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by
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Abstract

Robots are needed for important missions in field environments. A major
limitation to the practical use of such systems is their high cost and long
development time. It would be highly desirable to have systems that can be
rapidly designed and fabricated, on the order of days or weeks instead of years.
One approach to achieving this goal is the development of an automatic
design methodology based on the use of standardized modular physical
components.

The objective of this research has been the development of a framework for
the automatic design of modular field robotic systems. Under this
methodology, robots are assembled from sets of modular components. The
assembly method as well as the component designs are based on fundamental
solid engineering principles.

This thesis includes the generation of computer-based design search
algorithms. The framework utilizes a hierarchical search over the possible
robot assemblies. Physics-based rules are used to limit the search to
“reasonable” assemblies. Assemblies are analyzed and ranked according to
their ability to perform a given task. The methodology was used to suggest a
robot for an inspection task aboard the USS Constitution.

Supervisor: Dr. Steven Dubowsky

Title: Professor of Mechanical Engineering
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Chapter I: Introduction

This thesis studies the fundamental technical issues and problems of applying
mobile robotic systems in complex, and possibly remote unstructured field
environments, such as might be found in systems performing civil
infrastructure inspection and maintenance tasks. The major focus of the
research has been to develop a design framework so that robots can be
assembled automatically from sets of modular components. The research has
been performed in connection with a demonstration project called The

Project Constitution.

Motivation

Robots are needed for field environments

Robots are needed for important missions in field environments [1, 2]. These
systems could perform such important tasks as maintenance and disaster
mitigation in nuclear power facilities, cleanup of toxic and hazardous waste
sites and chemical accident cleanup, terrorist bomb disposal, infrastructure
inspection, and commercial tanker hull maintenance [3, 4, 5, 6]. For many of
these missions, robotic systems could remove humans from dangerous tasks
or enter locations that are not readily accessible. In some applications, such as
the inspection of the undersides of highway and rail bridges, robotic systems

could also be very cost effective.

A great deal of research has been done to develop robotic manipulators
(usually a fixed based single arm) for work in manufacturing cells structured
specifically for them. Some research is now being done to develop field
robotic systems that are able to perform missions where the task and
environment are not well known and the system must be capable of mobility
as well as being able to manipulate and investigate the environment [7, 8, 9],

see Figure 1 [10].
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Figure 1. A concept for a field robotic explorer
Challenges facing these systems are that they must be robust, self-contained,
power efficient, dexterous, agile, and have a high degree of autonomy.
Besides these technical challenges, a major future limitation to the practical
use of such systems is their cost and their development time. The design and
development cost of such systems using current approaches would be
prohibitive for many applications. This is largely because these systems will
not be mass produced; each system would need to be designed for a specific
mission or task. Not only will their costs be very high but the systems
development time for a given mission could take years, when deployment in
weeks or months may be required. For this reason it would be highly

desirable to have systems that can be rapidly designed and fabricated.

One very promising approach to achieve this goal for field robotic systems is
the development of a design methodology based on the use of standardized
modular physical components, and control and planning algorithms and
software that are compatible with a modular structure. To date, no other
quantitative methods to rapidly design a field robotic system using modular

components for a given mission have been developed.



Rapid deployment

Clearly, methods that would permit the rapid assembly and deployment of
cost effective field robotic systems using standard modular components
would make these systems practical for many important missions. As
discussed below, in this research the USS Constitution (Old Ironsides) serves
as a testbed for evaluating many of the research results. This permits the
experimental testing of the design methods developed in this fundamental
research program for a practical mission. The modular design techniques are

used to suggest several candidate robotic designs for the Constitution.

Other advantages of modular systems

Using modular parts and designs leads to higher production volumes and
lower part costs. Robots with modular components can be easily and quickly
repaired by replacing a defective module. Additionally, the modular part
inventory can be improved off-line, allowing aging modular robots to be

updated to state-of-the-art technology with little redesign or down-time.

Objectives
The objective of this research program has been the development of a

rational design framework for automatically designing robots based on task
requirements using a set of modular components. With this modular design
approach, robotic systems for missions in unstructured field environments
can be designed and deployed rapidly and cost effectively. Computer based
search algorithms are implemented to quickly and automatically find

appropriate candidate designs.

It will be shown that simple tests can screen large numbers of alternative
robot designs to quickly yield a few candidate designs which are believed to

have the potential to perform a given task well.

This research does not attempt to plan the actions of the robot for the
performance of the task. Instead, for a fixed task and solution domain, certain

characteristics and capabilities are deemed necessary based on fundamental



solid engineering principles. = These characteristics are tested in a
computationally efficient manner. Related research covered in other theses

includes the development of modular planning [11] and control algorithms.

Background and Literature
To date a number of field robotic systems have been developed and proposed

for specific applications. Systems have been designed to work on construction
sites, to crawl through small-diameter gas lines, and climb up walls [4, 12, 13].
Systems are being developed for specific tasks in the service industry, to act as
a nurse’s aide, to perform sentry duty, to clean and to care for the elderly, or to
prune grape vines [14, 15, 16, 17, 18, 19, 20, 21]. While some of these systems
may prove to be effective, some have demonstrated the limits of current
technology. For example, Dante, a system designed to explore the insides of
volcanoes, did not perform as hoped during its initial field tests because of
difficulties with its umbilical cable [22]. Clearly, if the technical problems with
designing self-contained systems could be solved these systems would be

more robust.

In the past, most design studies in robotics dealt with the problems of
“classical” fixed-base industrial manipulators. Many of the results of this
work have entered engineering practice [23]. More recent research has
focused on such issues as the development of new and innovative
components, sensors or computer architectures for robotic systems [24, 25, 26,
27]. Recently, significant research has been devoted to developing micro-
mechanical precision and new exotic components for robotic applications [28,
29, 30, 31, 32]. However, robotic systems for field missions need to be quite
different from conventional fixed base inanipulators commonly used in

industry, see Figure 1.

Research into designs with potential use in field applications has studied
mobility methods based on walking, climbing and crawling [6, 9, 33, 34, 35, 36,
37,38, 39, 40, 41, 42]. As a result of this research a number of very innovative
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specific designs have been developed and demonstrated for field systems and
for simple laboratory systems [8, 43, 44, 45, 46, 47]. Also some interesting
lessons on the design of mobile robotic systems have been obtained from
studying biological systems, such as animals and insects [48, 49, 50]. Some
studies of mobile systems have attempted to develop design methods based
on fundamental mechanics, such as developing design rules for motor
selection to avoid actuator saturation and to minimize systems power
consumption [7, 51]. It is interesting that most of the studies on the design of
field robotics referred above have largely focused on achieving mobility
without manipulation. = However, there have been some important

exceptions [52].

What is clear from an examination of the past research in field robotic
systems is that is has either dealt with development of specific technology, or
with a specific “one of a kind” system. Little or no work has been done to
develop general methods to aid in the rapid design of field systems. It would
be of great benefit to have general methods for designing field systems that
consider the important attributes for a given task, and then quickly yield the
configuration and design parameters of robotic system that is capable of

meeting the mission’s functional requirements.

In recent years there has been some important work done exploring some of
the issues of industrial manipulators constructed with modular components.
These studies include research dealing with the mechanical design [53, 54] the
kinematic modeling [55, 56, 57], the enumeration of assembly configurations
[58], the configuration selection based on computer aided design techniques
[59] or on expert systems [60], the design based on task requirements [61, 62],
and fault tolerant design [63]. This research has focused on industrial-type
manipulator systems; systems consisting of relatively simple open loop
chains of links operating from fixed bases. Such systems are very different
from field systems that must be capable of mobility as well as manipulation,

such as shown schematically in Figure 1.
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The performance required of these field systems is quite different, arguably
more difficult, than those for industrial systems [64]. For example the
precision of an industrial system is often paramount. In field systems the
need for the system not to turn over while moving, or for a battery powered
system, not running out of power [51, 65] can be the critical issues. Such
issues can make any design method very difficult, in part because in a field
environment, unlike a factory, the task and the environment are not well
controlled, or possibly even well known. This makes the modular design a
challenging problem. While we are aware of one specific field system
designed with a modular character this was done on an ad-hoc basis [4]. The
development of general techniques to design modular field robotic systems
remain a virtually unexplored problem. Such design methodologies would
need to consider the fundamental limitations of the physical hardware, such
as actuator saturation characteristics and battery life profiles that are available
for field robotic systems. They should be able to quickly assemble system
designs from modular subsystems and components. These methods should
be based on fundamental engineering principles to insure they have the

flexibility to be used for a wide range of systems and missions.

Modular Design

Modular robots

The key to this approach for achieving cost-effective and rapidly deployable
multi-limbed mobile field robots is the use of modular components. Figure 2
shows, schematically, a relatively small set of modular components. Figure 4
and Figure 4 contain just three of the many possible systems that can be
obtained from this inventory of modules. A real inventory might contain
more, but possible not a great deal more, component types. Components of

various sizes might also be included.
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Figure 4. More assembled robotic systems

Small inventory of parts yields wide selection of robots

Modular systems make sense in the context of automated robot design and
assembly. As shown in this thesis, using a simple set of fixed rules, modular
systems can be automatically generated and tested. Combining a small set of
modules in different ways permits an assembly space of many topologically

diverse robots. A modular system can automatically span this space.
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Most of the possible robots are not useful
Of the many possible robots, only a small fraction are useful. The vast

majority will contain one or more features that precludes the possibility of a
useful robot. If these features can be recognized, then such robots might be
quickly discarded, or avoided altogether.

There are too many to consider in a conventional way
Even with modern high-speed computers, the combinatorial explosion of the

number of robots precludes analysis of every possible assembly.

The number of robots (actually, the number of kits, explained below in Kits,
page 26 - basically, a kit is an unassembled group of modules) that can be
produced by taking exactly r modules of n unique types with replacement is

(r+n-1!
nl(r-1)!

billion possible robots (note the expression given is for exactly r modules, not

[66]. Thus, using up to 30 modules of 12 unique types yields 11

up to r modules. The sum of these expressions with r running from 1 to 30
yields the 11 billion.) If the entire algorithm took only 1 millisecond to

conduct per robot, a computer would still require 127 days to execute.

Hierarchical selection process to avoid combinatorial explosion

The key to the development of a practical method for automatically
generating robot designs is a hierarchical filtering process that reduces the
design space at every stage, see Figure 5. At each added level of complexity
(topological or structural) broad regions in the design space are eliminated,
minimizing the total number of assemblies to be analyzed. This method is
hierarchical because it eliminates entire sub-trees from consideration,

multiplying its effects in every subsequent level.
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Figure 5. The multiplying effects of hierarchical filtering. Removal of a bad kit eliminates the
subsequent analysis of all its child assemblies

Simple tests can quickly distinguish between remaining assemblies

Assemblies that make it through the filtering process must be evaluated in
terms of how well they can perform the required tasks. A numerical
objective function based on diverse features of the assemblies is used in a
search for the best candidate robot for the task. This objective function is the
sole element determining the outcome of the search. An important aspect of
this research has been the development of a computationally cheap objective
function that can reasonably predict robot performance, and therefore deliver

useful robots.

Evaluation
This thesis seeks to address the advantages and limitations of the modular

design approach. The research uses simulations and analytical studies to
evaluate the results obtained. This approach has been undertaken within the
context of multi-limbed field robots, using The USS Constitution as a
demonstration project. The modular design techniques are developed and
implemented in a software system, a modular inventory is designed, and the
system is used to suggest several inspection and treatment robotic systems for
the Constitution.
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Chapter 2: Continuous vs. Modular Design
Space

In some important ways, the design of a modular system can be simpler than
the design of a conventional system. The design space of a modular system,
given a set of available modules, can be represented by a finite set of possible

assemblies, while the non-modular design space is, in theory, infinite.

Figure 6 conceptually shows a two dimensional non-modular (continuous)
design space. The vertical axis symbolizes the robot performance, while the
two independent design variables (o and B) can assume any value in their
range. Figure 7 shows the corresponding modular design (aj, bj,i=1,2, .. n, j
=1, 2, .. m). There is now a finite series of systems that can be composed of
two components that are allowed only discrete values. The values are
constrained by the available inventory, made up of n a-types and m b-types.
For systems with more components the dimensionality of the space would
grow. While the modular space has a finite set of components, the number of
assemblies that can be made, as mentioned above, grows very rapidly. For
any real problem an exhaustive evaluation of all possible designs is out of the
question. The key to a practical search lies in reducing the search space to a
computationally feasible size. Such a space is indicated in Figure 8 where a
number of the discrete design values have been eliminated using a method
such as the hierarchical physics based method described by this thesis. In
Figure 8 only systems with estimated good performance remain. At this
point it becomes feasible to evaluate the performance of these “good

candidates” in detail.
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Figure 6. A continuous design  Figure 7. A discrete design space Figure 8. A reduced discrete
space of a conventional system  of a modular system design spacc of a modular system

17



Chapter 3: Modular Design Method

In this research structured hierarchical procedures are formulated to search
and evaluate the performance of possible assemblies of modular components.
The methods are framed to exploit the physical nature of behavior of these
systems and their tasks and environments. The methods also attempt to
achieve effectiveness by recognizing that some of the performance
characteristics of these systems are much easier, and computationally
efficient, to predict than others [67]. For example, it is much easier to evaluate
a candidate design configuration's static stability - if it will fall over - than the
communication data rates required to control it in a given mission. The
modular search algorithm applies the simplest tests first to prune the set of all
possible designs and quickly converge on a small set of candidate assemblies
of modular components. Only the successful candidates need to be

considered by the later, more computationally intensive tests [7].

Figure 9 shows the search method schematically. This figure is referenced

and explained throughout the remainder of this thesis.
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Figure 9. A physically structured search process

Domain

Task domain
The modular design approach has been applied to the domain of field robotic

applications in partially known, complex environments.

Solution domain
The solution domain is restricted to the class of multi-limbed, static walking

robots. These robots should be self-contained in order to function in extreme
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field environments. In general, the robots are capable of force manipulation

of the environment to some degree.

Task Structure

Sample task

For purposes of illustration, the modular design method will be described
with a sample task in mind. The task is taken from the USS Constitution,
where a robot is needed to inspect wood surfaces in the bilge of the ship for

rot. This area is shown schematically in Figure 10.

access hole

)

\

=W -inspection route
SSATATA 7 4

Figure 10. A schematic of the USS Constitution bilge area
Further details of this task can be found below.

Representation
If a detailed model of the task environment was known beforehand, highly

specialized robots might be valid solutions. In Figure 11, the task is to reach
the target with a gripper. Knowledge of the pipe diameter and material, exact
location of the target object, size of the fitting, location of the bend, etc., as well
as access to one end of the pipe would be required to implement the pipe
hanging robotic solution. =~ Knowledge of the water extent,  depth,

composition, and target location might make a floating robot possible.
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Figure 11. Analytical solutions depend on task representation

target

maximum step

maximum span

Figure 12. Simple task representation
A simpler task representation is shown in Figure 12. The task is described in
simple terms with a limited number of concise constraints, such as the
maximum span and maximum step required. Since the solution domain is
limited to walking, limbed robots, the constraints were developed for this
domain. If the solution domain included pipe-crawling or floating robots,

then constraints appropriate for these domains would be included as well.
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The task is described via these simple constraints for two reasons. First,
because the task domain is in field environments, exact knowledge of the
environment is unavailable. The constraint method eliminates the need for
complete detailed environmental knowledge. Second, simple constraints
lend themselves naturally to simple tests, which are the basis for the

hierarchical search method.

If all the constraints are met, then it is assumed that the robot can perform the
task adequately. This thesis does not involve the analysis of more complex

plans [11] to determine task adequacy.

Weighting factors are also included in the task representation. These are used
to achieve the desired mix of cost, running time, and reliability appropriate to
the task. Other factors, such as robot mass, are not given weighting factors
because they are used only as constraints; as long as the robot mass is under 9

kg, the robot is acceptable.

Constraints are geometric (maximum step size required, maximum span to be
crossed, minimum hole size the robot must crawl through), static
(maximum force to be applied against the environment), kinematic
(maximum payload to be lifted), and environmental (all modules must work
in the dark and wet for the sample task.) Additionally, a list of required end-
effector capabilities (the sample task requires 4 feet that can operate on a
horizontal wooden surface, and 1 gripper.) Other constraints include
maximum mass allowed, minimum required operating time. Cost is also

used as a constraint, as well as a weighting factor.

Assembly Structures

In the design methodology presented in this thesis, five levels of structure are
used to develop robots, see Figure 13. First, individual modules are designed
in full detail. These modules are then grouped together by function.

Modules are then chosen from these functional groups and collected into Kkits.
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From the kits, subassemblies are constructed. Finally, the subassemblies are

combined into full robot assemblies.

Modules

b lia
/\ End Effctor

Module Classes

Kits

Sub-
assemblies

Assemblies

Figure 13. Levels of robot structures

These five levels of structure were chosen because general physical rules can
be applied at each level. These rules can determine whether subsequent
assemblies will be reasonable robotic solutions. Every structural level
provides additional rules, helping reduce the solution search space. The
organizational overhead of maintaining multiple structural levels is
insignificant compared to the computational savings realized through the use

of these rules.

Modules
The individual modules used in the automated design algorithm are
designed in detail before the search can begin. Evaluations used during the

search depend not only on general characteristics of the modules, such as
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classification type, but on actual physical characteristics as well, such as
weight, maximum torque, power consumption, and material properties.
Different evaluations and tests used throughout the search use models of
varying complexity extracted from the full module model. For example, a test
for static strength may depend on a lumped mass model of the modules,

while a dynamic stability test may require a moment of inertia matrix.

By knowing all the details of the modules in advance, the refining process of
traditional design is eliminated. @A potential robot can be described
completely from its modules and their organization. The robot’s capabilities
are accordingly completely calculable as well. This feature is necessary for

ranking robots’ task performances.

Table 1. A sample modular parts inventory

Energy otal Energy | Energy Environments |Size Mass (kg ax. Force
Type (w-hr) Usage (w) (cm) (N), Torque

I E— (Nm)
Electric 400 0.2

Ro

tuator

HJoint/Act
uator

ary, aamp, 4.5 x 9.4
metal, ground g(()J X
Hydraulic }20000 50.0 dry, metal, 84 40.0
ound, ra- 8.7
iation 12.
4
1
8

IElectric |0 2.0 dry, damp, 2 X 1.7 05Nm
2x

‘ Foot
End- Electric
effector

Hydraulic
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Module Classes

The modular parts inventory is divided into subclasses based on
functionality. The four subclasses used are power supply modules, actuated
limb segments, passive structural link segments, and end-effectors, see Figure
13.

e Power modules supply power to the other connected modules. Most
commonly these would be battery based, but a gasoline-powered air pump
might also be used as a pneumatic power source, or a module with a self-
winding power cord attached to a fixed power station if self-containment
was not necessary. Power modvles would come in a variety of capacities.
Also, because they are used in the center-body of all robots (see
Subassemblies, below) power modules have multiple connection

locations, or ports, where other modules can attach to them.

e A passive structural link segment, or link, passively connects two other
modules together, rigidly, a fixed distance apart. Key features of links are

material properties such as strength and stiffness.

e An actuated limb segment also connects two other modules. These
modules consist of an active actuated joint of at least one degree of
freedom, combined with a rigid beam. Because the major difference
between these modules and links is the addition of the actuated joint,
these modules will be called joints for the remainder of this thesis. Joints
use power provided by an appropriate power module, and can be
characterized by applicable torques and speeds.

o The final category is end-effectors, such as grippers or feet, or wheels in a
wheeled system. End-effectors come into direct contact with the

environment on one end, while the other attaches to another module.

All modules have some common features, such as size, weight, reliability,

sustainable loads, and acceptable working environments. Some module

25



classes have additional specific parameters - actuated limb segments and end-
effectors have a required power type (i.e. electrical or hydraulic) and

maximum torques. Power modules have an energy storage capacity.

These module classes were organized by functionality so that structural
analyses could be simplified. This decision has worked well in practice, but it
has proved beneficial to further subdivide the end-effector class into feet and
grippers for certain analyses. Other organizations, such as by power type or
operable environments, have not been found to be as widely useful in this
search hierarchy, because they do not lend themselves to structural analysis as
easily. These properties are therefore accessed as attributes of individual

modules, and not as module classes.

Kits

A kit is an unassembled group of modules, which might later be assembled
into a robot, see Figure 13. Typically, a kit can be assembled in many different
ways, producing many topologically diverse robots. All modules within a kit
must be used in the assemblies made from that kit. (If a module was not

used, the remaining modules would simply constitute a smaller kit.)

However, there are some kits that can never produce useful robots, no matter
how they are assembled. The physically based kit selection rules shown in
Figure 9 eliminate these fundamentally flawed kits. For instance, a robot
with a hydraulic power supply and electric actuators cannot function in any
assembly; similarly, a robot made up of only “feet” will never be useful, see
Figure 14. These kits are simply not produced by the modular design
algorithm, effectively pruning large areas of the design space as in Figure 5
and Figure 8.
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Figure 14. These kits can never produce useful robots

Subassemblies

Kits are then organized into subassemblies of a center body and serial-link
limbs, see Figure 13. Subassemblies are created according to certain physical
rules that eliminate “nonsense” structures. Every limb must end in an end-
effector and contain at least one joint. The center body must contain all the
power supplies (by definition) and can also contain links and joints, but not

end-effectors.

The subdivision into center body and limbs is a consequence of the stated
solution domain, multi-limbed walking robots. In other solution domains,

different subassembly types might be required.

It can be argued that limbs do not necessarily need to be serial. This then
blurs the distinction between center-body and limbs, and eliminates most of
the consequential subassembly rules. If subassemblies are eliminated, as

indeed they can be, more full assemblies must be tested.

The tradeoff between more structured and more open classifications, as in
most areas of the modular design algorithm, is in the incremental
performance benefit provided by allowing more assemblies versus the

increased design space to be searched at later (and more complex) tests.

Assemblies

As shown in Figure 9, the subassemblies are combined in various
arrangements into completed robot assemblies. This is facilitated by a
minimal set of assembly rules, which simply insure that legs are connected to
the center body, and that there are at least four legs (to allow static walking.

This rule could be relaxed if dynamic walking was allowed in the solution
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domain.) Assemblies are fully defined representations of actual robots, and
can be used in simulations or evaluations, or constructed out of parts from
the modular inventory and inserted into the task field environment. Good

assemblies will be able to perform the task well.

Assembly Representation
Modules are described in full detail. Assemblies can be described in full detail

if the component modules are known, and the order in which they are
connected is known. The assembly is therefore represented internally as a
connection diagram. Different tests can extract the features they need from

the assembly description and the module descriptions, as in Figure 15.

Body Environment
Joint Link  Joint Link
Gubler's Moblity 0 1 O EIl

Static Stability

Geometric
Interference

p1 1111 E1 p212 12 E2
g
Deflections l

Figure 15. Assembly representations. The robot body and one limb are shown.

Figure 15 lists some assembly tests and the relevant information from the
assembly that is needed by the test. These tests are described in detail in
Chapter 6: Application to the USS Constitution. Grubler’s mobility test
requires only the type of joints or links and their order. A static stability test
requires the relative positions of mass concentrations. A geometric
interference check requires full dimensional knowledge and the location and

ranges of joints. A deflection under loading test requires the lengths and
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material properties of the limb segments. Not shown in the figure, a full
dynamic simulation would require mass moment of inertia matrices, relative
positions, actuator torques and speeds, etc. These representations are derived

as needed during the tests. See Table 2 for other test information

requirements.
Table 2. Required information for tests.

