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Abstract

The objective of this work is to study plane strain fully-plastic crack growth
behavior under pure extension in a non-hardening material using a FEM/continuum model.
A nodal release technique is implemented in the elements on the symmetry line of a deeply-
cracked single edge specimen so that the force at the crack-tip node on the symmetry line is
made zero after several time steps upon the satisfaction of the chosen fracture criterion.
The loading geometry-based crack-tip opening angle (CTOA), which McClintock, et al.
(1994) proposed, is chosen as a fracture criterion for the growing crack.

First, the sensitivity of the results to the choice of mesh configuration is studied,
and the results of the present model are compared to those of the line-spring model (Lee
and Parks, 1994). Effects of deformation-induced geometry change on the crack-tip field
and crack extension behavior are also intensively investigated.
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Chapter 1

Introduction

In this chapter, parameter characterizations of crack-tip field and micromechanisms

of ductile fracture are reviewed. Also, the crack-tip opening angle parameter, which is

adopted as the crack-growth criterion in the present work, is introduced. Then, the outline

of present work is briefly stated.

1.1 Background

1.1.1 Parameter characterization of crack-tip field

Around 1950, singular crack-tip fields based on the stress intensity factor K were

developed based on the theory of elasticity in order to describe the singular crack-tip fields.

Under small-scale yielding, when the plastic zone is small compared to the characteristic

dimension of the specimen, the single parameter K is useful to characterize the crack-tip

field. This provides a fracture criterion for a brittle material, when small-scale yielding

exists at the crack tip. When the stress intensity factor K determined from the loading

condition reaches the critical value Kc, the crack begins to grow. However, if the structure

being assessed is not sufficiently large compared to the annular region of K-dominance



around the crack-tip, the validity of the relation K= Kc becomes questionable for

predicting fracture of the structure. This limit of linear elastic fracture mechanics (LEFM)

based on K provided the motivation for the study of elastic-plastic fracture mechanics.

Hutchinson (1968) and Rice and Rosengren (1968) independently derived the

asymptotic crack-tip fields for a power law hardening material based on deformation theory

of plasticity. They found that J can be used as a measure of deformation intensity by

treating the response of power law hardening material to monotonic loading as that of a

non-linear elastic material. At distances close to the crack-tip, elastic strains are negligible

in magnitude compared to the plastic strains. In such case, the relationship between

uniaxial strain e and stress a is expressible by

S=a--, (1.1)

where o, is tensile yield strength, e, (=a, /E) is the yield strain and E is Young's

modulus; n is the strain hardening exponent, and a is a dimensionless parameter. J2 -

deformation theory of plasticity generalizes (1.1) to multiaxial states as

,j _3 a s, (1.2)
eC 2( ay, ",

where sij is the deviatoric stress and a, = V3ss, /2 is the equivalent Mises yield stress.

Using the above constitutive relationship for the material, for a mathematically sharp,

symmetrically loaded crack, the asymptotic expression of the crack-tip stress and strain

fields (HRR field) in the region of small strains, can be obtained as



, (r, 0) -4 , Ir J (e,n) = ri "RR, (1.3)

e, c(r, 0) - e, ae, 11+ (0, n) (1.4)

A normalization constant I1 and the dimensionless functions gEj(O,n) and ri,(O,n)

depend on their argument(s), as shown in (1.3) and (1.4), and on whether either plane

strain or plane stress is obtained at the crack tip. The J-integral is defined as the energy

release rate in a nonlinear elastic body containing a crack and essentially measures the scale

of crack-tip deformation. Considering F as any contour encircling the crack-tip in a

counter-clockwise direction (Fig. 1.1), the line integral definition of J is

J = fWdy - T--ds,
r dx (1.5)

where W is the strain energy density, T are components of the traction vector acting

outward on the contour, u1 are displacement vector components and ds is a length

increment along the contour. Rice (1968) showed that the J-integral is path-independent if

the material is homogeneous in the x-direction, with no body forces and traction-free

crack faces. Under small scale yielding, J and K, are related by

J = K,2 / E' (1.6)

where E'= E for plane stress, E'= E / (1- v2) for plane strain; v is Poisson's ratio.

Similar to the crack initiation criterion associated with K, the parameter J, which can be

calculated from the loading conditions (loading should be proportional for the deformation



theory to be valid), can be used for a crack initiation criterion. When the applied J equals

the critical value J, of the material, the crack begins to grow.

However, in shallow-cracked geometries, the loss of J-dominance at the crack-tip

is observed (Al-Ani and Hancock, 1991). Hancock and co-workers argued that the loss of

J-dominance results from the geometry-dependent non-singular constant stress term, the

T-stress, in Williams' (1957) expansion series for the elastic field around a crack:

K
T,i(r,0) = f (0) + T 6,,S8,. (1.7)

Initially, Larsson and Carlsson (1973) brought out the significance of the non-singular

constant stress term in order to solve the crack-tip problem using a boundary layer

approach (Rice, 1968). In their work, T-stress was observed to modify the shape of

plastic zone size and to affect the crack-tip deformation. Bilby, et al (1986) also showed

that negative T-stress substantially reduces crack-tip triaxiality (the ratio of the mean stress

to the Mises stress at the crack-tip), which is a common measure of crack-tip constraint.

J-dominance (when the local field is close to HRR field) implies that high crack-tip

triaxiality is maintained in the crack-tip region. The T- stress, along with J-integral, can

be used to describe the crack-tip fields under low triaxiality constraint (Betegon and

Hancock, 1991).

However, J- T characterization is applicable only under well-contained yielding,

and is formally undefined in fully yielded conditions. Therefore, for describing crack-tip

fields in large-scale yielding, another two-parameter characterization J- Q was proposed

by O'Dowd and Shih (1992). The second parameter Q represents a variation in

hydrostatic stress from the reference field (either HRR or SSY solution), and it can be

obtained by subtracting the reference field from the complete field obtained from highly

refined finite element calculations. By observing full-field solutions, O'Dowd and Shih



(1992) showed that the Q-family of crack-tip fields exists for different crack geometries

under large-scale yielding (O'Dowd and Shih, 1992).

1.1.2 Ductile fracture

Ductile materials are used for construction of pressure vessels and piping because

their plastic behavior provides both warning before crack initiation and some amount of

stable crack growth (Kim, et al., 1994a). In ductile materials, as a crack grows in a stable

manner, a methodology accounting for stable growth of the crack as well as the crack

initiation criterion, is needed. Crack initiation criteria can be obtained using a single or two

parameter characterization and the material properties. However, for stable crack growth,

crack-tip opening angle CTOA is believed to be a useful parameter to characterize the

feature of stable crack growth (In elastic-plastic fracture mechanics, CTOA is ill-defined

because of the elastic-strain singularity). The early stage of stable crack growth analyses

associated with a local CTOA criterion are found in the works of Andersson (1973),

Kanninen, et al. (1979), and Shih, et al. (1979). But, their computation of CTOA was

somewhat arbitrary, without any physical basis.

