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Abstract

Man-made environments typically contain many objects with well-defined boundary
edges, such as staplers, tables, and computers. These edges may determine the shapes
of the objects and are invaluable in their identification. This thesis is about using such
edge information for recognizing three-dimensional objects in images. In particular,
we consider an approach that first identifies image features that are likely to come
from a single object, and later uses these features to project similar model features
into the image for verification. In light of this approach, we focus on two critical
problems: identifying salient curves in images and the propagation of error from
image features to projected model features.

In our study of saliency, we analyze one of the notable approaches to the prob-

lem, Shashua and Ullman's Saliency Network, and propose a new method based on

shortest-paths algorithms. The new method is designed to overcome some of the
most critical problems in the network. Using shortest-paths methods, we find the
optimal curves in the image according to a measure that prefers contours that are
long, smooth, and connected.

For the verification stage, we consider how to make the verification robust to lo-
cational errors in the image features. Error in the image features leads to uncertainty
in the projected model features, which deters effective recognition. We show how
error propagates when poses are based on three pairs of model and image points,
for both Gaussian and bounded error in the detection of image points, and for both

scaled-orthographic and perspective projection models. This result applies to objects
that are fully three-dimensional, where past results considered only two-dimensional
objects. In addition, we show how we can utilize linear programming to compute
the propagated error region for any number of initial matches. Finally, we use these
results to extend, from two-dimensional to three-dimensional objects, robust imple-
mentations of alignment, interpretation-tree search, and transformation clustering.

Thesis Supervisor: W. Eric L. Grimson
Title: Professor
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Chapter 1

Introduction

Enabling machines to recognize objects visually is a fundamental goal of the field of

Artificial Intelligence. The foremost justification for this goal is that visual recognition

is needed for robots to find and manipulate objects in their environment. Another,

equally important, reason is that machines which recognize objects would be of great

value in a wide variety of human tasks. For instance, a computerized camera that

can recognize people could aid a concierge in security. In medical domains, it is

often desired to automate the demarcation of anatomical structures in images. As

an example, a system that could automatically select out the contour of the brain

in a sequence of MRI images could be used to build a 3D model of the brain, which

could be used to render any view to a surgeon planning an operation. In automobiles,

computer vision systems could give drivers the option to be warned of oncoming cars

or objects entering their path. Another potentially valuable application is inspecting

manufactured parts for defects.

There are many factors that make the problem of building computers that rec-

ognize objects difficult. First, pictures of three-dimensional objects can appear very

different when the objects are seen from different viewpoints or under different light-

ing conditions (e.g., a picture of a room can look different when illuminated by ceiling

lights or by sunlight through a window). Also, other objects in the scene can partially

occlude an object of interest, or can cast shadows onto it, or can reflect light onto

it. Finally, it can be especially difficult to recognize instances of classes of objects,



such as identifying any instance of a telephone (consider describing how to recognize

a telephone when a phone can be anything from a standard push-button office phone

to an old-style rotary phone in which the microphone is part of the base instead of

the handset). In recognizing objects in the face of all these factors, humans are able

to incorporate many sources of information, such as an object's shape, color, texture,

and even function.

1.1 Framework

In this work we focus on using information about an object's shape, and we do so in

the context of recognizing particular objects, not classes. Even though we are limited

to particular objects, we may be given a large library of such objects and the task,

then, is to rapidly identify any instance of an object in the library. The form of input

we assume is two-dimensional grey-scale images.

1.1.1 Geometric models

Representation is necessarily a key issue in any recognition scheme. We need to rep-

resent how objects can appear from any viewpoint. The approach we adapt is known

as model-based. In model-based schemes, we consider three-dimensional objects that

are rigid and contain well-defined edges, such as staplers, tables, and computers. The

edges are then represented by geometric primitives, such as line segments and points.

Line segments may represent straight edges, and points may correspond to inflection

points on curved edges or to corners (e.g., Fig. 1-1).

The model-based representation is popular and has become so primarily for three

reasons. First, the features used frequently are local, which means they are insensitive

to occlusion. Non-local, region-based features such as moments [27, 74], skeletons [85,

86], and geons [11] are difficult to obtain if regions can be partially occluded. Even

though model-based representations may include such global features, in this work

we are interested in features that can be recovered locally. For a line segment, its

orientation is robust to occlusion, and for a point, positional information is always



Figure 1-1: Model of a telephone.

available.

Another reason the model-based approach is popular is that the features are in-

variant to projection. For instance, a straight edge always projects to a straight edge,

an inflection point to an inflection point, and a corner to a corner. This representation

allows recognition schemes to focus on matching invariant features between a model

and an image, instead of matching every location.

A third motivation for the model-based approach is that geometric constraints

can be brought to bear. The constraints arise from the rigidity of an object and a

projection model, which is a mathematical model of how a three-dimensional object

appears when projected into an image. Rigidity and projection determine the set of

images that an object can produce as the viewpoint changes, and any match between

a set of two-dimensional image features and three-dimensional model features must

be consistent with a viewpoint.

1.1.2 Model-based recognition and error propagation

In model-based recognition, the basic problem is to find correspondences between

model and image features. Specifically, we suppose we are given a 3D model composed

of geometric features, and an image of a scene which may contain the modeled object,

along with occlusion and clutter. We run the image through a feature detector to get

a set of 2D features that are similar to the 3D features in the model. The problem

is to find which image features, if any, correspond to model features and to exactly



which model features they correspond.

Model-based systems commonly perform recognition by searching the space of

all possible correspondences between model and image features. This is illustrated

in Fig. 1-2, which shows a tree where every path from the root is a sequence of

mutually-consistent pairings of model and data (image) features. By "consistent,"

we mean that there is a view of the model from which the model features in the

pairings will project to their corresponding image features, up to error in the data

features. One approach to recognition, called constrained search, performs a depth-

first search of this tree, backtracking whenever an inconsistent set of pairings is found

(e.g., [13, 32, 71, 39, 40, 46]).

Another recognition approach, which is particularly pertinent to this thesis, only

goes down to a short depth in the tree and then uses the current set of correspondences

to align the model with the image for immediate verification (e.g., [77, 22, 31, 64, 5,

52]). This method has become known as alignment [52], and could potentially work

much faster than constrained search, because a relatively small portion of the search

space is explored. The approach is justified by two main ideas. First, a small number

of correspondences generally determines the pose (viewpoint) of the model up to

the error in the data features. For example, three corresponding 2D image and 3D

model points are needed to compute the viewpoint from which the 3D points were

seen [31, 52]. (The fact that only three point correspondences are necessary illustrates

the value of geometric constraints.) Once the viewpoint is computed, alignment is

performed by using the viewpoint to project the model into the image.

After projection, the model features in general will not lie exactly on their cor-

responding image features, due to errors in feature detection and to inaccuracies in

modeling the imaging process. The verification step consists of looking near each

projected model feature for a confirming image feature, and then deciding whether

the model is present based on some measure of similarity between the predicted and

confirming features. Note that this form of verification does not guarantee that the

newly discovered matches between model and image features will be consistent with

a single view of the model. In fact, this inconsistency brings up the second main idea
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of alignment, namely, that there is enough redundancy in the partial constraints on

the projected model features that the recognition will still be accurate.

To date, many questions remain concerning the performance of model-based recog-

nition systems. For example, although we know the minimal number of features

needed to generate a model pose, we do not know how accurate the pose must be to

allow us to identify the object. In addition, some authors stress the importance of us-

ing a minimal set of features [31, 52], while others contend that this will not produce

a sufficiently accurate pose for recognition [64]. It is in general difficult to charac-

terize the conditions under which these systems will succeed or fail, or to evaluate

the relative effectiveness of the different strategies for recognition, or to understand

the extent to which each approach makes the best possible use of the information

available. A careful understanding of the effects of sensing error is a prerequisite to

doing all of these.

1.1.3 Grouping and saliency

Another basic issue concerning the performance of model-based systems is efficiency.

In order to find a correct set of correspondences, systems that rely solely on geometric

m2d2 . . MM dD m2dl .. mM dD m2dA . . . mM dD

m3d3 mm dD m3d2 ." mM dD m3d2 . . . mMdD

Figure 1-2: Searching correspondence space. Each node of the tree defines a
consistent set of correspondences between model features mi, i = 1,..., M, and
data features di, i = 1,..., D. Each node's correspondences are listed on the path
from the node to the root. Nodes that would correspond to inconsistent sets are
first pruned. For point features, all possible nodes would be consistent up to depth
three. The tree shows the case where every model and data feature is matched
at most once in a set, which is appropriate for point features. If desired, for line
features the tree could be generated to allow more than one data feature to match
a single model feature.

mid2mldi



constraints are faced with a matching problem that is inherently expensive. When

error is carefully controlled, the fastest algorithms require time that is high polyno-

mial in the numbers of model and image features. Specifically, the required time is

O(m 8n8), where m is the number of model features and n is the number of image

features [17, 21]. Even if error is not carefully controlled, a system would still need to

consider all minimally-sized hypotheses (sets of correspondences) between model and

image features. For point features, there are 3! (') (n) such minimal sets. Typically,

m could be 50 and n could be 500, which would give about 1012 hypotheses to try.

Not surprisingly, many authors have argued that for recognition of this form to be

feasible, grouping is necessary as a precursor to the matching process (e.g., Lowe [64],

Grimson [33], Jacobs [55]). The purpose of grouping is to identify subsets of image

features that are likely to come from a single object, without reference to a model

database. The idea is that images of modeled objects tend to have certain properties

in common. For instance, the edges on man-made objects tend to be smooth (or

piecewise-smooth) and connected. The regions formed by the edges tend to be convex

and closed. And straight edges often are parallel or co-terminate. These properties

of edges carry through to their projections.

The simplest form of grouping is "local grouping," which collects edge features that

are nearby in the image. Examples of local groups include points from the same curve

segment [51] and straight edges that form corners [88] or three-line junctions [46]. A

difficulty with such methods is that local groups tend to arise accidentally, and so

false-positive groups of this kind can be ubiquitous in an image.

More global grouping criteria are needed to reduce the number of false-positive

groups. Such criteria include convexity, parallelism, symmetry, and global smooth-

ness. The basic difficulty with more global approaches is that there are an exponential

number of ways to form groups from the image edges. One approach is to perform

a backtracking, constrained search through all of the edges [47, 26, 55]. The danger,

however, is that either the search time will be prohibitive or else the constraints will

be so strong that the discovered curves may not be near optimal.

On the other hand, there may be certain curves which appear to stand out from



the rest of the image, and these salient curves may correspond to objects of interest.

In Fig. 1-3-left, a circle stands out amidst a background of random dots. If the circle

boundary is observed locally, it is often unclear exactly which points lie on the circle.

Nevertheless the global structure is apparent. Similarly, in Fig. 1-3-right a large blob

stands out although the blob's boundary is not salient locally. In general, the problem

of saliency is to identify structures that "pop out." This includes the global saliency

in Fig. 1-3, and it also includes "odd-man out" problems, such as spotting a blue dot

in a field of red dots or a circle amidst a background of squares.

In this work, we concern ourselves with global saliency, because we believe it to be

particularly useful in our domain. That is, we are interested in identifying man-made

objects in images that contain substantial amounts of noise and scene clutter. In

these images, the clutter commonly is due to events like surface markings, textures,

and specularities. The edges these events introduce are often relatively short and

somewhat random in distribution. A curve through these edges easily can contain

many gaps and inflections. In contrast, the objects of interest tend to be relatively

large, and, as mentioned above, their edge contours tend to be smooth and connected.

A process that can identify such curves rapidly could inform a grouping system where

to focus its attention.

1.1.4 Overall approach

The work in this thesis follows a certain view for building a system that could rec-

ognize three-dimensional objects from two-dimensional images. In this view, first

grouping is used to identify features that are likely to come from a single object.

Figure 1--3: The circle and blob are apparent although their constituent elements may
not be locally salient. The blob image is from [65].

