio(0) - I(0, , z = 0) (3.4)

Interface 2 (z = -d):

1(0, q, z = -d) = R12(0) -I(7 - 0, 0, z = -d) (3.5)

where Ioi(00, ¢o) is the incident source in region 0 and is given by:

Ioi(0o, Oo) = Ioio(cos 0o - cos oOi) 6(o - Ooi) (3.6)

and Rio, R 1 2 are the reflection matrices which relate the incident to the reflected

Stokes vector in region 1 at interface 1 (z = 0) and interface 2 (z = -d), respectively.

Similarly, Tol is the transmission matrix which relates the incident Stokes vector in

region 0 to the transmitted Stokes vector in region 1 at interface 1 (z = 0).

These reflection and transmission matrices for planar surfaces are given in [23].

The matrices at the interface a - / have the following form:



ap (0a) =

ISaog12
0 Rap 12

o o Re (SeR)#)
0 0 Im (SaRa*)

IYoa I2
0 IXap12

cos(0)) Im(Ya.,X1)

0

0

- Im (SapR*O)

Re (ScpR*p)

0

0

cos(O,) Im (YaofX )

CoS( 63) Re (Ya0X,*)

kazi - kpzi
kazi + kIpzi

k2 kazi - k 2kpzi

k kazi + kgkozi

= 1 + Rap

= + Sap

and e' and E~ are the real parts of the permittivities of the medium a and medium

3 respectively.

Once the solution inside region 1 is obtained, the scattered Stokes vector can be

calculated by using the following boundary condition:

o8s(0o, 0o, z = 0) = Ro1(90o) -Ioi ( r - 0o, qo) + Tlo(0) -I(0, ), z = 0) (3.13)

where 0 and 0o are equal, and 0 and Oo are related by Snell's law.

Tp(Ba) =

(3.7)

(3.8)

where

Rapf

XaCp

Yap

(3.9)

(3.10)

(3.11)

(3.12)



3.3 Phase and Extinction matrices

In this section, we shall derive the phase and extinction matrices for spheres. The

Laplace equation is used to solve for the induced dipole moments in a sphere due to a

plane incident wave. The radiation of the induced dipoles gives the scattered field of

the object. Because of the usage of Laplace equation rather than the wave equation,

the derived scattering function matrix is only valid in the low-frequency limit when

the particle size is much smaller than the wavelength.

The Stokes matrix relates the Stokes parameters of the scattered wave to those of

the incident wave whereas the scattering function matrix relates the scattered field

to the incident field. For the case of incoherent addition of scattered waves, the

phase matrix is the averaging of the Stokes matrices over orientation and size of the

particles. Thus, we shall study the Stokes matrix of a single particle.

Consider an incident field Ei on a scatterer which give rise to the scattered field

E,. Both fields are decomposed into two polarizations, horizontal (h) and vertical

(ib). The relation between the scattered field and the incident field is given by the

scattering matrix and the following equation :

[Evs eikr [vv fvh Evi (314)Ehs r fhv fhh Ehi

where k is the wave number in the background medium, r is the distance from the cen-

ter of the scatterer and fp are elements of the scattering matrix, which are functions

of incident and scattering directions and the shape and permittivity of the scatterer.

The Stokes matrix L(0, q; 0', 0') relates the Stokes vector Ii associated with the

incident field to the Stokes vector I, associated to the scattered field

1=
S= -L(, ; 0', I')I (3.15)

Because of the incoherent addition of Stokes parameters, the phase matrix P(O, 0; 0', q')

is obtained from the scattering matrix and by incoherent averaging over the types,



dimensions and orientations of the scatterers. For example, the phase matrix for a

mixture of ellipsoids is given by

P(9, ; 0', ') = no fda dbf dcf daJ dp dy

Sp(a, b, c, a, 0, 'y) -L(, 0; 0', 0') (3.16)

where no, is the number of scatterer per unit volume; a, b, c are the lengths of the

ellipsoid semi-major axis; a, 0, 'y are the Eulerian angles which give the orientation

of the ellipsoid and p(a, b, c, a, /, y) is the joint probability density function for the

quantities a, b, c, a, /, y. For the case of spherical scatterers, Equation (3.16) reduces

to an easy form:

(90, ¢; 0', •') = no!(0, ¢; 0', €') (3.17)

where the Stokes matrix L(0, q; 0', 0') is given by

I fV2 1
1 fV 12

2 Re (f•, f,,)

2 Im (fv,,vf,)

Re (fvv,,f*h)

Re (fhvfhh)

(fvvfhh + fvhfev)
(fVvfhh + fvhfv)

lfvhl2

I fvh 12

Re (fvhfh*h)

Im (fvhfh*h)

- Im (fvvf*h)

- Im (fhvfhh)

- Im (fvvfh*h - fvhfv)

Re (fvfh*h - fvhfv)

The other component of th RT equation is the extinction matrix. For spherical

Re

Im

(3.18)

L(el ~; e', ~'>



particles the extinction matrix is simply diagonal

ne 0 0 0

0 Ke 0 0

0 0 n'e 0

0 0 0 ie

(3.19)

where Ke is the extinction coefficient whihc is equal to the summation of the scattering

coefficient n, and the absorption coefficient Ka-

The phase matrix P(0, €; 0', ~'), the scattering coefficient is, and the absorption

coefficient n, for a small spherical dielectric particle are given in the following.

The scattered field from a Rayleigh sphere is given by

k2 eikr
E, = 4 3voy(I - k•lk) -· Eo (3.20)

and

Y - (3.21)
c, + 2c

where vo = 47ra 3 /3 and ec and e are the permittivities for the particle and the back-

ground medium respecitvely. Hence, the scattering function matrix is

F(Os, ,s; O, 0i) = k23 4 (I- ks•s) - (I- kii) (3.22)
4w

From the scattering function matrix F, we can calculate the Stokes matrix L and the

phase matrix P. For spherical scatterers , the phase matrix is obtained as

P11 P12 P13  0

-P21 P22 P23  0
P(0, ', 0', 0) =

P31 P32 P33  0

0 0 0 P44

(3.23)

Ke



where

P11 = w[sin2 9 sin2 0' + 2 sin 0 sin 0' cos 9 cos 9' cos(q - ¢') + cos 2 0 Cos 2 9' cos2(¢ - ')]

(3.24)

P12 = W cos 2 0 sin2 (0 -_ ')

P13 = [cos 0 sin 0 sin O' sin( - ¢') + cos 2 0 cos 0' sin(q - ¢') cos(q - ¢')]

P21 = w cos 2 ' sin 2 2( ) - ')

P22 = W cos 2 ( -_')

P23 = -w cos 9' sin(q - 0') cos(q - 0')

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

P3 1 = w[-2 sin 9 sin 9' cos 0' sin(¢ - 0') - 2 cos 9 cos 2 9' cos(¢ - 0') sin(¢ - 0')] (3.30)

P32 = 2w cos 0 sin(0 - 0') cos(¢ - 0')

P33 = w[sin 0 sin 0' cos(0 - 0') + cos 9 cos 9' (cos2 (0 - ¢') - sin 2(0 -_'))]

P44 = w [sin 0 sin 9' cos(0 - 0') + cos 0 cos 9']

w = 8wr.

(3.31)

(3.32)

(3.33)

(3.34)

and x, is the scattering coefficient

,= 8 nok4a61y1 2 = 2fk4 a3 1y12
3

(3.35)

where f = novo is the fractional volume occupied by the particles. The internal power

absorption due to one single scatterer is

S (,)8 2
3E 2 IEo02

v0 (c, + 2e) 2 (3.36)

where the E" is the imaginary part of the permittivity of the particle. The absorption

cross section aa, hence, is

00
Oa = VoWIES7

E 2
(F, + 2E) (3.37)



The absorption coefficient due to the scatterer is noo7a. Therefore, the absorption

coefficient is
3 2

Ka = fk (338)c (c, + 2E) (3.38)
Extinction coefficient Ke is the sum of i~ and r1. The extinction matrix is diagonal

with each element equal to ,,e.

3.4 Numerical solution

In the this section, the RT equation is solved using the discrete ordinate-eigenanalysis

method [30],[23], or so-called numerical RT. All orders of multiple scattering effects

are included in this numerical solution.

First, the RT equation is expanded into Fourier series of the azimuthal angle q.

