
Abstraction Models at System Level for Networked

Interactive Multimedia Scripting

by

Jimmy Chi-Ming Lai

Submitted to the Department of Electrical Engineering and
Computer Science in Partial Fulfillment of the Requirements for the

Degrees of

Bachelor of Science in Electrical Engineering and Computer Science and
Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1995

© Jimmy Chi-Ming Lai 1995. All Rights Reserved.

The author hereby grants to M.I.T. permission to reproduce and to
distribute copies of this thesis document in whole or in part, and to grant

others the right to do so.

A uthor
Departmenti flectrical Engineering and Computer Science

May 30, 1995

Certified by
Shaoul Ezekiel

Professor, Department of Electrical Engineering and Computer Science;
- Director, Ce ter for Advanced Engineering Studies

1 . - Thesis Supervisor

Accepted by
t F. R. Morg~nthaler

4"hairman, Department ttee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

AUG 10 1995 ~frer Eng
LIBRARIES

Abstraction Models at System Level for Networked Interactive

Multimedia Scripting

by

Jimmy Chi-Ming Lai

Submitted to the
Department of Electrical Engineering and Computer Science

May 30, 1995

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Engineering and Computer Science and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

With the growth of the Web has come a desire for greater interactivity. Unfortunately, the
Web currently suffers from some limitations with respect to four parameters for
characterizing networked interactive multimedia: Data flow, Spatial and Temporal
Synchronization, Media Integration, and User Interactivity.

This thesis extends the ScriptXTM multimedia development platform by building
programming abstractions to support desired characteristics of networked, interactive
multimedia. The Data Flow Abstraction Model provides network extensions to support
data prefetching in the background. The Temporal Synchronization Abstraction Model
enhances ScriptX's support in non-linear synchronization of media playback. The Text-
based Media Abstraction Model enables convenient creation of both static and dynamic
text media.

With the abstraction models proposed, the extended ScriptX platform has demonstrated to
satisfy all of the desired characteristics of networked interactive multimedia.

Thesis Supervisor: Shaoul Ezekiel
Title: Professor, Department of Electrical Engineering and Computer Science;

Director, Center for Advanced Engineering Studies

Acknowledgments

I would like to thank:

Professor Shaoul Ezekiel, my thesis supervisor, for his guidance and support to my research
work.

Thomas Y. Lee, my wonderful reader, for his valuable suggestions and patience in
proofreading my thesis throughout, especially during the final days.

Kip and Jonathan, for their originality of some of the ideas in this thesis.

I am also in debt to the following people, whose company has immensely enriched my life, both
at MIT and beyond.

To Dad and Mom, Ah Mui and Dai Lo, for their love and support throughout these twenty-
two years.

To Rebecca, for being a special person in my life.

To Brian and Felix, for their brotherly love and "ton dan" with me.

To Alex, Chalee, Daricha, Keileung, Phoebe, Somsak, Tomlee, for sharing my walks in MIT
since freshman year.

To Brian, Felix, KK, Mawlo, Ngan, pchan, Yip Tao&Flora, my cell group members, for
their important prayers and support.

To Chung Ma, pchanita, Jenny, Perry&Peggy, Phoebe and Vivian, for their "soup-water"
that sustained my long hours in the lab.

To Brian, David Ma, Joycelyn, Kin, King, Mawlo and Vivian, my "same road people", for
walking together to find and grasp the right priorities in life.

To Ah Shun, B-boy, Fui Hung, Owl and Shrimp, who are far away, yet whose regards have
been great encouragement in times.

To Kelly and Philee, who kindly offered to help when they consistently found me in lab
around 4am.

To King, Jerome, Joycelyn, Richard and SunMan, the "thesis-fryers", for their accompany
on athena in the odd hours of the day.

Last but not least, to the Lord Jesus Christ, who has brought these lovely people in my life
and made all of the above a reality.

Table of Contents

1 Introduction .. 13
1.1 Desired Capability for Networked Interactive Multimedia 14
1.2 Assessing Interactive Multimedia on the Web .. 16
1.3 Existing ScriptX Platform..20
1.4 Proposed Solutions 22

2 Data Flow Abstraction: The Design 25
2.1 Network Use Models 25
2.2 D esign Issues 27
2.3 D esign O verview 28
2.4 Determining the Network Transport Protocol .. 29
2.5 Details of the BackgroundFetchingAgent Class .. 30
2.6 Example Usage of the API.................................. 37
2.7 Assessing the API in terms of the Design Issues ... 40

3 Data Flow Abstraction: The Implementation 41
3.1 The Implementation Environment ... 41
3.2 Fetching in Background Mode... 45
3.3 Current Status of Implementation 47

4 Temporal Synchronization Abstraction ... 49
4.1 Timing and Linear Synchronization in ScriptX.............................. ... 49
4.2 Non-linear Synchronization ... 52
4.3 Design and Implementation .. 53
4.4 Details of the MasterSlaveContract class 55
4.5 Example usage of the MasterSlaveContract class 63

5 Text-based Media Abstraction 67
5.1 Existing Text Support in ScriptX.............................68
5.2 The SA Text class 69
5.3 The DAText class ... 73
5.4 Example usage of the SAText and DAText classes..............................76

6 A Practical Example Using the Abstraction Models .. 79
7 Conclusion and Future Work ... 83

7.1 C onclusion 83
7.2 Future W ork 83

B ibliography ... 85
Appendix A Materials for Preparing the Example in Chapter 7............................... 87

A. 1 The DAText source file in Scene 1 87
A.2 The DAText source file in Scene 2 for the Closed-caption Text..................87
A.3 The DAText source file in Scene 3 for the Slide's Text...............................87
A.4 Timing Specification files for slaves in scene 2 and scene 3....................... 88

List of Figures

Figure 2.1: Organizational overview of the BackgroundFetchingAgent class29
Figure 3.1: Organizational View of using the WinSock DLL 43
Figure 4.1: Linear Synchronization 51
Figure 4.2: Non-linear Synchronization ... 52
Figure 4.3: Sample Timing Specification File 62
Figure 4.4: Timing Spec. of Slave for all three examples 63
Figure 4.5: Specification File for Example 3...65
Figure 5.1: Cursor Position and Ordinal Position .. 68
Figure 5.2: Sample Source File for Creating SAText Object......................................69
Figure 6.1: The Appearance of Scene 1 ... 79
Figure 6.2: The Appearance of Scene 2.................................80
Figure 6.3: The Appearance of Scene 3..................................82

List of Tables

Table 2.1: Arguments of init method................................ 31
Table 2.2: The Values of the Status Instance Variable .. 33
Table 2.3: Argument to GetSize Instance Method............................... 36
Table 2.4: Argument to Fetch Instance Method .. 36
Table 2.5: Summary of the BackgroundFetchingAgent API.................................. 37
Table 4.1: Arguments of init Method 55
Table 4.2: Instance Variables for the MasterMarker Class.................................. 56
Table 4.3: Arguments to the init Method.............................. 57
Table 4.4: Instance Variables of the MasterSlaveContract Class 58
Table 4.5: Arguments to AddSlave Instance Method 58
Table 4.6: Arguments to DropSlave Instance Method................................ 59
Table 4.7: Arguments to AddMMarker Instance Method 59
Table 4.8: Arguments to ResetCallbacksForSlave Instance Method........................ 60
Table 4.9: Argument for ResetCallbacksForAll Instance Method 60
Table 4.10: Arguments for IncSpecForSlave Instance Method 61
Table 4.11: Summary of the MasterSlaveContract Class 63
Table 5.1: Arguments to the Annotation Keywords in SAText Source 70
Table 5.2: Arguments to init Method... 72
Table 5.3: Arguments for init Method 74
Table 5.4: Instance Methods from the Player class .. 76

Chapter 1

Introduction

The Web is growing at an explosive rate1; it has evolved into a prototype of the National

Information Infrastructure to come [2]. The Web is becoming a pervasive means for

people to connect to and publish information on the Internet. The Web offers a likely

medium for delivering networked interactive multimedia applications because of its

enormous, easily accessible repository of multimedia content. This multimedia content

could be made available for retrieval and integration into end-users' applications. The

Web also offers an open architecture that permits developers to continually extend and

integrate the work of others. Despite these advantages, the Web is limited in its ability to

provide "truly" interactive multimedia.

In general, the composition and presentation of networked interactive multimedia

applications (NIMA) involves at least four essential system components. The Data Flow

Component describes how the data composing the application is delivered on the network

to the user, and how the data is managed locally. The Synchronization Component deals

with both the spatial and temporal organizations of the media elements in the presentation.

The Media Integration Component describes the types of different media elements in the

presentation and the processes through which they are prepared and rendered. The User

Interactivity Component describes how the users' inputs are accepted and handled to

manipulate the application in an interactive way.

1. The latest Internet statistics survey [1] has it that the total number of Internet hosts has passed
4.851 million by January 1995 and total users amount to at least 30 million. Worth noting is that
"WWW-named host computers now constitute the most numerous on the Internet." and it brings
forth "the largest jump in the recent history of the Internet with a 26% growth rate for 4th Quarter
1994."

These four system components may be used as assessment criteria to determine the

appropriateness of a development / application platform and a delivery medium to author

and deliver NIMA. This thesis attempts to address elements of these four components

critical to developing and using NIMA.

1.1 Desired Capability for Networked Interactive Multimedia

1.1.1 Data Flow Component: Pre-fetching Model

Due to network bandwidth and local storage limitations, the "download-and-play"

model for network distribution of long multimedia presentations is generally not practical.

Downloading is expensive, both in time and space. Worse yet, if the user disliked the

application, the cost of downloading and waiting has already been incurred.

Pre-fetching offers a possible remedy. Media-rich multimedia presentations generally

consists of pre-packaged, individual media objects that are scheduled for rendering at

different times. A pre-fetching model permits a multimedia presentation to begin playing

with only a part of the entire data, and then pre-fetch subsequent objects during the

presentation just before the objects are needed. The model should ensure that the

foreground presentation is not affected by the fetching operation. Pre-fetching therefore

provides for more efficient usage of network bandwidth and local storage since, at any

instance, only a fragment of data is required. The model also provides some flexibility for

users to "peek" into the presentation.

1.1.2 Synchronization Component: Spatial and Temporal Orchestration

* Spatial Orchestration

A lively multimedia presentation requires media elements to be positioned

appropriately on the screen. Therefore, having the ability to position any object anywhere

in the presentation space (a window in most cases) is indispensable. Common scenarios

further require objects to be draggable, scalable, or to be able to bounce around on the

screen.

* Temporal Orchestration

In a movie, the three elements of text, video, and sound should be synchronized. For

instance, lip motion should match the audio track. There are two notions of temporal

synchronization in a media-rich multimedia presentation: linear synchronization and non-

linear synchronization. In linear synchronization, different media objects (e.g. an audio

and a video track) are rendered at a constant rate. For example, playing a sound clip 2

seconds after the presentation starts, a video 5 seconds after, and another sound clip 10

seconds after. The main function of linear synchronization is to synchronize the start

times for playing back objects throughout a presentation.

In a non-linear synchronization model, media playback is rendered at rates that change

over time. A common example is a moving text stream whose scheduled playback

involves flowing out continuously at different rates, pauses, and jumps to render new

words at each jump.

