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Abstract

For years, researchers in machine vision have focused on extracting object boundary
information from luminance derivatives, color contrast, depth information, and tex-
tural patterns. However, no single one of these methods is sufficient for detecting all
of the contour information that humans perceive. Humans have little difficulty dis-
criminating depth-based contours from the fused images in a stereogram, extracting
illusory contours from a Kanizsa square, or even in completing contours through the
blind spot.

This thesis reformulates the problem of "edge detection" into the recognition of
high-level perceptual features which I will call "contours". I will present a background

on the psychophysical data that describes different low-level physical means of creat-
ing contours as well as influences from high-level sources. A novel visual processing
framework that deals with contours as high-level image features will be developed.
Finally, I will demonstrate the operation of this new model on real-world images using

a prototype active vision head that was designed to support this visual architecture.

Thesis Supervisor: Lynn Andrea Stein
Title: Class of 1957 Associate Professor of Computer Science
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It is what lies beneath the surface, the subtle as opposed to the obvious;
the hint as opposed to the statement. It is applied to the grace of a boy's
movements, to the restraint of a nobleman's speech and bearing, or when
notes fall sweetly and delicately to the ear... To watch the sun sink behind
a hill, to wander on and on in a huge forest with no thought of return,
to stand upon a shore and gaze after a boat that drifts beyond sight, to
ponder on the journey of wild geese seen, and lost behind clouds, these are
the ways of yu-gen. - Zeami



Chapter 1

Introduction

People are incredibly adept at finding edges. Without conscious thought, we can

guide our hands to the edge of a soda can, determine where the hole in a wooden

fence lies, and spot a deer hidden in dense undergrowth. Computational attempts to

extract edges from static images have become increasingly more accurate in recent

years, but they still fall short of biological systems. In this thesis, I propose that one

reason for this discrepancy is the variety of methods available to biological systems

for extracting boundary information from scenes. This work presents a brief review

of the shortcomings of current approaches to studying boundary extraction problems

and suggests a model for integrating various existing methods of edge detection. A

prototype active vision head was constructed to allow testing of this novel visual

architecture and a partial implementation of this model was implemented.

1.1 Motivations: A Visual Turing Test

Artificial Intelligence researchers have taken as their goal, at the highest level, to study

the computational aspects of intelligence. Whether our actual research is composed of

building insect-like robots, solving computational logic problems, proving theorems

about perceptron learning, or retrieving images from large databases, we all base

our work on the desire to implement and understand intelligence. The field that I

have chosen to specialize in is machine vision. Why begin with vision? Humans



rely on vision for much of their perceptions of the external world. Our descriptions

of objects are dominated by visual perception. (When did you last hear "use the

book that smells like vinegar" instead of "use the red book"?) From a biological

standpoint, a large percentage of brain tissue is directly involved in visual processing.

Perhaps the most realistic reason to study computational vision is that the biology

of vision has been much more clearly studied than that of other sensory systems.

Because vision can easily be tested in both awake and anesthetized human and animal

subjects, a wealth of data on the visual process has been accumulated in the fields of

psychophysics, psychology, and physiology to guide our computational investigations.

There are many different motivations that can cause a researcher to begin the

study of computational vision. Some are interested in solving difficult engineering

tasks such as visual navigation for mobile robots, or recognition of faces. Other

researchers are motivated by a desire to investigate large scale parallel theories of

computation. Others are interested in industrial and military tasks like tracking

enemy tanks or assembling parts on a conveyor belt. Finally, some researchers begin

to study vision in order to understand the way that human beings are capable of

recognizing friends, catching fastballs, and operating in such a visually complicated

environment. It is this last area that I find most interesting, and it is this motivation

to understand human vision that has resulted in a re-evaluation of computational

vision.

As a step towards understanding artificial and biological vision, I propose a type

of visual Turing test: The challenge is to create a machine that gives behavioral re-

sponses to a visual scene that are indistinguishable from those of a human observer.

At the extreme, this problem requires the machine to have solved many of the tra-

ditional machine vision tasks such as object recognition, tracking, and figure/ground

segmentation, as well as the additional capabilities of memory, basic reasoning, and

motor control. While it is not necessary to set out to complete this goal in one fell

swoop, it does serve as a guiding influence for this work.

Artificial vision is too large a puzzle to solve all at once. The piece that I have

chosen to examine is the problem of contour detection. As will be demonstrated later,



contours can be caused by differences in luminance, color, depth, or a variety of other

low-level features. Contours can also be created by high-level expectations, influences

from other senses, and other effects. This thesis will present a novel methodology for

combining these low-level features and high-level influences into an integrated per-

ceptual contour representation. A custom-built active vision robot named Charlotte

was constructed to provide a platform for experimentation with this new visual rep-

resentation (see Figure 1-1). These experiments indicate that the combined contour

representation demonstrates better performance on a class of stimuli.

1.2 Organization of Thesis

The remainder of this thesis is organized into the following eight chapters:

Chapter 2: Problems in Current Visual Architectures. We begin by examining

a conglomeration of visual architecture models, which I shall call the perfect slate

model. Two strong objections to this type of modeling are presented, and guidelines

for construction of a new model are outlined.

Chapter 3: What is a Contour? The third chapter outlines the basic problems

of contour detection. Details on the types of physical properties that define contours

and the computational approaches for extracting those properties are discussed.

Chapter 4: The Integrated Contour Model. In the fourth chapter, we begin to

build a new visual cognitive architecture for perceptual contour detection. A method

for integrating low-level feature detectors and high-level conceptual information is

outlined.

Chapter 5: Charlotte: An Active Vision Platform. The fifth chapter describes

the design and construction of Charlotte, an active vision platform that embodies

some of the objections to standard machine vision systems that were described in

Chapter 2.

Chapter 6: Implementation of Integrated Contours. The sixth chapter presents

the actual implementation of the visual architecture for contour identification devel-

oped in the preceding chapters.



(Ha

Figure 1-1: Charlotte: An active vision platform.



Chapter 7: Experimental Results. Experimental comparisons between the inte-

grated perceptual contours and individual low-level modalities are presented.

Chapter 8: Conclusions. In the final chapter, the major contributions of this

work are summarized and future avenues of research are proposed.



Chapter 2

Problems in Current Visual

Architectures

While the studies of computational and biological vision have unearthed many of

the complexities and the wonders of vision, scientists still rely upon simple models

to begin their investigations. Perhaps the simplest of these models is the "pinhole

camera" model used extensively in early optics and vision courses. In this section,

we will consider a generalization of the pinhole camera model which I will call the

"perfect slate" model. This generalization combines many of the assumptions that

machine vision researchers have made in their first attempts at an overall model.

Two objections to this model will be detailed, and a few guidelines for building visual

architectures will emerge.

2.1 The Pinhole Camera and the Perfect Slate

Models

Almost all computer vision (and many biological vision) texts begin with the "pinhole

camera" model of vision. Light reflects from surface objects, passes through a focal

point, and impinges on some type of recording surface. This simple model, while

providing a basic bootstrap onto the many challenging problems of vision, is notice-



ably different from what happens both in the human eye and in mechanical camera

systems. Lens distortion effects, blooming (or saturation in biological systems), and

many other problems leave the pinhole model as an acknowledged simplification of

a much more complex problem. Any vision researcher will be quick to point out

these flaws. To avoid many of the most common criticisms of this model that have

already been effectively dealt with by the vision community, we will instead examine

a conglomeration of current visual architecture models in order to expose a few basic

theoretical assumptions that hinder further progress. The individual theories that I

have lumped together under this single heading all share a common theoretical sub-

strate, and it will be convenient to refer to them collectively as the "perfect slate"

model.

In the perfect slate model, light originates from an external source, is reflected and

refracted by surface objects and then travels towards the camera. Light is focused

by a lens, passing through a single common point (the focal point). The light is then

projected upon a rectangular photosensitive field. The photosensitive region is com-

posed of equally-spaced, identical, ideal imaging elements. These imaging elements

(or pixels) record the intensity of the light striking their surface, and sometimes the

wavelength of the light as well. The perfect slate models then attempt to convert pixel

values into a coherent description of the real-world objects that originally reflected

or emitted the light that struck the photosensitive array. These computations can

be very complicated and computationally expensive, but they are generally framed

as a series of mathematical or filtering operations upon the pixel values. The in-

formation contained in the pixel values is processed by a series of increasingly more

complex operators to derive higher level properties which are then combined into a

world model.

2.2 Objections to the Perfect Slate

While this theory is well-known in some form to most students in computer science

and artificial intelligence, it was never intended as a description of biological vision



systems except on the most coarse level. This departure from biological visions sys-

tems has resulted in a task as hopeless as trying to build a working replica of a

locomotive from a photograph. In recent years there has been a resurgence of bio-

logically motivated vision models and task-based systems. However, many of these

"biologically plausible" attempts have missed a few critical departures that early

researchers made from the biological models in order to build operational systems.

There are two assumptions generally made by the perfect slate model that I will chal-

lenge in this thesis. The first regards the perfection of the photosensitive slate, and

the second the method by which higher level information is obtained. In evaluation of

these problems, I will return to the human visual system as an example of operational

systems, just as an engineer should be sure to look at a real locomotive while building

his model.

2.2.1 First Objection: The "Perfect Array" Assumption

The first objection to the perfect slate model is the nature of the stimuli available for

processing. Most vision algorithms begin not with the light reflectances of real-world

objects, but with the intensity values of a perfect, equally-spaced, rectangular grid.

The advent of inexpensive CCD cameras has made this assumption even easier to

accept at face value. However, if we examine the biological systems that are capable

of vision (or of any other sensation), it is easy to see that the nature of the sensory

cells is of great importance to the types of processing that the entity is capable. For

example, consider the jumping spider. The retinal structure of the spider contains

<-shaped and >-shaped photoreceptors. These oddly shaped receptors have evolved

to match the size and shape of the legs of other jumping spiders. This adaptation

allows for quick recognition of potential mates. However, without additional input,

the spider cannot discriminate between potential mates and potential prey. While

another organism might be capable of the same discrimination given a rectangular

grid of photoreceptors, this example demonstrates that the types of sensors available

greatly effects the processing necessary for a given task. The perfect slate model

ignores the importance of the means of collecting sensory data, both in the nature of
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Figure 2-1: Gross Anatomy of the Human Eye: Light striking the photoreceptors
on the back of the retina must pass through many layers of tissue and fluids before
reaching its destination. From [Go189, p. 71].

the stimuli available to the receptors and in the nature of the receptors available to

receive the stimulus.

In the human eye, light undergoes a variety of transformations before it strikes the

photoreceptors in the retina. As light enters the eye, it is distorted by imperfections

of the lens and cornea. After light enters the eye through the cornea, it must pass

through the aqueous humor and the lens, through the vitreous humor to the back

of the eye, through layers of translucent retinal cell bodies, and through a layer of

veins and capillaries before it strikes the photoreceptive cell bodies at the back of the

retina (see Figure 2-1). While passing through these different media, the light from

a single point diffuses and projects onto an area of retinal photoreceptors. From a

biological standpoint, this dispersion serves a vital role. Since all neurons have random

spontaneous action potentials, in order to ensure a stable image we need only consult

the surrounding neurons to determine whether a given neuron is firing as the result

of incoming light or merely a spontaneous excitation. On a computational level, this

appears to be only a loss of resolution that is imposed by biological limit. However,

there are features of this system that are not accounted for simply by changing the

resolution of the artificial system. The biological system allows for a first level of

failure recovery, since the actions of a single individual cell cannot result in a false
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response. Artificial vision systems can often be greatly misled by flipping a single

pixel value from black to white, or even from one shade of grey to another.

