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Abstract

This thesis compares classical nonlinear control theoretic techniques with recently de-
veloped neural network control methods based on the real time experimental control
performance on a simple electro-mechanical system. The system has configuration-
dependent inertia and velocity squared terms, which contribute a substantial nonlin-
earity. The controllers being studied include PID control, sliding control, adaptive
control, and Gaussian network control.

Experimental results are given on the tracking performance and computation time
for each controller. To establish a fair comparison among different controllers, the
feedback bandwidth of each control method is chosen to be the same. The perfor-
mance data for final comparison is collected using the same control frequency, i.e.,
the slowest pace of the four methods. These controllers are evaluated based on the
amount of a priori knowledge required, tracking performance, stability guarantees,
and computational requirements. The comparative study shows that for different
control applications, appropriate control techniques should be selected depending on
how much we know about the nonlinearity of the systems to be controlled and avail-
able computational resources.
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Chapter 1

Introduction

1.1 Motivation

Underwater vehicles are important tools for exploration of the oceans. They are be-

ing applied to a wide range of tasks including hazardous waste clean-up, dam and

bridge inspections, ocean bottom geological surveys, historical ship wreck documen-

tation and salvages, and oceanographic researches. The Deep Submergence Lab at

Woods Hole Oceanographic Institution has developed several underwater vehicles:

ARGO, JASON, ABE, etc., and deployed them in dozens of ocean science expedi-

tions [12] [24] [27].

Most of the current underwater vehicles are remotely operated through cables.

Human pilots are heavily involved during the operations. Precise, repeatable com-

puter control of the vehicles will significantly reduce the operator's workload and

provide better performance. For the fast growing populations of autonomous un-

derwater vehicles, automatic control will be the only choice. However, due to the

nonlinearity and uncertainties introduced by hydrodynamic drag and effective mass

properties, precise control of an underwater vehicle is very difficult to realize. Tra-

ditional well developed linear control techniques can only be applied to this highly

nonlinear and uncertain scenario by compromising performance.

The same is true with the control of a manipulator on an underwater vehicle [28],

which is different from its counterpart on the land vehicle. The hydrodynamic force



and other factors add nonlinearities into the dynamics [11], so choosing a good nonlin-

ear control method on the vehicle and manipulator becomes necessary and important.

1.2 Overview of Traditional Control Theory and

Neural Network Control Methods

Many control techniques have been used to control underwater vehicles and manipula-

tors. There are traditional linear control methods for operations within the linearized

region, sliding control and adaptive control methods for nonlinear operations, and

most recently, the neural network approaches for nonlinear controls. This section

summarizes these control techniques and their performance on underwater vehicles,

and points out the importance to compare these different controllers and make better

choices for our specific control applications.

1.2.1 Traditional Control Theory

Traditional linear control, which is a well developed control technique [13], performs

poorly on nonlinear dynamic systems like underwater vehicles because the dynamics

model must be linearized within a small range of operation and consequently loses its

accuracy in representing the whole physical plant. The dynamics of the underwater

vehicles needs to be understood and modeled thoroughly [9] [2] [23] [6] [7]. While good

performance and stability can be reached [8] [10] within the linearized region, e.g.,

when the range of operation is small as in the case of constant speed heading control,

they can not be achieved when the operation is out of the linearized region. Hard

nonlinearities and model uncertainties often make linear control unable to perform

well for nonlinear systems.

Nonlinear control methodologies are thus developed for better control of nonlinear

dynamic systems. There is no general method for nonlinear control designs, instead,

there is a rich collection of techniques each suitable for particular class of nonlinear

control problems [18]. The most used techniques are feedback linearization, robust



control, adaptive control and gain-scheduling. The first and the last control tech-

niques are more closely related to linear control methodology and their stability and

robustness are not guaranteed. So in this thesis, I choose robust control and adaptive

control for the purpose of study and comparison.

A simple approach to robust control is the sliding control methodology [18]. It

provides a, systematic approach to the problem of maintaining stability and consistent

performance in the face of modeling imprecision. It quantifies trade-offs between

modeling and performance, greatly simplifies the design process by accepting reduced

information about the system. Sliding control has been successfully applied on the

underwater vehicles [4] [3] [14] and other nonlinear dynamic systems. It eliminates

lengthy system identification efforts and reduces the required tuning of the control

system. The operational system can be made robust to unanticipated changes in the

vehicle's dynamic parameters. However, the upper bounds on the nonlinearities and

the unknown constant or slow varying parameters in the dynamic system have to be

estimated for sliding control to be successful.

Adaptive control techniques [17] have also been successfully used to deal with the

uncertain and nonlinear dynamics of underwater vehicles [29] [1]. It further provides

an adaptation mechanism for the unknown parameters in the dynamic system, thus

it achieves better performance if the initial parameter estimates are imprecise. It can

be regarded as a control system with on-line parameter estimation. The form of the

nonlinearities must be known, along with bounds on the parameter uncertainty. The

unknown parameters it adapts to have to be constant or slowly-varying.

1.2.2 Neural Network Control Methods

Neural network control [15] [26] is a fast growing new candidate for nonlinear controls.

These controllers have ability to learn the unknown dynamics of the controlled system.

The parallel signal processing, computational inexpensive, and adaptive properties of

the neural networks also make them appealing to the real time control of underwater

vehicles. J. Yuh has developed a multi-layered neural network controller with the

error estimated by a critic equation [32] [30] [31] . The only required information



about the system dynamics is an estimate of the inertia terms. K. P. Venugopal et al.

described a direct neural network control scheme with the aid of a gain layer, which

is proportional to the inverse of the system Jacobian [22].

While the back-propagation method used by the above researches is theoretically

proven to be convergent, there is no theory regarding its stability when implemented

into real time control problems. Moreover, there is no standard criteria to choose the

number of layers and nodes within the networks.

A better solution to these problems is a network of Gaussian radial basis functions,

called Gaussian networks [16]. It uses a network of Gaussain radial basis functions to

adaptively compensate for the plant nonlinearities. The a priori information about

the nonlinear function of the plant is its degree of smoothness. The weight adjustment

is determined using Lyapunov theory, so the algorithm is proven to be globally stable,

and the tracking errors converge to a neighborhood of zero. Its another feature is that

the number of nodes within the network can be decided by the desired performance

and the a priori frequency content information about the nonlinear function to be

approximated.

The Gaussian network is a controller which combines theoretic control and con-

nectionists approach. It uses the network to its full advantage of learning ability

while in the mean time guarantees the stability of the whole system using traditional

theoretical approach. The resulting controller is thus robust and retains its high

performance.

