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Abstract

This thesis addresses the problem of limited training data in pattern detection problems
where a small number of target classes must be detected in a varied background. There
is typically limited training data and limited knowledge about class distributions in this
type of spotting problem and in this case a statistical pattern classifier can not accurately
model class distributions. The domain of wordspotting is used to explore new approaches
that improve spotting system performance with limited training data. First, a high perfor-
mance, state-of-the-art whole-word based wordspotter is developed. Two complementary
approaches are then introduced to help compensate for the lack of data. Figure of Merit
training, a new type of discriminative training algorithm, modifies the spotting system pa-
rameters according to the metric used to evaluate wordspotting systems. The effectiveness
of discriminative training approaches may be limited due to overtraining a classifier on in-
sufficient training data. While the classifier's performance on the training data improves,
the classifier's performance on unseen test data degrades. To alleviate this problem, voice
transformation techniques are used to generate more training examples that improve the ro-
bustness of the spotting system. The wordspotter is trained and tested on the Switchboard
credit-card database, a database of spontaneous conversations recorded over the telephone.
The baseline wordspotter achieves a Figure of Merit of 62.5% on a testing set. With Figure
of Merit training, the Figure of Merit improves to 65.8%. When Figure of Merit training
and voice transformations are used together, the Figure of Merit improves to 71.9%. The
final wordspotter system achieves a Figure of Merit of 64.2% on the National Institute of
Standards and Technology (NIST) September 1992 official benchmark, surpassing the 1992
results from other whole-word based wordspotting systems.
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Chapter 1

Introduction

As computers become more ubiquitous in our daily lives, the need to interact with computers

and other modern technology becomes more frequent and widespread. Thus, there has been

an effort to improve the interface between human beings and computers. Speech is one of

the most natural and efficient media that humans use to communicate. Over the years,

the ability to communicate with computers using speech has gradually improved. Recently,

through research on new algorithms and with faster computers, discrete, limited vocabulary,

speaker-independent speech recognition systems have become a reality. However, most

systems so far have been designed for use in a quiet office environment with adaptation

toward a specific speaker.

Wordspotting has become an increasingly important application in speech recognition

since the amount of computation required for wordspotting is feasible on currently available

computer systems [10, 25, 45, 67, 68, 74, 75, 79]. Some wordspotter research has focused

on automatic operator services [10, 74, 79], others have focused on monitoring keywords in

unconstrained speech [25, 28, 52, 68, 83]. There have also been studies on using wordspotting

to index an audio message [78].

Instead of the traditional focus of dictation, many current research efforts focus on

enabling human-machine interfaces using speech. Recognition of certain command words

is sometimes sufficient to implement such an interface system. When using a wordspotting

system, a user speaks certain keywords embedded in a sentence and the system detects the

occurrence of these keywords. One example is an automatic directory service, illustrated in

Figure 1-1. The user may say, "May I have the hardware department please." The computer



Figure 1-1: An illustration of using a wordspotting system to direct a caller's inquiry to the
appropriate department.

w:ill spot for the keyword hardware and direct the user to the hardware department even

though the keyword is embedded in extraneous speech (i.e. department, please) that is not in

the system's list of recognizable keywords. When users speak spontaneously, there are many

grammatical errors, pauses, and disfluencies that a continuous speech recognition system

may not be able to handle. For these situations, a wordspotting system will concentrate

on spotting particular keywords and ignore the extraneous speech. Such a system can also

work well in other command and control systems such as voice dialing a cellular phone

while one is driving, changing a television set's channel, and retrieving voice mail and email

messages through the telephone.

1.1 Problem Statement

Most modern pattern recognition systems depend on a statistical approach to extract useful

information about different classes of patterns from a set of training patterns. However,

difficulty in distinguishing between different classes arises when the amount of training data

is not sufficient to characterize all possible patterns of a particular class. For example, a

speech recognition system may be trained using speech patterns from tens or hundreds of

speakers. However, there may still be speakers (who differ in accent, age, or speaking style)

who are not well modelled by the pool of training speakers. A speech recognition system



will perform poorly for these unrepresented speakers. In many cases, the number of training

speakers is even more limited and thus the problem of mismatch between a novel speaker

and the system trained using limited training data arises even more frequently.

There are two major problems associated with the lack of training data: inter-word vari-

ability and inter-speaker variability. An example of inter-word variability is in determining

the difference between two similar sounding words such as card and hard. These two words

sound very similar to each other except for the beginning of the word. Most modern speech

recognition systems rely on a statistical modelling technique, called Hidden Markov Models

(HMM), to model the temporal variability of speech [62]. The traditional Hidden Markov

model training technique, using the Expectation-Maximization algorithm [14], utilizes only

the training data for a particular keyword, e.g., card, to estimate the model for that key-

word. With limited training data, a wordspotter trained to spot the word card will produce

high output scores for similar sounding words such as hard and guard. When card is the

word to be detected, detection of the words hard and guard are called false alarms. The goal

in wordspotting is to ensure a high detection rate with a low false alarm rate. A system

which generates many false alarms is not useful. Given limited training data, a different

training technique which trains the models with the goal of discriminating true hits from

false alarms can provide better overall performance.

Inter-speaker variability represents another major problem in speech recognition. The

speakers in the training set may not represent the user population sufficiently. For example,

speakers differ from each other in sex, age, accent, physiological dimension, glottal charac-

teristics, etc. With the large number of dimensions in which speakers differ, even hundreds

of speakers used in training speech recognizers may not cover a user population well.

To train a high performance wordspotter, data which adequately represent the inter-

speaker variability as well as inter-word variability are needed. One solution is to collect

more data which represent better the variabilities encountered among the user population.

However, since collecting more training data can be costly, techniques which allow the train-

ing of models which maximize the use of available training data are valuable. This thesis

develops a high performance whole-word based wordspotter as the baseline wordspotter and

investigates two complementary approaches to improve the performance of a high perform-

ing wordspotter through better use of existing data. These two approaches, Figure of Merit

Training, and Voice Transformation are presented in the next section.



1.2 Proposed Approach

The research described in this thesis focuses on developing a high performance wordspotter

and exploring techniques that can be applied to improve wordspotter performance with

limited training data. The following three topics that have been completed in the course of

this research are discussed in the subsequent chapters:

* Development of a High Performance Wordspotter

* Investigation of Figure of Merit Training

* Investigation of Applying Voice Transformations to Generate More Training Data

A basic, high performance wordspotter is first implemented and is the basis for additional

improvements. To maximize the discriminative ability of the models, a new technique,

Figure of Merit Training, is studied. Finally, to improve the wordspotter's robustness

-against speaker variability, Voice Transformation techniques are introduced and studied.

More complete descriptions of these steps are presented below.

1.3 A High Performance Wordspotter

1.3.1 Introduction

The function of a wordspotter is to process continuous speech input and to generate hy-

]potheses of where a keyword may have occurred. Each hypothesis consists of the time and

the duration of the keyword and the wordspotter's confidence in that hypothesis. In this

thesis, each hypothesis of keyword occurrence is called a putative hit.

A high performance wordspotter that has the state of the art performance was imple-

mented as a part of this thesis. By starting with a high performance wordspotter, new

techniques that are developed later would be applicable to recognition systems that are

already very good. Furthermore, any resulting improvements would be significant in com-

parison to current state of the art.

1.3.2 A Whole-Word Based Wordspotter

The techniques studied in this work were tried on a whole-word wordspotter. While

other more complicated approaches such as a large vocabulary continuous speech recog-



Figure 1-2: Network structure of the whole-word wordspotter

nizer (LVCSR) system are possible, the whole-word approach has a structure which allows

for discriminative training for each individual keyword without affecting other keywords.

Comparisons between the LVCSR approach and the whole-word approach are presented in

Section 8.2.

Each keyword to be spotted is modelled by a distinct Hidden Markov Model (HMM) [62]

while speech background and silence are modelled by general filler and silence models re-

spectively. The structure of the wordspotter is shown in Figure 1-2. For each keyword,

a normalized score is generated at 10 ms intervals. The normalized score is the end state

Viterbi log likelihood of each keyword minus the end state log likelihood of the filler model

and approximates the a posteriori probability of keyword occurrence. As more speech is

processed, the Viterbi log likelihood of the end state will decrease, but by calculating the

normalized score as the difference between the keyword's log likelihood and the filler's log

likelihood, the normalized score will be positive when the keyword model matches the in-

coming speech better than the general filler model. Putative hits are generated by detecting

peaks in the normalized score of the wordspotter. The score for each putative hit is the

normalized score at each peak. More detailed description of the putative hit generation

process can be found in Section 4.5.

'The normalized score for each keyword is processed with a peak-picking algorithm to

generate a set of putative hits. The wordspotter generates a putative hit if the putative



hit's score is above a pre-set threshold. Lowering the threshold generates more putative

hits and also more false alarms. Thus, by varying the threshold, the number of false alarms

generated by the wordspotter over a duration of speech signal, or the false alarm rate, can

be adjusted.

1.4 Figure of Merit Training

1.4.1 Introduction

Currently, most Hidden Markov Models are trained with the Expectation-Maximization

algorithm [14]. Given a series of output feature vectors o and a model m, the EM algorithm

iteratively calculates the likelihood that the feature vector is generated by the model, p(olm),

aand maximizes p(olm). The EM algorithm is an iterative method that has been shown

to converge to a local maxima of p(olm). Traditional techniques of maximum likelihood

estimation assume that enough data are available to train all models in the system and

that models of the distributions of input features are accurate. Both assumptions do not

hold in reality. Recently there has been much work in the area of corrective training [8, 38].

By training a speech recognizer to maximize recognition accuracy instead of likelihood,

improvements in recognition performance have been reported. For example, Lee et al.

reported a reduction in word error rate (including substitutions, deletions, and insertions)

from 29.4% to 26.3% on the large vocabulary Resource Management task using corrective

training [38]. Many other approaches have been proposed which use methods other than

Maximum Likelihood Estimation to estimate models for speech recognition [38, 68].

The difference between a maximum likelihood approach and a discriminative approach

is illustrated in Figure 1-3. In this figure, the two regions represent the distribution of

patterns from two different classes. The two axes represent two possible input features. For

example, to discriminate between vowels, the first two spectral peaks of each vowel can be

used as the input features. The maximum likelihood estimation approach separately models

each class with a Gaussian distribution, and the line where the Gaussian distribution values

are the same is the boundary between two classes. But with limited amount of training

data, outlier data points that are far away from the class boundary can distort the estimated

distribution for each class and the resulting class boundary may not minimize the number of

classification errors. The discriminative approach, on the other hand, focuses on reducing
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Figure 1-3: An illustrated comparison of Discriminative Training vs. Maximum Likelihood
'Training.



the number of misclassified data points and thus adjust the boundary between the two

classes with more weight given to the data points close to the boundary.

A simple set of experiments was performed to illustrate the difference between a max-

imum likelihood training approach and a discriminative training approach. A set of two

classes of patterns were generated. Each class contains patterns from three Gaussian distri-

butions. Fifty percent of the patterns are from the main Gaussian distribution (H2 and F2)

while twenty-five percent of patterns are from two other Gaussian distributions (H1, H3, Fl,

and F3). To illustrate the problem of not knowing the underlying probability distribution

of each class in real life, only one Gaussian distribution is used to model each class. The

classifiers were trained using two approaches:

* A Gaussian classifier, a maximum likelihood training approach [39].

* Incremental Radial Basis Function (IRBF) Classifier, a discriminative training ap-

proach [44].

These two types of classifiers have exactly the same structure, the only difference be-

tween them are the training algorithms. The classifiers were trained using the software

package LNKnet that has been developed at Lincoln Laboratory by Richard Lippmann,

David Nation, and Linda Kukolich [44]. Figure 1-4 shows the Gaussian distributions in the

Gaussian classifier that represent each class. Figure 1-5 shows the Gaussian distributions in

the IRBF classifier. A boundary between two classes can be drawn by plotting the points

in the input space where the classifier outputs for the two classes are equal. The boundaries

drawn by the Gaussian classifier and the IRBF classifier are very different. The Gaussian

classifier's distributions try to model three Gaussian distributions with just one Gaussian

distribution, and thus the boundary created by the Gaussian distributions do not separate

the two classes well. On the other hand, the Gaussian distribution parameters of the IRBF

classifiers were trained to minimize classification error rate, so patterns that are far away

from the boundary between two classes do not affect the resulting Gaussian distribution.

The example just shown illustrates the benefit of discriminative training approaches for

minimizing static pattern classification errors. Other discriminative training approaches can

be developed for other pattern classification tasks. A new discriminative training approach,

called Figure of Merit Training, that is tailored for the task of wordspotting is introduced

in this thesis.
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1.4.2 Figure of Merit

Wordspotting systems are currently evaluated using a metric called Figure of Merit. The

Figure of Merit is calculated by averaging the detection rate of the wordspotter over a

range of false alarm rates. Figure 1-6 illustrates the calculation of the Figure of Merit

from a receiver operating characteristics (ROC) curve. The ROC curve is a plot of the

detection rate versus the false alarm rate of a detection system. The Figure of Merit

summarizes the performance of a spotting system in detecting a signal over a range of false

alarm rates and is used frequently in evaluating spotting systems. Currently, a standard

measurement defined by National Institute of Standards and Technology calls for averaging

the detection rate over the range of 0 to 10 false alarms per keyword per hour [53], as

shown in Figure 1-6. The Figure of Merit evaluates a wordspotting system differently

than conventional speech recognizers. A conventional speech recognition system generates

a stream of phone labels or word labels for each input sentence and generally all words

are weighted equally in importance. The common metric for evaluating such a continuous

speech recognition system is the word error rate. For example, if a string of digits sent

to the recognizer is one, three, five, two, seven, and the recognizer's output is nine, three,

five, two, seven, then the word error rate for this speech recognizer on this sentence is 20%.

Typically, the amount of confidence that the speech recognition system has in each label is

not used during scoring.

On the other hand, a wordspotting system generates a list of hypotheses, called putative

hits, that consist of the location of a word and a confidence score. A higher confidence

score indicates that the system is more certain that the specified word actually occurs at

the prescribed location. When the Figure of Merit is calculated, the confidence score plays

an important role since the putative hits are sorted by the confidence score and the number

of false alarms encountered at each confidence score level determines the false alarm rate

at the score level.

1.4.3 Training to Maximize Figure of Merit

A new approach, called Figure of Merit Training [9, 43], which attempts to train model

parameters to maximize the Figure of Merit of a wordspotter, is introduced in this thesis.

To adjust the model parameters, a gradient relating the Figure of Merit to each parameter



100

90

80

70

60

50

40

30

20

10

0
2 4 6 8 10
FALSE ALARM PER KEYWORD PER HOUR

FOM= 1
N

= 63.3
i=1

Figure 1-6: The Figure of Merit
alarm rates.
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in the wordspotting system is derived. Each putative hit's impact on the overall Figure of

Merit is calculated by interpolating the changes in overall Figure of Merit as the putative

hit's score is varied over a small range. After the gradient has been calculated, parameters

are adjusted in a direction that increases the Figure of Merit. The discriminative ability

of wordspotter models is improved as examples of keywords and false alarms are used to

modify the parameters of wordspotter models.

The FOM training approach has been implemented on a wordspotting system. Analysis

has been performed on the type of errors that are removed by FOM training and more

detailed results are presented in Chapter 5.

1.5 Voice Transformations

The speech recognition process can be modelled as a communication problem, where a

speaker speaks a sentence with certain intent, the sound is generated by the speaker's vocal

system and then decoded by the listener. Although each individual may intend to say

the same sentence, the actual acoustic signal that is sent out will depend on individual

characteristics such as gender, accent, age, physiological characteristics, and speech habits.

The variability inherent in the manifestation of the acoustic signal requires the collection of

a large amount of training data to model this variability. Many approaches have been tried

to compensate for this speaker variability. The taxonomy of possible approaches can be

roughly divided into three different branches: obtaining training data from a large number

of speakers, supervised speaker adaptation and unsupervised speaker adaptation.

Most modern speech recognizers rely on the first approach to compensate for speaker

variability. By using data collected from a large number of speakers and complex models

that can represent the speaker variability, the speech recognition system is made more

robust to speaker variability. The drawback of this approach is that collecting data from a

large number of speakers is frequently expensive.

Supervised speaker adaptation requires that the speaker speak sentences and that the

content of these sentences is known. In fact, many more restrictive systems require that the

same identical sentence be spoken for adaptation [22, 23, 35, 84]. These systems typically

use codebook mapping techniques to map a training speaker's feature space into the testing

speaker's feature space or the testing speaker's feature space into the training speaker's



feature space. The training speaker is the speaker whose speech patterns are used to train

the speech recognition system, while the testing speaker is a novel speaker whose speech

has not been used in training. The system adapts model parameters based on the labelled

speech samples from the testing speaker.

Unsupervised speaker adaptation does not require the speaker to speak any fixed words

or sentences. Instead, the speaker's speech is monitored in real-time and used to adapt a

recognition model. Since in supervised speaker adaptation, the data used in adaptation

contain known words or phonemes, the reliability of the adaptation data is higher. For

unsupervised speaker adaptation, the input speech data is not labelled, so less confidence

can be placed on the adaptation data.

The difference in the confidence placed in the adaptation speech data also influences the

degree of adaptation of the models. For example, supervised speaker adaptation systems

frequently adapt codebook values or Gaussian mixture densities which contain upward of

hundreds of parameters [22, 23, 29, 69]. On the other hand, unsupervised speaker adaptation

frequently is performed on simple parameters such as one that controls the degree of spectral

shift applied to input spectra [55].

Approaches that deal with speaker variability such as supervised adaptation and un-

supervised adaptation described above require computation during the recognition process

to adjust the system parameters. Also, the amount of improvement in performance is con-

strained by the limited confidence in the adjustment of the parameters. A new approach

similar in spirit to the approach of obtaining more training data but that requires no col-

lection of new training data is introduced in this thesis. Voice transformations have been

performed to the training data to generate more variability in the training data and to im-

prove the generalization ability of the wordspotting system after Figure of Merit training.

A graphical description of the benefit of voice transformation is shown in Figure 1-7.

In this chart, the squares and the circles represent data points from two different classes.

The two axes are two input features that contain information which separate the hits from

the false alarms. As described in the previous section, the more data points available, the

more accurate the estimated boundary between the two classes will be. Figure of Merit

Training maximizes the evaluation criterion using the information gained from the limited

data points. However, if the available data points are not completely representative of all

possible data points, then the boundary generated through Figure of Merit training may
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Figure 1-7: Generating more training data through using voice transformation.

overfit the training data points and be incorrect for unseen data points. By using a priori

knowledge about the differences between data points in the same class, artificial data points

(illustrated as hollow circles and squares) can be generated and used to lessen the danger

of overfitting the training data. As seen in the figure, the boundary obtained from the

expanded training set separates the HIT class from the FA class more reliably when unseen

data points are taken into account.

1.5.1 Proposed Approach

People's speech differ in many different dimensions, such as formant frequency, fundamental

frequency, glottal source characteristics, speaking rate, accent, and semantics. In this study,

the focus is on performing voice transformation in the domain of formant frequencies. It

is well known that formant frequencies are important cues to the identity of vowels in

the English language [59]. Also, it is easier to characterize a person's formant frequencies

than other characteristics such as accent and semantics. Finally, the amount of variability



in formant frequencies in speech databases is better documented and thus more detailed

studies are possible. Most current databases do not contain enough examples of accent

regions or semantic styles to allow a complete study.

Wakita has shown previously that if a person's vocal tract is modelled as a series of

lossless, acoustic tubes and if, for a given vowel, people's vocal tract shapes are similar

except for the length of the vocal tract, then the formant frequencies identifying the vowel

should vary linearly across different speakers [77]. Furthermore, the formant frequencies are

inversely proportional to the vocal tract length. A method of changing a person's frequency

scale is developed in this thesis. This method allows the spectral frequency scale of a speech

recording to be expanded or contracted. The resulting speech recording can be listened to

and evaluated on its naturalness.

Once a method of changing one voice to sound like a different voice is developed, it is used

to generate more training speech artificially, thereby enlarging the training set and providing

better coverage of the possible speakers who may use the wordspotter. Experiments have

been conducted in training wordspotters with this enlarged training set to determine the

efficacy of the voice transformation approach and results are presented in Chapter 6.

1.6 Thesis Overview

The rest of this thesis is outlined below: Chapter 2 presents the task, the database, and

the evaluation metric used in this study. Chapter 3 describes the two fundamental tech-

nologies upon which the wordspotter is based: Hidden Markov Models (HMM) and neural

network training techniques. By combining the strength of these two techniques, a high

performance wordspotter was implemented. Chapter 4 describes the different stages of the

wordspotter including pre-processing, wordspotter score calculation, gender detection, and

post-processing. In chapter 5 the theory and the experimental results of applying Figure of

Merit Training are presented. Chapter 6 illustrates the process of transforming a speaker's

voice into different voices to increase the amount of variability in the data. To compare the

effectiveness of the wordspotter to human performance, two human subjects participated in

wordspotting experiments and the results are shown in Chapter 7. Chapter 8 summarizes

the experimental results presented in the thesis, contrasts them to that of other approaches,

and presents the main results and the conclusion of the thesis.