~



Then these features are matched to similar features in a model. When the groups

of image features are larger than minimal sets, then some form of indexing (table

look-up) would be used to quickly access those model groups that could produce the

image groups. For each image group, the indexing step provides a set of candidate

hypotheses, each of which is a set of correspondences between image and model fea-

tures. After the indexing step, each hypothesis is aligned with (i.e., projected into)

the image for verification. The verification stage proceeds in two phases, one that

uses the remaining invariant model features, and another that uses a more detailed

3D representation of the object (say, a point-by-point listing of all of the object's

edge contours). The first phase would serve as a quick filter by checking consistency

with the invariant features. In the second phase, an extensive verification would be

performed by comparing the object's contours against the image.

1.2 Contributions

This thesis concentrates on advancing two areas which are critical to this grouping-

plus-alignment approach: identifying salient curves in images and robust verification

by controlling propagated uncertainty. As was indicated above, these are both sig-

nificant pieces of the problem which are not well understood. These pieces should be

further developed in order to build in the future a complete recognition system that

successfully demonstrates the approach.

1.2.1 Robust verification

For robust verification, we analyze how sensing error propagates from image features

through the computations performed by model-based systems. In model-based sys-

tems, matches between model features and sensed image features typically are used

to compute a model pose and then project the unmatched model features into the

image. The error in the image features results in uncertainty in the predicted image

locations of the remaining model features. We call the sets of possible image loca-

tions the uncertainty regions of the model features. Using bounded and Gaussian



error models, we derive either bounds on these regions or probability distributions on

them, depending on our model of error.

Knowing the propagated regions of uncertainty for bounded error allows one to

build a system which can guarantee that it will find the model if it is there, as long

as the input data falls within the error bounds. This option of "no false negatives"

is important for reliability. In particular, such a system would accept as verified any

model feature for which at least one image feature falls into its uncertainty region.

On the other hand, such a system would produce many false positives (i.e., incor-

rect identifications of the model). In general we would prefer a method which could

pick out those hypotheses that are more likely. For instance, if an image feature arises

inside a larger uncertainty region, then the feature is more likely to have come from

some other object. As another example, another source of information for judging

the likelihood of a hypothesis is the total number of image features. The more spu-

rious features there are in the image, the more likely it is that some lie inside the

uncertainty regions.

Yet another piece of information which we may have available is the distribution

of error in the image features. Bounded error is a "no knowledge" assumption, and

could be used if one suspects the true distributions may be significantly skewed from

Gaussian. But if the error is believed to be Gaussian, then each candidate image

feature could be ranked according to how likely the model feature was of producing

it. In fact. Sarachik and Grimson [80] gave a method which aggregates such rankings

into a single measure. Using the measure, their method decides whether to accept or

reject the hypothesis based on a pre-determined, formally chosen threshold.

This thesis proposes an alternative method for deciding whether to accept or reject

a hypothesis that is formally grounded in the error model. The method is much

simpler mathematically than Sarachik and Grimson's, and it uses no pre-determined

thresholds. To avoid pre-set thresholds, the method decides on-line whether to accept

or reject a hypothesis, and does so using the likelihood-ratio test. The decision

criterion incorporates the available information about the sizes of the uncertainty

regions, the total numbers of model and data features, and the numbers of data



features that arise in the individual regions. In addition, the method applies to both

bounded and Gaussian error models.

1.2.2 Saliency

In the area of saliency, we consider two methods for identifying image curves that are

globally salient, an existing method and a new method proposed here. For evaluating

the methods, there are four fundamental criteria we wish a saliency mechanism to

satisfy: (1) It should be able to find curves that are salient globally in complex

images (images with noise, clutter in the background, and multiple objects), (2) the

time required to identify a salient curve generally should be on the order of the length

of curve, or at least not much more than the length (if the curve is barely salient, then

more time is permissible), (3) the salient curves identified should be long, smooth,

connected (contain few gaps), and closed, and (4) curve selection should be invariant

to similarity transformations (rotation, translation, and scale). The last criterion is for

general consistency with human perception. For example, if the mechanism chooses

one curve over another as more salient, and then the two curves are uniformly scaled

in size, the mechanism's choice should not change.

Our notion of global saliency is borrowed from Shashua and Ullman [82], who first

demonstrated how saliency could be computed for structures like the circle and the

blob in Fig. 1-3. They defined a network of locally connected elements on top of an

image. Using dynamic programming, they optimized a chosen measure of saliency at

every element in the network. For each element the optimization was performed over

all possible curves passing through the element.

Our study of saliency begins with an analysis of Shashua and Ullman's "Saliency

Network." This analysis is the first of its kind and is of particular interest because

Shashua and Ullman's network has attracted much attention. Although Shashua and

Ullman's method is elegant and inspirational, we show it has a number of drawbacks.

Among these, the measure-of-saliency's preferences of curves are not scale invariant

(criterion 4). In addition, the network may traverse the boundary of a closed curve

many times before it converges (criterion 2); specifically the time to process a closed



curve can be on the order of the square of its length, even if the curve is alone in the

image.

Another potential drawback Shashua and Ullman's approach regards identifying

salient curves when there are junctions in the image (criterion 1). Shashua and

Ullman's mechanism computes the saliencies of the optimal curves according to their

saliency measure. At every time step, each element makes a local choice as to which

element came immediately before it on the best curve. Then at convergence, the

optimal curve from any element can be traced by following the local choices. To

see the problem with junctions, consider the abutting objects in Fig. 1-4. Since an

element at the shared edge must choose one of the object contours with which to

combine, only one of the two curves can be recovered.

It is interesting to note that Shashua and Ullman suggest running their network for

small numbers of iterations, stopping the process long before the network converges.

VWe will show that stopping early can greatly affect the saliency values of the optimal

curves, and, moreover, prevents the network from recovering the optimal curves. It

is possible, however, to retain the optimal curves by storing a history of images, or

more exactly, stloring the network in all of its previous states. Nevertheless, such an

approach is somewhat unattractive because, as we will show, the length of the history

would be on the order of the total number of elements squared.

Figure 1-4: In Shashua and Ullman's method each element of a curve chooses one
neighboring element with which to combine. Consequently the shared portion must
choose between the two shapes.

__



We believe that recovering the optimal curves in the presence of junctions is

essential for making the link from saliency to grouping. To overcome this and other

problems with Shashua and Ullman's method, we have designed a new approach for

computing saliency that is based on finding shortest paths in graphs. In shortest-paths

algorithms, a chosen measure (cost function) is optimized over all possible paths, and

the optimal curves are always obtained. As we will show, the class of measures that

can be optimized by shortest-paths algorithms is strictly larger than that which can

be optimized by Shashua and Ullman's network.

This feature is particularly advantageous for dealing with complex images which

can contain junctions (criterion 1). In our method, each optimal curve makes an

individual set of choices at junctions, and does so based on a cost function that

is defined with respect to the start of the curve. We will show that the Saliency

Network cannot optimize such a function. Another advantage of our method is that

an optimal path is traversed at most once, though some extra computation may be

used in deciding which paths are optimal (criterion 2). Furthermore, our saliency

measure can be simpler than Shashua and Ullman's while still having the same basic

properties. Shashua and Ullman's measure was complicated by a need to form a

decreasing geometric series when evaluated over a closed curve, which was necessary

for convergence. Partly due to this simplicity, we are able to choose a measure

that both selects long, smooth, connected contours and is invariant to similarity

transformations (criteria 3 and 4).

1.3 Background

Model-based object recognition and grouping were first addressed by Roberts in

1965 [77]. In his seminal work, Roberts searched the image for convex groups of

line segments, and matched the line segments against a geometric model. Over time

model-based recognition and grouping have grown into subfields of their own. We

discuss past work for each separately.



1.3.1 Model-based recognition and error propagation1

Due to the value of top-down knowledge in model-based vision, it is common to gen-

erate hypotheses about an object's pose based on a small amount of information, and

then to look for evidence to confirm or reject the hypotheses. In the alignment ap-

proach, a small number of image features are matched to model features to determine

the object's pose. This pose is used to project additional model features into the im-

age, which are matched to nearby image features for verification (e.g., Roberts [77],

Clark et al. [22], Fischler and Bolles [31], Lowe [64], Ayache and Faugeras [5], Hut-

tenlocher and Ullman [52]). In constrained search, additional matches between model

and image features are then used to look for more matches, backtracking if enough

valid matches cannot be found (e.g., Bolles and Cain [13], Goad [32], Oshima and

Shirai [71], Grimson and Lozano-P6rez [39, 40], Horaud [46]). To obtain the object's

pose, some approaches use minimal sets of matches between model and image features

(e.g., Clark et al. [22], Fischler and Bolles [31], Ayache and Faugeras [5], Horaud [46],

Huttenlocher and Ullman [52]). Other approaches use indexing to match more than

the minimal number before looking for confirming features (e.g., Rothwell et al. [78],

Thompson and Mundy [88], Lamdan et al. [60], Jacobs [55]).

Most :recognition systems take an ad-hoc approach to the problem of accounting

for the effects of sensing error on the projected positions of unmatched model features.

Some systems match projected model features to image features if they are separated

by a distance that is less than some threshold (e.g., Clark et al. [22], Fischler and

Bolles [31], Brooks [18], Bolles and Cain [13], Huttenlocher and Ullman [52]). Other

systems rank the unmatched image features using heuristics involving distance and

orientation, and then pick the feature with highest rank (e.g., Ayache and Faugeras [5],

Lowe [64]).

Recently, there has been considerable effort aimed at better understanding the

effects of error on the matching process. Some of this work attempts to design algo-

rithms that are guaranteed to perform well in the presence of error (e.g., Baird [7],

1This section is joint work between the author and David Jacobs.



Cass [21], Breuel [17]), but most relevant to this thesis is work that also examines the

propagation of error in recognition systems.

Two-dimensional objects

Huttenlocher [51] examined the effects of bounded error on the alignment approach

to recognition. This analysis considered planar objects viewed from arbitrary 3D po-

sitions, assuming scaled-orthographic projection. Poses were determined by matching

three model and image points, and the poses were used to predict the image loca-

tions of the unmatched model points. Assuming circular error in the three image

points, Huttenlocher placed upper bounds on the uncertainty regions, by indepen-

dently bounding the error in the x and y coordinates of the predicted model points.

The x and y error bounds are guaranteed to hold only if the matched model points

are far enough apart (approximately five pixels).

Subsequently, Jacobs [54] showed that the true uncertainty regions are discs, and

gave analytic expressions for their centers and radii. These regions are circular because

in this case the projection model is linear in such a way that error in any of the three

matched image points causes error in a projected model point that is identical but

scaled by a constant factor. This constant factor depends on the model structure,

but not on the viewpoint. Consequently, the sizes of the uncertainty regions are

independent of how far apart in the image are the three matched points, which means

the uncertainty is independent of the pose of the model. Jacobs' result was used by

Grimson et al. [38] to analyze the false-positive sensitivity of planar alignment.

A number of researchers have also considered the effect of Gaussian error on

alignment methods. As mentioned above, for planar objects, each predicted model

point can be written as a linear combination of the matched image points. Therefore,

Gaussian error in the image points leads to Gaussian uncertainty in every predicted

point (e.g., [87]). Sarachik and Grimson [80] used this observation to propose a new

method of performing and evaluating alignment approaches to recognition. Beveridge

et al. [10] use a robust method to evaluate particular model poses.

Error propagation has also been studied in the context of Geometric Hashing



approaches to recognition [59, 60, 61]. Costa et al. [25] considered the distribution

of uncertainty regions in terms of the affine invariant parameters that describe the

image points. Rigoutsos and Hummel [75, 76] also considered this issue for Gaussian

and uniform error. Both Costa et al. and Rigoutsos and Hummel then considered

the implications of these results for recognition schemes. Lamdan and Wolfson [62]

considered the related problem of determining when three image points provide an

unstable basis for Geometric Hashing. Grimson and Huttenlocher [35] considered the

effects of bounded error on Geometric Hashing, and provided loose bounds on this

effect. Jacobs [54] determined exactly how bounded error effects Geometric Hashing

indices. Grimson et al. [38] then further developed this result and used it to ana-

lyze the performance of Geometric Hashing algorithms. Sarachik and Grimson's [80]

results also apply to Geometric Hashing.