1.1.3 Media Component: Common Media and Special Text-based Media

In a media-rich multimedia presentation, media types such as text, graphics, audio,

video, and animations are commonly required. However, although rich media enables a

lively multimedia presentation, network bandwidth and local storage are always of

concern. A 15 minute video clip encoded in MPEG-I [20] at 1.5Mbits/sec takes at least 15

min. to transfer over a T1 line (1.5Mbits/sec), and requires 169M of disk storage. Many

existing connections on the Internet are 64kbps leased lines or slower -- at least 23 times

slower than a T1 line. A large population of users use dialup services to connect to the

Internet through online services like AOL (American Online). Dial-in users are often

limited to 28.8 kbps (or slower) modems.

In a networked environment where bandwidth and local storage are concerns, text-

based media, though less aesthetic, provides an efficient means for content delivery.

Moreover, text-based media could still be attractive. Text can convey a great deal of

information. Text can enrich a presentation if it has been richly formatted and is processed

by the application. For example, text can be formatted in different colors, sizes or fonts.

Text can be dynamically rendered to flow across the screen, or to flash or bounce.

1.1.4 User Interactivity Component: Common Capability and Minimal
Latency

User interactivity has to do with providing the means for users to directly manipulate

objects within a presentation. Capability requirements vary greatly depending on the type

of application. As a minimum, the application platform should provide control

mechanisms that are sensitive to user input events, such as mouse moves, mouse position

detections, and key presses.

To achieve a "real-time" experience, minimizing the latency in serving a user request

is critical. Applications such as interactive adventure games have extreme service latency

requirements. Minimizing service latency in processing user inputs generally requires

client-side processing. If the interaction is performed by server-side processing, network

delay compounds the latency.

1.2 Assessing Interactive Multimedia on the Web

Unfortunately, as a prototype of the NII, the Web cannot meet the criteria specified above

for evaluating NIMA.

The Web is based on several interrelated standards, most notably the Hypertext Mark-

up Language (HTML) and the Hypertext Transfer Protocol (HTTP). HTTP is the transport

protocol used to communicate between Web servers and Web clients. HTML is a mark-up

"language" that is used to represent the majority of Web documents. Currently, the Web is

oriented towards relatively simple static documents. HTML is very limited in its

expressive power, even in terms of page layout of static documents. The infrastructure for

more dynamic web-based applications apparently does not exist, although the increasing

use of forms and server-side CGI (Common Gateway Interface) scripts on the Web reflects

the demand for more interactive, networked multimedia applications. Given the list of

desired characteristics in section 1.1 for networked interactive multimedia, severe

limitations are found with the current Web.

1.2.1 Data Flow Component

The Web only supports pre-loading on a per-document scale and only for text and

graphics. Current browsers delay the fetching of inlined graphics within an HTML

document, allowing the text portion of the document to be displayed and read by the users

first.

Specific Web browsers do support pre-fetching of HTML documents. For instance,

Netscape Communications Corporation has implemented a client pull mechanism with its

Netscape Web browser that allows a document to be marked with a URL to load after a

given number of seconds[4]. Client-pull enables pre-fetching of HTML documents within

a presentation. There is no notion of pre-fetching in background mode because an HTML

document is presented as static text in the foreground.

True pre-fetching requires that each piece of data in the presentation be able to be

prefetched as an independent object and fetched just before use. The Web does not sup-

port the prefetching of external media data like video and audio data without user inter-

vention.

1.2.2 Synchronization Component

The needs for both spatial and temporal organization in a multimedia presentation are

poorly met by the Web. For spatial organization, HTML is extremely limited in its expres-

sive range, even in terms of page layout for static documents. Features such as tables and

multi-column documents, which available, are not yet part of the HTML standard. It is

possible to somewhat position objects within the browser window through HTML but the

ability commands, to drag, scale, or move objects within a static HTML document is

impossible.

For temporal synchronization, common Web browsers only provide minimal, coarse-

grained synchronization of media-playback. Media is either rendered in the order that

users click on links or waits for control signals from spawned external viewers after the

media is cached locally. There is no support for "orchestrated" presentations where the

temporal relationships are not only explicitly formulated, but also detailed with great pre-

cisions as with synchronizing voice and annotated text.

1.2.3 Media Component

All the common media types can be rendered currently by Web browsers either locally

in the HTML documents (text, graphics) or with help from externally spawned helper

applications (audio, video, etc.). For formatted text-based media, HTML is the only

standard.

1.2.4 User Interactivity Component

The Web currently handles simple user interactions by extending the point-and-click

model used to navigate the Web or retrieve data. Fill-in forms are used to accept textual

input from users for applications like surveys or online shopping, etc. More advanced

interaction is achieved through the use of server-side CGI scripts [5] to generate HTML

documents on the fly (e.g. to report real-time stock exchange information) or to redirect

users to another URL.

The Web's model of interactivity is server-oriented, namely, in using the fill-in forms

and CGI scripts. This has at least two disadvantages. First, the server can be easily

overloaded when there are a large number of clients to be served. Second, server-side

processing introduces extra delays in service latency compared to client-side processing

because the processed result has to be delivered over the network.

Realizing the usefulness of interactive multimedia on the Web and the limitations pre-

sented by lack of client-side processing, many different proposals have been forwarded for

client-side extensions. The ideas can be classified into several categories:

1. Client Push/ Server Push, from The Netscape Communications Corporation [4],

2. External Programming Support in Browsers -- such as the NCSA Mosaic CCI

(Common Client Interface) [6], Spyglass SDI (Software Development Interface)

[7] and Netscape 1.1 OLE2 Automation [8].

3. Scripting, namely, CCITcl [17] derived from the combination of SafeTcl [16] and

the NCSA Mosaic CCI [6],

4. Virtual Machine, namely, the Java project at Sun Microsystems [18]. Virtual

machine is a software interpreter for pre-compiled "machine-code".

Solutions proposed by 1. and 2. above are mainly oriented around extending Web

browsers and do not address some of the other limitations discussed in section 1.2 such as

synchronization. Among the proposals, scripting and virtual machine seem to be the best

approach in providing interactive multimedia on the Web. A major reason is that they

provide powerful client-side processing power which the current Web browsers do not

have.

This thesis proposes using another platform, ScriptX, which combines the idea of

scripting and virtual machine, as a substrate to offer the desired characteristics as

discussed in section 1.1. Extensions and enhancements are proposed to make ScriptX

satisfy all the characteristics.

1.3 Existing ScriptX Platform

ScriptX (Version 1.0) is a multimedia authoring and distribution product from Kaleida

Labs, Inc. ScriptX has been implemented for the Microsoft Windows and Macintosh

platforms. It combines scripting with a virtual machine. A virtual machine is a software

interpreter of precompiled "machine code". Application developers use the ScriptX

development platform to write scripts to generate multimedia presentations. The scripts

are object-oriented. The scripts are then compiled into platform independent bytecode

that is distributed and executed by the virtual machine Kaleida Media Player (KMP).

ScriptX includes a rich library of multimedia tools such as timers, drawing tools and

external media importers for bitmaps, audio (AIFF and WAV), and video (Quicktime and

VFW). It provides extensive user interactivity mechanisms such as an underlying search

engine for its data objects, and user interface objects like push-buttons and scrollbars. It

also has rich system supports such as a tasking mechanism and thread scheduler.

Using ScriptX as a client platform for networked interactive multimedia is close to

realizing the desired goals discussed in section 1.1. Specifically, ScriptX provides

extensive support for Spatial Synchronization. An object can be placed anywhere within a

presentation window, and there is built-in support for making objects draggable and

scalable. The User Interactivity support goes beyond the requirements in section 1.1 due

to the extensive interactivity support and client-side processing ScriptX provides.

However, as far as the other three system components are concerned, extensions or

enhancements are needed for ScriptX to completely satisfy the desired capability.

1.3.1 Insufficiencies of Existing ScriptX Platform

1. Data Flow Component: lack of built-in network support

The current version of ScriptX is a stand-alone package. It does not provide any

network interface. Network extensions have to be built into ScriptX to support the

prefetching model as described in section 1.1.

2. Temporal Synchronization: lack of structured support for non-linear model

ScriptX has extensive facilities for timing which readily and easily support linear

synchronization. Through the use of built-in master-slave relationships, linear

synchronizations of media playback is easily attained (details discussed in chapter

5). However, currently there is no structure for supporting non-linear

synchronization, although the underlying tools are already in place.

3. Media Component: lack of structured support to prepare individual text-based
media

ScriptX provides facilities to display, format (color, sizes, fonts, etc.) and edit text

in a multimedia presentation. Text for enriching presentations are usually "hard-

wired" into the scripts, with rigid content and format set into the scripts. On many

occasions, it would be useful to have individual pre-formatted text files, separated

from the scripts, that can be readily imported into ScriptX to produce special text-

based media. A common example is a script for a multimedia courseware template.

Groups of individual pre-formatted text files which represent slides in a lecture can

be imported to the same template to produce the different lecture materials.

Moreover, specialized text-based media such as a stream of text which can be

rendered dynamically are worth creating since they are useful in most applications.

1.4 Proposed Solutions

To make ScriptX a better platform for developing and delivering network interactive mul-

timedia on the Web which fully satisfies the desired capability as discussed in section 1.1,

this thesis proposes building abstraction models to extend or enhance the existing ScriptX

platform.

1. Data Flow Abstraction

A network API to be used by ScriptX developers will be designed and

implemented. The API will be able to perform background fetching operations.

The API will be implemented for the Windows platform.

2. Temporal Synchronization Abstraction

To design and implement a ScriptX class that provides the structure to support non-

linear synchronization.

3. Text-based Media Abstraction

To design and implement ScriptX classes that will provide the structure to create

formatted, static text media from pre-formatted text files and to create dynamic text

stream media.

There are other issues concerning scripting languages in general such as performance

due to overhead in interpretation and security. However, those issues are beyond the

scope of this thesis.

The remainder of this thesis is divided into six chapters. Chapter two and three

describe the design and implementation of the Data Flow Abstraction, respectively.

Chapter four describes the design and implementation of the Temporal Synchronization

Abstraction. Chapter five discusses the design and implementation of the Text-based

Media Abstraction. Chapter six demonstrates the integrated use of the three abstraction

models by building a multimedia presentation. Chapter seven concludes and lays the

foundation for future work. The remainder of this thesis assumes a general knowledge

about object-oriented programming principles.

Chapter 2

Data Flow Abstraction: The Design

To alleviate the limitation of ScriptX's lack of any built-in network support, the main goal

of building the Data Flow Abstraction is to facilitate background fetching of data over the

network. Application developers use the ScriptX class BackgroundFetchingAgent

as a network API, while details of the design and implementation are "abstracted" away.

This chapter discusses the design of the BackgroundFetchingAgent API.

The rest of the chapter is organized into seven sections. Section 1 discusses the

current external support that ScriptX can use to deliver applications over the network and

the new model for network use offered by this work. Section 2 discusses issues driving

the design of the BackgroundFetchingAgent API. Section 3 is a design overview.

Section 4 discusses the reasoning behind choosing HTTP as the Network Transport

Protocol. Section 5 discusses details of the BackgroundFetchingAgent API.

Section 6 gives examples of how to use the API. Finally, section 7 evaluates the API in

terms of the original design issues.

2.1 Network Use Models

2.1.1 Current Model without Built-in Network Support

The existing ScriptX platform does not have built-in network support, but it can leverage

external facilities such as the Web to provide limited network support. ScriptX titles --

compiled ScriptX scripts in bytecode format that are executed by the Kaleida Media

Player (KMP) -- can be delivered as a single data object to be played on client machines

running the KMP, by using the Web as the network delivery medium. The following steps

describe the processes involved in delivering ScriptX titles over the network using the

Web:

1. Set up the appropriate MIME-type extensions on the local Web browser to

launch the KMP as a helper application for executing a ScriptX title.