Test Required knowledge

interference dimensions, motion ranges

static forces dimensions, torques

mobility topology, static forces

static forces dimensions, torques

static stability center of mass, foot positions

deflections material properties, moments of
inertia

accuracy dimensions, backlash, deflections,
Sensor accuracy

dynamics dimensions, joint velocities,
moments of inertia, torques

kinetostatics dimensions, joint velocities, joint
accelerations, moments of inertia

power consumption torques, actuator efficiencies

speed dimensions, joint velocities, joint
accelerations

These tests are designed to be independent of the task and the plan. They
only use information available in the module descriptions and the assembly

representation.

Search Hierarchy
Physical-based rules determine how assembly structures are constructed.

Additionally, task-based filters are used at several points throughout the
search to further prune the solution space. The distinction between rules and
filters is that rules always hold true, regardless of the nature of the task, and
filters are task-dependent. A rule might be: the robot must stand statically;

and a filter might be: the robot must weigh less than 20 Ib. Finally, numerical
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evaluations of the structures are used as ranking functions. An evaluation
might give robots with low weights better scores. Evaluations can be task-
dependent or not. Rules, filters, and evaluations are collectively referred to

here as tests.

Filters

Filters remove from consideration any modules, kits, or assemblies that
cannot meet certain task requirements. Note that filters do not insure that a
passing candidate will be able to meet that task requirement - passing a filter is
generally a necessary but not a sufficient condition to insure task compliance.
For this reason, filters can be kept simple, saving computational effort for

later in the search, when there will be fewer candidates to consider.

For instance, one assembly filter may be a test to see if a robot can walk. A full
test of walking ability might require a full dynamic simulation of the robot,
which, although possible, is a computationally expensive procedure.
However, a quick-and-dirty walking test might be: check that each foot can be
lifted individually without the robot falling over. This test will still
eliminate many, but not all, candidates that cannot walk; foot-lifting ability is

one of a number of requirements for walking.

Filters are arranged at each structural level according to their complexity and
ability to eliminate assemblies. Computationally simple filters that eliminate
a wide selection of robots are the most useful in terms of search speed; later
filters that involve more computation will have to be applied on fewer
robots. The effects of filter arrangements are discussed in “Effectiveness of

Tests on Search Size,” page 68.

Module Filters
The search process begins by considering all available modules in the

inventory, see Figure 9. Modules are removed from the working inventory
of parts if they do not meet some low-level task-based criteria - for example,

since the bilge task involves exposure to sea water, only sealed sensor
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modules can be used. Any unsealed modules are removed from further
consideration. Additionally, the task involves a spatially complex path, so a
fiber-optic communications module with a tethered fiber optic line would be
eliminated. Reducing the number of modules in the inventory reduces the

design space as shown in Figure 8.

Using the expression on page 14, if just 3 modules are eliminated by module
filters (for example, two hydraulic modules are too big to fit in the confined
space of the task, and a videocamera module could not work in wet

environments), the number of kits is reduced by a factor of 50 to 212 million.

Kit Filters
The kit filters, see Figure 9, insure that all feasible kits meet some aspects of

the task requirements. The kits do not have to be assembled for kit filters to be
applied. For example, the weight of the robot in the Constitution task is
required to be under 20 pounds, so kits whose components sum total weight
are greater than this are eliminated. Again, eliminating kits before they are
assembled greatly reduces the design space to be searched, see Figure 5, so
developing broadly applicable kit filters is an important aspect of this

research.

Assembly Filters
Assembly filters eliminate assemblies based on aspects of the assembled

structure. Many of the more accurate tests of the task requirements (walking
ability, range of motion, or endpoint force) can only be addressed with a full

assembly representation.

In the sample task, a robot is required to climb a step. A kit filter checks step
height as a function of average limb length and rejects robots not capable of
this action. A related assembly filter might check the step height based on the
actual, assembled limb lengths. The kit version represents a necessary
condition to climb the step. The assembly version is more complex, but

represents a sufficient condition.
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Extra computation time is involved in executing both filters for robots that
can walk, given that the second (assembly) filter alone is sufficient. However,
all of the kits rejected by the first (kit) filter have saved the computations
involved in executing any remaining kit filters, setting up all possible
assemblies to be made from that kit, and executing any assembly filters over
all of these assemblies. The actual computational tradeoffs between test are

described in Effectiveness of Tests on Search Size, page 68.

Robot Evaluations

Robots are evaluated for their potential task performance at two levels in the
search structure; first for kits, then for assemblies. These evaluations are
numerical and represent the quality of the solution. Robots with the higher
evaluations are more appropriate for the given task. The evaluation at the
kit level, including factors such as weight and cost, is used as an additional kit
filter - low scoring kits are removed - and it is for this reason that the
evaluation occurs at this level. The kit evaluation is included as a
component of the second, assembly, evaluation. The assembly with the
highest assembly evaluation score is considered the optimal robot for the

given task.

Kit Evaluation
Kits that pass the kit filters are evaluated and compared to a threshold, see

Figure 9. This evaluation is simple compared to the final assembly
evaluation. The evaluation is the weighted sum of a series of tests, such as
estimated reliability based on parts count, total cost, component inherent
accuracy, power efficiency, weight, actuator speed, and predicted span. The
bilge example robot needs to slowly probe closely spaced points for rot over an
area of thousands of square feet for many hours without an umbilical.
Therefore, for this task, kits with estimated low static actuator power

consumption would be given a high evaluation.
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Kits that have scores below a given threshold are filtered out at this point,
under the assumption that below some level a kit is not worth considering,
even though it may have passed all the filters up to this point. This
threshold can be changed to influence search speed and search thoroughness.
Reducing the threshold to zero will allow all kits at this point to be

assembled, and raising it above some maximum will eliminate all kits.

Assembly Evaluation
The final assembly evaluation computes the effectiveness of a robot for the

given task. Again, the evaluation function is the weighted sum of a series of
tests that include bandwidth, range of motion, mobility, walking speed,
endpoint force, accuracy, and redundancy. Fast, accurate, low-cost, high-force
robots would generally score well. These evaluation function in general will
be more complex than previous tests, but since the number of assemblies has
already been reduced significantly, the total time required for the assembly

evaluations is minimized.

In the most complete incarnation of the automated modular design method,
complete kinematic and dynamic models of the modules and their
arrangement could be passed to external dynamic modeling programs for
evaluation, such as [68,69,70], for complete dynamic simulation. Results from
this simulation would be reported back to the modular design algorithm to be

incorporated in the assembly evaluation.
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Chapter 4: Designing Modular Components and
Inventories

Good Design Characteristics for Modular Components
In designing the inventory of modular parts used in this implementation,

characteristics for good modular designs were investigated. Different and
new technologies and materials for actuators, sensors, structures and energy
storage elements were evaluated within this context. The characteristics
below are true in general for modular systems, but of course there will always
be exceptions. Some of these characteristics are well-known, while others

remain relatively undeveloped.

Some of these characteristics were incorporated into the modular inventory

used in the Constitution task.

Features

Structural Features
e The scale of most mechanisms (85%) is between 3 cm and 40 cm [71]. This
might be an appropriate scale in which to develop modular mechanical

parts as well.

e Circular cross sections of structural components should be used because
their final loading orientations are unknown [54]. Circular cross sections

bear loads equally well in all directions.

Gaits
e A wheel diameter must be twice the size of a leg in order to traverse the
same step height [72], see Figure 16. However, wheels are more energy-
efficient than limbs because they have no dead-time in their cycles [72].
Also, static stability on wheels requires no power. So, for size-dominated

tasks, limbs are better; for energy-dominated tasks, wheels are better.
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Figure 16. Leg step height versus wheel diameter

o Continuous (wheeled) gaits also lead to smoother motion over flat terrain,

resulting in higher speeds, more efficient energy usage, and additional
stability due to rotational inertia [72].

Statically stable gaits are safer than dynamic gaits [72]. Because the
environment is partially unknown, safety concerns dictate slower, more

robust gaits.

Interfaces

e Symmetric couplings at modular connection interfaces allow for multiple

orientations and redundant connectors [73].

Hydraulic and other fluid-based modular connections are more difficult to
make and maintain than electrical connections. On the other hand, they
have higher power to weight ratios [54]. They should thus be avoided
unless the task is power-dominated.

Transmission Features

e Most applications require high torques and low speeds [73]. Because the

domain is field environments, and not manufacturing, robot actions are
generally unique (non-repetitive), and because the environment is

partially unknown, safety concerns dictate slower motions.

Compared to transmissions, direct drive actuators are stiff, have no

backlash, and low friction. However, they are backdrivable, have lower
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torque to weight ratios, and are optimized for a particular speed and load
[54].

¢ Harmonic transmissions have high single-stage reductions, and are

accurate, repeatable, and efficient [54].

e Non-backdrivable actuators require power only when moving. For slow
moving, statically stable robots (typical of field applications) these will be

more energy efficient.

Technology

The following Table 3 [74,75,76,77,78] lists some well known and some
unusual actuators with quantitative and qualitative ranges in which they are
effective. This list is not comprehensive but is included to show the wide
breadth of the field typically ignored during the design process. Modules can
be refined and improved as new technologies become available, and modular

robots can be improved in the field, with minimal down time.
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Table 3. Some actuator types and characteristics.

type dimension | frequency | force power work comments
output / energy
weight density

electro- 50 pm high 5gF high A4]/cm® difficult

static output
coupling

piezo- 1mm 100 kHz 4kgF/mm’ | high 5e4J/cm’

electric

ultrasonic | 1an 5Hz high low no trans-
mission
necessary

shaped Jmm 70 Hz 4kgF/mm’ | high 10]/c?® heat

memory dissipation

alloys necessary

electro- 5an 100 Hz high low 1)/am’

magnetic

induction

rubber- 1mm low 2N high pressure

tuators differentia
1 to motion

magneto- | 2mm low high N/A high B field

strictive changes
viscosity

electro- 2mm 1kHz 3 kPa N/A high E field

rheo- changes

logical viscosity

chemo- lem 25cm/min. | low low chemical

mechanica availabili

1 gels ty to
motion

Design Via Frequency in Solutions

The automatic modular design algorithm can be used to help determine its

own best inventory of parts. Varying the modular components available for a

set of tasks and using the modular design algorithm to assemble the best

systems, it is simple to note how often each module appears in the solutions.

Modules that are utilized infrequently can be discarded. This in turn helps

keep the modular inventory size to a minimum, allowing more rapid

searches, and reducing the costs of manufacturing and maintaining the parts

inventory, all without significantly degrading the performance of the systems

produced.
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The inventory can be constantly improved over time by adding new
modules, and then trimming the size back with the above “survival of the

fittest” approach.

Since statistical data on the best robot candidates can be recorded
automatically by the algorithm, the algorithm could itself quite easily modify
its own choice of inventory with this technique. Given a set time limit, it
would choose the top n modules such that the search finished on time. A
longer time limit would allow a greater selection of modules, reaching

further into the more unique reserves.

Design Via Usage in Solutions
Modules can be refined and optimized individually in a more sophisticated

manner as well. If usage data are collected instead of frequency for a range of
tasks, then each module can be refined according to how it is most often used.
For each successful robot design (with an assembly evaluation above some
threshold), the average and maximum loads (for example) are recorded that
an individual module sees, as determined through evaluation. If the loads
are generally greater along a particular module axis, the module structural
design can be modified to reflect the typical loading. The amount of material
along subcritical axes can be reduced until all axes has equal safety margins,

reducing the weight and cost of the module.

Similarly, if an actuator is generally driven in the upper end of its speed
range, a higher speed actuator may be in order. If it is generally driven in its
lower end speeds, then a cheaper, lower-speed actuator might be substituted,

resulting in a cost savings with minimal performance impact.

This type of design refinement does not lend itself to automated
improvement as easily as the frequency method. One can imagine that the
usage data would be analyzed by an engineer, who would then suggest design
improvements. However, it is possible that in controlled situations, module

refinement could be completely automated. For example, the dimensions of
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a link I-beam might be adjusted automatically based on the typical loads it

sees.

Design Via Modular Design Algorithm
Another approach to the design of the modular inventory might be this

modular algorithm again, applied at a lower level. Now joints or end-
effectors might be the desired assemblies, the task would be suitably redefined,
and the modular design algorithm would be applied using an inventory of
lower level modules such as motors, shaped memory alloys, and hinges.
Although this approach was not used to design the modules in this research,

the level of modularity is significant and is discussed below.
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Chapter 5: Other Issues
Growth of Design Space

Increasing the number of unique module types available exponentially
increases the number of kits to be searched, which in turn increases the search
time. Because of this, significant effort has been spent trying to keep the
inventory size as small as possible. Although it may be theorized that in
general, the larger the inventory size the better the quality of the solution will
be, the actual relationship of inventory size to solution quality has not been

examined in this thesis.

Level of Modularity
It has become clear at this point that a different level of modularity could be

built into the algorithm, see Table 4. The modular parts inventory could be
limbs or bodies (similar to subassemblies, above) instead of joints and links.
Well-designed limbs and bodies would be developed before the search began.
These then would be combined into robots, and everything before this step in
Figure 9 would be eliminated. This would greatly reduce the assembly search
space, and explicit rules could begin to be written for every combination,
approaching an expert system robot designer. However, such and “expert
system” will never produce an original robot. In this case, it was decided that

predesigning subassemblies would unacceptably limit the variety of solutions.

Modules could also be designed at the very low level of motors, gears, or even
screws, but then the combinations rapidly increase, and the combination rules
become exceedingly complex. The design space approaches the continuous

space, and the advantages of modularity are lost.
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Table 4. Module Levels. These are characteristic points on a continuous scale.

Module Level Example Pros Cons

low gear, motor greater design long search time,
freedom complex

connection rules
middle rotary joint + link | reasonable design freedom and search
+ interface speed

high 6-DOF arm fast search, can small design
guarantee good | freedom, maybe
subsystems no solution

In general, the lower the level of modules, the larger the search space, and the
better the solution, but the longer the search will take. Solutions are better for
lower level modules in general because they can be more finely tuned to a
specific task. The level chosen for this design algorithm is therefore in “the
middle,” low enough to produce a wide variety of robots, but high enough to
hide the very complex layer of fine details and allow simple combination

rules, and execute in a reasonable amount of time.

Search Method Comparison

Gradient

Traditional gradient-based search techniques [79] cannot be used for this
search problem. The space of modular assemblies can be considered by
definition non-continuous, and therefore no gradient exists. In a physical
sense, this means that two robot assemblies that are extremely topologically
“close,” say only a single module is different, can have widely varying
performance evaluations. No information about which robot to try next can

be predicted via gradient methods.

Branch and bound

The quality of a branch and bound search is dependent on the accuracy of a
guaranteed underestimator of robot performance [80]. For this application,
because the performance is dependent on a hierarchical series of tests, a single

simple and accurate performance underestimator is impossible. Branch and
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bound searches might be performed on various subcomponents of the main
search. This method might produce a better robot testing order. However,
because of the hierarchical nature of the of the search, the “bounding” portion
of the branch-and-bound technique would have to be designed to take this in

to account.

Simulated annealing

Simulated annealing is a probabilistic process that traverses the solution space
in a somewhat random manner [80]. This technique does not span the
solution space, and does not guarantee optimality. Additionally, simulated
annealing in general requires lengthy parameter tuning for convergence, and
so is not appropriate for an automatic algorithm meant to cover a wide

variety of circumstances (tasks, modules, rules, and evaluations.)

Genetic algorithms

Genetic algorithms by their nature identify good design components in
complex systems [81]. This leads to the concept of related robots - a highly
ranked robot is encouraged to have similar children, with the hope that some

of them may be better than the parent.

Like simulated annealing, genetic algorithms do not guarantee an optimal
robot. However, they do not require tuning and so might be used for the
modular design problem. The filters, rules, and evaluations developed in
this research can be applied to a genetic algorithm search as well; if the
optimal robot is not required, then genetic algorithms might be a good search

method to use for a faster solution.

Genetic algorithms might be incorporated into the hierarchical modular
design algorithm in the following way. The search is conducted as before,
except that when good robot assemblies are produced, some representation of
them is added to a gene pool, see Figure 17. Good is defined as a high scoring

assembly evaluation. There may be two gene pools, one for kits and one for
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assemblies. Subsequent kits and assemblies are chosen via the genetic

algorithm procedure, instead of in a regular order.

modules

filters

filters add to kit
gene pool

assemblies <

add to assembly
filters gene pool
evaluation

l

desired robot

Figure 17. Adding a genetic algorithm search

Learning

The statistical learning process for designing the modular inventory described
above could also be applied to more complex structures, such as
subassemblies. Subassemblies that are used frequently could be remembered
and tried first in future design searches. This would improve the average

designs in a time-limited search.

Sensing, Control, and Communications
Robot parts such as sensors, communication devices, and control units are

not presently included in this algorithm. These types of parts are generally
decoupled from the structural design of the robot in a modular system.
Because these modules are non-structural, and do not effect the topology of
the robot, they can be added after the rest of the robot is built. For instance, if
a robot needed to detect rot, a rot-detector sensor would be needed,

independent how the robot was designed. The robot could be designed using
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the search algorithm without the detector, and the detector would be added
after the solution was found. If the detector did affect the robot structure - if it
weighed a significant amount, for instance, then those features should be
factored into the robot design by including them as task requirements - a fixed

payload with a certain weight and power consumption.
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Chapter 6: Application to the USS Constitution

Constitution Task Description
To insure practicality of the modular design, the system was developed with a

demonstration task in mind. The example task is taken from a project to
restore and maintain the USS Constitution, a historic naval warship. The
task is to inspect an area of the Constitution in the hold beneath the ballast
supports, see Figure 18, locating any areas of rot in the wooden beams of the
ship, and reporting this information, see Figure 10. This sub-ballast support
area is from 5 to 8 inches high, 4 feet wide and 150 feet long. The area is
entirely wood, and the environment is usually damp and dark. There may be
puddles of water 1-2" deep in the inspection areas, and water may drip from
above. There may be spaces between the floor boards of 1”. Additionally, the
area is compartmentalized by diagonal riders spaced every 102” along the
ship, necessitating the ability to climb 8.5” out of one compartment and into
the next. The narrowest path is 4”x5.5”, see Figure 19 and Figure 10.
Inspection includes video transmission of rotten areas, and a probe to be
inserted with 2 lb. force perpendicularly into rotten areas. The inspection
must be self-contained because of the complexity of the path (no cables),
although not necessarily autonomous, and moving speed should be at least

10 feet per minute.
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Figure 18. Constitution hold cross-section
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Figure 19. View looking inboard. Diagonal riders compartmentalize the space.
Furthermore, there may be loose obstacles up to 4" x 4” x 4”, 1/4 Ib. in the
inspection areas. The robot might have to move these objects to complete its
inspection. The robot should weight less than 20 Ib. for to allow easy
placement and removal. Total cost must be under $1000. This cost is based

upon having pre-manufactured robot modules available for use.

This task description is translated into a series of constraints as follows:

e Minimum step height required: 0.2125 m

e Minimum span: 0.088 m

e Maximum weight: 9.09 kg

e Working environments: Dark, Wet

e Needed end-effectors: 4 feet, 1 gripper for moving 0.12 kg loose obstacles
e Maximum size allowed: 0.088 m x 0.1375 m x 0.088 m

e Maximum cost: $1000

46



Parts inventory
The modules implemented in this application were designed using

traditional design methods. Although they have not been constructed, they
are theoretically accurate in terms of materials, weights, dimensions, stresses,
power consumption, torque values, speeds, cost, and motor availability. Costs
were estimated based on relatively large-scale production (100 units of each

module.)

The inventory includes 12 modules, as shown in Table 5: electric battery packs
in two sizes, a gasoline-powered pneumatic power supply, a short link, three
sizes of electric joints, two sizes of pneumatic joints, a pneumatic three-
fingered gripper, a shaped-memory alloy electric two-fingered gripper that can
be used as a foot, and a simple rubber-padded pivoting foot. In Table 5, the ID
number is a unique identifier label. The acceptable working environments of
each module a are denoted by capital letters: Wet, Dark, Vacuum,
Radioactive, high Temperature. Dimensions listed are external, and an
effective length (eff), if applicable, is the distance from connection point to
connection point. Notes include energy capacity, number of interface ports, a
maximum torque which the module can withstand across its effective length
without failing or being backdriven (support torque), and the maximum

applicable torque (apply torque.)
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Table 5. Modules used for Constitution.

Module | Type Energy | Materials | Environ | Mass Cost | Dimen- Notes

ID# type ments (kg) ($) | sions(cm)

110 power | electric | lead-acid, | WD 0.36 30 12x4x4 13.4 W-hr, 5
2024 ports
aluminum

112 power | electric | lead-acid, | WD 0.14 17 8x3x3 5 W-hr, 3
2024 ports
aluminum

130 power |pneu- | 12ccgas | WD 1.1 70 16x9x9 100 W-hr, 6

matic | power ports
plant,
bulb pump

270 link 7075 WRVD | 0.01 10 1x5.5x1.2 | 361Nm
aluminum | T 4.3 eff support

310 joint electric | Micro-Mo | WVDT | 0.7 175 | 3.5x15x6.5 | 1.02 W, 10 Nm
#3557, 12.5 eff support, 5 Nm
7075 apply, 0.91
aluminum pm

314 joint electric | Micro-Mo | WVDT | 0.08 80 1.5x6.4x5.7 | 0.09 W, 1.2
#1624, 5.0 eff Nm support,
7075 0.3 Nm apply,
aluminum 0.80 rpm

318 joint electric | Micro-Mo | WVDT | 0.02 60 1x4.2x4 0.05 W, 0.9
#1016, 3.0 eff Nm support,
7075 0.1 Nm apply,
aluminum 0.91 rpm

330 joint pneu- | 7075 WVDT | 0.9 70 5x20x7 5W,30 Nm

matic | aluminum 17.5 eff support, 20
Nm apply, 1.0
rpm

334 joint pneu- | 7075 WVDT | 0.6 50 4x10x5 4 W,20 Nm

matic | aluminum 8.5 eff support, 10
Nm apply, 2.0
rpm

410 end- electric | NiTiNol | WRD 0.03 40 1x5.5x5.5 | 0.06 W, 6.45

effector, wire 4.3 eff Nm support,

gripper/ .150mm 3.0N grip

foot dia, 7075 force
aluminum

430 end- pneu- | lead RDT 0.5 150 | 3x10x10 5W, 30 Nm

effector, | matic | screw, 9 eff support, 30 N
gripper 7075 grip force
aluminum

470 end- 2024 WRVD | 0.005 5 1x2x1.5 126 Nm

effector, aluminum, | T 1.4 eff support
foot rubber
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Figure 20. Modular robot output from the automatic designer
Figure 20 shows some modular robots that were assembled during the search.
Limbs are shown attached vertically to various ports of the horizontal bodies.
The bodies are made up of one or more power modules, and the limbs are

made of different sizes of joint modules, links, feet, and grippers.

These robots are all bilaterally symmetric, so each limb appears on both sides
of the body. Bilateral symmetry is not a requirement of the search method,
but it seems to result in more reasonable robots for this task, and it certainly

makes the graphical output of the code itself much more comprehensible.

The Search Process
The modular design methodology has been implemented in software (C++

on UNIX.) The following sections show how the algorithm works at a fairly
high level. For more detailed look at the code, see “Appendix: modular

design program”, page 85.

Since each kit is evaluated sequentially, memory requirements are minimal;
only the best few assemblies and the parts inventory need be remembered.
The time required for the search is on the order of a few minutes to a few

hours, depending on the inventory size.
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C++ is particularly appropriate to this hierarchical design algorithm because
of its class-handling abilities. There are direct analogues of the hierarchical
assembly structures in the code. There is a general module class prototype
with child classes of links, power modules, joints, and end-effectors. There is
a module sub-group class that has a collection of one type of module. Then a
group class is a collection of sub-groups, and is analogous to a kit. The sub-
assembly prototype class takes a kit and adds connection information. It has
child classes of body and limb. Finally, the assembly class connects

subassemblies together.