Chapter 2

Experimental Methodology

Wordspotting is a type of speech recognition problem that is very different from the more

traditional transcription task. In this chapter, the experimental methodology used in this

thesis is described. Section 2.1 defines the task of wordspotting. Section 2.2 explains the

method used to evaluate a wordspotting system. Section 2.3 describes the database chosen

for study in this thesis. The split of the database into training and testing sets is listed

in Section 2.4. Section 2.5 introduces a separate database that was used by many sites to

evaluate wordspotting performance.

2.1 Task

The task that the wordspotter is designed to perform in this thesis is detecting the oc-

currence of a pre-defined list of keywords in unconstrained, continuous speech. The basic

process is described in Figure 2-1. The wordspotter system accepts continuous speech and

generates hypotheses of where keywords occurred. The speech database consists of uncon-

strained, spontaneous conversations recorded on the telephone. The goal of the wordspotter

is to spot the occurrence of a predefined set of keywords. For each conversation, the spotter

generates a list of putative hits. Each putative hit is identified by the keyword, the starting

time, the duration, and the confidence of the keyword's occurrence.



CONTINUOUS WORD PUTATIVE
SPEECH 10 SPOTTER HITS

WORD START DURATION SCORE
CARD 16.83 0.32 15.69
CREDIT 25.48 0.42 12.11

Figure 2-1: The basic function of a wordspotter is to accept continuous speech input and
generate hypotheses, i.e. putative hits, of where keywords occur.

2.2 Evaluation Methods

Putative hits are compared to marking files provided by the National Institute of Standards

and Technology (NIST) which record the actual keyword occurrences in the conversations.

Certain keywords in the conversations are marked as bad examples when they were mis-

pronounced or when the transcriber was not sure of what the speaker said [54]. When the

wordspotter spots a bad example, the putative hit is not counted as a false alarm. However,

the bad examples are not counted in measuring the detection rate of the wordspotter. Also,

a. keyword that appears as a part of another keyphrase, such as the word card in the phrase

credit-card, is not counted as an error if spotted nor is it counted as a miss if it is not

detected.

NIST has defined a scoring methodology to be used for evaluating wordspotters. The

wordspotter processes files of recorded speech and generates hypotheses of word occurrences,

called putative hits. Each putative hit consists of the following information:

* identity of the word,

* identity of the conversation,

* beginning time of the word,

* duration of the word,

* confidence in the occurrence of the word.



During scoring, each putative hit is compared to the marking file of the identified con-

versation. A putative hit is considered a true hit if the midpoint between the beginning

and the end of its occurrence falls within the beginning and the end of the same word in

the marking file. If the word identified by the putative hit did not occur, then the putative

hit is considered a false alarm. Words that did occur in the conversation but that are not

detected by the wordspotter are called misses.

To calculate a number that can concisely summarize the performance of a wordspotter,

NIST has defined a measurement called Figure of Merit. The Figure of Merit is the average

detection rate of the wordspotter over the range of zero to ten false alarms per keyword

per hour. A program called rocplot has been implemented by the author as a part of this

thesis. This program accepts as input a file of putative hits, compares each putative hit

to the corresponding marking file, and generates the Figure of Merit for each individual

conversation, for each keyword, and over all the conversations. The program also plots the

detection rate over the false alarm rate of the wordspotter. Such curves are usually called

Receiver Operating Characteristic (ROC) curves and examples of them can be found in this

thesis (Figure 1-6 and Figure 8-2).

2.3 Database

The main data to be used for this research is the Switchboard Credit Card database col-

lected by Texas Instruments and provided by NIST [26]. The Switchboard database consists

of recordings of prompted telephone conversations about specific topics. The conversations

are digitally recorded onto a personal computer through a direct T1 digital line to the long

distance trunk line, thus by-passing the analog distortions from local exchange offices. The

two sides of the conversations are recorded synchronously as two different files, but due to

the hybrid four wire to two wire converters that exist in the telephone network, a recording

of one side of a conversation will also contain information from the other side of the conver-

sation; this effect is called crosstalk. The recordings dealing with the topic of credit cards

have been chosen as the database to be used for wordspotting research. A total of 35 con-

versations are provided. The conversations were recorded telephone conversations and thus

telephone characteristics such as distortion, limited bandwidth, crosstalk, and line noise

are present. This database was chosen by Defense Advanced Research Projects Agency for



evaluating wordspotting algorithms. Many sites have also used this same database to per-

form wordspotting research. Thus, this database was chosen for the research conducted in

this thesis so that comparisons can be made with results from other sites. This database is

relatively difficult due to the fact that it is spontaneous speech, it is recorded over the tele-

phone, and it does not have a constrained vocabulary. More discussions on the differences

between this database and other databases are provided in 7.4.1.

The twenty keywords chosen for this database are listed in Table 2.1. The number of

times each keyword appears in the 35 conversations are also listed. The counts for the word

card and the word credit include the occurrence of these words when they are part of the

phrase credit card.

Table 2.1: List of 20 Keywords in the Credit Card Database

Keyword Number of Instances
account 37

american express 49
balance 42

bank 56
card 633
cash 102
charge 135
check 114
credit 465

credit card 365
discover 29
dollar 99

hundred 41
interest 104

limit 34
money 112
month 122
percent 54
twenty 17

visa 76



2.4 Division of the Database

The database chosen for this thesis is the Switchboard Credit Card database available from

NIST. The database is consisted of duplex telephone conversations recorded with different

circuits and headsets. The recorded human subjects talked spontaneously about a pre-

specified topic, in this case, credit cards. The official training set consists of 35 duplex

conversations, resulting in 70 single-side recordings. The majority of this thesis uses a

split in which the 70 conversations are divided into a training set and a testing set. The

training set database is used to train the parameters of the wordspotting system, while the

testing set is used to evaluate the performance of the wordspotting system on unseen data.

'Table 2.2 lists the training set recordings while Table 2.3 lists the evaluation set recordings.

'This division is the same one used by the group at Bolt Beranek and Newman (BBN) and

allows for comparison of results [67].

The selected division includes 24 speakers of each gender in the training set and 11

speakers in the testing set. During the early part of the research, a high-performance

gender detection classifier was developed that can reliably separate the genders. Thus

separate gender-specific wordspotting systems are trained and the appropriate wordspotting

system is chosen based on the output of the gender classifier. More details about the gender

detection system are presented in Section 4.8.

The number of times each keyword occurs in the training and testing conversations are

shown in Table 2.4. One can see that there is a wide range of frequency, ranging from 435

occurrences for the word card to 15 occurrences for the word twenty. When the number

of occurrences for each keyword in each gender is counted separately, the number roughly

halves. The scarcity of training data can also be measured in terms of the number of

speakers that uttered each keyword. The number of speakers for each keyword is listed in

Table 2.5. For certain words such as discover for males and account for females, less than

five speakers out of 24 spoke those keywords. Such a small number of keywords is a problem

in training the wordspotter because the keyword models trained from so few speakers are

not general enough to spot the same keywords from other speakers. Such problems can be

alleviated by performing voice transformation, to be described in Chapter 6.



Table 2.2: List of Male and Female Conversations in the Credit Card Database Used for

ITraining

Male Female
sw1026_a sw2023.a
sw1037_a sw2023.b
sw1037_b sw2067.a
sw1044-a sw2067_b
sw1044_b sw2301La
swl060_a sw2390.a
sw1060_b sw2390.b
sw1083_a sw2409.a
sw1083_b sw2682.b
sw1088_a sw2718-b
swl088_b sw2800-b
sw2301b sw2917-a
sw2313_a sw2917-b
sw2313.b sw2951_a
sw2399_a sw2951_b
sw2399.b sw2999-a
sw2409.b sw2999-b
sw2536-b sw3332.a
sw2718_a sw3409.b
sw2764-b sw3439-b
sw2987-a sw3781_a
sw3751Lb sw3781_b
sw3821_a sw3855-a
sw3821_b sw3855-b

2.5 The NIST Official Testing Set

During September of 1992, NIST held an official benchmark for the credit card task. 10

new conversations were provided on a separate CD-ROM to be used as the official testing

set. Throughout the research presented in this thesis, the official testing set was not used

to evaluate wordspotter performance or speaker variance. However, at the conclusion of

research, the official testing set was used in a spotting test to compare the performance of

the wordspotter to the wordspotter from other sites such as BBN and SRI International.

The results on the official testing set are presented in Section 8.1. The complete set of

conversations from the database described above was used for training the wordspotter.

The number of speakers and the number of keyword occurrences for each gender in the



Table 2.3: List of Male and Female Conversations in the
Evaluation

Male Female

sw1026.b sw2163-a
sw1038.a sw2163_b
sw1038.b sw2681_a
swl081la sw2710-a
swl081_b sw2710-b
sw2536_a sw2883-a
sw2764_a sw2883-b
sw2800_a sw2987-b
sw3332_b sw3170-a
sw3409.a sw3170-b
sw3409.b sw3751_a

Credit Card Database Used for

training set database are listed in Table 2.6. The total sum for the training set is different

from the total sum in Table 2.4 because in Table 2.6 the occurrences of the words card and

credit that are a part of the phrase credit-card are not counted.

2.6 Chapter Summary

In this chapter the task that was studied in this thesis was presented. Also, the methodology

used in scoring the performance of the wordspotter on the task was defined. Finally, the

data chosen for this study was described. The database split presented was used in all

subsequent experiments.



'Table 2.4: The Number of Keyword Occurrences in the Male and Female Training and
'Testing Splits of the Credit Card Database (card and credit that occurred in credit card are
counted as well)

Train Test
Keyword Male Female Both Male Female Both
account 17 8 25 8 4 12

american express 19 18 37 8 4 12
balance 17 10 27 8 7 15

bank 19 12 31 19 6 25
card 219 216 435 124 74 198
cash 41 31 72 15 15 30
charge 42 56 98 20 17 37
check 44 35 79 27 8 35
credit 146 170 316 88 61 149

credit card 106 144 250 75 40 115
discover 9 10 19 2 8 10
dollar 42 32 74 14 11 25

hundred 17 7 24 14 3 17
interest 39 33 72 12 20 32

limit 8 14 22 4 8 12
money 44 42 86 12 14 26
month 38 45 83 22 17 39
percent 17 16 33 10 11 21
twenty 9 6 15 10 6 16

visa 26 24 50 17 9 26
ir - __ , -

II Overall 1 9191 929 1 18481 509 I 343 1 852



Table 2.5: The Number of Speakers Represented for Each Keyword in the Male and Female
Training Splits of the Credit Card Database

account 7 3
american express 8 8

balance 6 6
bank 14 6
card 24 24
cash 15 17

charge 16 16
check 16 15
credit 24 23

credit card 24 23
discover 4 7
dollar 15 12

hundred 9 5
interest 16 15

limit 5 8
money 17 19
month 16 15
percent 10 8
twenty 8 5

visa 11 13

Table 2.6: The Amount of Speech Available in the Credit Card Database for the Official
Test (All 35 duplex conversations first provided by NIST are used for training, 10 new
duplex conversations in the official testing set are used for testing.)

OFFICIAL TRAIN OFFICIAL TEST
Male Female Both Male Female Both

Number of Speakers 35 35 70 13 7 20
Duration (Hours) 4.1 3.9 7.9 1.1 0.6 1.7

Keyword Occurrences 1066 896 1962 340 154 494

Keyword IMale I Female II
Bm I N II



Chapter 3

Background

3.1 Introduction

In this thesis, a hybrid wordspotter composed of neural networks and hidden Markov models

(HMM's) is developed. This chapter presents an introduction to both Hidden Markov

Models and neural networks. Extensive references can be found on both topics. Readers

interested in applications of these two techniques for speech recognition can find good

introductions in the work by Morgan and Scofield and a recent book by Bourlard and

Morgan [5, 49].

3.2 Hidden Markov Models

3.2.1 Introduction

Hidden Markov Models (HMM) have been used extensively in speech recognition to model

the variabilities of the speech [2, 58, 62]. A good introduction to hidden Markov Models

can be found in an article by Rabiner and Juang [62].

A Hidden Markov Model is a special type of Markov model. A Markov model is a set

of states in which the probability of transition between different states depends solely on

the identity of the current state [16]. A Markov model can be used to model a sequence of

events.

In a HMM, each Markov state has an associated output probability distribution. Upon

entering a Markov state, an output is generated according to the output distribution. The

transition between Markov states is governed by the transition probability between states.



A common explanation is to think of each Markov state as a jar with different colored balls

in the jar. Associated with each jar is a dice which determines which jar to use next. Upon

drawing a ball from a jar, the next jar to withdraw the ball from is chosen by throwing

the dice associated with the jar. The output probability distribution of the Markov state

represents the probability of drawing a ball of certain color from the jar. The transition

probability of each Markov state represents the probability of choosing the next jar by

throwing the dice.

By starting from an initial jar, the methodology described above can be used to generate

a sequence of colored balls, or observation vectors O. The sequence of jars that were used

to generate the sequence of colored balls O is not obvious, hence the name Hidden Markov

Model. In the speech domain, each colored ball can be thought of as a different phone, and

the sequence of colored ball can be thought of as a sequence of phones. The sequence of

states that are used to generate the observation vectors O is denoted as Q, Q = q,..., qT,

where qt denotes that the HMM system was in state q at time t.

A word can thus be modelled by a HMM model. Each word is modelled as a sequence

of outputs from a, collection of Markov states, with the transition from one Markov state to

another governed by the transition probability between the Markov states. Such transitions

are necessary because each word has variable duration. For example, the speaking rate of

different speakers can vary by as much as 50%. Also, different individuals have different

sounding phones. The Hidden Markov Models model each segment of the speech pattern.

Also, the transition between segments of speech can be modelled as the transition between

different states of the HMM.

A simple HMM modelling the word card is shown in Figure 3-1. In this simple example,

each phone is modelled by a single Markov state. The parameters that define a HMM

system are: aij, bi, and 7ri, where i and j are state indices. The transition probability

between states is called aij by convention. Each aij is between zero and one and represents

the probability of a transition from state i to state j given that current state is i. The

sum of transition probabilities emanating from each state i, Ej aij, equals unity. Each

state has an output probability distribution which describes the probability of a particular

state generating a particular observation vector. The output distribution for each state is

conventionally represented by bi. Different states have different initial probabilities which

are called ri. Most HMM's used in speech recognition are modelled as a connected sequence
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Figure 3-1: A Hidden Markov Model which models a consecutive sequence of phonemes in
the word card.

of HMM states, thus the initial probabilities are typically one for the first state and zero

for all other states.

Continuous HMMs, which use a mixture of Gaussian functions to model the output

distributions of HMM states, are used in this thesis. The output probability distribution of

each state is modelled using a set of Gaussian functions. Mathematically, the likelihood of

generating an observation vector o from state i is:

nmix

P(ols1) = bi(o) = _ wn . N(o; ci,n, ai,n), (3.1)
n=1

where nmix is the number of Gaussian mixtures in the output distribution, w, is the weight

of each Gaussian mixture function, and N(o; ci,n, 1 i,,) is the Gaussian function evaluated at

a, point o with the mean of ci,n and the standard deviation of aio. This structure is identical

to a type of neural network classifier called Radial Basis Function classifiers (RBF's) [50].

This similarity enables the training of the Gaussian mixture centers with a novel neural

network training technique, called Figure of Merit Training, to be described in Chapter 5.

In this thesis, the observation vectors are generated every 10 milliseconds and consist of

mel-scaled cepstra vectors (to be described in Chapter 4.) Given a set of labelled observation

vectors O, O = oi,..., or, and a HMM model with parameters A, with A =- A, B, r, there

are three problems that need to be solved for the HMM model to be used in a speech

recognition system:

:)4



Evaluation How does one calculate the value P(OIA)?

Matching How does one find a sequence of states Q so that P(Q, OIA) is maximized?

Training How does one find a set of parameters A so that P(OIA) is maximized?

3.2.2 Evaluation

Assume that for a set of words W to be recognized, each word w has been modelled by

a HMM model with parameters AX. Then given a set of observations O, a simple speech

recognizer would compare the likelihood of the observation O having been generated by

each word's HMM model. The model which has the highest likelihood, i.e. P(OIA,), would

be the most likely word spoken assuming that all words have equal prior probability. This

result is derived from the Bayes rule:

P(OIAw)P(w) (3.2)
P(,jO) = (3.2)P(O)

Since P(O) is the same for all word hypotheses, with equal P(w),

maxP(A, O) = maxP(OIAw). (3.3)

The algorithm used for evaluating the function P(OAw,) is called the forward-backward

algorithm [62].

3.2.3 Matching

As mentioned before, a simple isolated-word recognizer can be constructed by comparing

the likelihood of each model generating the observations, denoted as P(01A,). But for

continuous speech recognition, particular sequences of word occurrences are desired. In this

case the Viterbi algorithm [62] can be used to find a sequence of states through an HMM

model which is most likely to have generated the observations, i.e. P(Q, OIAw). Figure 3-2

describes matching the states of an HMM model to a sequence of frames. The allowable

transition from one state to the next state is constrained by the transition probabilities

between states. For example, state 1 can either transit back to itself or to state 2. The

likelihood of each state's output distribution generating a particular input frame is summed

along a sequence of possible transitions between states. The possible sequences that match
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Figure 3-2: The Viterbi algorithm matches HMM states to input frames using a dynamic
programming approach.



the input frames to the states in the HMM model are searched using dynamic programming

technique so that the most likely path is found. This technique is used in Chapter 5 to map

input frames to states in a keyword HMM model.

3.2.4 Training

The goal of training is to adjust the HMM model parameters A so that the likelihood P(OI|A)

is maximized. For the isolated word case, the examples of each keyword are collected as a set

of observations. 'The Baum-Welch reestimation algorithm would then be used to iteratively

adjust the model parameters [62]. The algorithm conceptually works by first calculating the

probability of each observation at time t having been generated by a particular state in the

HMM, then the parameters of each state are adjusted by taking the weighted average of the

observations assigned to each state. The algorithm is guaranteed to improve the likelihood

.P(OIA) on a given set of data and is typically run until the change in P(OIA) is very small.

3.3 Neural Networks

Neural networks have been used extensively in the speech recognition domain with appli-

cations ranging from phonetic recognition [76] to large vocabulary recognition [64]. A good

overview of using neural networks in pattern classification can be found in [41]. The ap-

.plication of neural networks to speech recognition has also been extensively studied. An

overview can be found in [42].

3.3.1 A Radial Basis Function Classifier

One type of neural network classifier that is related to the wordspotter used in this thesis is

called the Radial Basis Function (RBF) classifier. The RBF classifier utilizes localized basis

functions for constructing the boundary between different classes in the input space [41].

In Figure 3-3, a basic radial basis function classifier is shown. The output of the classifier

is defined by the following equation:

ncenter

output(x) wi -N(x; mi, Ei), (3.4)
i=1
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Figure 3-3: A basic radial basis function classifier.

where x is the input pattern, ncenter is the number of RBF centers, wi is the weight linking

each RBF center to the output node, and N(x; mi, Ei) is the Gaussian function with the

mean mi and the covariance matrix Ei that is used in the radial basis function. Assuming

that the input x is a vector of dimension N and that the Gaussian functions have diagonal

covariance, then Equation 3.5 defines the Gaussian function:

N(x; mi, Ei) = - 1 e(xrm r 2N-(m) (3.5)
(27r)N I E, I

The most common training algorithm of RBF classifiers is a combination of supervised

and unsupervised training. The mean mi and the covariance matrix Ei are estimated

by clustering the training data without supervision. Then the weights wi are trained to

minimize the squared difference between the desired output and the classifier output. A

complete algorithm description can be found in [50]. By training the means mi and the

covariance matrix Ei in an unsupervised manner, the weights can be estimated directly using

linear algebra techniques very efficiently [50]. However, another method for training the

parameters is to incrementally train them. Since the incremental algorithm for training the

means is related to the approach used in this thesis to train the wordspotter, it is described

here. Assume that the output of the classifier has a target value tp on an input pattern

xnp, where n = 1,..., N, N being the dimension of the input pattern, p = 1,..., npattern,



npattern being the total number of patterns. Let the error be defined as the sum of squared

differences between the output and the target signal over all patterns xp:

1 npattern
E = -2 (tP - outp)2, (3.6)

p= 1

where p is the pattern number. The error function E can be minimized by adjusting the

af aEparameters mi,n once the gradient .9 is derived. The expression - can be expressed

as:

9E npattern E outp (3.7)

8mi,n P= Bout, ami,n

To minimize E, the parameters will be modified in the direction of the negative gradient

of E, i.e., - . The terms of Equation 3.7 are extended below for a given pattern xp:

BE O outp - tp, (3.8)Bout,
the term a is calculated by taking the derivative of the Gaussian function in Equa-

tion 3.5:

min - wi " N(xp, mi, ) n, mi,n) (3.9)
mi,i,n

To reduce the error E, the mi,n are adjusted along the negative gradient. So for each

input pattern xp, the Gaussian centers are changed according to Equation 3.10.