1.2.3 Comparison of Traditional and Connnectionist Con-

trol

With the fast development of connectionist control methodology, there are growing

interests in applying it to every nonlinear control application. Instead of embracing

the new and promising control technique blindly, this thesis tries to evaluate it on

solid theoretic base and real time control performance. By comparing with traditional

control methods, discussing their strength and weakness, we can make a better choice



of controllers to our specific control need.

To establish an experiment comparison, the Gaussian neural network control is

used to compare with the traditional theoretic control techniques. They are evaluated

based on the amount of a priori knowledge required, tracking performance, stability

guarantees, and computational requirements. A simple electro-mechanical system

which has rich nonlinear dynamics is designed and built to take place of a real un-

derwater vehicle to save the operational cost. Characteristics of these controllers are

discussed based on the experimental results and suggestions for choosing appropriate

control techniques for different nonlinear dynamic systems are given based on these

comparison results.

To establish a fair comparison among different controllers, the feedback bandwidth

of each control method is kept the same. The performance data for final comparison is

collected using the same control frequency, i.e., the slowest pace of the four methods.

1.3 Outline of Thesis

The outline of the thesis is:

Chapter 2 describes details of the nonlinear electro-mechanical system design. The

dynamics of the system is modeled using Lagrange equation.

Chapter 3 contains controller designs and experimental results of three control

theoretic methods: PID control, sliding control, and adaptive control.

Chapter 4 presents the controller design and experimental results of the Gaussian

network control on the nonlinear system.

Chapter 5 discusses the experimental results of the four controllers and compares

their performances.

Chapter 6 summarizes and offers suggestions for choosing appropriate nonlinear

controllers. Recommendations for future work are presented.



Chapter 2

A Nonlinear Dynamic System

In order to evaluate the performance of different controllers on nonlinear dynamic

systems, an electro-mechanical system is set up to represent the nonlinear dynam-

ics. The system has a configuration-dependent inertia, and a configuration-dependent

velocity squared term, both contribute substantial nonlinearity to the system dynam-

ics, thus provide an excellent base for comparing the tracking performance of control

theoretic and connectionist controllers.

The experimental setup of the electro-mechanical system is detailed in Section 2.1.

Then the dynamics of the nonlinear system is modeled using Lagrange equation in

Section 2.2. Based on the design and model of the system, a desired tracking trajec-

tory is selected in Section 2.3 so that different controllers will be used to control the

system following the same tracking motion.

2.1 Experimental Setup for a Nonlinear Electro-

mechanical System

Figure 2-1 illustrates the schematic of the experimental setup of a nonlinear electro-

mechanical system. The linkage-weight mechanism is designed to provide complex

nonlinearities so that different control methods can be compared from their track-

ing performance on this system. The dynamics of the mechanism is described in



Figure 2-1: Configuration of the electro-mechanical control system

Section 2.2.

A 3-phase brushless DC motor designed for the control of the thrusters [25] on

the 6000 meter JASON underwater vehicle is employed to control the movement of

the linkage-weight mechanism. Since the motor operates in higher speeds than the

mechanism, a cable drive [19] is used to reduce the speed of the motor by a factor of

6. The motor incorporates MOOG model 304-140A frameless windings and magnets

and resolver feedback in a custom oil-compensated housing.

An ELMO model EBAF15/160 3-phase commutating 20KHz PWM current ampli-

fier is used to drive the DC motor. Under the inductive load of the motor, the current

amplifier was configured to track current commands with a 2ms time constant. The

current limit was set at 9 Amps at a supply voltage of 120V for a maximum power of

about 1KW. The resolver feedback from the motor carries the rotor angle informa-

tion and is converted to quadrature by an AD2S82 on-board the EBAF15/160 to a

resolution of 4096 counts per shaft mechanical revolution.

Using current amplifiers reduces the need to model motor electrical parameters

such as winding resistance, winding inductance, and back-emf. Together with the

high-resolution resolver measuring the shaft position, this experiment setup is perfect

for closed-loop tracking control.



The host computer is a 486 class PC equipped with a quadrature interface, 12 bit

Analog I/O, and a 100 KHz hardware clock. The amplifier, sensors, and host com-

puter are extensively shielded and opto-isolated to minimize electromagnetic interfer-

ence. The four kinds of control algorithms are written in C language and compiled

using Quick C. The controllers are executed at 250Hz and the data is sampled and

logged at 50Hz. Torque command and shaft position data are plotted unfiltered using

Matlab -- no numerical smoothing or post-processing has been employed for these

signals. Angular velocity is obtained by numerically differentiating the raw angle

position data.

2.2 Nonlinear Model of the Dynamic System

The linkage-weight mechanism is shown in Figure 2-2. A weight cart is attached to

a linkage which connects with a crank on the output shaft of the cable transmission.

The left side of the cable transmission is the input shaft connected through a Helical

coupling with the DC brushless motor shaft.

The parameters for the mechanism are chosen to maximize the nonlinearity of the

system. Since the mechanism is connected with the motor through the speed reducer,

the weight M put on the cart has to be heavy enough to offset the constant motor

inertia J magnified from its original value by a factor of 36. The parameters in the

system are thus designed to be:

J = .03 kg -m 2 ; M = 12.27 kg; R = .0587 m; L = .1714 m; E = .0619 m (2.1)

The equation of motion for this nonlinear dynamic system can be derived by using

the Lagrange's equation:

£ = T - U = Lagrangian = Kinetic Energy - Potential Energy (2.2)
d aL 0c

(-) - =d  7  (2.3)

where 0 is a generalized coordinate which uniquely specifies the location of the object



Figure 2-2: Structure of the nonlinear dynamic mechanical system

whose motion is being analyzed. In our case, 0 is the angle of rotation of the crank. F

is the nonconservative generalized force corresponding to the generalized coordinate

0. In our case, it's the motor torque u applied to the crank through the transmission.

The kinetic energy and potential energy of the nonlinear system are

1 1
T = -JO2+ MV1 212 2
U = 0

The relation between the cart velocity VM and 9 is derived from the following equa-

tions.

y = Rsin9+E

x= L2 _ y2

a = x/cos 0



b = xtan0

c = y+b

RO
VM = -

a

so we have

1 J2j + + MV2
2 2
1 1 R2C2
1=j-O2  M 02
2 2 a2

which leads to
80 R 2C2

S= J0 +M MR 0 (2.4)
00 a2

d 0C R 2C2  2 C d R 2c2

dt (± a dO a
S M1 2 2d R C2

O0 = -M o ( a )
dO 2 dO a2

Substituting the above expressions into the Lagrangian equation (2.3) yields

R2 C2  d1 dR 2C2

(JM a2 ) + MO2  ( )=u (2.5)
a 2 dO a

Let's define

R 2 C2

JM(O) = M a2

1 d R 2C2

C(0) = dM ( R2)

then the equation of the nonlinear dynamics can be expressed as

(J + JM(O))O + C(0)02 = u (2.6)

The definition shows both JM(O) and C(O) are complex trigonometric functions of

the rotating angle 0, as illustrated by Figure 2-3 and Figure 2-4. Figure 2-3 clearly



Nonlinear Inertia

E

a)
C

Angle (deg)

Figure 2-3: Nonlinear inertia which varies about 3 times the constant inertia

shows that the chosen weight on the cart is heavy enough to create a large nonlinear

moment of inertia about 3 times the constant value.