Three-dimensional objects

Error propagation is more complex in recognition systems that deal with fully three-

dimensional objects. Bolles et al. [14] studied how error propagates from the pa-

rameters of a model-to-image transformation to the predicted model points. Bolles

et al. assumed that the errors in the parameters were independent and normally-

distributed and that estimates of the distributions would be available. Unlike other

previous work, Bolles et al. dealt with perspective projection, which made the rela-

tionship between the error vectors in the transformation parameters and the predicted

points non-linear. In fact, their analysis is the most similar to our own, because they

took a (first-order) approximation that linearizes the error-vector relationship. As a

result they obtained Gaussian uncertainty distributions. The main difference with

our work, in addition to our treatment of bounded error, is that we will let the error

be in the matched image points, instead of assuming we know the distributions for

all of the transformation parameters. Furthermore, we will derive direct expressions

for the predicted points in terms of the matched points, so that we do not explicitly

go through a rigid transformation.

Recently, Grimson et al. [37] presented a formal analysis of error propagation



starting from the matched image points, for three-dimensional objects. They consid-

ered scaled-orthographic projection and bounded, circular error. Starting from three

matched points, they provided a numerical method of bounding the uncertainty in

the transformation parameters. Then they used the bounds on the parameters to

obtain complicated, loose bounds on the uncertainty regions of the predicted points.

Via these bounds, they analyzed the false-positive sensitivity of 3D-from-2D align-

ment and transformation clustering, in the domain of point features. The numerical

technique is less practical, however, for use at run-time in a recognition system.

Using the same projection and error models as Grimson et al. [37], Alter and

Grimson [4] presented experiments that show that the true uncertainty regions tend

to be circular to a good approximation, and presented a numeric method for more

accurately bounding the uncertainty regions. This technique was used to study again

the false-positive sensitivity of 3D-from-2D alignment, except also using line features

for verification. Alter and Grimson demonstrated that using points for generating

hypotheses and lines for verification could lead to robust recognition. As before, the

numerical error-propagation technique is less practical for a real-time system. Fur-

thermore, the two weak-perspective solutions lead to two distinct uncertainty regions,

which is not true when the model is planar. Alter and Grimson's technique some-

times performed poorly when the two regions overlapped, because it had difficulty

distinguishing them.

Also for 3D objects, Weinshall and Basri [94] provided analytic bounds on the

amount of error in a least-squares solution that is used to match four model and

image points. This is useful because, currently, the least-squares solution itself can

be found only through iterative methods.

For both 3D and 2D objects, Wells [96, 97] used a Bayesian approach and Gaussian

error assumptions to derive an evaluation function that measures the likelihood of any

given pose. Wells then used heuristic search and gradient descent methods to find

the most probable pose.

Lastly, there has been a great deal of work on finding a pose that minimizes error,

when enough image and model features have been matched to over-determine the



pose. Some of this work analyzes the effect that errors in image features have on

the accuracy of the resulting pose, including Kumar and Hanson [58] and Hel-Or and

Werman [45]. The work of Hel-Or and Werman is particularly relevant to us, be-

cause they also consider how error propagates through the pose to the projections of

unmatched feature points. Assuming Gaussian error, they use an extended Kalman

filter to find the minimal error pose resulting from a match between any number of

image and model points. The Kalman filter then allows them to compute a Maha-

lanobis distance that indicates the likelihood that error can account for the apparent

deviation between a projected model point and a potentially matching image point.

In summary, there are simple analytic solutions for how error propagates from

three matched image points, when the objects are two-dimensional and undergo

scaled-orthographic projection. This is true both when the image-point error is

bounded by circles and when it is normally distributed. In the case of circular er-

ror, every propagated uncertainty region is a circle, whose size is independent of the

camera viewpoint.

For three-dimensional objects, it appears empirically that circular error again

propagates to circular uncertainty regions. Nevertheless, there is no analytic solution,

which would be preferred for building an efficient system. As well, current numerical

solutions either significantly overestimate the uncertainty regions or can break down

when the two regions that arise from the two weak-perspective solutions overlap.

Further, it is not known whether the uncertainty regions are exactly or approximately

circles, or whether the sizes of the regions depend on the viewpoint. If the regions

are circles only approximately, one would like to know which configurations of the

model and image points cause the regions to deviate from circularity. Although much

progress has been made in understanding the effects of propagated error, there are

significant problems that are not yet understood.

Finally, we mentioned a number of sensitivity analyses that determine the sus-

ceptibility of recognition systems to false-positive errors. Most of these analyses

are restricted to two-dimensional objects, because this is where error propagation is

most readily understood. Nonetheless, there do exist sensitivity analyses for three-



dimensional objects, which use numerical techniques to get a handle on the propa-

gated error.

1.3.2 Grouping and saliency

The task of grouping is to identify groups of features in the image that are likely to

come from a single object. Often this is done by searching the image for groups that

optimize a specific set of criteria. This search requires choosing from an exponen-

tial number of possible edge groupings. To find desirable groups, some approaches

potentially search the entire exponential space, but then may reduce the search in

practice by using heuristics which can lead to sub-optimal solutions [47, 26, 49, 55].

Other methods use greedy algorithms which need not be optimal [73, 53, 83, 72],

or else incorporate substantial domain-specific information to constrain the possible

groupings [67, 98, 68].

On the problem of saliency, Shashua and Ullman [82] proposed a measure for

saliency that encourages long and straight curves. Using dynamic programming,

they implemented a relaxation process on a network of locally connected elements to

optimize the measure. The network could identify the most salient element in the

image, which could lie on either an open or closed curve, and could simultaneously

smoothly fill-in gaps and tolerate noise. Subirana and Sung [85, 86] extended Shashua

and Ullman's method to look for skeletons of regions.

Shashua and Ullman later used the output of their saliency network to implement a

grouping system [83]. The grouping technique does not adhere to the local decisions of

the network's elements for their optimal neighbors. As a result, the grouping system

could make choices at junctions that were not optimal according to the saliency

measure.

Guy and Medioni [43] also produced a saliency map from an edge image. In

their scheme, each point in the image receives a saliency value equal to a weighted

sum of contributions from the individual edge elements. The weight assigned to an

element is based on a circular-arc completion between it and the image point; the

weight decreases with the total curvature of the arc, preferring straighter and shorter



completions. Unlike Shashua and Ullman, there is no notion of optimality in the

saliency values, that is, there is no attempt to optimize a measure of saliency over

the set of image curves.

The use of dynamic programming to find optimal curves in images was first intro-

duced in 1.971 by Montanari [69]. Montanari's method needs to know the length of

the curve for which it is searching, since otherwise the best curve could be infinitely

long. Shashua and Ullman's dynamic-programming method is similar to Montanari's.

Shashua and Ullman handled the problem of infinitely long curves by designing their

measure-of-fit to decrease according to a geometric series when evaluated around any

closed-curve. This allowed them to run their process to convergence, without knowing

the length of the optimal curve.

Amini et al. [6] applied a variant of Montanari's method to implement "active

contours" [56]. Active contours are a top-down approach for pinpointing a desired

contour in an image, given an approximate location of the contour as a starting point.

Assuming a starting contour, Amini et al. used dynamic programming to search over

a window about each sample point on the contour.

In addition to dynamic programming, shortest-paths algorithms also have been

used before to find curves in images. To our knowledge there are only two such works.

The first was by Martelli in 1976 [66]. Martelli's formulation involves searching for

best paths through a sequence of tables whose sizes are on the order of the size of the

image. The number of tables is potentially the size of the image as well. To make the

method feasible, Martelli used a heuristic, A* search algorithm to prune the number

of table entries that actually had to be generated. In our approach, a fixed graph is

constructed on top of the image and all of the work is done in place.

More recently, Hu et al. [50] used a shortest-paths approach to build a user-assisted

system for finding roads in aerial images. Like us, Hu et al. searched a graph that is

constructed on top of the image. However their graph is not locally connected and

starts from higher-level, ribbon-based primitives. A locally connected graph is one

of the defining characteristics of our saliency approach-we are looking to provide a

means to obtain the higher-level primitives in the first place.



Other work on grouping addresses different aspects of the problem. For instance,

[44, 99, 42, 30] identify occluded and subjective contours, and [90, 79, 15, 16, 48, 93, 19]

determine the shapes of gap completions.

1.4 Overview of the Thesis

This thesis contains four pieces of work, divided as such into the next four chapters.

Saliency is discussed in the second and third chapters, and robust verification in the

fourth and fifth. Each pair of chapters is closely linked in terms of methodology.

Nonetheless the chapters are individually motivated and can be read separately. This

is natural because the individual problems are of interest beyond the grouping-plus-

alignment framework.

In Chapter 2 we analyze the well-known saliency technique of Shashua and Ull-

man. The analysis motivates our own saliency approach, given in Chapter 3. The

analysis indicates that Shashua and Ullman's Saliency Network can change its pref-

erences as the curves are uniformly scaled. Also, we consider the case of a circle

among random background elements, and we study the effect of gaps. Finally, we

analyze the convergence properties of the network and discuss problems due to coarse

sampling of the range of possible orientations.

As mentioned, grouping is our main motivation for studying saliency. We believe

that mechanisms for saliency and grouping should be closely tied. To this end, we

believe that the optimal curves evaluated during the saliency stage should be made

available to do grouping and should be robust to junctions. Chapter 3 details a

new approach to saliency that is based on finding shortest paths in graphs. In this

approach, a curve is found through each element in the image that is optimal over all

possible curves through that element. Each optimal curve makes an independent set

of choices at junctions.

Chapter 4 considers the following fundamental problem. Given a set of corre-

spondences between 2D and 3D points, in which the 3D points are rigidly connected,

how does uncertainty in the positions of the 2D points propagate to uncertainty in



the predicted image position of any additional 3D point? This problem is important

for alignment and backtracking search (constrained search) approaches, as well as for

approaches that use indexing or a Hough transform as a preprocessing step for later

verification. Under the assumptions of bounded and Gaussian error in the image

points, we show how to compute the region of uncertainty for any additional pro-

jected point. We rigorously derive an analytical result for the case of a minimal set of

three point correspondences using a weak-perspective (scaled-orthographic) projec-

tion model. Our solution is an approximation which we experimentally demonstrate

is accurate for amounts of error that are of interest in most recognition applications.

Additionally, we show that the true shapes of the uncertainty regions can be consid-

erably more complex. Furthermore, we extend the solution to perspective projection

and to the case of any number of initial point correspondences. Our solution for more

than three correspondences utilizes linear programming.

The basic contribution of Chapter 4 is that it solves the error-propagation problem

for three-dimensional objects, where previous results applied only to two-dimensional

objects. As we will show, this work can be used to extend existing methods for

performing robust recognition to 3D objects. In particular, we extend the follow-

ing robust methods: Alter and Grimson's alignment using line features, Sarachik

and Grimson's alignment for Gaussian error, Cass' transformation-space search, and

Baird's and Breuel's constrained-search techniques.

Chapter 5 explains how to build a robust alignment-style system for recognizing

three-dimensional objects in images. To handle objects that are three-dimensional,

the method relies on the results of Chapter 4, particularly that we can efficiently

compute the propagated uncertainty regions. The method avoids pre-set thresholds

by deciding on-line whether to accept or reject a set of correspondences. Finally,

the method applies equally well to bounded error, Gaussian error, or any other error

distribution for which the propagated distribution of uncertainty can be computed.

The new method is offered without experimentation to demonstrate the ideas. The

chapter is intended as a proposal for how one might use the results of Chapter 4 to

build a more robust, formally grounded alignment system for recognizing 3D objects



from images. The method of error control is expected to be fast and could serve as a

filter to an extensive verification stage that utilizes the entire object contour.

Chapter 6 considers again the overall grouping-plus-alignment framework which

subsumes the thesis. The chapter discusses the domain where the framework can be

applied most readily. Then within this domain the chapter describes how to build a

three-dimensional object recognition system which, in order to be efficient and robust,

takes advantage of our new results.