The retina also does not have the perfectly-packed, equally-spaced rectangular

array of photoreceptors. We must first recognize that the retinal cells are not even

identical in their responses to a given stimulus. Some retinal cells, called rods, are

generally sensitive only to luminance changes, are very sensitive to moving stimuli,

and generally have very large receptive fields. Other cells, called cones, are color

sensitive, generally have a small receptive field, and have one of three wavelength

tuning curves. However, even within one of these classifications the individual cells

are each unique and react differently from their fellows. Retinal cells also vary greatly

in the density of their packing (see Figure 2-2). In a region called the fovea, cone

cells are packed very densely. In the area called the optic disc, the axons of the

photoreceptive cells push through the retina to form the optic nerve, leaving no space

for any receptors. In most other places, photoreceptors follow a general hexagonal
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tiling, increasing in receptive field size as their distance from the fovea grows. The

types of receptors, their locations, and positionings, all serve to make the human visual

system very different from the perfect slate model. These biological peculiarities have

a great impact upon the types of visual behavior that humans exhibit. For example,

visual attention can more easily be simulated if you consider the proportion of foveal

cells to non-foveal cells. This packing density provides more information toward

the direction of our gaze. Similarly, if we cannot read the lettering on a sign in

the periphery of our vision, the simplest solution is often to simply saccade to that

point. These differences will resurface again when we discuss the types of stimuli that

produce high-level contours.

To start addressing these problems, a novel active vision platform was designed

and built at the MIT Artificial Intelligence Laboratory. The design of this robot,

called Charlotte, is described in Chapter 5.

2.2.2 Second Objection: The "Direct Computation"

Assumption

The second objection that I will raise with the perfect slate model concerns the

computations that extract higher level traits from the low-level pixel values. Most

previous attempts at early visual processing have characterized the flow of informa-

tion from receptive cells (or pixels) to higher level conclusions (or world models) as

a feed-forward pipeline. Pixel values are processed by a series of convolutions, dif-

ferentiations, subtractions, and other operations to derive high-level properties. To

illustrate my objections to this assumption, I will rely upon three different aspects

of human physiology and psychophysics: top-down processing in the human brain,

influences on vision from other sensory modalities, and the "filling-in" effects of the

blind spot.

The abstraction of visual processing as a uni-directional pipeline is computation-

ally and conceptually simple, but removes a great deal of functionality from our

model. Students in introductory neuroscience classes (and often computer vision sur-
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Figure 2-3: Demonstration of the effects of context. The same visual stimulus can be
perceived as either the letter "A" or the letter "H". From [And90, p. 76].

vey courses) are presented with detailed information of how information is passed

from the simple receptive fields of retinal cells to the lateral geniculate nucleus and

then to cortical areas V1 and V2, but very little is said about the equal number of

projections that travel in the reverse direction. Neuroscience has given us a great

deal of information on how individual retinal receptive fields map into the retinotopic

maps of V1, the orientation selective cells of V1, and the luminance differential cells in

the lateral geniculate body, but relatively little is known about the enormous number

of projections that travel from upper cortex back to V1 and the lateral geniculate.

The results of this top-down processing can easily be observed from a psychophysi-

cal level. For example, the classic CAT/THE context example shown in Figure 2-3

demonstrates the influence of higher-level processing upon "low level" features. If

vision is a purely feedforward process, why does the perception of the central letter

change from being an "A" when read vertically to an "H" horizontally? This figure

makes clear that contextual effects from higher level sources can affect perceptual

routines that have been traditionally labeled as low-level. The perfect slate model of

vision does little to address the issues of higher-level influences, and most researchers

have been content to address only a "low level" function that does not rely upon

higher level information.

Even allowing for entry points from higher level visual processing, there is still

information that humans use in visual perception that is not represented in our model.

Even as a two-directional pipeline, our model of visual processing is lacking the inputs

from other sensory modalities that biological systems utilize. Ramachandran has
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Figure 2-4: Experiment by Ramachandran showing the influence of audition on in-
duced motion. A flashing dot beside a square has no induced motion. The addition
of alternating left-right tones causes induced motion and implicit occlusion. From
[CRS94, p. 31].

shown a simple example of auditory stimuli effecting visual perceptions [CRS94]. A

subject is shown a single flashing dot to the left side of a display, while a solid box

fills the other (see Figure 2-4). Without auditory stimuli, there is nothing unusual

about this display. However, if subjects are presented with a series of tones that

alternate from left ear (while the flashing light is on) to the right ear (while the

flashing light is off), the subject perceives the dot to move back and forth across the

display, becoming obscured by the box at the right side. The addition of the auditory

stimulus is sufficient to induce apparent motion in a display where none previously

existed. The influences of audition, and the other senses, should be an integral part

of our model of visual processing.

Perhaps the most challenging of phenomena to explain with a pipeline processor

model is the "filling in" effects of the blind spot and scotomas. In the patchwork

of retinal receptive fields there is a patch called the optic disc which is devoid of

receptors. This missing patch creates an area where no sensory input is available,

that is, a blind spot. However, in our perceptual experiences, these missing patches

are hardly ever noticed; only in extreme circumstances does the missing information

become apparent. Our visual processing routines cover over the missing spot by

"filling in" the lost data. While this may seem to be a hardwired response to a

biological necessity, the same result can be seen in accident victims with retinal



damage. Damaged portions of the retina leave regions of the visual field, called

scotomas, that are insensitive to light stimuli. These scotomas exhibit the same

filling-in behavior that is seen with the blind spot. Our perfect slate model does

little to explain the methods by which missing information is reconstructed to form

a coherent perception of the entire visual field.

The problems of top-down processing, influences from other sensory modalities,

and filling-in behavior offer serious challenges to our perfect slate model of computa-

tion. But how seriously should we take these challenges? Until we have a complete

understanding of biological (or artificial) machine vision systems, there will always

be exceptions to our models. In the next section I will detail arguments that indicate

the necessity of accounting for these missing variables.

2.3 Are these Objections Sufficient to Abandon

this Model?

Scientists develop models to provide a simpler means of understanding complex data

or computations. No model is designed to explain every detail of the environment that

it represents, only to provide a framework that works well enough for most situations.

However, a model must go far enough in explaining phenomena so that it gives an

accurate portrayal of what is occuring. In examining the perfect slate model, we must

ask two questions: What exactly are the situations that we are trying to model? and

Has our model gone far enough in explaining these visual phenomena?

While most researchers refer to this field as "machine vision" or "artificial vision,"

it is important to remember that our real goal is not to study vision itself, but

perception. As was described in the introduction, our goal is to strive towards a visual

Turing test, a machine that interprets visual scenes in the same way that humans do.

To keep this goal in sight, we must remember that it is the final results of our system

that are important, not the individual processing stages themselves. The perfect slate

model gives only a simple explanation for the early vision architecture and processing

stages. Perfect slate models do nothing to describe the end behaviors desired by the



system. For our purposes, this model has an insufficient goal.

Our next dilemma is in deciding what behaviors are critical to model. Are the

activities of the blind spot and the differences in size of receptive fields of importance

to modeling human perception, or are these anomalies that need not be represented

in our model? While we can certainly debate the saliency of each of these anomalies

to our perceptual experience, perhaps it is best to approach this issue from a more

systematic perspective. In preparing this thesis, I was introduced to many of the

rigorous methods of electrical engineering, and most notably circuit board debugging.

Electrical engineers talk of an unknown circuit design as a "black box," which has

a specific set of inputs and a set of outputs which are a function of the inputs.

Debugging a circuit is the methodology of forcing the input-output characteristics

of the circuit to match the conceptual model of what the circuit should do. By

examining the cases where the black box works (or fails) as your model predicts,

you can determine which subcircuits are operational. But the most interesting and

useful cases are those in which the black box does something that the model does not

predict, since these give insights into the actual workings of the circuit. If we look at

vision as a black box, it becomes beneficial to examine anomalies of visual processing

because they place limitations on the actual circuitry within this black box. This

does not directly imply that we need to model all of these anomalies in our visual

architecture, only that we need to understand the insights that they provide.

Has the perfect slate model gone far enough in explaining the anomalies of visual

processing? Probably not. When the number of phenomena that a model classifies

as "anomalies" grows to be too large, the model is no longer explaining the natural

behavior of the system. As Churchland, Ramachandran, and Sejnowski have noted:

To be sure, a theory can always accommodate any given "anomaly" by
making some corrective adjustment or other. Nevertheless, as anoma-
lies accumulate what passed as corrective adjustments may come to be
deplored as ad hoc theory-savers. A phenomenon is an anomaly only
relative to a background theory, and if the history of science teaches us
anything, it is that one theory's anomaly is another theory's prototypical
case. Thus "retrograde motion" of planets was an anomaly for geocentric
cosmologists but a typical instance for Galileo; the perihelion advance of



Mercury was an anomaly for Newtonian physics, but a typical instance for
Einsteinian physics. Any single anomaly on its own may not be enough to
switch investment to a new theoretical framework. The cumulative effect
of an assortment of anomalies, however, is another matter. [CRS94, p.

33]

The perfect slate model, like Newtonian mechanics, serves its purpose as an intro-

ductory model to give a rapid overview of the visual system architecture, but fails to

provide a usable model of real systems.

2.4 Methods of Modeling a Visual System

How then are we to approach our study of the visual system? In this section, I will

outline three basic guidelines for studies of the visual system. Some of these will be

obvious from our previous discussions of the perfect slate model, but their summary

here should serve to refine their descriptions and emphasize their importance. The

three guidelines are:

1. Make clear your motivations.

2. Discriminate between physical and perceptual properties.

3. Divide the problem into meaningful, but smaller pieces.

While these are not intended as a comprehensive listing of the types of considerations

necessary in building a visual architecture, they will be sufficient for our purposes.

The first pitfall that we must avoid is the problem of motivation. Why are we

interested in building this visual architecture? If our purpose is to enable a machine

to successfully manipulate the tip of a soldering iron across parts on an assembly

line, then the visual architecture should be concerned with speed and accuracy. If

our purpose is to investigate interesting algorithmic solutions to the problems of

compact image representations, we should be concerned mainly with data structures.

If we are interested in building a navigation system for a mobile robot, error recovery

and robustness might be our primary concerns. While this point has been mentioned

before, it deserves a special place here. We cannot begin constructing models without



Figure 2-5: Luminance Mondrian showing the distinction between physical and per-
ceptual properties. Both points B and B' have the same physical luminance, but
different perceptual brightness. From [MS83, p. 539].

a clear goal in mind, nor can we blindly apply models that have a specific goal to

all problems in vision research. For the remainder of this thesis, we will take the

visual Turing test as our ultimate motivation. The behavior that we will be most

interested in modeling for this work will be object segmentation, that is, the ability

to discriminate an object and its subcomponents from other objects.

The second pitfall lies in the blurred lines between physical and perceptual prop-

erties. Physical properties are those real-world phenomena that can be quantitatively

measured independent of an observer. For example, the wavelengths of light reflected

by a surface and the luminance of a light source are physical properties. Perceptual

properties are cognitive beliefs that are relative to a given individual. For example,

the color of a surface and the brightness of a light source are perceptual properties

of objects. While it is often easy to confuse physical and perceptual properties, the

distinction is vital to constructing a proper visual architecture. For example, the

points labeled B and B' in Figure 2-5 both have the same luminance value, but B is

perceived to be brighter than B'. The nature of the perfect slate model often results

in the confusion of perceptual with physical properties; when simply following a series

of mathematical operations on a series of pixel values it is often easy to forget that

the goal is not merely to transform the physical stimulus values, but to simulate the

perceptual results of the system.



The last guideline that I will offer in this section is to be sure to break the problem

down into smaller, but meaningful pieces. Determining what are the correct pieces

of a problem to work on is often the most challenging problem of research. If you

begin with the wrong pieces, you may find interesting results, but they will never fit

back into the big picture. The part of vision that this work will cover is the study

of contour detection. The next chapter will discuss the nature of this problem, and

attempt to justify contour detection as a meaningful piece of vision.



Chapter 3

What is a Contour?