At each level, details of lower levels are hidden. A particular detail can be
specified by going through the chain of levels. Asking for the weight of a
robot, the assembly class asks each of its legs what they weigh. Each leg asks
the group of parts that makes up the leg what it weighs. The group then asks
each module what they weigh. In this manner, code for each class is kept

simple.

Describe Modules
The parts inventory is first read in from a file that describes each module in

full detail. The constraints and weighting factors for the task are also read in.

The 12 modules available for the Constitution task yield 67,863,355
combinations when taken in kits of up to 17 modules (see the expression on
page 14.) This number will be reduced by rules and filters throughout the

search.

Module Filters

The modules are first filtered based on their individual size compared to the
narrowest path requirement in the task description. In this case, the
pneumatic power supply (ID# 130, 16x9x9 cm) is bigger than the narrowest
path (given by the maximum size allowed (8.8x13.75x8.8 cm), so it is removed
from the parts inventory. The pneumatic gripper (ID# 430) cannot operate in

the task-required environment “Wet”, and so is discarded. Each module
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weighs less than the maximum total weight, and each costs less than the
maximum total cost. All of the modules are on an appropriate scale,
determined by the range of dimensions given in the task within an order of

magnitude.

Removing ID# 130 reduces the number of kit combinations to 30,421,300, and
removing ID# 430 reduces them to 13,037,531.

Module Class Filters

After individual modules have been removed from consideration based on
individual features, they are filtered functionally according to their module
class. First, the power types of all modules are checked against power type
availability from the power module class. In this case, since the only
pneumatic power supply had been removed by the module filters above,
modules requiring pneumatic power have no available power source, and so
are discarded. The two pneumatic joints (ID# 330, 334) are removed from the
available inventory in this manner. This reduces the number of possible
combinations to 2,042,755 kits.

Second, the end-effector class is checked against the task’s required list of end
effectors. Any end-effectors that are not needed are discarded. In this case,
end-effectors required by the task are grippers and feet, so both of the
remaining end-effectors remain. Note that at this point, the number of task-
required end-effectors is not important, because parts have not yet been
selected for robot kits. Any end-effector that has a classification of ‘foot’ or
‘gripper’ is allowed to remain. A single end-effector can have more than one
classification; for instance the remaining gripper (ID# 410) has both

classifications according to the module description file, see Table 5.

Third, end-effectors are checked for specific requirements given in the task
description - in this case the gripper must be able to lift objects weighing at
least 0.25 Ib. The remaining gripper (ID# 410) is capable of this, and so is not
eliminated.
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Choose the Next Kit

The first kit set up is the smallest that satisfies the kit rules below.
Subsequent kits are insured to be unique and span the entire design space
using the following hierarchical algorithm (each step is repeated until it

cannot be, then the next step is executed):

1. Each module in each module class is swapped one for one into the Kkit,
replacing another from that class, in ascending ID number order. There
can be multiple instances of each module ID. For example, a kit with joint
ID#s 310,310,310 would go to 310,310,314, to 310,310,318, to 310,314,314, to
310, 314, 318, to 310,318,318, to 314,314,314, etc. Note that order does not

matter.

2. Module class types are changed from links to joints to end-effectors to
power modules. A kit with module types power, link, joint, joint, end-
effector goes to power, joint, joint, joint, end-effector, then step 1 is

repeated, then goes to power, joint, joint, end-effector, end-effector, etc.

3. The kit is made larger by adding a link with the lowest ID number. A kit
with module types power, power, power goes to power, power, power,

link, then step 1 is repeated.

In practice, this algorithm has some of the kit rules, below, embedded in it so
that kits that do not obey these rules are never generated in the first place.
For instance, a power, power, power kit would be useless and is not actually

generated.

The smallest kit is chosen first because cost generally increases with the
number of modules in the assembly. Searches that are time-limited will

therefore generally yield cheaper solutions.

Kit Rules
Each kit must have at least one power module to provide power, at least two

end-effectors (on each side) to be able to stand up, and at least as many joints
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as end-effectors in order to move all its limbs. Each kit must contain power
modules that can supply power for every type of module in the kit. There
must be enough ports on the power modules to accommodate the number of
limbs that there will be, which is the same as the number of end-effectors in
the kit (because limbs are serial-link chains ending in an end-effector.)
Finally, a provision for required groupings of modules has been included -
each module can have a list of other modules that it needs to work with, and
a list of modules that it should never work with.

In the Constitution robot design, there were 99,887 kits that passed all these
kit rules.

Kit Filters

Kits are filtered on the following task requirements: total weight, total cost,
total predicted reliability, operating time, end-effector requirements, step

height, and span.

Mass and cost are simple sums over the kit: ) m,<M, Y ¢,<C, where n is the

number of modules in the kit, m and ¢ are the mass and cost of the

individual modules, and M and C are the task-imposed limits.
Reliability is the product over the kit of the reliability for each module
Hr,>R, where in a physically realized modular inventory, testing would

determine module reliability . For this Constitution task, reliability was
roughly estimated by the complexity of the module (see Appendix for
reliability values used.) Note that no minimum reliability R was specified in

the task description, so R is effectively 0.

Operating time is the sum of the energy available from the power modules

P

XE

divided by the average power usage of all the modules: 4——>OTmin, where

S
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p is the number of power modules, E is the energy available from each power
module, and P is the average power usage of each module (energy divided by
energy rate has units of time.) Again, no operating time is specified in the
task.

The required numbers and types of end-effectors given by the task list must be

met, so each kit must have 2 feet and 1 gripper or it will be skipped.

The span of the robot kit is an instance of a predictive filter: the actual span of
the robot cannot be known until the robot is assembled, yet the robot is only
in kit form at this point in the search. Even so, an estimate of the span can be
made in the following manner. All of the non-power modules effective
lengths are added together and divided by the number of limbs to get an
average limb length. Two average limb lengths are added to the body length,
which is taken to be the power modules connected in line, to get the predicted
span: span = 2 x average limb length + body length. Unfortunately, this is not
strictly a sufficiency test, because actual span may be less than or greater than
this prediction. It turns that that in this case, because the required span is so
small, all of the robots meet this requirement anyhow, see Effectiveness of
Tests on Search Size. The step height is similarly predicted as twice the
average limb length.

For the given task, the kit filters reduced the number of kits to be assembled
down to 6,689.

Kit Evaluation

The kit evaluation objective function is the weighted sum of a series of

factors: Kit_Eval =2w,. - fi(s;), where s, is the numerical score from evaluation
i

test i, f; is a scaling function for test i, and w, is the evaluation weight for the
test. The evaluation weight can be either positive or negative. The scaling

functions used are either linear or asymptotic, depending on the nature of the
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A}
test, as discussed below. The two functions are f(s)= . The second

1_____.

1+s’
definition provides an asymptotic limit (for positive s) of 1 with diminishing
returns, see Figure 21. This is useful in cases such as operating time, where
although more is generally better, after some point it becomes less and less

important.
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Figure 21. Asymptotic function
There are 7 kit evaluation factors used:

Kit Eval = 5x Agility + 1x asymptotic Average_Limb_Length + 10x
asymptotic Span + 10x Reliability + 10x asymptotic Operation_Time - 15x
Mass - 10x Cost

Total weight and cost are linear with negative weights. Total reliability is

linear and positively weighted.

Agility is taken to be the fraction of joints in the kit: L, where j is the number
n

of joints and 7 is the number of modules. This encourages joint redundancy,
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because redundant robots are more robust to actuator failures and also can

operate in more constrained spaces.

Average limb length and predicted span, as discussed above, are asymptotic
and positively weighted, penalizing (relatively) robots that have extremely

short legs or spans.

Operating time is also asymptotic and positively weighted, by reasoning that
in general longer times are desirable, but with diminishing returns. This
avoids ‘fat’ robots with many power modules when they are not specifically
required by the task. (Operating time is a more practical evaluation than
robot total energy efficiency because even a high-efficiency robot with a small

battery may not last long enough to accomplish its task.)

Speed, although it is not yet included in the equation above, should be
positive and asymptotic, and is measured as the average joint rotational speed

times the average limb length.

If the kit evaluation meets a predefined minimum threshold, the kit is
considered worthy of further exploration. A higher threshold results in
reduced numbers of assemblies to be tried and therefore in faster search times,
but at the expense of possibly missing some low-ranked ‘sleepers’, which
might perform very well in the final assembly evaluation. In this case a very
low threshold of 1.0 was chosen in order to further examine widely ranging

possibilities.

Choose the Next Assembly

A kit can be assembled into many subassemblies, and these subassemblies can
be arranged in many different ways. The following hierarchical algorithm
insures that all possible assemblies of a given kit are examined. Again, this
algorithm is simplified, because in practice some the subassembly rules,
below, are embedded in it. Each step is repeated until its stopping point, then

the next step in the sequence is executed:
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1. Limb subassemblies are arranged about the body using all possible ports.
For 4 ports and 3 limbs, limb 1 is first at port 1, limb 2 at port 2, limb 3 at
port 3. For the next assembly, limb 1 is at port 1, limb 2 at port 2, limb 3 at

port 4, etc. All permutations are covered.

2. New limb subassemblies are made. Step 1 is repeated. Limb subassemblies

are made via three processes.

a. A single subassembly is rearranged. A limb subassembly of joint 1, joint
2, link 1, end-effector goes to joint 1, link 1, joint 2, end-effector. 'The end-
effector is always required to stay at the end of the limb. If all

permutations of the limb have been tried, the next limb is rearranged.

b. If no more limbs can be rearranged individually, modules are swapped
to different subassemblies. Limb 1 and limb 2 exchange parts. All

permutations are covered.

c. Limbs with different numbers of modules are tried. Instead of
swapping, one limb donates a module to another limb, skewing the limb

sizes which originally started off as equal as possible.

3. A new body subassembly is made. Step 1 is repeated. New bodies are

made via two processes.
a. First the body is rearranged, as in 2.a.

b. Modules are taken from the limb subassemblies and added to the body.
A body with power 1, power 2, and a limb with joint 1, joint 2, link 1, end-
effector are changed to a body of power 1, link 1, power 2, and a limb of
joint 1, joint 2, end-effector. Only joints and links can be moved from a
limb to the body. This process stops when only minimal limbs are left.

Minimal limbs are a single joint plus an end-effector.
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Subassembly Rules

The body subassembly may consist of power modules and links only. Limb
subassemblies may consist of links and joints, and are required to have exactly
one end-effector. Each limb subassembly is required to be able to lift itself (off
the ground). This is tested in the following manner, as shown in Figure 22:
each joint in the limb must be able to rotate through a set angle (30 degrees)
and lift all modules attached below it, assuming all other joints are relaxed.

This insures that each joint in the limb is not useless.

Figure 22. Each joint must lift the rest of the limb
A joint can lift the rest of the limb through the given angle if the joint’s
k
applicable torque > legsinfe ) m,, where | is the effective length of the joint,
i=j
g is gravity, j and k are the indices of the next and the last module in the limb,

and m is the mass of the modules.

Also, all the limbs together must be capable of lifting the entire weight of the
robot. This is determined by finding the greatest single-joint lifting force of
each limb, with all other joints locked, and adding each of these limb forces

together.
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Grubler’s mobility criterion must be met, insuring that every end-effector is
capable of at least one controllable environmental force interaction [82].
n=3x(m-1)-2x f, where n is the number of degrees of freedom of the system, m

is the number of rigid modules, and f is the number of joints.

Assembly Rules

Limbs may be rearranged only in staticaliy stable conditions, as determined by
straight-leg foot placement and center of mass. The center of mass must
reside within the polygon formed by the foot locations. Also, geometric
interferences between moving modules must be checked, but this is not yet

implemented.

From the 6,689 kits remaining, 68,113 valid assemblies were constructed

according to these subassembly and assembly rules.

Assembly Filters
Assembilies are filtered on task-based constraints.

First, the limbs with grippers are checked to insure they can provide enough
lifting force to lift the required loose obstacles. The torque of the strongest
joint in the limb is compared with the moment arm of the remaining limb

modules and the required gripper weight for this test.

Second, assemblies are checked to see if they can be manipulated to fit within
the maximum size constraints of the task. This has not yet been

implemented.

These filters eliminated most (83%) of the assemblies from consideration,

leaving only 11,840 assemblies to be evaluated.

Assembly Evaluation
The assembly evaluation is again a weighted sum of linear or asymptotic

functions of component tests. Many of the component tests were previously
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used as filters, but now numerical results instead of pass/fail results are used

for a measure of the quality of the result.

Assembly_Eval = Kit_Eval + 4x asymptotic DOF + 6x asymptotic
Arm_Strength + 20x asymptotic Leg_Strength — 7x asymptotic Leg_Deviation

The assembly score builds on the kit score calculated earlier, because the kit

features are applicable to its assemblies.
The number of degrees of freedom is considered a positive asymptotic factor.

Arms are limbs that end in a gripper, and arm strength is taken to be the

lifting ability of the arm divided by the required gripper payload:

7
max| —

j Zl‘

i=j

Arm_Strength = , where 7 is the torque of joint j, | is the effective

length of each module from the joint j to the end of the arm k, and P is the
task-required gripper payload. The numerator of this term represents the

largest lifting force available at the end of the arm due to a single joint.

A leg is a limb that does not end in a gripper. Leg strength is the sum of the
lifting abilites of each leg divided by total robot mass:

7]
mex ;
2k
Leg_Strength = ———i—, with the lifting ability as above. This rewards

Ym

i=1

lean and “well-muscled” assemblies.
The deviation of the limb lengths is negatively weighted, discouraging widely
varying limb lengths on a single assembly, which leads to uneven utilization.

Leg_Deviation = Z(l -1 )2 , with [ as the length of each leg i.

i avg
i
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Robot speed, bandwidth, and accuracy tests should also be included but have
not yet been implemented. A full dynamic simulation could also be added at

this point in order to provide the most accurate evaluations.

Rank Assemblies
Based on the assembly evaluation described above, the best assembly for each
kit is reported. The best few assemblies of all kits are remembered and

reported at the end of the search.
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Chapter 7: Results

Solution of the Constitution Task
Figure 23 shows the final output of the modular design algorithm for the

Constitution inspection task. The best 10 solutions are shown with the
highest scoring robot in the lower left corner. The assembly evaluation score

is shown above each robot.

The total time taken for the search (kits of up to 17 modules) was 261.14

seconds on a Sun 4 workstation.

The top assemblies found had assembly evaluation functions from 40.7934 to
41.7653. The range of the top scoring robots is small because of the large
number of evaluated robots. These ten represent the best of 11,840 assemblies,
or the top 0.08%.

score; 41,08
score: 41,54 score: 41.43 score: 41.29 score: 41.03
score; 41,77 score; 41,76 score: 41,72 score; 41,68

L

Figure 23. Design solutions for the task and inventory
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These robots can all fit through the narrowest opening, the entranceway to
the inspection area, see Figure 23. Also, the legs are long enough to reach
from the top of the large step to the bottom of the inspection area. This

results in somewhat “gangly” robots, with long arms and small bodies.

These robots all have a somewhat atrophied third leg near the center; this
results from the given task requirement of two feet and one gripper. The
center leg does not help the robot’s span, and so it can remain short. Two feet
were specified in the task under the assumption that the robot body should
remain off the ground during object manipulations with the gripper, but the
evaluation tests did not explicitly check for static stability without the gripper

arm. Clearly, this needs to be done for a more useful robot.

Effects of Changing the Evaluation Function on Quality of
Solutions

Changing the assembly evaluation function directly changes which
assemblies are considered best for the task. In this manner, the

appropriateness of the original evaluation function can be established.

score: 41,94 score: 41,92
score: 41,96 score: 41,96 score: 41,94
score: 42,61

rTrr

Figure 24. A different evaluation function
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In Figure 24, the penalty for widely varying limb lengths was removed
(Leg_Deviation), along with a rule forbidding links to be directly joined to
bodies. This results in more “lopsided” robots. Robots with unequal length
limbs and with directly attached links are not as dexterous as those in the
original solution (Figure 23.) In Figure 25, the cost, mass, and operating time
of the robot were all made less important (w_,=5, w__ =10, W time = 0.)

Note that the robots still must meet all the constraints imposed by the task.

score: 44,73 score: 44,73

Figure 25. Another evaluation function
The resulting robot assemblies now have bigger, more expensive, and less
efficient joints. These robots also have stronger limbs and can apply more
torque than the original solutions. This demonstrates the physical results of
changing objective function weights. These robots are not necessarily better
or worse than those in Figure 23, but they do have different task performance
characteristics. Performance tradeoffs such as the relative merits of strength
versus operating time are dependent on the particular task at hand.
Therefore, it makes sense to include the relative numerical weightings for

factors like cost, operating time, and reliability as part of the task description.
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Lowering the weights of cost and operating time allows latent characteristics
like strength to increasingly manifest themselves in the solutions. For the
Constitution task in particular, strength is not as important as operating time,

and so weights were chosen accordingly, with the results shown in Figure 23.

Validity of Solutions
Because the algorithm naturally ranks robot assemblies, the effectiveness of

the modular search technique can be demonstrated by examining which
assemblies are ranked highly and which assemblies are ranked poorly for the

given task.

score: 41,77 score; 37.84

Figure 26. A higher ranked robot and a lower ranked robot
In Figure 26, two robots ranked by the automatic design method are shown.
The robot on the right weighs twice as much as the robot on the left because
of all its power modules. It also has a greater operating time (more power
modules and fewer actuated modules.) The robot on the right also costs less
($381 as compared to $497.) The robot on the left scores better in terms of
climbing ability, ability to maneuver through small openings, dexterity, and

walking ability. It also meets the operating time and cost constraints.

Overall, the robot on the left has a higher evaluation score (41.77) than the
robot on the right (37.84), even though both robots are still in the upper 2% of
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all assemblies. The robot on the left makes more physical sense for the
Constitution task, which requires good climbing ability and the ability to
maneuver through small spaces, and not an especially long operating time.
Therefore, in this case the evaluation function has achieved its goal of
ranking robots relatively according to task performance - the robot that is
better for the task has a higher evaluation score then the robot that is not as
good.

Growth of Search Space
An important result of this research is that the search space is physically

limited. Although the number of possible combinations of modules grows
exponentially with the number of modules in the kit, the number of filtered

kits remains finite.
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Figure 27. Combinatorial growth of search size with number of modules
In Figure 27, the first data series represents the number of possible kits

logarithmically plotted against the number of modules in the robot. This
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factorial function (page 14) grows without bounds. The next series, kits-rules,
is a constant fraction of the possible kits, limited by the task-independent kit
selection rules, see Figure 9. The kits that pass the kit filters and meet the kit
assembly threshold are shown as kits-eval. Note that this number starts to
decrease after the number of modules in the kit exceeds some limit, in this
case about 20 modules. The reason for this decrease is that task-based and
structural limits are being approached, in areas such as total weight and total
cost. The number of good kits returns to 0 again at 32 modules, at which
point any possible combination of 32 modules costs more than the total cost
limit as defined in the task. The number of assemblies made from the kits are
likewise limited - as the number of kits decreases, the total number of
assemblies also decreases. The valid assemblies, those that pass the assembly
filters, are further limited by structural constraints, and their numbers
decrease even more rapidly than the valid kits. Less than 100 valid

assemblies are possible from kits made of 28 modules.
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Figure 28. Search time versus number of kit size
Although the number of all possible kits grows without bounds, only those

few thousand assemblies that pass the assembly filters are fully evaluated,
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resulting in a reasonable execution time for the fully explored search, see

Figure 28.

Effectiveness of Tests on Search Size
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Figure 29. Computations for tests
Computationally cheap tests that are able to distinguish between good and bad
structures early on in the search process save the computation of later tests.
Figure 29 shows the number of computations required for a single instance of
some tests. The tests on the left of the figure occur earlier in the search
structure than the tests on the right. The computational cost (given here as
an estimated number of instructions) is seen to generally increase as the robot

becomes built up into more complex structures, see Figure 13.

Kit evaluation and assembly evaluation are included in this figure to show
their high computational cost. Filters are implemented in order to avoid
precisely these costs: early, simple computations avoid later, more intensive

computations.
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Figure 30. Filter efficiency
The culling efficiency of a filter, Figure 30, is the frequency with which it
eliminates a structure from further consideration in the search process.
Simple tests that are efficient at culling, applied early in the hierarchy, save
many calculations per robot over many robots. As can be seen on the figure,
several of the simple tests implemented do have good culling efficiencies for
this task. Note that the efficiency of a filter may vary depending or the order

in which filters are arranged.

Figure 31 shows the effects of some tests on the total calculations required by
the search process. The number of instructions executed during the search is
the product of the instructions per test and the number of times that test was
executed. The tests are listed in the order they occur during the search, from
left to right. Because the first tests eliminate some candidate robots, they are
executed more frequently than later tests. The number of total executed
instructions therefore falls during the search, until the increasing cost of each

test (see Figure 29) drives it back up again.
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Figure 31. Filter effects on search computations
The number of instructions “avoided” by a particular test are those
instructions that would have been executed during the search if that test had
not been implemented. Earlier, more efficient tests avoid more instructions.
If the number avoided is greater than the number executed, then the test is
computationally worthwhile. (The test may still be required, even if it is not
computationally worthwhile, to produce useful robots.) Most of the tests
implemented are computationally worthwhile. The power test happened not
to filter any kits because the module filters had already eliminated the
possibility of incorrect power sources in this particular instance. The span
constraint for this task just happened never to be violated. The kit and
assembly evaluations are not filters and therefore do not avoid any

instructions themselves.

If the final assembly evaluation becomes more computationally intensive,

the number of instructions avoided by the tests increase. The computational
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efficiency of the entire hierarchical search process increases accordingly. A
very expensive final assembly evaluation such as a full dynamic simulation

makes even expensive filters computationally worthwhile.
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Chapter 8: Comparison with Traditional Design
Methods

Traditional Design of Constitution Robot
It is helpful to compare the modular design methodology with traditional

design methods to help illustrate its advantages. Approaching the same
Constitution task from a traditional standpoint, the following is a

representative design process.

The task is first broken down into a series of requirements and constraints:
size limits, self-containment, mobile walking robotic solutions, ability to
climb over diagonal riders, and the other constraints listed in the task
description above. In a general sense these are used to determine the realm of
the design solution. The small dimensions, self-containment requirements,
and lack of high loads coupled with some experience suggest an electric
powered robot, as opposed to a hydraulic one. Critical design issues appear to
be the ability to walk and to climb over obstacles. Keeping these in mind,

typically many alternative designs are quickly proposed.

=2 0
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Figure 32. Alternative rough design sketches

A roughly dimensioned, general first cut of the most promising design is
taken to be the baseline. This first-cut design would not include many of the
design details, such as the kind of feet to be used for gripping damp wood. No
quantitative data are yet known about the exact dimensions or the availability

of any of the components.
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Figure 33. Most promising design is roughly dimensioned

The design is then modified to meet more general task requirements:
walking, turning, sensing. Joints and legs are designed in more detail to be
kinematically correct and geometrically interference-free. The ability to turn
is added, and sensors and communication equipment are located on the body.

Dimensions are defined or refined.

Figure 34. Refined overall robot design is sketched
Next, detailed mechanisms are fleshed out. Exact gearing and drive
mechanisms are now included in the leg design, and the feet are designed in
detail to be able to cope with a wet, wooden environment. Availability of
subassemblies begins to become significant. Some part shapes may be
qualitatively optimized for stress, and some rough analyses are performed.
At this point the practicality of the design can more or less be determined,
although many of the details and the availability of motors, batteries, and

transmissions may remain unknown.
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Figure 35. Detailed design sketches

At this point the design might be put aside for the moment in order to pursue
some of the alternative designs suggested initially, or completely new
concepts perhaps based on ideas that occurred during the earlier stages of the
design. Because of the experience gained detailing the first design, the
important design factors have been identified. Designs that appear to address
these factors well are put through the detailing steps above. Those that
cannot be achieved structurally and those that fail to meet a significant

portion of the task requirements are abandoned.