Chapter 2

Analysis of Shashua and Ullman's

Saliency Network1

In line drawings, certain shapes attract our attention more than others. For example,

these shapes may be the ones that are smooth, convex, and closed. (See for example

Fig. 2-1.) A mechanism that can rapidly locate such salient shapes could significantly

reduce the computational burden of a grouping system, where for grouping the task

is to identify sets of image features that come from the same object. For a saliency

operator, we define its goal as identifying salient locations in an image, in which

we consider a location to be salient if a salient curve passes through it, according

to some measure of curve saliency. Notice that this definition does not require the

saliency operator to collect the salient locations into curves. Nonetheless, a saliency

method which also provides the salient curves would be especially useful to a grouping

system. In general it is more difficult to also compute the curves, because computing

a curve that passes through a series of edge fragments and gaps requires making many

choices, particularly at junctions. Most existing methods for saliency do not consider

the problem of providing the actual curves (e.g., [43, 42, 44, 99]).

Shashua and Ullman [82] proposed a method for marking salient locations in an

image that also provides the salient curves. The saliency of a location was determined

1This chapter is joint work between the author and Ronen Basri.
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Figure 2-1: A fragmented circle and a fragmented convex shape in the middle of noise.
In both cases the global shapes are apparent.

by optimizing a measure of fitness over all curves through that location. The measure

has the following properties. First, when all other parameters are held constant,

it monotonically increases with the length of the evaluated curve. In addition, it

decreases monotonically with the total squared curvature of the curve. Thirdly, the

function evaluates fragmented curves, in which case it penalizes according to the

amount of fragmentation. Finally, the function is a sum of contributions from different

sections of the curve, where these contributions decay with the sections' accumulated

squared curvature and gap length from the beginning of the curve. Using this saliency

function, Shashua and Ullman defined the "saliency map" of an image to be an image

in which the intensity value of each pixel is proportional to the score of the most salient

curve emanating from that pixel.

A network of locally connected elements (the Saliency Network) was proposed

for computing the saliency map. The Saliency Network's computation involves local

interactions between image locations, and its size is proportional to the size of the

image. The network implements a relaxation process that optimizes the saliency mea-

sure. As a consequence of the optimization, the network can identify the most salient

location in the image, which could lie on either an open or closed curve. Additionally,

the method attempts to fill in gaps smoothly while simultaneously overcoming noise.

The Saliency Network is an efficient and elegant method, well suited to locating

salient structures in images. In this chapter we provide an analysis of Shashua and

Ullman's method. Our analysis can be divided along two basic issues, namely the

particular function for the saliency of a curve (Section 2.2), and the computation



that optimizes the measure (Sections 2.3, 2.4, 2.5). The first issue is important for

determining which curves will be given to a grouping system, and second issue relates

to the Network's ability to find those curves. These issues are intimately connected,

for the design of the Saliency Network restricts the set of saliency measures that can

be used.

Our analysis begins by introducing a continuous formulation of Shashua and Ull-

man's discrete saliency measure (Section 2.1). Then in Section 2.2 we demonstrate

that in many cases the network indeed locates the long and smooth curves in the

image. We also find cases, however, in which the network returns unexpected results.

In particular, there is some conflict in the way the network ranks open and closed

curves. We show that short line segments next to a salient closed curve may be judged

more salient than the closed curve. In this situation, the most salient locations in the

network will represent the saliency of the closed curve, but will not lie on the closed

curve.

Another conflict in the network is in how it decides between a pair of curves that

have the same length. The network can change its preference as the length of the

curves changes. For instance, consider a straight line and a circle of the same length.

For lengths less than a certain value, the line is preferred over the circle, whereas

for larger lengths this preference reverses. Shashua and Ullman's rankings of curves,

therefore, are not invariant to uniform scaling of the image. Recall that in Chapter 1

we listed invariance to scale as one of our four criteria for a saliency mechanism.

In Section 2.3, we analyze the convergence properties of the network and show that

the complexity of the network in serial implementations is quadratic in the number

of elements. On a closed curve that is alone in the image, the time to process the

curve can be on the order of the square of its length; this behavior does not meet our

time criterion for a saliency mechanism (criterion 2 from Section 1.2.2). Section 2.4

considers problems due to coarse sampling of the range of possible orientations. We

show that with proper sampling the complexity of the network becomes cubic in the

size of the image. Lastly, we discuss the class of measures that the network can

optimize, and the issues involved with using the output of the network for grouping



(Section 2.5).

In terms of our interest in grouping, the main conclusion of the chapter is that

the Saliency Network has some fundamental drawbacks, largely captured by our four

saliency criteria. In the next chapter, this will lead us to design a new mechanism

for saliency. Nevertheless, the Saliency Network can often be an effective means for

identifying salient curves in images, and in many situations may be the method of

choice.

2.1 Definitions

Shashua and Ullman defined their saliency measure as follows. For every pixel in the

image, there is a fixed set of "orientation elements" connecting the pixel to neighboring

pixels (Fig. 2-2-left). Each orientation element is called "actual" or "real" if it lies on

an edge in the underlying image, and otherwise it is called "virtual" or "gap." Given

a curve F composed of the N +1 orientation elements pi, pi+, ... , Pi+N (Fig. 2-2-right),

the saliency of F is defined by

i+N

(I) = ajpijCij, (2.1)
3=i

with

1, if pj is actual 3
j = ~and pij = H pk = Pi

0, if pj is virtual k=i

where pij = 1 and where p is some constant in the range [0, 1).2 (Shashua and Ullman

set p to 0.7.) aj ensures that only actual elements will contribute to the saliency

measure. gij is the number of gap elements between pi and pj, and pij reduces the

contribution of an element according to the total length of the gaps up to that element.

Further,

Cij = e- ki

2The formula for paj appeared in [82] as pij = pIk=i+l Pk, but the computation actually performed
by the network (which is given by Eq. 2.5) converges to the modified formula given here.
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Figure 2-2: Example of the connectivity of Shashua and Ullman's Saliency Network,
for the cases of sixteen and twenty-four orientation elements per pixel. In the left
pictures, the neighbors of a pixel (x, y) are { (x + Ax, y Ay) max(|Axl, lAyl) = Ae},
where Ae = 2 for 16 elements per pixel and Ae = 3 for 24 elements per pixel. Given
the pixel neighborhoods in the left pictures, the right pictures show examples of
five-element curves.

with

ki= 'ii2(s)ds,

where i(s) is the curvature at position s. kij reduces the contribution of elements

according to the accumulated squared curvature from the beginning of the curve.

The saliency of an element pi is defined to be the maximum saliency over all curves

emanating from pi:

P(i) = max
rEC(i)

(2.2)

where C(i) denotes the set of curves emanating from pi. Shashua and Ullman showed

how to compute 4(i) on a network of locally connected elements. Denote by 4 N(i)

the saliency of the most salient curve of length N + 1 or less emanating from pi. The

... r

*

* * * * *



measure (IN(i) satisfies

(2.3)ON(i) = max F(i-, ON-(j))pi EA(i)

where N(i) is the set of all neighboring elements of pi, and where F() is a function

of 4 N-_1() and constants stored at elements pi and PJ. Shashua and Ullman referred

to this type of measure as "extensible."3 In the Saliency Network,

F(i,j, ON-1(1)) = oi + piCijON-1(j), (2.4)

which gives

N(i) = Oi + Pi max Cij0N-1(j).
pi EnT(i)

(2.5)

To analyze the network we define a continuous version of the saliency measure.

Given a curve F(s) of length 1 (0 < s < 1, s denotes arc length), we define lP by

O(F) = ja (s)p(O, s)C(0, s)ds,

o(s)

P(Sl, S2)

10,

0,

pg(SI',2)

(2.6)

if r(s) is actual

if F(s) is virtual

C(si, 2) = e- k(s ' s2)

where g(sl, 2) is the total gap length of F between sl and s2 and k(sl, s2) is the total

squared curvature between sl and s2, defined by

g(sl, 82) =- (1 - (t))dt, k(s1 , s2) = iK2(t)dt.
81

A useful tool in computing saliencies is the following rule. Given a curve F which

3 Note that this definition of extensibility is different than that used by Brady et al. [15].

where

(2.7)



is composed of two smoothly concatenated sections, F1 and 72, the saliency of F is

given by

D(r) = (F1i) + pg(r1)e-k(rF) (r2), (2.8)

where g(Fi) is the total gap length and k(F 1 ) is the total squared curvature of F 1 .

Over the remainder of the chapter, we will present examples of the Saliency Net-

work on simulated and real images. Our implementation replicates Shashua and

Ullman's original implementation, except that we generally increased the number of

orientation elements per pixel to obtain greater accuracy. Shashua and Ullman used

sixteen orientation elements per pixel. Unless otherwise specified, we use twenty-four

elements per pixel, and we set p = .7 (as in the original implementation).

2.2 Properties of the Saliency Measure

We begin our analysis by examining the saliency measure proposed by Shashua and

Ullman. Section 2.2.1 below discusses the treatment of cycles. Section 2.2.2 analyzes

the behavior of the measure when applied to simple curves. Lastly, Section 2.2.3

analyzes the behavior of the measure when applied to curves that include gaps.

2.2.1 Cycles

The measure of saliency proposed by Shashua and Ullman is a positive function that

increases monotonically with the lengths of the curves in the image. Closed curves

(cycles) are considered to have infinite length, even though they form finite structures

in the image. Shashua and Ullman showed that their network is guaranteed to con-

verge when applied to closed curves. The reason it converges is that the contribution

to the saliency from remote elements attenuates geometrically with the curvature ac-

cumulated from the beginning of the curve. In cycles this generates a geometric series

that converges to a finite value.

Formally, given a closed curve F, denote by 0 the saliency of an element of F

that is obtained by starting from that element and then proceeding once around the



curve. Denote by k the total squared curvature of the cycle and by g the number of

gap elements in F. Then by repeatedly applying Eq. 2.8 we obtain

4(F) = 4 + pge-k + p2ge- 2k + ... -p k (2.9)
1 - pse-k

When the network is applied to an open curve, after going once along the curve

the network may choose to take a 1800 turn and then walk back along the curve.

This way an open curve could be considered as closed. As we shall see next, the

attenuation due to the 180' turn is so high that the additional score is negligible. Let

F be an open curve. Let Of and Ob be the saliencies of F measured by going once

along the curve in the forward and backward directions, respectively. Denote by k

the total squared curvature of F. Then, the saliency of F is given by

k(F) = ,r + e- k-4 2 b +- 2k- 2 2 f + -3k-3r 2 b + = 1 - -  (2.10)

If F is symmetric then Of = Ob and we obtain

() Of f (2.11)
1 - e- k -~ 2  1 - .000051723 e- k"

The largest increase in saliency is obtained for a straight line (k = 0), where the

saliency becomes

(F) = 1e - 72  1.0000517 2 5 Of. (2.12)

One can see that the additional saliency obtained by wrapping around an open curve

is very small and practically can be ignored. As a consequence, the network is likely

to prefer connecting the curve through gaps to other curves, or even around to itself,

since such connections often will result in higher saliencies.

2.2.2 Straight lines and circles

In this section we compute the saliencies of a few simple curves. In general, we will

only be interested in the measure of saliency obtained for the most salient element



of the curve. Throughout this section we shall use the continuous definition of the

saliency measure (Eq. 2.6). We consider only curves with no gaps (we will analyze

curves with gaps in Section 2.2.3); hence a(s) = 1 and p(O,s) = 1 for all s. Eq. 2.6

therefore becomes

(rF) = 1C(0, s)ds, (2.13)

where

C(0, s) = e-f 2(t)dt

The examples below demonstrate some of the problems with Shashua and Ullman's

saliency measure. In particular, we compare the saliency of a line segment of length

I to that of a circle of perimeter 1. We show that for small values of 1, the straight

line is preferred over the circle, and that this preference reverses for large values

of 1. The saliency function, therefore, ranks curves differently when these curves are

scaled uniformly. In another example, we analyze the results of applying the saliency

measure to a picture containing a circle and short line segments connected to it. We

see that a short line segment increases its saliency value by connecting to the circle.

As a result of this increase, it is not unusual for a short segment to become more

salient than a circle. The saliency of the short line segment in this case represents

the saliency of the circle, but the most salient element is in fact not part of the circle.

We begin by deriving explicit formulas for the saliency of straight lines and curves.

For straight lines C(0, s) = 1 for all s. Therefore, ignoring the possibility that a line

can wrap around itself (see Section 2.2.1), a straight line of length I will obtain the

score 4(F) = 1. The saliency of a straight line, therefore, grows linearly with the

length of the line.