Thus the 0 dependence in the radiative transfer equation is eliminated. Then, the

set of all integrals over 0 are carried out analytically. The resulting RT equation is

solved using the Gaussian quadrature method by discretizing the angular variable 0

for each harmonic of 0. Thus, the RT equation is transformed into a set of coupled

first-order differential equations with constant coefficients. This set of equations is

solved using the eigenanalysis method by obtaining the eigenvalues and eigenvectors

and by matching the boundary conditions to determine the unknown coefficients. The

detail of this method is described in [23], the main steps of numerical procedure are

given in this section.

3.4.1 Fourier Series Expansion in Azimuthal Direction

Starting with the radiative transfer equation, we first expand the Stokes vector and

the phase matrix into a Fourier series of (0 - c'):

001
P(0,7; 0', (') =Sm)

m=0 (I +)c

Pmc (0, 0') cos m( + s (0 , 0') sin (-)] (3.39)



00
(0, , z) = [ (0, z) cos m( - 0') + 7 8 (0, z) sin m( - 0')] (3.40)

m=0

The incident Stokes vector can be written as:

loi(r - 0o, o 0) = Ioi 6(cos 0o - cos o00) 6(0o - 0oi)

0 1
= 70i 6(cos 0o - cos 0oi) Z cos m(o - 0oi) (3.41)

m=o (1 + 6Mo)7r

where m is the order of harmonics in the azimuthal direction, and the superscripts c

and s indicate the cosine and sine dependence. The Jij is the Kronecker delta function

and is defined as:

6ij = { ,t=j

isi
(3.42)

Also note that the zeroth-order sine dependence terms are zero.

170(0, z)=0
=--s
P (, z) = 0

(3.43)

(3.44)

Substituting (3.39)-(3.40) into the radiative transfer equation and carrying out

the integration over 0' leads to the following RT equations.

For m = 0, 1, 2, 3, ...

-e(O) -1 (0, z) + f dO'sin 0'

x (0,0').rMc(0',z) . m (0, 0') .T'm(0', z)] (3.45)

dcos 0 d7 'M (0, z) =
dz -~e(O) - ~ (0, z) + o dO' sin O'

x [m (0, 0') .fc(01, z) + mc (0,, 0') . (/', z)]

One should note that these two equations are coupled. Next, we

and odd modes in order to decouple the above two equations.

will define the even

cos d•(f(0,z) =dz

(3.46)



The general form of the phase matrix for an azimuthally isotropic medium is [23]:

P (0, 0')

---TS( ')P (0, 0/)

pmlc

pmC

0

0

mc

P12
pMC

0 0

0 0

0 p~~ pMC

0 P4m p•4

0 0 p1S

0 0 p• •

m"23
pS M 0

pM pMS

ms

pS

0

0

(3.47)

(3.48)

Using this symmetry, we can decouple Equations (3.45),(3.46) into

d me
cos 0 I (0, z)

dz

where a = e or o (even and odd modes) and

Yme(e, )

I (9, z)

= -r () .- (, z)

+ dO' sin 0' (0, (3.49)

Irmc (0, z)

lme (0, z)

Um (O, z)
Vm s (0, z)

U'VM(O,
Vms (0,

m MC(07

Um (e,

(3.50)

(3.51)

p

0') -7 (0',1z)



---meP (0 (e,') =

--~o (e,')P (0, 0') =

p•cpilc

p3s

p•Cpil
pnc

p•s

me2c
P12c

pme

p•2s

pM2CP•2

p~SpM328

-P s

_P13

P 33pC
p
p3••3

-p•24maP14

_PI24CpMC

pMC

P1s

pM

pMC
P444

(3.52)

(3.53)

In this formulation the boundary conditions become

IF~(7r-, z=0) = To(Oo).-oi( r-Oo) + Rio(O).> (, z=O) (3.54)

I tm a(9, z = -d) = R12() .m"(r - 9, z = -d) (3.55)

where Rp? and To, are the coherent reflection and transmission matrices, respectively,

for planar surface given in Section 3.2. The scattered Stokes vector in region 0 can

be obtained by using

Ios(so) = To (e) 7- ~(e, z = 0) + Rol (Go) i o (i - 0o) (3.56)

where 9o is related to 0 by Snell's law and

oi ( - o) =

!v0i

Ih0i

0

0

(3.57)



7 o(7- - 0o) 0

Uoi

Voi

(3.58)

It should be noted that the superscripts me and mo will be dropped from now on,

since the procedure for obtaining the solution is the same for all the harmonics m

and all the modes e, o.

3.4.2 Upward and Downward Propagating Intensities

First, the following matrices are defined:

I (0, z)
Ih(0, z)

U(0, z)
V(0, z)

K ell (0) 0

0 Ke22(0)

[ I, e3(3() e34(0)

Ke43 (0) Ke44 (0)

pil (0, 0') P12(0, 0')

P210(o, 0') P22(o, 0')

P13 (0, 0) P14(0, 0')

P23 (, 0') P24 (, 01)

P31 (0o, O') P32(O, 0')
P41 (0, 0') P42 (, 0/)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

11(0, z)

12 (0, Z)

Kei (0)

Ke2 (0)

P,11(0, 0')

P 12(o, 0')

P21(0, 0')



P22(0, 0) p33 (0, 0')

P43 (0, 0')

P34(0, 0') 1
P44(0, 0)

(3.66)

where only six elements are needed in the extinction matrix due to azimuthal sym-

metry.

Using these definitions, Equation (3.49) can be rewritten as:

d 0 (0,

dcos 0 -cos 0 12 (, Z)
dz

S--•e(0) - 11(0, z) + dO' sin O'

P1 (0, 0') - 71 (0', Z) 1+ 12( 0') 2(', Z)]

-.•e2(O) .I2(0, z) + dO' sin O'

[ 21(0, O) 1 (0', Z) + r-P22(0, 0) 2 I(0', z)]

Furthermore, each of these equations can be broken into upward (0, z) and down-

ward (r - 0, z) propagating intensities, which gives:

d(0,cos 0 11(0, z)
dz

-- el(0)" 11(0, z) + ± /JO
dO' sin 0'

+ P12(, ')0 12(0', z) + 12(o, - 0'). - 2( - ', z)]

(3.69)

d
- cos 0 -II(7 - 0, z)

dz
-- el(0) - I 1 (7r - 0, Z) + 1  r/2

0
dO' sin 0'

11 (0, 7 - 0') . 7 8 1 1(0, 0') / I1(7r - 0', Z)

- P 12(0, 7r - 0') i2(0', z) - P 12(0, 0') I2(7r - 0', z)]

(3.70)

dcos 0 (0, z)cos 0 12 (8, Z)
dz

fir/2 O
d8 Ol

(3.67)

(3.68)



0'). 1 (F - 0', z)

+ P22(0 ) 12 (',) 22(0, - 0') 12  - 0)

(3.71)

d -
- cos 0 dI2(7 - 0, Z)

dz
K-e2().7 • (7F - 0, Z) + o r/2

0
dO' sin O1

[-P21(0, 7- 01) I1(0', Z) - P 21(01 0') 11( - 0', Z)

+ P22(( , - 0') 12(0', z) + P22(0, 0) 1 2( - ', z)]

(3.72)

where the following reciprocity relations have been used for a, / = 1 or 2.

Kea(0)

Pop (7 - 0, 7r - 0')

Poa(7 - 0,0')

= Naco - 0)

= (-1)a+P Pp(0, 0')

= (-i1)~ + Pap(0, 7 - 0')

3.4.3 Gaussian Quadrature Method

The set of decoupled radiative transfer equations without the azimuthal dependence

for each harmonic can be solved numerically using the Gaussian quadrature method.