Shape is one of those elusive ideas that people have very little difficulty in using,

yet have great difficulty in defining. No simple mathematical models fully account

for the ways that people describe shapes in simple, elegant methods [Mum91]. This

thesis is concerned with the extraction of boundary information using vision, but

what exactly does this imply? This chapter will begin to explore the basis of shape

and the methods by which a contour can be created.

In the pursuit of a solution to the visual Turing test, the problem of contour

detection is an interesting research subgoal since many different high-level tasks can

be greatly simplified with the same basic contour detection subroutines. Contours are

vital for tasks involving discrimination of figure/ground relationships, such as object

discrimination [BW93], robot navigation [Hor93], and manipulation [HI84]. Contours

can also be used to track objects [KWT87], or to find motion in a scene [AP93].

Higher level cognitive tasks, such as trying to solve a maze, reproducing a pen-and-

ink drawing of an object, or determining where a wire on a circuit board leads, will

also be much simpler to construct with a contour detection subroutine.

To help differentiate between physical and perceptual stimuli, the first section

of this chapter will be devoted to developing strict definitions that will be applied

to the words "edge" and "contour." The basic properties of a contour will then

be defined, as well as the methods by which we can differentiate contours from other

phenomena. The majority of this chapter is devoted to exploring the types of physical



Figure 3-1: The Kanizsa Square. While there are no luminance, depth, or color
differences to mark the boundary, the shape of a square superimposed on four circles
is easily perceived. The Kanizsa square is one example of a stimulus that results in a
contour where no physical properties are involved. Adapted from [Kan79].

properties and other high-level influences that can cause contours. Psychophysical

justification for deriving contours from the physical properties of luminance, color,

texture, motion, and depth will be detailed, and a brief review of the artificial vision

solutions to these modalities will be discussed. Other sources of contours, such as

illusory contours from the Kanizsa square (see Figure 3-1), filling-in phenomena of

the blind spot, and expectations, will also be discussed.

3.1 Basic Definitions

So far, the words "edge", "boundary", and "contour" have been loose synonyms.

However, among the communities of computer science, cognitive science, psycho-

physics, and physiology there are different usages for each of these words. Even more

confusing are the variety of computational studies that use the word "edge" as an

indication of both physical and perceptual phenomena. To avoid confusion, careful

examination of the definitions used in this work is necessary.

I will use the word "edge" to refer to the contributions of a single physical property

(or other source) to detection of boundary information; the results of a Canny operator

are luminance-based edges, the results of the Marr-Poggio-Grimson stereo algorithm

are disparity-based edges, and the illusion of the Kanizsa square creates Gestalt-

based edges. The integration of many of these basic modalities results in a perceptual



phenomenon that I will call a "contour," that is, a stable visual effect that divides two

regions of similarity. A contour is a high-level perceptual property that is composed of

a variety of low-level physical properties and interactions from other sources. Finally,

I will use the word "boundary" to denote any separation between two regions that

have particular features.

As we will see later, boundaries are a superclass of contours, which are composed

partly of edges. Boundaries also include some transient phenomena that are not

properly contours, and contours can be constructed out of properties that are not

edges. While these distinctions may seem somewhat arbitrary, they will be invaluable

in building a model of contour processing to perform the task of object segmentation.

Let us look more closely now at the definition of contour.

I have claimed that contours are composed of a variety of low-level physical prop-

erties and interactions from other sources. A contour can certainly be made from

only a single set of edge information, as you are now doing in discriminating the

luminance-based edges of the letters of this sentence. Contours of naturally occuring

objects also tend to have coinciding edges along many different modalities; the edge

of a table has luminance, spectral, and disparity differences from the background. A

contour can also be created without any purely physical properties, as occurs in the

Kanizsa square (see Figure 3-1). Contours can be viewed as a type of abstraction for

the many physical edge detection methods and the other contributing effects. How-

ever, the contour abstraction does not mask which individual physical edge detection

modalities contributed to the perception; the concept of contour does not simply take

the place of the edge information. There is no confusion between a contour that re-

sults from a luminance difference and one that results from changes in texture. The

fact that this information is available to the conscious mind distinguishes contours

as a high-level phenomenon unlike many other mental processes. For example, many

memory retrieval models have proposed that there are a variety of low-level stor-

age methods for maintaining memories. However, the type of storage used for any

particular memory is unknown to the conscious individual.

I have also made the claim that contours are perceptual properties. Is a contour
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Figure 3-2: Demonstration of the perceptual nature of contours. With no knowledge

of the organization in the picture, observers often fail to see the perceptual contour

of the Dalmation. Once the photograph has been annotated, the perception of the
dog's contour is unmistakable. Photograph by R. C. James, from [Go189, p. 197].

actually relative to the observer? Anyone will agree where the boundary of a table

lies, or where the outlines of these letters are located. However, consider the case of

Figure 3-2. If this figure is unfamiliar to you, it is easy to pick out the individual

contours of the black spots, but there is no obvious organization to them. However,

once you are shown the outline of a dog within the photograph, the contour separating

the dog from the background can be seen anytime the image is viewed; the contour

is perceptually stable and unmistakable. The physical stimulus has not changed, yet

there is a dramatic organizational difference. For this figure, the contour of the dog

is certainly a perceptual property.

While looking for the dog, or while fusing stereograms, observers often see tran-

sient edge-like connections between various parts of the image. Intuitively, these
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Figure 3-3: Demonstration of the pop-out effects of contours. The boundary between
the vertical and horizontal lines in the left circle is a contour because it is distinguished
immediately and automatically. The boundary between the left-facing angles and the
right-facing angles in the right circle is not a contour since it requires attention to
detect and maintain. Stimuli from Olson and Attneave, as reported in [Go189, p.
210].

transients seem to be more the intermediate steps of some part of the contour pro-

cessing mechanism than the final results. Can we classify these transient responses as

contours, or are they some other phenomenon? If transients are allowed within our

definition of contours, we must then address many more issues on the creation and

destructions of these perceptions. Why would these transients disappear? Can tran-

sient phenomena still reflect processing on a stable world model? To simplify these

issues, we restrict our concept of contours to stable phenomena. By this definition,

transients are boundaries, but not contours.

Contours can be distinguished from transient phenomena, acts of imagination,

and cognitive pattern recognition by their stability and their automatic appearance.

Contours seem to "pop out" from an image, and require little or no attention to

maintain them. For example, the boundary between the vertical and horizontal lines

in the left circle of Figure 3-3 is easily distinguished, while the boundary between

the regions in the right circle is much more difficult to establish. The boundary in

the left circle is an example of a contour; it appears automatically upon viewing

and requires no attention to maintain. The boundary in the right circle is not a

contour; it requires visual search to determine the boundary between the regions and

this boundary requires conscious attention to maintain. Note that the stimuli for



both patches are composed of the same vertical and horizontal components, yet the

boundary is a contour in only one instance.

3.2 Physical Properties that Cause Contours

Now that we have a basic working definition for contours and edges, we can begin

to determine the types of edge detection components that contribute to a contour

detector. In this section we will begin with the most obvious physical properties that

result in contours: luminance, spectral composition, texture, binocular disparity, and

motion. In each case, we will begin with an example of the type of phenomenon we are

considering, followed by a justification of the psychophysical properties that identifies

the modality as a contour. For each of these modalities, we will also review some of

the computational methods that have been developed. In the following section, other

methods of arriving at contour information will be examined. These two sections

are not intended as a comprehensive listing of all possible methods for obtaining

contour information, nor as an in-depth study of any of these specific methods. The

implementation of the complete set of these methods is also beyond the range of

this thesis. However, these descriptions should serve as a guideline for the types of

processing that may be necessary for developing a computational model of contour

perception.

3.2.1 Luminance-based Contours

The most obvious, and perhaps most well studied, method of gaining contour in-

formation is based on the luminance of a scene. Luminance-based contours are the

result of differences in the intensity of light striking the retina. The psychophysics

of this example are almost trivial; the dark lines on a page appear immediately and

automatically. Luminance edge detection in the human visual system is accomplished

by combining information from local patches of photoreceptors to form specialized

receptive fields. By combining the positive influence from a central region with the

negative influences from the surrounding cells, a simple center-surround receptive field
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Figure 3-4: Luminance edge Detectors constructed from center-surround receptive
fields: A single center-surround receptive field (A) takes positive feedback from a
central region and negative feedback from the surrounding area. A simple edge de-
tector (B) can be created by overlapping center-surround fields.

that responds to point stimuli is formed. By combining center-surround cells along

a row, a simple edge detection scheme can be constructed (see Figure 3-4). David

Hubel and Torsten Wiesel first located these feature-detector cells in human cortical

area V1 in 1963 [Gle91, p. 208].

The luminance-based edge detection problem has been extremely well studied in

machine vision literature. While a full survey of the methods of extracting luminance-

based edges is not necessary for our purposes, examining two of the most common

algorithms will provide a basic understanding of the complexity of this task. The

simplest means of detecting luminance contours is to convolve a simple local filter

with the pixel array, much like the processing that occurs in the center-surround cells

in the human visual system [Hor86]. Oriented edges can be detected by convolving

an image with a simple local filter, like the one shown in equation 3.1 below:

0 1 0

1 -4 1 (3.1)

0 1 0

This filter is sensitive to horizontal and vertical step changes in luminance, while

allowing for a slight smoothing of the input data. Luminance edge locations in the

(A)



filtered image are marked by a zero-crossing, that is, locations where the image values

change from positive to negative or from negative to positive [Sob70].

A great deal of effort has been expended on finding filters that locate edges in all

directions while filtering out the desired amount of noise. Perhaps the best known of

these studies was the thesis of John Canny [Can83]. Canny defined three criteria that

a luminance edge detector should capture: First, that the detector have a low error

probability. Second, that the points marked as edges should be as close as possible

to the true edge. Third, that there be a low probability of responding to the same

edge twice. Canny then developed a set of operators of varying width, orientation,

and length that when convolved with an image gave results that were optimal for his

three criteria.

3.2.2 Spectral-based Contours

Another intuitive means of determining contour information is from color. As de-

scribed in section 2.2.1, the human visual system contains three types of cone cells

with different spectral characteristics. These cone cells combine to give information

about the distribution of wavelengths striking the retina. From the physical property

of the spectral decomposition of light, the perceptual sensation of color is determined.

Color, like brightness, is a perceptual property as can be demonstrated by color Mon-

drians similar to the luminance Mondrian shown in Figure 2-5 (see [MMT76]). As

was possible with luminance, the pop-out nature of color contrast is simple to justify.

Even when the absolute luminance of two colored patches are perfectly matched, the

spectral composition serves as an easy means of distinguishing between two different

patches.

Machine vision researchers working in this area have been concerned mostly with

classifying the transformation from spectral properties to the color sensation. At-

tempts to determine spectral-based contours have been mostly influenced by the na-

ture of camera hardware and the algorithms for luminance-based edge detection.

Solid-state color video cameras contain the equivalent of the three different cone cells

and produce numerical values for the ratio of red, green, and blue wavelengths that



strike the photoarray. Most attempts at finding edge information from these color

signals concentrate on performing luminance-based detection on the three different

signals and then combining them. Simple means of performing this operation can be

found in [MS83].

3.2.3 Texture-based Contours

While we all have an intuitive notion of the tactile texture of an object, what does

it mean for an object to have a visual texture? Texture can be considered to be the

perceptual portion of cognitive pattern recognition; that is, it is the instantaneous,

low-level process that finds basic patterns in size, orientation, and other properties

without conscious thought (see [Ju175]). For example, the left circle in Figure 3-3

is an example of a texture-based edge; the processing occurs automatically and at

a very low-level. The pattern recognition that allows us to recognize the different

quadrant in the right circle of Figure 3-3 occurs at a much more conscious level, and

must be maintained.