For a circle of radius r, the curvature is constant, i = 1/r, and so for a circular

arc of length s,

C(0, 8) = e-2 dt = r2. (2.14)

The saliency attributed for the circular arc is

(0, s) = C(O, t)dt = e-dt = r2 - e ) . (2.15)
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Figure 2-3: Lack of scale invariance in the Saliency Network. Top figures: three
images that contain a straight line and a circle of roughly the same length. Bottom
figures: the most salient curves that were found in these images. Lengths are 27
(left), 39 (middle), and 84 (right). The saliency values obtained for the circles are
15.39 (left), 33.60 (middle), and 132.05 (right), and for the lines are 27.06 (left), 39.00

(middle), and 84.00 (right). (These examples were run on a 24-orientation network.)

Thus, at convergence (s = oc), the saliency of the circle is given by

( lir n 2  C(i- )) r 2. (2.16)

The score of a circle, therefore, grows quadratically with the radius (and thus also

with the perimeter) of the circle.

The fact that the saliency of a straight line grows linearly with its length, whereas

the saliency of a circle grows quadratically with its perimeter, suggests that the

network may treat the two differently when they are scaled. Consider a straight line

of length 1 and a circle of perimeter 1 = 2-Fr. These two entities will have exactly

the same saliency when I = 0 and when I = 47r2 1 39.48. (The saliencies in the two

cases are 0 and 47r 2, respectively.) When 0 < I < 4w-2 the line will be more salient

than the circle, whereas when I > 4 2 the circle will be more salient. Fig. 2-3 shows

an example of three images, each of which contains a straight line and a circle of the

same length. Consistent with our analysis, the Saliency Network found the straight

line to be more salient than the circle at shorter lengths, and found the circle to be

more salient at longer lengths.

An interesting case is a circle connected to short line segments. Given the picture



in Fig. 2-4-left, which is the most salient element? Counterintuitively, the most salient

element computed by the network may be on one of the line segments. The reason

is that a neighboring line segment may increase its saliency by connecting to the

circle, without affecting the saliency of the circle. Consider, for example, a circular

arc of length 1 and curvature r, connected smoothly to a circle of radius r (which

corresponds to a single element connected smoothly to the circle via curvature Kj).

Using Eq. 2.8 we obtain that the saliency of the first element on the arc is

4 (e = (r) + e-",2 , (2.17)

where F represents the circular arc and Qi is the saliency of the circle. Now, using

Eq. 2.14,

(F) C(0, s)ds 2(1 - e- 2 ). (2.18)

Combining Eqs. 2.16-2.18, we obtain that

-e = (1 - 2e-2 )2 +f 2 e r2.

If we now compare the saliency of the element, D, to that of the circle 4 c = r2

(Eq. 2.16), we obtain that eD > 4, when

7(1 - e2 2 2  or K < K, (2.19)

where K~ = 1/r. That is, the element will be more salient than the circle if and only

if it connects to the circle at a curvature that is less than the curvature of the circle.

This is consistent with the network's preference for straight curves. Notice that if the

element is a line tangential to the curve (n = 0) the element will be more salient than

the circle regardless of the circle's radius.

This phenomenon, that curves connecting to a circle may increase their saliencies

due to these connections and actually beat the circle, is more likely to occur for longer

curves. Suppose a curve F connects to a circle C such that the total squared curvature

of F, including the connection point, is k. Then the saliency of the element on F that



is most distant from the circle is given by Eq. 2.17, where ,2 is replaced by k, namely,

(De = )() + e-koc. (2.20)

The longer F is, the more likely it is to become more salient than the circle. Suppose

for example that F is a straight line of length I that connects to the circle via curvature

K. We have that o(F) = I and k = K2, which implies

(De = I + e-"2 C. (2.21)

Now 0, > ( when

l + e-n 2r2 > r 2 .  (2.22)

Substituting r = 1/1K, this implies that

1 - e- 2  K2
2 i (2.23)

when r2 is small, or

tc > (2.24)

Clearly, the longer the line is, the more likely it is to become more salient than the

circle.

Fig. 2-4-left shows a picture of a circle with a few short curves connected to it.

When the Saliency Network is applied to this picture, the most salient element does

not lie on the circle, although most of its saliency is due to the circle. Indeed, if we

disconnect these short curves from the circle, then the circle becomes the most salient

structure in the image.

Fig. 2-4-middle shows an image of a dashed circle on a background of random line

segments, and Fig. 2-4-right displays the most salient curve that results from applying

the Saliency Network to the image. The network identifies the circle, though the most

salient image location is a point outside the circle.
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Figure 2-4: Left: An image of a circle with a few short curves connecting to it. The
most salient element (for which 4 = 142.64) was not on the circle, although its saliency
came mostly from the circle (the saliency of the circle is 130.74). When we add short
gaps between the curves and the circle, the circle becomes the most salient curve in
the image. Middle: A fragmented circle on a background of 200 random elements.
Right: The best curve found by the Saliency Network for the center picture (the dots
mark the tails of the elements). The most salient element (for which 1 = 17.66) is
outside the circle. Due to the gaps in the circle in the center picture, the circle's
saliency is greatly reduced as compared to the leftmost picture.

2.2.3 Curves with gaps

One of the most important properties of Shashua and Ullman's saliency network is

its ability to fill in gaps while computing the saliencies. The network handles gaps

by using virtual elements, which compute the saliencies of curves emanating from

their locations and transfer these saliencies to their neighboring elements. Via these

transfers, actual elements evaluate the saliencies of curves that emanate from their

locations and contain any number of gaps. The network avoids curves with large gaps

by attenuating the scores of curves exponentially with gap size.

In this section we analyze the performance of the saliency network in the presence

of gaps. Due to the saliency measure attenuating exponentially with gap size, the

network is capable of overcoming small gaps, but is unlikely to overcome large ones.

As an example, consider the problem mentioned in Section 2.2.2, that a short line

segment in the neighborhood of a circle may increase its saliency by connecting to the

circle. One consequence of the fast attenuation is that this problem almost disappears

when the segment is not physically connected to the circle. On the other hand, we

show below that, due to the exponential decay, very long structures (straight lines

AJ~5~



and circles) obtain very low scores even when only a small fraction of the curves are

gaps.

Finally, we explore the question of whether the network prefers fragmented curves

(dashed lines) over curves with single gaps of the same total size. At first glance

Shashua and Ullman's saliency measure appears indifferent to this property, because

the total size of gaps is taken into account, irrespective of the fragmentation. In fact,

for open curves there is no clear preference between a curve having many small gaps

or a few long gaps. For closed curves, however, we show that a curve with a single

large gap is preferred over the same curve with several small gaps of the same total

size; this preference is inconsistent with the psychophysical experiments of Elder and

Zucker [28].

In computing the saliency of a fragmented curve, gaps affect the total score in

two ways (see Eq. 2.1). First, gap elements themselves do not contribute at all to the

total score (since oj = 0 for virtual elements). Secondly, the actual elements of the

curve that lie on the other side of a gap are attenuated by a factor pg, where g is the

total gap length accumulated from the beginning of the curve. Consider for example

a curve F with one gap of length g. Denote the first part of the curve (before the gap)

by F1 and the second part of the curve (after the gap) by F2, and denote by k(0, m)

the total squared curvature of IF plus the gap. The saliency of F is given by

0(1) = O(Fr) + p"e-k(O',m)(r 2) (2.25)

Thus, F, contributes to the saliency of F as if there is no gap, the gap elements

contribute nothing, and the contribution of F2 is attenuated by pg. Clearly, the longer

the portion of F before the gap (17), the less the saliency of F will be attenuated. If

the gap appears near the end of the curve the saliency of F is hardly attenuated. If the

gap appears at the beginning, the entire saliency of F is attenuated by the factor pg.

Notice that since the network evaluates open curves starting from both endpoints, if

a curve contains a relatively smooth section on one of its sides and a relatively wiggly

section on its other side, then the highest score will be obtained when the gaps are



distributed along the wiggly side.

To analyze the effect of gaps, consider a straight line F with gaps distributed

uniformly along the line. Let p (0 < p < 1) be the fraction of the line containing the

actual elements, and let q = 1 - p be the fraction of the line which is virtual. We can

thus set u(s) = p. The gap length g of a line segment of length I is given by q1. Since

we are dealing with a straight line, C(0, s) = 1 for all s. Consequently, the expected

saliency of a straight line of length I with fraction q in uniform gaps is given by

J(F) - p p'" ds = (pt - 1). (2.26)
Jo qlnp

This score converges as 1 approaches infinity to

4 P (2.27)
q Inp

Thus, the saliency of an infinitely long straight line with uniformly distributed gaps is

always finite and, in fact, proportional to p/q. Note that since the saliency measure

monotonically increases with the length of a curve the score of an infinitely long

straight line with uniform gaps provides an upper bound on the score of any finitely

long line segment with the same distribution of gaps.

Examples for the values assumed by Q,, as a function of p and p are given in Table

2.1. Consider p = 0.7: When 95% of the line includes actual elements (5% gaps), the

score is only 53.27, and when 90% of the line includes actual elements (10% gaps),

the score drops to 25.23. This means that a straight line of length 54 will be better

than any line that contains 5% gaps. Similarly, a straight line of length 26 will always

be better than an infinite line with 10% gaps.

A similar analysis can be performed for a circle with uniformly distributed gaps.

Note that we are talking about a circle of finite size. Given a circle with radius r and

fraction p actual elements and q = 1 - p virtual elements, we set p(s) = p for all s,

g(0, s) = qs and, using Eq. 2.14, C(O, s) = e-"s/2 . Thus, the saliency of F is given by

4(F) = p p1se -2 ds - p e(q1np--)s ds, (2.28)
0(lp-~-sg 0aa



Table 2.1: (D, for a straight infinite line with uniform gaps as a function of p and p.
Note that the score for infinite lines gives an upper bound on the score of finite ones.

which, since q In p < 0, simplifies to

S(rF) = p (2.29)
,2 qlnpp

Examples for the values assumed by ((F), for p = 0.7, are given in Table 2.2.

Similar to the case of straight lines, the saliency of circles attenuates very fast with

gap size. For example, the saliency of a circle of radius 16 that contains no gaps is

256. With 5% gaps its saliency reduces to 43.70. This saliency (43.70) is identical to

the saliency of a gap-free circle of radius 6.61. Similarly, with 10% gaps the saliency

of the same circle reduces to 22.74, which corresponds to the saliency of a gap-free

circle of radius 4.77.

Next, we analyze the case of a short curve, F, that lies near a circle such that the

two are not touching. Again, we shall ask whether such a curve may become more

salient than the circle by using the saliency of the circle. Let <((F) denote the saliency

of F, let g be the gap length between F and the circle, and let k be the total squared

curvature of F plus the gap to the circle. The saliency De of the first element on F is

given by

~, = ,I(r) + p•e-kc. (2.30)

p\p 0.1 0.3 0.5 0.7 0.9
0.5 0.43 0.83 1.44 2.80 9.49
0.7 1.01 1.94 3.37 6.54 22.15
0.9 3.91 7.48 12.98 25.23 85.42

0.93 5.77 11.03 19.17 37.25 126.10
0.95 8.25 15.78 27.41 53.27 180.33
0.97 14.04 26.86 46.65 90.65 306.88
0.99 43.00 82.23 142.83 277.56 939.63

1 00 00 00 00 00



Table 2.2: The saliency
(for p = 0.7).

values of circles with uniform gaps as a function of p and r

We obtain that Ie > Oc (recall that (c = r 2) when

D(F) + p"e-k 2 > r2 (2.31)

which implies that
1
2 O(F) > 1 - .

T,
(2.32)

Note that since p < 1 the right-hand side grows larger as the gap size increases.

Consequently, the chance of an element becoming more salient than a circle by taking

its saliency from the circle decreases with the gap size. Suppose finally that F is a

straight line of length I such that its continuation is tangential to the circle, in which

case 1(F) = 1, k = 0, and the condition (Eq. 2.32) becomes

r-> 1 - p". (2.33)

For 1 = 1 and p = .7 we obtain that F is almost never more salient than the circle:

- > 1-.7F2

< 1 - .