2.3 Reference Trajectory

The different controllers are applied to the nonlinear dynamic system (2.6) and their

results are compared in Chapter 3 and Chapter 4. To establish a fair comparison, all

the controllers are designed to track the same trajectory shown in Figure 2-5, where

the speed profile is a half sinusoidal wave of 5 second duration and the crank rotates

a little over 2 turns.
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Figure 2-4: Nonlinear coefficient of the velocity squared term
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Desired position trajectory
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Figure 2-5: Desired trajectory and speed profile of the motion



Chapter 3

Control Theoretic Controllers for

Nonlinear Systems

There is no general method for designing nonlinear controllers, instead, there is a rich

collection of nonlinear control techniques, each dealing with different classes of non-

linear problems. The techniques studied in this thesis comprised of two groups: one

of traditional theoretic nonlinear control techniques, the other of recently developed

neural network control approaches. The first group applies to systems with known

or partially known dynamic structure, but unknown constant or slowly-varying pa-

rameters, and can deal with model uncertainties. The second group is for systems

without much a priori information about their dynamic structures and parameters.

This chapter focuses on the first group, i.e., the control theoretic controllers for non-

linear systems.

The general procedure for theoretic controller design is presented in Section 3.1.

Then three different theoretic controllers are designed and applied to the nonlinear

dynamic system detailed in Chapter 2. The experimental results and plots are pre-

sented after the description of each controller design. The PID controller is discussed

in Section 3.2, the sliding controller in Section 3.3, and the adaptive controller in

Section 3.4.



3.1 Procedure for General Control Design

The objective of control design can be stated as follows: given a physical system to be

controlled and the specifications of its desired behavior, construct a feedback control

law to make the closed-loop system display the desired behavior. The procedure

of constructing the control goes through the following steps, possibly with a few

iterations:

1. specify the desired behavior, and select actuators and sensors;

2. model the physical plant by a set of differential equations;

3. design a control law for the system;

4. analyze and simulate the resulting control system;

5. implement the control system in hardware.

Generally, the tasks of control systems, i.e. the desired behavior, can be divided

into two categories: stabilization and tracking. The focus of this thesis is on track-

ing problems. The design objective in tracking control problems is to construct a

controller, called a tracker, so that the system output tracks a given time-varying

trajectory.

The task of asymptotic tracking can be defined as follows:

Asymptotic Tracking Problem: Given a nonlinear dynamics system described by

S= f(x, u, t) (3.1)

y = h(x) (3.2)

and a desired output trajectory Yd, find a control law for the input u such that,

starting from any initial state in a region Q, the tracking errors y(t) - yd(t) go to

zero, while the whole state x remains bounded.

This chapter focuses on different theoretic control law designs. The desired be-

havior and dynamic model of the physical plant are assumed to be known and are

the same for all different control techniques.



Let the dynamic model of the nonlinear system represented by:

S(n) (t) = f (X; t) + b(X; t)u(t) + d(t) (3.3)

where

u(t) is the control input

x is the output of interest

X = [ x x - (n-1) ]T is the state.

d(t) is the disturbance

f(X; t) is the nonlinear function describing the system's dynamics

b(X; t) is the control gain

The desired behavior, i.e., the control problem is to get the state X to track a specific

state

Xd= [d d d . X (n-1)]T (3.4)

in the presence of model imprecision on f(X; t) and b(X; t), and of disturbances d(t).

If we define the tracking error vector as:

X==X-Xd=[ x ("-1) ] (3.5)

the control problem of tracking X Xd is equivalent to reaching X 0 in finite

time.

3.2 PID Control

3.2.1 PID Control Theory

The combination of proportional control, integral control, and derivative control is

called proportional-plus-integral-plus-derivative control, also called PID control. This

combined control has the advantages of each of the three individual control actions.



The equation of a PID controller is given by

u(t) = Ki(t) + Kdi(t) + Ki J (t)dt (3.6)

where K,, Kad and Ki represents the proportional, derivative, and integral gains.

In the proportional control of a plant whose transfer function does not possess

a free integrator, there is a steady-state error, or offset, in the response to steady

disturbance. Such an offset can be eliminated if the integral control action is included

in the controller. On the other hand, while removing offset or steady-state error, the

integral control action may lead to oscillatory response of slowly decreasing amplitude

or even increasing amplitude, both of which are usually undesirable.

Derivative control action, when added to a proportional controller, provides a

means of obtaining a controller with high sensitivity. It responds to the rate of change

of the actuating error and can produce a significant correction before the magnitude

of the actuating error becomes too large. Derivative control thus anticipates the

actuating error, initiates an early corrective action, and tends to increase the stability

of the system.

Although derivative control does not affect the steady-state error directly, it adds

damping to the system and thus permits the use of a larger value of the gain K, which

will result in an improvement in the steady-state accuracy. Since derivative control

operates on the rate of change of the actuating error and not the actuating error itself,

this mode is never used alone. It is always used in combination with proportional or

proportional-plus-integral action.

The selection of PID parameters K,, Kd and Ki is based on the knowledge about

the dynamic systems and the desired closed-loop bandwidth.



3.2.2 PID Controller Design

The control gains of the PID controller are selected according to the bandwidth A,

time constant T and damping constant ( of the nonlinear system.

Ki = JA2 /7 (3.7)

K, = J(A 2T + 2(A)//7 (3.8)

Kd = J(1 + 2A(T)/T (3.9)

with

S= 1.0/(ATf) (3.10)

where Tf is the time constant factor.

For the experiment, we assume the prior knowledge of the inertia term J = 0.03.

The constant values are chosen as Tf = 0.1, A = 10, and ( = 0.707.

Thus the control law for the PID controller is

u = Ki dt + K +KdO (3.11)

The PID controller is applied to the electro-mechanical system described in Chap-

ter 2 to follow the reference trajectory in Figure 2-5. The performance is shown from

Figure 3-1 to Figure 3-2.

The results show that with the prior knowledge of the system parameters, the PID

controller can achieve the tracking control, although with some large tracking errors.