Many workers found that crack growth in ductile material is a result of hole

nucleation, growth and linkage in the region ahead of crack-tip (McClintock, et al., 1994),

where elastic strains are usually negligible. Due to geometric constraint at the crack tip,

triaxiality is usually high enough to nucleate holes, and the near-tip plasticity in ductile

materials allows the holes to grow and link to the main crack-tip. Gurson (1977) proposed

the widely-known micro-mechanical model for a porous ductile material, using averaging

techniques similar to those of Bishop and Hill (1951). In his work, an aggregate of holes

and rigid-plastic matrix material, rather than a polycrystalline aggregate, was considered as

the characteristic volume element, and approximate upper-bound solutions on the micro-



level were used to derive a macroscopic yield condition for the material. This model has

been applied to shear band localization between large scale holes. Tvergaard and

Needleman, and many other workers applied the Gurson (1977) model to their

computational models to investigate ductile crack growth. In the same spirit, a recent

computational approach for ductile crack growth under large scale yielding can be found in

the work of Lin, Shih, and Hutchinson (1994).

However, McClintock, et al. (1994) pointed out that if the ductile crack growth is

only a result of micro-mechanisms of hole nucleation, hole growth, and hole linkage due in

the shear band, the CTOA would only be a few degrees. Thus, they concluded that much

of work related to fracture is spent in tearing between the irregular crack paths running up

or down, due to planar localization or to fine cracks. From the observation of the zig-

zagging feature of the cracked surface profile of ductile material, McClintock, et al. (1994)

developed a sliding-off and shear-cracking model based on the near-tip plasticity and

predicted CTOA in terms of the slip-line angle, normal stress, and shear displacement

across the slip-line. Also, using limit analyses, they showed the strong dependence of

CTOA on loading configurations. Furthermore, this development of the CTOA criterion

motivated Kim, et al. (1994c), and Lee and Parks (1994b) to construct the line spring

models for fully-plastic, plane strain crack growth simulations. A summary of CTOA-

based fully-plastic crack growth developed by McClintock et al. is given in Chapter 2.

1.2 Present work

Several asymptotic solutions were suggested to characterize the crack tip field of

stable crack growth in an ideally plastic solid under plane strain small scale yielding (Rice

and Sorenson, 1978; Drugan, et al., 1982). However, when it comes to stable crack

growth in low-strength alloys, the region of the of dominance of existing asymptotic



solutions is observed to be even smaller than the fracture process zone. Such limitations of

the existing asymptotic solutions brought out the need for construction of a fully plastic

plane strain stable crack growth criterion. McClintock, et al. (1994) proposed a crack-

growth criterion in terms of CTOA from a sliding-off and shear-cracking model in order to

account for fully plastic plane strain crack growth. Using upper bound limit analyses, they

linked the value of CTOA to the given loading conditions so as to allow CTOA to evolve,

depending on the loading geometry, during stable crack growth. Recently, Kim, et al.

(1994c) and Lee and Parks (1994b) adopted the CTOA criterion to construct a line-spring

model for the computational simulation of fully plastic crack growth in 3-D problems.

Here, in this work, the CTOA criterion is implemented in a 2-D plane strain

FEM/continuum model of a deeply-cracked single edge specimen composed of an isotropic

elastic/perfectly-plastic material. The main objectives of this work are to investigate both

the macroscopic material responses and near-tip fields during fully plastic plane strain crack

growth under pure extension. All the line spring model calculations (Lee and Parks,

1994b) show that final through-thickness penetration of high aspect ratio surface flaws in

tension (shells are meant to be loaded in tension) occurs under essentially pure extension.

In Chapter 2, the meso-mechanics of estimating CTOA from the sliding-off and shear-

cracking model will be addressed, and the least upper bound approach method for

determining crack-tip opening angle will be reviewed. In Chapter 3, numerical

implementation of a nodal release technique will be discussed. In Chapter 4, numerical

results using the FEM/continuum model will be presented, and the effects of material

properties and geometric quantities on crack growth behavior will be discussed. Also, the

results will be compared to those of the results of the line-spring model (Lee and Parks,

1994b) to verify the consistency of the two model formulations.
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Fig. 1.1 The contour definition of J-integral.
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CHAPTER 2

Crack Growth Criteria

In this chapter, the CTOA criterion, which is adopted in the present

FEM/continuum model for fully-plastic crack-growth simulation, is discussed. First,

limitations of existing asymptotic solutions for crack growth are investigated under fully

plastic conditions. Then, a brief summary of the work for the development of the CTOA

criterion for fully plastic crack growth is given, and the implementation of the criterion into

our present model is discussed.

2.1 Limitations of asymptotic solutions for growing crack

Several asymptotic solutions were suggested to characterize the crack-tip field of

stable crack growth in an ideally plastic solid under plane strain small scale yielding (Rice

and Sorenson, 1978; Drugan, et al., 1982). Furthermore, Drugan and Chen (1989)

introduced a family of asymptotic solutions, which can be applied even under large scale

yielding and general yielding where the crack-tip triaxaility is much lower than small scale

yielding. They also presented m -family of analytical solutions in order to predict the stress

fields for different finite fully-yielded crack geometries (1991).



However, Gudmunson (1989) and McClintock, et al. (1994) found that the

dominant region of existing asymptotic solutions for the fully-plastic plane strain crack

growth of ductile material is much smaller than the fracture process zone. For example, for

a growing crack under mode I, the equivalent strain e" at distance r in the crack-tip field

can be approximated in terms of the tensile yield strain e, and the plastic zone size r,

(Drugan, et al., 1982):

eP = e, ln(0.2r / r). (2.1)

Replacing ep by the fracture strain e,, and then rearranging (2.1) provides a radius of

dominance, rd:

rd = 0.2rp exp(-e, / e,). (2.2)

For ductile, low strength materials, with a typical value of e, = 0.002, and even taking e,

as low as e, = 0.05 under the assumption of high crack-tip stress triaxiality, and with a

value of rý as large as r = 100mm under the assumption of fully-plastic yielding of a test

specimen, McClintock, et al. (1994) found the value of, rd = 1.44 x 10-5 pm, which is so

small as to be irrelevant to continuum aspects of ductile fracture. Such limitations of

existing asymptotic solutions led to the construction of the loading geometry-based CTOA

(McClintock, et al., 1994) for the fully-plastic plane strain crack growth of low-strength

ductile material. Furthermore, the construction of the CTOA models motivated Kim et al.

(1994c), and Lee and Parks (1994b) to independently develop line-spring models to

simulate constraint-sensitive fully-plastic crack growth in 3-D. Our present FEM model

also employs the loading geometry-based CTOA criterion as a fracture criterion in order to



simulate fully-plastic crack growth in plane strain. In the following sections, a brief

summary of the work for the development of the CTOA criterion will be given, and the

implementation of the criterion into our FEM model is also discussed.