(2.34)

(2.35)

p\r 1 2 4 8 16

0.5 0.42 1.17 2.07 2.58 2.74
0.7 0.63 1.96 4.13 5.71 6.31
0.9 0.87 3.15 9.17 17.55 22.74
0.93 0.91 3.38 10.63 22.91 32.21
0.95 0.93 3.55 11.82 28.39 43.70
0.97 0.96 3.72 13.25 36.85 66.41
0.99 0.99 3.90 14.98 51.58 132.48
1 1 4 16 64 256



From this equation, r must be extremely small to allow an element to win with gaps:

For g = 1, we have r < 1.826, and for g = 2, we have r < 1.400. As I increases the

likelihood of F becoming more salient increases.

The final issue we discuss is the saliency measure's preference for how gaps are

distributed along a curve. Elder and Zucker [28] conducted experiments which demon-

strate that, when a fraction of the boundary of an object is missing, humans' recog-

nition ability is hindered more when the missing fraction is contained all in one gap

than when spread over several gaps. For any curve, the saliency measure encourages

gaps to be as far as possible from the starting point. For an open curve with a fixed

total gap length, the best and worst cases are when the curve has one large gap at the

start (worst) or end (best). Since the network evaluates the saliency of curves from

all possible starting points it prefers that gaps are pushed as far as possible from the

smooth sections of the curve.

While for open curves there is no clear preference for a single long gap versus a

few short gaps, for closed curves such a preference does exist. Consider a circle F

with one large gap. Let F, be the open curve corresponding to the part of the circle

that is actual, and let F2 be the gap. The most salient element on the circle will be

the first element of F1 , since the saliency measure prefers gaps to be as far as possible

from the start of the curve. So the most salient curve will go first through F1, then

through F2, and then loop back to IF. Let ar denote the length of gap F2. Since

only the actual elements contribute to the saliency of a curve, the saliency obtained

by going once around the circle is simply 0(F1 ). Using Eq. 2.9 the saliency of the

circle becomes

( (r) = 217r. (2.36)
1 - p re -

If the circle now contains, say, two gap sections of the same total length ar, then

the saliency obtained by going once around the circle will be reduced. This is because

a gap will be closer to the start of the curve. As a consequence, the numerator in

Eq. 2.36 will become smaller. The denominator, however, will remain unchanged

since the total gap length and curvature did not change. This analysis clearly applies
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Figure 2-5: Three circles of the same radius with the same total gap size. Using
Shashua and Ullman's network the saliency values are 46.85 (left), 27.93 (middle),
and 23.27 (right).

when the circle is fragmented by more than two gaps. Consequently, the saliency

of the circle will become smaller as a result of fragmentation. An example is given

in Fig. 2-5. The figures shows three circles of the same radius and with the same

total gap size. The network prefers the one that contains one long gap over the ones

in which the gaps are fragmented. This behavior disagrees with Elder and Zucker's

results.

2.3 Complexity and Convergence Analysis

In this section we analyze the complexity of Shashua and Ullman's saliency network.

Denote the total number of pixels in the image by p and the number of discrete orien-

tation elements at every pixel by b. The network has pb elements. At each iteration

each element has to evaluate all the saliencies obtained from elements connected to

it. The complexity of every iteration therefore is pb2 . The question is then how

many iterations are required before the network converges. Clearly, if we did not

allow cycles the longest curve may be of length p, and so the total complexity of the

computation would be p2 b2 . But when cycles are considered, we show below that the

network converges in a linear number of iterations, and so the total complexity is

indeed O(p2b2).

Given a cycle F, denote by 4, the score obtained after going n times around the

cycle, by k the total squared curvature of F, and by g the total gap size. Then from

Eq. 2.9 the saliency of F is O = I1/(1 - p 6e-k). After going n times around the cycle



the accumulated score becomes (this is the finite sum of the geometric series in Eq.

2.9)
1 - pnge-nk

S 1 - pgk (2.37)

Define the relative error by

E - pnge-nk. (2.38)

We can now compute the number of cycles, n, needed to achieve an E = c error:

In e
Inc = n(g Inp - k) - n = (2.39)

glnp- k

Assume F is a circle of radius r with no gaps. Then k = 2 and

r In r

n - r n (2.40)
27

The number of cycles around the circle is O(r). Assuming one iteration covers one

unit of arc length, the number of iterations for each cycle is 27rr. Thus, from Eq. 2.40

the total number of iterations needed to achieve an c error is

N = 27rrn = -r 2 In E. (2.41)

Consequently, the total number of iterations required is O(r 2 ) = O(p), where p is the

size of the image. As an example, the number of cycles required to achieve 1% error

(C = 0.01, Inc e -4.605) is n - 2.303r/7r r 0.733r, and therefore the number of

iterations is N - 4.605r 2

Fig. 2-6 shows an image of a gap-free and a fragmented circle on a noisy back-

ground. As expected, the Saliency Network chooses the gap-free circle as the most

salient curve. Using Eq. 2.41, we could predict the number of iterations for the net-

work to converge on the gap-free circle: The radius of the circle is r - 22.79, and

one iteration covers an arc length As ; 5.966 (r and As are discussed in the next
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Figure 2-6: Running the Saliency Network on an image with gap-free and fragmented
circles and a background of 200 random line segments (at the left). The saliency map

and most salient curve image look the same, and are shown in the center picture.
The dots mark the tails of the elements on the gap-free circle. After 400 iterations,
the maximum saliency was 520.0. On the right: the same circle with no background
elements. The time to convergence and the maximum saliency are the same for the
images at the left and the right.

section). So to obtain 1% error, Eq. 2.41 gives

(27r 4.605r 2
N Asn As 400.9. (2.42)

We ran the Network for 400 iterations on the left image in Fig. 2-6, and the maximum

saliency converged to 520.0. This generally agrees with r 2 = 519.2, as predicted by

Eq. 2.16, and with the exact saliency of the circle under discretization, 525.3 (see next

section). The image dimensions are 128 x 128. The 400 iterations took 1 hour and 25

minutes using C code on a Sun SPARCstation 5 with 32M of memory. Note that the

time for convergence is independent of the background. So the execution time would

be the same if the gap-free circle were alone in the image, as in Fig. 2-6-right.

By taking the maximal possible circle in the image, we account for the worst case

complexity of the network. This is because any larger closed curve must accumulate

comparable total squared curvature in order not to exceed the boundaries of the

image. We can therefore conclude that the worst case complexity of the network is

O(p 2b2), which is the squared number of elements in the network.

- -



2.4 Discrete Implementations

Our analysis of Shashua and Ullman's method has concentrated on the theoretical,

continuous version of their saliency measure. Shashua and Ullman proposed to com-

pute this measure using a network of finitely many, locally connected elements. In

this section we analyze the effect of computing the saliency measure on discrete net-

works. We show in particular that the network is extremely sensitive to the number

of discrete orientation elements allocated for the network.

Shashua and Ullman's network has the following structure. Let p be the number

of pixels in the image, and let b be the number of orientation elements at each pixel.

(Shashua and Ullman set b = 16.) The network contains p x b processors, a processor

for every orientation element at every pixel in the image. A continuous arc is assigned

between every two elements that meet at the same pixel in the underlying image. The

value of k = f C2ds corresponding to such an arc is approximated using the formula

2a tan
k = 2 (2.43)

Ae

where a denotes the angle between the neighboring elements and Ae denotes the

length of an orientation element. This formula represents the curvature of a circular

arc that joins the midpoints of two elements of the same length. As an example, the

gap-free circle of Fig. 2-6 was generated using a 24-sided regular polygon with one

element per side and with Ae = 6. Then a = r/12, and Eq. 2.43 gives k _ .04388.

Therefore the radius of the circular-arc approximation is r = 1/k ? 22.78 and the arc

length covered by one iteration is As = ar _ 5.966.

Shashua and Ullman set Ae to be constant, and hence ignore the different sizes of

elements of different orientations. As a result, a horizontal (or vertical) line of length

I obtains the same saliency as a diagonal line of length I/2. Shashua and Ullman's

implementation therefore encourages curves that are aligned with the main axes of

the image.

A more critical issue is the number of orientation elements in the network. Con-

sider for example a horizontal straight line segment cut in the middle so that one part



Figure 2-7: Discretization effect on a straight line. Left figure: the discretization of
a straight line. Right figure: a corner. The saliency value obtained for a perfectly
horizontal line of length 20 is 20.00, the saliency value for a straight line of the same
length is 18.41, and the saliency value of a corner is 19.10.

Figure 2-8: Discretizing a circle with a regular polygon.

of the line is raised up by one pixel (see Fig. 2-7). Let 21 be the length of the line.

The saliency of the first element along the line is given by

(be = 1+ e + (1- 1)e 2n2, (2.44)

where n is the curvature formed by the change in orientation a corresponding to

raising the line up by one pixel (which is also the curvature formed when the line

returns to horizontal).

Consider now a pair of lines of length I meeting at a corner such that they form the

same orientation change a. Since a corner forms only one turn the obtained saliency

will be

40 = 1+ le-2. (2.45)

Consequently, we obtain the paradoxical result that the corner is more salient than

the nearly straight continuation. Hence straight lines oriented such that they deviate

slightly from horizontal will often be less salient than corners.

The discretization problem is carried over to other, more complicated, exam-

ples. Consider a circle of radius r. When r is sufficiently small, the circle can be

approximated by a regular polygon where each side includes a single orientation ele-



ment (Fig. 2-8). The discrete saliency of such a regular polygon is given by

2 2pc2 1 1 2=1+ e-  + e- 2 2  (2.46)1 - e-"2 -

when 2 is small. (a is the curvature corresponding to a turn a = 27r/n where n is the

number of sides of the polygon.) The approximation in Equation 2.46 improves as

n decreases; this happens when the number of sides in the polygonal approximation

increases and as a result fits a circle more closely. When r is big so that a good

approximation by a regular polygon would require finer orientation changes (less

than A), a faithful discretization of the circle would involve many inflections (that

is, clockwise turns balanced by counter-clockwise turns). These inflections would be

penalized unduly by the network. We could improve the saliency of the discretization

if we instead represent the circle by a regular polygon of b sides; each side now

contains more than one element. This, however, will still not result in a reasonable

approximation to the continuous saliency of the circle. This can be seen by the

following observation. The saliency of a regular polygon with b sides each of a unit

length is, according to Eq. 2.46,

1
01 - (2.47)1 - e_42 7

where r is the curvature assigned for a turn of M. The saliency of a similar regular

polygon in which every side is of length I is given by

1 - = ()l1. (2.48)1 - e-

The saliency of a regular b-sided polygon, therefore, increases linearly with the length

of each side, 1. Since 1 is directly related to the radius of the circumscribed circle,

the saliency of the polygon increases linearly also with the radius of that circle. Since

the continuous saliency of a circle grows quadratically with the radius of the circle

(Eq. 2.16), we obtain that, as r grows, the saliency of the polygon will considerably

underestimate the saliency of the circle.



Figure 2-9: Shashua and Ullman's saliency map for a cluttered scene using 16 orien-
tations per pixel. From left to right, the first picture is the scene image (width 124,
height 117), and the second is an edge image obtained from the scene image by thresh-
olding the gradient magnitude. The edge image was the input to the network. The
third picture displays Shashua and Ullman's saliency map, and the fourth shows the
first 50 elements of the curve emanating from the most salient element, for which
D = 14.0. The saliencies of the straight edges of the flashlight and the clamp are
attenuated because they are not aligned with the horizontal or vertical axis of the
image.

The results shown in this section establish that the Saliency Network would face

serious difficulties due to the discretization of orientation elements. A faithful im-

plementation of the continuous saliency measure requires a very fine discretization of

the orientation elements. The number of orientation elements needed to completely

avoid the problems mentioned in this section is of the order of Fp, where p is the

total number of pixels in the image. With this number of orientation elements the

overall time complexity of the network (see Section 2.3) becomes O(p2 b2) = O(p3 ).

Fig. 2-9 shows an example of applying Shashua and Ullman's network to a real

image. The image was smoothed with a Gaussian of standard deviation 1 and then

thresholded to get a binary image. The saliency map obtained from the binary image

highlights the edges of the objects, and the method found a long winding curve that

has saliency 14.0. This is somewhat surprising, since in the input image, which has

width 124 and height 117, the flashlight and clamp have edges that are straight and

are much longer than fourteen. From examining the active elements along the straight

edges of the flashlight and clamp, we observed that a sequence of these elements could

not form a perfectly straight line for either edge due to the discretization. Instead,

such a sequence was forced to make turns of the kind in Fig. 2-7-left, causing the

saliencies of the boundaries to be attenuated.