2. Using a Web browser, find a ScriptX title on some Web server.

3. Retrieve the title using the Web protocol. When the entire title has been down-

loaded, the browser will launch the KMP to execute the script.

4. Add-ons to a ScriptX title, such as another title with media effects, can be

retrieved the same way incorporated into a running KMP ScriptX title.

Such a model requires switching between the Web browser and the KMP, whenever a

ScriptX title needs to be retrieved over the network. It also requires that all of the media

objects needed by a title be pre-packaged with the title. Every ScriptX title delivered and

played this way should be self-sufficient; which means that the whole bulk of the title with

all the constituent data in it has to be transferred over the network before rendering.

2.1.2 Proposed Model with Built-in Network Support

This thesis proposes extending the current ScriptX platform by building network support

into it. A running ScriptX title will be able to fetch data files in the background over the

network and incorporate the data into the title when the whole data file is downloaded.

The network use model with the proposed built-in network support will be more flexible

than the original model. First, once a title with network support has been delivered to a

client (possibly using the Web by means of the steps (1)-(3) in section 2.1.1.), the ScriptX

program does not need help from external applications (like a Web browser) to get data

over the network. It can any data on the network on its own and incorporate it into the

title. Background fetching means that initially only a part of all the data in the presenta-

tion needs to be available to get it started. The rest of the data can be fetched over the net-

work while the presentation is still running. This has certain advantages. First, the

bandwidth and local storage is better utilized, since only a part of the whole presentation

needs to be transferred and stored at a time. Second, new media can be incorporated

dynamically into a title, unlike the original model where media is prepared and packed

into ScriptX titles or libraries.

2.2 Design Issues

There are basically three issues driving the design:

* Capability

The two principle capabilities that this API aims to achieve are described by the two

key words: Fetching and Background. Fetching entails a sequence of client operations:

set up a network connection with a remote server, request a data object from the remote

server, receive the data and store it locally. After the data file has been fetched in whole, it

can be incorporated into the presentation. Fetching should occur in the background. This

implies that a fetch should run silently, not disturbing other system threads and, for multi-

media presentations in particular, not disturb the media rendering and user control in the

foreground. Other desired capabilities include checking the availability of a network con-

nection without actually transferring a file, raising an error on a failed fetch, and stopping

a running fetch operation.

* Simplicity

Creating multimedia applications is a complex and time-consuming task. To make life

easier for application developers, simplicity is very important to save them time when

they use the background fetching facilities in composing an application. In general, appli-

cation developers should worry about nothing more than the remote host/location from

which the data is to be fetched, and the local file to which the data is to be saved. This API

abstracts implementation details away from multimedia application developers.

* Open Standards

Employing open protocols or open standards in our design is critical. Using the Web

as an example, openness ensures that people can extend and integrate other people's work

easily into the Web. The explosive growth of the Web, which is built around open stan-

dards (like HTTP), undoubtedly testifies the importance of open standards.

2.3 Design Overview

The design consists of two main elements: the BackgroundFetchingAgent ScriptX

class, and the network extension loadable module. The BackgroundFetchingAgent

is the API (application programming interface) used by an application developer to access

our network extension facilities built for the ScriptX platform. To fetch data over the net-

work, a script will create a new instance of the BackgroundFetchingAgent class in

ScriptX, and use its instance methods to do the fetching.

The network extension loadable module provides the underlying mechanisms for net-

work extension facilities to ScriptX. The module identifies a Network Transport Protocol

to be employed for the ScriptX clients to communicate with remote servers on the Inter-

net. We have chosen HTTP as our Network Transport Protocol. The rationale for choos-

ing HTTP will be given in a later section. The loadable module is written in C and is

dynamically loaded (and linked) into the ScriptX environment when the Background-

FetchingAgent class is loaded, so that a BackgroundFetchingAgent instance

can access the network functions. The ScriptX Loader is responsible for loading in exter-

nal object files or libraries into the ScriptX environment. A handle to an "entry-point"

function in the loadable module can be obtained from the Loader. This handle allows the

entry-point function to be called within the scripts. The BackgroundFetchin-

gAgent class has a class variable ExtFuncPtr that holds the handle to a function in

the network module. As a result, ExtFuncPtr can be used to seamlessly call the func-

tions implemented in the network extension loadable module (see Fig. 2.1).

BackgroundFetchingAgent

The ScriptX
world

The C object
codes world Network Extension Loadable Modulec

Network Transport
Protocol

ScriptX
Loader

ScriptX Extension
Abstraction Barrier

+-
Internet

Remote
SServer-~ I

L-------------

Figure 2.1: Organizational overview of the BackgroundFetchingAgent class

2.4 Determining the Network Transport Protocol

HTTP was selected as a natural choice for the network transport protocol because it satis-

fies the initial design specifications of capability, simplicity and openness. HTTP is a text-

Class Variables:
ExtFuncPtr

Instance Variables:

Instance Methods:

! !

based protocol that runs on top of TCP/IP. After opening a TCP connection to a Web

server, a Web client requests an object by sending an HTTP request, using the "GET"

method including the path to the desired data. Then the Web server sends back an HTTP

reply indicating the status of the request. Upon a successful request and reply handshake,

the server sends the object over the TCP connection.

HTTP offers simplicity in that no extra work needs to be done on the server side,

except setting up the appropriate MIME types in the HTTP server configuration file. Data

objects like ScriptX titles can be readily put on a Web server and retrieved by a client from

within the ScriptX environment using the network extension (refer to section 2.1.2).

The greatest advantage of using HTTP lies in the fact that it is the open standard atop

which the Web is built. The Web is constitutes an enormous repository of multimedia

content. To compose a truly interactive multimedia application, users should have tools to

incorporate their own media into the application. Given that the ScriptX network exten-

sion we built talks HTTP, it can retrieve data from any Web server and the data can be ren-

dered in a ScriptX program.

2.5 Details of the BackgroundFetchingAgent Class

This section discusses details about the BackgroundFetchingAgent class. The

class serves as an API that provides ScriptX developers with network extensions.

Creating and Initializing a New Instance

The following script illustrates how to create a new instance of the Background-

FetchingAgent class:

myAgent := new BackgroundFetchingAgent initMethod: \
@getSizeNow URL:"http://18.39.0.24/welcome.html" \
LocalFile : "c/users / jimmy/welcome .htm"

initMethod takes a keyword argument @getSizeNow, which tells the new

instance to open a HTTP connection to return the content-length of a specified URL. The

new method of BackgroundFetchingAgent calls its init method and uses the

same keyword arguments. The details of calling the init method are described below:

init

SYNOPSIS:

init self [initMethod:name] [URL:string] [LocalFile: string]

Arguments Values

self BackgroundFetchingAgent object

initMethod: NameClassa object. Valid values are
@idle, @getSizeNow and @fetchDataNow
Default value: @idle

URL: String object. A normal URL pointing to the data
needs to be fetched, for instance,
"http://18.39.0.24/welcome.html"
Default value: "" (empty String)

LocalFile: String object. A path in ScriptX style representing the
file to store the fetched data. For instance,
"c/users /j immy/welcome.htm" represents
"c: \users\j immy\welcome.htm" in DOS.
Default value: "" (empty String)

Table 2.1: Arguments of init method
a. A NameClass object in ScriptX is a constant value, usually used as a value for a key-
word argument to ScriptX functions.

The init method can be applied in one of three ways depending upon the value of

the initMethod keyword argument:

1. @idle indicates that the new BackgroundFetchingAgent instance will remain idle

after creation.

2. @getSizeNow indicates that the new instance will open an HTTP connection

(sending an HTTP request and getting an HTTP reply) to a remote host to deter-

mine the size of the data to be fetched. This option is intended for checking net-

work availability, verifying that the remote host can be reached, and that the

specified URL is correct.

3. @fetchDataNow indicates that the new instance will open an HTTP connection

to the specified remote host and begin retrieving data immediately.

RETURN VALUE: After the creation of a new BackgroundFetchingAgent

instance, self, the instance itself is returned. The self.Status instance variable

should be checked to determine the status of self, especially if self has been created

with the @getSizeNow or the @fetchDataNow option. self.Status reflects the

status of network operations. The Status instance variable is discussed later in this

section.

Class Variable

ExtFuncPtr

self.ExtFuncPtr (read-only) Primitive object

ExtFuncPtr is a read-only class variable that holds the value of a Primitive

object. The Primitive class is used to define the behavior of executable code objects.

A Primitive object holds the address of an executable function and the minimum and

maximum number of parameters the function requires. ExtFuncPtr holds the address

of the executable function in the network extension loadable module. Therefore,

ExtFuncPtr can be used to seamlessly access the network extension facilities.

However, under normal circumstances, an application developer will not need to use

ExtFuncPtr. The instance methods of the BackgroundFetchingAgent presents

an abstraction that hides the network extensions.

ExtFuncPtr is created as a class variable instead of an instance variable so that the

network extension loadable module is loaded the first time the BackgroundFetchin-

gAgent is loaded into the ScriptX environment.

Instance Variables

URL

self.URL (read-write) String object

URL is a read-writable instance variable of type String object. This variable holds

the URL that the instance has been initialized with at creation time. For example,

"http: //18.39 . O . 24 /welcome. html ". The value of URL is used to determine

the location from which data is retrieved. The value of URL can be reset so that a single

BackgroundFetchingAgent instantiation may be used to retrieve multiple data

objects. The default value for URL is "" (empty String).

LocalFile

self.LocalFile (read-write) String object

LocalFile is a read-writable instance variable of type String object. This vari-

able holds the complete path to a file on the client machine for storing data objects

retrieved from across the network. The path is given in ScriptX syntax: "c/users/

j immy/welcome. htm" represents the DOS path "c:\users\jimmy\welcome.htm". The

value of LocalFile can be changed and the next fetch using the Background-

FetchingAgent instance will use the current value of the LocalFile instance vari-

able. The default value for LocalFile is "" (empty String).

Size

self.Size (read-only) Number object

Size is a read-only instance variable of type Number object. This variable holds the

size of the data pointed to by the URL instance variable. Si z e has the appropriate value if

the BackgroundFetchingAgent instance has been created using the

@getSizeNow option, or the GetSize instance method has been applied explicitly on

the instance. The default value for Size is undefined.

Status

self.Status (read-only) NameClass object

Status is a read-only instance variable of type NameClass object. After a new

instance of BackgroundFetchingAgent is created, the status instance variable

can be queried to reflect the current status of the instance. The value of the Status

instance variable is one of four (NameClass) values:

Value of self.status
(NameClass object)

@ready The instance has been created with either @idle or
@getSi zeNow option, and the instance is ready for
fetching.

@done The instance has finished fetching the data.

@fetching The instance is now fetching the data.

@error An error has occurred. The logString instance vari-
able can be examined for sources of error.

Table 2.2: The Values of the Status Instance Variable

HTTP_REQUEST

self.HTTPREQUEST (read-only) String object

HTTP_REQUEST is a read-only instance variable of type String object. It holds the

string representing the HTTP request that is sent to the remote Web server specified by the

URL instance variable. HTTP_REQUEST has the appropriate value if the Background-

FetchingAgent instance has been created using either the @getSizeNow or the

@fetchDataNow option, or after either of the GetSize or Fetch instance methods

has been applied explicitly on the instance. The default value for HTTP_REQUEST is "

(empty String).