Pure visual texture segmentation is certainly not a central phenomenon in every-

day visual experience. Objects can be distinguished through many other methods

without relying on this type of pattern detection, and pure instances of objects that

can be discriminated only on the basis of texture are rare at best. However, this

does not reduce the potential importance of textural processing as part of the visual

process. As Bergen and Landy wrote:

...the study of pure texture differences (in the absence of differences in
brightness, color, depth, or other properties) is analogous to the study of
isoluminant color differences, which also are not very common in natural
scenes. The relative rarity of isoluminant color discrimination in the real
world does not imply that color perception is an unimportant component
of seeing. Similarly, the rarity of pure texture differences does not reduce
the potential importance of texture perception, especially in the visual
processing of complex scenes. [LB91, p. 253]

For contour formation, texture can give an indication of boundary information that

other techniques lack. Texture accounts for the patterns in size and orientation across

wide areas that other operations ignore.



Computational approaches to texture segregation originated with the investiga-

tions of Julesz, who began a mathematical description of textural patterns [Ju175].

Voorhees and Poggio brought a computational classification to these texture patterns

by defining basic texture elements, called textons, for gray-scale images [VP88]. There

have also been a variety of computational attempts at segmenting pure texture from

images. Malik and Perona have used an inhibitory scheme between even-symmetric

linear filters to identify textures in grayscale images [MP90]. Bergen and Landy have

proposed an alternate method for detecting texture based upon the opponency of

oriented filters [LB91].

3.2.4 Disparity-based Contours

While much research has been spent on building edge detectors from single images,

biological systems use binocular vision to vastly simplify some edge location tasks.

The correlated information from both eyes can result in depth information, which for

real-world objects can be used as a strong indication of object segmentation. Light

from a surface object will strike each eye at different retinal locations (relative to the

fovea), based upon the distance from the observer to the object, the direction of gaze

of each eye, and the distance between eyes. The binocular disparity is the difference in

locations between the projection of a single point in the world onto the right retina and

the projection onto the left retina. Disparity alone can result in depth perception,

which was first popularized by the random dot stereograms of Julesz [Ju175]. An

example random dot stereogram is shown in Figure 3-5. By crossing your eyes and

fusing the two images, depth information can be recovered from the scene.

There are two interesting points that can be drawn from the stereo perceptions

of random dot stereograms. First, humans are capable of extracting depth informa-

tion solely from retinal disparities. While other information may be helpful, retinal

disparity alone is sufficient for depth perception. The second interesting point is that

the brain is capable of making the difficult correlation between these seemingly ran-

dom dots. The most difficult part of extracting stereo depth from retinal disparity is

determining the correlation between pairs of points on each retina. For the case of



Figure 3-5: Random dot stereograms demonstrating the effect of perceived depth on
contour creation. From [Go189, p. 244].

random dot stereograms, the brain must determine for each pixel in the left image if

there is a corresponding point in the right image, and at what disparity the match

is located. This process may be easier for real-world objects, since all black spots in

the random dot stereogram can match with any other black spot.

Computational approaches to the stereo problem have focused on correlating

points between the two stereo images. Brute force methods at correlating pixel val-

ues can be expensive, and it is not clear how to determine what the criterion for

correlating a pair of pixels should be. A more clever feature-based approach was first

developed by Marr and Poggio [PM76], and later expanded by Grimson [Gri81]. In the

Marr-Poggio-Grimson algorithm, the stereo images are first processed with the second

derivative of a Gaussian function (a type of edge detection). The zero-crossings of

these points are then taken as feature elements to be matched between images. As an

additional verification to the matching, these points also have associated with them

the direction of the slope of the luminance field at that point. Given a pair of stereo

images, the Marr-Poggio-Grimson algorithm attempts to find corresponding feature



points between the two images and then label each pixel in the original images with

a distance from the camera. By first correlating the feature points derived from the

luminance edges, local ranges of disparity around those points can be more easily

determined. The Marr-Poggio-Grimson algorithm gives a reasonable depth-map of

the stereo scene presented, but is often very expensive to compute.

While it seems intuitive to reconstruct all of the depth information from a scene,

this may not be necessary for the computations we are interested in performing.

There is also evidence that biological systems do not actually compute exact depth

reconstructions. In 1970, Richards proposed that the human disparity processing is

composed of three different "pools" of neurons, one set that is sensitive to crossed

disparities, one set for uncrossed disparities, and one set for near-zero disparities

[Ric70]. Similar to the reconstruction that occurs from the three types of cone cells

to create color perception, these three pools of disparity-sensitive neurons combine to

localize the possible disparities of a scene. This "Pool Hypothesis" had only limited

psychophysical basis until Gian Poggio investigated the disparity-sensitive neurons

of cortical area V1 and found only three different classes of neurons that responded

as predicted by Richards [SW90, p. 323-5]. This type of depth processing may be

very useful to artificial systems which do not need exact depth reconstructions, only

enough depth for successful interactions with the world. In this case, the correlation

problem becomes much simpler, since an algorithm needs only to check if there is

a corresponding pixel with the correct attributes at a certain retinal disparity, as

opposed to searching some region of the retina for pixels with the correct features.

3.2.5 Motion-based Contours

Even for images that have no well-defined luminance or color differentials, moving

patches can create contours. Evolution has given humans an extraordinary ability to

detect motion. As early as the late 1880's, Sigmund Exner demonstrated that even

when observers could not spatially resolve two adjacent sparks, they could detect the

motion if the two sparks were presented at slightly different times [SW90, p. 205].

Since then, psychophysicists have demonstrated that motion also provides a strong



sense of continuity. If a subset of dots in a random dot display are moved in the same

relative direction and distance while the other dots are moved in a random direction

for a random distance, subjects have no difficulty in locating the contiguous patch.

Even if only a small percentage of dots from an area are moved together, observers

still are capable of linking together those few patches together to form a single moving

screen in front of the background.

Computational methods for detecting motion have ranged from the most simple

differencing schemes to complex optic flow calculations. The simplest means for

detecting motion is to subtract the image intensities at time t from the image at time

t-1. While this strategy is simple, it has many difficulties. Random noise in the image

shows up as moving patches, and a moving object can only be seen as a blur with

no sense of direction. At the other end of the spectrum, algorithms called optic flow

calculations have been designed to track local groupings of pixels from one image to

the succeeding [GGSF59]. Optic flow calculations can be computationally expensive,

since local patches need to be compared with all other possible local patches in the

second image [HS81]. Many of these problems can be assisted by higher temporal

resolution, or by more intelligent matching methods for local patches.

3.3 Other Sources of Contours

The previous section examined some of the physical properties of stimuli that can

lead to contour perception. This section will detail some of the other ways in which

contours can be created. While many of the physical edge detection methods have

been well explored by computational researchers, the other ways of forming contours

have been primarily of interest to psychophysicists. Four different sources of contour

information will be presented in this section: illusory contours from Gestalt effects,

contours from expectations or prior knowledge, contours from filling-in effects, and

contours from other sensory information.



(A) (B)

01

' -

(C) (D)

Figure 3-6: Gestalt Principles of Organization: (a) proximity, (b) similarity, (c) good
continuation, and (d) closure and good form. Adapted from [And90, p. 67].

3.3.1 Gestalt-based Contours: Illusory Contours

Figures like the Kanizsa square (Figure 3-1) have been of great interest to psychol-

ogists because of the perceptual illusions that they create. These effects have been

called "illusory contours," "subjective contours," "imaginary figures," and a host of

similar names. For the purposes of this research, I will use the most common name

for these effects: "illusory contours." This is not an ideal naming system: Contours

are perceptual features, and are no more illusory than perceptions of "blue." All

contours are subjective, and the boundaries they create are no more imaginary than

luminance based contours.

Gestalt psychologists, especially Gaetano Kanizsa, were the first to explore the

types of figural configurations that would produce these illusory contours [Kan79].

The Gestalt psychologists developed four principles of organization (see Figure 3-6):

(A) Proximity: Objects that are spatially close will tend to be grouped together.

(B) Similarity: Similar objects tend to be grouped together. Even though the

columns are more proximal, the squares and circles are grouped into horizontal



Figure 3-7: Illusory contour created by line endings. This type of contour and the
Kanizsa square are illusory contours.

units.

(C) Good Continuation: Observers perceive this figure as two almost straight

lines that cross at a single point, instead of two lines with sharp angles that

branch either right-left or top-bottom.

(D) Closure and Good Form: Observers tend to view this figure as two ellipses,

one occluding the other, instead of an ellipse and a crescent-moon figure.

For our purposes, any contour created by the configuration of stimulus elements that

is not represented by a physical property will be classified as an illusory contour. This

includes the line-continuation effects of the Kanizsa square as well as effects caused

by the ends of lines, like the contour in Figure 3-7. Illusory contours have a pop-

out effect identical to that of a luminance or color edge. The perceptions of illusory

contours are stable, automatic, and require no attentional upkeep [PM87]. Illusory

contours are not modal specific; they can be created from black and white drawings,

from random dot stereograms, or from color fields [SW90, p. 289].

Computational attempts at describing illusory contours are much less prevalent

than the other modalities we have examined so far. Guy and Medioni have proposed a



special point-field operator that can be convolved with a luminance image to produce

a "saliency map" showing both luminance-based edges and illusory contours [GM93].

Rudiger von der Heydt et al. have proposed a similar solution using biologically

plausible grouping operators that operate over local regions in an intensity image

[HvdHK94]. Both of these algorithms are slightly expensive computationally, but

accurately reveal simple illusory contours.

3.3.2 Contours from Expectations and Prior Knowledge

The formation of contours can also be very effectively influenced by prior knowledge

and expectations. The case for prior knowledge is simple; once you have determined

the outline of the dog in Figure 3-2, the contour is immediately obvious on a second

viewing. By allowing prior knowledge as part of our contour formation scheme, we

also allow for specialized learning to become an integral part of the process for contour

identification. The influence of expectations is slightly more complicated. If you are

instructed to turn the page and look at the pictures of the young lady at the top of

the next page (Figure 3-9) and then quickly return to this point in the text, you will

have little difficulty in filling in the details of the woman's chin, eyes, etc. However,

if you are instructed to turn the page and look at the figure of the old crone on the

next page, the stimulus will be slightly altered in your perceptions. The image in

Figure 3-9-A is most easily interpreted as a young woman, looking over her shoulder

away from the viewer. The image in Figure 3-9-C has been slightly modified, and

can often be seen as an old woman huddled in her coat. (The young woman's chin

corresponds to the tip of the nose in the old crone.) The central image in Figure

3-9-B is ambiguous, and will often be seen as whichever age had been previously

viewed. While this priming example gives only a very brief, non-stable look at the

influences of expectation, it does lend some weight to the idea that expectation can

effect perception.

While computational approaches to vision have not yet begun to include high-level

expectations, there are some conclusions that can be drawn from these influences. Our

visual systems are not designed to operate on single images, like a signal processor.



Figure 3-8: Blind spot phenomena. For viewing instructions, see text. Adapted from
[Pin9O].

They operate on an almost continuous stream of information that remains almost

stable for a large portion of the time. This allows the visual system to make use

of time or energy spent on prior computations in refining new visual inputs. This

type of stream-oriented approach is very different from the perfect slate approach of

blindly processing each image individually. Our computational models must begin

to account for this type of stream-based processing architecture in order to achieve

reliable, real-time results. This topic will be discussed again in section 4.5 when we

begin to formulate a model of contour perception.