OE
mi,n,t+l = mi,n,t - 7 n (3.10)

= mi,n,t - r7 (outp - tp) - (3.11)mi,(3.11)

= mi,n,t - r (outp - tp) wi . N(xp, mi, E)- (xn,p - mi,n) (3.12)
oi,n

The constant r7 is the learning rate used during training. With a large 77, larger changes

are made to the model parameters at each training pattern while a smaller rq allows smaller

changes to be made to the model parameters at each training pattern. When the learning



rate r7 is set too high, the model parameters may diverge from the direction toward the lowest

error. Thus r is usually set to a constant that is not large enough to cause divergence but

still large enough to allow significant training. Typically a reasonable 7 is chosen through

a series of preliminary experiments.

The radial basis function equations described in this section are the ones used to train

the radial basis function classifier in Figure 1-5. Since the goal is to minimize the classifica-

tion error rate, the Gaussian centers were moved to adjust the boundary between the two

classes until classification error rate was minimized. In comparison, the Gaussian centers

of a Gaussian classifier are estimated from the training set patterns of each class with no

emphasis placed on classification error rates.

In Chapter 5, a related set of equations are derived which adjusts the parameters of the

wordspotter to maximize the Figure of Merit.

3.4 Chapter Summary

In this chapter, Hidden Markov Models and Radial Basis Function classifiers were intro-

duced. The HMM representation has been successfully applied to many speech recognition

tasks and is chosen for its flexibility in modelling the temporal variation of the speech signal.

The Radial Basis Function classifier is a type of neural network classifier that can be trained

using a discriminative training technique. The benefit of the discriminative training tech-

nique is that in the case of limited knowledge about the distribution of the training data,

the neural network classifiers can perform better than other classifiers that are based on

maximum likelihood estimation. The strengths of these two methodologies are combined

in implementing the wordspotter. The HMM is used to model the different duration of

keyword occurrences, and the neural network training approach is utilized to improve the

discrimination between true hits and false alarms.



Chapter 4

Baseline Wordspotter

4.1 Introduction

:Before the novel techniques of Figure of Merit training and voice transformation were ex-

plored, a high performance baseline wordspotter was developed. This chapter describes the

basic building blocks of the wordspotter. Section 4.2 describes the stages of transforming

the input waveform into feature vector frames. In Section 4.3, the basic structure of the

wordspotting system is described. Section 4.4 discusses the training algorithms used to train

the baseline wordspotter. Section 4.5 introduces two different methods studied to generate

putative hits from the wordspotter. Section 4.6 presents a change to the wordspotter struc-

ture to ensure that all states contribute to the spotting task. Section 4.7 illustrates the

steps that are performed to the output of the wordspotter to remove unwanted artifacts.

Section 4.8 describes the design and implementation of a gender detection system.

4.2 Preprocessing

The analog speech waveforms used in this thesis had been digitized at 8000 samples per

second and stored on a CD-ROM provided by NIST. There are many different methods

of extracting speech features from the waveform, such as calculating the spectrum, the

cepstrum, and using physiologically motivated preprocessing stages [33, 46, 63, 71]. Rabiner

and Schafer present a thorough explanation of the calculation of the spectrum and the

cepstrum [63]. The processing stages used and described below have provided state of the

art performance on many domains [58, 66]. At the end of the preprocessing stage, the



original digitized speech waveform is transformed into mel-scaled cepstra frames (described

in Section 4.2) that are used as the input to the wordspotter. The mel-scaled cepstra

representation [12] has been successfully applied in Lincoln Laboratory projects in speaker

identification [65] and continuous speech recognition [58]. A block diagram of the processing

steps taken is shown in Figure 4-1.

Mel-Scaled Filter Bank

Most current speech recognizers use input features which describe the spectral envelope of

the input waveform. Many possible input features have been explored, such as linear pre-

dictor coefficients, spectral magnitudes, cepstral values, physiologically motivated features,

etc. In this study, mel-scaled cepstral coefficients were chosen as the input feature because

experiments have shown that they perform well in other speech tasks [33, 46]. The first

steps in the calculation of the mel-scale cepstral coefficients are as follows:

* Window the incoming speech with a Hamming window that is 20 milliseconds long

and separated at 10 millisecond intervals [56].

* Compute squared spectral magnitudes of the signal for each 20 msec interval through

a Fast Fourier Transform (FFT) operation.

* Multiply the squared spectral magnitudes with a pre-emphasis filter which emphasizes

the spectral magnitudes at high frequencies. The filter constants are:

f2
preemp(f) = 1+ 250,000 (4.1)

where f is the frequency, and preemp(f) is the constant that is multiplied to the

squared spectral magnitude at frequency f.

* Sum the squared spectral magnitudes into 24 triangular filter bank values. The tri-

angular filters are spaced linearly from 0 to 1000 Hz with the bank center frequencies

spaced 100 Hz apart at frequencies of 100 Hz, ... , 1,000 Hz. Filter banks above 1,000

Hz are spaced logarithmically apart, with the center frequencies increasing at a rate of

1.1 times the previous center frequency value. The center frequencies for filter banks

11 to 24 are 1,100 Hz, 1,210 Hz, 1,331 Hz, 1,464 Hz, 1,611 Hz, 1,772 Hz, 1,949 Hz,

2,144 Hz, 2,358 Hz, 2,594 Hz, 2,853 Hz, 3,138 Hz, 3,452 Hz, and 3,798 Hz respectively.
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Figure 4-1: A block diagram of the preprocessing stages which transformed digitized speech
into mel-scale cepstra frames that are used as input to the wordspotter.



The beginning and the end of the range of each filter bank n are the center frequencies

for the filter bank n - 1 and the filter bank n + 1 respectively. The overall sum for

each filter bank is normalized to reflect the different bandwidths of the filter banks

and represents the energy in each filter bank. Finally the log of the filter bank energies

are taken and the 24 mel-scaled log filter bank energies form a mel-scaled filter bank

frame, denoted as mfb(t).

Crosstalk Detection

A program called xtalk, developed by Doug Reynolds, was used to mark the mfb frames as

active or silent [65]. The program can either be run using one-channel mode or two-channel

mode. In the one-channel mode, the program determines if a mfb frame is active or silent

by comparing the total energy in the frame, denoted as s[n], to an adapted lower energy

contour c[n]. The adapted lower bound c[n] is calculated by taking the maximum of c[n - 1]

and s[n] at each frame and adding a small E to c[n]. Whenever s[n] is greater than c[n] by

a threshold, the mfb frame n is marked active. The normalized energy t[n] is calculated

for each frame by subtracting a high energy contour f[n] from the frame energy s[n]. The

high energy contour f[n] is calculated by taking a minimum of f[n - 1] and si[n] at each

frame and subtracting a small E at each frame. The normalized energy t[n] allows accurate

comparison of the speech amplitude. After all the frames have been labelled, a finite state

program is used to merge locally labelled frames into silent and active regions.

When the program is operating in the two-channel mode, the normalized energies t[in]

for the two channels are compared and the channel with the higher t[n] is marked as active

while the other channel is marked as inactive.

Short Term Channel Normalization

The RASTA algorithm was introduced by Hermansky et al. to remove the influence of the

frequency response of the communication channel [27]. Recorded telephone speech can be

affected by many types of distortions in the communication channel. For example, different

telephone handset; microphones have different frequency response characteristics. Also, the

transmission path from the speaker's handset to the central switch can also be affected by

distortions.



The RASTA algorithm filters the mel-scaled log filter bank energies with a digital filter

described by the following system equation:

2 + z - 1 - z - 3 - 2z - 4

H(z) = 0.1 .98z 1) (4.2)z-4(1 _ 0.98z-1)
Each log filter bank energy is independently filtered with digital filters defined by Equa-

tion 4.2. The filter shown above is a high-pass filter, thus rapidly changing signals are

passed through while slowly varying signals are filtered out. Since speech signals change

relatively quickly in comparison to channel characteristics, the channel characteristics are

filtered out while the speech signal is still retained. The RASTA program implemented at

Lincoln Laboratory by Marc Zissman was used in this thesis.

Spectrum Normalization

While the RASTA algorithm performs short-term filtering of the filter bank values, a spec-

tral mean subtraction method can be used to compensate for long term frequency response

of the channel. Spectrum normalization has been successfully applied for compensating long

term spectral distortions [48]. The long term average of filter bank energies for each con-

versation is first calculated, then the average values are subtracted from the corresponding

channel. Three different methods of running the spectrum normalization program devel-

oped by Doug Reynolds at Lincoln Laboratory, called rembias, were explored. In the first

method, all incoming mfb frames are used for computing the long term average and the

average values are subtracted from all incoming mfb frames. In the second method, the

mfb files have been processed with xtalk in the one-channel mode. The long term average

is calculated only from mfb frames that were marked as active and the long term averages

were subtracted only from the mfb frames marked as active. The third method is similar

to the second method except that the active labels were derived by running xtalk in the

two-channel mode.

Conversion to Cepstral Coefficients

After RASTA filtering and spectrum normalization are performed, the resulting mel-scaled

log filter bank energies are transformed to cepstral coefficients through a discrete cosine

transform. Let mfb(n), n = 1... 24, be the 24 mel-scaled filter bank values, then 24



cepstral coefficients are calculated with the following cosine transform:

1 24
mcc(i) = mfb(n). cos(i(n - (4.3)

n=1

Using only low order cepstra coefficients has been shown empirically to provide good

performance on speech recognition tasks [33, 46]. The cepstra values with high indices, i.e.,

high quefrency [56], contain pitch information [63] and thus are not used to avoid the large

variability that exists in speech pitch contours. In this work, high quefrency mel-scaled

cepstral coefficients, mcc(n), n > 12, are not used. Also, since different people speak at

different volumes, mcc(O), which measures the overall energy of each frame, is not used to

avoid the possibility of recognizing speech based on overall amplitude.

Temporal changes in spectral patterns across time are another important cue to the

:identity of phonemes being spoken and have been previously applied as a part of the frontend

in continuous speech recognition [37]. In this work, delta mel-scaled cepstral values are used

as another set of input features. The delta mel-scaled cepstra values are calculated by taking

a first difference of the mel-scaled cepstra values between adjacent frames. Since the relative

loudness of each phoneme can provide clues to the identity of the cues, the delta mel-scaled

cepstra values are calculated from mcc(O) to mcc(12), resulting in a delta mel-scaled cepstra

vector of length 13.

4.2.1 Experimental Results

A series of experiments was performed to evaluate the effectiveness of the pre-processing

algorithms. The sequence of operations is as follows:

1. Mel-scaled spectrum calculation,

2. Crosstalk detection with xtalk,

3. Short-term channel normalization with rasta,

4. Long term mean removal with rembias.

As mentioned previously, the xtalk algorithm can be used in the one-channel mode as

a speech activity detector or in the two-channel mode as a crosstalk detector. Both modes

were evaluated in the experiments. Table 4.1 tabulates the experimental results. The FOM



score reported was generated with a preliminary wordspotting system described in [40].

The combination of using xtalk in one-channel mode, rasta, and the rembias provided the

highest FOM over all combinations.

Table 4.1: Comparison of Spotting Results Using Different Preprocessing Steps (xtalkl
denotes running xtalk in the one-channel mode, xtalk2 denotes running xtalk in the two-
channel mode.)

Preprocessing Steps FOM
no preprocessing 22.4%

rastarembias 23.9%
xtalkl-rembias 22.2%
xtalkl-rasta 22.9%

xtalkLrasta.rembias 24.5%
xtalk2.rembias 22.9%

xtalk2_rasta 19.1%
xtalk2..rasta.rembias 22.3%

Another set of isolated word recognition experiments was performed to assess the benefit

of using preprocessing steps. Simple hidden Markov models were trained to model the

20 keywords in the database. The silence segments and filler speech segments were also

separately modelled with individual HMM models. The number of states for each keyword

was varied between a fixed number of ten states to a variable number proportional to the

number of phonemes in each keyword. For the case when the keywords were modelled

with variable numbers of states, filler speech and silence were modelled with one state

models with sixteen Gaussian mixtures per state. The word recognition rates are shown

in Table 4.2. The importance of performing normalization is clearly demonstrated by the

experimental results, as the trials with preprocessing in all three HMM configurations all

outperformed the similar experiments without the preprocessing on the testing set. For the

ex:periments in the remainder of this thesis, the combination of xtalk in one-channel mode,

rasta, and rembias was used.

4.3 A Hybrid Architecture

The baseline wordspotter includes 20 left-to-right HMM word models, a single-state HMM

for filler speech, and a single-state HMM for silence. The number of states in HMM keyword



Table 4.2: Comparison of Isolated Word Recognition Rates Using No Normalization vs.
Using Selected Parameters (Under # of States, variable/1 means that a variable number of
states were used for the keyword models and one state was used for the filler and silence
models. Under # of Mixtures, 1/16 means that one mixture was used for the keyword
models and 16 mixtures were used for the filler and silence models.)

Preprocessing # of States # of Mixtures Training Testing
no preprocessing 10 1 82.80% 76.89%
no preprocessing 10 3 91.42% 82.89%
no preprocessing variable/1 1/16 86.37% 81.63%

xtalkLrasta.rembias 10 1 87.09% 84.47%
xtalkLrasta-rembias 10 3 93.31% 85.51%
xtalklrasta.rembias variable/1 1/16 89.20% 86.36%

models is roughly 1.5 times the number of phonemes in the keywords. The resulting number

of states is small enough so that most short examples of keywords can be used for training.

States in keyword models use unimodal Gaussian distributions unless there are sufficient

training examples to allow Gaussian mixture distributions. The single states in the filler

and silence models have Gaussian mixture distributions with 32 mixture components.

All HMM models are initially trained using short segments of credit-card conversations

containing keywords, silence, or non-keyword speech extracted from the original credit-card

conversations using the NIST text files and time markings. The HMM models were trained

and tested using programs in the HTK toolkit [80]. The Figure of Merit training algorithm,

to be described in Chapter 5, was then implemented by the author as an added functionality

to the HTK toolkit.

4.4 Training of the baseline wordspotter

There are three stages to the training of the baseline wordspotter system. The stages are:

1. Initialization,

2. Word Level Estimation,

3. Sentence Level Estimation.

During initialization, the keyword examples in the training conversations were excised

from the conversations. Also, one second of silence and filler speech were also excised



from each conversation. The keyword model of each particular keyword is initialized by

segmenting the speech frames of all the examples of that particular keyword into the n

equal portions, n being the number of states in the keyword model. Then each state's

model parameters were estimated using just the portion of speech assigned to that state.

During word level estimation, the speech frames for a particular keyword were used

jointly to perform expectation-maximization (EM) of the output likelihood of the hidden

Markov model parameters. Instead of using the fixed portions of speech frames to estimate

the parameters of each state, the EM algorithm automatically utilizes all speech frames to

estimate all state parameters.

During sentence level estimation, also called embedded reestimation in [80], the origi-

nal conversations were spliced into sentence length segments. The labels of each sentence

contained only the symbols "silent," "filler," or keyword names, for example, "silence filler

filler card filler". The HMM models of keywords that appeared in the label were linked in

the appropriate sequence and all state parameters were jointly estimated. This final stage

has the benefit of not relying on the sometimes inaccurate word labels and temporal align-

ment provided by NIST. Since all the model parameters were jointly estimated, the EM

algorithm can automatically incorporate speech frames for particular keywords that were

left out of keyword segments during the initial training process. Ten iterations of sentence

level estimation were performed in all experiments in this thesis. Figure 4-2 shows the av-

erage per-frame log probability versus the number of iterations of sentence level estimation.

It is clear that by the tenth iteration the average log probability has converged.

4.5 Generating Putative Hits

4.5.1 Viterbi Scoring

The output of the initial baseline wordspotter is a list of symbols consisting of keyword

names, and the symbols "filler" and "silence." An example of such sequence which includes

the start and stop frames of each detected segment is shown in Figure 4-3. This transcript,

obtained through Viterbi decoding, contains one putative hit for the keyword card embedded

in filler and silence segments. Any symbol that is a keyword name is taken as a putative

hit at a time determined from the Viterbi start and end times of the symbol. The output

score was calculated by taking the difference between the end state log likelihood and the
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Figure 4-2: The average log probability per frame through ten iterations of sentence level
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beginning state log likelihood of the keyword model and normalizing it by dividing by

the length of the putative hit in frames. The performance of this initial baseline HMM

wordspotter was poor. It provided an overall FOM of 16.9% when trained using the 48

training conversations and tested on the remaining 22 conversations in the testing set.

FILLER CARD FILLER SILENCE FILLER

1 31 48 79 110 141

FRAME NUMBER )

Figure 4-3: Transcription generated through performing Viterbi decoding and matching
keyword models to the input speech.

4.5.2 Peak-Picking

The putative hits generated using the Viterbi scoring method suffer from the fact that only

one keyword hypothesis can exist at any given time. For example, suppose that the word

charged occurs in the conversation. Using Viterbi decoding, either the word charge or the



word card may be in the output transcript, but not both at the same time period. Another

method of detecting keywords is to independently calculate the probability of having a

keyword occurring at a certain time. Let P(ot Akeyword) be the probability of generating

the observation o from the model Akeeyword at time t and let P(otlAfiller) be the probability

of generating the! observation o from the model Afiner at time t. Using the Bayes rule, the

probability of a keyword's occurrence at time t, P(keywordjot) is the following:

P( keywordot) = PP(ot I keyword)P(keyword)
P(k)eywordJot) (4.4)P(ot)

To simplify calculation, the Viterbi end state likelihood P(Ot Akeyword) is used to approx-

imate P(otlkeyword) and the filler end state likelihood P(otlAfiuer) is used to approximate

P(ot). Since P(keyword) is assumed to be constant through out the conversation, it is

dropped out. The probability of keyword occurrence P(keywordlot) is then calculated by:

P(keywordlot) = P(ot Akeyword) (4.5)
P(otIAfiller)

Since the probabilities are very small, they are represented logarithmically during com-

putation. Equation 4.5 written in log is:

log(P(keywordjot)) = log(P(otlAkeeyword)) - log(P(otjAfiller)). (4.6)

The putative hits are detected using frame-by-frame word scores. The score for each

keyword model is calculated as the Viterbi log likelihood normalized by subtracting the

Viterbi log likelihood of the filler model. Putative hits are generated by independently

detecting peaks from the normalized output of each word model. Figure 4-4 shows a diagram

of the architecture of the baseline HMM wordspotter. In this figure, only one keyword model

is shown. The end state Viterbi log likelihood of the filler model is subtracted from the

end state Viterbi log likelihood of the keyword model. Figure 4-5 shows the end state

log likelihood for the filler model and the card model. The end state log likelihood is the

probability of observing the particular input frame x being generated by the end state of

the HMM model. In the wordspotter, all 20 keyword models have outputs normalized in

the manner described above.
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Figure 4-6: End state log likelihood of the card HMM model normalized by the end state
log likelihood of the filler model.

Figure 4-6 shows an example of the normalized scores for the wordcard over six seconds

of speech. Peaks in these traces above a threshold of -100 were taken as putative hits for

this word and used to generate per-word and overall FOM scores. In this trace, the true

occurrence of card ending at frame 146 generates a strong high-scoring putative hit and

other words generate four low-scoring putative hits. This peak-picking approach increased

the overall FOM on the testing set to 42.3%.

4.6 Improved Duration Modelling

The next improvement in FOM was obtained by using a better duration model in the

keyword models. This approach was first suggested by Gish et al [24]. Every HMM state in

each keyword model was duplicated to form a twin state and the recurrent HMM connection

was eliminated in twin states. A twin-state word model formed using this approach is

illustrated in Figure 4-7. Adding twin state models makes it difficult for a HMM model

to stay in a particular state for most of the keyword's duration and skip quickly through

frames that it does not match well. The improved duration modelling is important because

it reduces the chance of the wordspotter generating putative hits at certain time location
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Figure 4-7: Enhancing the modelling of duration in the HMM keyword model.

solely due to a keyword state being matched very well. The better duration modelling

increases the FOM from 42.3% to 47.4%.

4.7 Postprocessing

The telephone speech database used in this study contains many instances of crosstalk

during which one side's recording contains the other side of the conversation as well, i.e., a

single side conversation actually contains voices from both sides of the conversation. Since

the crosstalk signals are strong and contain keywords, the wordspotting system picks out

keywords in the crosstalk regions as well. According to NIST's FOM calculation method,

if the wordspotting system detects a keyword from the opposite side of the conversation,

a22

1.0



then the putative hit should be ignored and counts neither as a hit nor as a false alarm.