Consider an integral

L = dl-f (p)
-1

(3.76)

over the interval -1 to 1. Then the integral can be approximated by

L= = ay f (py)
j•-n

(3.77)

where the summation j is carried over j = ±1, ±2, ±3, ..., ±n, tpj are the zeroes of the

even-order Legendre polynomial P2n(p,), and aj are the Christoffel weighting functions

(3.73)

(3.74)

(3.75)

P21 (0, 1O) 11(0', Z) +- P21(0, 7F



which can be found in [1]. The pj and aj obey the relations

aj - aj

/j = -- j

(3.78)

(3.79)

By letting p = cos 0, the integral over dO can be approximated by a quadrature

formula as follows
n

dO sin Of(cos 0) ~ ajf(pj)
-- n

(3.80)

This Gaussian quadrature is used to discretize Equations (3.69)-(3.72). Then, Equa-

tions (3.69)-(3.72) become :

+ -i 7+ - a - -+ -a1= + 211a + ' 2 +BP2='12' 72

(3.81)

= = _-+ =i -+
- ,,e I1 + B11 a - I, + Fil a - I - 12a - F12 'a '

(3.82)

=i d 1+
' z

dZ ~2

=! d --

dz

-- a -+ .=I -- 7+ - -
-- re2 "I2 + F21 . ' I 1 + B21' a - 1 + F22 ' 2 +B22 '• .I2

(3.83)

-K2 ---2 - + -- -- 21 . 2 2 + F --2- e2"I2 -B21' . 1 -F21.a .I' 22- .I 2 +F22 ' .I 2

(3.84)

d +
dz

=, d -
-ft "•p 1



where , and I2 are 2n x 1 vectorswhere I7 and Y+ are 2n x 1 vectors

li::

and Fap and B~a are 2n

F4p

x 2n matrices

. . Paoli- (tn, iAn)

Poupl2 (AI, P1)

PI(22 (/1) P

Pa022 (/-tn) Pl)

(3.86)

Pol2 (P,- )

Pol 12 (in,-)-1)

P•022 (1-, -)-1)

P0 22(-tn -II)

Pon 1 (i-n, - -i1)

P021 (P7 -)

(3.87)

and :' and h' are 2n x 2n diagonal matrices

(3.88)

z)

z)
Ih(-±Itl, Z)

Ih (±i-t, z)

U(±1u1, z)

U(±p,-l, z)

V(±Iu1, z)

V(+pun, Z)

(3.85)

.. . Pa 12 (-17 ,I-n)

• .. P0(22( , PIn)

•.. Pa022((n, /-)

IV (+I,

IV (±/-,n

pa,311(Ai) #1)

Paolpi (/-n7, IlI)

pa,321 (/tl PI)

oPa21 (/tn PI



a = diag[al,...,a,"a,a,. an] (3.89)

The system of 8n first-order differential equations, (3.81)-(3.84), can be put into

more compact form by defining two 4n x 1 vectors

a = [ I, =

-+
I1
-+I2

(3.90)

such that the upward propagating intensity 7+ is given by

.4b-
7+ = 1 1 + 1
UI (=2 0a + I,]

Using (3.90), Equations (3.81)-(3.84) become

(3.91)

d -
S- a = W. Isdz

d -
* - I = A -

dz s

where W and A are the 4n x 4n matrices

(Fil - B11)

(F21 - B21)

(F 1l + B2 1)

(F21+ B21)

(F12 + B 12)

(F22 + B22)

(F12- B 1 2 )

(F22 - B22)

The matrices F,6 and Bp6, a, 3 = 1, 2, are given in (3.86) and (3.87), and = and d

are 4n x 4n diagonal matrices

= diag [/u1, I • •, n,, 1, • , /&, /•, • • ", pA, pl, • A ", An]

a = diag[al,... ,anaa,***,an,a,-***,a ,al,** ,an]

(3.92)

(3.93)

W +[

Li

0

Ke2

Ke2

• a (3.94)

·a (3.95)

(3.96)

(3.97)

+ I
-7,

eel

0

0el

0



3.4.4 Eigenanalysis Solution

The homogeneous solutions for Equations (3.92) and (3.93) have the following form:

7a -= aoe az

7, = Iso e
Qz

(3.98)

(3.99)

and Iao and Iso satisfy the following eigenvalue equations

(3.100)

(3.101)

--I-.--1 = O-24) ao- 0

"z .aA.IAao

where I is an identity matrix. The above system of equations has 4n eigenvalues

corresponding to c•i. The eigenvectors lai associated to the eigenvalue ai can be

regrouped in the matrix E which is a 4n x 4n matrix. Therefore, the solution can be

written as

Ia = E D(z) - 2 + E -U(z + d) - (3.102)

(3.103)Is = Q . D(z) . - - Q . U(z + d) .
2

where Equation (3.101) has been used to obtain I, and

=-1 = -1&.A.E a

D(z)

U(z)

= diag [elz, .. . , e.4nz]

= diag [e- a4z, ... , e&-4nZ]

(3.104)

(3.105)

(3.106)

(3.107)v= diag [al,'' , Ca4n]

where T and y are 4n x 1 unknown vectors which will be solved by matching the

boundary conditions. Using Equation (3.90) the solution for the upward and down-



ward propagating Stokes vectors can be recovered

7+ (z)

7-(z)

(E+Q)J9D(z) +(E-Q).U(z+d).g

= (E' +,Q) .V(z) -T+ (E'- Q) •U(z + d) ·

where

S = - - - --
E• W W.Q.a

=Q A a

Kel

0

=1
0

Ke2
+i

-- Kel

0

(F - B 11) (F 12 + B 12)

-(F 21 - B 21)

-(F 1 1 + Bil)

(F21 B21)

-(F 22 + B 22)

-(F 12 - B 12)

(F 22 - B 22)

(3.112)

a Z (3.113)

Finally, using the boundary conditions (3.54) and (3.55) which can be put in the

following form

S7(z = -d)

I-(z = 0)

= R 12 .I (z =-d)

= Rio -I(z = 0) + Tol -0oi

i= [1 8 6jkEO COS 0 0k
1 3 ajEj coS Ok

(3.116)

which takes into account the discretization of the delta function [50], and e' is the

real part of E-, Ok and 00k are related by the Snell's law. Combining (3.108),(3.109)

(3.108)

(3.109)

and

(3.110)

(3.111)

--w
W

where

(3.114)

(3.115)



and (3.114),(3.115) leads to the following system of 8n x 8n equations

{ ('- Q) - Rio -( )} D(-d)
(E - R12- (E'- Q)

(• Q•Q) - Rio - (E + Q)

+ Q) - R12 - (E + Q) D(-d)

S[Tol. oi
S0

(3.117)

Once the solution to this set of equations is obtained, Y and y can be inserted into

the boundary condition (3.56) to obtain the scattered Stokes vector in region 0,

(3.118)

where I+(z = 0) is obtained using (3.108). The total solution can be obtained by

reconstructing the Fourier series for the odd and even modes. The backscattering

coefficient auo can be determined from the scattered Stokes vector Ios

where a, /3 = v or h and A is the illumination area.

li 47rr2 ( EasEa* )
a- - lim-+oo A Eo E*A-+oo i

(3.119)

708 = Tio 7+(z = 0) +Rol -1•



Chapter 4

First Order Analytical

Approximation

In this chapter, we shall derive the First Order Analytical Approximation solution

for the scattering from multiple spheres. The First Order Analytical Approximation

solution is obtained by taking the configurational average over the first order scatter-

ing solution of the multiple scattering equations derived in chapter 2. In this method,

the statistics of the positions of particles will be applied. Since we use the probability

density function of the particle positions, there is no need to calculate the average over

many realizations as in the Monte Carlo technique,which makes this approach much

more computationally efficient than the T-matrix-Monte Carlo simulation approach.

It will be shown later that this simple solution gives a reasonable approximation

in cases when the fractional volume is small. The simple analytical solution gives

a good approximation and has advantages in terms of the computational time and

the complexity of the governing equation for the calculation of scattering. Also the

First Order Analytical Approximation approach includes the effects of coherent wave

interactions. However, the multiple scattering is neglected in this approach, which is

the trade-off for its simplicity. In the derivation, we assume all the particles to have

independent position, which means the pair distribution function is equal to one. This

assumption is not valid when the medium is dense. Thus this analytical approxima-

tion is valid in the limit of small fractional volume only. The better approximations



of the pair distribution can be found in [30].

4.1 Scattering from a Single Particle

Em

Figure 4-1: Incident plane wave Eo on a small particle gives rise to scattering wave
E,.