3.3 Sliding Control

Given the perfect measurement of a linear system's dynamic state and a perfect

model, the PID controller can achieve perfect performance. But it may quickly fail

in the presence of model uncertainty, measurement noise, computational delays and

disturbances. Analysis of the. effects of these non-idealities are further complicated by

nonlinear dynamics. The issue becomes one of ensuring a nonlinear dynamic system
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Figure 3-2: Control torque for PID control

remains robust to non-idealities while minimizing tracking error.

Two major and complementary approaches to dealing with model uncertainty are

robust control and adaptive control. Sliding control methodology is a method of robust

control. It provides a systematic approach to the problem of maintaining stability

and consistent performance in the face of modeling imprecision.

Sliding Modes are defined as a special kind of motion in the phase space of a

dynamic system along a sliding surface for which the control action has discontinu-

ities. This special motion will exist if the state trajectories in the vicinity of the

control discontinuity are directed toward the sliding surface. If a sliding mode is

properly introduced in a system's dynamics through active control, system behavior

will be governed by the selected dynamics on the sliding surface, despite disturbances,

nonlinearities, time-variant behavior and modeling uncertainties.



3.3.1 Sliding Control Theory

Let's consider the dynamic system described by equation (3.3). A time-varying sliding

surface S(t) in the state-space R n is defined as

s(X; t) = 0 (3.12)

with

s(X; t) = (d + A)n-l-, A > 0 (3.13)

where A is a positive constant related to the desired control bandwidth.

The tracking problem is now transformed to remaining the system state on the

sliding surface S(t) for all t > 0. This can be seen by considering s - 0 as a linear

differential equation whose unique solution is - 0, given initial condition:

Xlt=o = 0 (3.14)

This positive invariance of S(t) can be reached by choosing the control law u of

system (3.3) such that outside S(t)

ld 2
• (x; t) -rs (3.15)2 dt

where r1 is a positive constant. (3.15) is called the sliding condition. It constrains

the trajectories of the system to point towards the surface S(t).

The idea behind (3.13) and (3.15) is to pick a well behaved function of the

tracking error, s, according to (3.13) and then select the feedback control law u such

that s 2 remains a Lyapunov function of the closed-loop system despite the presence of

model imprecision and disturbances. This guarantees the robustness and stability of

the closed-loop system. Even when the initial condition (3.14) is not met, the surface

S(t) will still be reached in a finite time smaller than s(X(0); 0)/77, given the sliding

condition (3.15) is verified.

The detailed controller design procedure is described in the following two sec-



tions. Section 3.3.1 shows how to select a feedback control law u to verify sliding

condition (3.15) and account for the modeling imprecision. This control law leads to

control chattering. Section 3.3.1 describes how to eliminate the chattering to achieve

an optimal trade-off between control bandwidth and tracking precision.

Perfect Tracking Using Switched Control Laws

This section illustrates how to construct a control law to verify sliding condition (3.15)

given bounds on uncertainties on f(X; t) and b(X; t).

Consider a second-order dynamic system

x = f + bu (3.16)

The nonlinear dynamics f is not known exactly, but estimated as f. The estimation

error on f is assumed to be bounded by some known function F:

I - fI < F (3.17)

Similarly, the control gain b is unknown but of known bounds:

0 < bmin < b < bmax

The estimate b of gain b is the geometric mean of the above bounds:

S= bminbmax

Bounds (3.18) can then be written in the form

P01< b <bb-

(3.18)

(3.19)

(3.20)

where

, = bmax/bmin (3.21)



In order to have the system track x(t) Xdd(t), we define a sliding surface s = 0

according to (3.13), namely:
ds = ( + A)idt (3.22)

We then have:

s = -id + Ax = f + bu- i + Ax (3.23)

The best approximation fi of a continuous control law that would achieve s = 0 is

thus:

Sbu= f +i- A (3.24)

In order to satisfy the sliding condition (3.15) despite uncertainties on the dynamics

f and the control gain b, we add to fi a term discontinuous across the surface s = 0:

u = b- 1 [fi- ksgn(s)]

= b-[f + d - Ax - ksgn(s)]

(3.25)

(3.26)

By choosing k in (3.25) to be large enough,

(3.27)

we can guarantee that (3.15) is verified. Indeed, we have from (3.23) to (3.26)

s = (f - bl-'1f) + (1 - bb-l)(-ad + AX) - bb-lksgn(s)

In order to let

ld 2dS2 = S

2 dt

= [(f - bb- 1 f) + (1 - b-l)(--d± + AX)]s - bb-lklsI

< -hill

(3.28)



k must verify

k > Ibbf -f- + (bb- 1 - 1)(- + A) I + ±b-ri (3.29)

Since f = f + (f - f), where If - f I F, this leads to

k > bb- 1 F + Ibb- 1 - 11 I -id + AXl + bb-l1 7 (3.30)

and using bb-'1  / leads to (3.27).

Continuous Control Laws to Approximate Switched Control

The control law derived from the above section is discontinuous across the surface

S(t) and leads to control chattering, which is usually undesirable in practice since it

involves high control activity and may excite high-frequency dynamics neglected in

the course of modeling. In this section, continuous control laws are used to eliminate

the chattering.

The control discontinuity is smoothed out by introducing a thin boundary layer

neighboring the switching surface:

B(t) = {X, Is(X; t)lI _ 1}; o > 0 (3.31)

where 1 is the boundary layer thickness, and is made to be time varying in order

to exploit the maximum control bandwidth available. Control smoothing is achieved

by choosing control law u outside B(t) as before, which guarantees boundary layer

attractiveness and hence positive invariance-all trajectories starting inside B(t = 0)

remain inside B(t) for all t > 0-and then interpolation u inside B(t), replacing the

term sgn(s) in the expression of u by s/4. As proved by Slotine(1983), this leads to

tracking to within a guaranteed precision e = D/An- 1, and more generally guarantees

that for all trajectories starting inside B(t = 0)

I£(i)(t)I < (2A)ie; i = 0, .,n - 1 (3.32)



The sliding condition (3.15) is now modified to maintain attractiveness of the

boundary layer when oc is allowed to vary with time.

ld
IsI > Ž 4 s2 < (~ - r )ls (3.33)2 dt

The term k(X; t)sgn(s) obtained from switched control law u is also replaced by

k(X; t)sat(s/1), where:

k(Xd; t) = k(X; t) - k(Xd; t) + (3.34)

with Od = O(Xd; t).

Accordingly, control law u becomes:

u = •- [i - ksat(s/')] (3.35)

The desired time-history of boundary layer thickness D is called balance condition

and is defined according to the value of k(Xd; t):

k(Xd; t) > - = • + A( = /dk(Xd; t) (3.36)

k(X; t)< k(Xt) + (3.37)
13d 132d O

with initial condition '(0) defined as:

'4(0) = f3dk(Xd(O); (0))/A (3.38)

The balance conditions have practical implications in terms of design / modeling

/ performance trade-offs. Neglecting time-constants of order 1/A, conditions (3.36)

and (3.37) can be written

Ane n P3dk(Xd; t) (3.39)



that is

(bandwidth)" x (tracking precision)

(parametric uncertainty measured along the desired trajectory)

It shows that the balance conditions specify the best tracking performance attainable,

given the desired control bandwidth and the extent of parameter uncertainty.