But if the keyword is not actually in the other side of the conversation, then the putative

hit is counted as a false alarm.

To avoid the problem of spotting false alarms within crosstalk portions, a program called

rmstalk was implemented by the author. The program receives the labels generated by xtalk

in the two-channel mode of the segment of speech in question. If fewer than 20% of the

frames in the segment have energy greater than the corresponding frames from the other

channel, then the putative hit is removed. This program has the ability to remove putative

hits that are clearly from crosstalk because speech frames in crosstalk normally have lower

energy than frames in the opposite channel. The threshold of 20% was set conservatively

so that no true hit detections are inadvertently thrown out. After the putative hits with

the number of frames below the threshold were left out of putative hits, the overall FOM

improved from 47.4% to 50.5%.

4.8 Gender Detection

Male and female speech differ significantly in many aspects such as pitch, formant frequen-

cies, and intonation. Many speech recognizers with separate male and female models have

been successfully developed [37, 67]. There are three ways of using separate models for male

and female speakers:

1. Determine the gender of the incoming speaker and use the appropriate model.

2. Combine the male and female models by running both in parallel .

3. Run both models separately and then combine the generated labels based on the

likelihood of each label.

In this thesis, both the first and the second approach were explored. In a set of pre-

liminary experiments on a different split of the database, the first approach resulted in

combined FOM of 69.7% while the second approach resulted in a FOM of 69.3%. The FOM

on the male set and the female set are listed in Table 4.3.

Although the FOMs from the two approaches are very close, the first approach was

chosen because it has the advantage of lower computation requirement. Once the gender

is determined, only one set of models is matched against the incoming speech. The system



Table 4.3: FOM using separate gender models vs. using parallel gender models.

Condition Male Test Female Test Combined Testing

Separate Gender 64.3% 76.4% 69.7%
Parallel Gender 63.7% 75.4% 69.3%

described in this thesis consists of two sets of models, one trained on male data and another

trained on female data. During actual spotting, the gender of the speaker is first identified,

and then the appropriate set of models is used. A gender identification system that can

reliably make the hard decision before actual wordspotting begins needs to be designed.

Gaussian mixture classifiers and Radial Basis Function classifiers can be used to classify

a sequence of patterns. Gender identification experiments were carried out using Gaussian

mixture classifiers and Radial Basis Function classifiers. Different algorithm parameters

such as the number of inputs and number of clusters were explored in optimizing clas-

sifier performance. The best RBF classifier achieved an average of 1-2 errors out of 68

conversations and is sufficient for performing gender identification before wordspotting.

The input features are the mel-scaled cepstra values starting from mcc(1). The con-

versations are first processed with the program xtalk to determine whether the speaker is

speaking at any given frame. As described previously, xtalk compares the energy level in

the two channels of the recording of the telephone conversation and assigns the active flag

to the channel having the higher average energy. Only the active frames of a given speaker

are used in the training data of that speaker. This procedure reduces the danger of having

crosstalk sound patterns mixed with the data from the training conversation.

Three programs that have been recently developed under the LNKseq framework were

used to conduct the study [44]. All frames in the designated sequences are treated as

independent from each other and stored as examples of individual classes. The program

kmeansseq clusters the input sequence of frames by class using the k-means algorithm [50].

The program gmix-seq and rbfseq then use the cluster parameter file as the starting point

to train sequence classifiers. The RBF classifier is trained using matrix inversion [73] to

minimize the mean squared error while the Gaussian mixture classifier is trained with

maximum likelihood estimation [50]. The trained RBF and Gaussian mixture sequence

classifiers are then used to test the ability of each classifier to correctly identify the class of



an input sequence. During classification, the output of the classifier at each frame is treated

as independent from other frames and multiplied with the network output of the previous

frames. The final network output of the classifier is calculated using the equations below:

nframe

score-male= fI outputimale, (4.7)
i=1

and
nframe

scorefemale= outputifemale, (4.8)
i=1

where i is the frame index, nframe is the total number of frames in the input speech,

outputi,male is the output of the male classifier on frame i, and OUtpUtifemale is the output

of the female classifier on frame i.

4.8.1 Experimental Results

A series of experiments was conducted with both the Gaussian mixture classifier and the

RBF classifier. When this set of experiments was conducted, two conversations were not

used due to incorrect labelling supplied on the NIST CD-ROM. To obtain general experi-

mental results with the limited data, the remaining 68 conversations were divided into four

different splits, with each split containing 51 conversations for training the classifier and 17

conversations for evaluation. The total number of errors after all four splits of experiments

were performed was summed and the results are shown in Figure 4-8. The chart shows that

the best results were obtained with RBF classifiers with 128 centers. The number of errors

was the same whether the first twelve feature values or the first eighteen feature values are

used. For this set of data, the RBF sequence classifiers generally perform better than the

Gaussian mixture classifiers.

4.9 Complexity of the Baseline Wordspotter

The number of states and the number of mixtures in the baseline wordspotter was set to

reflect the amount of data available. The complexity of each keyword model is dependent

on the amount of data available to train that model. Thus commonly occurring words such

as card have 4 mixtures per state while less frequently occurring words such as discover

have 1 mixture per state. Since many examples of filler speech and silence are available, 32



GAUSSIAN MIXTURE
- CLASSIFIERS

4

0

S5

cr4Cr

LL 30O
Itw
m2

z 1

A3

3 3 3

7

S

7

S I

7

12

RAILBAI 

UNTO

RADIAL BASIS FUNCTION
CLASSIFIERS

3

2

1 1

I I

12-48 18-48 18-64 18-128 12-48 18-48 12-128 18-128
CLASSIFIER SIZE (INPUTS-CENTERS)
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mixtures are used in the filler and silence model. The filler model and the silence model

each has one state due to the fact that, unlike the keyword speech patterns, filler and

silence speech patterns are not expected to have a particular temporal sequence of sounds.

The number of states and mixtures for all models are listed in Table 4.4. All subsequent

experiments used the HMM topologies specified in this table. Covariance matrices were

diagonal and variances were estimated separately for all states. An initial set of models was

trained during 16 passes through the training data using word level estimation on only the

excised words from the training conversations.

4.10 Performance of the Baseline Wordspotter

To ensure that the new algorithms developed in this thesis have real benefits, the high

performance baseline wordspotter described above was developed and used as a basis for

comparison. The sequential increase in the performance of the baseline wordspotter is

shown in Table 4.5. The FOM is also plotted in Figure 4-9. The baseline wordspotter

was trained using the 48 conversations in the training set and tested on the remaining 22

conversations in the testing set. The initial wordspotter relied on the likelihood generated

from the Viterbi path to score the keywords. The overall testing set FOM was 16.9%

7
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Table 4.4: The number of states and the number of RBF's per state used to model each
keyword, filler speech, and silence. More RBF's are used per state when the number of
training tokens is large.

Keyword Number Number of Twin State? Number of
of States RBF's/State Training Tokens

account 10 1 Yes 25
american-express 30 1 Yes 37

balance 12 1 Yes 27
bank 8 1 Yes 31
card 8 4 Yes 435
cash 8 2 Yes 72

charge 8 2 Yes 98
check 8 2 Yes 79
credit 12 2 Yes 316

credit-card 20 4 Yes 250
discover 14 1 Yes 19
dollar 8 2 Yes 74

hundred 14 1 Yes 24
interest 12 2 Yes 72

limit 10 1 Yes 22
money 8 2 Yes 86
month 8 2 Yes 83

percent 12 1 Yes 33
twenty 14 1 Yes 15

visa 8 2 Yes 50
filler 1 32 No Not Applicable

sil 1 32 No Not Applicable



Table 4.5: The testing set FOM of the baseline wordspotter after stages of improvement.

Condition Test FOM
Male Female Overall

Viterbi Scoring 24.0% 16.2% 16.9%
Peak-Picking Scoring 47.9% 39.8% 42.3%

Twin State 51.1% 45.0% 47.4%
Crosstalk Removal 54.5% 47.7% 50.5%
Separate Gender 56.0% 52.7% 52.9%

Embedded Reestimation 64.8% 61.5% 62.5%

(as described in 4.5.1). By using the peak-picking scoring method described in 4.5.2 to

generate putative hits, the overall FOM was raised to 42.3%. The next improvement was

using twin states to force the duration of all putative hits to be more than one frame on

all states, which increased the overall FOM to 47.4%. After realizing that much crosstalk

occurs in the database and such crosstalk can generate false alarms, the crosstalk removal

algorithm described in Section 4.7 was implemented. This addition improved the overall

FOM to 50.5%. The separate FOM for male and female testing speakers clearly shows that

the female speakers are more difficult to spot. By training separate gender models and

using the correct gender model to spot each speaker, the FOM was improved to 52.9%.

Notice that the gap between FOM on the female test speakers and the male test speakers

narrowed after separate models were trained for each gender. Lastly, by training the HMM

models with embedded reestimation, the overall FOM increased to 62.5%. As a point of

reference, the whole-word based wordspotter developed by Rohlicek et. al. at BBN has

a, FOM of 56.6% on this same database [67]. There are two major differences between

the BBN system and the baseline wordspotter. First, the baseline wordspotter has a filler

model that is trained separately from the keyword models while the BBN system uses the

combination of all keyword models to model filler speech. Second, the keyword and filler

model in the baseline system was trained with sentence level estimation while the BBN

system was not trained with sentence level estimation. The baseline wordspotter is among

the best whole-word based wordspotters tested on this database. With the baseline firmly

established, novel techniques in training can be explored.
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4.11 Chapter Summary

This chapter described a whole-word based wordspotter that has been used as the baseline

in this thesis. Section 4.2 described the steps that were used to convert a digitized speech

signal of 8,000 samples per second to 2 streams of mel-scaled cepstra feature vectors with 25

values per frame and 100 frames per second. The reduction in data rate from 8,000 values

per second to 2,500 values per second is an example of extracting useful information from

the raw speech signal. Experiments were performed to determine a set of pre-processing

steps that are suitable for removing variabilities inherent in the database. The preprocessing

steps explored are crosstalk detection, RASTA filtering, and spectral normalization.

The baseline HMM based wordspotter was described in Section 4.3. A whole-word based

HMM discrete word recognizer was used as the basis of the wordspotter. The training pro-

cedure of the baseline wordspotter was presented in Section 4.4. Two different methods of

generating putative hits from the output of the wordspotter were described in Section 4.5.

Section 4.6 presented a change to the wordspotter structure to ensure that all states con-

tribute to the spotting task. Section 4.7 illustrated the steps that are performed to the

output of the wordspotter to remove unwanted artifacts. Section 4.8 described the design

and implementation of a gender detection system.

To improve the performance of the wordspotter, separate improvements such as gender

separation and embedded reestimation were tried. The sequence of modifications increased

the overall FOM on the testing set from 16.9% to 62.5%. The resulting whole-word based

wordspotting system is one of the best wordspotters of similar complexity. The high perfor-

mance provides a reasonable baseline for measuring improvements that result from applying

two new approaches which will be introduced in the next two chapters.



Chapter 5

Figure of Merit Training

Spotting tasks require detection of target patterns from a background of richly varied non-

target inputs. The performance measure of interest for these tasks, called the Figure of Merit

(FOM), is the detection rate for target patterns when the false alarm rate is in an acceptable

range. A new approach to training spotters which computes the FOM gradient for each

input pattern and then directly maximizes the FOM using backpropagation is presented

in this chapter. This approach eliminates the need for thresholds during training. It also

uses network resources to model Bayesian a posteriori probability functions accurately only

for patterns which have a significant effect on the detection accuracy over the false alarm

rate of interest. FOM training increased detection accuracy by up to four percentage points

for a hybrid radial basis function (RBF) hidden Markov model (HMM) wordspotter on the

credit-card speech corpus.

5.1 Introduction

Spotting tasks require accurate detection of target patterns from a background of varied

non-target inputs. Such problems share three common characteristics. First, the number

of instances of target patterns is unknown. Second, patterns from background, non-target,

classes are varied and often difficult to model accurately. Third, the performance measure-

ment is the detection rate for target patterns when the false alarm rate is over a specified

range. Neural network classifiers are often used for detection problems by training on tar-

get and background classes, optionally normalizing target outputs using the background

output, and thresholding the resulting score to generate putative hits.



5.2 Prior Approaches of Discriminative Training

Discriminative training has been applied to the wordspotting task by other researchers.

Rose has previously presented an approach to training a HMM based wordspotter using a

discriminative training criterion [68]. In his approach, both the filler and the keyword models

share a mixture of 128 Gaussians to represent the output probability of the HMM states, and

the HMM models differ in the mixture weights of each state. During discriminative training,

only the mixture weights of the keyword models are changed to maximize the difference

between the log keyword probability and the log filler probability. One problem with this

training approach is that false alarms are not used in modifying the model parameters. Also,

the gradient that is used depends on the difference between the log keyword likelihood and

the log filler likelihood. Section 5.4 will present Figure of Merit gradient charts which

demonstrate why different keywords have different gradients with respect to the overall

Figure of Merit. Rose reported an average increase of 30 percentage points in detection

rate at low false alarm rates (from 16% at 0 false alarm per keyword per hour to 46%

at 0 false alarm per keyword per hour). However, Rose used the Viterbi scoring method

described in 4.5.1, which accounts for the very low detection rate before discriminative

training. If the peak-picking algorithm described in 4.5.2 had been used, the amount of

improvement might have been smaller.

Another approach of training a Multi-State Time-Delayed Neural Network (MS-TDNN)

to perform wordspotting has been proposed by Zeppenfeld et al. [81, 83]. The Time-Delayed

Neural Network (TDNN) classifier is a neural network classifier which receives an input

composed of a matrix of spectral energy values that extend both in time and frequency. The

TDNN estimates the likelihood of the input being a certain phoneme, and the likelihoods

are integrated on a top layer to model the occurrence of a sequence of phonemes and passed

through a sigmoid output unit to obtain an output between 0.0 and 1.0. During training,

the TDNN has a target value of 1.0 on true keyword occurrences and 0.0 on false alarms.

The training algorithm seeks to train the output of the wordspotter to be 0.0 on false alarms

and 1.0 on true occurrences of the keywords. The system achieved a FOM of 51.04% on

the official September 1992 testing set of the Switchboard credit card database [82]. Some

problems with using the sigmoid output are discussed in Section 5.3.



Recently de la Torre and Acero introduced a discriminative training approach designed

for wordspotters [13]. The error function is of the following form:

E f (Pg - Pk) + fPk - Pg), (5.1)
NkI 9 N9

where L, is the constant used to weight the importance of wrongly rejecting keywords, Nk is

the number of keyword utterances, Pg is the log-probability of the garbage model, Pk is the

log-probability of the keyword model, Lf is the constant used to weigh the importance of

false alarm, and N9 is the number of non-keyword utterances. The function f is a sigmoid

function of the following form:

1f() =W (5.2)(1 + exp(-Tx))

The constant T is used to determine the threshold over which the model is no longer trained.

In [13] the method of choosing T was not specified. Using this methodology to train the

parameters of the garbage model, they successfully reduced the predefined error function

of a wordspotting system from 5.50 to 5.07. The word error rate was reduced from 9.8%

to 6.9%, but the rejection rate on true keywords rose from 0.8% to 12.0%. The approach

described in this thesis has the following differences:

* Different keywords have different gradients.

* Keyword models are trained instead of the garbage model.

* Setting of threshold T is not necessary.

5.3 Problems with Simple Backpropagation Training

Neural network classifiers used for spotting tasks can be trained using conventional back-

propagation procedures with 1 of N desired outputs and a squared error cost function. This

approach to training does not maximize the FOM because it attempts to estimate Bayesian

a posteriori probability functions accurately for all inputs even if a particular input has little

effect on detection accuracy at false alarm rates of interest. Excessive network resources

may be allocated to modelling the distribution of common background inputs dissimilar

from targets and of high-scoring target inputs which are easily detected. This problem can



be addressed by training only when network outputs are above thresholds. Problems with

this approach are threefold:

1. It is difficult to set the threshold for different keywords. For example, for certain long

words such as discover, there may be many more true hits than false alarms, and the

network will be trained with many more positive examples than negative examples,

even though the negative examples change the final Figure of Merit (FOM) much

more than positive examples.

2. Target values must be set for all putative hits to calculate the gradient that is used

to modify model parameters. Using fixed target values of 1.0 and 0.0 requires careful

normalization of network output scores to prevent saturation and to maintain back-

propagation effectiveness.

3. The gradient calculated from a fixed target value does not reflect the actual impact

on the FOM.

Figure 5-1 shows the gradient of true hits and false alarms when target values are set to

be 1.0 for true hits and 0.0 for false alarms, the output unit is sigmoidal, and the threshold

for a putative hit is set to roughly 0.6. The gradient is the derivative of the squared error

cost with respect to the input of the sigmoidal output unit. As can be seen, low-scoring

hits or false alarms that may affect the FOM are ignored, the gradient is discontinuous at

the threshold, the gradient does not fall to zero fast enough at high values, and the relative

sizes of the hit and false alarm gradients are fixed for all words and do not reflect the true

effect of a hit or a false alarm on the FOM.

5.4 Figure of Merit Training

A new approach to training a spotter system called Figure of Merit Training is to directly

compute the FOM and its derivative. This derivative is the change in FOM over the change

in the output score of a putative hit and can be used instead of the derivative of a squared-

error or other cost functions during training.
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5.4.1 Calculation of the Figure of Merit Gradient

Since the FOM is calculated by sorting true hits and false alarms separately for each target

class and forming detection versus false alarm curves, these measures and their derivatives

can not be computed analytically. Instead, the FOM and its derivative are computed using

fast sort routines. These routines insert a new putative hit into an already sorted list and

calculate the change in the FOM caused by that insertion. The running putative hit list

used to compute the FOM is updated after every new putative hit is observed and it must

contain all putative hits observed during the most recent past training cycle through all

training patterns. The gradient estimate is smoothed over nearby putative hit scores to

account for the quantized nature of the change in FOM. The derivation of the Figure of

Merit gradient for the keyword account on the training set is illustrated in Figure 5-2. The

top plot in the figure shows the impact of a true hit for the word account as its score is

changed from -100 to 300. When the score is very low (below 0), the putative hit has no

impact because it is ranked below many false alarms. When the score is very high, there

are no longer any false alarms with scores above the putative hit's score and thus there is
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no change in FOM. If the score falls in the middle region, when the putative hit's score

surpasses that of a false alarm, the overall FOM is increased. The middle plot in Figure 5-2

illustrates the change in FOM (delta FOM) when the score of the putative hit is varied. The

delta FOM is discontinuous because the distribution of false alarms is random. Smoothing

is performed by using a least squared slope approximation on 19 samples from a range

around the score of the input putative hit. The range of each keyword is calculated by

taking the difference between the scores of the 20th percentile putative hit and the 80th

percentile putative hit for the keyword. For example, suppose that the word card has 100

putative hits that are sorted in descending order. Let score[n] represent the score of the

nth putative hit. The score range is calculated with the formula:

score range = score[20] - score[80] (5.3)

Let FOM(score) be the overall FOM when a putative hit with the score score is inserted

in the putative hit list. The FOM gradient for a putative hit with the score hit-score is

estimated by performing a least square slope estimation on the following 19 pairs of data

points (score, FOM):

9
FOM(score), score = -- . score range + hitscore,8

- score range + hit-score,
8

9- • score range + hitscore
8

Figure 5-3 shows plots of linearly scaled gradients for the 20-word hybrid wordspotter.

Each value on the curve represents the smoothed change in the FOM that occurs when a

single hit or false alarm with the specified normalized log output score is inserted into the

current putative hit list. Gradients are positive for putative hits corresponding to true hits

and negative for false alarms. They also fall off to zero for putative hits with extremely

high or low scores. Shapes of these curves vary across words: the relative importance of

a hit or a false alarm, the normalized output score which results in high gradient values,

and the shape of the gradient curve varies. Use of a squared error or other cost function

with sigmoid output nodes would not generate this variety of gradients or automatically
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Smoothing is applied to the values in the middle chart to derive the FOM gradient used for
training, shown in the bottom chart.
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identify the range of putative hit scores where gradients should be high. Application of

FOM training requires only the gradients shown in these curves with no supplementary

thresholds. Patterns with low and high inputs will have a minimal effect during training

without using thresholds because they produce gradients near zero.

5.4.2 Different Figure of Merit Gradients for Words of Different Difficulty

Different keywords have dramatically different gradients. For example, the keyphrase credit

card is long and the detection rate is high. The overall FOM thus does not change much if

more true hits are found. A high scoring false alarm, however, decreases the FOM drasti-

cally. There is thus a large negative gradient for false alarms for credit card. The keywords

account and check are usually short in duration and thus more difficult to detect, and thus

any increase in number of true hits strongly increases the overall FOM. On the other hand,

since in this database, the words account and check occur much less frequently than credit

card, a high scoring false alarm for the words account and check has less impact on the

overall FOM. The gradient for false alarms for these words is thus correspondingly smaller.