We assume that all the particles have sizes which are small enough to be in the

Rayleigh scattering regime. The scattered electric field E, resulted from the incident

field Eo (Figure 4-1) for a small particle of radius a centered at origin is given by [13]:

(I -eikr

E = - ( Es m- k 2a3' Eo sin 0 (4.1)
Es + 2Em r

where E, is the permittivity of the particle, Em is the permittivity of the background

medium and k = wV . If the scatterer is located at f', and applying the far field

Eo

E §

i I

Es



approximation on the term If - f'I, the scattered field then becomes

E ( - - ( z ikr (4.2)

E, =- - Em k2 a3 _eik•.f'Eoeik- sin (4.2)
\Ec, + 2emn r

where k is the k vector of the incident wave and the k, is the k vector of the scattered

wave. If we are interested in the backscattering direction only, then

-k, = ki, sin 0 = 1

and the backscattered field is

Es= ( s Em )k 2a3e2ik~'Eoe ik  (4.3)
Es + 2Em r

4.2 Scattering from Multiple Particles

Equation (4.3) is the scattered field in the backscattering direction from a single small

particle centered at f' based on Rayleigh's formulation. In this section, we consider

the scattering from multiple particles as shown in Figure 4-2. It is assumed that

all the particles have the same size a and permittivity c.. The background medium

is homogeneous with permittivity em. In this section, the background medium is

assumed to be lossless.

The backscattered field from a particle i centered at fi is given by:

Esi = - S - Em k 2 a3e2ik-Eoei  (4.4)
es + 2Em) r

The total backscattered field from all particles is just the sum of scattered field

from each particle

( - E eikr N

Es - E, - E, m k2a3Eo0 E e2ik-i (4.5)
XE + 2 Em /r i=1

where N is the total number of particles in the interested region. We note that

Equation (4.5) is the first order solution of the multiple scattering equation derived



Figure 4-2: Configuration for First Order Analytical Approximation: Multiple parti-
cles confined in a rectangular box in an unbounded homogeneous medium



in Chapter 2, which means we ignore the higher order multiple scattering effects and

consider only the contribution from the incident wave impinged on that particle.

From (4.5), we can see that the random position of fi gives random phase fluctu-

ation. Taking the configurational average of (4.5) gives

(E + 2s m (4.6)

where V is the volume containg the particles. The angular bracket ( ) denotes the

configurational average.

We also assume the single particle probability density p(fi) to be

p(Vi) (4.7)
V

For a rectangular volume V = L x L x D, the Equation (4.6) becomes

ikr L L D

( Es ) = - s - m k2aE r L D  dxi e2ikxxi 2T dyi e 2ikyyi 2 dzi e2ikzzi
(Cs + 2Cm r L 2D - 2 2

(4.8)

Performing the integration, we obtain the equation for the average total scattered

field

ikr

( E, ) = - (m k2 aEo N{sinc(kxL)sinc(kyL)sinc(kzL)} (4.9)

where sinc(x) = sin(x)/x is the sinc function.

The incoherent scattered field 9, is defined as

4, = E, - ( E ) (4.10)

The average of the incoherent scattered fields is zero, ( E, ) = 0. However, the

configurational average of the incoherent intensity is not zero

( r; ) = ( EsE )- ( Es )12 (4.11)



The intensity for the backscattered field (4.5) is

Es 2 m k2 3 2ik -2ikf (4.12)
Es + 2-m/ r I1 j

The double summations are separated into two terms, for i = j and i - j. Thus,

N N N N

Se2ikfi E e- 2ik- = N + E E e2ik-(fi-f) (4.13)
i=1 j=1 i=1 j=1

i;j

The configurational average of (4.12) is performed with the double summation in

(4.13) replaced by an average over the two-particle joint probability density function

p(f(, -j)

( Es2) ( s -m ) k2a3EO 2N + N(N-1) d dp(i r) 2 i ( - )

Es + 2cm v v
(4.14)

On the assumption of independent particle positions,

1 1p(ri, rj) = p(fi)p(j) V2 14D2 (4.15)
V2  L4 D2

and using (4.15) in (4.14), we have

EsE* ) = (s 6 k2a3• N + N(N - 1)sinC2(kxL)sinc2(kL)sinC2(kzD)

(4.16)

Note that the first term in the curly bracket of Equation (4.16) is the conventional

independent scattering result and the other term represents the correlated scattering

effects. From Equations (4.9) and (4.16), we can calculate the incoherent intensity.

From Equation (4.9), we have

SEs )2 - Cm 2 3E [N {sinc(k.L)sinc(kyL)sinc(kzD)}] 2  (4.17)
ECs + 2Ecm r

Substituting (4.16) and (4.17) into (4.11), the incoherent backscattered intensity is



obtained as

ES ( ) - m ) k2a3 o N {1 - sinc2(kL)sinc2(kyL)sinc2(kzD)} (4.18)

We also note that the second term in (4.18) vanishes for large V which is identical to

the result of independent scattering.

4.3 Scattering from a Layer of Particles

For the case of layered medium, we have to take into account the transmitivity of the

incident wave as well as the scattered wave. We shall begin the derivation by quoting

Equation (4.4) from the previous section.

ikr

EsiE= -s -M k2a3e2ik-riEo (4.19)Es + 2m) (4.19)

In the case of particles buried in a layered medium (Figure 4-2), the exciting field

for a single particle is replaced by Tol Eo, where Tol is the transmission coefficient

from region 0 to region 1. The transmisstion coefficients for TM and TE modes are

given as

ToTE = 2koz
01 kz + kz (4.20)

TO M - m z 2cokoz (4.21)
FO Cmkoz + Eokz/

where k0o = wV yoo is the wave number in the region 0, and k = w upOcm is the wave

number in the region 1. The transmission coefficient from region 1 to region 0 of the

radiation from a dipole source is also equal to Tol ( see Appendix A) Then Equation

(4.4) is modified for a buried particle i centered at Ti to be

s - E m T 2
1 k2 3 2ik-fiEO ikr (4.22)

where the far field approximation has been used. If the medium and the scatterers



are lossy, the permittivities E•, E, and the wave number k are complex numbers.

Em = (•0(/ + i- m
W70

W6go

(4.23)

(4.24)

where the e, 6E are the real parts of permittivities of scatterers and the medium,

as, am are the conductivities of the scatterers and the medium. However, by the

condition of phase matching with the k0 in the region 0, only the complex form of

the z component of the wave vector k in the phase term of equation (4.22) will be

retained

kx = Re{k} sin 0 cos ((4.25)

(4.26)

(4.27)

k, = Re{k} sin 0 sin q

kz = k cos0 = Re{kz} + ilm{kz}

Summation of the scattered fields from all particles is

( -Es m) eikorN
Es = s -m TO21k2 3Eo Z e

2 i~ kfi
sTaking the configurational i=1

Taking the configurational average of (4.28), it becomes

(E - 2 eikor
(Es )= - • m T 1k2a3Eo  N

(es + 2em r

Using (4.7) and carrying out the integration over a rectangular volume, we

average backscattered field

C ms - Em e2ikor ( -2ikD

Es + 2 TO2 k2 aEo r Nsinc(kL)sinc(kL) 2ikzD
( s) es + 2em/ r 2ikzD

(4.28)

(4.29)

obtain the

(4.30)

From (4.28), the intensity of the backscattered field is

EE - E
(Cs + 2Em)

eikor 2 N _ N

TO21k 2 3Eo E e2ik-i - 2ik*
i=1 j=1

(4.31)

p(fi)dfie
2i k -' i



Similarly, the multiplication of two summations can be separated into two terms,

i= j and i $ j

N N

Se2ikfi E e-2ik*'fJ
i=1 j=1l

N N N

S-4Im{kz}z + E 2i(k-fi-kE*-r)

i=1 i=1 j=1
i;j

Taking the configurational average of (4.31), the first term in Equation (4.32) gives

e-4Im{kz }rzi

) f-D -N (4Im{kz}D
(4.33)

where Imkz is negative since the direction of the wave impinging on the particle is

downward in the medium. The average of the second term of Equation (4.32) gives

NZ e2i(k-fi -k* -fj)
j=1
i0#j

= N(N- 1) JJ dci

(1- e -2 ikz D) 2
= sinc2(kLL)sinc2(kL) ( 2ikzD

Therefore, the configurational average of (4.31) becomes

( EsE ) (E - EmE, + 2Em)
T2k2a3o 2

r

N (1- e4Im{kz}D
-4Im{kz}D

+ N(N - 1)sinc2 (kL)sinc2(kL) (1 2 D)
2ikzD (4.35)

The intensity of the average backscattered field from (4.30) is

( Es )2 s m )21k23E 2 Nsinc(kL)sinc(kL) e2k D  2

\c + 2Ecm r 2ikzD
(4.36)

Using Equations (4.35) and (4.36) in the relationship (4.11), we obtain the expression

for the incoherent backscattered intensity for particles embeded in a layered medium

( s + m TO21k23EO 2
E, + 2Em rK ES ) =

(4.32)

df j e 2i (k' •i-f *j *j)

1V V

(4.34)



x N ( ) - sL)sc(kL)sinc(kL) 2izD 2 (4.37)
-4Imjkz}D 2ikzD

We note the second term on the right hand side of (4.37) vanishes as the volume of

the medium is very large and the backscattered intensity then reduces to

( 2 - ( Eo 2 1 - 64Imfk }D

es O S m) TO21k2a 32 N (4.38)$ (sE + 2cm r -4Im{kzj}D

The Equation (4.38) differs from the case of scattering from particles within lossless

full-space medium in that (4.38) has the decay term resulted from the lossiness in

the background medium and the two-way transmitivity. If the area of illumination

and the number density of particles are kept constant, total number of particles N

is proportional to the depth D. We can see that when the thickness of the particle

layer becomes large, the exponential term drops very fast. This means that particles

at the deeper levels contribute less to the backscattered intensity.