The most promising of the remaining designs is then analyzed for sizing and
torque requirements. Rough weight estimates and dimensions allow gross
calculations of the torques for the climbing subtask. These torques in turn
yield motor specifications, which are then checked against motor and gearing
catalogues for availability. The available motor and gearhead lead to direct
calculations of the walking speed and power requirements of the robot. The
power requirements determine the battery weight, which is checked against
the original weight estimates. If they do not agree, the weight estimates are
revised and the motor is resized in an iterative fashion. When the estimate

is accurate enough, the speed of the robot is calculated, and this information
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in turn is compared to the original task requirements (speed and weight

requirements.)

The last few steps may have to be iterated to produce an acceptable design. If
no acceptable design is forthcoming, iteration is pushed farther and farther
back down the design path until an acceptable variation is produced or the

design is scrapped entirely in favor of a more promising concept.

Comparison with Modular Design
Many parts of the traditional design method have analogs in the modular

design method. The task is similarly decomposed into constraints and
requirements. The module dimensional filters eliminate the larger hydraulic
modules automatically in this case, with the same resulting realm of electric
power. Like the traditional design methodology, the modular method uses
increasingly accurate analysis through the analysis of a single robot, in order
to minimize computational effort. The practicality of a particular design is

determined finally by a complete suite of analyses on a fully specified design.

The major difference is that the human in the traditional design process
already has an idea in mind for a robot that might work based on his
experience, while the modular system has no such foreknowledge. It is
characteristic of traditional design methods that evolutionary changes are
made in small steps to the baseline design whenever possible. Major changes
are avoided traditionally because of the time and effort involved in
reanalyzing a new design. Minor revisions and refinements are acceptable so
that previous analysis will be mostly still applicable. The design processes are
illustrated conceptually in Figure 36 (upper figure from [83]) In the upper,
traditional design method, task information is compiled and synthesized
with designer experience. Analysis of the design then iteratively is fed back as
information to be included in the next synthesis. Eventually this produces an

acceptable design.
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all designs

In the lower portion of the figure, the modular design method is illustrated.
All possible designs are filtered through the task requirements. Remaining
designs are further analyzed and evaluated, producing a single optimal

design. This method is linear and parallel, as compared to the iterative

traditional process.

The differences between the traditional and the modular design methods are
illustrated graphically in Figure 37 (this figure is for illustration purposes only
and does not contain quantitative information.)
method is shown to produce successively improving results over a relatively

long time, while the modular design method instead rapidly tests many

unrelated solutions.
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Figure 37. Modular versus traditional design methods
Executing the traditional design process, it becomes clear that the first few
steps - the rough conceptual designs - are very rapidly and widely explored.
But the later steps, such as detailed parts dimensioning, drawing, analysis,
and component lookup, are extremely slow and burdensome to do in the

traditional manner.

Comparatively, the modular design method can analyze fully designed robots
very quickly (under 2 milliseconds). This is possible because the modules
already have the full level of detail built in, and part availability has already
been assured. Each component is known in detail in advance, and combining

them is relatively straightforward.

However, the algorithm cannot recognize the potential of a robot that is
“close” to being acceptable, and it does not know how to evolve that robot
into one that is acceptable. For these two reasons, a genetic algorithm based
search, as mentioned above, might be a good candidate for improved search

performance.



Chapter 9: Conclusions
A framework has been established to permit the automatic generation and
testing of modular robotic solutions for field environments based on specific

task information, utilizing a hierarchical search technique.

Simple tests are able to discriminate between viable and infeasible solutions.
Thus, the hierarchical search method is very efficient at trimming the design
space down to a very manageable size. There is a fundamental tradeoff,
however, between the variety and the quantity of solutions. The more tests
that are included in the hierarchy, the smaller the solution space becomes,
limiting both variety and quantity. In a broader sense, the dilemma is that
many rules limit the designs to one possible set of solutions, while in fact

other, unanticipated solutions may exist.

This hierarchical algorithm has been based on an exhaustive enumeration of
all possible assemblies, which was then quickly pruned to a reasonable size.
Other search schemes might be used instead of exhaustive enumeration,
while still using the hierarchical rules, filters, and evaluations developed
here. Specifically, branch and bound or genetic algorithms might be
combined with this rule-based pruning technique for a faster, or alternately a
broader, search. It is felt that without the rule-based pruning technique,
results achieved by these other search methods alone will be very slowly

forthcoming.

Direction of future work
With significant refinement and expansion of the rules, filters, and

evaluations, the robots solutions’ abilities and applicabilities to the task will
continue to improve. Aside from the many still-needed refinements to the
algorithm and better and more thorough tests, there are two specific areas

that still need to be explored.
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Expanding task and solution domains

This work, although developed with a particular task in mind, was
purposefully kept as broad as possible so as to cover a wide range of robot
applications. Expanded task and solution domains should eventually be
included for a more general robot designer. Additional modules can be
included easily as part of a datafile. Rules, filters, and evaluations can also be
included at the cost of (generally) a few lines of code. Furthermore, additional
characteristics of the modules or the task can be incorporated easily by
modifying the appropriate class. Walking, multi-limbed robots might be

augmented with snake-like, swimming, or climbing abilities.

Adding planning and control

The issue of motion planning and control has been avoided by using a fixed
set of predefined actions for all tasks. Although additional actions can be
included explicitly to increase the solution domain, an automatic approach
would be more useful. Synthesis of automatic design, planning and control
will allow the feedback of control and planning issues into the structural

design, producing more diverse and effective robots.

79



Bibliography

1

9

10

11

12

13

14
15
16

17

18

19
20

Anderson, M. “Ecological robots,” Technology Review, Jan. 1992. vol. 95, no. 1,
pp- 22-3.

Goldsmith, S. “It's a Dirty Job, but Something's Gotta Do It,” Business Week, Aug.
20, 1990. pp. 92-7.

Stone, H., and Edmonds, G. “Hazbot: A Hazardous Materials Emergency Response
Mobile Robot,” Proceedings 1992 IEEE Rob. Automation, Nice France, 1992. vol. 1,
pp. 67-73.

Weisman, R. “GRI'’s Internal Inspection System for Piping Networks,” Proceedings,
40th Conference on Remote Systems Technology, 1992. vol. 2, pp. 109-15.

Wehe, D.K,, et al. “Intelligent Robotics and Remote Systems for the Nuclear
Industry,” Nuclear Engineering and Design, 1989. vol. 113, no. 2, pp. 259-67.

Akizono et al. “Field Test of an Aquatic Walking Robot for Underwater
Inspection,” Mechatronic System Engineering, 1990. vol. 1, no. 3, pp. 233-9.

Madhani, A. and Dubowsky, S. “Design and Motion Planning of Multi-Limb
Robotic Systems: The Force Workspace Approach,” Proceedings of the 1992 ASME
Mechanisms Conference, Scottsdale, AZ, Sept. 13-16, 1992.

Song, S., and Waldron, K. Machines That Walk: The Adaptive Suspension Vehicle.
MIT Press, Cambridge, MA, 1989.

Hirose, S. Biologically Inspired Robots: Snake like Locomotion and Manipulation.
Oxford Scienti%'c Publications, 1993.

Moore, C. “On the Design of an Untethered Climbing Robotic System,” Master’s
Thesis, Department of Mechanical Engineering, MIT, Cambridge, MA, 1993.

Cole, J. “Automatic Planning for Modular Robots,” Master’s Thesis, Department of
Mechanical Engineering, MIT, Cambridge, MA, 1995.

“NIST cranks up an incredible crane,” Science News, June 20, 1992. vol. 141, no. 25,
pp. 415.

Luk, B, Collie, A., and Billingsley, J. “ROBUG II: An Intelligent Wall Climbing
Robot,” IEEE Proceedings, 1991. pp. 2342-7.

Stix, G. “No tipping please,” Scientific American, Jan. 1992. vol. 266, no. 1, pp. 141.
Engelberger, J. Robots in Service. Biddler, Ltd. Great Britain, 1989.

Hoffman, T. “Hospital Robots Have the Rx for Efficiency,” Computerwot!d, Jan. 11,
1993. vol. 27, no. 2, pp. 69-70.

Glaskin, M. “Robot Jobsworths Go on Patrol,” New Scientist, Jan. 29, 1994.
vol. 141, no. 1910, pp. 19.

Bains, S. “Robot Cleaners Spit and Polish as they Go,” New Scientist, Nov. 27,
1993. vol. 140, pp. 20.

Pope, G. “Homer Hoover,” Discover, Mar. 1993. vol. 14, no. 3, pp- 28.

Concar, D. “Can Robots Come to Care for Us?” New Scientist, Oct. 2, 1993.
vol. 140, no. 1893, pp. 40-2.

80



21

22

23
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Port, O. “Grapevines Need a Gentle Trim; Call Robo-Pruner,” Business Week, July
05, 1993. no. 3326, pp. 98.

Young, P. “Kinked Cable Crimps Dante's Erebus Debut,” Science News, Jan. 9, 1993.
vol. 143, no. 2, pp. 22.

Andeen, G. ed. Robot Design Handbook. McGraw Hill, New York, NY, 1988.

Cutkosky, M., and Wright, P. “Friction, Stability and the Design of Robotic Fingers,”
International Journal of Robotics Research, 1986. vol. 5, no. 4, pp. 20-37.

Kanade, T. “Very Fast 3- D Sensing Hardware,” Proceedings of the International
Symposium on Robotics Research, October 2-5, 1993. Hidden Valley, PA.

Hollis, R., Salcudean, S., and Allan, A., “A Six Degree-of-Freedom Magnetically
Levitated Variable Compliance Fine Motion Wrist: Design, Modeling and Control,”
IEEE Transactions on Robotics and Automation, June 1991. vol. 7, pp. 320-32.

(4

Lawrence, D. “Designing Teleoperator Architecture for Transparency,” Proceedings
of the IEEE International Conference on Robotics and Automation, Nice, France, May
1992. pp. 1406-11.

Flynn, A., et al. “Piezoelectric Micromotors for Microrobots,” Journal of
Microelectromechanical Systems, 1992. vol. 1, no. 1, pp. 44-51.

Anathusaresh, G. et al. “Design and Fabrication of Microelectromechanical
Systems,” Robotics, Spatial Mechanisms and Mechanical Systems, ASME, 1992. DE-
vol. 45, pp. 251-8.

Lee, P. and Pisano, P. “Polysilicon Angular Microvibromotors,” Journal of
Microelectromechanical Systems, 1992. vol. 1, no. 2, pp. 70-6.

Ragulskis, K. et al. Vibromotors for Precision Microrobots. Hemisphere Publishing
Corporation, 1988.

Shahinpoor, M. “Conceptual design, Kinematics and Dynamics of Swimming
Robotic Structures Using a Ionic Polymeric Gel Muscles,” Smart Materials
Structures, 1992. vol. 1, no. 1, pp. 91-4.

Byrd J., and De Vries, K. “A Six-Legged Telerobot for Nuclear Applications
Development,” International Journal of Robotics Research, 1990. vol. 9, no. 2, pp. 43-
52.

Furusho, J. and Sano, A. “Sensor-Based Control of a Nine-Link Biped,”
International Journal of Robotics Research, 1990. vol. 9, no. 2, pp. 83-98.

Hirose, S. et al. “Design of Prismatic Quadruped Walking Vehicle Titan VI,”
Proceedings of the 5th ICAR, 1991. pp. 723-8.

Krotkov, E. and Simmons, R. “Performance of a Six-Legged Planetary Rover: Power,
Positioning, and Autonomous Walking,” Proceedings of the 1992 IEEE International
Conference on Robotics and Automation, Nice France, 1992. vol. 1, pp. 169-74.

Argaez, D. “An Analytical and Experimental Study of the Simultaneous Control of
Motion and Force of a Climbing Robot,” Master’s Thesis, Department of
Mechanical Engineering, MIT, Cambridge, MA, May 1993.

Chernusko, F. “Mechanics of Climbing Robot,” Mechatronics Systems Engineering,
1990. vol. 1, no. 3, pp. 219-24.

81



39

40

41

42

43

44

45

46
47

48

49

50

51

52

53

54

55

56

Gradetsky, V. and Rachkov, M. “Wall Climbing Robot and its Application for
Building Construction,” Mechatronics System Engineering, 1990. vol. 1, no. 3, pp.
225-31.

Abarinov, A. et al. “Robot System for Moving over Vertical Surfaces,” Soviet
Journal of Computer Systems, 1989. vol. 27, no. 3, pp. 130-42.

Collie et al. “Design and Performance of the Portsmouth Climbing Robot,”
Mechatronics System Engineering, 1990. vol. 1, no. 2, pp. 139-47.

Stulce et al. “Conceptual Design of a Multibody Passive Legged Crawling Vehicle,”
ASME, 1990. DE-vol. 26, pp. 199-205.

Iagolnitzer, M. et al. “Locomotion of an All-Terrain Mobile Robot,” Proceedings of
the 1992 IEEE International Conference on Robotics and Automation, Nice France,
1992. vol. 1, pp. 104-9.

Kemurdjian, A., et al. “Small Marsokhod Configuration,” Proceedings of the 1992
IEEE International Conference on Robotics and Automation, Nice France, 1992. vol. 1,
pp. 165-8.

Pugh, D. et al. “Technical Description of the Adaptive Suspension Vehicle,”
International Journal of Robotics Research, 1990. vol. 9, no. 2, pp. 24-42.

Raibert, M. Legged Robots That Balance. MIT Press, Cambridge, MA, 1986.

Jones, J. and Flynn, A. Mobile Robots: Inspiration to Implementation. A.K. Peters,
MA, 1993.

Clement, W. and Inigo, R. “Design of a Snake-Like Manipulator,” Robotics and
Autonomous Systems, 1990. vol. 6, pp. 265-82.

Fichter E., and Kerr D. “Walking Machine Design Based on Certain Aspects of
Insect Leg Design,” Robotics, Spatial Mechanisms and Mechanical Systems, ASME,
1992. DE-vol. 45, pp. 561-6.

Kubo, Y., Shimoyama, I., and Miura, H. “Study of Inspect-Based Flying
Microrobots,” Proceedings IEEE International Conference on Robotics and Automation,
Atlanta, GA, May 1993.

Dubowsky, S., Moore, C. and Sunada, C., “The Power Map Method for Designing
Field Robotic Systems,” ANS 6th Topical Meeting on Robotics and Remote Systems,
1994.

Chirikian, G., and Burdick, J. “Design, Implementation and Experiments with a
Thirty Degree-of-Freedom ‘Hyper-Redundant’ Robot,” Proceedings of the IEEE
International Conference on Robotics and Automation, Atlanta, GA, May 1993.

Tesar, D., and Butler, M. “A Generalized Modular Architecture for Robot
Structures,” Manufacturing Review, 1989. vol. 2, no. 2.

Cohen, R,, Lipton, M., Dai, M., and Benhabib, B. “Conceptual Design of a Modular
Robot.” Journal of Mechanical Design, Mar 1992. vol. 114, pp. 117-25.

Benhabib, B., Zak, G. and Lipton, M., “A Generalized Kinematic Modeling Method
for Modular Robots,” Journal of Robotics Systems, 1989. vol. 6, no. 5, pp. 545-71.

Kelmar, L., and Khosla, P. “Automatic Generation of Forward and Inverse
Kinematics for a Reconfigurable Modular Manipulator System,” Journal of Robotics
Systems, 1990. vol. 7, no. 4, pp. 599-619.

82



57

58

59

60

61

62

63

64

65

66

67

68

69
70

71

Chirikian, G., and Burdick, J., “Parallel Formulation of the Inverse Kinematics of
Modular HyperRedundant Manipulators,” Proceedings of the IEEE International
Conference on Robotics and Automation, Sacramento, CA, April, 1991.

Chen, L. and Burdick, J. “Enumerating the Non-Isomorphic Assembly Configurations
of Modular Robotic Systems,” Proceedings of the 1993 IEEE International Conference
on Intelligent Robotics and Systems, Yokohama, Japan, July 26-30, 1993. pp. 1985-
92.

Agrawal, V., Kohli, V., and Gupta, S. “Ccmputer Aided Robot Selection: the
Multiple Attribute Decision Making Approach,” International Journal of Production
Research, 1991. vol.29, no. 8, pp. 1629-44.

Gardone, B., and Ragade, R., “IREX: An Expert System for the Selection of Industrial
Robots and its Implementation in Two Environments,” Proceedings of the Third
International Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, Charleston, SC, July 15-18, 1990. vol.2, pp. 1086-
95.

Paredis, C. and Khosla, P. “Synthesis Methodology for Task Based Reconfiguration
of Modular Manipulator Systems,” Proceedings of the International Symposium on
Robotics Research, Hidden Valley, PA, Oct. 2-5, 1993.

Kim, J., and Khosla, P. “Design of Space Shuttle Tile Servicing Robot: an
Application of Task Based Kinematic Design,” Proceedings of the IEEE
International Conference on Robotics and Automation, Atlanta, GA, May 1993. vol. 3,
pp. 867-74.

Au, W,, Paredis, C., and Khosla, P. “Kinematic Design of Fault Tolerant
Manipulators,” Proceedings of the Allerton Conference, Urbana-Champagne, IL, Oct.
2, 1992.

Hamel, W., Richardson, B. and Killough, S. “Evaluating Telerobotics for Battlefield
Support Operations,” Proceedings of the Remote Systems and Robotics and Hostile
Environments, ANS Society, Paso, WA, Mar. 29-Apr. 2, 1987. pp. 284-9.

Dubowsky, S., and Vance, E. “Planning Mobile Manipulator Motions Considering
Vehicle Dynamic Stability Constraints,” Proceedings of the 1989 IEEE International
Conference on Robotics and Automation, Scottsdale, AZ, May 14-19, 1989.

Sidney, R., Research Assistant in Mathematics, School of Science, MIT, Cambridge,
MA. From a private conversation of September 2, 1994.

Shiller, Z., and Dubowsky, S. “On Computing the Global Time Optimal Motions of
Robotic Manipulators in the Presence of Obstacles,” IEEE Journal of Robotics and
Automation, Dec. 1991. vol. 7, no. 6, pp. 785-97.

Beretta, R. Mechanism Analysis Pack: Kinematic and Dynamic Mechanism Analysis
in Mathematica. Wolfram Research, Champagne, IL, 1995.

Corke, P. Robotics Toolbox for MATLAB. CSIRO, Preston, Austrailia, July 1994.

Grubel, G., Finsterwalder, R., Joos, H., Lewald, A., and Otter, M. “ANDECS: A
Computation Environment for Robot-Dynamics Design Automation,” Proceedings
of the IEEE International Conference on Robotics and Automation, 1994. pp. 1088-93.

Muck, R., and Mammern, J. “Modular mechanical engineering - a revolution in
engineering industry,” Proceedings of International Conference on Advanced
Manufacturing, 1984. pp. 271-82.

83



72 Yim, M. “New Locomotion Gaits,” IEEE 1050-4729, 1994. pp. 2508-14.

73 Schmitz, D., Khosla, P., and Kanade, T. “The CMU Reconfigurable Modular
Manipulator System,” Carnegie Mellon University technical report CMU-RI-TR-
88-7, May 1988.

74 Dario, P., Valleggi, R., Carrozza, M.C., Montesi, M.C., and Cocco, M.
“Microactuators for Microrobots: a Critical Survey,” IOP Publishing, 0960-
1317/92/030131 + 17, 1992. pp. 141-57.

75 Rogers, C. “Intelligent Material Systems - the Dawn of a New Materials Age,”
Journal of Intelligent Material Systems and Structures, January 1993. vol. 4, pp. 4-12.

76 Elwenspoek, M. “Active Joints for Microrobot Limbs,” Journal of Micromechanics and
Microengineering, September 1992. vol. 2, no. 3, pp. 221-3.

77 Newnham, R., and Ruschau, G. “Electromechanical Properties of Smart Materials,”
Journal of Intelligent Material Systems and Structures, July 1993. vol. 4, pp. 289-94.

78 Weiss, K., Carlson, J., and Coulter, ]. “Material Aspects of Electrorheological
Systems,” Journal of Intelligent Material Systems and Structures, January 1993.
vol. 4, pp. 13-31.

79 Winston, P. Artificial Intelligence. Addison-Wesley, Reading, MA 1992.
80 Arora, ]J. Introduction to Optimum Design. McGraw-Hill, New York, 1989.

81 Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, MA 1989.

82 Sunada, C. “Coordinated Jacobian Transpose Control and its Application to a
Climbing Robot,” Master’s Thesis, Department of Mechanical Engineering, MIT,
Cambridge, MA, 1994.

83 Suh, N. The Principles of Design. Oxford University Press, NY, 1990.

84



Appendix: modular design program

Usage
Most of the functions described in this thesis are implemented in the

following C++ code. Some remain yet to be implemented. The code is

organized into many interacting files with related procedures.

search_main.C is the main program. It filters the modules, sets up the initial
test kit, performs the search, and prints out the results. It uses routines in
three other files to perform the search. choose_in.C is used to decide which
kit to form next in the search. kit.C contains the kit filters and evaluations.
assemble.C assembles the kit into all the possible assemblies, filters and

evaluates them, and returns the best one.

mod_desc.C describes the modules to be used in the search. Modules are
defined by the file mod.dat, in the following form.

This file read by mod_desc.C, modules are defined in modclass.h, modclass.C
All units are MKS.

Id Cost ModT EngyT OKEnvs s2X s2Y szZ Wt Reli EngyUse
(power) EnCap #Port PortList
(link) SprtTrq ArmLen

(joint) AplyTrq Speed AngMin
AngMax
(endef) EeFn
!
110 3000P E WD 012 0.04 004 036 096 0.002134 5 001001 0.1120.01 0.0570.01
0.058 0.03 0.1120.03
112 17200P E WD 008 003 003 014 09 000150 3  0.010.01 0.0720.01 0.0520.021
210 1000L Z  WRVDT 001 00550012 001 099 00 3610 0.043
310 175.0 J E WVDT 0.035 0.15 0.065 0.7 093 1.02 100 012550 091 -1.57 157
314 80.00 ) E WVDT 0.015 0.064 0.057 0.08 093 0.09 12 005 03 080 -1.57 1.57
318 60.00 ] E WVDT 001 0.042 004 002 092 005 09 003 01 091 -1.57 157
410 4000E E WRD 0.01 0.055 0.055 0.03 0.8% 0.06 645 004330 01 G
430 1500E H RDT 003 010 010 05 088 50 300 009 300 05 HG
470 500 E Z WRVDT 001 0.02 0.015 0.005 099 00 1260001400 00 H

The first column is a unique module identification number. Second is its cost
in dollars. The third column determines which module classification it is:
(P)ower, (L)ink, (J)oint, or (E)nd-effector. Fourth is the type of energy the
module uses or supplies: (E)lectric, (H)ydraulic, (P)neumatic, or (Z) for none.
The OKEnvs column is a list of environments that the module can work in:

(W)et, (D)ark, (R)adioactive, etc. Next are dimensions, X is horizontal, Y is
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vertical, and Z is into the plane of the drawings in this thesis. Next is weight,
then reliability, then energy usage rate (required power.) The following
numbers are dependent on the module class. Power modules have an
available energy capacity and a list of X,Y port positions. Links have a
maximum torque they can withstand, and an active arm length (not
including overlapping fastening areas.) Joints have a minimum backdriving
torque, active arm length, maximum active torque they can apply, average
loaded rotational speed, and minimum and maximum angle they operate
through. End effectors have minimum backdriving force, active arm length,
maximum active force they can apply, average loaded linear speed, and the

type of end-effector it is.
The task as of now is simply hard-coded into the routine mod_desc.C also.