Comparing the curves in Figure 5-4 with the fixed prototypical curve in Figure 5-1 demon-

strates the dramatic differences in gradients that occur when the gradient is calculated to

maximize the FOM directly instead of using a threshold with sigmoid output nodes.

5.5 Implementation

The FOM training algorithm was applied to train the high performance baseline wordspotter

described in Chapter 4. A new addition to the hybrid wordspotter, called State Weights,

was added to allow for weighting the contribution of different states in a keyword model.

The training methodology uses the high performance wordspotter developed in Chapter 4 to

spot training conversations and improve the performance of the wordspotter on the putative

hits generated by the baseline wordspotter.

5.5.1 State Weights

The state weight is a penalty added for each frame assigned to a state. The weight for each

individual state is adjusted according to how important each state is to the detection of

the keyword. For example, many false alarms for the word card are words that sound like
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Figure 5-4: Figure of Merit gradients computed for true hits (HIT) and false alarms (FA)
with scores ranging from -100 to 300 for the keywords account, check, and credit-card.

part of the keyword such as hard or far. The first few states of the card model represent

the phoneme /k/ and false alarms stay in these front states only a short time. If the state

weight of the first few states of the card model is large, then a true hit has a larger score

than false alarms.

5.5.2 Training Methodology

Figure 5-5 describes the methodology used for applying FOM training. FOM training

is applied to the high-performance HMM wordspotter after sentence level estimation is

completed. Word models in the HMM wordspotter are first used to spot keywords in

training conversations. The true hits, the false alarms, and the misses are then used as

training tokens for Figure of Merit training. The FOM gradient of each putative hit is

calculated when the hit is inserted into the putative hit list. In the case of misses, a fixed

score of 100.0 was arbitrarily chosen to be used as the score for generating the FOM gradient.

The speech segment corresponding to a putative hit is excised from the conversation speech

file and the corresponding keyword model is used to match each frame with a particular

state in the model using a Viterbi backtrace (shown in Figure 5-6.) The gradient is then

"ACCOUNT" "CHECK" "CREDIT-CARD"
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Figure 5-5: The training methodology for Figure of Merit training. The models are first

trained using Baum-Welch training. Then the models are used to spot conversations and

the resulting true hits and false alarms are used to train the models discriminatively.

used to adjust the location of each Gaussian component in a node as in RBF classifiers [40]

and also the state weight of each state.

The putative hit score which is used to detect peaks representing putative hits is gen-

erated according to

Stotal = Skeyword - Sfiller. (5.4)

In this equation, Stotal is the putative hit score, Skeyword is the log Viterbi score in

the last state of a specific keyword model computed using the Viterbi algorithm from the

beginning of the conversation to the frame where the putative hit ended, and Sfill,,er is the

log Viterbi score in the last state of the filler model. The filler score is used to normalize the

keyword score and approximate the a posterior probability. The keyword score is calculated

using a modified form of the Viterbi algorithm

aio(t + 1) = max[ai(t) + aij, a!i- 1(t) + ai-1,j] + bi(t, x) + wi. (5.5)

I SOTN



This equation is identical to the normal Viterbi recursion for left-to-right linear word models

after initialization, except that the extra state weight wi is added. In this equation, ai(t)

is the log Viterbi score in state i at time t, aij is the log of the transition probability from

state i to state j, and bi(t, x) is the log likelihood for state i for the input feature vector x

at time t.

Word scores are computed and a peak-picking algorithm looks for maxima above a low

threshold. After a peak representing a putative hit is detected, frames of a putative hit

.are aligned with the states in the keyword model using the Viterbi backtrace and both the

means of Gaussians in each state and state weights of the keyword model are modified.

State weights are modified according to the following equation:

wi(t + 1) = wi(t) + gradient x 77state x duration. (5.6)

In this equation, wi(t) is the state weight in state i at time t, gradient is the FOM

gradient for the putative hit, 7state is the step size for state weight adaptation, and duration

is the number of frames aligned to state i. If a true hit occurs and the gradient is positive,

the state weight is increased in proportion to the number of frames assigned to a state.

If a false alarm occurs, the state weight is reduced in proportion to the number of frames

assigned to a state. The state weight will thus be strongly positive if there are many more

frames from true hits than from false alarms. It will be strongly negative if there are more

frames from false alarms than from true hits. Using state weight values should thus improve

discrimination between true hits and false alarms.

The center of the Gaussian components within each state, which are similar to Gaussians

in radial basis function networks, are modified according to the following equation:

wijN(zk; mijk, aijk) k(t) -- mijk(t)ijk (t + 1) = mijk(t) + gradient x tlcenter x wnenter mij k, k ) X

ntr= wijN(zk; mijk, Oijk) Oijk
(5.7)

In this equation, mijk(t) is the kth component of the mean vector for the jth Gaussian

mixture in HMM state i at time t, gradient is the FOM gradient, 77center is the step size

for moving Gaussian centers, k (t) is the value of the kth component of the input feature

vector at time t, Cijk is the standard deviation of the kth component of the jth Gaussian
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Figure 5-6: During training, frames of input speech are matched to states of the prospective
keyword model through Viterbi alignment.



mixture in HMM state i, ncenter is the number of Gaussian mixtures, wij is the mixture

weight of each Gaussian mixture, and N(Xk; mijk, aijk) is the Gaussian function. For each

true hit, the centers of Gaussian mixtures in a state move toward the observation vectors

of frames assigned to a particular state. For a false alarm, the centers move away from the

observation vectors that are assigned to a particular state. Over time, the centers move

closer to the true hit observation vectors and further away from false alarm observation

vectors. Note that when a Gaussian mixture is more likely compared to other Gaussian

mixtures, then the following terms in Equation 5.7 becomes large and larger changes are

made to the Gaussian mixture:

wijN(xk; mijk, aijk) (5.8)

E•nenter wi jN(z k; mijk, aijk)

Thus, Gaussian centers that are closer to the input pattern x(t) get changed more heavily.

Equation 5.7 is different from Equation 3.10 in that the term j= winter uiN(Xk; mijk, aijk)

is added in the denominator. This term is the result of using the log of the output of the

radial basis functions in the wordspotting system. When the derivative of a log function

In(f(x)) is taken, the derivative takes the form of:

Oln(f (x)) 1 Of (x)
(5.9)Ox f(x) Ox

5.6 Experimental Results

Experiments were performed using the baseline HMM wordspotters that were trained using

the maximum likelihood algorithm as described in Chapter 4. FOM training was then

performed for five iterations through the training data. On each pass, conversations were

presented in a new random order. The changes in FOM for the training set and the testing

set are shown in Figure 5-7 and Figure 5-8. The FOM on the training data for both

male and female speakers increased by more than six percentage points after five epochs of

training. The FOM on the male testing set increased by 2.6 percentage points (64.8% to

67.4%) after five passes through the training data, but then decreased with further training

(for example, the FOM is 66.5% after 10 epochs of training). The male training set FOM

increased from 83.4% to 95.5% after 10 epochs of FOM training. The FOM on the female

testing set increased by 4.1 percentage points (61.5% to 65.6%) after five passes through
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Figure 5-7: The FOM for the male training and testing set versus the number of epochs of
FOM training.

the training data, but then decreased with further training (for example, the FOM is 65.2%

after 10 epochs of training). The female training set FOM increased from 88.5% to 95.7%

after 10 epochs of FOM training.

This result suggests that the structure learned during the final five training epochs is

overfitting the training data so that the performance on the training set improves while the

performance on the testing set deteriorates.

A graphical illustration of the effect of FOM back-propagation training can be seen in

Figure 5-9. The upper plot shows a histogram of true hits and false alarms for all putative

hits with positive normalized scores from an earlier experiment for the word card. Bars

that count true hits are filled and bars that count false alarms are empty. The separation

between true hits and false alarms for high-scoring putative hits is relatively poor. There are

only nine high-scoring true hits before the highest scoring false alarm is encountered with

a score of roughly 150 and the FOM is 54.3%. The lower histograms in Figure 5-9 shows

the effect of FOM back-propagation training. The separation between true hits and false
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Figure 5-8: The FOM for the female training and testing set versus the number of epochs
of FOM training.
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Figure 5-9: Histograms for true hits (solid bars) and false alarms (hollow bars) for the word
card before and after FOM back-propagation training.

alarms is much better for the highest-scoring putative hits. There are now 23 high-scoring

true hits before the highest scoring false alarm is encountered with a score of roughly 80

and FOM has increased to 68.1%. FOM back-propagation has thus reduced the score of

the high-scoring false alarms while maintaining high scores for the true hits.

The per-word performances before and after FOM training for the male speakers are

listed in Table 5.1 and Table 5.2. The overall FOM improved by 2.6 percentage points,

from 64.8% to 67.4%. One strong effect of FOM training is the number of putative hits

generated by the wordspotters. Before FOM training, the wordspotter generated a total

of 2,978 putative hits, 326 of which are true hits. After five iterations of FOM training,

the wordspotter generated only 1,190 putative hits, 319 of which are true hits. While the

number of true hits was reduced by only 2.2%, the number of false alarms was reduced by

40%. Notice that performance on the keyword discover is poor. Both the number of training



tokens (9) and the number of training speakers (4) for discover are small (see Tables 2.4

and 2.5), resulting in keyword models that do not generalize well. In Chapter 6 voice

transformation techniques are introduced which improve performance on this keyword.

For the female speakers, the results before and after FOM training are listed in Table 5.4

and Table 5.5 respectively. Again, the number of false alarms has been drastically reduced

from 2,598 to 1,207, while the number of hits detected has only been slightly reduced

from 233 to 227. The overall FOM increased by 4.1 percentage points from 61.5% to

65.6%. Notice that performance on the keywords hundred and twenty are poor. Both the

number of training tokens and the number of training speakers for these two words are

small (see Tables 2.4 and 2.5), resulting in keyword models that do not generalize well.

In Chapter 6 voice transformation techniques are introduced which improve performance

on these keywords. Tables 5.3 and 5.6 present the change in FOM after 5 iterations of

FOM training. The largest individual FOM increases were 17.4 percentage points on the

word cash for the male set and 15.1 percentage points on the word card for the female set.

Tables 5.7 and 5.8 lists the performance of the wordspotter on the combined male/female

testing set.



Table 5.1: The per-keyword and overall FOM for the male testing set before FOM training.
(The two numbers under True Hits represent the number of true hits detected over the
number of true hits present in the conversations. The two numbers under False Alarms
represent the number of false alarms over the number of putative hits generated.)

Keyword I FOM I True Hits I Det % I False Alarms I FA % I
account 55.6% 7/8 87.5% 117/124 94.4%

american.express 87.5% 7/8 87.5% 0/7 0.0%
balance 73.3% 6/7 85.7% 18/24 75.0%

bank 58.4% 17/19 89.5% 212/229 92.6%
card 52.3% 49/49 100.0% 243/292 83.2%
cash 67.5% 15/15 100.0% 241/256 94.1%
charge 76.7% 20/20 100.0% 129/149 86.6%
check 70.5% 27/27 100.0% 227/254 89.4%
credit 62.1% 11/13 84.6% 67/78 85.9%

credit_card 95.0% 70/73 95.9% 12/82 14.6%
discover 0.0% 0/2 0.0% 0/0 0.0%
dollar 62.6% 14/14 100.0% 314/328 95.7%

hundred 43.2% 8/14 57.1% 38/46 82.6%
interest 64.5% 10/12 83.3% 209/219 95.4%

limit 80.2% 4/4 100.0% 12/16 75.0%
money 45.7% 11/11 100.0% 329/340 96.8%
month 52.4% 22/22 100.0% 306/328 93.3%

percent 43.6% 8/10 80.0% 51/59 86.4%
twenty 36.0% 5/10 50.0% 44/49 89.8%

visa 26.0% 15/17 88.2% 83/98 84.7%
Overall 64.8% 326/355 91.8% 2652/2978 89.1%



Table 5.2: The per-keyword and overall FOM for the male testing set after 5 iterations
of FOM training. (The two numbers under True Hits represent the number of true hits
detected over the number of true hits present in the conversations. The two numbers
under False Alarms represent the number of false alarms over the number of putative hits
generated.)

Keyword FOM True Hits Det % I False Alarms FA %
account 57.2% 7/8 87.5% 50/57 87.7%

american.express 87.5% 7/8 87.5% 0/7 0.0%
balance 68.8% 6/7 85.7% 21/27 77.8%

bank 56.4% 15/19 78.9% 83/98 84.7%
card 48.4% 47/49 95.9% 50/97 51.5%
cash 84.9% 14/15 93.3% 62/76 81.6%

charge 70.6% 20/20 100.0% 57/77 74.0%
check 73.4% 26/27 96.3% 78/104 75.0%
credit 67.0% 11/13 84.6% 33/44 75.0%

creditcard 95.8% 71/73 97.3% 34/105 32.4%
discover 0.0% 0/2 0.0% 0/0 0.0%
dollar 78.9% 14/14 100.0% 75/89 84.3%

hundred 44.9% 8/14 57.1% 30/38 78.9%
interest 71.7% 9/12 75.0% 23/32 71.9%

limit 74.3% 4/4 100.0% 12/16 75.0%
money 47.8% 10/11 90.9% 72/82 87.8%
month 67.1% 22/22 100.0% 61/83 73.5%
percent 42.6% 8/10 80.0% 57/65 87.7%
twenty 36.8% 6/10 60.0% 38/44 86.4%

visa 35.7% 14/17 82.4% 35/49 71.4%
Overall 67.4% 319/355 89.9% 871/1190 73.2%



Table 5.3: The per-keyword and overall FOM for the male testing set before and after 5
iterations of FOM training and the change in FOM.

Keyword I FOM Before I FOM After I Change in FOM I
account 55.6% 57.2% 0.6%

american-express 87.5% 87.5% 0.0%
balance 73.3% 68.8% -4.5%

bank 58.4% 56.4% -2.0%
card 52.3% 48.4% -3.9%
cash 67.5% 84.9% 17.4%

charge 76.7% 70.6% -6.1%
check 70.5% 73.4% 2.9%
credit 62.1% 67.0% 4.9%

credit.card 95.0% 95.8% 0.8%
discover 0.0% 0.0% 0.0%

dollar 62.6% 78.9% 16.3%
hundred 43.2% 44.9% 1.7%
interest 64.5% 71.7% 7.2%

limit 80.2% 74.3% -5.9%
money 45.7% 47.8% 2.1%
month 52.4% 67.1% 14.7%
percent 43.6% 42.6% -1.0%
twenty 36.0% 36.8% 0.8%

visa 26.0% 35.7% 9.7%
Overall 64.8% 67.4% 2.6%

·



Table 5.4: The per-keyword and overall FOM for the female testing set before FOM training.
(The two numbers under True Hits represent the number of true hits detected over the
number of true hits present in the conversations. The two numbers under False Alarms
represent the number of false alarms over the number of putative hits generated.)

Keyword FOM True Hits Det % False Alarms FA %
account 35.1% 3/4 75.0% 6/9 66.7%

american.express 75.0% 3/4 75.0% 0/3 0.0%
balance 62.9% 6/7 85.7% 23/29 79.3%

bank 63.0% 6/6 100.0% 174/180 96.7%
card 42.7% 33/33 100.0% 208/241 86.3%
cash 58.7% 15/15 100.0% 274/289 94.8%

charge 76.6% 17/17 100.0% 136/153 88.9%
check 31.2% 7/8 87.5% 147/154 95.5%
credit 66.5% 20/21 95.2% 49/69 71.0%

credit.card 96.5% 38/39 97.4% 36/74 48.6%
discover 87.5% 7/8 87.5% 5/12 41.7%
dollar 49.4% 10/11 90.9% 334/344 97.1%

hundred 0.0% 0/3 0.0% 0/0 0.0%
interest 77.7% 19/20 95.0% 57/76 75.0%

limit 45.1% 4/7 57.1% 86/90 95.6%
money 27.9% 13/14 92.9% 458/471 97.2%
month 55.9% 15/17 88.2% 402/417 96.4%
percent 84.7% 8/9 88.9% 57/65 87.7%
twenty 0.0% 0/6 0.0% 18/18 100.0%

visa 44.8% 9/9 100.0% 128/137 93.4%
Overall 61.5% 233/258 90.3% 2598/2831 91.8%



Table 5.5: The per-keyword and overall FOM for the female testing set after 5 iterations
of FOM training. (The two numbers under True Hits represent the number of true hits
detected over the number of true hits present in the conversations. The two numbers
under False Alarms represent the number of false alarms over the number of putative hits
generated.)

Keyword FOM True Hits Det % False Alarms FA %
account 39.8% 3/4 75.0% 5/8 62.5%

americanexpress 75.0% 3/4 75.0% 0/3 0.0%
balance 69.6% 6/7 85.7% 23/29 79.3%

bank 58.3% 6/6 100.0% 154/160 96.2%
card 57.8% 31/33 93.9% 34/65 52.3%
cash 60.8% 15/15 100.0% 50/65 76.9%

charge 77.4% 16/17 94.1% 43/59 72.9%
check 32.8% 6/8 75.0% 69/75 92.0%
credit 68.7% 21/21 100.0% 47/68 69.1%

credit.card 94.5% 39/39 100.0% 36/75 48.0%
discover 87.5% 7/8 87.5% 6/13 46.2%
dollar 63.1% 10/11 90.9% 58/68 85.3%

hundred 0.0% 0/3 0.0% 0/0 0.0%
interest 72.0% 18/20 90.0% 30/48 62.5%

limit 51.8% 4/7 57.1% 62/66 93.9%
money 39.3% 10/14 71.4% 122/132 92.4%
month 61.9% 15/17 88.2% 117/132 88.6%

percent 87.8% 8/9 88.9% 52/60 86.7%
twenty 0.0% 0/6 0.0% 18/18 100.0%

visa 55.5% 9/9 100.0% 54/63 85.7%
Overall 65.6% 227/258 88.0% 980/1207 81.2%



Table 5.6: The per-keyword and overall FOM for the female testing set before and after 5
iterations of FOM training and the change in FOM.

Keyword FOM Before FOM After Change in FOM
account 35.1% 39.8% 4.7%

american-express 75.0% 75.0% 0.0%
balance 62.9% 69.6% 6.7%

bank 63.0% 58.3% -4.7%
card 42.7% 57.8% 15.1%
cash 58.7% 60.8% 2.1%

charge 76.6% 77.4% 0.8%
check 31.2% 32.8% 1.6%
credit 66.5% 68.7% 2.2%

creditcard 96.5% 94.5% -2.0%
discover 87.5% 87.5% 0.0%
dollar 49.4% 63.1% 13.7%

hundred 0.0% 0.0% 0.0%
interest 77.7% 72.0% -5.7%

limit 45.1% 51.8% 6.7%
money 27.9% 39.3% 11.4%
month 55.9% 61.9% 6.0%

percent 84.7% 87.8% 3.1%
twenty 0.0% 0.0% 0.0%

visa 44.8% 55.5% 10.7%
Overall 61.5% 65.6% 4.1%



T'able 5.7: The per-keyword and overall FOM for the combined testing set. (The two
numbers under True Hits represent the number of true hits detected over the number of
true hits present in the conversations. The two numbers under False Alarms represent the
number of false alarms over the number of putative hits generated.)

Keyword FOM True Hits Det % False Alarms FA %
account 42.1% 10/12 83.3% 123/133 92.5%

americanexpress 83.3% 10/12 83.3% 0/10 0.0%
balance 62.7% 12/14 85.7% 41/53 77.4%

bank 59.6% 23/25 92.0% 386/409 94.4%
card 50.6% 82/82 100.0% 451/533 84.6%
cash 62.7% 30/30 100.0% 515/545 94.5%

charge 73.7% 37/37 100.0% 265/302 87.7%
check 62.2% 34/35 97.1% 374/408 91.7%
credit 63.9% 31/34 91.2% 116/147 78.9%

credit_card 94.9% 108/112 96.4% 48/156 30.8%
discover 70.0% 7/10 70.0% 5/12 41.7%
dollar 56.4% 24/25 96.0% 648/672 96.4%

hundred 39.0% 8/17 47.1% 38/46 82.6%
interest 67.2% 29/32 90.6% 266/295 90.2%

limit 44.5% 8/11 72.7% 98/106 92.5%
money 35.8% 24/25 96.0% 787/811 97.0%
month 53.1% 37/39 94.9% 708/745 95.0%
percent 61.2% 16/19 84.2% 108/124 87.1%
twenty 25.1% 5/16 31.2% 62/67 92.5%

visa 29.9% 24/26 92.3% 211/235 89.8%
Overall 62.5% 559/613 91.2% 5250/5809 90.4%



Table 5.8: The per-keyword and overall FOM for the combined testing set after 5 iterations
of FOM training. (The two numbers under True Hits represent the number of true hits
detected over the number of true hits present in the conversations. The two numbers
under False Alarms represent the number of false alarms over the number of putative hits
generated.)