The backscattering coefficient is calculated from the incoherent intensity as [30]

a = lim r(4.39)r0oo A EoES



Chapter 5

Results and Discussion

In this chapter, numerical results are carried out using the three approaches described

in the previous chapters. Physical parameters used in the calculations are listed in

Section 5.1. Backscatter calculations are shown in section 5.2. Finally, the backscat-

ter, simulated using the RT theory versus radar parameters and physical properties

of desert medium are given in Section 5.3.

5.1 Parameters Used in Simulation

Parameters Range Typical value Unit
Frequency 0.1 - 1.0 0.5 GHz
Incident Angle 10.0 - 80.0 45.0 degree
Dielectric Constant of Medium 1.5 - 7.0 3.0 Co
Conductivity of Medium 6.0 - 20.0 10.0 10-3?3/m
Fractional Volume 1.0 - 10.0 5.0 %
Radius of Particles 0.5 - 5.0 2.0 cm
Dielectric Constant of Particles 2.5 - 8.0 6.0 co

Table 5.1: Parameters used in calculation

In order to simulate the backscatter of the Yuma desert, the physical characteristics

of the desert medium are needed. Unfortunately, the appropriate ground truth are

not fully available. Instead, values listed in Table 5.1 are used: these values are not

measured from the Yuma site. The dielectric constant of the background medium



is based on the SIR-B Subsurface imaging experiment at Al Labbah Plaueau [3],

Saudi Arabia conducted in October 1984. A table showing the moisture and electric

properties of Al Labbah Plateau sand samples is given in Appendix B. The dielectric

constant of rocks is obtained from [32], a laboratory measurement of dielectric prop-

erties for various kinds of rocks. A figure showing the ranges of dielectric constants

of rocks is also given in Appendix B. The sizes of rocks in some desert terrains can

be found in [24].

5.2 Comparison of Three Approaches

All calculations shown in this section are for HH polarization. Results for the VV

polarization can be estimated based on the results for the HH polarization and by

considering the difference between the two-way transmission coefficient of the TE and

TM waves. It can be shown that the VV backscatter is about 1 dB higher than the

HH backscatter at the 450 incident angle.

Although each approach can have different model configuration. For the pur-

posed of comparison, the model configuration used in this simulation were chosen to

be identical. The T-matrix-Monte Carlo method, although it has a capability of hav-

ing particles with arbitrarily diverse sizes and permittivities, is implemented for one

species of particle only. The backscattering coefficients calculated by T-matrix-Monte

Carlo method and the First Order Analytical Approximation method both have the

limitation that the medium has to be of finite volume; while in the RT approach, the

medium is infinitely extended.

Another important parameter, which could give totally different results if inap-

propriately chosen, is the depth of the particle layer. Because of propagation loss,

the backscatter contribution due to particles lying deep below the surface tends to

decrease. The depth of the particle layer need not be too large; may be in the order

of a penetration depth.

Figure 5-1 shows the backscattering coefficient calculated using the three different

approaches as a function of particle layer thickness. The area of illumination used in
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the T-matrix-Monte Carlo simulation and the First Order Analytical Approximation

is 0.5 square meter. It can be seen that, for the given set of parameters, the backscat-

tering coefficient is almost constant after the thickness of particle layer is larger than

1 meter. This is due to the propagation loss which reduces the scattering contribution

due to particles away from the interface.

Figures 5-2 to 5-8 show the simulations using the ranges of parameters shown in

Section 5.1. In Figure 5-2, we plot the backscattering coefficient as a function of

frequency. The backscattering coefficient increases rapidly as the frequency increases.

In Rayleigh scattering, the backscattering coefficient increases as the forth power of

the frequency, or approximately 12 dB when the frequency increases by the factor of 2.

In the independent scattering model, the backscattering coefficient increases linearly

as the fractional volume or the number of particle increase. That is, backscatter

increases by 3 dB when the fractional volume doubles.

But from Figure 5-4, this approximation is not valid when the medium is dense.

Since, in the case of dense medium, the probability of finding a particle in the medium

is not uniform (no 2 particles can overlap the same space). This further suggests that

the First Order Analytical solution method, using the independent pair distribution

function, is valid for sparse medium only. However, the T-matrix-Monte Carlo sim-

ulation and RT theory method have capabilities of dealing with dense medium, as

seen in Figure 5-4 that rate of increasing is not linearly dependent to the fractional

volume. (Moreover, the backscattering coefficient even tends to decrease when the

medium is very dense, around 60 % or higher [23]. This argument is plausible since

when the fractional volume goes to 100 %, the whole medium is homogeneous, thus

produces no backscatterer.)

Figure 5-3 shows the backscatter as a function of incident angle. The effect of

incident angle to backscatter is due mainly to the transmitivity at the air-ground

interface. This explains the higher return for the VV polarization than for the HH

polarization, since the transmission coefficient of TM wave is always higher than that

of TE wave. It is to be noted that due to the limitation of Gaussian quadrature

method used in the numerical solution for RT, the RT approach cannot be used at



Backscattering Coefficient versus Frequency.

0.2 0.4 0.6 0.8

Frequency (GHz)
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Backscattering Coefficient versus Incident Angle.
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Figure 5-3: Backscattering coefficient versus incident angle.
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Backscattering Coefficient versus Fractional Volume

'~ r~

2 4 6 8 10

Fractional Volume (%)
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very low depression angle region. Using the listed typical parameters, RT can be used

up to no more than 70' incident angle only.

Figure 5-5 shows the backscattering coefficient versus radius of particles. Using the

single scattering model, the backscattering coefficient increases to the sixth power of

the radius. In our calculation, we keep the fractional volume of the particles constant,

so the number of particles decreases by inverse proportion to the third power of radius

of the particles. Then the backscattering coefficient in Figure 5-5 increases by only

the third power of radii of particles, which is 9 dB for every two-time the radius of

particles.

In Figures 5-6 and 5-7, the backscattering coefficients versus dielectric constants

of the particles and the medium respectively, we can see that when the difference

between dielectric constants of particles and medium is higher. the backscattering

coefficient increases. And when the dielectric constant of particles and medium are

the same value, the medium becomes almost homogeneous, thus producing the lowest

return, as expected. The backscatterer at this point would be minus infinity if it were

not for the conductivity in the medium which is the only difference between particles

and medium at this point.

Figure 5-8 shows the backscattering coefficient versus the conductivity of the

medium. As expected, the backscattering coefficient is lower when the conductiv-

ity is higher. The effect of conductivity on the backscattering coefficient can be easily

approximated by calculating averaged round-trip loss factor of the scattered power

from particles.
N o 1 - e4kizD

Ji- e 4kir = N• d - (5.1)
D _Do

kiz - cos Ot
2cEO

where Ot is the incident angle in medium 1. It can be seen that when the exponential

term is small, i.e. the thickness of particle layer is larger or the conductivity of the

background medium is high, the loss is approximately proportional to 1/a, which

means 3 dB decrease in backscattering coefficient if the conductivity doubles. This

expression is also useful to predict the results for the case of different thickness of
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Figure 5-5: Backscattering coefficient versus radius of particles.
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Backscattering Coefficient versus Dielectric Constant of Particles
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Figure 5-6: Backscattering coefficient versus dielectric constant of particles.
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Backscattering Coefficient versus Dielectric Constant of Medium
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Figure 5-7: Backscattering
medium.
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Backscattering Coefficient versus Conductivity of Medium
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Figure 5-8: Backscattering coefficient versus conductivity of medium.
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particles layer. If all properties of medium and scatterers and the area illumination

are kept constant, the number of particles N is proportional to D, thus canceling the

1/D term. Then the backscatterer depends on the upper term of the right-hand side

of (5.1), which is almost constant for large D. This is interpreted as that, for the

lossy medium, the particles at the deeper distance in the medium has no effects to

backscattering coefficient as seen in Figure 5-1.