The files modclass.C, groupclass.C, and assyclass.C contain the C++ class
constructs used in the search: modules (modclass.C), kits (groupclass.C), and

subassemblies and assemblies (assyclass.C).

The remaining files are support programs. mymath.h includes some useful
math routines, stats.C keeps track of statistics on the search, and graphics.C

and service.c provide the XWindows graphics routines.

The makefile is set up for the Cygnus g++ compiler.

Output
In addition to the graphical output of the best robot assemblies, the program

provides statistical data on the number of kits and assemblies produced
during the search as well as statistics on the effectiveness of filters and
evaluations and the amount of time taken. The program also periodically
reports a description of which robot it happens to be analyzing along with its

evaluation components numerical results.
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Code

The programs are listed in a more or less hierarchical order, with the highest

levels first.

search_main.h 88
search_main.C 89
assemble.h 92
assemble.C 93
kith 100
kit.C 101
choose.h 105
choose_in.C 106
mod_desc.h 108
mod_desc.C 109
assyclass.h 111
assyclass.C 113
groupclass.h 117
groupclass.C 119
modclass.h 124
modclass.C 126
mymath.h 130
stats.h 131
stats.C 132
graphics.h 134
graphics.c 135
service.h 138
service.c 139
makefile 142

87



search_main.h

\ *
Nathaniel Rutman 10/28/94

search_main.h

just lets search_main know about these functions, described
elsewhere

1/24/95 new constants
*/

#include "modclass.h”
#include "assyclass.h"

#ifndef _SEARCH_MAIN_H_
#define _SEARCH_MAIN_H_

#define DUMPFRQ 5000000  /* frequency of screen reports */
#define ASSYTHRSHLD 1.0 /* assembly threshold.

Kit eval must be > to be assembled */
#define MAXLENGTH 17  /* max robot length. MAXMODS is
unique mods */
#define MIN_FEET2  /* minimum number of limbs */

#define TOPTEN 10 /* best n assemblies to remember */

void get_task(Task_Type*);

int reduce_space(Task_Type);

void keep_best(Assembly, Assembly best{ TOPTEN]);
void set_dump(int, int);

float get_time();

88

#endif



search_main.C

/* Nathaniel Rutman MS '95
rutman@mit

Search_main.C

Main routine to generate and analyze modular robot assemblies.
Reads in modules and task, steps through all kits and assemblies,
reports best assembly and search statistics.

change history:
10/12/94 original NZR
12/15/94 revised classes into Group, Assembly, etc NZR
01/24/95 remember top assemblies NZR
*/

#include "search_main.h"
#include "mod_desc.h"
#include "assemble.h"
#include "kit.h"

#include "choose.h"
#include "graphics.h”
#include "stats.h"
#include <time.h>
#include <stdio.h>

Group fullgrp; /* global group of all available mods */

bool datadump=TRUE; /* global flag for reporting info on screen */
extern float MAGNIFY; /* graphics magnification in graphics.c */
Stat_Type stats; /* statistics on search */

89

int main(void) {
get_time(); // CPU time in seconds
MAGNIFY = 1200;
draw_start(); // set up drawing canvas

/* module set up */
stats.initial_mods = get_module_desc();
Task_Type task;
get_task(&task);
fullgrp.print();

/* module filters */
stats.reduced_mods = reduce_space(task);
fullgrp.print();

/* kit setup */
Group test_kit;
Assembly test_assy;
Assembly best_assys[TOPTEN+1];
int test_kit_ary[GRPS][MAXLENGTH];
/* for ease of assembly, int array of mods in test_kit */
if(Yinitialize_kit(test_kit_ary)) {
cout << "Can't initialize kits\n";
return 0;
}

cout << "Begin testing with ";
print_test_kit(test_kit_ary);

/* main search routine */
float evl_test, evl_best=BAD_SCORE;
while (choose_next(test_kit_ary)) {
stats.cnt_kit++;
convert_to_grp(test_kit_ary,&test_kit);

if(kit_rules(&test_kit) && kit_rules_task(&test_kit,&task)) {

stats.cnt_kit_rules++;



set_dump(stats.cnt_kit_rules, DUMPFRQ);
evl_test = evaluate_kit(&test_kit, &task);
evl_best = (evl_best>evl_test) ? evl_best:evl_test;

if (datadump) {
cout << "score " << evl_test << " best kit so far " << evl_best;
cout << "\n time " << get_time() << " sec\n";

}
if (evl_test > ASSYTHRSHLD) {
test_assy = assemble(&test_kit, &task);
keep_best(test_assy, best_assys);

}

}
}

/* print out statistics */
cout << end];
stats.print_all();
cout << "Total time taken " << get_time() << " seconds.\n";
cout << "Best kit found: fimess " << evl_best << endl;
cout << "Top assemblies found: fitness " << best_assys[TOPTEN-
1].score;
cout << " ..." << best_assys[0].score << endl << end;
Point_Type origin;
draw_clean();
MAGNIFY = 600;
for(int i=0; i<TOPTEN; i++) {
/ /best_assysl|i].print();
//cout << endl;
origin.x = 0.25%(i%4) + 0.02;
origin.y = 0.3*(i/4) + 0.3;
best_assys|i].draw(origin);
}
cout << "\n\nPress 'return’ key to end.";
char c;
scanf("%c",&c); // wait so graphics don't go away
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int reduce_space(Task_Type task) {

cout << "reducing module space\n";

inti;

fullgrp.reset_next();

Mod_Base* curmod;

bool do_remove;

if(fullgrp.get_length() < 1) {
cout << endl << "main: Failure: no objects in group\n";
return 0;

}

/* generic task-based tests */
while((curmod = fullgrp.get_next_mod()) = NULL) {
do_remove = FALSE;
/*size*/
if(lcurmod->size.fits_thru(task.maxsize)) {
do_remove = TRUE;
cout << " Reduce_space filtered mod " << curmod->get_id() << "
on size\n";

}

/* environment */
else if(!curmod->check_env(task.reqenv)) {
do_remove = TRUE;
cout << " Reduce_space filtered mod " << curmod->get_id() << "
onenv\n";
}
if(do_remove)
fullgrp.remove_mod();
}

/* insure EE works with task - required feet, gripper must meet grip
weight.
Also, insure task is completable with these ee's. TBD */
/* kill all mods that don't have a possible power TBD */



return(fullgrp.get_length());
}

void keep_best(Assembly test, Assembly best{TOPTEN]) {
int i;
for(i=TOPTEN-1; i>=0; i-~) {
if(test.score > best[i].score) {
best[i+1] = best|i];
best[i] = test;
}
}
}

inline void set_dump(int i, int n) {
/* for screen dump of intermediate data */
if ((i % n) == 0)
datadump = TRUE;
else
datadump = FALSE;
}

/* this function finds the CPU time (sec) spent since the first call,
as long as it is called at least once every 35 min.
The fn clock is only a long int, can't remember long times, so need
this hack. */

bool time_tg = FALSE;

float time_tot = 0.0;

float get_time() {
float time_cur = (float)clock() / CLOCKS_PER_SEC;
if(time_cur >= 0)
time_tg = FALSE;
else if(!time_tg) {
time_tg = TRUE;
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}

time_tot += 4296.0; // clock flips negative at 2148 seconds
}

return (time_cur + time_tot);



assemble.h
/* Nathaniel Rutman

assemble.h
header file for assemble.C

12/12/94 created
*/

#ifndef _ASSEMBLE_H_
#define _ASSEMBLE_H_

#include "assyclass.h"

Assembly assemble(Group*, Task_Type*);
float evaluate_assy(Assembly*, Group*, Task_Type*);

#endif
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assemble.C
/* Nathaniel Rutman

assemble.C

assembles all robots from a kit, evaluates them, and returns best
evaluated assembly for that kit.

change history:

12/12/94 created NZR

01/25/95 revised fitness function, scorekeeping NZR

02/09/95 add 2-D ports NZR
some of the assembly searches have not yet been implemented
(see the empty procedures)

*/

#include "assemble.h"
#include "mymath.h"
#include "graphics.h"
#include "stats.h”

#define DRAWFREQ 100

extern bool datadump;
extern float MAGNIFY;
extern Stat_Type stats;

bool choose_next_assy(Assembly*);
bool assembly_rules(Assembly*);
bool choose_next_limbs(Assembly*);
bool set_first_limbs(Assembly *, int);
bool choose_next_body(Assembly*);
bool reorder_limb(Assembly*);

bool reorder_body(Assembly*);

bool rearrange_limbs(Assembly*);
bool swap_limb_parts(Assembly*);
bool swap_body_parts(Assembly*);
bool longer_limbs(Assembly*);
bool longer_body(Assembly*);

bool assydump=FALSE;

Assembly assemble(Group* kit, Task_Type* task) {
/* Assembles kit into all possible assemblies,
tests, evaluates assemblies. */
Assembly test_assy(*kit);
*/
Assembly best_assy;
assydump=FALSE;
//if (datadump) assydump=TRUE;
details

// first time, set up # legs
if (test_assy.num_limbs == 0) {
test_assy.num_limbs =
>get_length();
set_first_limbs(&test_assy,0);
}
// set up leg attach points (2nd leg at far end of rcbot)
Point_Type far_pt(10.0,0.0);
test_assy.body.attach_limb{1]}
test_assy.body.get_attach_near(far_pt);

// search all assemblies
best_assy = test_assy;
while(choose_next_assy(&test_assy)) {
stats.cnt_assy++;
if (assembly_rules(&test_assy)) {
stats.cnt_assy_rules++;
evaluate_assy(&test_assy, kit, task);
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/* create assembly from module group

assydump prints out assy

test_assy.parts_bin.sg('E')-



if(test_assy.score>best_assy.score)
best_assy = test_assy;
}

}

// gather statistics
stats.good_kit(kit->get_length());

// print

if (datadump) {
cout << "Assembly scored " << best_assy.score << ":\n";
best_assy.print();
cout << end];

}

// draw the robot
if(stats.good_kits%DRAWFREQ == 0) {
Point_Type origin(0.05,0.4);
draw_clean();
best_assy.draw(origin);

}

return best_assy;
}

bool choose_next_assy(Assembly* assy) {
/* chooses next assembled configuration of the kit.
body made up of all PWRs connected with JNTs, LNKs.
# limbs = # EE, made up of remaining parts */

if('rearrange_limbs(assy))
if(!choose_next_limbs(assy))
if(!choose_next_body(assy))
return FALSE;
return TRUE;
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}

bool rearrange_limbs(Assembly* assy) {

/* rearrange limbs around body.
Not implemented yet */
//cout <<"rearranging limbs: " << assy->num_limbs <<

and ";

}

//cout << assy->body.get_attach_points() << " ports.\n";
return FALSE;

bool choose_next_limbs(Assembly* assy) {

}

/* longest leg start from (1+j)/legs rounded up
next longest leg: (remaining parts/remaining legs) ...
s.t. all legs have at least 1 JNT, 1 EE
leg = EE + x(JNT/LNK) + PWR.
Rearrange mods within 1 leg
Try different arrangements of leg set on body. */
if(!reorder_limb(assy))
if(lswap_limb_parts(assy))
if('longer_limbs(assy))
return FALSE;
return TRUE;

bool reorder_limb(Assembly* assy) {

/* rearrange a single limb's mods.
If no more, try next limb. End when out of limbs.
Needs to start with elements in order: 1223
Sequenceis1234,1243,1324,1342,1423,
1432,2134,etc*/

int ij,n,1=0,swp;

Mod_Base *mod_tmp, *endeff;

Mod_Base *ary][MAXMODS];

while(l < assy->num_limbs) {
assy->limbf{l].reset_next();

"

limbs



endeff = assy->limb[l].get_next_mod(); // EE is first mod in limb
n = assy->limb][l].get_length()-1;
// put id # into ary starting at ary[0] to ary[n-1]
i=0;
while((mod_tmp = assy->limb[l].get_next_mod()) != NULL)
ary[i++] = mod_tmp;
// find next sequence
i=n-2;
while (i>=0) {
if ((aryl[il->get_id()) < (ary[i+1]->get_id(})) {
// swap for smallest subsequent mod > i
sWp =i+l;
for(j = i+2; j<n; j++)
if( (ary[jl->get_id() < ary[swp]->get_id())
&& (ary[jl->get_id() > ary[i]->get_id()) )
swp =j;
mod_tmp = aryl[i];
ary[i] = ary[swp];
ary[swp] = mod_tmp;
// reverse remaining #s
=1
while(i+j < n) {
mod_tmp = ary[i+j];
ary[i+j] = ary[nj};
ary[n-] = mod_tmp;
j++
}
//cout << "Old limb " << 1 << " "; assy->limb[l].print();
assy->limb[l].clear();
assy->limb[l].add_mod(endeff);
for(i=0; i<n; i++)
assy->limb{l].add_mod(aryl[i]);
//cout << "New: "; assy->limb][l].print();
return TRUE;

1=
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}
l++; /* now goes through all limb 0, then all limb 1, etc.

Needs to do all 0, then change limb 1 once, then do all 0

again... */
}
return FALSE;

}

bool swap_limb_parts(Assembly* assy) {
/* swap parts across limbs.
first one gets max jnts, lowest id's, swaps for higher id's, then
for links.
if out of swaps, try next leg up.
End when out of legs.
Not implemented yet. */
return FALSE;
}

bool longer_limbs(Assembly* assy) {

/* taking from shortest limb, increase next limb
making sure to reset all subsequent limbs evenly.
Stop when limb equals next longer limb.

End when longest limb uses all available:
all Inks, all but #legs jnts (leave 1 jnt for each leg) */

/ / skew leg sizes
Mod_Base* tmp;
bool too_long;
int i;
do{
if (assydump) cout << "skew shorter\n";
/* move an extra j or 1 from a short leg to the next longer one */
i= assy->num_limbs - 2;
do {
if((assy->limb[i].set_length < assy->limbl[i-1].set_length)



&& assy->limbl[i+1].set_length > 2) //shortest length is 2
mods
{ assy->limbl[i].set_length++;
if (set_first_limbs(assy,i+1))
return TRUE;
}
} while (--i > 0);

if (assydump) cout << "lengthen longest\n";

/* can't move any, so increase first leg until out of parts */
assy->limb|[0].set_length++;

/* need to leave 2 (j+e) for each limb */

too_long = (assy->limb[0].set_length + 2 * (assy->num_limbs-1))

assy->parts_bin.get_length();
if (too_long)
return FALSE; // end condition
if (set_first_limbs(assy,1))
return TRUE;
} while(1);
}

ool set_first_limbs(Assembly* assy, int level_pos) {
/* makes the first limbs of a series based on set_length.
level pos is point at which the remaining mods are evenly
distributed */
int legs = assy->num_limbs; /* which is also # ee's */
int parts = assy->parts_bin.sg('L')->get_length() +
assy->parts_bin.sg(']')->get_length() + legs;
int i;

for (i = level_pos; i<legs; i++)
assy->limb[i].set_length = 0;

/* set rest of the leg lengths */

i=0;

do{
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if(assy->limb[i].set_length == 0) // set evenly if allowed
assy->limb[i].set_length = parts / legs + ((parts % legs) > 0);
parts -= assy->limb[i].set_length;
legs—;
i++;
} while(legs > 0);

/* construct legs to length set above */
assy->parts_bin.reset_next();
for(i=0; i < assy->num_limbs; i++) {
assy->limbli].clear();
assy->limb[i].add_mod(assy->parts_bin.get_next_mod(EE));
assy->limb[i].add_mod(assy->parts_bin.get_next_mod(JNT));
}
Mod_Base* tmp;
for (i=0; i < assy->num_limbs; i++) {
while(assy->limb[i].get_length() < assy->limbli].set_length) {
if((tmp = assy->parts_bin.get_next_mod()) == NULL)
goto bad_limb;
assy->limbl[i].add_mod(tmp);
}
}
if (assydump) {
cout << "valid\n";
for(i=0; i < assy->num_limbs; i++) {
cout << "limb " << i << " set to " << assy->limb[i].set_length
<< "
assy->limbl[i].print();
}

}
return TRUE;

bad_limb:

if (assydump) {
cout << "\ncan't make limbs with these parts:\n";
assy->parts_bin.print();



for(i=0; i < assy->num_limbs; i++) {
cout << "limb " << i << " setto " << assy->limb[i].set_length
AA " 40\0
assy->limbl[i].print();
}
}
return FALSE;

}

bool choose_next_body(Assembly* assy) {
/* rearrange body, then try longer body */
if(‘reorder_body(assy))
if(swap_body_parts(assy))
if(llonger_body(assy))
return FALSE;
return TRUE;
}

bool reorder_body(Assembly* assy) {
/* rearrange body mods */
return FALSE;

}

bool swap_body_parts(Assembly* assy) {
/*swap out a j or 1 for another.
dump limbs back into parts bin, choose from bin. */
return FALSE;
}

bool longer_body(Assembly* assy) {
/* increase body with j&I1 until only #legs jnts left
dump limbs back into parts bin, choose from bin. */
return FALSE;
}
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bool assembly_rules(Assembly* assy) {
/* Assembly rules based on task,
choose_next_assy
pass/fail tests.
geometry - can fit through smallest hole
Grubler controllable
force generation
static stability
mobility
*/
/* check if last mod in limb is a link.
Don't want them connected to body. */
Sub_Assy* |_tmp;
Mod_Base* tmp;
Mod_Base* last;
stats.test(TLINK);
for (int i=0; i < assy->num_limbs; i++) {
I_tmp = &(assy->limbli]);
1_tmp->reset_next();
while((tmp = 1_tmp->get_next_mod()) = NULL)
last = tmp;
if(last->get_type()=='L") {
stats.fail();
return FALSE;
}
}
return TRUE;
}

etc not inherent in

float evaluate_assy(Assembly* assy, Group* kit, Task_Type*
task) {
/* rank assy based on non-dimensional quantities:
controllability - bandwidth  vs. req speed
end-effector lift, push force  vs. req manip forces

speed vs. req speed



accuracy vs. characteristic dim
*/

/* mobility analysis - this one doesn't use environmental
interactions */

int f,m,n;

m = kit->get_length();

f = kit->sg('T')->get_length();
m-=f;
n = 3*m-1) - 2*;

/* leg strength, 2 evalutations.

1. leg must lift itself: each joint must be able to lift ee through
theta degrees from vert with all subsequent joints relaxed.
2. leg must carry payload: lifting force of strongest joint,
all others locked. */
stats.test(TARM); // contraints below are test
const float sintheta=0.5; // 30 deg
const float g=9.81;
int i;
float  arm_len[assy->num_limbs],
st_dev=0.0;
float mﬂ?gmmmLmm;:?wo&ﬁ.:m\vo&%..mmﬁgmmm\mﬁlﬂoﬁzmh
float total_arm=0.0, strong_arm=0.0;
Mod_Base* tmp;
for (i=0; i < assy->num_limbs; i++) {
assy->limb[i].reset_next();
arm =0.0; body_lift = 0.0; body_lift_mass = 0.0;
mass = 0.0; leg lift =0.0;
arm_len[i]=0.0;
while((tmp = assy->limb][i].get_next_mod()) != NULL) {
arm += tmp->get_arm(); // arm segment length joint to joint
arm_len[i] += tmp->get_arm();
body_lift += tmp->weight * arm;
mass += tmp->weight; // total mass up to this point
leg_lift += mass * tmp->get_arm();

avg arm_len=0.0, dev,

98

if(tmp->get_type() == T) {
ap_torque = ((Mod_Joint *)tmp)->apply_torque/g/sintheta;
if (ap_torque < leg_lift)
goto bad_arm; /* wimpy joint can't lift rest of leg */
leg_lift = 0.0;
body_lift_mass =
body_lift) / arm);
arm = 0.0;
body_lift = 0.0;
}
}
strong_arm = max(strong_arm,body_lift_mass);
total_arm += body_lift_mass;
avg_arm_len += arm_len[i];
}
strong_arm = strong_arm / task->grip_weight;
total_arm = 2 * total_arm / kit->score.weight;
symmetric */

max(body_lift_mass,(ap_torque

/* bilaterally

/* limb length deviation */

for (i=0; i < assy->num_limbs; i++) {
dev = avg _arm_len - arm_lenl[i];
st_dev += dev*dev;

}

st_dev = st_dev / assy->num_limbs;
/* constraints */

if((strong_arm<1) | | (total_arm<1))
goto bad_arm;

/* fitness function */
assy->score = kit->score.overall
+ asymp(n)*4.0 +

asymp(strong_arm)*6.0 +
asymp(total_arm)*20.0

- asymp(st_dev)*7.0;
if (assydump) {
cout << "DOFs: " << n <<" total leg payload " << total_arm;



cout << " max payload " << strong arm << "\tleg dev " <<
st_dev;

cout << " Score: " << assy->score << endl << endl;
)

return assy->score;

bad_arm:
if (assydump) {
cout << "failed assy eval.\n total leg payload " << total_arm;
cout <<" max payload " << strong_arm;
}
assy->score = BAD_SCORE;
stats.fail();
return BAD_SCORE;
}
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kit.h

\ 3%
Nathanie] Rutman

kith

just lets search_main know about these functions, described
elsewhere

12/15/94 created
*/

#ifndef KIT_H_
#define _KIT_H_

#include "search_main.h"

void print_test_kit(int wﬁnaum_mgupxﬂtmzo.ﬂmcm

bool Eﬁ.n&mmagsvdh

bool initialize_kit(int rEONmm:EXHLmZGE?.

ool convert_to_grp(int kit[GRPS] [MAXLENGTH], Group*);
bool kit_rules_task(Group*, Task_Type*);

float evaluate_kit(Group*, Task_Type*);

#endif
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kit.C
/* Nathaniel Rutman

kit.C
Tests and evaluates robot kits, pre-assembly

change history:
11/14/94 created NZR
01/24/95 better evaluation NZR

*/

#include "kit.h"

#include "mymath.h"
#include "groupclass.h”
#include "search_main.h"
#finclude "stats.h"
#include <string.h>

extern Group fullgrp;
extern bool datadump;
extern Stat_Type stats;

bool kit_rules(Group* test_kit){

/* TRUE if kit satisfies simple kit grouping rules.
Check for 1 pwr (satisfied always with choose_in)
Check for #jnt >= #ee (satisfied with choose_in)

Need 2 ee, 2 jnt (satisfied with choose_in)

Check power types agree

Check for enough ports for limbs

Each mod has at least 1 other mod it likes to connect to

*/

test_kit->reset_next();
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Mod_Base* tmp;
Mod_Power* p_tmp;
int port_tot = 0;
stats.test(TPOWERY); // has power for everybody
while((tmp = test_kit->get_next_mod()) = NULL) {
5_ﬁmmﬁlww-vrmmzwoimuimoingv {
/ /test_kit->print();
/ /cout << "has no power for " << tmp->get_id() << end};
stats.fail();
return FALSE;
}
if(tmp->get_type() == 'P") {
p_tmp = (Mod_Power *)tmp;
port_tot = port_tot + p_tmp->num_ports;
}

}
stats.test(TPORTS); // body has enough ports for limbs

if(port_tot < test_kit->sg('E')->get_length()) {
//cout << "kit rules: not enough ports. want ";
//oout << test_kit->sg('E')->get_length() << " have " <<
port_tot<<end];
stats.fail();
return FALSE;
}
return TRUE;
}
bool convert_to_grp(int  kit{GRPS][MAXLENGTH], Group*
kit MG) {
/* put kit components into Group format */
int i,j;
kit_MG->clear_all();
for(i=0; i<GRPS; i++)
for(j=1; j<=kit[i][0]; j++)
kit MG->add_mod(fullgrp.get_mod(i,kit[i] 1-1));
/ /cout << "converted to Group\n";