2.2 Sliding-off and Shear-cracking model

Macroscopically straight crack growth is found to be a result of microscopic zig-

zagging (McClintock, 1969; Carson, 1970; Tvergaard and Needleman, 1992). From this

kind of feature of the crack path on the microscopic scale, McClintock et al. (1994)

developed a sliding-off and shear-cracking model for fully-plastic, quasi-steady, plane

strain crack growth in rigid/plastic non-hardening materials. Here, the sliding-off and

shear-cracking model of McClintock, et al. (1994) is briefly reviewed.

In a sliding-off and shear-cracking model, the crack is assumed to grow in a zig-zag

fashion, sliding off by s and cracking by c along a shear band before changing direction,

as shown in Fig. 2.1. The geometry gives the form of CTOA in terms of slip line angle 0s

and s/c as

(CTOA) ssinO 0 tan0 (2.3)
2a (c + c+s)cos CO - 2(c / s)+1

The total shear strain in the advancing shear band at fracture can be thought of as the sum

of strains required to make holes initiate, grow and link to the form of micro-cracks. The

width of the model shear band produced during one step of zig-zagging is (s + c) sin 0.

Then the geometry gives the corresponding shear (fracture) strain, y, , as

s
Y, = (2.4)

(s + c)sin 280



Replacing (c/s) from (2.4) into (2.3) gives

CTOA tan 0tan - tan (2.5)
2 2/(y, sinQs)-1

The fracture strain depends on the mean normal stress across the slip-line at the crack tip

and on the material properties. Accounting for hole nucleation and growth in a shear band,

McClintock, et al. (1994) suggested a semi-empirical functional form for fracture strain 7y,

as

(1-1/n)AY7 + B(as) (2.6)
' sinh[(1- 1/ n)as /'ro]

where to is the yield strength in shear, and n is the strain hardening exponent (plastic

strain proportional to (stress) ") . The dimensionless constant A and function B(Ts) are

viewed as material properties considered to be determinable from fully plastic crack growth

tests. The first term on the right hand side of (2.6) represents a strain for hole growth to

linkage by micro-rupture, while the second term represents the strain for hole nucleation.

Based on the model of hole growth in a shear band (McClintock, et al., 1969), the

parameter A is related to the critical hole growth ratio at fracture by A = 21n(Rf,/R),

where R. is the initial hole size and Rf is the hole size at point of micro-localization

between two grown holes. Fig. 2.2 shows the predicted inverse exponential dependence

of the CTOA on , rzo when a non-hardening (n = oo) plane strain SEC specimen is

subject to a flow field with Os= 45 degrees. Typical values of A ranging from 0.2 to 1.2

in an increment of 0.2, were plotted, and no nucleation strain (B (o-s)=0) was assumed.

Fig. 2.3 shows the dependence of the estimated CTOA on the slip-line angle for a non-

hardening (n = oo) material having B (a,)=0 (McClintock, et al. 1995).



2.3 Least upper bound analyses

In a region of extensive plastic deformation, the elastic strain is small compared to

the plastic strains and can be neglected. If strain hardening is also negligible, then the

material can be idealized as a rigid-perfectly plastic material. In such a fully-plastic region,

the slip-line theory provides an effective method to predict deformation and stress fields.

Although constructing the slip-line fields provides accurate solutions of the

deformation fields in the fully plastic region, the slip-line field might not always be easy to

construct. Therefore, in such cases it is attractive to estimate the upper limit load, which

meets only the compatibility conditions and the given displacement boundary conditions.

Kim, et al. (1994a) replaced the slip line field with one single arc based on kinematically

admissible deformation fields and determined the least upper bound arc for a deeply-

cracked single edge specimen where plastic deformation is constrained to the ligament for

all loading conditions (Lee and Parks, 1993). Furthermore, for the deeply-cracked single

edge specimen, these least upper bound analyses provide information on local crack-tip

parameters such as crack-tip stress triaxiality and slip-line angle, which are useful in

determining the CTOA. The predicted values of both global and local parameters solutions

from the least upper bound (Kim, et al. 1994a) are found to agree well with the results of

the FEM limit analyses by Lee and Parks (1993). Here, the least upper bound analyses for

the deeply-cracked single-edge specimen of rigid/plastic non-hardening material under

combined tension and bending are summarized (Kim, et al., 1994a).

First, three generalized forces such as shear force S, axial force N and bending

moment M are introduced. When two of them are given, for example, S and N, and a

kinematically admissible field as shown in Fig. 2.4 is applied, the upper bound theorem

limits moment M as



M :,oR'(R 2 -0 1)-N( + L). (2.7)

Here, M + N(t/2 + L) is the moment about the origin 0, and four kinematical variables

(0 1,02, L, R) are subject to two kinematical constraints

L = Rsin, 

(2.8).L+1= Rsin02

When 0 and 02 are selected as independent among the four kinematic variables, with the

given upper bound solution, the least upper bound, can be obtained (McClintock, et al.,

1994) by minimizing the right hand side of (2.7) with respect to 0, and 02, and the solution

of the least upper bound is described implicitly by the optimality conditions:

1 N
(0~ - 01)cos01 - (sin0 2 - sin 1)(- + - sin02 cos 1 ) =0, (2.9)

2 2r10
1 N

(02 - 0) cos02 - (sin 02 - sin 0)( + -sin 1 cos02) = 0. (2.10).
2 2r.l

The normal component of the traction distribution along the optimized arc is assumed to

satisfy Hencky's equilibrium equation such that

(0p) = oa, + 27,(0(-0,) (2.11)

where the constant a, is the normal stress across the flow line at the reference point 0 = 0,

on the arc. If the normal stress , (0,) is adjusted to equilibrate the shear force (S = 0),

then the resulting traction distribution 0(0) along the optimized arc (along with shear

traction -r,) also equilibrates both the other prescribed force, N, and the (unspecified) least



upper bound, M,,. Thus, all global equilibrium equations are satisfied by using the local

stress field associated with the flow of the optimal kinematical field. The corresponding

crack-tip normal stress a, and slip angle e8 are given from Fig. 2.4:

" = a, + 2r(02 0,); es = 02. (2.12)

The loading parameter pu is introduced to measure the tension-to-bending ratio as

M + Na / 2
I = , (2.13)

where M + Na / 2 is the bending moment about the mid-ligament of the SEC specimen.

Using a small geometry change continuum finite element model composed of an

isotropic elastic/plastic material obeying non-hardening J2 flow theory of plasticity, Lee

and Parks (1993) conducted limit analyses. The results were in good agreement with the

simple estimates of Os and a, from 2.9 and 2.12 as well as the corresponding limit load

state calculated from assumed tractions on least upper bound flow fields (Fig. 2.5, Fig.