From Figures 5-2 to 5-8, we can see that, results calculated using the RT theory

and the T-matrix-Monte Carlo simulation agree well. The results calculated using

First Order Analytical Approximation also give the same trend as those of the other

two approaches, but the level of the curves is always higher. This difference may

be accounted for by: 1) multiple scattering, 2) the missing absorption term in the

Rayleigh's scattering equation, 3) the independent particle position assumption.

Further investigation by using T-matrix-Monte Carlo simulation to calculate the

backscattering coefficient for first order and higher order iterations (Figure 5-9) shows

that the effects of multiple scattering, in this set of typical parameters, is smaller. By

considering the leading term of the real part of T-matrix given in Equation (2.45),

section 2.3, it can be found that the effect of absorption is also very small. One can

demonstrate that difference between Analytical solution approach and the other two

method is due mainly to 3) by performing the Monte Carlo simulation using uniform

pair distribution function without particle overlap checking. The results show that

when ignoring the overlap checking in the random particle generator, Monte Carlo

simulation agrees very well with the First Order Analytical Approximation. The

difference from this effect is stronger when the fractional volume is larger, as it can be

seen in Figure 5-4, since the assumption of independent particles' positions becomes

invalid in the dense medium, thus produces larger errors. This error becomes smaller

at the smaller fractional volume region, which is the valid region of the First Order

Analytical Approximation approach.

Comparing results calculated using the three approaches, it can be seen that they

agree well. If the computational resources required in performing the calculation of

each approach is taken into account, the RT theory appears to be the best method
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among the three.

5.3 Simulation Results With Particle Size Distri-

bution

In this section, we assume that their sizes obey a Rayleigh distribution. [30]

r
2

n(r) = Kre- z2 (5.2)

In Equation (5.2) r is the radius of the particle, and n(r)dr gives the number of

particles per unit volume having size between r and r + dr. The normalizing factor K

depends on the total fractional volume f, which is the ratio of the volume occupied

by particles to the bulk volume of the medium

47r K 2) ()] 5
f = (2a2 -(2) ( (5.3)

3 2 2

where a is the mode radius at which n(a) is a maximum in the distribution.

For a given size distribution, we can discretize the continuous size distribution into

a histogram for N different sizes. Given a set of N discretized sizes rj with number

densities nj = 3f/47rri and the backscattering coefficient of the medium denoted by

aj, the total backscattering coefficient of the medium with size distribution denoted

by at can be calculated as follow.

N n (rj)
ut(a, f) = I ary 3(rj) (5.4)j no0j(rj)

where the aj (rj) is the backscattered power from the medium with the one discretized

size of particle rj, the noj(rj) is the raw number density for the of the particles with

the size rj and the nj is the corrected number density of particles with the size rj

using the size distribution function (5.2).

Hence, from (5.4), the backscattering coefficient of the medium with size distri-



bution can be calculated from the backscattering coefficients of N discretized sizes of

particles. Figures 5-10 to 5-12 are the results calculated using the RT approach with

particle size distribution mode radii from 1.0 cm to 3.0 cm.

As seen from Figures 5-10 to 5-12, all curves have the same trends as in the cases

with the single size particles. If we compare the results from the previous section

that uses the radius of 2 cm with the results in this section that use size distribution

with mode radius of 2 cm, we can see that the backscatters from particles with

size distribution produce much higher backscatter than that of cases with single size

particles. This is due to the contributions from the particles with large radii. Since

the backscattered power is proportional to the sixth power of the radius, the particles

with large radii , even with small numbers, tend to have the significant contribution

to the backscatter. With the given range of parameters, the calculated backscatters

range from -20 dB to -40 dB. It is possible, therefore, that the total backscatter

observed from the Yuma has a significant volume scattering component due to rocks

beneath the desert surface. It may be further concluded that the volume scattering

is important in GPR applications.
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Chapter 6

Summary

In June 1993, MIT Lincoln Laboratory conducted a ground penetration radar (GPR)

experiment in Yuma, Arizona. During the experiment, extensive clutter data were

collected for the desert terrain. These clutter data show that, even in an area where

the surface is relatively flat and with no visible vegetation, the backscatter is signifi-

cantly higher than the noise level. For GPR configuration, a possible explanation for

this finding is volume scattering. Volume scattering is caused by inhomogeneity in

the medium, such as rocks beneath the desert surface, heterogeneous soil types, and

subsurface features. This thesis investigates the volume scattering arisen from the

rocks.

For the ease of modeling, the desert is replaced by a lossy half-space medium, and

the rocks are replaced by dielectric spherical particles embedded in the half-space.

The radar backscatter were calculated as a function of incident angle, frequency, di-

electric constant of the particles, dielectric constant of the half-space, conductivity of

the half-space, size of the particles, and the fractional volume of the particles. (The

fractional volume of particles in the medium is the ratio of the sum of the volume

of all the particles to the bulk volume of the medium.) Three approaches are used

to analyze this volume scattering problem: (1) the Transition Matrix with Monte

Carlo simulation (T-matrix-Monte Carlo simulation), (2) the Radiative Transfer the-

ory (RT) based on the eigenanalysis numerical solution, and (3) the Zeroth Order

Analytical solution.



The Transition matrix (T-matrix) is derived from Maxwell's equations and is used

to calculate the scattered field. The Monte Carlo simulation technique is applied

to approximate the backscattering coefficient. In other words, the T-matrix-Monte

Carlo simulation is based on solving the wave equation and averaging over many

realizations of randomly generated particle positions. For accurate results, many

realizations are needed, thus it means longer computation time. The appropriate

number of realizations depends mainly on the configuration of the problem and the

required accuracy. This approach is usually less efficient in terms of computational

resources, but it has an advantage that it includes multiple scattering and coherent

wave interaction among the particles.

The RT approach is based on the energy transportation concept and is used to

calculate the intensity of the scattered power. The characteristics of the medium in

the RT approach is described by two constituents, the phase matrix and the extinction

matrix, which are calculated from the averaged particle configuration. Since the RT

is based on intensities, it does not include coherent wave interaction, which may

give appreciable contribution to the scattered power when the size of the problem is

comparable to wavelength of the incident wave. However, the geometrical model used

in the RT approach consists of infinitely extended particle layers, thus the use of the

RT approach is already limited to infinite medium. In fact, this limitation does not

restrain the use of RT approach to this study since the real physical problem itself

can be modeled using an infinite medium. A major advantage of the RT approach is

that it includes multiple interaction between particles. And since the constituents in

the RT equation are calculated based on the already averaged quantities, there is no

need to average over many realizations, which means shorter computation time and

is another advantage of the RT approach.

The First Order Analytical solution is another approach derived from the Maxwell's

equations by assuming single scattering and independent particle positions. Like the

T-matrix-Monte Carlo technique, it accounts for coherent wave interaction. Unlike

the T-matrix-Monte Carlo technique which requires calculation for many realizations,

the averaging process in this approach is taken care of by assuming the particle's po-



sition to be a uniformly distributed random variable and by integrating over the

whole medium. The integration is carried out once and the solution is in a compact

form; the calculation in this approach is relatively simple comparing to the above two

methods By its simplicity, this First Order Analytical Approximation gives better un-

derstanding of the behavior of the backscatter when the configuration of the medium

is changed in various ways. However, the accuracy of this solution degraded when

the fractional volume of the particles increases, owing to the assumption of single

scattering and independent particle positions.