Keyword FOM True Hits Det % False Alarms FA %
account 43.2% 10/12 83.3% 55/65 84.6%

american.express 83.3% 10/12 83.3% 0/10 0.0%
balance 69.1% 12/14 85.7% 44/56 78.6%

bank 56.3% 21/25 84.0% 237/258 91.9%
card 52.8% 78/82 95.1% 84/162 51.9%
cash 73.3% 29/30 96.7% 112/141 79.4%

charge 69.6% 36/37 97.3% 100/136 73.5%
check 64.4% 32/35 91.4% 147/179 82.1%
credit 67.6% 32/34 94.1% 80/112 71.4%

credit_card 95.6% 110/112 98.2% 70/180 38.9%
discover 70.0% 7/10 70.0% 6/13 46.2%

dollar 72.6% 24/25 96.0% 133/157 84.7%
hundred 40.0% 8/17 47.1% 30/38 78.9%
interest 72.6% 27/32 84.4% 53/80 66.2%

limit 48.8% 8/11 72.7% 74/82 90.2%
money 41.9% 20/25 80.0% 194/214 90.7%
month 62.9% 37/39 94.9% 178/215 82.8%
percent 61.0% 16/19 84.2% 109/125 87.2%
twenty 24.8% 6/16 37.5% 56/62 90.3%

visa 38.0% 23/26 88.5% 89/112 79.5%
Overall 65.8% 546/613 89.1% 1851/2397 77.2%



5.6.1 Comparison Between FOM Gradient and Constant Gradient

Experiments were performed to determine those components of FOM training that con-

tribute to the improved performance. The state weights and the centers of the radial basis

functions for each state of the keyword models were separately trained. Small improvements

are obtained if either only the state weights alone (2.6 percentage points) or if the keyword

centers are adapted (3.1 percentage points). In addition, the FOM degrades whenever pa-

rameters in the filler model are adapted. In the result shown in Figure 5-10, an additional

filler model was added for each keyword and radial basis function centers for these filler

models were adapted. This reduced the FOM by 1.1 percentage points. Other experiments

resulted in no improvement or reduced FOM when the filler was adapted.

To separately evaluate the effectiveness of using the FOM gradient versus the effective-

ness of performing gradient backpropagation, a simpler version of FOM back-propagation

training was also explored. Instead of computing FOM gradients as in Figure 5-3, constant

gradients were used for true hits and false alarms along with a threshold which adapted

keyword centers and state weights only when a putative hit score was sufficiently high.

After adjusting the threshold to -50 and the constant gradient values to 0.001 for true hits

and -0.001 for false alarms, it was possible to increase the FOM by 2.9 percentage points.

This is less than the improvement provided by FOM back-propagation training and required

more experimentation to find good threshold and gradient values. It is, however, a simpler

alternative to FOM back-propagation training that may be useful in some situations.

5.6.2 The Effect of Using Different Learning Rate Constants

The choice of learning rate constant q is usually determined though performing some initial

experiments. If the learning rate is too small, then the models are not being trained as

rapidly as possible. If the learning rate is too large, then the amount of change in model

parameters may be too large at each step and the model parameters will diverge from

optimality. A series of experiments was performed in which four different learning rates

were used: 0.125, 0.25, 0.5, and 1.0. The results are shown in Figure 5-11. Notice that

no significant differences can be found between using the learning rate of 0.25 and 0.5.

However, an overly large learning rate (qj = 1.0) caused the wordspotter performance to

degrade. In this thesis, all learning rates in FOM training experiments were set to 0.25.
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5.7 Chapter Summary

Detection of target signals embedded in a noisy background is a common and difficult

problem distinct from the task of classification. The evaluation metric of a spotting system,

called Figure of Merit (FOM), is also different from the classification accuracy used to

evaluate classification systems. FOM training uses a gradient which directly reflects the

impact of a putative hit on the FOM to modify the parameters of the spotting system and

directly maximizes FOM. FOM training does not require careful adjustment of thresholds

anrd target values and has been applied to improve a wordspotter's FOM from 62.5% to

65.8%.

Figure of Merit discriminative training provided a 2.6 percentage point improvement

for the male speakers (64.8% to 67.4%) and a 4.1 percentage point increase in the female

testing set FOM (61.5% to 65.6%). Best performance was obtained when Figure of Merit

training was used to move radial basis function centers and to adjust state weights. Figure

of Merit training is a general technique that can applied to any spotting task where a set

of targets must be discriminated from background inputs. Such tasks including detecting

faults in large systems, detecting abnormal heart beats, and detecting targets in satellite

images.

102



Chapter 6

Voice Transformations

Speech recognizers provide good performance for most users but the error rate is often large

for a small percentage of speakers who are different from those speakers used for training.

One expensive solution to this problem is to gather more training data in an attempt to

sample these outlier users. A second solution, explored in this thesis, is to artificially enlarge

the number of training speakers by transforming the speech of existing training speakers.

This approach is similar to enlarging the training set for optical character recognition by

warping the training character images [17], but is more difficult because continuous speech

has a much larger number of dimensions (e.g. linguistic, phonetic, temporal, spectral) that

differ across speakers. In this thesis, the use of simple linear spectral warping to enlarge

the 48-speaker training database used for wordspotting is explored. The Figure of Merit

was increased by 6.4 percentage points (from 67.4% to 73.8%) for male speakers and 4.9

percentage points (from 65.6% to 70.5%) for female speakers.

6.1 Introduction

Speech recognizers, optical character recognizers, and other types of pattern classifiers used

for human interface applications often provide good performance for most users. Perfor-

mance is often, however, low and unacceptable for a small percentage of outlier users who

are presumably not represented in the training data. One expensive solution to this problem

is to obtain more training data in the hope of including users from these outlier classes.

Other approaches already used for speech recognition are to use input features and dis-

tance metrics that are relatively invariant to linguistically unimportant differences between
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speakers and to adapt a recognizer for individual speakers. Speaker adaptation is difficult

for wordspotting and with poor outlier users because the recognition error rate is high and

speakers often can not be prompted to recite standard phrases that can be used for adapta-

tion. An alternative approach, that has not been fully explored for speech recognition, is to

artificially expand the number of training speakers using voice transformations. Transform-

ing the speech of one speaker to make it sound like that of another is difficult because speech

varies across many difficult-to-measure dimensions including linguistic, phonetic, duration,

spectra, style, and accent. The transformation task is thus more difficult than in optical

character recognition where a small set of warping functions can be successfully applied to

character images to enlarge the number of training images [17]. This chapter demonstrates

how a transformation accomplished by warping the spectra of training speakers to create

more training data can improve the performance of a whole-word wordspotter on a large

spontaneous-speech database.

6.2 Speaker Adaptation Approaches

Traditional methods of speaker adaptation are divided into two different types: active

speaker adaptive methods or passive speaker selection methods. In active adaptation, the

model parameters of the speech recognition system are adjusted to better match the input

from the current speaker. In passive speaker selection method, a model is selected from a

set of models based on the similarity between the current speaker and the training data used

to train the selected speaker model. For this particular database, the limited number of

training tokens per speaker makes training separate models for different clusters of speak-

ers impractical. Another possibility is to estimate some parameters related to the voice

characteristics of the incoming speaker and adapt the model parameters to the incoming

speaker's voice. In this thesis, a spectral scaling approach is explored. It is well known that

formant frequencies are related to a speaker's vocal tract length [77]. In fact, if the vocal

tract is modelled as a series of acoustic tubes, then the formant frequencies are inversely

proportional to the vocal tract length.
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6.2.1 Changing the Frequency Scale

A method of transforming a speaker's voice which utilizes the Sinusoidal Transform Anal-

ysis/Synthesis System (STC) described in [61] has been implemented. This technique at-

tempts to transform one speaker's speech pattern to that of a different speaker. The STC

generates a 512-point spectral envelope of the input speech 100 times a second and also

separates pitch and voicing information. Separation of vocal tract characteristic and pitch

information has allowed the implementation of pitch and time transformations in previous

work [61]. The system has been modified to generate and accept a spectral envelope file

from an input speech sample. We informally explored different techniques to transform

the spectral envelope to generate more varied training examples by listening to transformed

speech. This resulted in the following algorithm that transforms a speaker's voice by scaling

the spectral envelope of training speakers.

An outline of the steps in the procedure is presented below:

1. The original credit card database is upsampled to 10,000 Hz sampling rate from the
original 8,000 Hz sampling rate since the STC system requires speech input with the
sampling rate of 10,000 Hz.

2. The STC system processes the upsampled sample files and generates a 512 point
spectral envelope of the input speech waveform at a frame rate of 100 frames a second
and with a window length of approximately 2.5 times the length of the pitch period.

3. A new spectral envelope is generated by linearly expanding or compressing the spectral
axis. Each spectral point is identified by its index, ranging from 0 to 511. To transform
a spectral profile by a factor of 2, the new spectral value at frequency f is generated
by taking a local average of the spectral values around the original spectral profile at
the frequency of 0.5f. The transformation process is illustrated in Figure 6-1.

4. The transformed spectral value is then used to resynthesize a speech waveform using
the vocal tract excitation information extracted from the original file.

5. The new sample files are downsampled from 10,000 Hz. to 8,000 Hz. The new samples
files are then converted into the mel-scaled cepstra values as described in Figure 4-1.

The procedure outlined above enables the generation of conversation recordings that

have been spectrally scaled. Through informal listening tests, it was determined that ratios

from 0.9 to 1.1 were reasonable for compressing or expanding the frequency scale. How-

ever, as an on-line adaptation approach, the procedure outlined above is too slow. The

STC, algorithm takes approximately 5 times real time to process input speech waveforms
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Figure 6-1: An example of the spectral transformation algorithm where the original spectral
envelope frequency scale is expanded by 2.

106

I I L-

256 
512

I I I I I I



on a Sparc 10. 'To allow for faster transformation, the preprocessing procedure described

in Figure 4-1 was modified to rescale the frequency scale. The mapping procedure similar

to Step 3 listed above was used to remap the FFT coefficients that are calculated during

the mel-scaled filter bank stage of the preprocessing process. All other steps in preprocess-

ing remain the same. This procedure is much faster than relying on the STC transform

algorithm, taking; approximately 1/10th real time on a Sparc 10. Thus, on-line transfor-

mation of speech would be possible with this procedure. However, the STC approach has

the advantage of allowing the transformed speech to be listened to and thus is useful for

determining the appropriate ratios for the rescaling of the frequency scale.

6.2.2 Impact of Spectral Transformation on FOM

After the spectral transformation algorithm was implemented as a part of the preprocessing

procedure, a set of experiments which varied the spectral transform ratio over a range to

determine the effect of spectral transformation ratios on individual FOM was performed.

Figure 6-2 shows the variations in FOM over a range of spectral transform ratios for a

male speaker and a female speaker respectively. For each speaker, a suitable range of

transformation ratios exists that results in a high FOM. The FOM falls off as the spectral

transform ratio is moved away from this range. While the magnitude of change in FOM

varies among the test speakers, most speakers exhibited a tendency to be spotted better at

a particular spectral transform ratio range.

When the spectral transform ratios with the highest FOM for each speaker are chosen

a posteriori, the FOM improves from 71.3% to 73.7% for the male testing set and 67.7% to

69.5% for the female testing set. Such a gain is significant, although such a gain can only be

achieved in real life if the appropriate ratio can be determined for each individual speaker.

Another approach is to spot each conversation several times, each time using a different

scaling ratio. The resulting putative hits can then be combined. Two sets of experiments

in combining the putative hits from multiple runs of the spotting algorithm using different

spectral ratios were conducted. In the first method, the putative hits of the same word at

the same time in the conversation from wordspotters spotting at different frequency scales

were grouped and the putative hit with the highest score was selected. With this method,

the FOM for the male speakers decreased from 71.3% to 70.8% and the female speakers'

FOM changed from 67.7% to 67.9%. In a second set of experiments, the putative hits that
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Figure 6-2: Variation of Figure of Merit for one male speaker (1026.b) and one female
speaker(2883_a) over a range of spectral transform ratios.

were in the same time period in the conversation were grouped together and the average

score was used as the putative hit score. The FOM for the male speakers increased from

71.3% to 71.9% and the female speaker's FOM changed from 67.7% to 68.0%. Both methods

failed to significantly improve the FOM, indicating the difficulty of combining the putative

hits generated from several frequency scales.

6.2.3 Determining a Speaker's Frequency Scale

An alternative approach is to estimate the appropriate frequency scale for an input speaker

and to use the estimated scale in processing the speech from the input speaker. A method

of estimating the proper frequency scale for each speaker was developed. The active speech

segments of each speaker are used for analysis. Each segment is processed by the program

formant from Entropic Research Laboratory Incorporated. The program formant generates

the formant frequencies, bandwidths, pitch, voicing probability, and a cross-correlation

measure [70]. Only strongly voiced portions of the segments are used by choosing frames in

which both the voicing probability and the cross-correlation measures are greater than 0.8.
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The formant frequencies of all the voiced portions are then averaged to derive the average

formant frequencies for each speaker.

After formant frequencies have been calculated for each speaker, the appropriate fre-

quency scale can be estimated in two ways. One way is to calculate the average F3 frequency

of all the training speakers of the same gender, and then calculate the ratio a which satisfies

the following equation:

F3 = a -F3, (6.1)

where F3 is the average F3 frequency over the population and F3 is the average formant

frequency for a test speaker. This method was based on the observation that while formant

one and formant two vary a great deal from vowel to vowel, formant three is relatively

stable among different vowels. Thus, the variation in F3 between speakers can be more

characteristic of the speaker than the vowel and thus can be used as a measure of each

speaker's vocal tract characteristics. In the second method, the ratio a which minimizes

the following expression:
3 F
D a - 1) 2  (6.2)
,a= Fj

is derived through least square estimation.

In a preliminary set of experiments, using the ratio derived from F3 alone, the FOM

increased from 71.3% to 73.4% on the male testing set. Using the ratio a derived from all

three formants as described in Equation 6.2, the FOM increased from 71.3% to 73.3% on the

male testing set. Although the increase in FOM is significant, this on-line adaptation of the

frequency scale approach suffers from the necessity of estimating the frequency scale. During

the experiments, all strong vowel segments from a given speaker were used to calculate the

average formant frequencies. The formant frequencies can not be estimated robustly with

a small number of frames and thus this approach is not suitable for improving performance

rapidly for a novel speaker without supervised training and saying adaptation phrases.

Another approach to improve robustness toward speaker variability that does not require

any on-line adaptation at all was tried. The approach utilizes a priori knowledge about the

source of variability in speech to artificially enrich the training set. This approach of voice

transformation is introduced in the next section.
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6.3 Creating More Training Data with Voice Transforma-

tions

6.3.1 Introduction

Speaker adaptation is difficult for wordspotting because error rates are high and speakers

often can not be prompted to verify adaptation phrases. This thesis introduces a new ap-

proach of increasing performance across speakers by using voice transformation techniques

to generate more varied training examples of keywords as shown in Figure 6-3. Other re-

searchers have used speaker transformation techniques to produce more natural synthesized

speech [31, 47], but using speaker transformations to generate more training data is novel.

Linear warping in the spectral domain is correct when the vocal tract is modelled as a

series of lossless acoustic tubes and the excitation source is at one end of the vocal tract [77].

Wakita showed that if the vocal tract is modelled as a series of equal length, lossless, and

concatenated acoustic tubes, then the ratio of the areas between the tubes determines the

relative resonant frequencies of the vocal tract, while the overall length of the vocal tract

is inversely proportional to the formant frequencies. Linear warping of the frequency scale

is used as the voice transformation method in this thesis.

110

VOICE
TRANSFORMATION

SYSTEM



6.3.2 Experimental Setup

Preliminary research was conducted using linear scaling with spectral ratios ranging from

0.6 to 1.8 to alter test utterances. After listening to the STC transformed speech and

observing spectrograms of the transformed speech, it was found that speech transformed

using ratios between 0.9 and 1.1 is reasonably natural and can represent speech without

introducing artifacts. Using discriminative training techniques such as FOM training carries

the risk of overtraining the wordspotter on the training set and obtaining poor results on the

testing set. To delay the onset of overtraining, each training set conversation was artificially

transformed during each epoch using a different random linear transformation ratio. The

transformation ratio used for each conversation is calculated using the following formula:

ratio - + N(O, 0.06), (6.3)

where a is the transformation ratio that matches each training speaker to the average of

the training set speakers, and N is a normally distributed random variable with a mean of

0.0 and standard deviation of 0.06.

For each training conversation, the long term averages of formant frequencies for for-

mants 1, 2, and 3 are calculated. A least square estimation is then performed to match

the formant frequencies of each training set conversation to the group average formant fre-

quencies. The transformation calculation is performed as described in Equation 6.2. The

transform ratio for each individual conversation is calculated to improve the naturalness

of the transformed speech. In preliminary experiments, each conversation was transformed

with fixed ratios of 0.9, 0.95, 1.05, and 1.1. However, for a speaker with already high for-

mant frequencies, pushing the formant frequencies higher may make the transformed speech

sound unnatural. By incorporating the individual formant matching ratio into the trans-

formation ratio, speakers with high formant frequencies are not transformed to very high

frequencies and speakers with low formant frequencies are not transformed to even lower

formant frequency ranges.

Male and female conversations from the NIST credit card database were used separately

to train separate wordspotters. Both the male and the female partition of data used 24

conversations for training and 11 conversations for testing. Keyword occurrences were

extracted from each training conversation and used as the data for initialization of the neural
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network wordspotter. Also, each training conversation was broken up into sentence length

segments to be used for embedded reestimation in which the keyword models are joined with

the filler models and the parameters of all the models are jointly estimated. After embedded

reestimation, Figure of Merit training as described in Chapter 5 was performed for up to

10 epochs. During each epoch, each training conversation is transformed using a transform

ratio randomly generated as described above. The performance of the wordspotter after

each iteration of training is evaluated on both the training set and the testing set.

6.3.3 Wordspotting Results

Training and testing set FOM scores for the male speakers and the female speakers are

shown in Figure 6-4 and Figure 6-5 respectively. The x axis plots the number of epochs of

FOM training where each epoch represents presenting all 24 training conversations once.

The FOM for wordspotters trained with the normal training conversations and wordspotters

trained with artificially expanded training conversations are shown in each plot. After the

first epoch, the FOM improves significantly. With only the original training conversations

(normal), the testing set FOM rapidly levels off while the training set FOM keeps on

improving.

When the training conversations are artificially expanded, the training set FOM is below

the training set FOM from the normal training set due to more difficult training data.

However, the testing set FOM continues to improve as more epochs of FOM training are

performed. When comparing the FOM of wordspotters trained on the two sets of data after

ten epochs of training, the FOM for the expanded set was 2.9 percentage points above the

normal FOM for male speakers and 2.5 percentage points above the normal FOM for female

speakers.

6.3.4 Artificial Variation in Initialization

The improved result obtained by using artificially transformed speech during FOM training

was followed by a set of experiments in using artificially transformed speech during ini-

tialization. The distribution of keywords among the training speakers is uneven and there

are many words that are only spoken by a few speakers in the training set. For example,

the word limit was spoken by only 5 out of 24 male training set speakers. Similarly, the

word account was spoken by only 3 out of 24 female training speakers. Table 2.5 shows
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Figure 6-4: Average detection accuracy (FOM) for the male training and testing set versus
the number of epochs of FOM training.
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Figure 6-5: Average detection accuracy (FOM) for the female training and testing set versus
the number of epochs of FOM training.
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Figure 6-6: The training methodology for Figure of Merit training in combination withvoice transformations. The models are first trained using maximum likelihood estimation onoriginal data and artificially transformed data. Then the models are used to spot artificiallytransformed conversations and the resulting true hits and false alarms are used to train themodels discriminatively.

that certain keywords were spoken by very few speakers. Thus, the keyword models whichare initialized with the excised keyword examples may not be sufficiently general to spot
the same keyword spoken by new speakers. To improve the generalization of the keywordmodels, it was decided that artificially transformed speech would be used starting at the
first stage of maximum likelihood training. The new training methodology is described in
Figure 6-6.

Experiments were performed in which the amount of artificially transformed speechwas varied to determine the effect of adding artificial speech. In addition to the baseline
experimental results from Chapter 5, 3 sets of experiments were conducted using varying
amounts of artificially transformed speech. The experimental setup for each experiment is
described in Table 6.1. The transformation ratios were chosen so that with no transformed
speech during initialization, no transformed speech is used during FOM training either.
When a large amount of transformed speech are used during initialization, then speech
transformed with greater variability are used during FOM training.