2.6, Fig. 2.7).

Furthermore, McClintock, et al. (1994) extended the kinematically admissible field

for the stationary crack under fully plastic conditions thus obtained to a fully plastic

growing crack in order to relate the CTOA to the current loading (bending-to-tension ratio

y.) during crack growth. This extension was made based on the following argument:

Under fully plastic conditions, elastic strains are negligible so that the crack-tip field

(stress-strain field) would be incrementally the same as for the stationary crack, and the

plastic strain can be obtained by the superposition of the plastic strain increments with

respect to the successive crack-tip positions. Therefore, following this argument, inserting

the least upper bound solutions, a, and 0, of (2.11) into (2.5) and (2.6) gives the



instantaneous CTOA in the fully plastic deeply-cracked SEC specimen as a function of

current load ratio ~ . Fig. 2.8 shows the predicted variation of CTOA with respect to P in

non-hardening plane strain single edge crack specimens for the values of A = 0.2 through

1.2 for B(T,) = 0.

In our FEM/continuum model, the tension-to-bending ratio y is readily determined

from symmetry plane nodal reactions. Here, r, and 0,, which characterize the crack-tip

fields, are assumed to be dependent on only u in the manner as shown in Fig. 2.6 and

2.7. Then, the CTOA is determined through the relation as shown in Fig. 2.8. This

macroscopic approach to CTOA accounts for the local aspects of the crack-tip fields

indirectly through the current loading ratio /p. The coupling of deformation field with the

nodal release is not taken into account in the present model formulation. Along with the

loading geometry-based CTOA, a debonding algorithm is implemented into the elements on

the expected crack-growth path. Upon the satisfaction of the local fracture criterion (the

loading-geometry based CTOA), the nodal force at the crack tip is reduced to zero and the

crack advances by one element-length.
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Fig. 2.1 Sliding-off and shear-cracking m6del for fully plastic, plane strain quasi-steady
crack growth (McClintock, et al., 1994).

, IVr



0

U

0.0

•01-N

0

H-~
U:

0.5

O-s/( 2-e)

1.5 2.0 2.5 3.0

o.1(2-r0 )

Fig. 2.2 CTOA vs. o, /(2'r 0 ) in a non-hardening material (n = o,) for 0 = 450
and B(or,) = 0.

A= 1.2 low triaxiality

1.0

0.8

0.6 es = 450

0.4

0.2

• • 1 L L , • L L L _I



high triaxiality

20

18

16

12r

10 r

8v
6
4

2

0'
30

a, /2•o = 1.5

r, /2ro = 1.5

a, /2•, = 2.0

a, /2ro= 2.0

Slip-line angle

low triaxiality

-- A = 0.5
- A = 1.0

a, /2To = 1.0

a, /2-o= 1.0

40 50

Slip-line angle 0, (deg)

Fig. 2.3 CTOA vs. 0, in a non-hardening material (n = o) for B(o,) = 0.

4--

0U
(-

08 (deg)

011j

t,

.A=(
-A=

- ------- - --

" ~ """~"" "' '