3.3.3 Contours from Filling-in Effects

For the amusement of party guests, the 18th century European aristocrats are said

to have caused the moon to disappear by carefully aligning its image with the blind

spot. While demonstrations of this sort are now interesting sidenotes to introductory

psychology classes, the filling-in effects of the blind spot are still very poorly under-

stood. The human visual system does more than simply cover over the blind spot (or

any other scotoma) with a blank "background" patch; it actively seeks to fill in the

missing information with the most consistent choices. For example, if you close your

left eye while staring at the letter "A" in Figure 3-8, you can observe your own blind

spot. By adjusting the distance between the page and your eye, you can make the

solid circular disk at the right disappear. Once the stimulus from the solid circle falls

onto the optic disc, the visual system fills in the missing information with what it
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Figure 3-9: An ambiguous figure. Image (A) is often seen as a young woman, looking
over her shoulder away from the viewer. Image (C) is that of an old woman huddled in
her coat. Image (B) is ambiguous between the two. See text for viewing instructions.
From [Gle91, p. 221]

expects, that is, more blank paper. However, if you then close your left eye, stare at

the letter "B" in Figure 3-8, and adjust the distance between your eye and the page,

a different filling-in effect occurs. Instead of simply leaving the missing gap in the bar

stimulus, the visual system joins the two halves of the bar into one continuous piece.

The visual system creates the contours of the bar through the area of the blind spot

and fills in the area with a black color.

The psychophysics of these filled-in contours are not well studied, although they

seem to behave according to the Gestalt grouping principles. It may even be possible

that the illusory contour figures are side-effects of the neural circuitry designed to

compensate for the retinal blind spot. Little is understood about the means by which

the visual system chooses to provide the missing information from blind areas, but

this type of processing does allow us an interesting, and unexpected, look inside the

black box of the visual system.

3.3.4 Contours from other Sensory Information

While contours are a visual phenomenon, the perception of contours can be influenced

by many other sensory stimuli. Ramachandran has shown the influence of audition on

visual motion detection (see section 2.2.2), but the psychophysics of creating contours

I
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through senses other than vision is poorly understood. However, influences from

tactile sensations, audition, and other senses may provide both verification and a

type of prediction for contour information. By palpating an unseen object, I can

both form expectations of the types of contours that it contains and later verify the

contours that the visual system reports. Similarly, as I enter a dark room and tap

about with my cane, the force feedback from the cane striking objects and the sound

of the impacts are likely to verify my visual perceptions and to enhance my visual

expectations. Although contours are visual phenomena, the influences of other senses

should be made salient in our models of contour perception.

3.4 Are these the Right Modules?

While these methods for contour formation are by no means a canonical listing, we

must entertain the question: Are these the right modules, at the right abstraction

level, for the job that we are interested in? Have we found the right level to look at this

problem, and have we broken the problem down into the right pieces? By separating

the problem of contour identification from other visual tasks, we can provide higher-

level systems with a useful module for object segmentation, figure-ground separation,

or object tracking. A module that could reliably deliver contour information from

a scene would be extremely useful for navigation, identification, and manipulation

tasks. Therefore, examining this piece of vision seems to be a reasonable proposal.

What then of the individual pieces that compose contour identification? Psycho-

physics indicates that each of the physically based modalities (luminance, spectral

composition, texture, retinal disparity, and motion) operates as an independent, low-

level, automatic visual process. By the addition of influences from expectation, prior

knowledge, other sensory information, illusory contours, and filling-in phenomena, we

allow a way for high-level information to influence the low-level functions. Finally, by

relying on a variety of methods, we provide for robustness while allowing for diversity

in the range of stimuli that we can successfully process. While these may not be all

of the subcomponents of contour identification, they provide good examples of the



kinds of pieces that are certainly involved.

Now that we have a more rigorous and detailed description of the types of stimuli

that we want our system to process, we can begin to construct a model of the ways

in which these various components can interact. The next chapter will detail the

theoretical model of interactions between the edge-detection modules and the means

by which they can be integrated to form high-level contours. Chapter 6 will detail

the subset of this model that was implemented for this thesis.



Chapter 4

The Integrated Contour Model

Armed with the more detailed description of contours developed in the preceding

chapter, we can begin to build a theoretical computational model that challenges

the classical methods of direct computation from the "perfect slate." This chapter

presents a model of contour processing that allows for the integration of indepen-

dent low-level edge detection modules (such as luminance and texture) with other

higher-level sources of information (such as Gestalt effects and expectations). For the

overview of this model, only a simplified view of the computational pathways will be

presented. The exact specifications used in our implementation of a subset of this

model will be covered in Chapter 6.

The central idea behind the integrated contour model is the proposition that

complex, high-level perceptions can be created by using simple compositions of low-

level routines coupled with input from other high-level processes. Our model of

perceptual processing will be constructed out of many interacting modalities.

4.1 Overview of the Model

The basic model that will be presented in this chapter consists of multiple low level

physical edge detectors coupled with information from high level sources to form

a single consolidated contour image. The model itself is relatively simple: allow for

each of the low-level edge detectors to operate independently, accept information from



Figure 4-1: The Integrated Contour Model. Contours are high-level perceptual fea-
tures that are formed by integrating many low-level physically-based edge detectors
with the results from other high-level processes. This figure shows some of the types
of edge detectors and other processes that may contribute to contour perception.
The feedback loops that allow for the results of the integration box to be accepted as
inputs to each sub-module are not shown.

higher level processes, and combine all of the information at a single integration point.

Figure 4-1 shows the basic pathways that result in an integrated contour. In addition

to the pathways shown in Figure 4-1, the integrated contour model also allows for

the results from the integration to be passed back to each of the sub-modules. In

this way, building a contour is an iterative process that can rely on multiple stages

of processing; that is, the integration box does not perform one-shot processing on

an input image, but rather allows for successive refinements in the contour image

produced.

0000-



The rest of this chapter explains the implications of this simple model. Aspects

of making the physical modalities independent processing components are discussed,

along with the methods of inclusion for higher level information. The integration tech-

niques are then examined from a mathematical and a practical standpoint. Finally,

the complexities introduced by the addition of feedback are reviewed.

4.2 Low-Level Physical Modalities

In the model of Figure 4-1, each of the physical characteristics of an image is processed

by an independent module. Luminance-based edges, spectral-based edges, motion-

based edges, disparity-based edges, and texture-based edges are all computed inde-

pendently, and in parallel, by low-level procedures. This type of processing matches

the psychophysical results for these types of contours. The processing must occur

at a very low level, since the appearance of contours from these modalities is almost

instantaneous and automatic. Additionally, these modalities will be modeled as sep-

arate processing elements since you can easily distinguish between contours derived

from luminance and from disparity.

To illustrate the functioning of this portion of the model, consider the box that

deals with luminance-based edges. The inputs to this processing stage are the raw

photoreceptor values from both retinas, and the output is a description of where in

the image there is a high gradient of luminance. To account for noise and uncertainty,

the result of this processing stage can be viewed as the probability of a luminance-

based edge located at each pixel, normalized over the entire image. This information

is then passed on to the integration box where it is combined with further information

to produce a first pass at integrated contours. As is discussed below, the results of

the integration can optionally be passed back to the luminance module as feedback,

but this is not part of our current implementation.



4.3 Interactions with High-Level Processes

In the previous chapter, Gestalt effects and filling-in effects provided strong indi-

cations that contours can be created from sources that do not rely directly on the

low-level physical image properties. Gestalt effects, filling-in effects, expectations, and

other senses must be given some type of influence on our final integrated contours.

In the model of figure 4-1, each of these modalities contributes to the integration in

the same way that a physical modality would. We need not be concerned with having

the higher level modules directly influence each individual physical edge-detection

operation, since the iterative nature of the model will allow any given sub-module to

influence any other sub-module (see section 4.5 below).

Each of the higher level modules takes input either from the raw retinal images

or from an internal state and produces output suitable for use by the integration

box. For example, the module that computes Gestalt effects takes as input the

raw retinal images and produces a description of where in the image Gestalt effects

predict contours. On the other hand, the expectations module maintains the state of

the previous image, accesses visual memories, and produces a likely result. In either

case, the output of these boxes is processed directly by the integration box.

4.4 Method of Integration

Until now, our model of contour processing had been quite simple: just allow for each

modality to contribute an image to some centralized location that was responsible

for putting together all of these pieces. In its most general form, this integration

box combines the two-dimensional images from n different sources into an n + 2

dimensional output "contour" space. This "contour" space has two dimensions for

the pixel locations and n dimensions for the individual probabilities from each of the

contributing submodules. In this form, the output of the integration box is simply a

conglomeration of the individual inputs. However, this type of integration does not

simplify our higher-level goals like object segmentation or tracking. What is needed



is a means for combining these different modalities together into a form that can be

easily processed by many other systems.

In order to begin combining these modalities together, it is necessary to place

some restrictions on the types of inputs that the integration box will accept. First,

we restrict the inputs to remain in retinal coordinate frames. This gives us a simple

means of identifying common spatial points among the images. Second, we restrict

the inputs to the integration box to be probabilistic estimates of the likelihood of

an edge at a given spatial location. This allows us to compare data from various

modalities, since each is now simply a probability. For example, the output from

the luminance-based edge detector would be an image in retinal coordinates of the

probabilities of luminance edges at each pixel. Texture-based edge detectors would

produce images in retinal coordinates that give the probability of texture edges at

those coordinates, etc. These two simple restrictions allow us to compare the data

across modalities in a simple and unified manner. Additional dimensions could be

added (for example, not only the probability of an edge, but also the orientation)

in a similar manner. Because it is not clear that all of our modalities can produce

orientation information as well as probability information, we will consider only the

probabilities.

Given the probabilities from each of the sub-modules, how are these results com-

bined? Since each input is a probabilistic mapping over the same coordinate space,

any of these tasks can be described as a weighted average of the inputs. By assigning

weights to each of the inputs, we determine the relative importance of each modality.

Is texture a more important indicator of contour than depth? Are expectations as

important as luminance edges? There is no single set of answers to these questions;

the relative importance of each of these modalities depends upon the type of task

to be performed. For example, if the task is to trace the outline of a solid object,

Gestalt edges are of little importance compared to luminance and depth. If the task

is to visually track an object, the effects of motion edges may be more important than

influences from other senses. If the task is to find the coffee mug in a scene, expec-

tations might be the most important modality. Task dependency in the integration



method also allows for completion of tasks like finding only spectral-based edges, or

only disparity-based edges.

For the remainder of this thesis, the task that we will be concerned with is object

segmentation. This task was chosen because each of the input modalities are of equal

importance, allowing the effectiveness of combining various edge detection techniques

to be demonstrated. By refining our task even further, we could achieve better end

results, but allowing each technique to have an equal weight in the final result will

allow us to demonstrate the areas in which each technique excels and the areas in

which the combination of techniques is more effective than any of the individuals. For

more refined task specifications, the weightings of the modalities could be subject to

a learning algorithm.

4.5 Loops in the Model

In addition to the feed-forward capabilities described above, we would like the model

to allow for some influences between the modalities. Each low-level modality is pri-

marily independent, but there are cases where modalities can influence each other.

For example, Gestalt effects sometimes create changes in the perceived brightness

[PM87]. The center of the Kanizsa square is often perceived to be slightly lighter

than the surrounding background. It is not clear whether this influence is only upon

the high-level processing that leads to the concept of brightness, or whether this is

actually an influence on the processing stages that deal with luminance. To allow for

the possibility of this low-level interaction, we will add feedback loops in our contour

perception model. The results of the integration box will be provided as inputs to

each of the contributing modalities.

The use of these feedback loops allows for additional simplicity if the system is

designed to process images continuously, instead of processing each image as a stand-

alone stage. Each module can use the results of the integration step from the previous

iteration to refine the probability estimates for the following iteration. Stable visual

stimuli can be more readily processed, since the results from the previous loop can



be used as an expectation of the current results. In a mostly stable visual world,

this allows the individual processing modules to concentrate on changes in the visual

scene. The system that we will implement in Chapter 6 does not yet take advantage

of this feature.