/ /kit_ MG->print();
return TRUE;
}

bool kit_rules_task(Group* kit, Task_Type* task){
/* TRUE if kit satisfies task - Absolute contraints.
weight, cost, reliability, power consumption limits,
span minimum, required feet.
Many of these are done in evaluate_kit, and so to avoid
duplication are omitted here. */

/* make sure kit feet cover task requirements */
stats.test(TFEET);
char t{MAXENVIR]; // task required ee types
char m[MAXENVIR]; // ee types available
strepy(t task->req_ee);
kit->sg((int)EE)->reset_next();
Mod_Base *tmp;
while((tmp=kit->sg((int)EE)->get_next_mod()) != NULL) {
if(tmp->get_type()=='E')
strcat(m,((Mod_EndEff *)tmp)->ee_type);
}
//cout << "task :"<<t<<":\tmods :"<<m<<":\n";
int t_len = strlen(t);
int m_len = strlen(m);
int ij;
for(i=0; i<t_len; i++) {
0
while(m[j]!=t[i])
if(j++ >=m_len) {
//cout << "No "<<t[i]<<™ in :"<<m<<™:\n";
stats.fail();
return FALSE;

}
mfjl=""
}
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return TRUE;
}

float evaluate_kit(Group* kit, Task_Type* task) {
/* fitness function based on which modules are in kit,
(not on topology of assembled robot)
average limb length, weight, speed, agility (dof), cost,
reliability, power consumption, span.
These must be reconciled with assemble.C's evaluate_assy */
float limb_avg, span, step, agility, rslt;
float body_length=0, limb_tot=0;
float weight=0;
float cost=0;
float reli=1.0;
float energy_req=0, energy_avail=0;
int num_limbs = kit->sg((int)EE)->get_length(); /* num limbs =
num EEs */
int symm, j;
Mod_Base* tmp;
kit->reset_next();
while((tmp = kit->get_next_mod())!=NULL) {
symm = 2;
if(tmp->get_type() == 'P') {
body_length += tmp->size.x;
energy_avail += ((Mod_Power *)tmp)->energy_cap;
symm =1; // bilaterally symmetric except for body
}
else {
limb_tot += tmp->size.y;
reli *= tmp->reliability;
}
weight += symm * tmp->weight;
cost += symm * tmp->cost;
energy_req += symm * tmp->energy_use;
reli *= tmp->reliability; // could have used pwr(x,symm)



}

kit->score.weight = weight;

kit->score.cost = cost;

kit->score.reliability = reli;

kit->score.energy = energy_avail / energy_req;

/* average limb length */
limb_avg = limb_tot / num_limbs;
/* average span is 2 limbs plus body */
span = (body_length + 2*limb_avg) / task->ch_span;
step = 2*limb_avg / task->max_step;
/* agility is percent joints */
agility = (float)kit->sg(']")->get_length()/ (float)kit-
>get_length();
weight = weight / task->max_weight;
cost = cost / task->max_cost;

/* constraints */
if((stats.test(TSTEP),step<1) | | (stats.test(TSPAN),span<1)
H (stats.test(TWEIGHT),weight>1) I
(stats.test(TCOST),cost>1)) {
stats.fail();
rslt = BAD_SCORE;
}
/* fitness function */
else
rslt = agility*5.0 + asymp(limb_avg)*1.0 + asymp(span)*10.0 +
reli*10.0
+ asymp(kit->score.energy)*10.0 - weight*15.0 - cost*10.0;
kit->score.overall = rslt;
if (datadump) {
kit->print();
cout << "raw limb " << limb_avg << "\traw
body_length << end];
cout << "step " << step << "\tspan " << span;
cout << "\tweight " << weight << "\tagility " << agility;

body " <<
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cout << "\ncost " << cost << "\treliability " << relj;
cout << "\tenergy " << kit->score.energy;
cout << "\trslt " << rslt << end];
}
return(rslt);
}

bool initialize_kit(int kit{GRPS][MAXLENGTH]) {
int i;
/* initial kit: 1pwr, 4jnt, dee */
kit[PWR][0] = 1; /* number of PWRs in kit */
kit[PWR][1] = 1;
kit[EE][0] = MIN_FEET; /* number of EE's and JNT's in kit */
kit[JNT][0] = kit[EE][0];
for(i=1; i<=kit[EE][0]; i++) {
kit[JNTI[i] = 1;
kit[EE][i] = 1;
}
kit[LNK][0] = 0;
for(i=0; i<GRPS; i++)
if( (kit[i][0]>0) && (fullgrp.sg(i)->get_length() == 0) ) {
cout << "Can’t make any kits - no parts of group " << i << endl;
return FALSE;
}
return TRUE;
}

void print_test_kit(int kit{ GRPS][MAXLENGTH]) {
cout << "Test kit ";
int i;
cout << "Power: ";
for (i=1; i<=kit[PWR][0]; i++)
cout << kit[PWR][i] << " ";
cout << "Joint: ";
for (i=1; i<=kit[JNT][0]; i++)



cout << kit[JNTI[i} <<"";
cout << "Link : ";
for (i=1; i<=kit{LNK][0]; i++)
cout << kit{LNK][i] <<"";
cout << "EndEf: ";
for (i=1; i<=kit{EE][0]; i++)
cout << Kit[EE}{i} <<"";
cout << end];
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choose.h
\ *
Nathaniel Rutman 03/20,/95
choose.h

defines the sequence choosing procedure for kits
*/
#include "modclass.h” /* for bool */
#include "groupclass.h" /* for GRPS */
#include "search_main.h" /* for MAXLENGTH */

#ifndef _CHOOSE_H_
#define _CHOOSE_H_

bool choose_next(int kit{GRPS][MAXLENGTH]);

#endif
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choose_in.C
/* Nathaniel Rutman

choose_in.C

chooses next robot kit. This implementation chooses IN ORDER.

exhaustive, but no memory required.

# of combos is (n+1-1) choose k, or (n+k-1)!/k!(n-1)!

Does use some basic assembly rules to avoid useless robots:
need 4 ee always

need as many jnts as ee always

fiddles with Inks, then jnts, then ees, then pwrs. This insures
the slightest change from 1 kit to the next. Maybe it would be
better to go for max change instead?

change history
11/01/94 created NZR
12/17/94 j/1sequencing bug fixed NZR
02/13/94 j/1alternation removed NZR
*
/

#include "choose.h"
#include "search_main.h"
#include "kit.h"
#include "stats.h"

// for constants
// just for printing

extern Group fullgrp;
extern Stat_Type stats;

bool sequence(int*, int);
bool trade_in(int kit{ GRPS][MAXLENGTH));
bool make_longer(int kit{ GRPS][MAXLENGTH]);

bool choose_next(int kit{GRPS][MAXLENGTH]) {
/* choose a new kit. The present system chooses in order,
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but might want to choose randomly with a memory.
This sequence changes the "least important” modules
first, but this may be wrong.
Returns TRUE if a new kit is made */
if(!sequence(kit[LNK], fullgrp.sg('L')->get_length()))
if(sequence(kit[JNT),fullgrp.sg(]')->get_length()))
if(!sequence(kit[EE], fullgrp.sg('E')->get_length()))
if(Isequence(kit{PWR], fullgrp.sg('P')->get_length())) {
// cout << "out of different mods, trying different types" <<

endl;

}

if('trade_in(kit))
if(fmake_longer(kit))
return(FALSE);
}
// print_test_kit(kit);
return(TRUE);

bool make_longer(int kit{GRPS][MAXLENGTH]) {

}

/* tried all combos this length, so need to make longer.
This needs to add 1 of the first type swapped OUT from
trade_in, decided from calling fn. Reset PWRs.
Maximum robot length is MAXLENGTH */

int Ing;

Ing = kit[PWR][0]+kit[JNT][0]+kit[ LNK][0]+kit[EE][0];

stats.print(Ing);

cout << "out of trades, trying longer robot " << Ing+1 << endl;

if(lng < MAXLENGTH) {
kit LNK][0]=kit[PWR][0];

kit[PWR][0]=1;
for(int i=1; i<=kit[LNK][0]; i++)
kit[LNK][i] = 1;
return(TRUE);
}
return(FALSE);



Order is irrelevant, choice up to max for each mod,

bool trade_in(int kit{GRPS][MAXLENGTH]) { a[0] is the number of mods, a[i] is which mod.
/* keep same length robot, but try different types: TRUE if next sequence found. Exits clean for no mods. */
2pwr, 4jnt instead of 1pwr, 5int. int i,j;
trade order: Ink to jnt to ee to pwr bool carry = TRUE;
Returns FALSE if out of trades. */ i=al0];, /*last"decimal" place */
if(kit{LNK][0] > 0) { /*trade a LNK to a JNT */ while (carry &é& i>0) {
kitNTI0]++; carry = FALSE;
kit[NT][kit[JNT][0]] = 1; if(++a[i] > max) {
kit[LNK][0]--; carry = TRUE;
return(TRUE); i-; /* move left 1 "decimal” place */
} }
/* out of LNKs. Trade a JNT to a EE */ }
if(kit[JNT][0] > kit[EE][0]+1) { if(i>0)
/* min #ee JNTs. Add 1 because new #ee = old #ee + 1 */ for(j=i; j<al0]; j++)
kit[EE][0]++; alj+1] =afj; /*sequenceis:1133t01222*/
Kit[EE][Kt[EE][0]] = 1; else
kit[LNK][0] = kit[JNT,{0] -kit[EE]{0] -1; /* change extras back to for(j=1; j<=al0]; j++)
LNKs */ afjl=1;, /*overflow, resetto:1111*/
kit[INT][0] = kit[EE][0]; return(!carry);
return(TRUE); }

)
if((kit[EE][0] > MIN_FEET) | | (kit[JNT][0] > MIN_FEET)) {
/* extra JNT or EE, change to PWR */
kit[PWR][0]++;
kit{[PWR][kit[PWR][0]] = 1;
kit[LNK][0] = kit{EE][0]-MIN_FEET + kit[INT][0}-MIN_FEET -1;
kit[EE][0] = MIN_FEET;
kit[JNT][0] = MIN_FEET;
return(TRUE);
}
return(FALSE);

}

bool sequence(int* a, int max) {
/* finds next sequence of mods of a particular type.
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mod_desc.h
\ *
Nathaniel Rutman 03/20,/95
mod_desc.h
*/

#ifndef _"MOD_DESC_H_
#define _"MOD_DESC_H_

int get_module_desc();

#endif

108



mod_desc.C
\x.
Nathaniel Rutman

mod_desc.C

Describes all available modules from datafile mod.dat
and groups into classes
Describes task

revision history:

10/28/94 created NZR

12/17/94 added jacobian NZR

02/09/95 removed jacobian, added power ports NZR
*

/

#include "mod_desc.h"
#include "modclass.h"

#include "groupclass.h"
#include <stdio.h>

extern Group fullgrp;
extern bool datadump;

int get_module_desc() {
cout << "descibing modules” << endl;
Mod_Base* bp;

/* file read */

FILE *infile;

char scan_ch;

int numcase=0;

int m_id,ij;

char modclass, power_type;

Env_Type okenv[MAXENVIR];
float cost, szl, sz2, sz3, wt, 1l, en_u, x,y;
infile = fopen("mod.dat", "r);
while(getc(infile) != 'I"); // comments until this mark
while(!feof(infile)) {
numcase++;
fscanf(infile,"%d %f %c %c ", &m_id, &cost, &modclass,
&power_type);
fscanf(infile, "%s ", okenv);
fscanf(infile, "%f %f %f %f %f %f ", &szl, &sz2, &sz3, &wt, &rl,
&en_u);
switch (modclass) {
case 'P"
Mod_Power * pp; /* create with new so they live forever */
pPp =new Mod_Power:
bp = pp;
fscanf(infile, "%f %d ", &pp->energy_cap, &i);
pp->num_ports =i; // read in ports
for(j=0; j<i; j++) {
fscanf(infile, "%f %f ", &x, &y);
pp->portj]l.x = x;
| pp->portjly = y;
break;
case 'L":
Mod_Link * Ip;
Ip = new Mod_Link;
bp =1Ip;
fscanf(infile, "%f %f &lp->support_torque, &lp-
>arm_length);
break;
case 'T"
Mod_Joint * ip;
jp = new Mod_Joint;
bp =jp;



fscanf(infile, "%f %f %f "
>arm_length, &jp->apply_torque);
fscanf(infile, "%f %f %f ", &jp->speed, &jp->angle_min, &jp-
>angle_max);
break;
case 'E":
Mod_EndEff * ep;
ep =new Mod_EndEff;
bp =ep;
fscanf(infile, "%f %f %f "
>arm_length, &ep->apply_torque);
fscanf(infile, "%f %s ", &ep->speed, &ep->ee_type);
break;
default:
cout << "Unknown module type " << modclass << endl;
cout << "Bailing..." << endl;
return 0;
fclose(infile);
break;
}
bp->set_id(m_id, modclass);
bp->cost = cost;
bp->reliability = rl;
bp->pwrtype = power_type;
bp->okenvs = okenv;
bp->size.x = sz1;
bp->size.y = sz2;
bp->size.z = sz3;
bp->weight = wt;
bp->energy_use =en_u;
fullgrp.add_mod(bp);
if (datadump)
bp->print();
else
bp->print_id();
fscanf(infile,"\n");

&jp->support_torque, &jp-

&ep->support_torque, &ep-
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}

fclose(infile);

cout << "Described " << numcase << " modules." << endl;
return(numcase);

}

/* all units are MKS */

void get_task(Task_Type* task) {

task->max_cost = 1000.00;

task->max_weight = 9.09;

ﬁmmwsvgmxtmnmﬁ = (.2125;

wmmr.Vnrlm@m: = 0.088;

task->reqenv = "DW"; / / all mods must work in Dark and Wet

task->req_ee = "HHG"; // need 2 feet for Horizontal ground, 1
Gripper for moving junk

task->grip_weight = 0.12; // max weight for gripper

task->maxsize.x = 0.088; // maximum internal dimensions
allowed

Sm_?vgmxmﬁm.% =0.1375; // narrowest horiz path

task->manxsize.z = 0.088;

if (datadump)

task->print();

}



assyclass.h
\¥¥¥¥¥&¥¥¥4¥¥¥¥¥¥¥¥¥*¥*¥¥¥&¥¥&¥¥¥&¥*4¥4¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥*¥¥&¥

& %ok ok 4 % ¥

Nathaniel Rutman
assyclass.h

describes robot assembly class, which is a group of mods +
connections

12/13/94 created

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥*¥*¥¥¥*¥¥¥¥¥¥¥4%¥¥¥¥¥¥&¥¥¥¥¥¥¥¥¥
¥¥¥¥&¥¥\

#include "modclass.h"
#include "groupclass.h”
#include <iostream.h>

#ifndef _ASSYCLASS_H_
#define _ASSYCLASS_H_

#define MAXLIMBS 10 /* max number of legs/arms per robot */
#define MAX_ASY_PORTS 100 /* max # ports to keep track of on
assy */

class Sub_Assy {
protected:
char type;
Sub_Group grp;
public:
Sub_Assy();
char get_type();
int get_length();
virtual void add_mod(Mod_Base *) = NULL;
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void remove_mod();

void reset_next();

Mod_Base* get_next_mod();

void clear();

virtual void print() = NULL;

virtual void &mi%ogﬁlﬁwﬂmv = NULL;
L

class Body_Type:public Sub_Assy {
private:
int attach_points;
Point_Type ﬁombﬁlwﬂmigitgu\:wowﬂm.f: H
public:
int attach_limb[MAXLIMBS];
Body_Type();
void add_mod(Mod_Base *);
void print();
void draw(Point_Type);
Point_Type get_attach_point(int);
int get_attach_near(Point_Type);
int get_attach_points();
L

class Limb_Type:public Sub_Assy {
public:
int set_length;
Limb_Type();
void add_mod(Mod_Base *);
void print();
void draw(Point_Type);
b

class Assembly {
public:



Limb_Type limb[MAXLIMBS];
Body_Type body;

Group parts_bin;
intnum_limbs;

float score;

Assembly();

>mmmEEVAO~ocE\.

void print();

void draw(Point_Type);

)

#endif
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assyclass.C
\ *
Nathaniel Rutman

assyclass.C
Assembly class methods

12/16/94 created
01/11/95 limb module ordering added
*/

#include "assyclass.h"
#include "graphics.h"
#include <iostream.h>
#include <stdio.h>

\&.x.&.&‘&&.&.&,&.&.*u.x.x‘&&'4&.&.&.&,&‘&.&.*&.&

Sub_Assy

¥¥¥&.¥¥¥¥¥¥¥&.&.¥¥x_¥¥¥¥¥&.¥\

mcv..\wmmvﬁmmwi\wmm%o {

Sm = vC.\'

grp-set_type('A’); // accept all mods
}

int Sub_Assy::get_length() {
return grp.get_length();
}

char Sub_Assy::get_type() {
return type;
}

void mc¢|>mm%”“mamlgoaasoalwmmm *m) {
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grp-add_mod(m);
/* make some connections here */

}

void m:v!>mm%nmmmmﬁ.:mx5 {
grp.reset_next();
}

Mod_Base* m:vn>mm%nmm~13mxfsomo {
return grp-get_next_mod();
}

void Sub_Assy::remove_mod() {

/* may need to specify which mod */

/* break connections, too */
grp.remove_mod();

}

void Sub_Assy::clear() {

grp.clear();
}

\¥¥¥¥¥¥¥¥¥¥l4&.¥¥&.¥¥¥¥¥¥&.&. mgw >mmv~ O:MMQHmz ¥¥¥&.¥¥*¥¥¥¥¥¥44¥\
\&&.&.&.*44&.&.&.8 wo&% _H‘%mvm &v&‘x.&.%#&.&.t.&.&v\.

Body_Type::Body_Type() {
type = 'B’;
for(int i=0; i<MAXLIMBS; i++)
attach_limb[i]=i;
attach_points=0;
}

void Body_Type::add_mod(Mod_Base * m) {
if(m->get_type() == 'E")



cout << "\nBody_Type::add_mod - Trying to add an End Eff to
the body\n";
grp.add_mod(m);

// collect port info
if(m->get_type() == 'P') {
Mod_Power *p_tmp;
p_tmp = (Mod_Power *)m;
for(int i=0; i<p_tm ~>num_ports; i++) |
vogﬁimnnmﬁm:mortvogﬁ&nvomwamnwm%~2>x|>m<lw0wﬁmu +
p_tmp->get_port(i);
attach_points ++;
if(attach_points >= MAX_ASY_PORTS)
cout << "Body_Type::add_mod: warning - too many attach
points!!\n";
}
}
point_array[MAX_ASY_PORTS].x += m->size.x;
}

Point_Type Body_Type::get_attach_point(in* limb_num) {
return point_array[attach_limb[limb_num]];
}

int momwtﬂvﬁm“”mmﬁlm:mnrtﬁmmlwomatﬂwﬁm near) {
if(attach_points < 1) {
cout << "Body_Type::get_attach_near: no attach points\n";
return 0;
}
int close_port;
float dx,dy,dist;
float min_dist = 9999999.0;
for(int i=0; i<attach_points; i++) {
dx = near.x - point_array[i].x;
dy = near.y - point_arrayl[il.y;
dist = (dx*dx + dy*dy);
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if (dist<min_dist) {
min_dist=dist;
close_port = i;
}
}
return close_port;

}

int Body_Type::get_attach_points() {
return attach_points;

}

void Body_Type::print() {
cout << "body: ";
| grp-print();

void Body_Type::draw(Point_Type pnt) {
reset_next();
Mod_Base *tmp;
Point_Type t_pnt = pnt;
Sr:mngummn.:mxﬁlaoaov != NULL) {
tmp->draw(t_pnt);
t_pnt.x += tmp->size.x;
)
}

\¥¥¥¥&.¥¥¥¥¥ hwgw .H.Vwﬁm &,&.&.&.&.*&.&.&.4&\

Limb_Type:Limb_Type() {
g e = .H...\.
set_length = 0;

}

void Limb_Type::add_mod(Mod_Base * m) {
if(m->get_type() == 'P')



cout <<
limb\n";
grp-add_mod(m);
}

“\nLimb_Type::add_mod - Trying to add power to a

void Limb_Type::print() {
cout << "limb: ";
w grp.print();

void ngv..ﬂ%vmxauwiﬁwogfﬁém pnt) {
Mod_Base *tmp;
Point_Type t_pnt;
t_pnt = pnt;
float high = 0.0;
reset_next();
Srmmﬁgvnmmntzox»tgoaov != NULL)
high += tmp->get_arm();
t_pnt.y -= high;
reset_next();
while((tmp=get_next_mod()) I= NULL) { // draw arm bottom up
t_pnt.y += tmp->get_arm();
tmp->draw(t_pnt);
}
}

// find arm height

\¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥&.¥¥¥¥¥&.¥¥&. >mmv~ ¥¥¥¥&.¥¥¥¥&.¥¥¥¥¥¥¥&.¥¥¥¥¥\

Assembly::Assembly() {
num_limbs = 0;
score = BAD_SCORE;
)

>mm¢52%u>mmm§§103zv g {
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num_limbs =0;
score = g.score.overall;
parts_bin = g;
Mod_Base* tmp;
SE?QE%uvm;mlvm:.mmnldmx»ogomcv I=
if (tmp->get_type() == P {
body.add_mod(tmp);
parts_bin.remove_mod();
}
}

void Assembly::print() {

cout << "Assembly:\n";

cout << "parts bin: ";

parts_bin.print();

body.print();

for(int i=0; i<num_limbs; i++) {
cout << "#' <<i<<" "
limbl[i].print();

}

cout << "score :" << score <<end|;

}

void Assembly::draw (Point_Type p0) {
wom:ﬂ..u.vﬂm pnt;
body.draw(p0);
for(int i=0; i<num_limbs; i++) {
pnt = body.get_attach_point(i);
/ /cout<<"Assembly::draw: leg "<<i<<"
"<<body.attach_limb[i]<<endl<<endl;
limb[i].draw(p0O+pnt);
}

/ /print score
&mi..n&olwm&QO\.
char msg[50];

NULL)

attached

at

port



sprintf(msg,"score: %.2f",score); // print to a string
mamilmgm@o.x%o.%+o.om\5mmvn

draw_update();
}
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float cost;
groupclass.h

float energy;
\4¥¥¥¥¥¥¥¥¥¥&¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥&¥*&&**¥¥¥**%¥¥¥¥¥¥¥¥¥¥¥¥¥

Score_Type();
EEEEEE T XY r
Nathaniel Rutman

class Sub_Group {

groupclass.h /* made up of only one type of module */

private:
describes Group and Sub_Group (only 1 type of mod) classes char mod_type;
Groups are bins of unassembled modules, subdivided into subgroups Mod_Base* mod_listt MAXMODS];
by int length;
function: pwr, Ink, ee, jnt int index;
public:

change history:

Sub_Group();
12/13/94 created NZR

mc_utnnocﬁ (char);

void set_type(char);

char get_type();

int get_length();

Mod_Base* get_next_mod();
Mod_Base* get_mod(int);

void reset_next();

Mod_Base* get_different_mod();

bool add_grp(Sub_Group *);
#ifndef _GROUPCLASS_H_

bool add_mod(Mod_Base *);
#define _GROUPCLASS_H_ bool remove_mod();

void clear();
void print();
L

¥¥¥%¥¥¥¥*¥¥¥¥¥¥&¥¥¥¥¥¥#¥¥¥¥¥¥&¥¥&¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥**¥¥¥
*¥¥¥¥#¥\