HTTP_REPLY

self.HTTP_REPLY (read-only) String object

HTTP_REPLY is a read-only instance variable of type String object. It holds the

string representing the HTTP reply received from the remote Web server in response to an

HTTP request. HTTP_REPLY has the appropriate value if the

BackgroundFetchingAgent instance has been created using either the

@getSizeNow or the @fetchDataNow option, or either of the GetSize or Fetch

instance methods has been applied explicitly on the instance. The default value for

HTTP_REPLY is "" (empty String).

logString

self.logString (read-only) String object

logString is a read-only instance variable of type String object. It contains a log

of the information about the most recent network session attempted by the Back-

groundFetchingAgent instance. If an error occurs during the session, as indicated

by the status instance variable having a @error value, the logString will contain

hints for determining the error sources. For example, common errors such as non-existent

URL or network failures will be reported in logString.

Instance Methods

GetSize

SYNOPSIS:

GetSize self

Value 2
BackgroundFetchingAgent object

Table 2.3: Argument to GetSize Instance Method

GetSize opens an HTTP connection with the remote Web server specified by

self.URL and gets the size of the relevant data object. self.Size will hold the size of data

if the operation succeeds.

RETURN VALUE: On a successful return, the size of the data pointed to by self.URL

will be returned as a Number object and self.Status be set to @ready. If an error

occurs, a negative value will be returned, self.Status will be set to @error, and

self.logString can be examined to locate error sources.

Fetch

SYNOPSIS:

Fetch self

Argument Value

self BackgroundFetchingAgent object

Table 2.4: Argument to Fetch Instance Method

I

Fetch opens an HTTP connection with the remote Web server and transfers the data

pointed to by self.URL into the file indicated by self.LocalFile. Before fetching,

self.status should be set to @ready. During the fetching, self.status is set to

@fetching; after completing, self.status is set to @done.

RETURN VALUE: On a successful return, the size of the data pointed to by self.URL

is returned as a Number object and the data object itself is stored in the file

self.LocalFile. self.Status is set to @done. If an error occurs, a negative value is

returned, self.Status is set to @error and self.logString can be examined for

the source of error.

Summary of BackgroundFetchingAgent API:

Class Variable ExtFuncPtr

Instance Variables URL
LocalFile
Size
Status
HTTP_REQUEST
HTTP_REPLY
logString

Instance Methods GetSize
Fetch

Table 2.5: Summary of the BackgroundFetchingAgent API

2.6 Example Usage of the API
This section provides several examples that use the BackgroundFetchingAgent

API. The examples demonstrate:

1. checking the availability of a network connection without actually transfer-

ring a file,

2) two ways to do background fetching,

3) error reporting and error source checking

4) abolishing a running fetch operation.

Example 1
myAgent := new BackgroundFetchingAgent initMethod: \

@getSizeNow URL:"http://18.39.0.23/welcome.html"

The above script creates a new BackgroundFetchingAgent object which, after

creation, attempts to make an HTTP request to the remote Web server to determine the

content-length of the data indicated by the URL keyword argument. If the script returns

successfully, it means that the remote host is accessible and that the URL points to a valid

location for the desired data object. A successful return also means that myAgent . Sta-

tus is set to @ready and myAgent . Size will have a non-negative value for the size

of the data. If an error occurs, myAgent. Status will be set to @error and

myAgent. logString can be used to locate the error source. The same network con-

nection checking can also be done by applying the GetSize instance method on an exist-

ing BackgroundFetchingAgent object as shown in the following script:

myAgent3 := new BackgroundFetchingAgent initMethod:\
@idle URL:"http://18.39.0.23/welcome.html" \
LocalFile: "c/users / j immy/welcome . htm"

GetSize myAgent3

Example 2

In general, there are two ways to perform background fetching using the Back-

groundFetchingAgent API. One may either fetch at creation time of a Back-

groundFetchingAgent object or one may apply the Fetch instance method on an

existing BackgroundFetchingAgent object.

(myAgent2 := new BackgroundFetchingAgent initMethod: \

@fetchDataNow URL: "http: //18.39.0.23/welcome.html" \
LocalFile: "c/users/jimmy/welcome.htm" &)

The above script creates a new BackgroundFetchingAgent object which,

immediately after creation, attempts to fetch the data pointed to by the URL keyword argu-

ment. The use of '&' creates a new thread for the script directing the fetch to run in back-

ground mode. During fetching, myAgent. Status is set to @fetching. If the fetch

completes successfully, myAgent .Status is set to @done.

myAgent2.URL := "http://18.39.0.23/picture.gif"
myAgent2 .LocalFile := "c/users/jimmy/pict.gif"
global t := (Fetch myAgent2 &)

The above script demonstrates the application of the Fetch instance method to an

existing BackgroundFetchingAgent object. myAgent2 is reused in this example,

and its URL and LocalFile instance variables are set to new values so that a different

file is returned. Using '&' in this example creates a new thread for fetching and the thread

is assigned to the global variable t (which is the same t in the above script).

threadKill t

If we want to abolish the running thread t any time during the fetching operation, we

can use instance method threadKi 11 of the Thread class in ScriptX to kill the thread.

2.7 Assessing the API in terms of the Design Issues

The BackgroundFetchingAgent API in our design appears to satisfy all three

design issues -- capability, simplicity and open standards -- discussed in section 3.1.1.

As the examples provided in section 3.7 demonstrate, the API possesses the four capa-

bilities that we initially sought to achieve:

1. background fetching,

2. checking network availability without transferring a file,

3. error reporting and error source checking,

4. ability to abolish a running fetching operation.

As far as simplicity is concerned, in using the API, application developers need only

specify the URL to fetch and a local space to store the returned data. The Background-

FetchingAgent class looks like an ordinary ScriptX core class to the developers. The

underlying network extension implementation is transparent to the developers. In addi-

tion, choosing HTTP as our network transport protocol leverages off of the enormous

power of the Web -- both as a repository of multimedia data and as a tool for discovery of

resources on the Web.

Chapter 3

Data Flow Abstraction: The Implementation

The underlying mechanisms supporting the network extension facilities of the Back-

groundFetchingAgent are implemented as a single, loadable object code module

written in the C language. This chapter discusses the implementation issues of that object

code module.

This chapter is organized into three sections. Section 1 gives an overview of the plat-

form and tools employed, and then discusses environment specific implementation issues.

Section 2 discusses the steps taken to ensure that the network extensions run in back-

ground mode. Section 3 describes the current status of the implementation.

3.1 The Implementation Environment

The network extension module is implemented on a Pentium 90 PC running Microsoft

Windows 3.1. The WinSock API is used as the network programming interface to access

Windows network facilities. The Watcom C/C++32 compiler is used to generate 32-bit

object modules written in C that are loaded into the ScriptX (Version 1.0) environment by

the ScriptX Loader. The Watcom C/C++ 32 compiler is the only compiler currently being

supported by the ScriptX extension interface to write external loadable code on the Win-

dows platform. The following subsections offer a brief overview of the WinSock API, the

ScriptX extension interface and issues specific to the implementation due to the character-

istics of the extension interface.

3.1.1 The WinSock API2

The Windows Socket Application Programming Interface (WinSock API) is used to

implement HTTP access in our design by providing functions to manage TCP connections

and data transfer. The WinSock API is a library of functions that defines a network pro-

gramming interface for Microsoft Windows based on the "socket" paradigm popularized

by the Berkeley Software Distribution (BSD) of Unix. It encompasses both familiar Ber-

keley socket style routines and a set of Windows-specific extensions designed to allow the

programmer to take advantage of the message-driven nature of Windows.

The WinSock API defines the top level of the WinSock Dynamic-Linked Library

(DLL). The WinSock DLL is 16-bit. The WinSock DLL can be dynamically loaded by

calling functions in a user application either at load time or at run time. The network mod-

ule in this implementation loads the DLL at run time, and calls functions in the DLL to

access Windows network facilities. The following diagram gives an organizational view

of our program accessing the network facilities through the WinSock DLL and any stan-

dard TCP/IP stack:

2. Most of the materials in this section are derived from the book "Programming WinSock" [11]
and the WinSock FAQ [12].

Our program for HTTP access

__ WinSock API

Windows Socket DLL

0- Protocol Stack API

Protocol Stack (TCP/IP)

Hardware Driver API

Hardware Driver

- Hardware Interface

:twork

Figure 3.1: Organizational View of using the WinSock DLL

3.1.2 ScriptX Extension Interface and Implementation Issues3

The ScriptX extension interface allows platform-specific object codes to be loaded in the

ScriptX environment to extend the original ScriptX functionalities. On the Windows plat-

form, the Watcom C/C++ 32 compiler can be used to generate individual 32-bit object files

(.obj) or a library file (.lib, a collection of object files) that can be loaded into ScriptX.

When the ScriptX Loader loads in a module (single object file or a library file), a single

"entry-point" function can be exported to the scripts in ScriptX and called directly by the

script passing arguments as ScriptX objects. There are no callbacks from the C world to

the ScriptX world except for the SXwriteString function which writes a C string to a

3. Most of the background materials in this section are derived from The ScriptX Developer's
Guide [10] and The WATCOM C/C++3 2 User's Guide [13].

·

ScriptX stream object. There are only three data types that can be freely passed back

and forth across the C / ScriptX abstraction barrier: int, double and string. In this

development environment, several issues have received special attention in this imple-

mentation:

e Thunking and Indirect Function Calls to 16-bit WinSock DLL Functions

Since the Watcom C/C++ 32 compiler produces 32 bit object code while the WinSock

DLL is 16-bit, the DLL functions cannot be called directly. Instead, the Watcom compiler

provides special functions to handle thunking of arguments and calling the 16-bit func-

tions indirectly. When the address of a 16-bit function in a DLL has been obtained (via

GetProcAddress () for example), GetIndirectFunctionHandle () can be

called to obtain a handle to the function, and thunking the arguments will be done auto-

matically when InvokeIndirec tFunct ion () is then called to execute the 16-bit

function. Thunking also needs to be performed when data such as a pointer from the 16-

bit world needs to be used in the 32-bit program.

* Use of SXwriteString for function side-effects

Due to the lack of callbacks from loadable code to ScriptX functions (except the

SXwriteString function), interaction between the script that calls an external function

and the function itself is limited to the single value from the external function that is

returned to the caller script. For both the GetSize and Fetch instance methods of the

BackgroundFetchingAgent API, three instance variables are updated during a call

to the network extension function: HTTPREQUEST, HTTP_REPLY and logString.

The updates are performed by calling the SXwriteString function on the variables

which hold the respective String objects (String is a subclass of stream in ScriptX

and therefore works with the SXwriteString callback function).

* Single Exported Function for each Loadable Module

The ScriptX Loader only creates a single handle for an exported function in the load-

able module. Therefore, if the extension has more than one desired operation, the

exported function has to be able to dispatch to execute different subroutines, depending

upon a particular argument passed from the scripter level. For the BackgroundFetch-

ingAgent API, two instance methods represent the two desired operations: GetSize

and Fetch(refer to section 2.5). Therefore, the above dispatching technique is used.

3.2 Fetching in Background Mode

In the implementation, a combination of the following mechanisms was used to ensure

that the fetching process would run in a background mode on Windows. Doing so would

minimize the effect on system threads such as ScriptX's automatic garbage collection or

the multimedia presentation being rendered in the foreground.

* Non-blocking Sockets and Asynchronous Functions

Non-blocking sockets and asynchronous functions are provided by the WinSock API

to deal with blocking function calls. Many of the socket functions--such as connect () ,

send (), recv () --take an indeterminate amount of time to execute. When a function

exhibits this behavior, it is said to block; calling the function blocks the further execution

of the calling program. Because the Windows platform cannot preempt a task (unlike

Windows NT and Unix), all other programs are put on hold until the blocking call returns.

This would inhibit the ScriptX system threads as well as many others running in the fore-

ground.