115

r'

s

ro

=,



Table 6.1: The amount of artificial speech added to the training set and the standard
deviation of the normal function used to transform conversations during FOM training.

Amount of Speech Std. Deviation of Normal Function during FOM training

OX 0.0
1X 0.0125
3X 0.0375
5X 0.06

The experimental results are shown in Table 6.2 and Table 6.3 for the male testing

set and the female testing set respectively. The results are also plotted in Figure 6-7 and

Figure 6-8 to allow visualization. For the male testing set, one trend which emerges is

that adding artificial training data does not improve FOM during the maximum likelihood

estimation training stage (Estimation and Embedded Estimation). In fact, adding more

artificial training data tends to decrease FOM during the maximum likelihood training

stage. But after five iterations of Figure of Merit Training, it is clear that the more artificial

da~ta added, the better the FOM. This result is due to the fact that adding more artificial

training data during maximum likelihood training makes the output distributions of the

keyword state models broader. These keyword models thus are more likely to pick up false

alarms. Since only the keyword examples are used to train each keyword model during

maximum likelihood training, such an effect is understandable.

However, during Figure of Merit training, since both true hits and false alarms are

used to adjust the parameters of the keyword models, the keyword models are trained to

discriminate between true hits and false alarms. Thus the keyword models become more

selective and do not generate as many false alarms, meanwhile, the better generalization

ability is still retained. For example, by comparing Table 5.2 and Table 6.4, it becomes clear

that the detection rates of most keywords are increased by adding 5 transformed copies of

the original data into the training set. Similar trends can be observed for the female

speakers in Table 6.5. Furthermore, keywords for which very few speakers are represented

saw big increases in FOM. For example, the word discover has only four male speakers

in the training set. The FOM improved from 0.0% (Table 5.2) to 50.0% (Table 6.4) by

performing voice transformations in addition to Figure of Merit training. Similarly, the

word account has only three female speakers in the training set. The FOM improved from
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Table 6.2: Male testing set FOM with varying amount of artificial training data.

Training Stage
[Amt. of Artificial Data Estimation Embedded Estimation FOM Training (5 Iter.)

OX 56.0% 64.8% 67.4%
1X 54.4% 63.8% 69.6%
3X 52.1% 61.7% 71.4%
5X 53.4% 61.6% 73.8%

Table 6.3: Female testing set FOM with varying amount of artificial training data.

Training Stage
Amt. of Artificial Data Estimation Embedded Estimation FOM Training (5 Iter.)

OX 52.7% 61.5% 65.6%
IX 55.5% 61.7% 70.1%
3X 53.9% 63.9% 69.6%
5X 51.4% 61.1% 70.5%

39.8% (Table 5.5) to 72.7% (Table 6.5) by performing voice transformation in addition to

Figure of Merit training. Such big gains demonstrate the particular effectiveness of using

voice transformations to increase variability for infrequently occurring keywords.

The overall FOM for the combined male/female testing set is shown in Table 6.6. The

Figure of Merit is now 71.9%. In addition, the added variability improved the effect of

Figure of Merit training. The overall results of combining Figure of Merit training and

voice transformation is shown in Table 6.7. The overall FOM improved from 62.5% to

71.9%. Also, beside the word american-express which was easy to spot, the FOMs for all

other keywords were improved. The word account improved the most with a 26.5 percentage

point increase.

6.4 Training a Wordspotter with Synthetic Speech

An alternative approach to enlarging the training data is to synthesize speech. Blomberg

et al. have tried using synthetic speech to create examples in a speech recognition sys-
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Figure 6-7: FOM after estimation, embedded estimation, and FOM training with OX, IX,
3X, and 5X of artificial data added to the original male training data.
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Figure 6-8: FOM after estimation, embedded estimation, and FOM training with OX, 1X,
3X, and 5X of artificial data added to the original female training data.
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Table 6.4: The per-keyword and overall FOM for the male testing set after 5 iterations
of FOM training with an artificially enlarged training set. (The two numbers under True
Hits represent the number of true hits detected over the number of true hits present in the
conversations. The two numbers under False Alarms represent the number of false alarms
over the number of putative hits generated.)

account 69.1% 7/8 87.5% 59/66 89.4%
americanexpress 87.5% 7/8 87.5% 0/7 0.0%

balance 66.9% 7/7 100.0% 32/39 82.1%
bank 69.4% 17/19 89.5% 109/126 86.5%
card 64.6% 48/49 98.0% 143/191 74.9%
cash 92.8% 15/15 100.0% 93/108 86.1%

charge 81.3% 20/20 100.0% 75/95 78.9%
check 79.6% 27/27 100.0% 95/122 77.9%
credit 66.0% 12/13 92.3% 55/67 82.1%

creditcard 96.3% 72/73 98.6% 35/107 32.7%
discover 50.0% 1/2 50.0% 2/3 66.7%
dollar 86.6% 14/14 100.0% 116/130 89.2%

hundred 51.9% 10/14 71.4% 53/63 84.1%
interest 86.4% 11/12 91.7% 97/108 89.8%

limit 46.0% 4/4 100.0% 66/70 94.3%
money 53.3% 11/11 100.0% 137/148 92.6%
month 73.2% 22/22 100.0% 103/125 82.4%

percent 54.7% 10/10 100.0% 93/103 90.3%
twenty 40.5% 7/10 70.0% 99/106 93.4%

visa 31.9% 14/17 82.4% 79/93 84.9%
Overall 73.8% 336/355 94.6% 1541/1877 82.1%
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Table 6.5: The per-keyword and overall FOM for the female testing set after 5 iterations
of training with an artificially enlarged training set. (The two numbers under True Hits
represent the number of true hits detected over the number of true hits present in the
conversations. The two numbers under False Alarms represent the number of false alarms
over the number of putative hits generated.)

Keyword FOM ITrue Hits Det % I False Alarms FA %
account 72.7% 3/4 75.0% 10/13 76.9%

americanexpress 75.0% 3/4 75.0% 1/4 25.0%
balance 62.0% 6/7 85.7% 27/33 81.8%

bank 82.8% 6/6 100.0% 62/68 91.2%
card 75.2% 33/33 100.0% 67/100 67.0%
cash 54.4% 15/15 100.0% 81/96 84.4%

charge 79.0% 16/17 94.1% 42/58 72.4%
check 24.6% 7/8 87.5% 67/74 90.5%
credit 86.5% 21/21 100.0% 66/87 75.9%

credit_card 95.7% 39/39 100.0% 40/79 50.6%
discover 87.5% 7/8 87.5% 17/24 70.8%
dollar 67.3% 10/11 90.9% 61/71 85.9%

hundred 33.3% 1/3 33.3% 1/2 50.0%
interest 84.8% 19/20 95.0% 23/42 54.8%

limit 51.8% 5/7 71.4% 135/140 96.4%
money 29.2% 13/14 92.9% 209/222 94.1%
month 49.4% 15/17 88.2% 129/144 89.6%
percent 86.8% 8/9 88.9% 44/52 84.6%
twenty 22.4% 5/6 83.3% 88/93 94.6%

visa 58.0% 9/9 100.0% 118/127 92.9%
Overall 70.5% 241/258 93.4% 1288/1529 84.2%
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Table 6.6: The per-keyword and overall FOM for the combined testing set after 5 iterations
of training with an artificially enlarged training set. (The two numbers under True Hits
represent the number of true hits detected over the number of true hits present in the
conversations. The two numbers under False Alarms represent the number of false alarms
over the number of putative hits generated.)

Keyword FOM True Hits I Det % False Alarms FA %
account 68.6% 10/12 83.3% 69/79 87.3%

americanexpress 83.3% 10/12 83.3% 1/11 9.1%
balance 65.0% 13/14 92.9% 59/72 81.9%

bank 71.3% 23/25 92.0% 171/194 88.1%
card 68.8% 81/82 98.8% 210/291 72.2%
cash 76.4% 30/30 100.0% 174/204 85.3%

charge 76.8% 36/37 97.3% 117/153 76.5%
check 68.6% 34/35 97.1% 162/196 82.7%
credit 78.2% 33/34 97.1% 121/154 78.6%

credit card 96.3% 111/112 99.1% 75/186 40.3%
discover 80.0% 8/10 80.0% 19/27 70.4%
dollar 77.7% 24/25 96.0% 177/201 88.1%

hundred 52.8% 11/17 64.7% 54/65 83.1%
interest 79.8% 30/32 93.8% 120/150 80.0%

limit 50.0% 9/11 81.8% 201/210 95.7%
money 39.6% 24/25 96.0% 346/370 93.5%
month 63.1% 37/39 94.9% 232/269 86.2%
percent 69.2% 18/19 94.7% 137/155 88.4%
twenty 31.2% 12/16 75.0% 187/199 94.0%

visa 36.8% 23/26 88.5% 197/220 89.5%
Overall 71.9% 577/613 94.1% 2829/3406 83.1%
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Table 6.7: The per-keyword and overall FOM for the combined testing set for the baseline
system, the system trained with 5 iterations of FOM training on expanded data, and the
change in FOM.

S Keyword FOM Before FOM After Change in FOM
account 42.1% 68.6% 26.5%

american_express 83.3% 83.3% 0.0%
balance 62.7% 65.0% 2.3%

bank 59.6% 71.3% 11.7%
card 50.6% 68.8% 18.2%
cash 62.7% 76.4% 13.7%

charge 73.7% 76.8% 3.1%
check 62.2% 68.6% 6.4%

credit 63.9% 78.2% 14.3%
credit _card 94.9% 96.3% 1.4%

discover 70.0% 80.0% 10.0%
dollar 56.4% 77.7% 21.3%

hundred 39.0% 52.8% 13.8%
interest 67.2% 79.8% 12.6%

limit 44.5% 50.0% 5.5%
:money 35.8% 39.6% 3.8%
month 53.1% 63.1% 10.0%

percent 61.2% 69.2% 8.0%
twenty 25.1% 31.2% 6.1%

visa 29.9% 36.8% 6.9%
Overall 62.5% 71.9% 9.4%
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tems [4, 3]. In one experiment, synthesized speech samples of 26 Swedish words were used

as templates in a, dynamic time warping recognition system. It was found that the syn-

thetic word templates performed adequately, although worse than any of the human speech

templates even when some adaptation is performed [4]. Since the task in the experiment

was isolated word recognition, the variability which exists between different words in the

vocabulary may be large enough so that even synthetic speech examples can model the

differences between different words.

Experiments were conducted in which keyword examples were generated with an artifi-

cial voice synthesizer [21]. Since four male voices are currently available in this synthesizer,

four examples of each keyword were generated. Telephone line simulators were used to gen-

erate the spectral distortions and noises that occur in telephone transmission [36]. Three

different types of channel conditions were used on each keyword sample, resulting in a total

of 12 examples for each keyword. These twelve keyword examples and samples of random

speech generated from the synthesizer are used to train keyword models and the filler model

respectively using maximum likelihood estimation.

6.4.1 Experimental Results

The wordspotter trained with synthetic speech had a FOM of 6% on the male testing set.

Since this level of performance is much lower than that of the baseline wordspotter, training

with synthetic speech was not pursued further. Upon examining the per-word result of the

wordspotter, it was found that the detection rate for all words was only 18.6%. Apparently

the keyword models trained on synthetic speech from this particular speech synthesizer do

not model the keywords in natural speech well enough. Other synthesizers such as DECtalk

could have been explored but this line of research was not pursued since it would fall outside

the scope of this thesis [72].

6.5 Summary

Lack of training data has always been a constraint in training speech recognizers. This

research presents a voice transformation technique which increases the variety among train-

ing samples. The resulting more varied training set provided up to 6.1 percentage points

of improvement in the Figure of Merit of a high performance wordspotter. Much bigger
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improvements occurred on words with limited number of training speakers. For example,

the FOM for the word discover increased from 0.0% to 50.0% on the male testing set and

the FOM for the word account increased from 39.8% to 72.7% on the female testing set.

This technique can also be applied to other speech recognition systems such as continuous

speech recognition, speaker identification, and isolated word recognition.
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Chapter 7

Human Wordspotting

Experiments

7.1 Introduction

One question which frequently arises in speech recognition research is the performance of

the machine versus the performance of human beings. Human beings have so far shown

much higher performance than machines in speech recognition and dictation. For example,

Ebel and Picone recently tested human listening performances on high quality read speech

with unconstrained vocabulary [19]. They played the original speech segments and speech

segments corrupted with signal to noise ratios of 22 dB, 16 dB and 10 dB and found that

human performance is an order of magnitude above the machine performance. On average,

the human word error rate was in the range of 2%. The best performance achieved by

continuous speech recognizers was in the range of 7 to 12% [57].

There has been no published report on the performance of human beings on the task

of wordspotting for the Switchboard credit card database. To analyze the effectiveness of

the wordspotting system, excised segments of the speech corpus were extracted from the

testing set and played to human subjects. All the true occurrences of the keywords were

selected. The ones that the wordspotter successfully picked out (true hits) were excised

with the boundary labels provided by the wordspotter. The true occurrences that the

wordspotter missed (misses) were extracted using the boundary provided by the NIST

word transcripts. To prevent the human listener from biasing the decision process based on
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the frequency of occurrence of false alarms vs. true hits, an equal number of false alarms

and true occurrences were selected from the wordspotter output. The highest scoring false

alarms were selected first and the selection stopped either when the number of false alarms

equaled to the combination of true hits and misses, or when the pool of false alarms are

exhausted. The boundary labels that the wordspotter generated for the false alarms were

used as the basis to excise the speech segments from the evaluation conversations.

A complete wordspotting experiment, in which each subject listens through all the

testing conversations and marks the occurrence of the keywords was ruled out because

it would be too time consuming. The conducted experiments require less of the human

subjects' time and also allow evaluating the benefit of context in discriminating between

true hits and false alarms.

7.2 Experimental Setup

The human subject sits in an enclosed quiet room in which outside noises are attenuated.

Speech segments have a sampling rate of 8000 Hz and are played through a Digital/Analog

conversion board system connected to a Sun 4 workstation. The human subject wears a

Sennheiser headphone and the playback volume is adjusted to suit each human subject's

comfort level.

During the experiment, the human subject hears each segment played once and answers

whether or not the pre-specified keyword occurs in the segment. The segments for each

keyword are played successively in a randomized sequence. The whole test consists of 1,157

utterances and the number of true hits and false alarms played are shown in Table 7.1.

Three sessions of listening experiments were performed with each human subject. In the

first session, the time boundaries that are generated from the wordspotter are used to

excise the speech segments. In the second session, the boundaries of the speech segments

are extended by 0.1 second at both the beginning and the end. In the third session, the

boundaries of the speech segments are extended by two seconds at both the beginning and

the end. The first set of speech segments are what the wordspotter system hypothesized

to be keyword occurrences. In preliminary experiment, it was found that the wordspotter

frequently detected keywords based on strong vowel sounds and the surrounding consonants

are frequently left out of the hypothesized occurrence. As a result, many words that were
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Table 7.1: Distribution of True Hits, Misses,
human listening experiment

and False Alarms of 20 keywords used in

Keyword # of True Hits # of Miss # of False Alarms
account 8 4 12

american express 10 2 0
balance 13 1 14

bank 22 3 25
card 81 1 82
cash 30 0 30

charge 36 1 37
check 32 3 35
credit 31 3 34

credit card 111 1 59
discover 7 3 6
dollar 24 1 25

hundred 10 7 17
interest 29 3 32

limit 9 2 11
money 21 4 25
month 37 2 39

percent 16 3 19
twenty 6 10 16

visa 22 4 26

Total 555 58 544

excised based on the output of the wordspotter are only portions of a word. The second set of

experiments extended the boundaries long enough so that a word is completely represented.

However, the human subjects still do not have enough context to allow the use of grammar

and prosody. In the third set of speech segments, the boundaries are extended for two

seconds in each direction. Thus, the speech segments contain partial or full sentences and

the human subject can use grammar, prosody, and short term speaker adaptation to improve

his detection of the keywords.

7.3 Experimental Results

Experiments were conducted in which the human listener's judgment was used to filter out

putative hits as shown in Figure 7-1. If a putative hit from the wordspotter was classified as
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Figure 7-1: Using human listener to filter the putative hits generated by the wordspotter.

a false alarm by the human subject, then that putative hit was removed from the putative

hit list. The result of this methodology is that a human subject's performance on the words

missed by the wordspotter does not affect the final result since in a real system that uses

human beings to perform second level filtering, the misses would not be made available to

the human listener. The improvements in Figure of Merit through having a human filtering

the putative hits are quite substantial for certain keywords, as shown in Table 7.2. The

overall Figure of Merit increased by more than 10 percentage points. For the word visa,

the increase was more than 20 percentage points. The human subjects suggested that it

was frequently possible to reject a putative hit after hearing portions of the putative hit

that could not have occurred in the true keyword. For example, the top 15 false alarms for

the word visa were all successfully filtered out when the boundary was 0.1 seconds around

both sides of each putative hit. Table 7.3 lists the transcription of the top 15 false alarms

for visa. One immediately sees that most of the top scoring false alarms have the phoneme

/iy/ or /i/ in them, such as the words give, me, easy, early, steve, and peace. Although

these false alarms have vowels that sound similar to the strong vowel in the keyword visa,

the consonants are different enough to allow the human subjects to recognize that they are

false alarms. The wordspotter system apparently does not enforce as strong a constraint.

In general, the current wordspotter has the weakness of not placing enough emphasis

on consonants to discriminate between the keywords and the false alarms. For example,

gas was among the top scoring false alarms for the keyword cash. While both words consist

of a sequence of /stop/ /vowel/ /fricative/, the beginning stop of the word gas was a good

enough cue for the human subject to discriminate between the two words. Such examples

are found for other keywords as well. For example, the word charge is frequently picked
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Table 7.2: The per-keyword and overall FOM for the combined testing set for the baseline
system and the system using Subject 2 to filter the top scoring putative hits and with misses
not counted.

Keyword FOM FOM Change High Scoring
Before After in FOM False Alarms

account 41.3% 41.4% 0.1% are counting, found
americanexpress 83.3% 83.3% 0.0% None

balance 62.1% 81.8% 19.7% account, down
bank 59.8% 63.5% 13.7% back, things
card 64.4% 80.9% 16.5% car, far, charge
cash 74.7% 82.2% 7.5% passion, cats, gas

charge 71.8% 89.7% 17.9% sure, cards
check 69.4% 79.8% 10.4% protection, kept
credit 71.1% 86.8% 15.7% crazy, describing

credit_card 94.2% 94.2% 0.0% credit when, that card
discover 70.0% 70.0% 0.0% especially, go
dollar 74.5% 83.8% 9.3% without, follow

hundred 51.0% 57.6% 6.6% can deduct, another
interest 77.8% 86.0% 8.2% when it's, just

limit 46.7% 48.3% 1.6% might, that one
money 39.0% 53.4% 14.4% myself, month
month 70.2% 84.4% 14.2% mom's, not
percent 62.7% 82.2% 19.5% never send, sinclair
twenty 25.2% 34.6% 9.4% once, of these

visa 40.1% 66.0% 25.9% give, me
Overall 68.9% 79.0% 10.1%
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Table 7.3: The false alarm tokens that are successfully filtered by Subject 2 and the actual
transcriptions.

Conv Start Duration (Score Transcription
sw2710_b 39.84 0.31 48.6 give
sw2710_b 583.83 0.39 40.2 me
sw2710_b 42.51 0.33 35.47 easy
sw3409_a 216.58 0.35 34.41 early
sw2987-b 51.71 0.35 29.94 steve
sw2682_a 457.55 0.29 27.6 you something
sw2987.b 31.47 0.50 25.80 use the
sw2682_a 165.18 0.28 25.40 you see
sw2987.b 105.59 0.26 23.88 to be that
sw3751.a 29.69 0.36 23.43 you use a
sw1026-b 6.26 0.39 22.19 really
sw2987-b 158.77 0.38 21.78 got to use
sw2987-b 266.57 0.30 21.12 teeth
sw2710.b 413.94 0.27 17.78 peace of
sw2710_b 374.35 0.30 17.10 fifteenth of

up by the wordspotter as a false alarm of the word card. While the wordspotter picks out

keywords primarily by the longer duration vowels in each keyword, human subjects were

able to pick up discriminating cues which separate the keywords from the false alarms.

The inability to pick up subtle differences between similar sounding phonemes is a common

failing of modern speech recognition systems. For example, Duchnowski's results showed

that the phoneme /g/ was most frequently confused with the phoneme /k/ [18].

The overall performance of the human subjects in filtering out false alarms is shown in

Table 7.4 and plotted in Figure 7-2. When the exact boundary from the wordspotter was

used, Subject 1 improved the FOM by 4.5 percentage points (68.9% to 73.4%). Subject 2

actually decreased the FOM by 0.9 percentage point (68.9% to 68.0%) because many word

segments contained only portions of the keywords and these segments were rejected. When

window size around the speech segments is extended by 0.1 second, Subject 1 improved the

FOM by 8.6 percentage points (68.9% to 77.5%) while Subject 2 improved FOM by 10.1

percentage points (68.9% to 79.0%). In this session, the word in question occurs completely

in the excised segments, but not enough surrounding words are included to allow the use of

grammar and prosody. In session 3, the window size around each excised speech segment was

131



Table 7.4: FOM after using humans to filter putative hits.