4.6 Evaluation of the Integrated Contour Model

The model that has been presented in this chapter is a starting point for our ex-

plorations of visual cognition. It allows for rapid, parallel computation of low-level

physical image features while providing guiding input from higher-level processing

stages. The model also accounts for many of the "anomalies" of contour processing

that were described in the preceding chapter. While this model should prove ade-

quate for our computational tasks, it is currently missing two important features: a

generalization to other cognitive tasks and a description of the interactions between

the submodules.

Models of visual processing are more useful if they apply not only to single visual

problems, but also to generic visual tasks and other cognitive processes. It is not clear

how to generalize this model to other high-level cognitive tasks. How can this model

be applied to brightness perception, or the perception of depth? It is conceivable

that the same low-level modalities are at work, but what are the high-level influences

and how is the integration performed? It is also not clear that this model is useful in

evaluating non-visual tasks. For example, it is difficult to apply this model directly

to the problem of memory retrieval. It is unclear how to divide memory retrieval into

subtasks, or how the integration should occur. The model that has been presented

here is not meant as a generalized theory for cognitive tasks. However, there are

some conclusions from this work that are applicable to other tasks. The evolutionary

viability of a processing stage that utilizes many different overlapping strategies is

extremely good. By having many subsystems that compute different, but related,

aspects of the same problem basic fault tolerance and error detection can be imple-

mented. For memory retrieval, it would be beneficial to store memories in many



different formats. For example, a pictorial version of an event coupled with language

and temporal versions would promote fault tolerance.

The model also does not specify the exact interactions between the submodules.

The presence of the feedback loops allows for many interactions between the modules,

since each submodule (such as depth, color, or Gestalt effects) can have an influence

on the other modules. The psychophysics of the interactions between these different

modalities is sufficient to show that these influences exist, but there has been little

work to classify all of them. However, as we shall see in chapter 7, one pass through

this model will be sufficient for showing its usefulness for the task of object segmen-

tation. For more complex tasks, these iterative loops may be necessary, but we will

concentrate on a single pass through the algorithm in this work.

With this basic model of contour processing, we can begin to build a system to

test these ideas. The next two chapters are concerned with the hardware and software

implementations of a system that embodies the design principles outlined in Chapter

2. Chapter 5 outlines the hardware specifications of a system that attempts to avoid

the standard "perfect slate" assumption of computer vision architectures. Chapter 6

then outlines a software implementation of a subset of the model of contour processing

shown in this chapter.



Chapter 5

Charlotte: An Active Vision

Platform

In chapter 2, the many problems of viewing vision as a "perfect slate" were discussed.

This chapter continues that discussion with the implementation of an active vision

platform that circumvents some of these difficulties. A foveated, binocular, active

vision platform linked to a C40 digital signal processing board was constructed with

the goal of avoiding the "perfect slate" assumptions. The details of the physical

characteristics of the camera platforms, the motion capabilities, and the processing

power will be provided in this chapter.

A series of three active vision heads were built at the MIT Artificial Intelligence

lab for various research into active vision. The three-heads project was an outgrowth

of the Cog project, which aims at building an upper-torso humanoid robot [BS93].

The robots were designed with assistance from Mike Wessler and Sajit Rao, and were

constructed with the assistance of two undergraduate students: Matt Scheuring, who

constructed the aluminum support frame, and Diego Syrowicz, who populated many

of the circuit boards. The second of these robot heads, called Charlotte, is shown

in Figure 5-1. Charlotte currently is used as a platform for the contour integration

model that was described in the previous chapter, but the design of the robot was not

motivated by this singular goal. Instead, Charlotte was designed to be a generalized

platform for a variety of machine vision research. The remainder of this chapter de-



Figure 5-1: Photograph of Charlotte and the supporting hardware.

scribes the design decisions and implementation of the visual, motion, and processing

capabilities of a general active vision system.

5.1 Visual Capabilities

In our efforts to model the anomalies of human visual processing, a camera system

that models some aspects of the human visual system was introduced. In designing

the system, it became clear that for this project three capabilities in particular were

important to build in hardware: binocular vision, foveated vision, and active vision.

These three capabilities are not sufficient for accounting for the entire range of anoma-

lies that a complex system like the human visual system contains, but they provide a

basic set of the issues that must be addressed in hardware. Other anomalies, like the

blind spot, can be modeled in software without involving specialized hardware. Two

additional considerations in the design were price and availability of components. For

this reason, more accurate representations of the human retina (see, e.g., [YS87]) were

discounted.

The first design goal of the camera system was to allow for binocular vision.

While processing single images can provide interesting insights, the problems and



simplifications that a stereo camera brings are exceedingly important. For example,

the additional information provided by a stereo image requires us to explore the

problems of integrating multiple overlapping images. Stereo processing also allows for

simplifications of many normal visual tasks. For example, figure/ground segmentation

can be roughly approximated with stereo by simply grouping pixels together based

on disparity.

Another anomaly of visual processing that Charlotte incorporates is the non-

uniformity of photoreceptor density. The presence of a densely packed fovea has a

great impact on normal human visual processing. To discriminate among letters or

other fine details, you must focus the direction of your gaze on an object in order to

bring the object's retinal projection onto the fovea. While the technology for digital

cameras with non-regular pixel grids is advancing rapidly, it is not currently cost-

effective to implement systems that completely model the densities of photoreceptors

in the human retina [YS87]. However, ignoring this important anomaly leads to over-

simplified visual systems. As a compromise, Charlotte was given two cameras for each

eye; one camera with a 4mm wide-angle lens, and the other with an 11mm narrow-

field lens. This camera configuration allows us to process both a wide-field view and

a foveated section of the image. To simplify the geometric relationship between the

cameras, the cameras were mounted with the narrow field lens directly above the wide

angle lens, with a separation of approximately 1 inch.

The third design goal for Charlotte's visual system was to allow for moving cam-

eras. The advantages and complexities introduced with an active vision system have

been studied by many different researchers (for a review, see [BY92]). Moving cameras

create many problems for image processing through blurring of images and sampling

problems. However, moving cameras also allow for a greater range of life-like behavior

and simplify some computational issues. For example, suppose that you are inter-

ested in identifying faces. Performing object identification over the entire pixel range

is very costly, as is having high resolution capabilities over a wide angle. However,

with a narrow-field high resolution camera and motion capabilities it is possible to use

a wide-angle low resolution camera to find motion or pattern match to find possible



faces, move the cameras to foveate on the potential match, and then perform a single

high-resolution computation. In this way, intensive computation is only carried out

on a limited foveal area while still allowing for wide angle detection of interesting

objects. As a general platform for vision research, Charlotte was designed to have

a wide range of motion with relatively quick response time. The following section

describes the motion capabilities of this active vision platform in greater detail.

For issues of price, compactness, and availability, Chinon CX-062 color micro-

cameras were chosen as the standard for the active vision heads. The Chinon cameras

consist of a 1 square inch circuit board containing the photosensitive circuitry and lens

attached to a 2 inch by 4 inch board used to maintain power and produce standard

NTSC video output. The Chinon cameras proved to be ideal for our design, since the

split boards allowed for very close mounting of the lenses while reducing the amount

of total weight that needed to be moved to change the direction of gaze.

5.2 Motion Capabilities

In building motion capabilities for Charlotte, the primary design goals were to allow

for rapid eye movements that had a human-like range of motion while maintaining a

simple interface. To simplify the design, standard model airplane servos were used.

Servos allow a simple command interface, and need not be monitored as closely as

standard shaft-encoder motors. Servos do not have the fine degree of resolution that

other motors provide, but they are much simpler to install and control.

Charlotte was built with seven degrees of freedom: one degree of pan for each

eye, one degree of tilt for each eye, and three degrees of freedom for the neck (see

Figure 5-2). Each eye was given an independent degree of freedom for pan and for

tilt to allow for binocular vergence and for vertical corrections. The three degrees of

freedom in the neck were not absolutely necessary for allowing most visual behaviors,

but do begin to give the added complexity of integrating other body movements with

eye motion. Since the three active vision heads are an outgrowth of the Cog project,

the problems of integrating various body motions are of great interest.
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Figure 5-2: Servo locations on Charlotte. Two degrees of freedom for each eye and a
three degree of freedom neck allows for a wide range of human-like motion. Counter-
weights and connectors are not shown.
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Two different servos were used in the construction of Charlotte. The first type

of servo was chosen to be light-weight and accurate for the positioning of the eyes.

This kept the overall weight of the head low while providing reasonably good image

stability. The second type of servo was chosen to have higher power and slightly

slower response time for neck positioning. For price and availability concerns, Futaba

S148 low-profile precision servos were chosen for eye positioning and Futaba S3801

metal gear sail-arm servos were chosen for the three degrees of freedom in the neck.

The positions of each of these servos is shown in Figure 5-2.

5.3 Processing Capabilities

The processing capabilities for each active vision head revolve around a Texas In-

struments 040 Digital Signal Processor. The C40 is ideal for image processing tasks

requiring a large data bus and high speed array operations. Each active vision head

is equipped with a circuit board designed by Gideon Stein that supports the C40 chip

with serial line interfaces, a 128 kilobyte local SRAM, an external 32 bit data bus, and

128k of EEPROM. The serial line interfaces are used to connect to a servo controller

board and to a Macintosh computer, which serves purely as a file server. The local

SRAM contains both C40 program and data structures, while the EEPROM contains

the shell routines loaded on reset. The external data bus is used as an interface to the

visual processing boards, as explained below. The C40 boards designed by Stein also

allow for use of the C40 communication ports as interfaces between boards, allowing

multiple boards to be chained together for parallel computations.

Linking the C40 board to a visual processing system requires a number of sup-

porting structures (see Figure 5-3). To simplify the construction of the interfaces,

many of the designs used by the Cog project were applied to the active vision heads.

Since the heads were also meant to be development platforms for Cog, the similarities

in hardware allow for rapid adaption of code between the two systems. This decision

aided in construction and debugging, thanks to the help of the many local experts,

but was not without its difficulties. The hardware currently used by the Cog project
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Figure 5-3: Visual processing hardware on Charlotte. Each camera has a dedicated
frame grabber which connects to the C40 interface board through a dual-ported RAM
("DP" in the diagram). The interface board is also attached via dual-port RAM to
a pair of NTSC monitor boards that convert pixel arrays into NTSC video output.
The interface board plugs into the global bus ("GB") of the C40, which uses serial
lines to communicate to a servo controller and a Macintosh file server.



Figure 5-4: Photograph of the supporting hardware for one camera. A single frame
grabber (top left) and display board (to the right of the frame grabber) connect to
the C40 board (lower right) through dual-port RAMs attached to the interface board.

is limited to 128 x 128 resolution images of 8-bit grayscale. However, this limit

can be surpassed later through hardware redesign or by using commercially available

components.

The camera signals produced by the Chinon cameras are standard NTSC analog

signals. To convert to a digital output, custom-built frame grabbers designed by

Matt Marjanovic of the Cog group are used. Each frame grabber accepts a single

NTSC input, subsamples the input to 128 x 128 resolution and writes out both the

digitized signal and an NTSC signal of the digitized image. The digitized signal is

written out to a 128k dual-ported RAM card that serves as the standard connector

between all Cog hardware. The digitized image signal is sent to an interface board

designed by Robert Irie that accepts 9 dual-ports as input-output slots, decodes which

dual-port is sending data, and relays this data onto the 32 bit global bus on the C40

board. The interface board also allows for data to be written from the C40 board

to a dual-ported RAM that connects to an NTSC display board. The display board,

designed by Cynthia Ferrell and Matt Marjanovic, converts the digitized image into



an NTSC signal which can then be sent directly to a standard television monitor.

Unlike the frame grabbers, each NTSC display board can simultaneous translate three

different images. This allows additional results or intermediate processing stages to

be displayed without massive amounts of hardware. Finally, a single servo controller

board, designed by Chris Barnhart, is used to simplify motor commands and relieve

the C40 from the continuous requirements of servo control. The entire configuration,

as shown in Figure 5-3, requires one frame grabber for each camera (for a total of

four), one interface board, one C40 DSP board, one servo controller board, and two or

more display boards. The number of display boards can be increased to allow for more

intermediary results or messages to be displayed. A photograph of the hardware setup

for a single camera (one frame grabber and one display board) is shown in Figure 5-4.