To deal with the blocking calls, non-blocking sockets can be created, and WinSock's

asynchronous functions can be used to handle those calls. If a socket is created in blocking

mode, the blocking function will not return until the call is completed or a timeout or error

occurs. If a socket is created in nonblocking mode, the call to the blocking function returns

immediately. A separate function is used to determine the status of the call. The WinSock

asynchronous functions were added to WinSock to better fit Berkeley sockets to the mes-

sage-driven Windows paradigm. Event notification messages are received by an applica-

tion when a previously called non-blocking function returns. In the meantime, the rest of

the program remains fully responsive to the user's actions.

* Voluntary Yield

Voluntary yields are functions provided by the ScriptX extension API. ScriptX has a

system tasking mechanism and a thread schedular which, together, allocate time slices to

run active threads in a pre-ordered, linear sequence. A thread is said to "yield voluntarily"

when it relinquishes control even though it has not returned and its time slice has not been

expended. If the network extension program runs for a long time, like when fetching a

large data object, the tasking mechanism of ScriptX may be disabled for as long as the

program runs. Therefore, in the implementation, when receiving the data, once the HTTP

handshake with a Web server is done, the program loops, filling a relatively small buffer in

each iteration. The program yields to other ScriptX threads upon completion of each itera-

tion.

* Running as a Separate Thread in a ScriptX Title

In addition to yielding voluntarily, the network extension program should run as a sep-

arate thread when called from within a ScriptX title. This is probably the most critical step

needs to be taken, because if the fetch is run as the same thread as the title thread, it would

freeze some of the title's rendering. ScriptX provides a shorthand for creating a new

thread running a script, by adopting the Unix background thread '&' command notation.

For instance "(some scripts &)" will create a separate thread. Creating a separate thread to

run the network extension program allows the ScriptX thread schedular to allocate time

slices for network fetching, decreasing the likelihood that a network request will freeze the

system.

3.3 Current Status of Implementation

At the time of writing this thesis, all of the functions provided by the Background-

FetchingAgent API are supported. Thus the four capabilities noted as design issues

in section 2.2 have been satisfied. Currently, the network extension allows fetching a URL

in which the remote host is specified by its IP address. A hostname resolution function is

not yet implemented. Hostname resolution will be a priority for future work on this

project.

Chapter 4

Temporal Synchronization Abstraction

ScriptX's timing component readily supports linear synchronization. However, there is no

built-in structure to handle non-linear synchronization, especially in a networked environ-

ment. The purpose of the Temporal Synchronization Abstraction is to support non-linear

synchronization. For this purpose, the MasterSlaveContract ScriptX class has been

created. This chapter defines linear and non-linear synchronization and then discusses the

design and implementation of the MasterSlaveContract class. Examples of how to

use the MasterSlaveContract class are given.

4.1 Timing and Linear Synchronization in ScriptX

ScriptX provides fine-grain support for timing and synchronizing time-based operations.

Clocks, represented by the Clock class, are used in ScriptX to time and synchronize ani-

mation, sound, video, or any other time-based operations. A clock's time is measured in

"ticks", which is the product of the clock's rate and its scale. A clock's rate is measured in

sweeps per second; scale indicates the number of tick marks on the face of the clock. To

simplify this discussion, subsequent references to clocks and timing in ScriptX assume a

scale of 1 unless otherwise specified. Rate (now measured in ticks per second) and local

clock time (measued in ticks) are the two quantities of interest.

A clock's time is controlled by its rate. If the rate is zero, the clock stops. Otherwise,

the clock runs at a pace specified by its rate. To synchronize multiple events, clocks can be

arranged hierarchically. A Master-and-Slave relationship can be set up between two

clocks. Through the master-and-slave relationship, the slave is controlled by manipulating

two parameters: the effective rate (real rate at which the slave runs), and the offset (initial

difference in time relative to the master). Both quantities are influenced by the master.

In general, the slave clock's effective rate is a function of its master's effective rate:

Slave'sEffectiveRate = Master'sEffectiveRate x Slave'sRate [4.1]

If the master clock is a top clock, i.e. not itself a slave of another clock, then it has an

effective rate equal to its rate. Thanks to the above equation, the slave can be controlled by

solely changing the rate of its master. For instance, consider a slave clock, S, with its rate

initially set to 1 (1 tick per second). S won't run unless its master, M, has a non-zero effec-

tive rate. If M is the top clock, its effective rate equals its rate. If M's rate is set at 0, both M

and S pause. If M's rate is set to 1, S runs at its normal rate of 1 tick per second. If M's rate

is set to a value larger than 1, S runs faster than its normal rate. If M's rate is set to a nega-

tive value, S runs backwards.

The slave's offset determines the difference in time between the slave clock and the

master clock. Since master and slave clocks can run at different rates, the offset specifies

this difference at a specific time: when the slave's time is 0. The difference is expressed in

ticks of the master. When the slave's offset is any value other than 0, the slave's clock will

initially have a negative value when its master clock is at 0. Then, as the master clock

runs, and if the slave has non-zero effective rate, the slave's time will reach 0 when the

master clock reaches the value of the slave's offset.

In ScriptX, time-based media rendering can be done through the Player class, which

is a subclass of Clock. Media players such as the audio player, the video player or anima-

tion are all subclasses of Player. Each Player instance or instance of its subclass thus

has all the time-based functionalities of Clock. In general, to "play," a Player object

sets its rate to 1; to "stop," its rate is set to 0. Media players such as the audio player and

video player start rendering their media when their time reaches 0. To synchronize media

rendering in a presentation, a top level master player can be created which has all the

media players as its slaves. By specifying the corresponding offsets for each of the slave

players and setting each slave's rate to the normal rate at which it should run, each piece of

media is rendered at its respectively scheduled time as the master player runs. The master

player acts as the top level control for all media. By changing the rate of the master player,

the whole presentation can be paused (master's rate = 0), fastforwarded (master's rate >

1), and rewound (master's rate < 0). Each of the constituent media pieces remain synchro-

nized because each slave's effective rate is controlled by the master player.

We define the above model of synchronization as linear synchronization. In linear syn-

chronization, the rate of the slave remains unchanged throughout the presentation. By

changing the rate of the master alone, the effective rate of each slave changes accordingly.

The linear synchronization model is useful for media which is rendered continuously from

its start to its end. If we plot out the slave's time versus the master's time (see Figure 4.1),

it is a straight line with a constant slope equal to the slave's rate (slave's effective rate

divided by master's effective rate, according to equation [4.1]). A slave player renders its

media when the slave's time relative to its master reaches 0, when the master player

reaches a time equal to the slave's offset.
lr Ti ; MAI tFr

Slave's time

/

avs•JL I11J•O LVs a1GeLl LL1e1;

Slave's rate (relative to Master's time)

Master's time

Slave's offset (in master's time)

Figure 4.1: Linear Synchronization

4.2 Non-linear Synchronization

The linear synchronization model works well if it is not necessary to change the rate at

which the constituent media is being rendered. For instance, a video clip being played

continuously starting 5 seconds after the presentation begins. However, very often in a

multimedia presentation, the constituent media has to be rendered at different rates over

time, independent of the other players: pauses, jumps, plays at different rates. A typical

plot of the slave's time versus the master's time looks like Figure 4.2. The plot is non-lin-

ear, not like a straight line as in Figure 4.1.

For a simple and common example: pausing a slave video player (while the master

player, and thus other slave media playback, continue) for 3 seconds and then resuming

afterwards changes the slave video player's rate from 1 to 0 (for 3 seconds), then back to

1. In general, changing a slave's rate explicitly changes the initial linear relationship

between the master and the slave. Once this linear relationship is changed, rewinding the

master player will not bring the slave back to where it was before the change was made.

Slave's Time vs Master's Time

Slave'
Lte r3

's time

Figure 4.2: Non-linear Synchronization

A new model has to be defined to support non-linear synchronization as in Figure 4.2.

For this purpose, the MasterSlaveContract class has been designed and imple-

mented.

4.3 Design and Implementation

4.3.1 Design Overview

With a goal of supporting non-linear synchronization, the MasterSlaveContract

class is created to provide data structures for representing non-linear timing relations (as

in Figure 4.2) between a master and its slaves. At each point in time along the master's

time line, each slave's time and rate is set accordingly. In general, the slave's time and

rate need to be set explicitly when the master time line reaches a point where the slave's

rate changes (passing time t2, in Figure 4.2) or when the master's time jumps (at time t3,

in Figure 4.2). The ScriptX Callback class can be used to call a specified function at

certain times or events in a clock's life cycle. TimeJumpCallback is a subclass of

Callback which calls a function whenever a clock's time jumps. Therefore,

TimeJumpCallback objects can be used by the MasterSlaveContract class to

update a slave's time and rate (getting the quantities by querying its timing relation data

structure) whenever the master jumps to a new time. TimeCallback is a subclass of

Callback. TimeCallback calls a function whenever the specified clock reaches a

certain time. TimeCallback objects can be used to update a slave's time and rate

whenever the master reaches a point in the script where a new segment when either one of

the two quantities changes.

The MasterMarker class was defined to hold the timing relation between a master

and a slave. A MasterMarker object is a "marker" which marks a segment of the mas-

ter's time line when the slave has a different rate or when its time jumps.

The MasterSlaveContract class manages a list of MasterMarker objects for

each slave. The MasterSlaveContract class creates the corresponding timed call-

backs to be called when the master jumps to a new time, or when the master runs into a

period marked by another MasterMarker object.

How are the timing relations between a master-slave pair being set up using the Mas-

terSlaveContract class? There are three ways of doing so:

1. By hardcoding in the script: In the script, a list of MasterMarker objects

can be created explicitly by hardcoding the timing relations between a master

and a slave. The MasterMarker objects are added to a MasterSlave-

Contract object and then the timed-callbacks are initialized.

2. By incorporating from a timing relation specification string: An alternative

way to establish a master-slave timing relation is by providing a specially for-

matted string in the script and incorporating that string into the Master-

SlaveContract object.

3. By incorporating from a timing relation specification file: The third way is to

provide a specially formatted file in which the timing specification is given.

The three ways listed above represent a continuum in increasing flexibility for setting

up the timing relations of a master-slave pair using the MasterSlaveContract class.

The increase in flexibility implies a more suitable means for specifying timing relations in

a networked environment for multimedia applications.

The following sections discuss details of the MasterMarker class (examples of

each of these three methods are provided in section 4.4) and the MasterSlaveCon-

tract class. Examples on how to use the MasterSlaveContract class are also

given.

4.3.2 Details of the MasterMarker class

The MasterMarker class helps to partition a master player's time line into separate seg-

ments. Each segment specifies a different value of the slave's rate. A MasterMarker

object holds four quantities: master's segment start time, master's segment end time, the

initial slave's time, and the slave's rate during the segment.

Creating and Initializing a New Instance

The following script is an example of how to create a new MasterMarker object:

mark := new MasterMarker start:5 finish:10 \
SlaveStartTime: 5 SlaveRate: 0

The new method of the MasterMarker class calls its init method and uses the same

keyword arguments. The details of calling the init method are described below:

init

SYNOPSIS:

init self [start:num] [finish:num] [SlaveStartTime:num] \
[SlaveRate:num] [string:str]

Argument Value

self MasterMarker object

start: Number object.
Default value: 0

finish: Number object.
Default value: 0

SlaveStartTime: Number object.
Default value: 0

SlaveRate: Number object.
Default value: 0

Table 4.1: Arguments of init Method

Argument Value

string: String object. Format:
"start, finish, SlaveTime, SlaveRate"
Default value: " " (empty String)

Table 4.1: Arguments of init Method

The string: keyword argument is used as an alternative way for creating a new

MasterMarker object. Pass as an argument, a string formatted as specified in Table 4.1.