#include "modclass.h"
#include <iostream.h>

#define BAD_SCORE -100.0

enum modtypes {PWR, LNK, JNT, EE, GRPS}; // GRPS is # of

groups

class Group {
protected:
Sub_Group subg[4];
int num_subg;

int subg_index;
int tot_length;

class Score_Type {
public:
float overall;
float weight;
float reliability;
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bool recalc;
public:

Score_Type score;

Group();

Sub_Group* sg(char);
Sub_Group* sg(int);

void add_a_sg(Sub_Group);

void add_mod(Mod_Base *);
void remove_mod();

void clear_all();

int get_length();

void reset_next();

Mod_Base* get_next_mod();
Mod_Base* get_next_mod(int);
Mod_Base* get_mod(int,int);
bool has_power_for(Mod_Base*);
void print();
¥

#endif
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groupclass.C
/* Nathaniel Rutman

groupclass.C
Sub_Group, Groupclass methods
01/11/95 created

*/

#include "groupclass.h"
#include <iostream.h>

\&v&.&.l.a.&.4&.*¥¥¥&.¥&.*¥¥4¥¥&.¥&.¥¥¥ mOON.m _H..%ﬁm
4¥¥¥¥¥&.¥¥¥&.&¥¥¥¥¥¥*¥¥¥\
Score_Type::Score_Type() {

overall = BAD_SCORE;
\¥¥*¥¥¥¥xv¥&.¥&.¥¥¥¥¥¥¥¥&.¥¥¥¥¥¥ m:w nﬂocv

4¥¥¥¥¥¥¥¥¥¥4&.&.¥¥¥¥¥¥&.&.¥\

mcvan#o:mnm:vtmnocv 0f
mod_ ="U"; // undefined so far
length = 0;
index = (;

}

Sub_Group::Sub_Group (char o
mod_type =c;
length =(;
index = Q;

}

class

class
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void Sub_Group::set_type(char c) {
mod_| =¢;

}

char m:vsﬂnc:vummntaﬂmo {
return mod_type;
}

int Sub_Group::get_length() {
return length;
}

void Sub_Group::reset_next() {
index=0;

}

Mod_Base* m:v..nnozvummwlgo&mb» n) {
if(n<0 1 1 n>=length) {
cout << :m:csﬂwo:vummfgoan out of range\n";
return NULL;
}
return mod_list[n];
}

Mod_Base* mcwlﬂno:vummwlnmxﬁ.gomo {
if(index >= length) {
// cout<< "Sub_Group::get_next_mod(): Out of mods\n";
reset_next();
return NULL;
}
index++;
return mod_list[index-1];
}

Mod_Base* Sub_Group::get_different_mod() {



}

if(index >= length) {

cout << ._mc_ulﬁ_.ocmnNmﬁl&mmum:ﬂagomcu Out of mods\n";
reset_next();
return NULL;

}

if(index==0) return mod_list[0];
int olddex=index:;

SE_mABOQIEm%bmmx_uugomlzmno_m&mxw {
index++;

if (index>=length) {

cout <<"Sub_Group::get_different_mod(): Out of mods\n";
reset_next();
return NULL;
}
}

return mod_list[index];
}

bool Sub_Group::add_mod

(Mod_Base * a) {
if (length>=MAXMODS) {
cout <<

length\n";
return FALSE;
}

if(a == NULL) {

"\n\nSub_Group::add_mod: Exceeded maximum

cout << "\n\nSub_Group::add_mod: Adding NULL module\n";
return FALSE;
}

if((mod_type != 'A") && (a->get_type() != mod_type)) // A is
any type

:add_mod: Warning-wrong type " << a-

<<"in subgroup of " << get_type() << end};
mod_list[length++] = a;
return TRUE;

cout << "\n m:w:OHOEx
>get_type()

bool Sub_Group::remove_mod() {

/* removes last mod checked, which is index-1 * /

// cout << "Sub_Group::remove_mod " << index-1;
if (index<1 | | index>length) {

cout << ..m:vlﬂmc:vunmao,\mxgomu index " << index-1 << "
range\n";
return(FALSE);
}
else {

index--;

Out of

// cout<<" removing id "<< mod_list[index]
int i;
length~—;
for(i=index; i<length; i++)
mod_list[i] = mod_list[i+1];

->get_id() << endl;

/* this may leave mod with nothing pointing to it.

may want to delete if this is the last reference */
return(TRUE);

}

}

void Sub_Group::clear() {
index=0;

length=0;

}

bool Sub_Group::add _grp(Sub_Group * a) {

/* copies an entire group */
cout << "Sub_Group::add_grp(Sub_Group * a)" << endl;
a->reset_next();
int i;
if(a->length > 0)
for(i=0; i<a->length; i++)
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wma..goaAw.vmm»tﬂoxwlsoaov\.

return(TRUE);



void Sub_Group::print() {
cout << length << " " << mod_type << ™s: ";
int i;
for(i=0; i<length; i++) {
mod_list[i]->print_id();
cout <<"";

}

cout << endl;

}

\4&.¥¥¥¥¥&.&.¥¥&.¥¥&.¥&.¥&.¥¥¥¥¥¥¥* ¥¥¥¥¥&.¥¥¥¥&,¥¥¥¥¥&.¥¥¥¥¥¥¥¥¥\

Group

int lookup_type(char c) {
if(c=="P") return PWR;
if(c==T') return JNT;
if(c=="L") return LNK;
if(c=="E') return EE;
cout << "Unknown group type. Treating as Power\n";
return 0;

Group::Group() {
tot_length=0;
num_subg=4;
subg_index=0;
subg[PWR].set_type('P');
subg[LNK].set_type('L');
subg[JNT].set_type(T);
subg[EE].set_type('E');
recalc=TRUE;

Sub_Group* Group::sg(char c) {
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/* returns a pointer to the subgroup of type c */
return &subgflookup_type(c)];
}

Sub_Group* Group::sg(int i) {
/* returns a pointer to subgroup i */
if((i>3) 11 (i<0)) {
cout << "Group: SubGroup #'<<i<<" out of range.\n";
return NULL,;
}
return &subgli];
}

void Q.o:mx“mmmcmtmmAmcerHo:v newsg) {
/* choose subg number by newsg's type */
char ¢ = newsg.get_type();
m?:gtm:wmA_oowcvlaﬁm@v
num_subg=lookup_type(c);

tot_length -= sg(c)->get_length();
subg[lookup_type(c)] = newsg;
subgflookup_type(c)].reset_next();
tot_length += sg(c)->get_length();
recalc=TRUE;
}

int Group::get_length() {
return tot_length;
}

Mod_Base* Group::get_next_mod() {
Mod_Base* tmp;
if ((subg_index >= num_subg) | | (subg_index<0)) {
cout << "Group::get_next_mod - subg_index out of range\n";
return NULL,;
}



while((tmp = mcwm?:vmlw:mmx_.mmﬁbmxﬁlgomov == NULL) {
subg_index++;
if Am:wmlmbmmxvn:cglm:vmv {
reset_next();
return NULL;
}
}
return tmp;
}

\ *
Mod_Base* Group::get_next_mod(char o {
subg_index = lookup_type(c);

return subg[subg_index]. get_next_mod();
Y

Mod_Base* Group::get_next_mod(int i) {
return subgli]. get_next_mod();
}

Mod_Base* Onocvummﬁ.gom?: grp, int ndx) {
return subg[grp].get_mod(ndx);
}

void Group::reset_next() {
subg_index=0;
for(inti = 0; i<num_subg; i++)
subgli].reset_next();
}

void Group::add_mod(Mod_Base* mod) {
/* add mod to subg of right type */
charc = mod->get_type();
sg(c)->add_mod(mod);
recalc=TRUE;
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tot_length++;

}

void Group::remove_mod() {

// cout << "Group::remove_mod ";
mmAm:vmlmbmmevaEB\mlBomch
recalc=TRUE;

tot_length--;
}

void Group::clear_all() {
subg_index =(;
for(inti=0; méﬁglm:wm\. i++)
subgli].clear();
tot_length = 0;
}

void Group::print() {
if (tot_length == 0)
cout <<" group empty.\n";
else {
cout << "Group length " << tot_length << endl;
for(inti=Q; i<num_subg; i++)
if (subgli].get_length() > 0)
subgl[i].print();
}
}

bool Group::has_power_for(Mod_Base* mod) {
/* looks through all PWR looking for a match */
char ¢ = mod->pwrtype;
if(c == NO_POWER)
return TRUE;
intn=0;
Mod_Base* tmp;
while (n < sg('P')->get_length()) {



tmp = sg('P')->get_mod(n++);
if(tmp->pwrtype == c)
return TRUE;
n++;
}
return FALSE;

}

\ *
float Group::get_weight() {
if (recalc)
return weight;
reset_next();
Mod_Base* tmp;
float w=0, c=0;
while((tmp = get_next_mod())!=NULL) {
W += tmp->weight;
€ += tmp->cost;
}
weight = w;
cost =¢;
return w;
1

float Group::get_cost() {
get_weight();
return cost;
}
*/
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modclass.h

\ *
Nathaniel Rutman

modclass.h

header file class descriptor for module-level classes.
These describe in detail a single module.
These are used by the grouping classes (assyclass).

12/13/94 created

11/31/95 Jacobian added

02/09/95 Jacobian removed, 2D ports added, task revised
*/

#ifndef "MODCLASS_H_
#define _"MODCLASS_H_

#include "mymath.h"
#include <iostream.h>

#define TRUE 1
#define FALSE 0

#define MAXENVIR 10
#define MAXMODS 30
#define MAXPORTS 10

#define NO_POWER 'Z'  /* when no power is required, this is

pwrtype */

#define DRAW_PORT_CLR 0.003 /* minimum size around port

when drawing */

typedef int bool;
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typedef char Env_Type;
typedef char Foot_Type;

class Size_Type {
public:
float x,y,z;
Size_Type();
void print();
bool mﬁm..ﬁrwzﬁmﬁmldﬂmv\.
L

class Mod_Base {
protected:
int mod_id;
char mod_class;
public:
char pwrtype;
float energy_use;
Env_Type okenvs]MAXENVIR];
Size_Type size;
float Emmmrrnomvnm_mmwz:%\.

Mod_Base();

void set_id(int,char);

char get_type();

void print_id();

void print_base();

int get_id();

bool check_env(Env_Type*);

virtual void print() = NULL;

virtual void &wi%&:ﬁdﬁ& = NULL;
virtual float get_arm() = NULL;

)



class Mod_Power:public Mod_Base {
public:
float energy_cap;
int num_ports;
Point_Type portfMAXPORTS];
Point_Type get_port(int);
float get_arm();
void print();
void draw(Point_Type);
L

class Mod_Link:public Mod_Base {
public:
float support_torque;
float arm_length;
float get_arm();
void print();
void draw(Point_Type);
L

class Mod_Joint:public Mod_Base {
public:
float speed, apply_torque, support_torque;
float arm_length;
float angle_min, angle_max;
float get_arm();
void print();
void draw(Point_Type);
L

class Mod_EndEff:public Mod_Base {
public:
float speed, apply_torque, support_torque;
float arm_length;
Env_Type ee_type[MAXENVIR];
float get_arm();
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void print ();
void draw(Point_Type);
};

class Task_Type {
public:
float max_cost;
float max_weight;
float max_step;
float ch_span; // maximum span that robot must cross
Env_Type reqenv[MAXENVIR]; // all mods must work in these
envs
Foot_Type req_ee[MAXMODS]; // need this list of end effector
types
Size_Type maxsize; // maximum size for robot in a minimum size
configuration
float grip_weight; // gripper must lift this weight
void print();
};

#endif



modclass.C

\ *
Nathaniel Rutman

modclass.C

function bodies of module-level classes described in modclass.h

change history:

12/13/94 created NZR

01/31/95 Jacobian added NZR

02/09/95 Jacobian removed, 2D ports added NZR
02/22/95 Drawing functions added NZR

*/

#include "mymath.h"
#include "modclass.h"
#include "graphics.h”
#include <iostream.h>
#include <fstream.h>
#include <string.h>

\ 3ok 3 % oF b 3 2 % b SR RN NN

¥¥¥¥¥¥*¥&¥¥¥¥¥*¥¥¥¥¥&.¥¥¥¥&.¥¥¥¥¥\

Size_Type::Size_Type() {
x=1.0; // default sizes
y=1.0;
z=1.0;

}

bool Size_Type::fits_thru(Size_Type s2) {
/* checks if a fits through b horiz or vert */
float a = min(x,y); // smallest mod dim

Size_Type
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float b = min(s2.x,52.y); // smallest hole dim
if((a>b) || (z>s2.2))
return(FALSE);
else
return(TRUE);
}

void Size_Type:print() {

cout << "\f(" << x << ", <<y << ", <<z <<

}

\¥¥&.¥¥¥¥¥¥i¥¥¥¥¥¥¥x_¥&&¥&.

¥&.¥¥¥¥¥¥¥¥¥¥¥*¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥\

Mod_Base::Mod_Base() {
mod_id = 999;
mod_class = 'U";

}

void Mod_Base:set_id(int i, char ¢) {
mod_id =1i;
mod_class =¢;

}

char Mod_Base::get_type() {
return mod_class;

}

:V~w~.~:M

bool Mod_Base::check_env(Env_Type* want_env) {
/* make sure a mod can work in all wanted environments */

int i=0,j=0;

bool found=TRUE;
while(i<strlen(want_env) && found) {
found = FALSE;

Mod_Base



i=0;
while(j<strlen(okenvs) && !found) {
Eim:ﬂ.mbi:nuowmbﬁmc found=TRUE;
j*
}
I++;
}
return(found);
}

void Zomlwwmmuvnw#lac {
cout << mod_class << " #" << mod_id << "

}

void Mod_Base::print_base() {
cout << "\t $" << cost;
cout << "\t" << weight << " kg';
cout << "\t" << pwrtype << " pwr";
cout << "\trely " << reliability;
size.print();
cout << "\n\t";

}

int gomxmwmmummﬁ.ﬁo {
return mod_id;
}

\ AR L EL LE L E T TR R e

Mod_Base child classes

¥&&.¥&.¥¥¥¥¥*¥¥¥&¥¥¥¥\

\¥¥¥¥¥*&.¥¥ go& Hvosmu.- x.&.&.x.&x.x‘&.&.\

float gomlwos\munmmfmgo {
cout << "\nWarning!! Power mod doesnt have
length.\n\n";

an  arm
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return ;
}

Point_Type Mod_Power::get_port(int num) {
if(num>=num_ports) {
cout << "Mod_Power::get_port: port number out of range\n";
return port[0];
}
return port[num};
}

void Zom.lwoSmndumiﬁ.ogﬁ.ﬂvﬁm pnt) {
draw_color(RED);
&nmilnmnvaw.x%brvsmﬁm.x\mmmm.v&\.
draw_color(PINK);
for(int i=0; i<num_ports; i++)

&ms\tnmun~m€wa+v022.x%bw.%iuozE.vco.oomv.

&mi..no~oiwﬁ>ﬂ§
&nm€|¢ox¢ubvx%a.%\mmum.x\mmum.%v“

}

void Mod_Power::print() {
cout << "Pwr " << mod_id;
print_base();
cout << energy_cap << " watt-hrs";
cout << "\t" << num_ports << " ports\n";

}
\4&.¥¥¥¥¥¥¥ gogfﬂlgw .—.x.x.&.&.&.&.&.x.\
float Mod_Link:get_arm() {

return arm_length;
}

void goalhgwn&mi%ogﬂlﬂvﬁm pnt) {
const float a = size.x/2.0;



const float b = (size.y - arm_length)/2.0;
draw_color(BLUE);
draw_rect( pnt.x-a,pnt.y-arm_length-b,size.x,size.y);
mnms\an&onﬁﬁtmﬁCmv\.
draw_circle( pnt.x, pnty, a/2.0);
draw_circle( pnt.x, pnt.y-arm_length, a/2.0);

}

void Mod_Link:print() {
cout << "Lnk " << mod_id;
print_base();
cout << end|;

}

\¥¥¥¥¥¥¥¥* ZOQLOW:AH ¥&.¥¥¥&.¥¥¥\

float Mod_Joint:get_arm() {
return arm_length;

}

void go&..ucwbn“mumiﬁwo?»xﬁwvm pnt) {

const float a = size.x/2.0;

const float b = (size.y - arm_length)/2.0;

draw_color(GREY);

draw_circle(pnt.x,pnt.y,a);

draw_rect(pnt.x-a/ 2.0,pnt.y-arm_length-
U?S\.IWONHROFW\?&N?%V\.
\ *

draw_color(MAROON);

draw_line(pnt.x+DRAW_PORT_CLR, pnt.y+b, pnt.x+a, pnt.y);

draw_line_to( pnt.x+DRAW_PORT_CLR, pnt.y-b);

draw_line_to( pnt.x+DRAW_PORT_CLR, pnt.y-arm_length-b);
draw_line_to( pnt.x-DRAW_PORT_CLR, pnt.y-arm_length-b);
draw_line_to( pnt.x-DRAW_PORT_CLR , pnt.y-b );
draw_line_to( pnt.x-a , pnt.y );

128

draw_line_to( pnt.x-DRAW_PORT_CLR , pnt.y+b );
draw_line_to( pnt.x+DRAW_PORT_CLR , pnt.y+b );
*

}

void Mod_Joint::print() {
cout << "Jnt " << mod_id;
print_base();
cout << apply_torque << " Nm\n";

}

\¥¥¥¥¥¥&¥¥ gogslmzﬁmmmm ¥¥¥&.¥¥.—.&.¥\

float Mod_EndEff::get_arm() {
return arm_length;

}

void Mod_EndEff::draw(Point_Type pnt) {
const float a = size.x/2.0;
const float b = size.y - arm_length;
mnmiinowolwwoszvh
/* gripper */
if(mod_id < 420) {
draw_line( pnt.x-a/2.0 , pnt.y-arm_length, pnt.x-a
arm_length*0.666 );
draw_line_to( pnt.x-DRAW_PORT_CLR ,
arm_length*0.125 );
draw_line_to( pnt.x-DRAW_PORT_CLR, pnt.y+b );
draw_line_to( pnt.x+DRAW_PORT_CLR , pnty+b );
draw_line_to( pnt.x+DRAW_PORT_CLR ,
arm_length*0.125 );
draw_line_to( pnt.x+a , pnt.y-arm_length*0.666 );
draw_line_to( pnt.x+a/2.0 , pnt.y-arm_length );
draw_line( pnt.x+a, pnt.y-arm_length*0.666,
DRAW_PORT_CLR, pnt.y-arm_length*0.125 );

7

pnt.y-

pnt.y-

pnt.y-

pnt.x-



draw_line_to( pnt.x+DRAW_PORT_CLR , pnt.y-
arm_length*0.125 );
draw_line_to( pnt.x-a , pnt.y-arm_length*0.666 );
}
/* foot */
else {
draw_line( pnt.x+a/4.0 , pnt.y+b, pnt.x+a, pnt.y-arm_length );
draw_line_to( pnt.x-a, pnt.y-arm_length );
draw_line_to( pnt.x-a/4.0 , pnt.y+b );
draw_line_to( pnt.x+a/4.0, pnt.y+b );
}
}

void Mod_EndEff::print() {
cout << "Eef " << mod_id;
print_base();
cout << "torque " << apply_torque;
cout << "\ttype "<< ee_type << end];

}

\&¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥%&¥¥$¥¥¥&¥¥¥¥¥¥¥¥¥&¥¥¥ Hmmrruﬂwvm

&¥¥¥¥¥¥¥¥¥¥¥¥¥¥*¥¥\

void Task_Type::print() {
cout << "Task_Type::print()" << endl;

}
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mymath.h
/* Nathaniel Rutman

mymath.h
Commonly used math functions

change history:

02/14/95 created NZR

02/24/95 added Point NZR
*/

#ifndef -MYMATH_H_
#define -MYMATH_H_

#include <iostream.h>

inline float max(float a, float b) { return (@a>b)?a:b;)
inline float min(float a, float b) { return (a<b)?a:b;)

inline float asymp(float x) { return (1-1/(x+1)); }

class Point_Type {
public:
float X,y;
Point_Type() {
x=0.0;
y=0.0;
Y
wombwlﬂwvm%om:ﬁlﬂwﬁmmn a) {
X=ax;
y=ay;
L
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Point_Type(const float sX, const float sy) {
X =8X;
ww =sy;

Point_Type& oOperator=(Point_Type& a) {
X=ax;

y=auy;

return *this;
L
Point_Type Operator+(Point_Typeé& a) {
Point_Type res;

Tes.X =X + a.x;

res.y =y +a.y;

return res;
L

friend ostreamé& Operator<<(ostreamé s, Point_Type& a) {

return s << '(' << a.x <<<<ay << by
L
¥

#endif



stats.h

\ *
Nathaniel Rutman 03/20/95

stats.h

statistics on search
*/

#include "modclass.h” // forbool
#include "search_main.h" // for MAXLENGTH

#ifndef STATS_H_
#define _STATS _H_

enum test_names
{TDUM, TPOWER, TPORTS, TFEET, TSTEP,TSPAN, TWEIGHT,
TCOST, TLINK,TARM, TMAX};

class Stat_Type {
private:
int last_assy_rules;
int test_hit[TMAX];
int test_fail[TMAX];
int pending_test;
public:
int initial_mods;
int reduced_mods;
int ent_kit;
int ent_kit_rules;
int good_kits;
int kitslMAXLENGTH+1];
int cnt_assy;
int cnt_assy_rules;
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int assysfMAXLENGTH+1};

Stat_Type();

void good_kit(int);
void test(int);
void fail();

void print(int);
void print_all();
)

#endif



stats.C
\ %
Nathaniel Rutman 03/20/95

stats.C
statistics on search
*/

#include "stats.h"
#include "search_main.h" /* constants, get_time */

float combos(int n, int k) {
/* n different mods, choose k of them
(n+k-1)!/k!(n-1)!
*/
int ij=k;
float tmp = 1.0;
for(i=n; i<(n+k); i++) {
tmp *=1i;
if(j>1)
tmp /=j—;
}
for(i=j; i>1; i-)
tmp /=1i;
return(tmp);
}

float combos_plus(int n, int k) {
/* include kits of shorter lengths also */
float tmp=0;
for(int i=5; i<=k; i++) // 5 in min size
tmp += combos(n,i);
return tmp;
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Stat_Type::Stat_Type() {
/* initialize */
for(int i=0; i<=MAXLENGTH; i++) {
kits[i]=0;
assys[i]=0;
}
last_assy_rules=0;
cnt_kit=0;
cnt_kit_rules=0;
good_kits=0;
for(i=0; i<TMAX; i++) {
test_hit[i]=0;
test_fail[i]=0;
}
pending_test=TDUM;
}

void Stat_Type::good_kit(int 1) {

Stat_Type

/* got a good kit of length . Must be called after assys are made */

kits[l]++;

good_kits++;

assys|[l] += cnt_assy_rules-last_assy_rules;
last_assy_rules = cnt_assy_rules;

}

void Stat_Type:test(int testnum) {

/* new test, assumed passed unless fail() is called */
test_hit[testnum]++;
pending_test = testnum;

}



void Stat_Type::fail() {
test_fail[pending_test]++;
pending_test=TDUM;

}

void Stat_Type::print(int 1) {
/* stats for kits with length 1, plus running totals */

cout << "\nStats: " << initial_mods << " modules, length " << I;
cout << " gives " << combos(initial_mods, 1) << " combos.\n";
cout<<"  reduced to " << reduced_mods << " task-useful mods
("

cout << combos(reduced_mods, 1) << " combos)” << endl;

cout << "there are " << kits[l] << " good kits, with " << assys[l];
cout << " assemblies (for an avg " << (float)assys[l]/kits[l] <<
"N\n";

cout << "running totals: searched " << cnt_kit << " kits, ";

cout << cnt_kit_rules << " valid kit-rules, " << good_kits << "
assembled\n";

cout <<"into " << cnt_assy << " assemblies, of which ";

cout << cnt_assy_rules << " are valid.\n";

cout << "Elapsed time: " << get_time() << " seconds.\n\n";

for(int i=0; i<=TMAX; i++)

if(test_hit[i]>0) {
cout << "test "<<i<<" hit "<<test_hit[i]<<" filtered "
cout << (test_fail[i]*100.0)/ test_hit[i] << "%\n";

}
}

void Stat_Type::print_all() {

/* called by search_main at the end */
cout << "\nFinal stats:\n";
cout << initial mods << "

MAXLENGTH << " gives ";
cout << combos_plus(initial_mods, MAXLENGTH) << " total

combos.\n";

modules, up to length " <<
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cout << " reduced to " << reduced_mods << " task-useful mods

",
’

cout << combos_plus(reduced_mods, MAXLENGTH) << " combos)”
<< endl;
cout << "searched " << cnt_kit << " kits, ";
cout << cnt_kit_rules << " valid kit-rules, "
assembled\n";
cout << " into " << cnt_assy << " assemblies, of which ";
cout << cnt_assy_rules << " are valid.\n";
for(int i=1; i<=MAXLENGTH; i++)
if(kits[i]>0) {
cout << "Of length " << j;
cout << ", there are " << kits[i] << "
assys[i];
cout << " assemblies (for an avg "
“Nn";
}
for(i=0; i<TMAX; i++)
if(test_hit[i]>0) {
cout << "test "<<i<<" hit "<<test_hit[i]<<" filtered "
cout << (test_fail[i]*100.0)/test_hit[i] << "%\n";
}

cout << "Total elapsed time: " << get_time() << " seconds.\n\n";

}

<< good_kits << "

good kits, with " <<

<< (float)assys[i]/kits[i] <<



graphics.h
\ *
Nathaniel Rutman

graphics.h
C++ to C interface for graphics

02/22/95 created
*/

#ifndef _GRAPHICS_H_
#define _GRAPHICS_H _

enum

colors
:wr>nxnH\Sq.ﬂ.ﬂmuo\wcwwﬁmnmme“mZu?g}wOOZu

MO\OWme
nm\EZNnummeuw.wﬁ.dmnV\OgﬂmuuH\hﬂlwﬁﬂmnwwaSZ
uSw

extern "C" {

void draw_start();

void draw_color(unsigned long);

void draw_update();

void draw_clean();
void namilwgmaomrmomrmowwmga\.
void draw_line_to(float,float);

void mnmilnw.n_mAmomvmomrmcwc\.
void mnwitnmnzmomrmomvmomvmomch
void mumﬁlvoxEomvmomvmomrmowa\.

void draw_string(float,float,char *);
}

#endif
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graphics.c

\ *
Nathaniel Rutman

graphics.c

graphics drawing routines. Coordinate system is cartesian, 0,0 low
left

02/22/95 created
*/

/* X graphics commands:
XUSE%OERB%:Qmmﬁmw\avﬁaBi?m.gwlncamxrrmov ;
XUESHgmﬁbvﬁ.&wmmmmvcudf&wimbm\uﬂ%lnoamxvHo‘vo\»obov\.