Window Size
Listener Exact Boundary 0.1 Sec. Window 2.0 Sec. Window

I I
68.9%
77.5%
79.0%

i
83.3%

68.9%
82.8%
83.3%
83.3%

extended to 2 seconds in each end. With enough words in the speech segments to provide

some context, Subject 1 increased FOM by 13.9 percentage points (68.9% to 82.8%). Notice

that the performance of Subject 1 is very close to perfect performance on this test. The

perfect performance is calculated by rejecting all false alarms in the listening tests while

accepting all true hits. The FOM for perfect rejection is not 100.0% because there are still

misses that were not detected. Also, there are lower scoring false alarms that were not

listened to by the human subjects and thus could not have been rejected.

The gap in human performance between the second session and the third session is

up to 5.3 percentage points. Interestingly, such a gap correlates with the difference in

performance between a large vocabulary wordspotter running with grammar and a large

vocabulary wordspotter running without grammar. Carlson has performed experiments

in which she used a null grammar instead of the estimated bigram in a large vocabulary

continuous speech wordspotter and the FOM dropped from 75.0% to 69.4% [6]. With a null

grammar, all words are equally likely to follow any given word. With an estimated bigram,

the probability of one word following another word is estimated from the Switchboard

credit card transcripts provided by NIST. Since in reality words do frequently follow other

related words, such as card following credit, using the bigram provides more constraint on

the occurrence of words and improves wordspotting performance. Human beings rely on

the same phenomenon to discriminate between similarly sounding words. For example, the

/k a r/ sound in the phrase "I have two cars in my garage" and the phrase "I have two cards

in my wallet" would be very confusable if the surrounding words are not used to determine

whether cars or cards is being said.

In Table 7.4, human subjects' performance on the misses are not counted because the

misses would not be presented if human subjects were used as a secondary filter to the
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Figure 7-2: Results from using human subjects to filter the putative hits generated by the
wordspotter.
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Table 7.5: FOM after using humans to filter putative hits and counting human detection
of misses.

Window Size
Listener Exact Boundary 0.1 Sec. Window 2.0 Sec. Window
original 68.9% 68.9% 68.9%
Subjecti 82.7% 86.9% 92.3%
Subject2 77.3% 87.4% 92.8%
perfect 92.8% 92.8% 92.8%

output of the wordspotter. However, it would be interesting to know how well human

subjects can detect keyword occurrences that were missed by the wordspotter. Table 7.5

lists the FOM when the misses that human subjects detected correctly are counted and

added to the putative hit list with the highest score possible. Figure 7-3 plots the same

result graphically. As one can see, the FOM improved substantially when the misses are

counted. Even with the exact boundary, Subject 1 improved the FOM from 73.4% to 82.7%

when the misses detected by Subject 1 are counted. For session 3, the FOM from Subject

1 is 92.3%, very close to 92.5% from a perfect performance. The perfect performance is

not 100.0% because there are still lower scoring false alarms that were not played to the

human subjects and thus could not have been removed. After listening to the words that

the wordspotter missed, no clear rules could be derived which define why some speakers

are easier to comprehend. When the input conversation contains a new variability that

the wordspotter had not been exposed to before, the wordspotter performs inadequately.

Fbr example, only one example for the keyphrase american express was missed. In this

particular case, the speaking rate is very slow and the wordspotter was not able to cope

with the large number of frames.

7.4 Previous Listening Experiments

While there have not been other human listening experiments for the wordspotting task,

there have been experiments comparing the performance of human versus machines in other

tasks. Recently ARPA organized a benchmark test on large vocabulary speech transcription

tasks. In one set of experiments, sentences taken from Wall Street Journal articles are read

and used as input for a transcription system. Results are presented by Pallett et al. on the
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Figure 7-3: Results from using human subjects to filter the putative hits generated by the
wordspotter and to detect the keyword occurrences missed by the wordspotter.
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Table 7.6: Word error rates on continuous speech, human vs. machines.

Noise Compensation No Compensation
22 dB 16 dB 10 dB 22 dB 16 dB 10 dB inf

System W.E. W.E. W.E. W.E. W.E. W.E. W.E.
cu-htk4 9.4% 13.4% 19.8% 41.9% 59.4% 84.7% 7.2%

ibm2 8.4% 10.0% 12.8% 15.4% 42.2% 77.4 % 7.2%
sri3 8.4% 9.8% 12.2% 11.1% 18.4% 35.4 % 6.7%

human (open) - - - 2.1% 2.1% 2.1% 2.0%
human (closed) - - 0.9% 1.0% 1.1% 0.9%

performance of different sites on a continuous speech recognition task [57]. Performances of

human subjects on the same task are presented by Ebel et al [19]. A summary of machine

performance versus human performance is shown in Table 7.6. In this experiment, different

levels of signal to noise ratio (SNR) were created by adding a noise recorded in a car traveling

on the highway to the original clean speech recording. The magnitude of the noise added

is adjusted to create the appropriate SNR. The machine performance was evaluated under

three conditions:

1. The system uses samples of noise for compensation.

2. The system is not adapted to the noise source at all.

3. The system used an input that was clean speech.

The human performance is evaluated under two conditions:

1. The human's transcription is directly compared with the true labels (open condition).

2. The human's transcription was processed by replacing words that are out of the vo-

cabulary with similar sounding words in the vocabulary (closed condition).

It is clear that human performance is still much better than machine performance,

especially when the input is noisy. With a SNR of 10 dB, the error rates of machines are

ten times that of human beings under the closed condition. Even when the input consists of

clean speech, the error rates of machines are still about 7 times worse than that of human

beings.
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7.4.1 Comparison Between the Wordspotting Tests and the Transcription

Tests

Upon seeing the relatively low error rates in Table 7.6, one may wonder why the current

wordspotting system is performing only with a FOM of about 70%. While FOM is not

strictly comparable to the word error rate, the large gap does bring questions.

One reason for the discrepancy is the difficulty of the databases. The Switchboard credit

card database is collected over the telephone while the Wall Street Journal is high quality

speech recorded with a microphone. Also, the Switchboard credit card database consists of

two way conversations, while the Wall Street Journal database consists of read speech, and

therefore the problem of crosstalk does not occur in the Wall Street Journal database.

Another factor is the difference between spontaneous speech and read speech. Recently

Daly has performed an analysis of a database of spontaneous commands to a city guide

system [11]. Her results show that in spontaneous speech people speak with much more

disfluencies. In the credit card database, people often interject and hesitate by saying words

such as uh-hum, sure, yeah. Such disfluencies make the task more difficult for the speech

recognizer.

Lastly, even when the disfluencies are taken into account, the speaking styles of un-

constrained, regular conversation and read speech are very different. The researchers at

BBN have performed experiments in which sentences from the Switchboard database, in-

cluding the disfluencies, and Wall Street Journal articles are read by human subjects and

recorded with a high quality microphone [20]. The new speech database was used as input

to a speech recognizer. There was still a gap of about twenty percentage points (27.5%

versus 8.8%) in word error rate between the Switchboard sentences and the Wall Street

Journal sentences. There are proportionally more function words and short words in the

Switchboard sentences. But even for words of similar length, the word error rate on the

Switchboard sentences is still higher.

Given these differences between the Switchboard database and the Wall Street Jour-

nal database, it is not surprising that continuous speech recognition performance on the

Switchboard database is much worse, with word error rates in the range of 55% [15]. Thus

the FOM of around 70% is not unreasonable.
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7.5 Chapter Summary

This chapter describes experiments in which two human subjects tried to detect occurrences

of keywords in excised segments from the Switchboard database. Three types of segments,

those containing true hits, those containing false alarms, and those containing misses were

used in the experiment. Human subjects were able to discriminate between true hits and

false alarms when the complete words were played out. After an analysis of the high

scoring false alarms, it was found that the current wordspotting system detects keywords

mostly by spotting for the occurrence of vowels that are part of the keyword. Consonants

which discriminate between true hits and false alarms are not used by the wordspotter

sufficiently. The wordspotter system is currently still about 20 percentage points below

human performance and much future work remains to be done.

138



Chapter 8

Discussion

'The algorithms developed in this thesis can be evaluated along two different dimensions:

1. How well do they improve a wordspotting system?

2. What lessons have been learned that can be applied elsewhere?

Section 8.1 describes the results from using the algorithms presented in this thesis to

train wordspotters that were used to spot the NIST September 1992 official testing set.

Because results from other sites are available for this database, some comparison can be

made between the whole-word based wordspotter and those of other sites. The performance

of the whole-word based system presented in this thesis also compares favorably to large

vocabulary continuous speech recognition systems. Section 8.2 compares the characteristics

of the whole-word wordspotting system described in this thesis to a large vocabulary con-

tinuous speech recognition (LVCSR) system developed at Lincoln Laboratory. The main

results are that the whole-word system uses orders of magnitude less storage and computa-

tion resources and performs very closely to a LVCSR system. In Section 8.3, other possible

extensions and applications of the results of this thesis are suggested.

8.1 Results on the Official Test Set

At the conclusion of research in this thesis, the methodology described throughout this

thesis was used to train a wordspotter. All 35 conversations for each gender in the NIST

database were used to train a wordspotter for the corresponding gender. The wordspotters

were trained with five sets of transformed database plus the original database. Training
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included maximum likelihood estimation and Figure of Merit Training with the artificially

enlarged training set. The resulting wordspotters were used to spot the conversations in the

NIST official testing set of September 1992. The results from other sites are provided by

NIST and show the performance of each site in Fall, 1992. The performance of the system

developed in this thesis was obtained in Spring, 1995.

Figure 8-1 plots the FOM of systems developed by the various sites. The Lincoln whole-

word wordspotter with FOM training and voice transformation provided the highest FOM

of all whole-word wordspotters. On this testing set, the wordspotter described in this thesis

has a FOM of 64.2%. The next highest performing whole-word wordspotter is from BBN

(obtained in Fall, 1992) with a FOM that is more than 10 percentage points lower (53.54%).

The CMU system, based on discriminative training of a TDNN system, achieved a FOM of

51.04% (obtained in Fall, 1992). The best performing wordspotter among all the entrants is

the BBN-LVCSR system with a FOM of 69.2% (obtained in Fall, 1992) [67]. In the summer

of 1993, BBN reported improvements in their LVCSR system and a new FOM of 75.4% on

the NIST official testing set [34]. LVCSR systems, as shown in the Section 8.2, are orders

of magnitude more complex than a whole-word system. A whole-word system can easily

be implemented on single DSP chips or personal computers and work with relatively rapid

training. Large vocabulary recognizers require fast processors with rapid access to large

memories and long complex training procedures. The other LVCSR system was from SRI

International with a FOM of 59.88% (obtained in Fall, 1992). This system is based on

the SRI DECIPHER continuous speech recognition system and utilizes a lexicon of up to

6900 words. However, it generates putative hits by using the Viterbi decoding approach

described in Section 4.5.1. As explained in Section 4.5.2, the Viterbi decoding method is

limited to generate only one putative hit at any given time and does not perform as well as

the peak-picking method. The BBN-LVCSR system also utilizes the peak-picking method

and this difference may explain the gap between the performance of the SRI system versus

the BBN system. The Figure of Merit summarizes the information contained in a Receiver

Operating Characteristic (ROC) curve, which is a plot of true detection rate versus the false

alarm rate. Figure 8-2 shows the ROC curves from the BBN-LVCSR, the system developed

in this thesis (Lincoln-WW), the whole-word based system from BBN (BBN-WW), and

the whole-word based system from CMU (CMU-WW). The system developed in this thesis

clearly surpasses the performance of the other whole-word based systems that were tested
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Figure 8-1: Figure of Merit of different sites on the September 1992 Official Testing Set.

in Fall, 1992. The group at BBN has not worked on its whole-word based system since

then [51].

The other low ranking systems are from Lockheed and ITT. The Lockheed system was

developed in 1987 by Daniel Griffin and utilizes filter bank energies as input features and

dynamic time warping to match the input pattern to keyword templates [49]. The system

was submitted mainly to evaluate how much wordspotting performance has improved since

1987. The ITT system is also based on a dynamic time warping system and the performance

is clearly not as good as HMM based systems.

8.2 Comparison to Large Vocabulary Continuous Speech

Recognition Based Systems

Results from the whole-word wordspotter described in this thesis and results obtained with

a large vocabulary continuous speech recognition (LVCSR) system developed at Lincoln

Laboratory [7] have allowed a comparison of the performance of the whole-word based

wordspotter to the LVCSR wordspotter in terms of Figure of Merit, memory requirements,

and computation requirements.
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Table 8.1: The number of trained parameters used by the whole-word wordspotter and
LVCSR wordspotter

Type of Parameters Whole-Word LVCSR
Wordspotter Wordspotter

States 234 6,000
Mixture Weights 920 1,536,000

Mixtures 23,000 6,400
State Weights 234 Not Applicable

Bigram Probability 484 4,000,000
Total 24,872 5,548,400

The LVCSR wordspotter requires fast processors with rapid access to large memories

and long complex training procedures. For example, comparing the whole-word wordspotter

to a LVCSR wordspotter also developed at Lincoln Laboratory, the whole-word wordspotter

uses two orders of magnitudes fewer trained parameters than the LVCSR system. Table 8.1

shows how these parameters are apportioned for a tied-mixture LVCSR systems with 2,000

triphones, 128 tied mixtures, and 2,000 words. The input features are 12 cepstra and 13 delta

cepstra. Thus for each mixture, a total of 50 floating point numbers are stored. Similarly, the

amount of computation required for the two wordspotters is drastically different. According

to previous experience with the whole-word wordspotter and the LVCSR system, the amount

of computation time required for the LVCSR system is 10 to 20 times more than the time

required for the whole-word system when extensive pruning is used with the LVCSR system.

The amount of training data required is also different for the two systems. The whole-

word wordspotter can not be used on new keywords without retraining. However, for a

new set of keywords, as long as a few samples of the keyword from a variety of speakers

are available, a whole-word wordspotter can be quickly trained. The LVCSR system can

be used on novel keywords without retraining. However, without having specific samples of

the new keywords, the FOM of the general system can be as much as 20% lower than that

of the system trained using samples of the new keyword. For example, Table 8.2 presents

results from Carlson and Seward in which different LVCSR systems were trained using four

different databases [7]:

1. Sentences recorded at Lincoln Laboratory which contain the 20 keywords in the credit

card task,
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2. Sentences recorded at Lincoln Laboratory which do not contain the 20 keywords in

the credit card task,

3. Sentences from the NTIMIT database [32],

4. Sentences from the Switchboard credit card database.

It is clear that the training database affects the performance of the wordspotter tremen-

dously. The inclusion of the appropriate keywords in the database resulted in a difference of

17.4% in the FOM of wordspotters trained with Lincoln databases. Also, the phonetically

rich NTIMIT database provided much worse performance than the Switchboard credit card

database. Thus, LVCSR system's advantage in being able to spot any given word must be

put in context: it is clear that having a task dependent database is still the best way to

obtain superior results.

Figure 8-3 compares the performance of the whole-word based system versus a LVCSR

system in terms of model complexity, execution speed, and overall accuracy. The model

complexity and the execution speed were derived from measuring the LVCSR system de-

veloped by Beth Carlson at Lincoln Laboratory. The overall accuracy shows the best

performance that has been obtained on the test set of the research split. The LVCSR sys-

tem performance is that of the LVCSR system developed at Lincoln Laboratory [7] and the

whole-word system performance is that of the system presented in this thesis. The whole-

word based system uses orders of magnitude less storage space and executes an order of

magnitude faster than the LVCSR system while sacrificing four percentage points in FOM.

For applications requiring low power and memory consumption such as personal digital

assistants or cellular phones, the whole-word based system presented in this thesis can offer

high performance and low memory and power consumption. Recently, new searching tech-

niques have been developed that can significantly reduce the execution time of a LVCSR

system [85], however, the memory requirements of such systems are still much larger than

that of a whole-word based system.

8.3 Lessons Learned

In this thesis, Chapter 4 describes a high performing wordspotting system that is competi-

tive with other existing whole-word based wordspotters. Two algorithms are introduced in
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Table 8.2: FOM of a LVCSR system trained on different sets of data (From Carlson94).

Training Corpus % Combined FOM
Lincoln Credit Card 46.2%

Lincoln non-Credit Card 28.8%
NTIMIT 25.1%

Switchboard Credit Card 64.0
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Chapters 5 and 6 to improve the performance of the baseline wordspotter:

* Figure of Merit Training

* Voice Transformation

It was first shown that a discriminative training technique that directly maximizes the

evaluation criterion of interest can outperform a maximum likelihood approach. Such im-

provements are possible because the amount of data is insufficient to represent the variability

of the data. Also, the correct probability models in terms of the number of Gaussian mix-

tures and the number of states required to represent the temporal variability of speech are

unknown. By using the Figure of Merit training approach, the model parameters are ad-

justed to maximize the Figure of Merit. The FOM on the combined testing set increased

by 3.3 percentage points after five iterations of FOM training.

The discriminative approach suffers from the possibility of overtraining on the training

set. A complementary approach to Figure of Merit training called Voice Transformation was

developed. Using voice transformation to increase the variability of the database improved
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the robustness of the wordspotting system, resulting in an overall increase of 9.6 percentage

points in FOM when Figure of Merit training and voice transformation were combined.

Figure 8-4 summarizes the improvements in FOM on the testing set when FOM training

was applied on the baseline wordspotter and when voice transformations and Figure of

Merit training were jointly applied.

Studies were also conducted on unsupervised speaker adaptation approaches to enhance

the accuracy of the wordspotter. While experiments demonstrated that changing the spec-

tral transformation ratio affects the accuracy of the wordspotter, deriving the correct trans-

formation ratio for a given speaker requires extra computation during wordspotting and

long speech segments for reliable estimation. Thus, speaker adaptation approaches are not

suitable for tasks which require rapid recognition without the luxury of obtaining additional

data to adapt to the speaker.

To investigate the possibility of training a wordspotter system without any real speech,

speech obtained from an artificial synthesizer was used to train a wordspotting system.

Wordspotting results are much inferior to wordspotters trained with natural speech. In-

formal auditioning of the machine generated speech also revealed many artifacts. Unless

speech synthesis technology is drastically improved, in the foreseeable future better speech

recognition systems will still require the collection of human speech. However, the voice

transformation algorithm can be used to introduce variabilities from known sources and

make the collected training database more useful.

Finally, two subjects participated in wordspotting experiments to determine the strengths

and the weaknesses of the wordspotter. It was found that the human subjects could de-

tect almost all of the false alarms generated by the wordspotter when the complete words

were provided. When the complete sentences were played, the human subjects achieved

almost perfect scores. The current wordspotting system is capable of detecting the oc-

currence of keywords by concentrating on the occurrence of vowel sounds. However, the

current wordspotting system has difficulty using emphasis on the consonants in each key-

word to discriminate between keywords and false alarms. Also, it was found that the current

wordspotting system still does not have as good a detection rate as the human subjects due

to worse ability in handling different variations of keywords such as extremely long dura-

tions. Overall, the performance of the wordspotter is about 20 percentage points below that

of human subjects. Clearly, much work remains in improving wordspotting performance.
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8.4 Future Work

Possible directions for extending the work in this thesis can be considered in two dimen-

sions. For speech recognition tasks, promising results have been obtained by using artificial

transformation techniques to increase the variability of the data. In this thesis the vari-

ability was added in the formant frequency domain. Other possible sources of variations

can also be considered, for example, the rate of speech, the manner of speaking, pitch, and

dialect can possibly be transformed. Recently, there has been work in creating a voice font

that characterizes a person's voice [30]. Such tools can be used to generate more controlled

variabilities in a speech database to increase the robustness of a wordspotting system.

However, the speech recognizer performance is still far from that of a human being.

The experimental results from Chapter 7 have shown that human beings can discriminate

between consonant pairs such as /g/ and /k/ much better than the wordspotting system

can. Better features may need to be developed that more clearly capture the differences

between consonants that do not last for a long time in speech waveforms.

Along the other dimension, this thesis demonstrates the effectiveness of combining dis-

criminative training techniques that are directly targeted toward optimizing the evaluation

criterion. The possibility of overtraining can be offset through adding variability according

to a priori knowledge about the source of variability. Recently similar approaches have been

used in other domains such as autonomous navigation [60] and financial prediction [1]. It

would be interesting to apply the techniques presented in this thesis to another domain such

as heart beat monitoring or defect detection on the manufacturing line, where the amount

of variability is large and the amount of training data is thus relatively limited.
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