This alternative way simplifies the incorporation of timing specifications from a file.

RETURN VALUE: A new MasterMarker object is returned.

Instance Variables

Instance Variable Value

Start Master's segment start time.

Finish Master's segment end time.

SlaveStartTime Slave's initial time at the segment start time.

SlaveRate Slave's rate during the segment.

Table 4.2: Instance Variables for the MasterMarker Class

4.4 Details of the MasterSlaveContract class

The MasterSlaveContract class serves as a contract between the master and the

slave. The contract enforces the non-linear synchronization between master and slave. For

each slave, a MasterSlaveContract object essentially maintains a list of Master-

Marker objects that partition the master's time line into segments. Each segment reflects

a change in the slave's rate. The MasterSlaveContract object creates timed call-

backs along the master's time line so that when the master jumps to a new time or when

the master runs into a new segment, the slave's state (current time and rate) can be updated

correctly by looking up the MasterMarker object corresponding to that segment.

Default behavior for slaves without any MasterMarker object is linear synchronization

with the master. Therefore, linear synchronization is a special case of non-linear synchro-

nization.

Creating and Initializing a New Instance
The following script is an example of how to create a new MasterSlaveCon-

tract object:

contract := new MasterSlaveContract master: m slave: s

In the above example, both m and s are instances of the Clock subclass. m is set up as

the master; s is the slave. The MasterSlaveContract new method calls its init

method, and uses the same keyword arguments. The details of calling the init method are

described below:

init

SYNOPSIS:

init self [master:clock] [slave:clock] [initOffset:num] \
[initRate:num]

Argument Value

self MasterSlaveContract object

master: Clock (or its subclass) object
Default value: undefined

slave: Clock (or its subclass) object
Default value: undefined

initOffset: Number object. Default value: 0

initRate: Number object. Default value: 1

Table 4.3: Arguments to the init Method

RETURN VALUE: A new MasterSlaveContract object is returned. The values

of initOffset and initRate specify the initial offset and initial rate for the

slave. If a slave does not have any MasterMarker object attached to it, default

behavior is linear synchronization based upon the initail offset (refer to section 4.1).

Therefore, linear synchronization is a special case of non-linear synchronization.

Instance Variables

Instance Variable Value

master Clock (or its subclass) object, being the master.

slaves Array object, holding all the slaves (Clock object, or
its subclass)

SlaveMarkersTable HashTable object. Each entry has a slave as key and an
Array of MasterMarker objects as value.

Table 4.4: Instance Variables of the MasterSlaveContract Class

Instance Methods

AddSlave

SYNOPSIS:

AddSlave self slave

Argument Value

self MasterSlaveContract object

slave Clock (or its subclass) object.

Table 4.5: Arguments to AddSlave Instance Method

AddSlave adds a new slave, slave, to the MasterSlaveContract object, self.

self.master is set up as slave's master clock. self.slaves is updated.

RETURN VALUE: The updated self is returned.

DropSlave

SYNOPSIS:

DropSlave self slave

Argument Value

self MasterS laveContract object

slave Clock (or its subclass) object.

Table 4.6: Arguments to DropSlave Instance Method

DropSlave removes slave from self. self.slaves is updated. slave's master clock

is set to undef ined, and slave's entry in self.SlaveMarkersTable is deleted. Timed

callbacks on self.mas ter that correspond to slave are removed.

RETURN VALUE: The updated self is returned.

AddMMarker

SYNOPSIS:

AddMMarker self slave mmarker

Argument Value

self MasterSlaveContract object

slave Clock (or its subclass) object.

mmarker MasterMarker object

Table 4.7: Arguments to AddMMarker Instance Method

AddcMMarker adds mmarker, that belongs to slave, to self. self.SlaveMarker-

sTable will be updated.

RETURN VALUE: The updated self is returned.

ResetCallbacksForSlave

SYNOPSIS:

ResetCallbacksForSlave self slave

Argument Value

self MasterSlaveContract object

slave Clock (or its subclass) object.

Table 4.8: Arguments to ResetCallbacksForSlave Instance Method

ResetCal lbacksForS lave resets all the timed callbacks that correspond to slave

on self.mas ter. The method is called either when all of the MasterMarker objects for

slave have been added to self using AddMMarker, or when the list of MasterMarker

objects for slave is modified.

RETURN VALUE: self is returned.

ResetCallbacksForAll

SYNOPSIS:

ResetCallbacksForAll self

Argument Value

self MasterSlaveContract object

Table 4.9: Argument for ResetCallbacksForAll Instance Method

ResetCal lbacksForAll resets all the timed callbacks for all of the slaves in self.

RETURN VALUE: self is returned.

IncSpecForSlave

SYNOPSIS:

IncSpecForSlave self slave [dir:d] [path:p] [string:s]\

[SectionID:id]

Argument Value

self MasterSlaveContract object

slave Clock (or its subclass) object

dir: DirRepa object. Specify the directory to find
the specification file.
Default value: unde fined

path: String object. Specify the file name for
the specification file.
Default value: undefined

string: String object. Format:
"initoffset,initRate;
sl,fl,sstl,srl;s2,f2,sst2,sr2;..;.."
Default value: "" (empty String)

SectionID: String object.
Default value: " [MSCSPEC] "

Table 4.10: Arguments for IncSpecForSlave Instance Method
a. A DirRep object represents a directory structure in the corresponding platform in ScriptX

IncSpecForSlave provides two ways for incorporating timing relations for a

slave and setting up the corresponding timed callbacks with the master: by providing

either a specification string or a specification file.

1. Incorporating from a specification string:

The specification string is of the format:

"initOffset,initRate;sl,fl,sstl,srl;s2,f2,sst2,sr2;..;.. "

where initOffset and initRate are the respective values of the slave's initial

offset and initial rate. If only linear synchronization is required, the string need only

specify the initial offset and initial rate values. After the ';' delimiter, the rest of the

substring is a series of four-number units, delimited by ';'. Each four number unit rep-

resents the four values, respectively of: segment start time, segment end time, slave's

time at segment start, and slave's rate during segment.

2. Incorporating from a specification file:

IncSpecForSlave looks for the specification file specified by dir and path key-

word arguments. In the file, the value of SectionID (defaults to " [MSCSPEC] ")

marks the beginning of the timing relation data in the file to be incorporated. The first

empty line or EOF marks the end of the data. :

[MSCSPEC] -0 SectionlD
20, 1; - initoffset,initRate
0, 5, 0, 1; Data Format: sfsst,sr;
5,10,10,0;

Sempty line marks end of data
[MSCSPEC2]
10;
0,10,0,2;
10,20,20,0;

Figure 4.3: Sample Timing Specification File

Different values of SectionID correspond to different sections of the file, where

the data may be found. Therefore, multiple sets of data can be included in a single file.

Figure 4.3 shows a sample timing specification file. initoffset and initRate are the initial

offset and initial rate of the slave. Each data line is of the format: "s,f sst,sr; ", where s is

the segment start time, f is the segment end time, sst is the slave's start time at segment

start, sr is the slave's rate during the segment.

RETURN VALUE: The updated self is returned.

Summary of the MasterSlaveContract class

Instance Variables master
slaves
SlaveMarkersTable

Instance Methods AddSlave
DropSlave
AddMMarker
ResetCallbacks-
ForSlave
ResetCallbacks-
ForAll
IncSpecForSlave

Table 4.11: Summary of the HasterSlaveContract Class

4.5 Example usage of the MasterSlaveContract class

This section provides several examples on how to use the MasterSlaveContract

class. The examples demonstrate the three different ways of setting up timing specifica-

tions for a slave:

1. By hardcoding in the script
2. By incorporating from a string
3. By incorporating from a fileEach of the examples attempt to set up timing spec-

ifications for a slave shown in Figure 4.4

Slave's time
rate=0 ==1

rate=0

10 20

time

Figure 4.4: Timing Spec. of Slave for all three examples

Example 1

The following script demonstrates setting up the timing relations in Figure 5.4 by

hardcoding in the script.

global ml := new player

global sl := new player

global contractl := new MasterSlaveContract \

master:ml slave:sl initOffset:5 initRate:2

global markl := new MasterMarker start:10 finish:20 \
SlaveStartTime:10 SlaveRate:0

global mark2 := new MasterMarker start:20 finish:30 \
SlaveStartTime:10 SlaveRate:1

global mark3 := new MasterMarker start:30 finish:40 \
SlaveStartTime:50 SlaveRate:0

global mark4 := new MasterMarker start:50 finish:1000 \
SlaveStartTime:50 SlaveRate:1

AddMMarker contractl sl markl

AddMMarker contractl sl mark2

AddMMarker contractl sl mark3
AddMMarker contractl sl mark4

ResetCallbacksForSlave contractl sl

Example 2
The following script demonstrates setting up the timing relations in Figure 5.4 by incorpo-

rating a string:

global specStr := "5,2;10,20,10,0;20,30,10,1;30,40,50,0;\
50,1000,50,1"

global m2 := new Player
global s2 := new Player
global contract2 := new MasterSlaveContract master: m2\

slave: s2

incSpecForSlave contract2 s2 string:specStr

Example 3
The following script demonstrates setting up the timing relations in Figure 5.4 by incorpo-

rating a file "ex3. ini", located at theScriptDir (ScriptX global variable for direc-

tory launching the running script), which have the content:

[example3]
5,2;
10,20,10,0;
20,30,10,1;
30,40,50,0;
50,1000,50,1;

Figure 4.5: Specification File for Example 3

global m3 := new Player
global s3 := new Player

global contract3 := new MasterSlaveContract master:m3\
slave: s3

incSpecForSlave contract3 s3 dir:theScriptDir \
path: "ex3 .ini" SectionID: " [example3] "

Chapter 5

Text-based Media Abstraction

Text is an important medium in most multimedia applications. Richly formatted text

moving actively on the screen is commonplace in lively multimedia presentations. For

multimedia applications in a networked environment where bandwidth and local storage

are concerns, text provides an efficient means of content delivery (because of its small

size), and nonetheless an attractive medium if client-side processing of the text is possible.

In ScriptX, text has associated attributes that specify its color, font, size, etc. Text format-

ting is done within a script, and the process requires a great deal of detailed attention that

could have been avoided.

The SAText (Static, Annotated Text) class was developed to provide an alternative

way to prepare and present formatted text in ScriptX. The SAText class creates format-

ted Text objects from an annotated source: a string or an ASCII text file. The contents

are annotated in the source with formatting command strings The SAText class is

intended to provide a simpler and more flexible way to prepare text-based media in

ScriptX. It also allows formatted text to be distributed in a networked environment just

like other media such as graphics, audio or video clips, which are separated from the

scripts or applications.

The SAText class has been further extended to include the DAText (Dynamic,

Annotated Text) class. A DAText object, like a video player, plays a stream of formatted

text. Variable rates for playing DAText objects allows fastforward, rewind, and pause,

just as in a video player. This chapter discusses the design and implementation of the

SAText class and the DAText class. Examples in using the SAText and DAText

classes will be given at the end of the chapter.