,·

~~~· ·- ~



N,

0

N,22

Fig. 2.4 Plane strain single edge specimen subject to combined tension and bending
loading condition (left). Slip-line angle 0, and normal stress a, across the
flow line at the crack tip are also shown. Kinematically admissible field (right)
used by Kim, et al. (1994a) to develop a least upper bound yield surface.

A8P



Finite element
results

(Lee and Parks)

Upper bound
analysis

e.100

0.2 0.4 0.6 0.8

N /(2Ar1)

Fig. 2.5 Yield locus for a deeply-cracked single edge specimen subject to combined
tension and bending.

I-

1

·,,

0

- -- --- 1



0
V-

b

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

,u=(M±Na/2)/(NE)

Fig. 2.6 Normal stress o', across the flow line at the crack-tip of a deeply-cracked single
edge specimen as a function of the loading ratio, p.

0.0 0.2 0.4 0.6 0.8 1.0

u= (M+Na/2)/(Ne)

Fig. 2.7 Slip-line angle 08 at the crack-tip of a deeply-cracked single edge specimen as a
function of p.



90

80

70

2=A
50 0

40

8
30

20

0

0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

y = (M + Na/2)I(Nl)

Fig. 2.8 CTOA vs. the loading ratio Au in a non-hardening (n = oo) plane strain single
edge specimen for B(oa) = 0.

0,
H,

I I I

_I _
__F L

1 i



Chapter 3

Numerical Implementation

A plane strain single edge specimen composed of an isotropic elastic/plastic material

is modeled using a commercial finite element program (ABAQUS, HKS, 1994). Using

symmetry arguments, only half of the specimen is considered in this work. The boundary

conditions of combined displacement and rotation are imposed on the top edge of this finite

element model as shown in Fig. 3.1. The magnitudes of the displacement and rotation at

the loading point are made large enough to bring the material to fully yielded conditions.

Successive relaxation of the nodal forces at the node representing the crack tip is

simulated in the main body of the ABAQUS finite element program.

3.1 Symmetry boundary condition

For the purpose of nodal release, a spring element is generated using the

FORTRAN subroutine called UEL, which is available in ABAQUS. The spring element is

connected to each node on the symmetry line of the uncracked part as shown in Fig. 3.2.

The nodal stiffness (= K22) of the spring element is initially specified to be much greater

(about ten thousand times greater) than the uniaxial stiffness per unit thickness of one half

of the specimen, which is given by



Ew
K (3.1)

where E is Young's modulus of material, w is the width of the specimen, and L is the

length of a half of the specimen. Therefore, the very high stiffness spring elements enforce

the symmetry boundary condition by fixing the nodes on the symmetry line of the

uncracked part due to such high stiffness. Once a chosen fracture criterion is satisfied at

the node representing the crack-tip, the stiffness of the spring element connected to the

crack-tip node is made zero, and the nodal force is reduced with increasing far-field

displacement and rotation.

3.2 Finite element formulation for the loading geometry-based
CTOA

The loading ratio, p, is readily determined from the nodal reactions. Summing all

the nodal reactions along the symmetry line gives the axial force N (Fig. 3.3) :

N= F, (3.2)

where F. is the nodal reaction at node i. The bending moment taken at the mid-ligament,

M, is determined by

M = F (x, - 1/ 2) (3.3)

where xi represents the distance of node i from the current crack-tip node and I

represents the current ligament length. Then, the loading ratio yi is given as



M
M. (3.4)NI

Finally the loading geometry-based CTOA, CTOA(P ), is determined with the relation

shown in Fig. 2.8.

3.3 Nodal force relaxation at the crack-tip node

Upon the satisfaction of a chosen criterion, the reaction force corresponding to zero

displacement at the crack-tip node is computed and relaxed to zero in several time

increments as follows:

At the moment the fracture criterion is met, t,, the crack tip is represented by

node n. Using the local geometry at the crack-tip, at time t during debonding the force Fý

at node n can be given as

F(t) = F(t,) 1 "-(t (3.5)

where Fý (ti) is the force at node n at time t, when the chosen fracture criterion is met, 3,

is twice the relative displacement of node n from the symmetry line at time t (Fig. 3.4),

and Ac. is the corresponding value of 8. when F, reaches zero. The parameter ,8. is

determined as

, = 2Aa" tan(CTOA(p(ti )/2)) (3.6)



where Aa" is the length along the crack direction of the element directly ahead of the

currently-releasing node n (Fig. 3.4). The CTOA is computed at the time ti , (with (3.2),

(3.3), and (3.4)), and is kept constant during debonding of node n.

Unfortunately, we were unable to implement the debonding curve of (3.5)

associated with 8,, in the present model, due to numerical difficulties. Thus, to avoid the

difficulties, the force at the crack-tip node is taken to depend on the far-field geometry;

i.e., it is decreased with far-field displacement and rotation. Also, for consistency with the

local CTOA criterion, 5, is estimated with the total far-field displacement (= 6) and total

rotation (=6) (Fig. 3.1), using the kinematic relationship which Lee and Parks (1993)

proposed in the fully plastic regime. The plastic part of 8( (= • •') can be related to the

load point plastic displacement ( 6"') and plastic rotation (= 0'~') in incremental form as

A •(P) = A(P)' 1 + L2 - - AS(P ~  (3.7)

where a/ w is the instantaneous relative crack depth, and AS' ' / (tAO'€" ) is the ratio of the

load-point plastic displacement increment to the plastic rotation increment multiplied by the

single edge crack specimen thickness. In the case of the single edge deep-crack specimen

(a/w >0.35), L2, which represents the degree of negative relative rotation of the crack

flank with respect to the far field rotation, is unity. Since the specimen is in the fully plastic

regime, the elastic part of S, and elastic parts of 5 and 0 can be neglected

(8, = 8P) ,8 = 5(P) and 0= 90P)) . Therefore, in the present model, replacing ,. with the

far-field displacement (= 6) and rotation (= 0), the force F, is given at time t as

F (t)= F (t.) f1-1+L, -2 w. ( 0)AS] (3.8)Fn (t= FC 8. ( 5(1, ) 2 )L w A8L~W I



where f is a parameter which is used for minimizing the portion of the reloading process

during crack growth. Using the approximate estimate of 8. based on the far-field

displacement, CTOA., which is the finite element representation of CTOA shown in Fig.

3.5, may not reach CTOA(p) precisely at the end of debonding (when F = 0 according to

(3.8)). Therefore, the specimen will be reloaded until the CTOA, reaches CTOA(p).

Through trial and errors, the value of f was chosen as 0.6 for fully-plastic crack growth

simulation under pure extension so as to minimize the amount of stationary crack reloading

required to again increase CTOAn to CTOA(pU). Typical values of the number of time

increments taken for debonding and for reloading are 36 and 8 respectively.

3.4 Crack growth simulation

A CTOD criterion, which is based on the data from Hancock, et al. (1992), is

implemented for crack initiation. In this work, the relative displacement from a symmetry

line of the traction-free node n-1 adjacent to the node, n representing the crack-tip, is

taken as half of the CTOD (Fig. 3.6). At each time increment, the value of the relative

displacement of node n-1 is measured. At the beginning of the next time increment, the

value of the relative displacement of node n -1 for the previous time increment is compared

with the critical CTOD, CTODC. If the previous value of the relative displacement of node

n- 1 reaches half of CTOD., the nodal force relaxation at node n occurs in the manner of

(3.8) over several time increments. When the nodal force at node n is completely removed

'(F,= 0) after several time increments associated with the far-field displacement, the

ligament length 1, which is used to determine the loading ratio Yu, is reduced by Aa" ( 1 is

kept constant during reloading) and CTOA( 4u) starts to be updated using the new ligament

length 1. At every time increment during reloading process, CI'OA(p) and CTOA, are

computed. At the beginning of the next time increment, CTOA, and CTOA( j) of the



previous time increment are compared with each other until CTOA n reaches CTOA(jp).

If CTOA, reaches CTOA( tu), the nodal force (= F ) at node n +1 is relaxed to zero in the

manner of (3.8). Otherwise, the specimen would be reloaded. A box statement of this