3.3.2 Sliding Controller Design

To use the sliding control, the dynamic function (2.6) can be written as

6 = f + bu (3.40)

where

b = (J + JM(0))-  (3.41)

f = -(J + JM(O))-1 C(0) 2  (3.42)

Assuming the exact values of J, M, R, E and L are not known, thus the exact

values of the nonlinear inertia b and the nonlinear function f are unknown. But the

estimations of the inertia and the nonlinear dynamics are available, and their upper

and lower limits can also be found.

The following a priori information is about the nonlinear inertia b:

9 < b<35 (3.43)

3 = i bmax/bmin = 1.9 (3.44)

= = bmaxbmin = 17 (3.45)

and for the nonlinear dynamics f, the available knowledge is:

f = -0.05cos(20)0 2 (3.46)



If- f I F = 0.0552 (3.47)

Defining s as s = 0 + AO, computing s explicitly, and proceeding as described in

Section 3.3.1, a control law satisfying the sliding condition can be derived as

fi = 0.05cos(20)02 + d - AO (3.48)

u = b-1 [fi - ksat(s/D)] (3.49)

where

k = k (O; t) - k(Od; t) + (3.50)

k(E; t) = 3(F(O; t) + 7) + (P3- 1)Ji(O; t)l (3.51)

and the boundary layer thickness 1I is derived from the balance conditions (3.36)

and (3.37), with the initial condition (3.38).

The constant values are chosen as r = 0.5 and A = 10 so that the maximum value

of b-lk/4IA is approximately equal to the value of Kp used in the PID controller, thus

establishes a fair comparison among different control methods.

The experiment results of the sliding controller are shown from Figure 3-3 to

Figure 3-5. The performance in Figure 3-3 is much better than PID results, with the

tracking error about 60 percent of the PID tracking error. Figure 3-4 shows the s

trajectory stays within the boundary layers, thus confirming the parameter estimates

are consistent with the real system parameters. The control torque in Figure 3-5 is

noisier than PID control, we conclude it is caused by the feedforward estimate control

value fi which has a high gain for 0. Since the feedback control gains are kept the

same as in PID controller, the comparison stays to be fair.

3.4 Adaptive Control

In order to improve the system performance when large parametric uncertainties

are present, an adaptive controller is introduced, where uncertain parameters in the
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nonlinear dynamics are estimated on-line, so that the system can closely tracks the

desired trajectory. The adaptation law is derived again from the Lyapunov function

so the system maintains its stability.

3.4.1 Adaptive Control Theory

The adaptive controller is illustrated by applying it to a manipulator system as in [18],

since our nonlinear mechanical set-up can be regarded as a simplified manipulator

system. The general dynamics can be written as

H(0)0 + C(+ , 0)0 + g(O) = u (3.52)

where H(O) is the manipulator inertia function, C(O, 0)0 is the centripetal and Coriolis

torque, and g(0) is the gravitational torque. Given a proper definition of the unknown

parameter vector a describing the manipulator's mass properties, the terms H(O),

C(O, 6)0, and g(0) all depend linearly on a. This physical property of the manipulator

system allows us to define a known matrix Y = Y(0, 0, 0r, Or) such that

H(O)Or + C(O, O),O + g(0) = Y(O, 0, Or, Or)a (3.53)

where

, = Od - A8

0= 0-A0

Let us define d = a - a as the parameter estimation error, with a being the

constant vector of the unknown parameters in the manipulator system, and A its

estimate. Consider the Lyapunov function

V (t) = [sTHs + atTr-li] (3.54)



where F is a symmetric positive definite matrix, and s = 0 + AO = 0 - •,. Differenti-

ating equation (3.54) yields

V(t) = sT(u - Hl, - CO, - g) + a r-1a (3.55)

Taking advantage of the linear dependency of the unknown parameters shown in

equation (3.53), we can choose the control law to be

u = Yd - KDs (3.56)

which includes a feedforward term Ya equivalent to the i2 of the sliding controller,

and a simple PD term KDS. So the derivative of the Lyapunov function becomes

V(t) = sTYa - sTKDs + T-la (3.57)

choosing the adaptation law to be

a = rYTs (3.58)

then yields

V(t) = -sTKDs < 0 (3.59)

This implies the output error converges to the surface s = 0, which in turn shows

that 6 and 0 tend to 0 as t approaches infinity. So the global stability of the system

and convergence of the tracking error are both guaranteed by this adaptive controller.

3.4.2 Adaptive Controller Design

To design an adaptive controller for our nonlinear mechanical system, we assume the

general form of the nonlinear dynamics of the system is known, but the constant

parameters J and M are unknown. Now we can rewrite the system dynamics in a

form similar to equation (3.53) where the dynamics linearly depend on the constant



vector of the unknown parameters a = [ J M ]T :

R2C2  1 d R2C2

(J +M a2 )r + 1M M ( )82 )r = Y(O, , , r, r)a (3.60)

with

Y(0, O, Or,•r) = [ ~, 2c + (c(- )9, ] (3.61)

then the control law and adaptation law would be:

u = Ya- KDs (3.62)

a = -yTs (3.63)

The adaptation rates are chosen to be F = [ .005 500 ], starting without any

a priori information about the parameters (a(0) = 0). Assume the same desired

trajectory and velocity in Figure 2-5, and with A = 10 and KD = 0.56 ( leading to

the same PD gains as in the PID control ), the corresponding tracking errors, control

torque, and parameter estimates are plotted from Figure 3-6 to Figure 3-9.

Figure 3-6 shows that the tracking performance of the adaptive control is much

better than both PID and sliding control, having only half the sliding control error.

The performance improves along with the parameter adaptation, which is very evident

at the last 2 seconds of the 5 second run.

The parameter estimates in Figure 3-7 and Figure 3-8 are both approaching to

their true values during the control, but they never reach the final real values since

there is still unmodeled dynamics left in the real nonlinear system.

Figure 3-9 shows the total control torque from both the feedforward adaptive

control and the feedback portion of the control. The relatively high gains in the

feedforward term again causes noisier torque than the PID control.