5.1 Existing Text Support in ScriptX4

The Text component in ScriptX provides facilities for the display, editing and formatting

of text, including paragraph formatting. The Text component consists of the Text class,

TextPresenter class and the TextEdit class. A Text object is a subclass of

String. The TextPresenter and TextEdit classes hold Text objects as their

"target", and are responsible for displaying (and editing, for TextEdit) the text. A

Text object is more than a string in that the plain text string that it represents, can be for-

matted by setting its attributes such as size, font, color, to different values. The whole tar-

get string is indexed into cursor positions:

HELLO
I I I I I I

0 1 2 3 4 5 cursor position

1 2 3 4 5 ordinal position

Figure 5.1: Cursor Position and Ordinal Position

To format a part of the string represented by a Text object, application developers

specify the range of the cursor positions to format and then apply the instance methods

setAttr or setAttrFromTo on the Text object. Formatting text this way with

ScriptX is time-consuming, considering the trouble counting the cursor positions to

change the attributes.

The current ScriptX features also allow the importing of external text files to create

Text objects. Two text file formats are supported: plain ASCII and RTF (rich text for-

mat). Imported ascii text files are not translated into plain, ScriptX Text objects with

default attributes. Formatting plain text in ScriptX involves applying SetAttr or

SetAttrFromTo. An RTF file is a fully formatted document which is used in docu-

4. Most of the background materials in this section are derived from "The ScriptX Architecture
and Components Guide".[14]

mentation like this thesis. RTF needs to be generated from an RTF editor, and is not gen-

erally used to prepare lively text-based media for a multimedia presentation.

5.2 The SAText class

5.2.1 Overview

SAText stands for Static, Annotated Text. The SAText class provides a simpler alterna-

tive for preparing static, formatted text-based media in ScriptX. The source to an

SAText object is either a text string, or an ASCII text file that is annotated with special

command strings. Without any annotation in the source, SAText objects are created

using the default attributes of Text objects. The SAText class is a subclass of Text.

Contents are formatted according to the command string annotations. The command

strings are of the form:

@command. argument {foobar}

As the content being annotated, foobar's attributes are set by the command string

where the new SAText object is created. A typical source file or source string for creat-

ing an SAText object is as follows:

@leading.15 {@size.12{Hello,
@brush.255:255:0{Colorful @size.24{World!)))}}

Figure 5.2: Sample Source File for Creating SAText Object

Creating the sample source file into a formatted text (SAText object) needs only on

line of script:

mytext := new SAText dir:theScriptDir path:"sample.sat"

While using the existing ScriptX support will need the following lines of script:

mytext2 := "Hello, Colorful World!" as Text
setAttr mytext2 @leading 0 15
setAttr mytext2 @size 0 12
setAttr mytext2 @brush 6 (new Brush color: \

new RGBcolor red:255 green:255 blue:0)
setAttr mytext2 @size 15 24

As shown in the sample file in Figure 5.2, command strings can be nested within one

another. If one content string is annotated by two command strings of the same type, the

innermost one takes effect. For instance, in the sample source file, World! is being

annotated by both @size.24 { } and @size.12 { . @size.24 { } dominates because

it is the innermost command string to World!. The set of command strings and the pos-

sible arguments recognized by the SAText class cover all of the attributes and attribute

values supported by ScriptX for formatting a Text object. The set of recognized com-

mand strings are listed in the following table5 :

Annotation Keyword Arguments

@brush r:g:b (the numbers for red,green,and blue component
respectively) e.g. @brush.255: 255:255 { }

@font font (name of a system font)
e.g. @font.Times Roman{ }

@size number (a value in points)
e.g. @size.12 { }

@weight name Possible values:
extral ight,l ight,regular,medium,demi -
Bold,bold,extraBold,heavy
e.g. @weight .bold{ }

Table 5.1: Arguments to the Annotation Keywords in SAText Source

5. For more information about what each attribute does to the Text object in ScriptX, refer to p.770
of "The ScriptX Core Classes Reference"[15]

Annotation Keyword Arguments

@width name Possible values:
condensed,normal,expanded
e.g. @width. condensed {

@style name Possible values:
"roman","i talic","oblique"
e.g. @style. italic { }

@underline number Possible values: 0 or 1
e.g. @underline. 1 { }

@leading number e.g. @leading. 5 { }

@paraLeading number e.g. @paraLeading. 5 { }

@firstLineLeading number e.g. @firstLineLeading. 5 { }

@alignment name Possible values: flush,f lushleft,f lush-
ToEnd,f lushRight,f ill,center,tty
e.g. @alignment. flush{ I

@paraIndent number e.g. @paraIndent. 5 { }

@indent, number e.g. @indent. 5 { }
@indentLeft

@indentFromEnd, number e.g. @indentFromEnd. 5 { }
@indentRight

Table 5.1: Arguments to the Annotation Keywords in SAText Source

5.2.2 Details of the SAText Class

The SAText class is a subclass of Text class.6 It is basically a Text object with its

target string's attributes set according to the formatting annotations of the source, which

can be a string or a file.

6. For more information about the instance variables and instance methods of SAText class inher-
ited from the Text class, refer to "The ScriptX Core Classes Reference" p.772 [15]

Creating and Initializing a New Instance

The following script illustrates two ways to create a new instance of the SAText class:

1. Creating from a source file:
satextl := new SAText dir:theScriptDir path:"example.sat"

2. Creating from a source string:
satext2 := new SAText string:"@size.12{

@brush.0:255:0{Hello!}}"

The new method of SAText calls its init method and uses the same keyword argu-

ments. The details of calling the init method are described below:

init

SYNOPSIS :

init self [dir:d] [path:p] [string: str]

Argument Value

self SAText object

dir: DirRep object. Specifies the directory of source file.
Default value: unde fined

path: String object. Specifies the file name of source file.
Default value: unde fined

string: String object. Specifies the source string.
Default value: "" (empty String).

Table 5.2: Arguments to init Method

The init method can be applied in one of two ways:

1. importing from a source file by specifying the location using the dir: and

path: arguments

2. importing from a source string using the string: argument.

5.3 The DAText class

5.3.1 Overview

DAText stands for Dynamic, Annotated Text. It is a dynamic version of both the

SAText class, and the original Text class. DAText objects are like video players, but

they render streams of formatted text strings instead of video frames. In the current imple-

mentation, the DAText class is a subclass of both the Player class and the TextPre-

senter class7. Subjugation to the Player class permits the DAText objects to

exercise play, fastforward, and rewind functionality. DAText objects can also access

other time-based facilities through the Clock class (which is the superclass of the

Player class). The rate instance variable of a DAText object can be set to render the

text at variable rates (positive value for forward rendering, negative value for reverse).

Dominance by the TextPresenter class enables the DAText class to render text on

the screen. DAText objects can be created the same way SAText objects are created: by

using an annotated (or a plain) source string or by importing data from a source file.

DAText objects can also be created using existing Text objects to produce moving text.

5.3.2 Details of the DAText class

Creating and initializing a New Instance
The following script illustrates how to create a new instance of the DAText class:

datextl := new DAText dir:theScriptDir path:"example.dat"

The new DAText object can then be added to a visible space such as a window and

rendered using the play instance method inherited from the Player class. The new

method of DAText calls its init method and uses the same keyword arguments.

7. For more information about the instance variables and instance methods of the Player class and
the TextPresenter class, refer to "The ScriptX Core Classes Reference" p.779 and p.575 [15]

init

SYNOPSIS:

initself [dir:d] [path:p] [string: str] [Text:T]

Argument Value

self DAText object

dir: DirRep object. Specifies the location for the source file.
Default vale: unde fined

path: String object. Specifies the file name of source file.
Default value: unde fined

string: String object. Specifies the source string.
Default value: "" (empty String)

Text: Text object. Specifies source text.
Default value: unde fined

Table 5.3: Arguments for init Method

A DAText object can be created in one of three ways:

1. Importing from a source file:

The Dir: and path: arguments specify the location of the source file to open. The

source file contains the annotation command strings defined in the SAText class. If

the source file does not have any annotations, then the Text class default attributes

are used to create the DAText object.

2. Importing from a source string:

The string: argument specifies an annotated (or plain) string as the source for cre-

ating a DAText object. If the string is not annotated, the Text class default attributes

will be used in creating the DAText object.

3. Using an existing Text object:

The Text: argument specifies an existing Text object to be used for creating the

DAText object. The attributes of the original Text object are preserved.

Instance Variables
The instance variables that the DAText class inherits from the Player class and the

TextPresenter class are discussed here to illustrate the usage of the DAText class.

Instance Variables Inherited from the Clock (through the Player) Class:

rate

self.rate (read-write) Number object

rate is a read-writable instance variable of type Number object. It is used to control

the rate at which the DAText object renders its moving text. It measures the number of

characters per second that are rendered. A positive rate value indicates forward play-

back. A negative value indicates reverse playback. Applying the play method on

DAText sets its rateto 1. If the DAText object needs to play at some rates other than 1,

the rate instance variable has to be set explicitly.

ticks

self.ticks (read-write) Number object

ticks is a read-writable instance variable of type Number object. Since rate mea-

sures the number of characters that are rendered per second, the ticks instance variable

indicates the number of characters that are already rendered. If ticks is less than 0, then

no characters are being rendered. ticks can be set so that for the DAText object will

jump to any position in the string.

Instance Variables Inherited from the TextPresenter Class:

target

self.target (read-only) Text object

target is a read-only instance variable of type Text object. target specifies the

Text object created by the DAText object. The attributes of self.target are either

determined by the annotations in the source (file or string) or by the existing Text object

used to create the DAText object.

Instance Methods

Some of the instance methods that the DAText class inherits from the Player class, for

normal usage are listed in the following table:

Instance methods
Comments

inherited from Player

play sets rate to 1

fastforward sets rate to 5

rewind sets rate to -5

stop sets rate to 0

Table 5.4: Instance Methods from the Player class

5.4 Example usage of the SAText and DAText classes
This section provides several examples that illustrate the usage of the SAText and DAText

classes. The examples demonstrates:

1. Creating a SAText object from a source string and rendering it in a window.

2. Creating a DAText object from a source file and rendering it in a window, with

varied rates.

Example 1
global win := new window
show win
global sat := new SAText string: \

"@size.24{@brush.255:0:0{Hi!}}"
global textpresent := new TextPresenter boundary: \

(new Rect x2:100 y2:50) target:sat
append win textpresent

The above scripts creates and shows a new window, win, and a new SAText object,

sat, representing the string "Hi !" in 24 point font in the color red. sat is then put into

a TextPresenter object which is rendered in win.

Example 2
global win := new window
show win
global dat := new DAText dir:theScriptDir \

path: "example2. dat"
append win dat
play dat
stop dat
dat.ticks := 20
dat.rate := 5

The above scripts create and display a new window, win. A new DAText object,

dat, is created and is rendered in win. The scripts show how to play dat at the default

rate (using play), 1, and how to stop (using stop), jump (setting dat. ticks), and

play dat at a different rate (setting dat. rate).

Chapter 6.

A Practical Example Using the Abstraction Models

A sample multimedia presentation was developed and implemented in ScriptX to demon-

strate the integrated usage of all three abstraction models developed in this thesis. Specif-

ically, the BackgroundFetching, the MasterSlaveContract, and the SAText

and DAText classes were used. The sample course uses materials taken from the preview

tape of the video course "A New American TQM: Revolutions in Management." [19]

Scene 1
The following figure shows the appearance of Scene 1:

Figure 6.1: The Appearance of Scene 1

Scene 1 is the introduction. A bitmap for the courseware is rendered in the

background. A DAText object runs in the foreground at a constant rate throughout

scene 1. The DAText was created from an annotated source file included as Appendix A.

At the bottom of the window are four push-buttons. The buttons exist throughout all

scenes in the presentation and are used to control the entire presentation . The functions

are: start/restart, play/pause, fastforward and rewind. The buttons were created using

ScriptX's PushButton class. The class activates a function to detect mouse clicks.