These three approaches were used to calculate the backscatters. Numerical cal-

culations show that results of the three approaches agree well. The result of the

First Order Analytical Approximation becomes inaccurate as compared the other

two approaches when the fractional volume of particles is large. This is due mainly

to the independent particle position assumption. Considering the accuracy and the

computational efficiency, the RT approach appears to be the best method for this

study. Note, again, the RT approach does not include coherent wave interaction and

it may produce insufficient accurate result for an application where the coherent wave

interaction is significant.

The observed total backscatter of a desert terrain consists of components due to

various surface and subsurface features. Parametric study, in which backscatter is

calculated as functions of frequencies, incident angles, fractional volumes, etc., shows

that the backscatter of rocks beneath the surface can be a significant component of the

total backscatter. This is expected, since, in the GPR applications, significant amount

of electromagnetic energy penetrates into the ground. Dependence on the chosen

parameters in the backscatter simulations, backscatter of rocks can be a principle

factor that contributes to the observed high backscatter in the 1993 GPR experiment.

To confirm this, however, the parameter used in the simulations must be verified and

it requires ground truth.

The three developed volume scattering models are by no mean completed. A

number of improvements to capture a more realistic geometrical configuration can

be made. The particle size distribution may be added to represent the various sizes



of rocks. The surface and subsurface contributions may also be incorporated in the

model. The First Order Analytical solution can be improved and used for higher

fractional volume problems. The improvements can come from a better approximation

of the pair distribution function, which describes the dependency of the particles'

positions in the medium.



Appendix A

Transmission Coefficient for a

Dipole Field

In this appendix, we shall derive the transmission coefficient for a dipole field. The

dipole is in the lower half-space (region 1). Transmission coefficient for this dipole

field at the upper half-space (region 0) is calculated.

A.1 Integral Representation of Free-space Dya-

dic Green's Function

x V x G(T, v') - k 2'G(, T') = I6(T - TI) (A.1)

(A.2).- --/G(F,V•) = [7

where
eiko i~-T'1

47IT - 7' (A.3)

(A.4)(V2 + k 2)g(, I) = -6(7; - T)

Let T' = 0. Fourier Transform gives:

1
_ klVV] g(,r) ,
T27o XI '

9 (T, T') = g(T - T')
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( 2) = JJd3k eik-F
(23)3

Substitute into (A.4)

1
(V2 + k02)

0(27~)3 ff d3-k e' g(k) = (A.7)(2)- J d3-ei(27) )3 iff
Since the integral sign operates on k and the V2 operates on f, we can swap the

integral sign and the V 2 operator.

eik-F _ i(kxx+kyy+kzz)

v2eik-. = k2 2eik-r

(A.8)

(A.9)

Thus

d3k (-k 2 + k )eik-Fg(k) (A.1O)(27r) 3 eikr

From (A.5)
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Let kP = kI + k2 then
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Figure A-1: Contours of Integration

Integrate with respect to k,.

- Singular points are at kz = ± k0 - kP.

- Notice that k, > 0 is for z > 0 and k_ < 0 is for z < 0 and that Vkk - k
is always larger than 0.

- Deform the contour upwards and pick the contribution from the singular

point + k0 - kP. And deform the contour downwards and pick the contribution from

the singular point - k0 - kP (Figure A-l).
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(A.16)

for z > 0 and z < 0 respectively. The second terms on the right-hand side of (A.16)

are zero for both z > 0 and z < 0 cases.

In free space we have

k2 + k, += k k2 2+k2 = k 2p z 0 2F -k 2 kz

Then the right-hand side of Equation (A.16) is reduced to

ei(kxx+kyy+kz lzl)

2kz

Using (A.18 in (A.15),thus

g(r) = 2 d2k Iei(k±-l_+kzk zl)

where

S= Jkrx + jry

To find G(T) we have to find VVg(T). We then first consider 92

a
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But from Equation (A.4) we have

(V2 + ko)g(7) = -6(f)

and
9 1 -k e i (k-Fj+kztzl)

Ox (2 7) 2 1 2kz

if k
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02 k
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Upon balancing Equation (A.4), it is necessary that the second term on the right-hand

side of Equation (A.22) equals -6(f).

8 f2 2f di (z)ek( -i +k
z
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From Equation (A.2)
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We define unit vectors:
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Then

s 2 fd 2kj k [&(k,)e(kz) + h(kz)h(kz)] ei)(-•') for z > 0+2, (A.42)
f d± [e (-kz) (-kz) + h (-k) h(-k)] ei-(-') for < 0

Notice that the e(-kz), h(- kz), I are for down-going wave and e(k,), h(kz), k are

for up-going wave. By starting with the dyadic Green's function in a homogeneous

medium, the boundary can be added later, which gives rise to reflected wave terms

in the dyadic Green's function.

A.2 Half-space Dyadic Green's Function

Consider the case where a point source is located at far zone in region 1 such that

z > z' . Then G(T, V') to be used will be the one for z > z'.

(A.37)
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for z > z'

=(kz)e i"' (kz)e k' +± h(kz)e•ikh(kz)e-i k (A.44)

Upon realizing that ý(kz)ei -ýk is a up-going wave in TE mode and h(kz)e izk- is a up-

going wave in TM mode for free-space dyadic Green's function, then, for half-space

Green's function, we add RTE (-kz)eik "7, a reflected down-going wave, in TE mode

and RTE h(-kz)ei•_-', a reflected down-going wave in TM mode into Equation (A.44).
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Note that km = kl~ and ky = kl, from phase matching.

We can find RTM, RTE, TTM, TTE by matching boundary conditions at z = 0. At

z = 0 tangential components are continuous.

i x G 1 1(, V') = x G01 (T, '), z = 0 (A.48)

× x [V x G 1 (, T)] = X [Vx G0 (f,')], z = 0 (A.49)

Note that the cross products operate on the first vectors of dyads, then from Equation

(A.48), we have:

Z x [RTOEi (-kiz)eik-  + 6 (kiz)eik1 •] = x x TITE(kz)eik' (A.50)

z x [RToMhi (-kiz)eik-' + hl(klz)eik' ] = z x TTMh(kz)eik'  (A.51)

at z = 0 then kl ~ = k. f = -. · , then

× x [RTOE~1(-kiz) + 61(kiz)] = z X TTEz(kx) (A.52)

Sx [RTMhl (-kiz) + hi (klz)] = x TZMh(kz) (A.53)

But 61(kiz) = 1(-klz) = e(kz), thus, from Equation (A.52)

RT + 1 = TTE (A.54)
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And

z x hl(-klz) =

kyklz
kklk,

kxklz+ Y
kIk, G

-= -1,(-kiz)
ki

Similarly,

Sx hi(kiz) =

and

Sx h(kz)

x

0 0 1

klkp klkp ki

kyi + k y)1

(A.55)

(A.56)z1(kiz)
k1

k•
A(kz) (A.57)

Then from Equation (A.53)

R TM klz

1o k]

From Equation (A.49), we replace V with ik then

[2 x [RtE x 1 (-kiz) + ik x 1 (kiz)] 2 x TIEik x (kz)

2 x [R TMik x hi (-k 1 ) + ik, x hi (kiz)] = x T "Mik x h(kz)

But we know that
1

hl(kz) = -kI1 x ki

l x 61 =--k1hl(ki1z)

and
1 eki x hi(klz) = ki x ki~1 x -el k (kki ki S•k) - k1 ( 1 ~1k
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(A.59)

(A.60)

(A.61)

kz TM= o O

kiz I=i (k



as kl kl = kl and k1 - 1 = O0, thus

ki x hi(kiz) = klPl (A.62)

Using (A.61) in (A.59) , then

2 x [RfTEklhl(-kiz) + klhl(klz)] = 2 x TTEkoh(kZ) (A.63)

(A.64)kiz[1 - RTO] = T17Ek

and using (A.62) in (A.60),then

2 x [RTMki~i(-kiz) + klex(klz)] = 2 x TTMIko6(kz) (A.65)

(A.66)kI[1 + RToM] - TTo ko

Combining (A.54), (A.58), (A.64) and, (A.66), we can solve this set of equations

for the four unknowns. The solution is

TTM = kl10 ko
[2ok iz 2Ekkl 1

Eikz + EokzJ o L lkz + cokiz

T~TE 2klz
10 -- kz + kzl

RTM = oklz - el kz
10 oklz + e1kz

R oE = kzl - kz
kiz + kz

(A.67)

(A.68)

(A.69)

(A.70)