Figure 3-10 is a comparison of the feedforward adaptive control in the experi-

ments and desired total control in the simulation. The adaptive controller is truly

approaching the desired control value as the parameters are adapting closer to their

real values.
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Figure 3-7: Inertia estimation for adaptive control
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Adaptive control torque

0 1 2 3 4 5 6 7 8
Time (sec)

Figure 3-9: Total control torque for adaptive control

Experiment feedforward adaptive control torque and desired feedforward torque

Time (sec)

Figure 3-10: Experiment adaptive control (solid line) and simulated desired total
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Chapter 4

Connectionist Controllers for

Nonlinear Systems

Nonlinear control design techniques like sliding control and adaptive control have been

successfully used on some nonlinear systems. Yet, the system dynamic structure has

to be understood beforehand and the uncertain parameters have to be estimated. If

the system dynamics is hard to model and the parameters can not be easily estimated,

connectionist controllers may be the choice.

This chapter introduces integration of a neural networks scheme called Gaussian

network control into the trajectory control of nonlinear systems. No detailed a priori

information about the system dynamics is required, the network will quickly learn

the nonlinear dynamics and simultaneously controls the motion of the system.

4.1 Gaussian Network Control Theory

Gaussian network control uses a network of Gaussian radial basis functions to adap-

tively compensate for the plant nonlinearities [16]. The a priori information about the

nonlinear function of the plant is its degree of smoothness. The weight adjustment is

determined using Lyapunov theory, so the algorithm is proven to be globally stable,

and the tracking errors converge to a neighborhood of zero.

Sampling theory shows that bandlimited functions can be exactly represented



at a countable set of points using an appropriately chosen interpolating function.

When approximation is allowed, the bandlimited restriction can be relaxed and the

interpolating function gets a wider selection. Specifically, the nonlinear function f(x)

can be approximated by smoothly truncated outside a compact set A so that the

function can be Fourier transformed. Then by truncating the spectrum, the function

can be bandlimited and uniformly approximated by

f(x) = 1 cig0 (x - (,) (4.1)
IEIo

where c, are the weighting coefficients and &I form a regular lattice covering the subset

AT, which is larger than the compact set A by an n-ball of radius p surrounding each

point of x e A. The index set is Io = {I I • E AT}.

g,(x - () is the Gaussian radial basis function given by:

g,(x - () = exp(-7ra2[jx - -2) = exp[-7rau(x - ()T(x - ()] (4.2)

Here ( is the center of the radial Gaussian, and u2 is a measure of its essential

width. Gaussian functions are well suited for the role of interpolating function because

they are bounded, strictly positive and absolutely integrable, and they are their own

Fourier transforms.

Expansion (4.1) maps onto a network with a single hidden layer. Each node

represents one term in the series with the weight (I connecting between the input x

and the node. It then calculates the activation energy r2 = lix - &1 2 and outputs

a Gaussian function of the activation, exp(-7rr a ). The output of the network

is weighted summation of the output of each node, with each weight equals to c1 .

Figure 4-1 shows the structure of the network described above.

The next step is the construction of the controller. Consider the nonlinear dy-

namics system

x(n)(t) + f(x(t)) = b(x(t))u(t) (4.3)

define the unknown nonlinear function h = b-lf, and let hA and bA1 be the ra-



Figure 4-1: Structure of the Gaussian network

dial Gaussian network approximations to the functions h and b-1 respectively with

approximation error Eh and Eb as small as desired on the chosen set A.

Figure 4-2 shows the structure of the control law. To guarantee the stability of

the whole dynamic system, the control law is constructed as a combination of three

components: a linear PD control, a sliding control and an adaptive control represented

by the Gaussian network.

u(t) = -kDs(t) - -M2(x(t)) lx(t) lsA(t) + m(t)uAs(t)2
+1 - m(t)) [A(t, x(t)) - bA (t, x(t))ar(t)] (4.4)

m(t) is a modulation allowing the controller to smoothly transition between sliding

and adaptive controls.
r(t)- 1m(t) = max(0, sat( )) (4.5)

where r(t) = Jx(t) - xoll.

a.(t) = AX'k(t) - X(n)(t) (4.6)

with AT = [ 0, An-1, (n - 1)A- 2 , , ( - 1)A ] and (t) is the nth derivative

of the desired trajectory.



Figure 4-2: Structure of the Gaussian network controller

The adaptive components hA and bA1 are realized as the outputs of a single Gaus-

sian network, with two sets of output weights: Ei(t) and d1 (t) for each node in the

hidden layer.

hA(t,x(t)) = ,(t)g (x(t) -i
IEIo

bAl (t,x(t)) = gd.i(t),(x(t) - ) (4.7)
IElo

The output weights are adjusted according to the following adaptation law:

ci(t) = -ka,[(1 - m(t))sA(t)g,(x(t) - (,)] (4.8)

dl(t) = ka2 a,(t)[(1 - m(t))sa(t)g,(x(t) - (i)] (4.9)

where positive constants kaI and ka2 are adaptation rates. See Figure 4-1 for the

detailed structure of the adaptive control law.

As proved by Sanner and Slotine in [16], when the parameters in the controller are

chosen appropriately according to the a priori knowledge about the smoothness and

upper bounds of the nonlinear dynamic functions, the controller thus constructed will

be stable and convergent. All the states in the adaptive system will remain bounded

and the tracking errors will asymptotically converge to a neighborhood of zero.



4.2 Gaussian Network Controller Design

To apply the Gaussian network control to the nonlinear mechanical system, the dy-

namic function (2.6) can be expressed according to equation (4.3):

O(t) + f(O(t), I(t)) = b(t, O(t))u(t) (4.10)

where

b-1 (t, (t)) = J + JM((t)) (4.11)

b-1(t, 0(t))f(O(t), O(t)) = C(O(t))O2(t) (4.12)

Since h = b- 1f is a function of both O(t) and 0(t), if a Gaussian network is used to

approximate the function, it has to be a two-dimensional network. This would increase

the network size and increase the computation demand when it is implemented into

the real time control. In light of this computation constraint, we choose to use a one

dimensional Gaussian network CA to approximate C(O(t)), with the prior knowledge

that the nonlinearity is a multiplication of 62 (t) and the unknown function C(O(t)).

Thus the control law in equation (4.4) would be modified as

1
u(t) = -kDS(t) - -M2(E(t)) JO(t) IsA(t) + m(t)us1(t)2

+(1 - m(t)) [A(t, (t))62 (t) - bl (t, ))a (t)] (4.13)

Yet the adaptation laws for the output weights will remain unchanged in equa-

tion (4.8) and (4.9).