With these capabilities, Charlotte provides a unique platform to test novel visual

architectures that are not possible with a "perfect slate" camera. Charlotte provides

a visual system that provides a richer array of information than the standard "per-

fect slate" setup. While not all of the features of Charlotte will be important to

each approach, and while some approaches will require features not presented here,

these heads represent a new emphasis in computer vision. By focusing on the many

anomalies of biological visual systems, we can construct systems that are capable

of a wider range of interesting behaviors and that allow novel solutions to standard

problems. In the following chapter, a suite of software for contour integration that

was implemented on Charlotte will be presented.



Chapter 6

Implementation of Integrated

Contours

A basic implementation of a subset of the model of contour processing developed

in Chapter 4 was implemented on the active vision platform described in Chapter

5. This chapter describes the subset of the integrated contour model used in the

software implementation, and the details of the algorithms used for the low-level edge

detection modules.

Because the entire integrated contour model is too large of a task for a Mas-

ters thesis, the first decision in building an implementation of the integrated contour

model is which modules to construct. There should be enough modalities to show

the strength of combining different types of information, but not too many so that

the important points are obscured in volumes of data. The physical limitations of

the active vision platform prevent using color as a module, and with no higher level

processing both expectations and other senses are not viable options. Motion can also

be ruled out for a first implementation, since it is often very difficult to present the

relevant data in a static format. Of the remaining modalities, we would like to include

both standard forms of edge detection and forms that include some of the anomalous

results described in Chapter 3. For this implementation, luminance edge detection,

texture edge detection, and Gestalt effects were chosen as the modules. Luminance

edge detection is simple, reliable, and gives results that can most easily be compared



Figure 6-1: Subset of the integrated contour model that was implemented in this
work.

with other vision systems. Texture edge detection was chosen since it detects infor-

mation that is very different from luminance, that is, patterns of intensities across

much larger scales. Gestalt effects was chosen as a module both because it has gained

some attention by the computer vision community and because it serves as a good

example of contour formation that is not based directly on physical information. It

certainly would have been plausible to chose either disparity-based edge detection or

filling-in effects as modules for this implementation, and it will be interesting to see

what results these two modules bring to the current results. The subset of modules

developed in this chapter is shown in Figure 6-1.
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Figure 6-2: Luminance edge detection using a Laplacian filter. The original image of
three foam blocks (left) is convolved with a 3 x 3 Laplacian filter shown in equation
6.1 to produce the image at right.

6.1 Luminance Edge Detection: The Sobel Op-

erator

One of the major strengths of the integrated contour model is that each module can

be composed of very simple operators, since special cases can usually be detected by

another modality. For the case of luminance edge detection, we can rely on simple

filtering to determine the luminance gradients. The luminance operator should in-

clude both horizontal and vertical edge detection, provide reasonably stable results,

and have a very limited filter size.

The first luminance edge detector that was tested was a simple Laplacian filter of

the form:

0 1 0

1 -4 1 (6.1)

0 1 0

The results of applying this filter to a standard test image are shown in Figure 6-2.

Unfortunately, the results of this filter are very noise-sensitive since both horizontal

and vertical components are combined into a single filter.



Figure 6-3: Luminance edge detection using a Sobel operator. The original image
(left) is convolved with a pair of 3 x 3 Sobel filters shown in equation 6.2. The
absolute values of these results are summed to produce the image at right.

A more stable luminance edge detection scheme can be implemented using a modi-

fication on the Sobel operator [Sob70]. The input image is convolved with two different

filters, one designed for vertical edges and the other for horizontal edges:

-1 0 1 1 2 1

-2 0 2 0 0 0 (6.2)
-1 0 1 -1 -2 -1

If the absolute values from the results of these two convolutions are summed, the result

gives a much more stable estimation of the luminance gradient. Figure 6-3 shows the

result of applying this operation to the original image from Figure 6-2. The output

from the Sobel operator gives a sharper definition of the luminance gradients than the

Laplacian filter does, and also produces fewer spurious results than the Laplacian (as

can be seen by the amount of low-intensity background "noise" in the result images).

In the final implementation of this system, the Sobel operator was used.



6.2 Texture Edge Detection: Opponent Filters

The technique that we will use for texture detection is based upon the work of Bergen

and Landy [LB91]. The original version of the Bergen and Landy algorithm begins

by convolving the input image with a large number of oriented local filters. Each

filter must also have an opponent filter, which is the same filter rotated by ninety

degrees. In our implementation, we will use one pair of oriented filters for vertical

and horizontal patterns:
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The results of these images are similar
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standard Bergen and Landy algorithm.
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-. 047 5.662 -. 075

11.301 -. 047 -3.610 (6.5)

-. 047 -7.612 1.112
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to Laplacian edge detectors oriented towards

At this point, we diverge slightly from the

Bergen and Landy square the results of each

filtered image and then collect local spatial information by downsizing each image

(6.3)

(6.4)



Figure 6-4: Sinusoidal texture pattern used for testing the texture detection module.
A patch of texture 32 pixels by 32 pixels was rotated 45 degrees with respect to the
background. The frequency of the sinusoids is .4 x 7r.

using a Laplacian pyramid 1. Opponent images are then subtracted to yield an

opponency image that shows the areas of highest conflict. For our purposes, we

would like the results to remain at the same level of resolution as the originals, so

that they can later be combined with processed images from other modalities. In the

implementation used for contour detection, the results from the four directional filters

shown above are computed. The opponency images are then computed by taking the

absolute value of the difference in the filtered images. This avoids both the downsizing

introduced by the Laplacian pyramid and the inflation introduced by squaring each

pixel before downsizing. Finally, the opponency images are normalized by dividing

each pixel by the sum of the values of the corresponding pixels from each filtered

image. The normalized opponency images can then be considered probabilities of

textured contours along the respective line directions. The two normalized opponency

images are then used as the output from the texture detection module.

1The Laplacian Pyramid is a powerful representation for image compression. Instead of simply

averaging local pixels to downsize the image, local groups are weighted by a Laplacian function
before begin summed. As an example, a Gaussian is a specialized type of Laplacian function. For
more details, see [BA83]



Figure 6-5: Normalized horizontal-vertical texture opponency image. The sinusoidal
texture pattern in Figure 6-4 was processed by both horizontal oriented and vertical
oriented filters. This opponency image is the absolute value of the difference in the
filtered images.

Figure 6-6: Normalized diagonal texture opponency image. The sinusoidal texture
pattern in Figure 6-4 was processed by two filters oriented at +45 degrees and -45
degrees from vertical. This opponency image is the absolute value of the difference
in the filtered images.



As was described in section 3.2.3, natural examples of pure texture are very rare.

To demonstrate the results of this processing, and as part of the testing for this stage

of processing, a patch of sinusoidal texture at 45 degrees was placed on a background

sinusoidal texture at 0 degrees (see Figure 6-4). The sinusoids had a frequency of

.4 x 7r and varied in intensity between 64 and 192 in 8-bit grayscale. The normalized

opponency images are shown in Figure 6-5 for the horizontal-vertical opponency and

in Figure 6-6 for the diagonal opponency. Notice that the diagonal opponency image

draws out only the sections of the image that contain the shifted texture pattern, and

the horizontal-vertical opponency image selects the background texture.

6.3 Gestalt Effects: Point Fields

While there are a variety of well-studied computational strategies for extracting tex-

ture and luminance information from an image, computing the effects of the Gestalt

properties on an image are less well known. For our experimental implementation,

we will use the basic format outlined by Guy and Medioni for resolving the Gestalt

properties of continuation and closure [GM93]. The basic concept of the algorithm is

to use local fields around salient features to extend into global configurations. The

algorithm works by letting each pixel vote for edges within a local neighborhood,

finding the most likely edges for each pixel location, and extending the likelihood of

other nearby pixels of having lines in that specific orientation. The algorithm that is

presented below is a slight simplification of the complete extension field methodology

explored by Guy and Medioni, but provides nearly identical results for the class of

images that our hardware can produce.

The algorithm begins by allowing each pixel in the input image to cast "votes"

for edges at locations in the final image. Each pixel from the input image registers a

vote for lines of specific orientations and intensities with the pixels in a local field in

the final image. Votes can be mentally pictured as vectors extending from each pixel

in the final image that indicate an edge direction (by the direction of the vector) and

an edge intensity (by the length of the vector). To determine the exact vote that is



Figure 6-7: Kanizsa square test image for the Gestalt effects processing. The image
is a 64 x 64 bitmap.

cast, you need know only the location of the input pixel, the location of the pixel in

the final image, and the intensity of the input pixel. The orientation of the vote is

determined by the orientation between the input and final pixels; pixels in the same

row result in a vote for a horizontal line and pixels in the same column result in a

vote for a vertical line. The strength of the vote is equal to the intensity of the input

pixel weighted by a function of the distance between the pixels. The weighting factor

is:
e-k(z2 +y) e-k( +y2 ) (6.6)

W. = sa W = y* • (6.6)* X 2+y, 2 z2 +y 2

where W, and W, are the row and column components of the weighting vector, x and

y are the differences in row and column positions between the pixels and k is a scale

factor that limits the size of the field. For the integrated contour experiments, k = .2

and the field size is limited to 3 pixels. The size was chosen to maintain the same size

as the Sobel operator, and the constant k was chosen to minimize the actual values

of the weighting field outside that range.

After the voting has been completed, each pixel in the final image has a list of votes

for lines of specific orientations and strengths. If we view each of the votes at a specific

point in the final image as a vector, that is, an [x y] pairing, the list of votes can be

made into an n x 2 matrix where n is the number of votes. Guy and Medioni have



Figure 6-8: Effects of the Gestalt module on the Kanizsa square test image. Notice
that the algorithm produces high probabilities of edges in the missing portions of the
perceptual square.

shown that the minimum eigenvalue of the covariance matrix of this vote matrix is the

saliency of the edge map accounting for the Gestalt effects of continuation and closure

[GM93, p. 7]. For our implementation, this saliency map is computed by finding the

singular value decomposition of the covariance matrix. Another way of viewing this

computation is that the covariance matrix gives the most likely edge directions and

intensities, and the singular value decomposition finds a single likelihood of this edge

direction.

Consider the example of the Kanizsa square (see Figure 6-7). We expect the

voting strategy to allow the straight line segments to extend across the filled gaps

and complete a square. The pixels in the middle of each side of the perceptual square

will receive votes for a line of that orientation from both sides, and if the field is large

enough to collect enough votes the extension will be formed. The image in Figure

6-8 is the result of applying this algorithm to the Kanizsa square of Figure 6-7 with

a field size of 7 and k = .2. The larger field size was chosen to highlight the workings

of this process, since the results for a smaller field are much more subtle. Notice that

the Gestalt processing is not the same as luminance detection; the original luminance

edges in the input image are not detected by the Gestalt processing stage. The picture

shows the probability of lines extending into adjacent squares to provide completeness



or good continuation. The areas of high activity are near junction points (such as

the center of the circles) or where gaps occur in what are perceived as straight lines

(along the edges of the square).

6.4 Integration

Once the results from the luminance module, the texture module, and the Gestalt

effects module have been collected, the integration step is almost trivial. The weights

will be chosen so that each module has an equal effect on the final output. Because

texture gives two results, we assign a weight of 1 to each texture result and a weight of

2 to both the luminance and Gestalt effects results. The weighted images are summed

and then normalized by dividing by the sum of the weights (6). The final integration

image is then ready for use by other processing stages, behavioral routines, or just to

display. The next chapter will be devoted to demonstrations of the integration results

for this implementation of the integrated contour model.