Then

-- = 822JJdk2
G711 (T, I T) =- 8r2 ff d~k

1 [RToE (-kiz)eik + 1 (kiz)e i-'] 1(kiz)e-ik' ' '

+[RTM h (-kiz)eki + hl(kiz)ei •?i (klz) e~ ' }
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0ol,1 ( 7'I) = r2 2k [TE (k-)e (kz)e-kd _L iz 0 k ••e (" lz)•

+T7ToMh(k,)e&kr'l (kiz)e-iklr']

2cEklz

(Elkz + cokiz) h(kz)ei•1hi (kIz)e-ik'-] I

A.3 Stationary Phase Approximation Method for

Double Integrals

Consider

I = ff (x, y)eikg(xy) dx dy (A.74)

,where s contains the sources. The stationary Phase point is at x0o, Yo where

Vg(zo, yo) = 0

ag
a (X ° yo)8x vo

(A.75)

(A.76)-= (xo, yo) = 0ay
Let s = x - x0o ands2 = y -

We define the notation to represent the partial differential operation as follows:

1 03
=X Y OxOyOz

02 9
S1,82 9OS0l9S2

Taylor series expansion of g(sl, s2) around stationary point sl = 0, s2 = 0 becomes

{( 10) + [sg ' , 0) + sg '2 82 (0, 0) + 2S1S 2g~ 1 2(0, 0)]
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(A.72)

+ 0
o

(A.73)

g(s 1 , 2) =

i 1 2ki 8(k,),ekj- (kz)e-ik-
87 j2 k k, + kiz



+ 1 igSiSi (0, 0) + I sgi 282 (0, 0) + 3sS29 8182 ' (0, 0) + 3sis2 g 82 82 (0, 0)] + ...3! •1 '"s' i i 2(0, 0)S1 29S1S2S2

(A.77)

For the first order approximation, we keep only the first two terms.

We use matrix notation to represent

Sg182 + 2982S2 + 2sls 29g12 = TG, (A.78)

where
81 g8s1S gs182  -T

G 8 = • = s• =[S1 S2]
II II

82 g9s8 s2 gs2s2

We introduce a coordinate rotation such that sl, s2 change to ul, u2 and make

g91U2 = 0. This allows us to treat each integration independently.

The relation between s and u can be written as

S=J JU (A.79)

where
cos 0

- sin 0

G=

sin 0

cos 0
(A.80)

then we have
II

gulul

0

0

g"282,
(A.81)

and

(A.82)

But - = Ju- and (AB)T = BTAT then

Note that det J = 1 then we have

=T -
iUT J G,8 = UT ?7 U (A.83)

det G, = det Gu
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Since --=9s l - -49, - -= then
8982 19Y

I I II II
gsz g%, -~ gz = det G

In order to make gu1, 2 = 0, 0 in J must be (from Equation (A.83))

1
0 = - tan-1

2

2 g" ]
g -, g =

v=1O

Then we have

I = f (f)eikg(u)dU-

And we have the first order approximation of I as:

I w f(O, O)eikg(oo°)P, (0, 0)P,, (0, 0)

where

Peu(2 = e U d u

2Irf 1 ei[kg+m {sign(gl1u1 )+sign(g12, 2)}]
k det GI

A.4 Far-Field Half-space Green's Function

We can rewrite (A.72) into:

Go, (Tr T7) 2= dkdky

(A.92)
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(A.85)

(A.86)

(A.87)

(A.88)

(A.89)

(A.90)

(A.91)

ul=0
u 2=0

[ e sign g _nt))

[T1
E,E (kz)61(klz)e

- i tk "•?

+T (T (kz)hj(kjz)e-i F'I- ei-k'

P un(U) = k g"//



, where the exponent term is

eikF = ekxx+kyy+(V k-k2) (A.93)

By assuming the observation point is in the far field zone, kr -- oc, the significant

contribution of this integral comes from the stationary phase point. Then, we can use

the two dimensional stationary phase approximation method given in the previous

section to find the far-field Go01 .

Comparing (A.74) with (A.92), we have

(A.94)

Finding the stationary phase point,kxo, kyo, we set

Ok

kmX kx =kxo
ky=kyO

- .

Oky kx=k1o
ky=kyO

-0 (A.95)

Solving for kxo and kyo, we have

kx0 = k0o sin 0 cos ¢, kyo = ko sin 0 sin 0 (A.96)

, where we make use of the relations

x = r sin 0 cos , y = r sin 0 sin 0, z - r cos O (A.97)

Next, we find the angle in Jacobian matrix, denoted by 0' to avoid confusing with the

angle 0 in spherical coordinate. Using (A.86), we find

(A.98)
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Thus the Jacobian matrix is

S= cos sin 1
- sin cos j

(A.99)

Let sl = kx - kxo and s2 = k1 - kyo, then

g(sl, s2) = Z(Sl + ko sin 0 cos q) + y(s2 + ko sin 0 sin 0)+

k2 - (si + ko sin 0 cos 0)2 - (2 + ko sin 0 sin 0)2 (A.100)

Using the relation (A.79)

s, = cos q u, + sin q u2

s2 = - sin ul + cos U 2
(A.101)

Substitute (A.101) in (A.100)

g(ul, U2) = X(U 1 COS 0 + U2 sin ± + ko sin 0 cos 0) + y(-ul sin +u2cos + ko sin 0 sin )

+z/k - (ul cos + u2 sin q + ko sin 0 cos 0)2 - (-ui sin + ±U2 COs 0 + ko sin 0 sin 0) 2

(A.102)

One can find that

_2 g(o, 0)
ou

r

ko

r

ko

Then the {sign(gL,+2) + sign(glU 2)} gives -2.

Using (A.85), one can find

detG, =

Then we write (A.92) in the form of (A.74) as

1 i[kr-Mi
VdetG
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2u1

tan2 0 Cos 2(20) < 0 (A.103)

(A.104)

(A.105)



where

i r
8f = 2 ki i 1 [T (kz) (kiz)e-' + T mh(kz)hj (kiz)e-ik ']j (A.106)

Then the far-field half-space Green's function is

01 ei r k Z T (kTz)e(kz)+ TTiMh(kz)hl(kz)] e-  (A.107)4wrr kl 1  e(k)() +

or

Go,(,') -= eikr 2k (k) (k) + 1 2( k(  )h(kz)hi (kiz) e+-
4rr k~z -+kl o ,Exlkz + 0klz I

(A.108)

Thus we can see from the far-field half-space Green's function that, in the cases

of a dipole source with the observation point in the far field zone, the transmission

coefficients TTM , TT E are multipled by kz/klz, which is equivalent to TTM , TOE for

plan wave.
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Appendix B

Typical Properties of Sand and

Rocks

B.1 Electrical Properties of Sand: A sample from

Al Labbah Plateau

Table B.1: Moisture and electrical properties of Al Labbah Plateau Sand samples

Reference:[3], p 325 - 336.

111

Site Sample Moisture Dielectric Loss
Depth (cm) (wt. %) Constant Tangent

28-1A 0-5 0.054 2.466 0.0054
28-1B 27-32 0.148 2.490 0.0054
28-1C 50-55 0.361 2.490 0.0067

28-2A 0-5 0.077 2.386 0.0038
28-2B 20-25 0.148 2.475 0.0065
28-2C 38-43 0.183 2.515 0.0075

6-A 0-5 0.057 2.585 0.0057
6-B 20-25 0.248 2.515 0.0084
6-C 45-50 0.578 2.605 0.0086

X 0.206 2.503 0.0066



(a) Electrical-property measurements were made at a frequency of 1.3 GHz by the

resonant-cavity technique. Uncertainty in absolute values of measured dielectric and

loss tangent properties is less than 2 percent.

(b) 1 standard deviation uncertainty of the dielectric constant = 0.018 (average).

(c) 1 standard deviation uncertainty of the loss tangent = 0.00016 (average).

(d) Sampling sites 28-1 and 28-2 were 106-meter apart.

B.2 Electrical Property of Rocks

Sedimentary Silicates (22)

Igneous Plutonic Silicates (16)

Igneous Volcanic Silicates (26)

All Igneous Silicates (42)

Carbonates (10)

Sulfates (1)

2 4 6 8 10
Relative Permittivity

Figure B-1: Electrical properties of rocks

Reference:[32], p 595 - 602.

- The real part of the relative dielectric constant c was measured in 0.1-GHz step

from 0.5 to 18 GHz.
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