Now we come to the details of constructing the Gaussian network controller. Fig-

ure 4-3 shows the phase space plot of the desired position and velocity trajectory

in Figure 2-5, which is the same as used in other controllers for the fair comparison

purpose. The set Ad is thus chosen to be:

IXl w = max( .1 (4.14)6.6317' 2.1
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Figure 4-3: Phase space portrait of the desired trajectory

with its center at xo = [6.6317, 2 .1]T . This represents a rectangular subset of the

state space, Ad = [0, 13.27] x [0, 4.2]. The transition region between adaptive and

sliding control modes is I = 0.1 as the value in equation (4.5). So we have

A = {x I x - xo0Kw < 1.1} (4.15)

The maximum desired acceleration is 1&dl max < 2.62 as shown in the desired

trajectory plot in Figure 2-5 , which sets JaJ < 115 for all x E A and the error bound

to be Er = Ch + 115 Eb.

To achieve asymptotic tracking accuracy of 2.5 degrees, taking kD = 0.56 and

A = 10 requires that E, < 0.25. Assuming the frequency contents of h and b- 1 on A

are O. = 0.2 with uniform error no worse than 0.05 and an upper bound of 0.2 for the

transform of h and 0.8 for the transform of b- 1, a close following to the parameter

selection procedure in [16] shows that the choices 0, = 2 and l = lI = 1 should be

sufficient to ensure the required bound on Er. This leads to a network of Gaussian



nodes with variances a2 = 0.13 and mesh sizes A. = 1.3. So the network includes

all the nodes contained in the set AT = [-AX, 11A], for a total of 13 nodes for each

network.

The control laws are given by equation (4.4) and (4.7), using a value of ) = 0.45

as the sliding controller boundary layer, with adaptation rates kaI = ka2 = 0.5.

Assuming uniform upper bounds of Mo(x) = 0.8, Mi(x) = 0.12 and M2(x) = 0.1,

the sliding controller gains are taken as kl = 0.8 + 0.121al.

Using Fourier transformation, it's easy to find that the above spectra assumptions

are justified for both h and b- 1. The experiment results are shown from Figure 4-4

to Figure 4-7.

The performance in Figure 4-4 is considerably better than all the controllers in

Chapter 3. Figure 4-6 indicates that the Gaussian network is adapting very fast to

the nonlinearity of the system and takes most part of the total control action.

Figure 4-7 shows that the simulated control value doesn't include the unmodeled

dynamics in the system, yet the unknown part of the dynamics is learned by the

Gaussian network. So learning ability of the Gaussian network is much better than

the adaptive control.
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Chapter 5

Experimental Comparison of

Control Theoretic and

Connectionist Controllers

This chapter compares the control theoretic and connectionist controllers based on

their experimental performance on the nonlinear electro-mechanical system in Chap-

ter 3 and Chapter 4. Comparison of the four controllers are made about a priori

information requirements, tracking performance, stability guarantees, and computa-

tional requirements.

To establish a fair comparison among different controllers, the feedback bandwidth

of each control method is chosen to be the same. The performance data for final

comparison is collected using the same control frequency. Section 5.1 describes how

these fair comparison standards are constructed. In Section 5.2, detailed analysis of

the performance of each control method is presented. Finally, Section 5.3 summarizes

the comparison results, and suggests how to choose appropriate control techniques to

one's specific control applications based on the comparative study.



5.1 How to Achieve a Fair Comparison

The four control methods differ from one another greatly, making it critical to estab-

lish a set of fair comparison standards. In the experiments, we first make certain that

the feedback control gains are comparable for each method, then we run the experi-

ments at the same control frequency despite one controller may need less computation

time than another.

For the PID controller, the feedback control gains are simply the Kd, Kp and

Ki terms. For the sliding controller, the gains are not so obvious. Let us look at

equation (3.49), ft is a feedforward term aiming to compensate the system nonlinearity

from the given estimate. The second term ksat(s/l4) is a feedback term to keep the

control surface to stay within the varying boundaries. Thus we can treat the coefficient

of s = + AO as the feedback gains. In the experiments, the constant values are chosen

as rl = 0.5 and A = 10 so that the maximum value of -rIk/4A is approximately equal

to the value of Kp used in the PID controller.

As for the adaptive controller, equation (3.63) shows that Ya is a feedforward

term adapting to the system nonlinearity, while KDS is the feedback control term. So

we choose KD = 0.56 and A = 10 leading to the same PD gains as in the PID control.

The same is true with the Gaussian network control, the PD gains in kDs(t) is once

again set to the same values as other controllers.

Another issue regarding to the fair comparison is the control frequency. The

fast computing ability of digital computers allows us to execute the controllers as

continuous-time systems. Yet the higher the control frequency, the closer the con-

trollers would be to the real-time continuous system. The control frequency is de-

termined by the computation need of each controller, the Quick C compiler running

time on the 486 PC and other hardware constraints such as the D/A and A/D con-

version speed. Section 5.2 would give a detailed description of the computation each

controller requires. Yet for the purpose of fair comparison, the final performance data

is collected using the same control frequency, i.e., the lowest of the four methods.



5.2 Comparison of the Control Theoretic and Con-

nectionist Controllers

The PID controller requires the prior knowledge of the constant inertia value of the

system. It then selects the control gains based on the closed-loop bandwidth and this

inertia value. The tracking performance in Figure 3-1 shows that the PID control can

follow the trajectory, although with some large position and velocity errors. The com-

putation time for each control step is 0.0006 seconds, which shows the computation

load is small for the PID controller.

The sliding controller is provided with the estimated structure of the nonlinear

dynamics and the error bounds. The tracking errors in Figure 3-3 are about 60 percent

of those in the PID controller. The reasons for the improved performance are that the

controller is provided with the desired acceleration term Od, and that the nonlinear

structure of the system is known and incorporated into the control action. Some

tracking errors still remain during the control because of the parameter uncertainties

in the estimated dynamics model. Unlike the PID controller, the performance of

sliding controller can be further improved given better nonlinearity estimation. There

is a quantified relationship between the performance and uncertainty trade off shown

in equation (3.39). The sliding controller needs a slightly more computation time

than PID: 0.00078 seconds.

The adaptive controller has the capability to quickly learn and adapt to parameter

uncertainties. Like the sliding control, the explicit model of the nonlinear structure

is provided to the controller, with unknown constants J and M both set to zero at

the start. Figure 3-7 and Figure 3-8 show that both J and M adapt quickly during

the run. The tracking performance in Figure 3-6 improves along with the parameter

adaptation. During the first second of the trajectory, both position and velocity errors

are large due to the poor starting parameter values. Then they decrease while the

parameters are approaching to their true values. At the last two seconds of the run,

both errors reduce to the minimum since the parameters are at their closest to the

actual values.
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Figure 5-1: Comparison of tracking errors of the four controllers

These parameters never finally reach to their real values since there is still uncer-

tain dynamics caused by friction in the system that are difficult to model. Neverthe-

less, the adaptation greatly reduced the tracking error to half the sliding control error.

The computation requires 0.0011 seconds for each control step, longer than PID and

sliding control. Both sliding control and adaptive sliding control are theoretically

proven to be stable. So the overall system stability is assured.