Chapter 7

Experimental Results

This chapter demonstrates the results of the integrated contour implementation de-

veloped in the preceding chapter. The first example will present the basic results

produced by the algorithm and demonstrate how the algorithm detects features that

the individual modalities lack. The second example demonstrates the operation of the

integrated contour implementation on a more complex image and demonstrates how

each of the individual modalities provide different information on the same image.

The third example illustrates the resolving capabilities provided by integrated con-

tours over individual modalities. The final example will show how integrated contours

allow for failures in single modalities.

For all of the examples presented in this chapter, a test object was placed on a lab

table for viewing by the camera system on Charlotte. The center 64 x 64 pixels of

the image were used for the processing stages. The four test objects presented here

were chosen from a variety of objects that were viewed by the system. These four

test images were chosen because they provided good demonstrations of the types of

effects that were observed to varying degrees in the other images.

7.1 Example 1: Basic Results

The first test object used was a normal paper plate. The plate has a flat central

region surrounded by a raised edge. The edge contains many small radial ridges.



Figure 7-1: A paper plate was used as the first test object.
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Figure 7-2: Processing results for a paper plate test image. The original image for
processing is shown along with the results from each of the modules. The final result,
labeled "Integrated Contour," shows some features that are not clearly defined in the
intermediate images.
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A photograph of the plate is shown in Figure 7-1. Figure 7-2 shows the results of

the integrated contour processing. The first image in Figure 7-2, labeled "Original,"

shows the 64 x 64 image used for input to the luminance, Gestalt effects, and texture

processing modules. The second image, labeled "luminance," shows the results of

applying the Sobel operator on the input image. The luminance image accurately

shows the outside edge of the plate, but misses any internal details. The "Gestalt"

image shows the results of the point-field voting scheme described in the previous

chapter. The Gestalt image shows both the outer edge of the plate, the internal edge

between the flat portion of the plate and the raised edges, and some of the ridges along

the outer rim. The two texture images, "Diagonal Texture" and "Horizontal-Vertical

Texture" are the normalized opponency images produced by the Bergen and Landy

texture algorithm. The diagonal texture image is most sensitive to the edges of the

plate that are +45 or -45 degrees from vertical. The horizontal-vertical texture image

selects out the horizontal and vertical edges of the plate, as well as the simulated-wood

grain of the table.

The final image, labeled "Integrated Contour," shows the result of averaging the

four previous images as described in the previous chapter. The integrated contours

method shows the outer edge of the plate, the inner edge of the flat portion of the

plate, and some of the radial ridges that cover the exterior ring. The integrated

contour representation combines the different methods in an effective and simple

representation. The details that are selected by only one modality, like the texture

of the grain of the table, are drowned out by some of the other methods if there is

no supporting evidence. This also has the effect of removing the noise involved in

each stage of processing from the final image. Features like the radial ridges that

appear in only one modality, but have supporting influences from other modalities,

are heightened in the final result. The integrated contour image shows many of the

features of the original images in a simple, compact representation.



Figure 7-3: A robot car used as the second test object.

Luminance

Horizontal-Vertical
Texture

Gestalt

Integrated
Contour

Figure 7-4: Processing results for the robot car test image. This example illustrates
the operation of integrated contours on a more visually complex object, and serves to
show the different contributions made by the luminance, Gestalt effects, and texture
modules.
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7.2 Example 2: Complex Images

The first example gave a good general introduction to the kinds of processing that

integrated contours perform. The second example is designed to show the results

on a visually more complex object. The test object used was a robotic car, named

the "Photovore." A photograph of the test object appears in Figure 7-3. The car

was selected as a test object because of the many small features contained inside

the roll-bars. The results of the integrated contours algorithm are shown in Figure

7-4. The luminance results accurately portray the exterior edges of the object, but

become confused near the roll-bars where there are many small details. The Gestalt

image, however, draws out only the details that contain supporting influences from

elsewhere in the image. The exterior of the car and the roll-bars are very clear, but

much of the small detail inside the image is suppressed. The texture images also show

different details from the original image. The diagonal texture shows almost constant

low-levels of activity inside the outline of the car, but very little activity outside. The

horizontal-vertical texture image again picks out the grain of the table as well as high

levels of activity near the spoiler.

The final results of the integrated contour approach show a composite image of

the car. The final image lacks some of the strong definition along the exterior of the

car that the luminance image maintained, but also contains a more accurate picture

of the details inside the car. The luminance image contributes the strong outlines

of the car itself, but lacks the internal definitions. The texture images contribute to

some of the details of the internal structure, and also some of the grain of the table.

The Gestalt image helps to highlight the presence of the roll-bars, and brings out the

more salient edges along the wheels. The final result of the processing shows that

integrated contours can handle even complex visual scenes.



Figure 7-5: Potted flower used as the third test object.
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Figure 7-6: Processing results for the potted flower test image. This integrated
contour image shows better resolution of detail in the group of flowers near the center
of the image than any of the individual modalities.



7.3 Example 3: Resolving Power

The second example demonstrated the uses of integrated contours on complex images,

and the influences of each of the modules on the final result. The third example is

designed to show some of the resolution enhancing properties of the integrated contour

approach. The test object used in this example was the potted plant shown in the

photograph in Figure 7-5. The results of the integrated contour processing are shown

in Figure 7-6. The luminance image shows good definition of the background leaves

and stems, but lacks fine definition of the petals near the center of the image. The

Gestalt effects picks out these petals quite well, but lacks the definition of the stems

and leaves. The diagonal texture image shows high activity near the central group

of petals, and some of the details around the stems. The horizontal-vertical texture

image shows great activity from the table grain, and some light activity around the

central flower group.

The final integrated result shows some details of the flower petals near the center

of the image that are not found in any of the individual modalities. This increase in

resolution power is possible because each modality allows for a slightly different view

of the data present. Individual modalities, like the 3 x 3 Sobel operator introduce

a smoothing into the image that can be reduced by using multiple techniques with

different receptive fields.

7.4 Example 4: Failures in Single Modalities

The third example demonstrated the unique resolving capabilities of the integrated

contour technique. This final example will show the uses of integrated contours on

areas where some of the modalities fail. The test object used was a toy slinky, shown

in the photograph in Figure 7-7. The slinky was chosen as a test object because it

packs many edges into a very small space. The results of the processing are shown

in Figure 7-8. The luminance technique performs well on the exterior outline of the

slinky, but fails when the loops of the slinky become too close. The Gestalt processing



Figure 7-7: The final test object was a toy slinky.
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Figure 7-8: Processing results on the toy slinky test image. The final result shows
the way in which strengths of the different modalities can be combined to cover over
faults in a single modality. For example, while luminance has a difficult time resolving
the edges of the slinky as they approach the table top, the contributions from other
modalities allows for good resolution to be achieved in those areas.
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produces strong curves along the tops of the individual loops at a better resolution

than luminance. The diagonal texture and horizontal-vertical texture images both

show high activity throughout the object. The diagonal texture image shows average

detail throughout the image, while the horizontal-vertical texture shows very fine

resolution near the base of the slinky.

The integrated contour image combines the different modalities in such a way

that areas where one technique fails are covered by the others. At the apex of the

slinky, the horizontal-vertical texture fails to resolve any detail, but the Gestalt and

luminance images contribute a strong enough result to detect the contours in this

area. Similarly, the luminance image fails near the base of the object where many

line segments are blurred together. The Gestalt processing and the texture results

help to offer finer resolution and accuracy in this region. Where one technique fails to

account for details, the other techniques are able to recover. The individual modality

images can also be tampered with by noise or human intervention, and these results

will still hold.

The examples from this chapter have shown some of the advantages that integrated

contour processing offer over individual techniques. By combining information from

multiple modalities, the results that we achieve are more resistant to noise, less likely

to contain modality-specific faults, and in some cases offer finer resolution.



Chapter 8

Conclusions

This final chapter will be dedicated to a review of the contributions of this work and

a discussion of the future avenues of research that this work has proposed.

8.1 Summary of Contributions

Our investigation of contour perception began with two objections to the perfect slate

model of machine vision. The first objection stated that vision should take accurate

account of the types of stimuli and sensors that are available; vision can no more be

viewed as a rectangular grid of pixels than memory can be viewed as a disk drive.

The second objection stated that the processing of visual stimuli cannot be viewed

as a single pipelined process that accounts only for the pixel intensity values; the

influence of higher-level processing must be included, feedback must be allowed, and

continuous processing must be the norm. This thesis certainly has not taken the

leap to implement all of these qualifications, but it has taken the first step in that

direction.

This thesis has introduced a new method for viewing the problem of contour

perception. The contributions of this work to the field of machine vision can be

summarized as follows:

e A classification of contours as high-level, perceptual features



* A method for perceiving contours: The integrated contours model

* A novel active vision platform: Charlotte

* An implementation that shows the viability of the integrated contour model

In Chapter 3, the problems associated with contour perception were reviewed.

New definitions for the words "contour" and "edge" were introduced to re-focus this

problem. From the examples of the Gestalt psychologists, demonstrations of context

effects, and the examples from many individual modalities, contours were established

as high-level perceptual features that can be composed and many different low-level

features and high-level influences. Chapter 4 began the construction of a model

of contour processing, the integrated contour model, that incorporated the many

phenomena of contour perception.

The construction of this model required a new evaluation of standard vision hard-

ware. This evaluation resulted in the construction of Charlotte, a novel visual archi-

tecture that allows for binocular, active, foveated vision. With the ability to explore

new visual architectures that Charlotte provides, a subset of the integrated contour

model was implemented. This implementation demonstrated the viability of the

model and also served to highlight the noise reduction, error recovery, and enhanced

resolution that this methodology can provide.

8.2 Future Avenues of Research

This thesis has opened more new lines of research than it has provided with solutions.

The future avenues of research can be split into three categories: additional compo-

nents to our implementation of contour integration, additional high-level behavioral

goals to utilize this system, and evaluation of this methodology on other aspects of

vision.

There are many additions that should be made to the subset of the integrated

contour model that has been implemented. The addition of depth will provide the

first real utilization of the unique qualities of the active vision platform. Depth also



provides a strong means of contour information that has not yet been well exploited.

Another interesting addition would be a module to implement the filling-in effects

demonstrated by the blind spot. The filling-in effects may be helpful in provid-

ing information for occluded objects, or even in integrating information between the

wide-angle and foveated cameras. Motion would be an excellent addition for rapid

discrimination, and also aid in the development of processing that was not pipeline-

based. Additional experiments should also focus on the use of multiple C40 boards for

parallel computation of the low-level modules. The use of feedback in the integrated

contour model would allow for investigations of real-time processing and of the inter-

actions between modalities. Additional high-level procedures, like a model of shape

recognition, would allow the study of how expectations can influence the low-level

modules. Finally, the entire integrated contour software should be ported to run on

Cog to make use of the richer variety of sensory inputs and behavioral responses.

Additional behavioral goals should also be investigated. The contour segmenta-

tion system outlined in this work is only a partial test of the integrated contour model.

A high-level behavioral goal, like object tracking or recognition, or learning to follow

human faces, would give a better sense of completeness to this project. By specifying

other unique behavioral goals, the relative importance and influence of each modality

can be more clearly studied. Learning algorithms for the weightings between modal-

ities would need to be researched and developed. Future behaviors would also allow

the use of the active vision platform as more than a static camera base.

Finally, it would be interesting to apply the methodology used in constructing a

model of perceptual contours to other areas of machine vision and artificial intelli-

gence. This type of modeling could be useful for other machine vision tasks, such as

navigation or visual planning for object manipulation. The methodology of differenti-

ating carefully between physical and perceptual stimuli could also be applied to other

senses, such as audition or tactile sensation. The technique of using many simple

modules for a common problem may also be useful to the study of other high-level

mental tasks such as memory retrieval or path planning, but the direct extension of

this technique is not clear at this time.
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