debonding algorithm is provided in Fig. 3.7.



Fig. 3.1 The boundary conditions of combined displacement and rotation on a deeply-
cracked single edge specimen.
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symmetry line

Fig. 3.2 Schematic of high stiffness spring implementation
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Fig. 3.3 Nodal reactions along the symmetry line.



Fig. 3.4 Illustration of 8,of the currently-releasing node n
with Aa"

CTOA(y)

Fig. 3.5 Finite element representation of CTOA, CTOA., and the loading
geometry-based CTOA, CTOA(u)



Fig. 3.6 Finite element representation of CTOD.
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CTODc: critical CTOD at crack initiation

Aak:element size directly ahead of the crack-tip node

Fk(t) traction at node k and time t.

CTOAn(t): CTOAn at time t. (illustrated in Fig. 3.5)

4(t): loading ratio at time t

CTOA(g(t)): loading geometry-based CTOA at time t.

Fig. 3.7 Numerical algorithm of crack growth simulation
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Chapter 4

Results and Discussion

4.1 Method

A plane strain single edge cracked specimen composed of an isotropic

elastic/perfectly-plastic material is modeled using with 4-node plane strain elements. Using

symmetry arguments, only half of a specimen is considered (Fig. 4.1). All the crack

growth simulations reported in this thesis are carried out under pure extension (N > 0,

0" = 0; 0'" is the rotation at the far-field loading point). The relative initial crack depth

ao / w and the relative length of the specimen, L, / w, are 0.5 and 3.0, respectively. The

nodes on the symmetry line of the specimen are modified in order to be released upon the

satisfaction of the chosen fracture criterion (CTOD or CTOA). Upon satisfaction of the

fracture criterion, the force at the node representing the crack tip is relaxed to zero, and the

crack advances by one element length.

Two different types of mesh configurations are developed for simulating crack

growth under pure extension. Most of the present results have been computed using Mesh

B (Fig. 4.3), but some results obtained using Mesh A (Fig. 4.2) will also be presented to

illustrate the sensitivity of the predictions to the choice of mesh configuration.



Mesh A

A focused mesh configuration is not used for our crack growth simulations.

Instead, a mesh aligned with the expected flow field (Kim, et al, 1994a) for a pure

extension loading condition and non-hardening material is developed to approximate the

deformation field as closely as possible (Fig. 4.2). In order to maintain the same scale as

crack grows, the mesh ahead of the crack-tip is regraded so that the ratio of the element

length directly in front of the crack-tip, Ael, to the current length of the ligament, 1, is

nearly constant: Ael/l = 0.035

Mesh B

Mesh B is highly refined in the region of the first quarter of the initial ligament

(Fig. 4.3). For these elements, the ratio of the element length directly ahead of the crack-

tip in the refined zone Ael to the original ligament 1o is given as 3 x 10-3 . However,

limitations on computing allow for the refined mesh to be applied on only 30% of the

original ligament. Mesh orientation is generated in the same manner as that of Mesh A.

4.2 Comparison with the line-spring model (Lee and Parks,
1994)

The line-spring model of Lee and Parks (1994) can be used only under small

geometry changes. So, in order to compare the results of the present FEM/continuum

model with those of the line-spring model, small geometry change analyses are conducted

on both Mesh A and Mesh B. Material constants such as tensile yield strain, E,, and yield

strength in shear, z,, are 2.27 x 10- ' and 271 MPa respectively. The critical relative CITOD

at crack initiation, 3, / lo, is given as 0.02. The hole nucleation parameter B(o,) is assumed

to be zero, and the critical hole growth ratio parameter A is set to be 0.5.



Fig. 4.4 shows the normalized axial force, N / (2rio), vs. total loading point

displacement, 8"' /lo, under pure extension. The total loading point displacement 8'"' is

given as the sum of the loading point displacements of both halves of the specimen as

shown in Fig 4.1. The cross symbol on the plot indicates crack initiation. In Fig. 4.4, the

sensitivity of the predictions to the choice of the mesh configuration between Mesh A and

Mesh B is clearly illustrated. Also, the results obtained using Mesh B are observed to be in

excellent agreement with those of the line-spring model. Such an agreement between the

two models verifies the consistency of the formulations, which is implemented in the line-

spring model under pure extension and the assumption of small geometry change.

Also, based on such an excellent agreement, Mesh B is chosen for further

investigation of crack extension behavior, which is given in the next following section,

under both small and large geometry changes.

4.3 Crack growth simulations under pure extension

Fully plastic crack growth in a pre-cracked specimen consists of initial, transient

and steady growth. Since our concern is focused on the crack tip field of quasi-steady

crack growth, the crack growth simulation should be made such that the crack growth

reaches the steady state in the region of the refined mesh (Mesh B). But, due to the

limitation of the computing time as mentioned before, the range of the refined mesh can not

be fully extended. Instead, the yield strain (elastic strain) is reduced in order to compress

the transient region. Based on the results from Kim, et al. (1994c), it can be observed that

by reducing the yield strain of the material, crack growth can reach the steady state more

quickly (i.e. with less imposed displacement). The tensile yield strain is given as 0.001,

and other material properties are given as specified in the previous section. Here, both



small geometry change (SGC) and large geometry change (LGC) analyses under pure

extension are carried out.

Load-deflection curve

Fig. 4.5 (a) shows the normalized axial force N / (2r,yl,), vs. normalized total

loading point displacement 8"'1 /l o . The axial force decreases almost linearly with

increasing loading point displacement immediately after crack initiation (marked by a cross

symbol). Also, the effect of the critical hole growth ratio parameter A on crack extension

behavior can be observed: increasing the value of A slows down the crack growth rate.

Fig. 4.5 (c) shows the axial force, which is normalized by the product of the yield strength

in shear ~r and current ligament length 1, vs. total loading point displacement 3'"' /1, ; l

is taken as the value, which was defined in the debonding algorithm shown in Fig. 3.7.

Here, this curve for SGC indicates that the load state during crack growth remains on the

yield locus which Rice (1972) and Kim, et al. (1994b) proposed for deep single edge

specimen (N/2rl1=l for pure extension). However, N/2T,l in LGC is observed to be

slightly greater than unity as shown in Fig. 4.5 (c). The discrepancy observed in LGC

implies that the stresses along the ligament are not constant, but some stress elevation near

the crack-tip is expected.

CrOA

Evolution of CTOA with the change of deformation is shown in Fig. 4.5 (d) as the

crack grows. A slight difference between LGC analysis and SGC analysis can be

observed. As the crack grows, the CTOA in the SGC increases to the maximum permitted

value of CTOA for y =0, while the CTOA in LGC saturates at some point, or even

decreases slowly. Since the current algorithm for crack growth determines the CTOA from

the load ratio parameter p for the case of LGC, some stress elevation near the crack tip,



which may induce some bending moment in the net section and eventually reduce the

loading geometry-based CTOA, can be expected to be present in the LGC solution.

Crack tip triaxiality

Due to the finite element discretization and the particular nodal release technique

employed to simulate crack growth, there is an ambiguity, to within one finite element, in

the exact position of the crack-tip as sensed by the numerical solution. However, using a

simple geometric argument (McClintock, 1994), the current crack-tip position can be

extrapolated from the displacement of the node which is currently being released, as shown

in Fig 4.6. The position obtained from the technique is adopted here as instantaneous

crack-tip, which is taken as the origin for the following stress and strain distributions of the