Each pushbutton function controls the master and, by extensions all of the slave objects.

The start/restart button sets the master's time to 0. The play/pause button sets the master's

rate to 1/0. The fastforward button sets the top player's time 5 seconds ahead. The rewind

button sets the top player's time 5 seconds backward.

Scene 2

Figure 6.2: The Appearance of Scene 2

Scene 2 and scene 3 are lecture materials. In scene 2, three pieces of media are ren-

dered and synchronized spatially and temporally:

1) the lecturer's picture as a bitmap rendered in the background,

2) a DAText object serving as closed-caption text in the foreground, and

3) the lecturer's voice running continuously as an audio stream.

The closed-caption text is synchronized as a slave to the audio stream so that each

word in the text stream is rendered when the audio stream utters that word. The synchro-

nization is done using a MasterSlaveContract object created from a timing specifi-

cation file shown in Appendix A.

During scene 2 playback, a BackgroundFetchingAgent object is instantiated to

retrieve a file from over the network that will be used in scene 3. The audio playback

apparently is not affected by the fetching, since it is automatically set to run at priority by

the ScriptX system. If the DAText object playback in scene 2 is run with a thread with

normal priority, it slows noticeably during the background fetch to support scene 3

because the fetch, run as a separate thread, is sharing CPU cycles. However, if the

DAText object is being run as a thread with high priority, there is no noticeable delay.

Scene 3

Figure 6.3: The Appearance of Scene 3

The bitmap file fetched during scene 2 is rendered in the background in scene 3. A

DAText object runs in the foreground to provide the text for the slide. The lecturer's

voice is rendered in an audio stream. The text is synchronized with the audio as in scene

2, using a MasterSlaveContract object. The audio serves as the master; the

DAText object as the slave. The MasterSlaveContract object is created from a

timing specification file included in Appendix A. Note that scene 2 and scene 3 use the

same timing specification file. The SectionID instance variable of the Master-

SlaveContract class indicates where in the file the timing data for each scene is

located. For example, the MasterSlaveContract object in scene 3 uses "[scene3]"

as value to the SectionID instance variable (see Appendix A.4).

Chapter 7

Conclusion and Future Work

7.1 Conclusion

With the abstraction models proposed in this thesis, the extended ScriptX platform has

demonstrated to satisfy all of the desired capabilities as discussed in section 1.1 for

supporting networked, interactive multimedia. The BackgroundFetchingAgent

class in the Data Flow Abstraction provides ScriptX developers with a network API for

performing background fetching operations. The example in chapter 6 using the

BackgroundFetchingAgent API shows that data can be fetched silently from

remote servers without disturbing the presentation running in the foreground provided that

running threads that require attention have been set to high priority. The

MasterSlaveContract class in the Temporal Synchronization Abstraction has

leveraged the existing ScriptX support in timing to support non-linear synchronization

enabling the orchestration of media playback where rates change arbitrarily over time.

The SAText class in the Text-based Media Abstraction provides a means for creating

formatted text media in ScriptX from annotated text files. The DAText class enables the

convenient creation of text stream media which can be rendered dynamically. The

example application in chapter 6 has demonstrated that all these abstraction models have

been successfully implemented.

7.2 Future Work

For the Data Flow Abstraction, hostname resolution is a priority to enhance the existing

functionalities of the BackgroundFetchingAgent API. At present, the Data Flow

Abstraction is defined to support background prefetching. Several other important

features in the area of data flow are worth added to enlarge the scope of the model. A

streaming protocol and buffering to allow live media (e.g. a live video stream) to be

played over the network on a ScriptX client are two such enhancements. Live media has

advantages for efficient usage of bandwidth and local storage as with the prefetching

model. Moreover, compression and decompression can be deployed in future research.

Compressed data files can be stored on the servers and decompression by the ScriptX

client as part of the retrieval process.

The Temporal Synchronization Abstraction currently handles media playback

synchronization in a presentation. Protocols to synchronize network fetching with media

playback can be developed.

The SAText class presently recognizes command strings that set the attributes of text

in ScriptX. More innovative command strings can be implemented to create special

media effects to the text content. For instance, @blink.rate{foobar} may cause

foobar to blink with a rate rate in the presentation.

References

[1] "Latest Internet Host Survey Available: The Internet is Growing Faster than Ever."
Press Release, Internet Society, Reston VA, USA., 6th February, 1995. Available online
at http://www.nw.com/zone/WWW/isoc-pr-9501.txt

[2] "The National Information Infrastructure: Agenda for Action.", SunSITE-based Gov-
ernment Documents. Available online at http://sunsite.unc.edu/nii/NII-Table-of-Con-
tents.html

[3] "NCSA Mosaic Home Page". National Center for Supercomputing Applications, The
University of Illinois at Urbana Chanpaign, 18th, March 1995. Available online at
http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/help-about.html

[4] "Welcome to Netscape". Netscape Communications Corporation. Available online at
http://www.mcom.com/

[5] "CGI Overview". Available online at http://hoohoo.ncsa.uiuc.edu/cgi/

[6] Dave Thompson. "Common Client Interface Protocol Specification". National Center
for Supercomputing Applications, The University of Illinois at Urbana Chanpaign,
February, 1995. Available online at http://yahoo.ncsa.uiuc.edu/mosaic/cci.spec.html

[7] Paul Rohr, "Software Development Interface", 2nd March, 1995. Available online at
http://www.spyglass. com:4040/newtechnology/integration/iapi.html.

[8] "OLE Automation in Netscape.", Netscape Communications Corporation, 22nd
March, 1995. Available online at http://home.mcom.com/newsref/std/oleapi.html.

[9] Boss B. "An API for WWW Applets". Draft with annotations for W3A version 1.1,
28th February, 1995. Available on line at http://grid.let.rug.nl/~bert/W3A/W3A.html

[10] "ScriptX Develop's Guide", ScriptX Technical Reference Series, Version 1.0,
Kaleida Labs, Inc., 1994.

[11] Arthur Dumas, "Programming WinSock", SAMS Publishing, 1995.

[12] Mark Towfiq, "Frequently Asked Questions About Windows Socket Version 1.1", 6th
September, 1994. Available online at ftp://SunSite. UNC.EDU/pub/micro/pc-stuff/ms-
windows/winsock/lFAQ

[13] "WATCOM C/C++ 32 User's Guide", 1st Edition, WATCOM International Corpora-
tion, Waterloo, Ontario, Canada, 1993.

[14] "ScriptX Architecture and Components Guide", ScriptX Technical Reference Series,
Version 1.0, Kaleida Labs, Inc, 1994.

[15] "The ScriptX Core Classes Reference", ScriptX Technical Reference Series, Version
1.0, Kaleida Labs, Inc, 1994.

[16] Nathaniel S. Borenstein, "Email with A Mind of Its Own: The Safe-Tcl Language for
Enabled Mail.", ULPAA 1994 Conference Proceedings.

[17] Stan. Letovsky, "ccitcl: Safe Tel + CCI." Available online at http://gdbdoc.gdb.org/
letovsky/tcl/ccitcl.html.

[18] "The Java Virtual Machine Specification.", Sun Microsystems, 15th March, 1995.

[19] Shoji Shiba, "A New American TQM: Revolutions in Management.", MIT/CAES
Video Productions.

[20] Stan. Baron; W. Robin Wilson, "MPEG Overview.", SMPTE Journal v. 103 p. 391-
394. June 1994.

Appendix A

Materials for Preparing the Example in Chapter 7

A.1 The DAText source file in Scene 1
The following source file is used to create the DAText object in scene 1.

@font.Courier New.{@size.20{@Brush.255:255:255{The following Demo shows:

@weight.bold{@Brush.250:250:70{l. Media Abstraction:)}}
@leading.20{@indent.25{@Brush.50:255:50{A.}
@Brush.255:50:50{@style.italic{DAText}} (Dynamic, Annotated Text--the moving
text that you are looking at)
@Brush.50:255:50{B.} @Brush.255:50:50{@style.italic{SAText)}} (Static,
Annotated Text -- the static version of
@Brush.255:50:50{@style.italic(DAText}})))}}

@weight.bold{@Brush.250:250:70{2. Time Abstraction:))}}
@leading.20{@indent.25{@Brush.50:255:50{A.} Linear Synchronization (using
@Brush.255:50:50({@style.italic{Master-Slave Offset})))
@Brush.50:255:50{B.) Nonlinear Syn. (using
@Brush.255:50:50{@style.italic{Master-Slave Contract}})}}))))
==> Be able to FF/Rewind/Jump to any position in the content.)))

A.2 The DAText source file in Scene 2 for the Closed-caption Text
@paraleading.10{@Brush.255:255:255{@font.Courier
New{@alignment.flush{@leading.40{@size.20{@weight.bold{Today, I want to
speak of the @Brush.50:255:50{@style.italic{Proactive
Improvement)). But before going to the
@Brush.50:255:50{@style.italic{Proactive Improvement)), let's review
four revolutions in the Management Thinking. }}}}}}}

A.3 The DAText source file in Scene 3 for the Slide's Text
@post.{@leading.15{@size.36{@alignment.center{@brush.5:0:150{@font.Times New
Roman{@weight.bold{The Four Revolutions in}}))}}}
@size.36{@alignment.center{@brush.5:0:150{@font.Times New
Roman{@weight.bold{Management Thinking}}}}}}}))))@pause.5{})

@play.10{}@size.30{@alignment.flushleft{@brush.84:240:90{@size.30{l.}}
@font.Times New Roman{@brush.250:250:70{@post.{Customer)
@post.{Focus)))}}}}}@pause.5{}

@size.30{@alignment.flushleft{@brush.84:240:90{@size.30{2.}} @font.Times
New Roman{@brush.250:250:70{Continuous Improvement}}}})@pause.5{}

@play.10{}@size.30{@alignment.flushleft{@brush.84:240:90{@size.30{3.}}
@font.Times New Roman{@brush.250:250:70{Total Participation)))}})}}@pause.5{})

@size.30{@alignment.flushleft{@brush.84:240:90{@size.30{4.}} @font.Times
New Roman(@brush.250:250:70{Societal Networking)))}}}}@play.5{})
@size.16{@font.Times New Roman{@weight.bold{
@alignment.flushright{@brush.250:250:250{(The END of Demo)))))}}}}}

A.4 Timing Specification file for slaves in scene 2 and scene 3
The following file shows the timing specification file used by the MasterSlaveCon-

tract class in both scene 2 and scene 3 to synchronize the DAText objects (as the

slaves) to the audio (as the master). "[scene2ccap]" is for scene 2; "[scene3]" for scene 3.

-- Filename: expspec.ini
-- the specification file for MasterSlaveContract in scene 2 and 3

-- format: [MSCSPEC]
initialOffset;
start,finish, ticks,rate;

[scene2ccap]
0,0;
0,5,0,0;
5,50,9,0;
50,100,18,0;
100,200,32,0;
200,300,41,0;
300,457,55,0;
457,565,68,0;
565,643,80,0;
643,701,92,0;
701,807,105,0;
807,1000,118,0;
1000,1168,124,0;
1168,1276,135,0;
1276,1327,142,0;
1327,1380,153,0;
1380,1500,163,0;

[scene3]
0,0;
0,390,2,0;
352,402,6,0;
402,452,10,0;
452,538,22,0;
538,648,48,0;
800,900,63,0;
900,1200,68,0;
1200,1350,87,0;
1350,1580,100,0;
1620,1750,112,0;
1750,2050,126,0;
2100,2200,141,0;
2200,2300,155,0;
2500,2500,156,3;

fl