While previous control techniques may fail to achieve the desired performance in

the presence of unmodeled dynamics, the advantage of using a connectionist con-

troller for the nonlinear control is that it doesn't require much information about

the nonlinear dynamics which is difficult to obtain. Gaussian network control has a

systematic approach to choose the structure of the network while assuring the overall

system stability. The knowledge required for the controller is estimation of the fre-

quency contents of the nonlinear function to be approximated. The structure of the

Gaussian network is chosen based on this knowledge and the required performance.



Its performance is much better than the above three controllers, as seen from

Figure 4-4 and Figure 5-1. The computation time step is 0.0036 seconds, indicating

a large computation requirement and a large memory size. So this controller is best

for lower order nonlinear systems which do not require high dimension networks.

Also, when any information regarding to the dynamics is known, it is better to take

advantage of the information and help to reduce the network size and achieve fast

computation and make the real time control possible.

5.3 How to Choose a Controller Best for the Con-

trol Application

Figure 5-1, Figure 5-2 and Figure 5-3 summarize the experimental comparison re-

sults of the four control techniques. With the increasing complexity of the controller

designs, the performance improves and the computation requirement increases. Com-

bining with the analysis from section 5.2, we give the following guideline for choosing

an appropriate control technique best for one's application need.

Depending on how much we know about the nonlinear dynamic system and what

computation resources are available, we make choices of the control methods that are

best for our applications.

If the system's nonlinear structure can be understood and modeled, we should

choose the traditional control methodologies. If the nonlinearity is hard to analyse

and difficult to model, and the fast computation resource is available, then we can

choose the Gaussian network control to adapt to the unknown dynamics.

If the prior knowledge of the system nonlinearity can be obtained, there is no

need to use the more costly connectionist approach. Instead, we can choose the PID

control if the range of the control is small enough so that the nonlinearity within the

system can be linearized.

If the range of the control motion is outside the linearizing limit, then robust

control methods can be called upon. Sliding control is best for systems where the
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dynamics can be approximated and the estimation bounds available.

If the parameters involved in the nonlinear structure are hard to estimate, then

adaptive control techniques can be used to adapt to the true parameter values and

increase the performance tremendously.



Chapter 6

Summary and Recommendations

for Future Work

6.1 Summary

The past decade has seen a dramatic increase in interest in neural networks systems.

They are actively explored in psychology, signal processing, pattern classification, pat-

tern recognition and optimization problems. There are also lots of interests growing in

the control community to apply neural networks to nonlinear dynamic systems. Since

control theory is a well-developed field with a large literature and solid mathematical

foundation, instead of approaching neural networks as a blanket solution to control

problems, we should make connections to existing control theory, illustrate their rela-

tionships to conventional and adaptive control techniques, and directly compare the

new neural network approach to more traditional control system designs.

This thesis tries to study the connectionist controllers with the conventional non-

linear control methodologies, compare their performances on a nonlinear dynamic

system, discuss their strength and weakness, and suggest choosing appropriate con-

trol techniques for different nonlinear control applications. Depending on how much

we know about the nonlinear dynamic system and what computation resources are

available, we can make choices of the control methods that are best for our applica-

tions.



The PID control is a linear control method with gains chosen based on the informa-

tion of the plant and the desired closed-loop bandwidth. The results from simulation

and experiment show that it needs just a rough estimate of the inertia term, with little

knowledge about the nonlinearity. Depending on the significance of the nonlinearity

and the bandwidth constraints, it can be implemented on real time control with little

amount of computation and memory requirements. The tracking performance is not

very good, and cannot be improved very much even if additional information about

the nonlinearity is available. It's a good controller for simple control tasks on simple

dynamic systems, and stability can be guaranteed for linear systems. When used on

underwater vehicles, it can perform good only if the system dynamics is well known

and linearized in a small region of operation, as in the case of constant speed heading

control. Yet for complicated nonlinear dynamic system, performance is limited and

no stability is guaranteed for closed-loop bandwidth.

Sliding control is a systematic nonlinear approach to nonlinear control problems.

It requires information about the structure of the nonlinearity, but need only an

estimation of the parameters involved and their estimation bounds. The tracking

performance is improved and the stability of the overall system is maintained. There

is a quantified trade off between the performance and the model precision. This

approach can also be implemented into real time control, computation time is small.

Overall, it's best for nonlinear systems with a good knowledge of the nonlinearity

structure, but with just estimations of the parameters. When the underwater vehicles

dynamics structure is known, sliding control can be effectively used for nonlinear

controls like speed control during transient stages of vehicle motion.

The adaptive control technique used here is an extension to sliding control. It

dynamically adapts to the unknown parameters of the nonlinear systems. Even if

initial estimates are poor, the performance improves greatly after parameter adapta-

tion. If the structure of the system is known, but the coefficients are hard to obtain,

like the case with underwater vehicle's hydrodynamic forces, then adaptive sliding

control can be a good choice. Like sliding control, the adaptive control can be called

upon for nonlinear operation regions and its performance will be much better than



sliding control after the parameters have adapted to their real values.

Gaussian network control serves as a link between the theoretic control and the

connectionist control. It requires very little information about the nonlinearity,

namely its frequency contents and some upper bounds. Since the weight adjust-

ment is determined using traditional Lyapunov theory, the overall system stability

is assured and the tracking errors converge to a neighborhood of zero. Unlike other

connectionist approach, the number of nodes within the Gaussian network can be

decided by the desired performance and the a priori frequency content information

about the nonlinear function to be approximated. It indeed needs more nodes inside

the network in order to approximate the nonlinear function better, and consequently

increases the computation time. Yet for low order nonlinear dynamic system, it still

is the best choice when little information is available about the system dynamics.

This control technique can be potentially used for autonomous underwater vehicles

where unmodeled dynamics and disturbances are present in the operation.

The current results of the comparison is that when we have the ability to under-

stand the nonlinear dynamic system's structure, the sliding controller and adaptive

sliding controller are well established for such systems with good performance and

assured overall system stability. When less information is available about the system

nonlinearities, connectionist approaches can be applied to learn and adapt to these

unknown structures.

6.2 Recommendations for Future Work

This thesis offers a preliminary comparison of some of the mostly used traditional

nonlinear controllers and one connectionist approach. Experimental results suggest

when and which controllers we should use depending on our prior knowledge of the

nonlinearity and the computational resources available.

The current work is only a comparative study on a simple electro-mechanical

system. It demonstrates the feasibility of the Gaussian network control, in addition to

many other theoretical control methods. Real application of this promising controller



needs to be carried out so that its great advantages can be utilized for complex

nonlinear systems like underwater vehicles, and help to enhance the autonomous

control ability for AUVs.
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