crack-tip field.

Fig. 4.7 shows the distribution of normalized mean normal stress, u. /I,, ahead of

the crack-tip at the relative crack extension (a -ao)/ 1= 0.16. Here, a, = ,. In

Fig. 4.5 (a) through (d), the data points corresponding to (a - a.)/1, = 0.16, are indicated

by a open circle. One interesting point in both Fig. 4.7 (a) and (b) is that the value of

a, P/, in LGC is higher than in SGC by 13% for A=0.5 and by 30% for A=1.0 at the

radius r = 1.7 x 10-21 from the crack-tip, while for the fully plastic stationary crack under

pure extension, the theoretical value of a,. /, ahead of the crack-tip is unity (Lee and

Parks, 1993). However, a deformation field consisting of one single slip line, which Kim,

et al. (1994c) proposed in their line-spring model as the deformation field of growing crack

under pure extension in a non-hardening material, does not account for such elevation of

the crack-tip triaxiality observed in LGC.

It can be argued that the relatively high stress triaxiality (the normalized mean

normal stress, ,. /Pr,) at the crack tip in LGC results indirectly from the change in the back

face angle w where the shear band intersects the back surface of the specimen (defined in



Fig. 4.8). As the crack grows, the back surface of the specimen cannot be maintained as

flat, as it was initially. Therefore, the increase of the back face angle permits a distortion of

the single slip line field which is found under pure extension under the assumption of small

geometry change. Instead, a slip line field with the centered fan as shown in Fig 4.8

develops. In the present numerical results under LGC, the ratio of the ligament length I to

the distance h (the perpendicular distance from the symmetry line to point b in Fig. 4.8), is

found to be greater than unity, while this ratio is unity for those simulations performed in

SGC. By considering the slip-line field with a centered fan, the stress triaxiality on the

symmetry plane starts to increase at the point al, where two 45" slip lines intercept each

other and r, /'r, = 1, and the maximum stress triaxiality occurs at the crack-tip (Detailed

computation for the stress triaxiality in the slip line field based on the ratio h/1 is given in

Appendix 4.1). The predictions of the state of the stress triaxiality ahead of the crack-tip

using the theory of the slip-line field is found to be generally in good agreement with the

present numerical results, as shown in Fig. 4.7.

The comparison between Fig. 4.7 (a) and (b) illustrates the (indirect) effect of the

critical hole growth ratio parameter A on the stress triaxiality at the crack-tip in LGC. This

comparison also supports the previous argument for the slip-line field with the centered fan

as shown in Fig. 4.8: raising the loading geometry-based CTOA using a higher value of

A, the rigid/plastic behavior of the specimen in the fully plastic regime causes an increased

back face angle w. Consequently, the increase of the back face angle increases the

permissible range of the angle of the centered fan 0. The maximum permissible span of

the fan is 0 = 20 based on the theory of slip line fields. Larger values of 0 lead to center-

line triaxiality increase over larger fraction of the ligament. Therefore, following the theory

of slip-line fields given in Appendix 4.1, higher stress triaxiality is obtained at the crack-tip

for the higher value of A, as illustrated in Fig 4.7. Hydrostatic stress contours in LGC

solutions shown in Fig. 4.10 lend added credence to the existence of the newly proposed

slip line field on the ligament under pure extension. Following the contour line of



an / Pr = 1.1, some perturbation of the hydrostatic stress variation ahead of crack-tip is

observed where the element size starts to increase. Such a perturbation results from the

change of element size.

Plastic strain near the crack-tip

Fig. 4.11 shows the normalized incremental equivalent plastic strain AE' contours

at (a-a.)/lo =0.16 obtained from LGC analyses. Here, the normalized far-field

displacement (6" /2)/ lcorresponding to AE' is 0.01. The active plastic deformation area

indicated by the variation of contours matches our expected slip line field. Near the crack-

tip the shear band is directed at 45" from the symmetry line. Further away from the crack-

tip, the shear band gets more diffused, but toward the back surface, the shear band

becomes relocalized due to the change of the back face angle. The Mises stress a,

(normalized by tensile yield strength ay ) contours shown in Fig. 4.12 indicate that the

active plastic zone corresponding to the slip line field is inside the region where the von

Mises yielding criterion is satisfied.

We also obtained values of incremental plastic strain extrapolated from the averaged

nodal values to the points on the circle of the chosen radius. The incremental equivalent

plastic strain AEP vs. 0 is shown at the radius r = 5.0 x 10-21 (Fig. 4.13 (a) and Fig. 4.14

(a)) from the crack tip, and at the radius r = 1.7 x 10-21 (Fig. 4.13 (b) and Fig. 4.14 (b))

respectively. In SGC the angle of the shear band from the symmetry line is 45", which

coincides with the theoretical value of the slip-line angle of the stationary single edge crack

under pure extension. The angle of the shear band in LGC is observed to vary depending

on the chosen radius from the crack-tip, as expected from the incremental equivalent plastic

strain contours. Fig. 4.15 demonstrates that the total plastic strain diffuses ahead of the

crack-tip. Such diffusion of plastic strains smoothes the plastic strain discontinuity across

the shear band to some extent.



Backface angle

Backface angles at three different crack depths are shown in Fig. 4.16. As crack

grows, the back face angle o is observed to increase, but seems to saturate rapidly (Fig.

4.17). Such tendency indicates that as crack grows further, the crack-tip field, which is

observed to be affected by the change of back face angle, may converge to steady state.

Summary of results and Discussion

Table 1: Characterization Parameters

A=0.5 A=1.0
SGC LGC SGC LGC

CTOA(g) (deg) 29.6 29.2 72 68.52
0) (deg) 11.9 8.53 17.2 13.69

1/h 1 1.13 1 1.26
O, (deg) 45 45 45 41.53
a. /_ , 1.16 1.31 1.11 1.61

r,(= -_ R) 0.44 0.44 1.00 1.00

Table 1 presents the values of parameters characterizing the deformation field for

two different values of the ductility parameter A at the relative crack extension

(a-a.)/l1=0.16. Here, 6, is denoted as the slip line angle and the value is taken as the

angle of the shear band from the symmetry line at the radius r = 1.7 x 10-21 and the value

of the crack-tip triaxiality a- / z, is also taken at r = 1.7 x 10-21. Using the slip-line field

based on the ratio 1 / h, estimates for the crack-tip triaxialities corresponding to A=0.5 and

A=1.0 are 1.26 and 1.47 respectively. Due to the finite element discretization procedure,

the shear band obtained based on SGC analyses is found to be slightly diffused, crossing

two rows of the elements. Due to such diffusion of the shear band, the crack-tip triaxiality

even in SGC is observed to be slightly higher than the theoretical value (=1) of the crack-tip

triaxiality for crack growth under pure extension.



By observing the values of the stress triaxiality at the crack-tip based on LGC

analyses, the inconsistency of the crack growth model using the loading geometry-based

CTOA as a fracture criterion in a non-hardening material, can be clearly addressed. For

A=1.0 the fracture (shear) strain, y,, corresponding to the present value of crack-tip

triaxiality in LGC obtained through (2.6) is found to be about only half of the fracture

strain presented in Table 1. Assuming a partial Prandtl field at the crack-tip, the stress

triaxiality on the shear band, , / Z,, which is adopted as the crack-tip triaxaility in (2.6),

can be approximated simply from the stress triaxiality on the symmetry line directly ahead

of the crack-tip, a,/r, (Lee and Parks, 1993). Furthermore, invoking (2.5), the

estimated value of CTOA for A=1.0 based on the present value of the crack-tip triaxiality in

LGC is also only about 40% of the present value of the loading geometry-based CTOA(u)

under pure extension. Therefore, the value of the CTOA imposed based on loading

configuration in the present crack growth model is overestimated. The major discrepancy

is that for LGC, a, no longer depends on the load ratio p in the way derived by Kim, et