XUnmSWmnS:%ﬁgwl&mvwm?gwlm325@8%:8:3xﬂ\Hoo\Hoobo
0,100);
XUnmSm#w:mAgwlawmﬁm%\wbvﬁ.mHséwbm\nﬂ%tno:wmxrH 10,110,"Hi
Steve",8);
XFillRectangle(my_display,
200,200,50,50);
XSetForeground(my_display, my_context, 700);

my_drawing, my_context,

Xmmrf.nAB%..&mwum%\n._wlmnms@bm\gvfnounmx_”.Kohpo\mo‘mo\o\mmo
*64);
* \ v

#include "service.h"
#include <string.h>

#define DRW_WIDTH 600
#define DRW_HEIGHT 500

#define ASPECT 0.788 /* aspect ratio */
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/* globals for drawing */
Pixmap my_drawing;
Display *my_display;
GC my_context;
XButtonEvent my_event;
float MAGNIFY=1000;
int track_x, track_y;

/* buffer to draw into */
/* pointer to X display variable */
/* X graphics context */
/* X Button event */
/* scale to 1 unit per pixel */
/* last point draw to */

void draw_clean() {
XSetForeground(my_display, my_context, 0);
XFillRectangle(my_display, my_drawing,
0,0,DRW_WIDTH,DRW_HEIGHT);
XSetForeground(my_display, my_context, 600);
}

my_context,

void draw_start()
{
int ij,k;
charc;
char name[26];
my_drawing =
mnmﬁlmummrmnmAUws\liuUﬂm\UwEnImHOmﬁ@B%r&mvhmv&@g
_context);
draw_clean();
XSetForeground(my_display, my_context, 1);

XUBSm:w:m?,.%lmmmﬂ_wv&B%l&msw:m\S%lno:8xvmo\HP..Em»m:
g for first assembly",26);
for(i = 20; i<DRW_HEIGHT; i+= 10) {
j=1/10-2; k = (i+DRW_HEIGHT)/10;
XSetForeground(my_display, my_context, »
sprintf(name,"%d" j);

XUSSmﬁgmﬁgvﬁ&mﬁmw\:&ﬂmnm.<<5m\Bwlnozﬁmxvmobbwba@mmv\.



XSetForeground(my_display, my_context, k);
sprintf(name,"%d" k);

xUnwimE:WABVFQmmv?%.gwl&migm\gwlnoamxvUw<<|<<:uﬂ
H/2,i,name,26);

}

update_graphics();
)

void draw_color(unsigned long color) {
XSetForeground(my_display, my_context, color);
}

void draw_update() {
update_graphics();
}

void draw_line(float x0, float y0, float x1, float yl)
{
track_x = (int)(x1*MAGNIFY);
track_y = UWS\..EEOE.HAESQa..g>ﬂzmm<¥>mmumnd\.

V.Unmigbm?dﬁmmmﬁ_m%\gv\t&méwnm\g%lnoamxvQ=~Xxo..§02
IFY),DRW_HEIGHT-
GbaA%O4Z>GZ~m<‘>mwmnﬁv\:wnrtx\:mnw..v& ;

}

void draw_line_to(float x1, float y1) {
int tmp_x = (int)(x1*MAGNIFY);
int tmp_y = UwSIEmHOmHAFGQH*EOZHE,.»,mmed“

XUBSED@Agwl&mvmm%\gvﬂmumig@B%lnoamxv»H.mnw.;x\aamoWI%
Amp_x,tmp_y);

track_x = tmp_x;

track_y = tmp_y;
}
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void draw_circle(float x0,float yO0,float r) {
int ulx = (int)((x0-r)*MAGNIFY);
int uly = UWSPEEOI.HAFQAQoﬁv*EOZEK;»»mwmndh
int rad = (int)(2*r*MAGNIFY);

XE:>2AB%IQmmv_m%\gwtmumiwbm\gwsn05~mxrEx\EvﬂmQ.nmaﬁ»
SPECT,0,360*64);
}

void draw_rect(float x1, float y1, float x_width, float _height)
{
track_x = (int)(x1*MAGNIFY);
track_ = DRW_HEIGHT-

(int)((y1+y_height)*MAGNIFY* ASPECT);

XmEWmnwmzm_m?ﬁ%l&mﬁ??g%l&miwbm\B%..nozﬁmxr:mnrlx\ﬁmo
k_y,(int)(x_width*MAGN IFY),(int)(y_height*M AGNIFY*ASPE
1))

}

void draw_box(float x1, float y1, float x_width, float y_height)
{
track_x = (int)(x1*MAGNIFY);
track_y = DRW_HEIGHT-
ﬁgxqu+%xrmmm~5..Z>Ozmm<;>mm.mnd“
XUBs‘WmnSbmnm?b%..&mﬁmw\Bwrmumigm\Swnno:»mxnbmnwuxb.
mnxlvsQEXxvim&r*Z\wOZQKV\chA%rvmmmr~¥g>02~m<4>m
PECT));
}

void draw_string(float x1, float y1, char *strng) {
int x = (int)(x1*MAGNIFY);
inty = DRW_HEIGHT-(int)(y1*"MAGNIFY*ASPECT);



Xgmim»ngmABvPQmmv_mv&BvP&mSmbm\Bvﬁno:nmxrx\vemqu\mam
n(strng));

}
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service.h

\¥¥4¥¥¥¥¥¥4¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥*¥¥¥¥¥¥¥¥¥4¥¥&&¥¥

Nathaniel Rutman

Graphics service routines
stolen from 1.00

2/21/95

¥¥¥¥&¥¥¥¥¥¥¥¥*4¥¥¥¥¥*¥¥¥¥¥¥¥*¥¥*%¥¥4¥¥¥¥¥¥¥\

#ifndef _SERVICE_C_
#define _SERVICE_C_

#include <stdio.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>

Pixmap start_graphics(unsigned int, unsigned int, Display **, GC
*);

void get_mouse_event(XButtonEvent "),

void update_graphics(void);

#endif
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service.c
#include "service.h"

/* yes they are all globals! */

Display *display; /* pointer to the display */
Window win; /*window to be used for graphics ~ */
int screen_num; /*screen number */

Window root; /* root window of display */

XSizeHints size_hints;  /* size hint structure for window manager

*/
GC the_GC; /* graphics context to be used */
GC copyGC; /*main GC */
XGCValues the_GC_values; /* values in graphics context */
Screen *screen_point;  /* pointer to screen */
/* Removed FILE declarations */
Pixmap buff; /* Pixmap used as drawing buffer */
XEvent event; /* structure to hold an XEvent */

#define INIT_NAME "start_graphics"
*/
#define E_ NOOPEN -1 /*

connection */
#define E_NOFILE -2

/* name of startup module

error-unable to open X

/* error-—-unable to open data file */

#define E_ZNOEVENTS -3 /* error—no events in file */
#define BORDER 2 /* size of window border */

#define TRUE 1

#define FALSE 0

/*--

*/

/* This routine starts up the X connection, creates and maps a
window,
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creates a Pixmap which gets returned to the caller and generally

injtializes things for the 1.00 student. The display pointer and
the

graphics context are returned to the user through pointer
arguments */

Pixmap start_graphics(width,height,p_display,p_context)

unsigned int width;  /* this is the width of window */
unsigned int height;  /* this is the height of window */
Display **p_display;  /* address of display pointer(returned)

*/
GC *p_context;
{

/* pointer to graphics context(returned) */

/* Open display and set key variables */

if(display=XOpenDisplay(NULL)) == NULL) {
fprintf(stderr,"%s: can't open display”,INIT_NAME);
exit(E_NOOPEN);

}

screen_num = DefaultScreen(display);

root = DefaultRootWindow(display);

screen_point = XScreenOfDisplay(display,screen_num);

mmwmmummgﬁmﬂém%?v&mrc ;

/* create the window */
win =
XnnmmwmmmgﬂumsgmoiA&mﬁm%koonmwumlwwbwm.x\mmnmlrgnm.v:
size_hints.width, size_hints.height, BORDER,
WhitePixel(display,screen_num),
BlackPixel(display,screen_num));

/* set properties for window manager */
Xmmﬁmnmbmwnmwaowm&mmA&mﬁm%\ég‘..Onmﬁanmﬁooe.\..u.co
Problem Sets", None,



NU LL,0,&size_hints);
/* elect events of interest and map window */

XSelectInput(display,win,ExposureMask | ButtonPressMask | Button
ReleaseMask);

/* setup GC */
SetupGC();
XMapWindow(display,win);

/* create blanked out Pixmap buffer for user */
buff = xnnmmﬁmwmxgmwE&Ew?im?iwmg‘rmmmz\
U&m:EUmﬁEommnnmmbﬁmnwmmb!ﬁombﬁvv‘.

ClearPixmap(width, height);
XSynchronize(display, TRUE); /* Allow other processes to share
CcryJ */
XNextEvent(display, &event);
/* load return values */
*p_display = display;
*p_context = the_GC;

return(buff);
}

ClearPixmap(w, h)
int w ,h;

{

GCgc;

gc = XCreateGC(display, win, None, &the_GC_values);
XSetGraphicsExposures(display, gc, False);
XSetForeground(display, gc, BlackPixel(display, screen_num));
XFillRectangle(display, buff, gc, 0, 0, w, h);
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/* this routine handles XEvents */
/* This is changed so that the */
/* function now requires that */
/* a pointer to a XButtonEvent */
/* is passed as an argument and */
/* loaded with a call to */

/* XNextEvent. */

void get_mouse_event(XButtonEvent * event)

{ /* Replaced: 4/91 ROC */
/* XButtonEvent *xb_event=NULL; */
/* with XEvent an_event;so  */
/* entire event struct canbe */
/*used. */

XEvent an_event;

/* set up event pointer for mouse */
/* events check for XEvents to be */
/* handled or returned to caller */

/* Removed update graphics callas  */
/* it has nothing to do with the event */
/* handler call. It is still called if */

/™ an expose event occurs. */
/* update_graphics(); */
*mwon int button = FALSE;  /* control var to skip over non-button
/ /* events. */
while('button) { /* Wait till a button is pressed */

XNextEvent(display, &an_event); /* Blocks until event occurs
*/

switch(an_event.type)(
case(ButtonPress):

/* Select event of interest. */



case( wzﬁonmﬂﬁmmmmw {

*event = an_event.xbutton; /* Joad xbutton struct into */
/* callers XButtonEvent struct */

button = TRUE; /* allow exit from loop. */
}
break;
/* if window obscured and then exposed */
/* redraw contents of buffer to screen */
case(Expose):{
cvnmwmtmnmﬁznmch
}
break;
default:{
}
break;
}
}
}
void update_graphics()
{
Xﬁomu%\f.mmﬁ&mﬁ_m%\ buff, win, copyGC, 0, 0,

mmnm.bmb"m.SEmemﬁmlrmzﬁm.r&mvv 0, 0);

XE:mZ&mmu_m%v\.
}

mmwmmnmwﬂam?&mmdwmmmrc
int width, height;
{

size_hints.x = 200;

size_hints.y = 50;
mmnmizbwm.gw:tsanr = width;
&N»..Ebnmbm:!rmwmg = height;
size _hints.max_width = width;
mmNm..r?»m.Smxlr&mrn = height;
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size_hints.width = width;
mmnmlaam.rmmmg = height;

size_hints.flags = USSize | USPosition | PMinSize | PMaxSize;
}

SetupGC()
{
5m|001<&=mm.mc
the_GC_values,
white */

reground = WhitePixel

(display, screen_num);
function = GXcopy; /*

GXequiv is for black am

the_GC = xnnmmﬁmnﬁ&mv_mvwﬁm?
(GCFunction | Oﬁmoamuocs&\
mn?mIOOL\&:mmv\.

copyGC = xnwmmamﬁnﬂ&mv_m%\ win, None, mumumlnn'a\&cmmv\.

Xmmﬁnwwrmanx@omzwmmﬁ&mv_mw\ the_GC, False);
XSetGr.

mﬁEamevOmsummA&mEm%‘ copyGC, False);



makefile
makefile

#

#

#  builds target from source files

#  Nathaniel Rutman 10/28/94

#

#If you run out of disk space, try uncommenting the line
#  BINDIR = /usr/tmp

# This will build all binaries
/usr/tmp

# and set up symbolic links to these files from your current working
directory

# i.e. the directory containing this makefile.

#

# You can cleanup all binaries and symbolic links by typing

#  make -f <makefilename> clean

# where <makefilename> is the name of this makefile.

(object files and executables) in

PROGS = search
# List of C++ source files.

CPPSRC = modclass.C groupclass.C assyclass.C kit.C assemble.C
mod_desc.C choose_in.C stats.C search_main.C

# List of C source files (if any).

CSRC = graphics.c service.c

*¥¥¥¥¥¥¥¥¥¥¥¥¥¥44*¥¥¥¥%¥¥¥¥¥¥¥4¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥4¥¥

AR ARARR RSN A

# End of section.
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*¥¥¥¥¥¥¥¥4¥¥¥¥¥¥¥¥¥¥4¥¥¥¥¥¥¥&4¥¥4¥¥¥¥¥¥¥¥¥*¥¥¥¥¥¥&&¥¥¥&¥¥¥¥¥¥
LR EEE L T TR SRR

# Name of the C++ compiler/translator.

# We will use the Cygnus g++ compiler, so be sure to "add cygnus" at
your

# athena% prompt. Also remember to
attached it before.

# (You do not have to specify the include paths for the C++ header
files; the

# Cygnus g++ compiler is invoked by a script which will take care
of this.)

"detach gnu" if you have

CPP = /mit/cygnus/${hosttypejbin/g++
# Name of the C compiler. (See above comments.)
CC = /mit/cygnus/${hosttype}bin/ gec

# Directory in which to maintain binaries.

# This has been set to the current working directory ie. the
directory from

# which the makefile was invoked. However, if you run out of disk
space, you

# may want to change it to /usr/ tmp.

BINDIR = .
#BINDIR = /usr/ tmp

# Macro for setting up symbolic links in the event that ${BINDIR}
is not the
# current working directory.

SETUPLINKS = @ if (test ${BINDIR} != .) then \
In -s ${BINDIR}/$@ $@; \
else \



break; \
fi

# Paths for X11 libraries

X_DIR = /mit/x11

X_LIB = ${X_DIR}/lib
X_INCLUDE = ${X_DIR}/include

# Paths for the tcl and tk libraries and header files.

TCLTK_DIR = /mit/tcl

TCLTK_LIB = ${TCLTK_DIR}/lib
TCLTK_INCLUDE = ${TCLTK_DIR}/include
COMPAT  =${TCLTK_DIR}

# List of include file paths required by the compiler.

CPPINCLUDE = 1 -I${TCLTK_INCLUDE} -I${X_INCLUDE} -
I${COMPAT}
CINCLUDE

I${COMPAT}

= -I. -I${TCLTK_INCLUDE} -I${X_INCLUDE} -

# List of library paths required at link time.
LIBDIRS = -L${TCLTK_LIB} -L${X_LIB}
# Compile time options.

CPPFLAGS = ${CPPINCLUDE}
CFLAGS = ${CINCLUDE}

# Link time options.
LDFLAGS =

# Libraries to be linked.
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LDLIBS = -Im -1X11
# -lm -ltk -ltcl -IX11

# Create lists of object files from the source file lists.

CPPOBJ = ${CPPSRC:.C=.0}
COBJ = ${CSRC:.c=.0}

# Define a list of significant suffixes as well as some suffix rules.
#

#

W Prp——

-SUFFIXES: # Delete the default list of significant suffixes.
-SUFFIXES: .0.C c# Add .0 .C .c to the current list of significant
suffixes.

# Construct a .o file from a .C file with same name.
# Binaries go in ${BINDIR].

.C.o:
@ echo "Building target $@:"
${(CPP} ${CPPFLAGS]} -o $(BINDIR}/$@ -c $<
${SETUPLINKS}

# Construct a .o file from a .c file with same name.
# Binaries go in ${BINDIR]}.

.C.0:
@ echo "Building target $@:"
${CC} ${CFLAGS} -o ${BINDIR}/$@ -c $<
${SETUPLINKS}



# Construct an executable from a .C file with same name.
# Binaries go in ${BINDIR}.

.C:
@ echo "Building target $@:"
${CPP} ${CPPFLAGS} ${LDFLAGS}
${BINDIR}/$@ $< ${LDLIBS}
${SETUPLINKS}

${LIBDIRS} -0

# Construct an executable from a .c file with same name.
# Binaries go in ${BINDIR).

.
@ echo "Building target $@:"
${CC}  ${CFLAGS}  ${LDFLAGS}
${BINDIR}/$@ $< ${LDLIBS}
${SETUPLINKS}

${LIBDIRS} -0

# Make targets.
#
#-

# Ensure that all programs have been built by making target "all".

all: ${PROGS}
@ echo "Done!"

# Making following target will remove all the object files and
executables

# in your current directory, as well as those in ${BINDIR}.
perform this

To
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# cleanup operation, type
# make -f <makefilename> clean
# where <makefilename> is the name of this makefile.

clean:
@ rm -f ${PROGS} *.0
@ echo "Cleaned up current working directory.”
@ if (test ${BINDIR} != .) then \
cd ${BINDIR}; rm -f ${PROGS} *.0; \
echo "Cleaned up ${BINDIR}."; \
else \
break; \
fi

# Build the final executable(s) from the object files. If the list
${PROGS}

# contains multiple programs, then each program will be assumed to
depend on
# all of the
avoid this,
# you could list each of the targets separately with its respective
# dependencies, using a format similar to the one used here.)

object files in the lists ${CPPOBJ} and ${COBJ}. (To

${PROGS}: ${CFPOBJ} ${COBJ}

@ echo "Building target $@:"

cd ${BINDIR}; \

${CPP} ${LDFLAGS} ${LIBDIRS} -0 $@ ${CPPOBJ} ${COBJ}
${LDLIBS}

${SETUPLINKS}

# The following
dependencies.

section modifies itself to reflect your file

depend:
makedepend ${CINCLUDE} ${CSRC} ${CPPSRC}



# DO NOT DELETE THIS LINE - make depend depends on it.
graphics.o: service.h /usr/include/stdio.h
/usr/include/sys/feature_tests.h

graphics.o: /mit/x11/include/X11/Xlib.h /usr/ include/sys/types.h
graphics.o: /usr/include/sys/machtypes.h
/usr/include/sys/select.h

graphics.o: /ust/include/sys/time.h /ust/include/ sys/time.h
graphics.o: /mit/x11/include/X11/X h
/mit/x11/include/X11/ Xfuncproto.h

graphics.o: /mit/x11/include/X11/Xosdefs.h /usr/include /stddef.h
graphics.o: /mit/x11/include/X11/Xutilh /usr/include /string.h
service.o: service.h /usr/include/stdio.h
/ust/include/sys/feature_tests.h

service.o: /mit/x11/include/X11/Xlibh /usr/ include/sys/types.h
service.o: /usr/include/sys/ machtypes.h /usr/include/sys/select.h
service.o: /usr/include/sys/time.h /usr/include/ sys/time.h
service.o: /mit/x11/include/X11/X.h
/mit/x11/include/X11/ Xfuncproto.h

service.o: /mit/x11/include/X11/Xosdefs.h /usr/include /stddef.h
service.o: /mit/x11/include/X11/Xutilh
modclass.o: mymath.h modclass.h
/usr/include/string.h

modclass.o: /usr/include/sys/feature_tests.h
groupclass.o: groupclass.h modclass.h mymath.h
assyclass.o: assyclass.h modclass.h mymath.h  groupclass.h
graphics.h

assyclass.o: /usr/include/stdio.h /usr/include/ sys/feature_tests.h
kito: mymathh groupclassh modclass.h search_main.h
assyclass.h kit.h

kit.o: /usr/include/string.h /usr/include/ sys/feature_tests.h
assemble.o: assembleh assyclassh modclass.h mymath.h
groupclass.h

assemble.o: graphics.h stats.h search_main.h

mod_desc.o: mod_desch modclass.h mymath.h  groupclass.h
/usr/include/stdio.h

graphics.h
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mod_desc.0: /usr/include/sys/feature_tests.h

choose_in.o: choose.h search_main.h modclass.h mymath.h
assyclass.h

choose_in.o: groupclass.h kit.h stats.h
stats.o:  search_main.h modclass.h
groupclass.h stats.h

search_main.o: search_main.h modclass.h mymath.h assyclass.h
groupclass.h

search_main.o: mod_desc.h assemble.h kit.h
stats.h

search_main.o: /usr/include/sys/time.h /usr/include /stdio.h
search_main.o: /usr/include/sys/feature_tests.h

mymath.h  assyclass.h

choose.h graphics.h