I
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Figure 2-10: Characterization of extensible functions. If the most salient curve from
vl goes through v2 then, at convergence, it should coincide with the most salient curve
from v2.

2.5 Discussion

In this section we draw the reader's attention to a few additional issues concerning

the Saliency Network. First we discuss the particular class of measures that can be

optimized by the Network. Then we consider the issue of running the Network for

small numbers of iterations, instead of waiting for convergence. Lastly we discuss the

issue of using the output of the Network for grouping.

The saliency measure exhibits two important properties which enable its compu-

tation on the kind of network introduced by Shashua and Ullman. The two properties

are (1) extensibility and (2) the measure induces a geometric sum for cycles. Due

to the extensibility (defined in Eq. 2.3) saliencies can be computed using a proce-

dure of recursive optimization (dynamic programming). Extensibility implies that

an optimal curve must be composed of sub-curves which are themselves optimal. In

particular, under Shashua and Ullman's definition at convergence if the most salient

curve emerging from an element vl passes through another element v2 then beginning

at v2 the most salient curve from the two nodes must coincide (see Fig. 2-10). The

geometric sum is essential for convergence. Because of the geometric sum, for exam-

ple, the ranking of a curve when it is traced from the beginning to the end will in

general differ from its ranking when it is traced from the end to the beginning. These

two properties thus considerably constrain the possible functions that can be used as

measures of saliency. It remains to be seen whether variations of the measure that

maintain these two properties can be defined to remedy some of the weaknesses of

the current measure.

One of the benefits of extensibility is that although the Saliency Network finds the



element from which the best curve emanates rather than extracting the best curve

itself, the best curve can be extracted in a simple way. As has been proposed by

Shashua and Ullman, to extract the best curve one has to store during the computa-

tion for each element a single pointer which points to the second element on the best

curve emanating from the element. At the end of the computation the best curve

is retrieved by tracing these pointers starting from the most salient element. This

procedure will produce the most salient curve at convergence.

On the other hand, this procedure is not guaranteed to extract the best curve at

any finite time. Consider for instance the picture in Figure 2-10. After n - 1 iterations

(where n is equal to the length of the straight line F1 ) the best curve emerging from

vl is the straight line of length n, F1 . Since the length of F1 counted from v2 is shorter

than that of F2 the best curve emerging from v2 is F 2. If we now trace the pointers

starting from vt we will mistakenly think that the best curve of length n contains the

segment of F1 from vl to v2 and then a part of F2. This problem can be avoided if

one stores the entire history of the computation, but that of course will increase the

storage space required by the method considerably.

Our analysis concentrated on the asymptotic behavior of the Saliency Network.

In their experiments, Shashua and Ullman demonstrated that good results could be

obtained already after a few dozen iterations (between 10 and 160). In this they relied

on the property that after the n'th iteration the score attributed by the network to

every element represents the saliency of the best curve of length n + 1 emanating

from the element. There is a drawback to this approach, however. Whereas after

running the network for a small number of iterations the saliency values obtained

for short curves already approximate their asymptotic saliencies, long curves still are

undervalued significantly. This is particularly problematic when closed curves are

considered, because their asymptotic scores benefit from being considered infinitely

long. Thus, when the network is run for a relatively small number of iterations, closed

curves are evaluated as if they were short, open curves, and as a result closure is not

encouraged by the network.

The Saliency Network is viewed by many people not only as a mechanism for



shifting attention to salient structures, but also as a method for the initial grouping

of curves. The problems of identifying salient structures and the grouping of curves

are not identical. Saliency can be viewed as the problem of identifying the "odd man

out," whereas grouping is the problem of identifying image structures that are likely

to belong to a single object. The criteria of length and straightness can separate a

smooth object from a background of short, broken curves (e.g., a disc on a background

of grass), but they may be inappropriate for segmenting equally-smooth objects in

cluttered scenes. For example, one cannot expect to extract the boundary curve of a

man-made object if the method used associates significant penalties to corners. The

binary input image in Figure 2-9 has many long, smooth curves, some of which go

around corners and some of which run across different objects. The Saliency Network

in such cases often will prefer to select a curve that traverses a few objects than to

select curves that include sharp turns.

Computing saliencies with the Network involves a series of local optimizations.

At every step of the computation each element must choose between a few candidate

curves and select the one that optimizes the measure of saliency. Consequently, when

two curves share a common section (as in Figure 2-11) the elements on the common

section must decide between the two curves. As a result, the most salient curves

emerging from the beginning of the two curves (vi and v2) will coincide as soon as

they reach the common section and will never separate again. Due to this property,

non-salient curves next to a salient one will often include the salient curve as part

of them. We have already seen an example in which, due to this property, a non-

salient curve becomes salient unduly (Section 2.2.2). This phenomenon is particularly

problematic if we attempt to use the Saliency Network for grouping, since it implies

that all curves in the neighborhood of a relatively salient objects will be considered

part of that object. A post-processing procedure for separating the curves may be

required so that reasonable groups can be obtained.
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Figure 2-11: Each element of a curve chooses one neighboring element with which to
combine. Consequently the shared portion must choose between the two shapes, and
so the best curves emerging from vi and v2 will coincide once they reach the common
section, and will never split again.

2.6 Summary

The Saliency Network is a mechanism for identifying salient curves in images based

on length and straightness. The method is attractive for several reasons. First, the

measure of saliency generally prefers long and smooth curves over short or wiggly ones.

In addition, the network is guaranteed to find the most salient structure according to

the measure. While doing so, the network fills in gaps with smooth completions and

tolerates noise. The network itself is locally connected and its size is proportional to

the size of the image. The locality is further emphasized since the contribution of

remote elements to the score of a given element attenuates with the curvature and

gap length separating them from that element.

Our analysis, however, revealed certain weaknesses with the network. Some of

these weakness related specifically to the measure of saliency. In particular, we showed

that the network encounters problems with the ranking of open and closed curves.

We showed that a short segment next to a salient closed curve may be judged more

salient than the closed curve although its saliency represents mostly the saliency of

the closed curve. Also, the network sometimes changes its preferences when the image

is uniformly scaled.

The weaknesses with the saliency measure may in part be due to restrictions im-



posed by the network's computation. To guarantee convergence, the network imposes

that the saliency measure decrease in a geometric series when. evaluated along a cycle.

Furthermore, we analyzed the network's time complexity, implied by the geometric

series. In particular, the number of iterations required by the method is linear in the

size of the image, and that as a consequence the overall complexity of the network

in serial implementations is quadratic in the size of the network. In addition, we

discussed problems due to coarse sampling of the range of possible orientations. We

showed that with proper sampling the complexity of the network becomes cubic in

the size of the image. Finally, our discussion revealed that the method has difficulties

at curve junctions. This leaves unclear how to make the transition to grouping in

complex images.



Chapter 3

Extracting Salient Contours Using

Shortest Paths1

In this chapter we introduce a new approach to the problem of identifying salient

curves in images. Our method is based on finding shortest paths in graphs. The

method is designed to locate salient areas in complex images, while simultaneously

making available the curves that make those areas salient. We are specifically inter-

ested in a mechanism for global saliency, which was illustrated in Figs. 1-3 and 2-1.

One such method is Shashua and Ullman's Saliency Network. The Saliency Net-

work guarantees finding globally salient curves according to a saliency measure based

on length and straightness. The last chapter showed, however, that Shashua and

Ullman's method can have difficulties at junctions and their saliency measure can

change its preferences when the image curves are uniformly scaled. We carefully con-

sider these issues in the design of our method. As with the Saliency Network, our

method will place significant restrictions on the possible saliency functions. Given

these restrictions, we construct a measure that as closely as possible exhibits the

desired behavior.

Before describing our method for saliency, then, it may be beneficial to discuss

what we would like in an ideal measure of curve saliency. In particular, several

'This chapter is joint work between the author and Ronen Basri.



potentially desirable properties were suggested over the course of Chapters 1 and 2.

First, we may wish our measure to take advantage of closure. If the contours in the

models surround closed regions, then closure imposes a strong constraint on saliency.

A second cue for a saliency measure is size. Large objects seem to attract humans'

attention more than small objects, and, moreover, it is common in images for the

objects of interest to be relatively large. Of course, this criterion will not help to find

a person standing in a forest, but there are many circumstances in which it may be

useful, such as in avoiding an oncoming truck.

Another potentially worthwhile property is a preference for smoothness, where

smooth here refers to "non-wiggly." Note that this relates to the number of inflec-

tions in the curve and differs from the mathematical notion of smoothness defined

by discontinuity in orientation. One such measure of smoothness is convexity. Nor-

malizing by size, this measure would say that all convex shapes of the same size are

equally salient (see Fig. 3-1). The basic idea is that winding curves with many points

of inflection should be less salient than curves that are purely convex. Our justifica-

tion for this criterion is that the man-made objects in which we are interested tend

to have smooth contours, whereas, a curve through a series of random background

segments would tend to be more wiggly.

In addition to smoothness, a saliency measure should prefer that curves be con-

nected, that is, to contain as few gaps as possible. Within this preference for few

gaps, there is a significant issue as to where on a curve the gaps should occur. Specif-

ically, on gaps we also want the measure to prefer straightness, because it has been

established that humans are better at filling-in gaps when they occur on straighter

sections of curves (Biederman [11]). One possible explanation is that it is less am-

Figure 3-1: The above objects have constant curvature, changing curvature, and sharp
changes in orientation. Is it clear which is the most salient?



biguous how to fill in a straight gap, making them easier to complete (see Fig. 3-2).

This explanation supposes that humans prefer smooth completions and that, to fill-in

a gap, they only consider the position and tangent information the gap's endpoints.

Biederman on the other hand explained humans' apparent preference for straighter

completions by noting that collinearity is a special property when viewing line seg-

ments. The explanation incorporates the notion of non-accidental properties (see

Lowe [64] for an introduction and also Jacobs [55] for an interesting analysis). In par-

ticular, collinearity is invariant to projection, and so two collinear 3D line segments

always produce collinear image segments. In contrast, two 3D line segments in gen-

eral position are very unlikely to produce collinear 2D line segments when projected

from an arbitrary viewpoint. The fact that collinearity is special in this sense may

explain why people are better at filling gaps that are straighter.

A second-order issue with gaps concerns how the total gap length is distributed

when the curve is equally straight (same curvature) everywhere. In particular, there

is evidence that humans are better at filling-in several small gaps than one large gap

of the same total length (Elder and Zucker [28]). On the overall issue of gaps, we

would like a saliency measure to prefer gaps that are shorter and straighter.

Lastly, it is preferable that the measure ranks curves in a way that is invariant

to similarity transformations (rigid transformations and scalings). Note that in this

property we are not requesting absolute invariance, but only relative invariance in

the rankings of curves, since this is all that is important for grouping. In fact, to

satisfy the length requirement, the saliency measure should not be invariant to scale.



Notice that straight line segments of any length are related by scale, as are all circles

of any size. If the measure is scale invariant it cannot possibly distinguish between

line segments of different lengths or circles of different sizes. Thus we must require

scale invariance in a weaker sense. Let S(F) in general be the saliency of a curve F.

Then we want

S(rl) < S(F 2 ) == S(Zrl) < S(zF 2 ), (3.1)

where zFP1 and zF 2 are respectively the scaled versions IF and I2 (z > 0). Below we

choose a measure for gap-free curves that obeys this rank scale invariance.

Although it may be possible to describe a function that has all of these proper-

ties, such a function may be difficult to optimize efficiently on complex images. By

"complex" we mean that image curves can be fragmented, noisy, and can intersect,

all of which make junctions difficult to handle. In Chapter 1 we listed the following

two principles. Foremost we want our saliency mechanism to be able to find curves

that are salient globally in complex images. In addition, the time required by the

saliency mechanism to identify a salient curve generally should be on the order of the

length of curve, or at least not much more than the length. This is particularly true

if the curve is alone in the image. When there is a significant clutter in the image,

causing the curve to be less salient, then more time is permissible.