al. (1994a) and numerically verified by Lee and Parks (1993). Considering the geometry

change effect of the back surface on the crack-tip field, as the back face angle becomes

large enough to build up high stress triaxiality at the crack-tip during crack growth, CTOA

would tend to decrease instead of saturating at the maximum value corresponding to pt = 0.

In fact, such tendencies are indirectly observed in Fig. 4.5 (d), corresponding to A=1.0,

due to the drift of p away from zero caused by the build-up of higher crack-tip stress

levels. This feature of CTOA variation shows that the deformation-induced geometry

change induces bending moment on the remaining ligament, but it does not account for the

direct effects of the geometry change on the crack-tip field and hence on local fracture

strain.



APPENDIX 4.1

With the slip line field as shown in Fig 4.8, the steps to determine the normal stress a. are

the following:

Step 1) Choose the point al, where the mean normal stress U. is simply equal to the shear

strength z,.

Step 2) Following from point al to point al' and using the Hencky equation of

equilibrium, the mean normal stress an is built up as

ao= 2U r (a)+ l,. (1)

Step 3) In the same manner as in step 2, the mean normal stress am at point al", which is

on the symmetry line, is determined as

o= 2r, (a + ) +'r . (2)

However, on the symmetry line, a = P. The mean normal stress is rewritten as

am= 2,, (2a) + , (3)

Step 4) Using the tabulated data from Chakrabarty (1987), the relative distance d/h on the

symmetry line is plotted against a, as shown in Fig. 4.9 (a).



Step 5) Following the symmetry line, xl/l is determined corresponding to a (=P3) for

A = 0.5 and A = 1.0 respectively based on the relationship shown in Fig. 4.9 (a) (Fig. 4.9

(b)).

Step 6) a, / Pr is determined in terms of xl/l using (3) and the relationship shown in Fig.

4.9 (b) (Fig 4.9 (c)).



w

u

N,
2

M, 19

L.

Fig. 4.1 A deeply-cracked single edge specimen subject to combined tension and
bending.

1 !

---upon



initial crack-tip

Fig. 4.2 Mesh A



initial crack-tip

Fig. 4.3 (a) Mesh B

53

TTTTTTT



0•L

C

4~0
I-
o
~a

.0

J e Ec
0,

L



pure extension

L /w=3, a /w=0.5
s o

CTOD /1 =0.02
C O

A=0.5

non-hardening

-- - line-spring
........ Mesh A

-Mesh B

0.0 0.1 0.2I 0.3 0.4 0.50.0 0.1 0.2 0.3 0.4 0.5

6tot/l

Fig. 4.4 (a) Normalized axial force N/(2rI,,) vs. total loading point displacement
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Fig. 4.5 (a) Normalized axial force N/(2,r,l,) vs. total loading point displacement

3S'"' /I of the plane strain single edge specimen with initial crack depth
a. /w = 0.5 under pure extension (N > 0, 0'" = 0) for A =0.5, 1.0 with

B(o,)= 0.
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Fig. 4.5 (b) Normalized crack depth a/w vs. total loading point displacement
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Fig. 4.5 (c) Normalized axial force N/(2r,l ) vs. total loading point displacement
8'"' /1o for A = 0.5 (top) and A = 1.0 (bottom).
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Fig. 4.10 (a) Stress triaxiality o, /r, contours for A =1.0 and (a-a,)/11=0.16 (top).
Finite: element mesh corresponding to the region of U,. /r, contours (bottom).
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Fig. 4.10 (b) Stress triaxiality ,, /z" contours near the crack-tip for A = 1.0 and
(a -- ao)/lo=0.16 (top). Finite element mesh corresponding to the region of
a /7, contours (bottom).
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Fig. 4.11 (a) Incremental equivalent plastic strain AE" contours for A =1.0 and
(a-ao)/lo=0.16 (top). Finite element mesh corresponding to the region of
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Fig. 4.13 (a) Incremental equivalent plastic strain AE' vs. 0 plots obtained
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Fig. 4.14 (a) Incremental equivalent plastic strain AEZ vs. 0 plots obtained
at r = 1.7 x 10-21 for A = 0.5.
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Fig. 4.16 Deformed mesh configurations showing backface angle Co at
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Chapter 5

Conclusion and Future work

5.1 Conclusion

In this work, fully plastic crack growth mechanics for low strength materials was

explored using the present FEM/continuum model. A deeply-cracked single edge specimen

composed of an isotropic elastic/perfectly plastic material was modeled. Here, the CTOA

crack growth criterion (McClintock, et al., 1994) was adopted for fully plastic crack

growth. First, small geometry change analyses were conducted in the present model to

verify the consistency between the line-spring model formulations (Lee and Parks, 1994c)

and the present model formulations. Choosing the highly refined and flow-line-oriented

mesh configuration, the results (load-deflection curve) from the continuum model were

fbund to be in good agreement with those of the line-spring model under pure extension.

The results show that the applied load decreases almost linearly with increasing far-

field displacement immediately after crack initiation for both SGC analyses and LGC

analyses. The increase of the ductility parameter A slows down the crack growth per unit

imposed displacement. Soon after crack initiation, the loading geometry-based CTOA

increases and saturates to a constant value. The load states under pure extension based on

SGC analyses and LGC analyses are observed to be nearly similar.



The stress triaxiality at the crack in LGC analyses is observed to be higher than that

in SGC during quasi-steady crack growth. Here, the new slip field with a centered fan is

imposed to account for such crack-tip triaxiality elevation in LGC. The predictions based

on the imposed slip line field show good agreement with the numerical results of LGC

analyses.

5.2 Future work

Some feedback control algorithm based on the local geometry at the crack-tip may

be needed in order to be able to implement the debonding curve associated with the relative

displacement of the currently releasing node in order to remove a reloading process, which

is a purely numerical effect.

The validity of the value of the strain hardening parameter, f, which Lee and Parks

(1994c) chose for the line spring model for fully plastic crack growth in a low-hardening

material, can be verified by comparing results from a strain hardening generalization of

present FEM/continuum model.

The effects of geometry change on crack extension behavior under different loading

conditions need to be studied. Under pure tension or pure bending, the stress triaxiality at

the crack-tip is very high. Therefore, CTOA decreases to a minimum value for any given

A immediately after crack initiation. Consequently, with a low value of CTOA (leading to

small change of the backface angle), the geometry change effects are expected to be small

compared to those under pure extension. Also, the geometry change effect in a low-

hardening material needs to be studied.

Here, the inconsistency of the loading geometry-based CTOA with the crack-tip

fields, is clearly addressed. Therefore, CTOA, which is chosen as a fracture criterion,

needs to be more closely based on the information of the crack-tip field: The model may



need to be modified to obtain CTOA directly from the local geometry at the crack-tip using

both (2.5) and (2.6) so that it can reflect the elevation of the crack-tip triaxiality. Such a

microscopic approach to CTOA allows us to study the direct effect on the crack-tip field

due to geometry change of the back face of a single edge specimen during crack growth.

The increase of the crack-tip triaxiality due to the geometry change (an increase of back face

angle) leads to a decrease of CTOA, which in turn results in the decrease of the back face

angle, thus coupling geometry change with CTOA. It will be interesting to determine

whether a coupling with geometry change allows the deformation field near the growing

crack-tip to converge to steady state, which has been observed in the previous numerical

studies for stable crack growth (Rice and Sorenson, 1978; Drugan, et al., 1982).

Another issue of interest is the effect of the deformation-induced geometry change

on the accuracy of the proposed m -family solutions for the growing crack under large scale

yielding and general yielding (Drugan and Chen, 1989; Chen and Drugan, 1991; Liu and

Drugan, 1993), which were developed under small geometry change.
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