Our basic problem is to develop a method which offers an effective tradeoff between

the desired properties of the saliency measure and the saliency mechanism. Shashua

and Ullman's method offered a tradeoff which we believe is too restrictive in the

saliency measures it can optimize and in its ability to cope with junctions. We have

developed a new approach which we think offers a more attractive tradeoff. In the

first section of this chapter, we present our method, which is based on shortest-

paths algorithms. In the following section, we compare the method to Shashua and

Ullman's to elucidate the differences. Then in Section 3.3 we discuss the class of

saliency functions the shortest-paths method can implement, and in Section 3.4 we

develop a function that is a member of this class and that satisfies most of the

desired properties for a saliency measure. Section 3.6 describes experiments that test



the method in various situations. The experiments demonstrate that the method is

capable of finding salient curves in complex images.

3.1 Our Method

Our method proceeds by applying shortest-paths algorithms to a graph constructed

from the image. In a shortest-paths problem, we are given a graph g = (y, S), where

V is a set of vertices and £ is a set of edges, and we are given a weight (or cost)

function w : S - R mapping edges to real values. The cost of a path is the sum of

the weights of the edges along the path, and a shortest path between two vertices is

any path of minimal cost between those vertices. We let the graph g have a vertex

for each orientation element, and a pair of directed edges between every two vertices

that correspond to neighboring elements. The cost function is given in Section 3.4.

Appendix A presents the well-known Bellman-Ford algorithm for finding the shortest

paths from one vertex (source) to every other. By repeating this "single source"

shortest-paths computation from any chosen set of vertices, we can find the optimal

paths from those vertices to every other.

To date, we have focused on computing saliency maps for closed curves (though in

Section 3.7, we discuss how we might produce a saliency map for open curves as well).

For each vertex, then, there is one optimal closed curve, which is the shortest path

that leads from the vertex back to itself (excluding the trivial path of length 0). For

the saliency of a vertex, we use the inverted cost of the optimal closed curve through

that vertex.

Like Shashua and Ullman, we define the "saliency map" of an image to be an

image in which the intensity value of each pixel is proportional to the score of the most

salient curve emanating from that pixel. We could produce this map by computing

the shortest paths for every possible vertex (element) and then setting the saliency

of a pixel to be the largest saliency among the elements connected to that pixel.

In actuality, we first detect a subset of edge points and estimate the tangent

vectors at those points. Then we use these oriented points as the sources. Although



the resulting saliency maps will be much more sparse, there is little actual loss of

information, since every salient contour should have at least one non-gap element on

it. In practice, we run the single-source shortest-paths computation at most once

from each of the p image pixels, and typically much less.

3.2 Comparison to Shashua and Ullman's Method

Like Shashua and Ullman's network, our method extracts the long and smooth curves

in the image while performing gap completion. In addition, our method overcomes

some of the difficulties encountered by the Saliency Network. Specifically, our saliency

measure avoids high rankings of short open curves when these connect to closed

curves, and its rankings of curves are invariant to scale changes. Furthermore, the

method can deal with junctions, and it converges without having to follow a geometric

series. Additionally this is performed in a run-time complexity that is comparable to

Shashua and Ullman's.

Fundamentally, however, there are basically two properties of our approach that

differentiate it from Shashua and Ullman's. The first is that we find the optimal curve

from each element separately, and the second is that we minimize instead of max-

imize. Finding the optimal curve starting from each element separately allows our

method to choose between curves according to how well they complete a path from

that starting element. In the Saliency Network, there is no notion of a starting ele-

ment, and this forces the Network to choose between equally good curves at junctions.

To see this, it is useful to observe that the Saliency Network basically implements a

shortest-paths algorithm, specifically, the Bellman-Ford single-source shortest-paths

algorithm (given in Appendix A). For every iteration, the Saliency Network per-

forms the operation in Eq. 2.4 at every element. For the Bellman-Ford algorithm, we

equivalently would perform the following operation at every edge (vj, vi):

If D(i) < F(i,j, (j)),

then $(i) - F(i,j,ý (j)),



where F() is given in Eq. 2.5 and would be computed using state variables stored at

vertices vi and vj and at edge (vj, vi). In Eq. 3.2 we used "<" instead of ">" to be

consistent with taking the maximum in Eq. 2.3, though to compute least-cost paths,

we alternatively could have negated the values of the state variables. The difference

in the results of the Bellman-Ford and Shashua and Ullman's algorithms arises from

how 0(i) is initialized. In the Bellman-Ford algorithm, initially I(i) = 0 and r0o = vo,

and for all other vertices we set D(i) = oo. In the Saliency Network, initially D(i) = oi

for all i. This shows that, by simply changing how the edge weights are initialized,

a shortest-paths algorithm can optimize any extensible measure (extensibility was

discussed in Chapter 2).

The Saliency Network's difficulty with junctions is captured by the requirement of

extensibility. Recall Fig. 2-10. If v2 is an element on the most salient curve emerging

from vl (denoted by F1 ) then, at convergence, the subcurve of F1 from v2 must be the

most salient curve emerging from v2. This restriction does not apply for our measures.

It is possible in our method that the most salient curve emerging from v2 will not be

a subcurve of F1. The framework proposed in this chapter, therefore, strictly extends

the set of possible functions that can be used to express the saliency of curves.

Nonetheless, this broader class of measures does not come without a cost. Finding

the shortest paths in an arbitrary graph can take asymptotically longer than the

convergence time for the Saliency Network. For example, to use the Bellman-Ford

algorithm as described above, we would have to run the Saliency Network many

times, once for every starting vertex. To remedy this problem, we restrict the edge

weights in the graph to be positive, which allows for using much faster shortest-paths

algorithms. Our method then obtains a worst-case running time equal to that of the

Saliency Network (see Section 3.5).

Although both our method and Shashua and Ullman's use positive weights on

the edges, we minimize a function over these weights whereas Shashua and Ullman

maximize. Consequently, our method converges after going around a closed curve

once, since it is always more costly to go around more times. Additionally, there is no

need for our function to form a geometric series, since there is no such requirement



for convergence. Nevertheless, the overriding advantage of our approach is that we

can handle junctions, by allowing each optimal curve to make an independent set of

choices.

3.3 Optimal Substructure

Shortest-paths problems generally exhibit the property of optimal substructure [24].2

For every pair of vertices, vl and v2 , the optimal path between this pair of vertices

(denoted by P*) must contain the optimal path between any pair of vertices on F*.

There exist functions that do not obey this restriction. For example, the measure

proposed in [95, 19], T(F) = lk, where 1 denotes the length of F and k denotes its

total squared curvature, does not have optimal substructure. To see this, consider

the two curves on Fig. 3-3. The curve FI is composed of a circular arc connecting

the elements vl and v, followed by a straight line connecting the elements v and v2.

The curve 72 is composed of the curve of least energy connecting the elements vi and

v, followed by the same straight line between v and v2. Denote by 1, and by kI the

length and total squared curvature of the circular arc in F1, and by l, and by ke those

of the curve of least energy in F2. Denote by d the length of the straight line between

v and v2. First, notice that ke < kc (because ke is the energy of the least-energy curve

between vl and v). It is shown in [95, 19] that a circular arc always minimizes the

measure lk; therefore lck, < leke. Depending on the value of d we can make 1(F11) be

either less or greater than 'I(F2). When d = 0,

(rlF) = 1ckA < leke = TI(r2).

When d > 0 we obtain that 1(Fr1) = (l1 + d)k, and (1'2) = (l, + d)ke, from which

we obtain that T(F2) < 1 )(rF) when

d Ickc - leke (3.3)d> (3.3)
kc - ke

2 Brady et al. used the term "extensibility" for this property [15].
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Figure 3-3: Left figure: 17 + 12. Middle: IF. Right: F2. F1 is composed of a circular
arc (between vl and v) and a straight line (between v and v2). F2 is composed of the
curve of least energy between vl and v and a straight line (between v and v2).

Therefore, when the straight line between v and v2 is sufficiently long, the optimal

curve between vl and v2 will be F2 . Nevertheless, the optimal curve between v, and

v will still be the circular-arc section of IF which is not part of 12. Consequently,

the measure '(F) = Ik does not exhibit optimal substructure. It should be noted

however that by increasing significantly the number of vertices in the graph it is

possible to compute discrete approximations of this measure. This issue, however,

extends beyond the scope of this work.

3.4 Saliency Measure for Closed Curves

For each vertex there is one optimal closed curve, which is the shortest path that leads

from the vertex back to itself (excluding the trivial path of length 0). For the saliency

of a vertex, we simply use the inverted cost of the optimal closed curve through that

vertex, that is, S(F) = ~ For the remainder of the section, we concentrate on

developing the cost function I(F).

3.4.1 Gap-free curves

According to our criteria, we wish the rankings of curves by the saliency measure

to be invariant to similarity transformations. Furthermore, we wish to prefer curves

that are large and smooth. For a gap-free curve F, one measure which partly meets

these conditions and can be optimized by shortest paths is simply the total squared



curvature k:

S(r) = k (3.4)

This measure obviously is indifferent to rigid transformations.

As for scale, the total squared curvature is inversely dependent on scale; that is, if

we scale a figure by z, the total squared curvature becomes k/z. To see this, consider

a curve F(t) of length I and curvature rc(t), where 0 < t < 1. The total squared

curvature is k = 1f K2(t)dt. Suppose now that we scale the picture by z. The scaled

curve has length zl, and the curvature at position T = zt becomes

Iz(zt) = (3.5)
z

Thus, the total squared curvature becomes

oz i o I 2 (t) k(O, 1)
k,(0, zl) = 1 7(r)dr = 2 (zdt) = (3.6)

S0 Z
2  

Z

Consider for example a circle of radius r, so that its total squared curvature is k =

27r/r. If we now scale the circle by z, its radius becomes zr, and its total squared

curvature becomes k, = 21r/(zr) = k/z.

The inverse dependence of the measure on scale implies that large closed curves

would in general be judged more salient than short closed curves. For example, the

saliency of a circle of radius r is

1 rS(circle)= (circe) (3.7)T (circle) 2 x

and so the saliency grows with the circle's perimeter. Thus the measure k leads to

preferring larger circles, and it is rank scale invariant. Of course, since it is possible

to increase the length of a curve faster than its curvature (e.g., Fig. 3-4), the measure

does not strictly prefer larger shapes.

The total squared curvature is often used as a smoothness measure (e.g., [12, 56,

82, 43]). In actuality, however, k is a measure of straightness, since it penalizes any

deviation from straightness and only straight lines receive zero cost. For example, a



Figure 3-4: Although the total squared curvature tends to prefer larger shapes because
it decreases with scale, it does not distinguish between these two shapes.

perfectly smooth circle is penalized more than a line. For our purposes, this creates a

preference for larger circles, which agrees with the size criterion. On the other hand,

the area of a region would be a better indicator of its size. A narrow, elongated

shape (as in Fig. 3-4) can have significant size but large cost due to high-curvature

turns. Shashua and Ullman also proposed using the total squared change in curvature

as a, smoothness measure [82], which has zero cost on any circle. Nevertheless, this

measure penalizes perfectly smooth ellipses over circles.

As discussed above, for smoothness we may want to measure the convexity of the

curve. One such measure is the total absolute curvature, which also has been used

before for smoothness (e.g., [69, 73]). For closed curves, the total absolute curvature

reaches its minimum value of 27r on all convex shapes, including circles, ellipses, and

squares. In terms of our saliency measure, one unfortunate consequence is that the

total absolute curvature has no preference for larger shapes. In general, it appears

very difficult to construct a measure that simultaneously prefers convex and large

shapes, is rank scale invariant, and can be optimized locally. Leaving this as an open

problem, for now we shall use k as our measure of size and smoothness.

As a result, the method can have problems on curves with corners (e.g., the square

in Fig. 3-1), since across discontinuities in orientation the total squared curvature is

infinite. Corners are similarly a problem for the Saliency Network. One possible way

in which we could circumvent this problem is to detect corners bottom-up, as we

do for edge and gap elements, and then use a different penalty term at the corner

points. As yet, we have not explored this possibility, and so our method is intended

for smooth curves in which orientation changes slowly.



3.4.2 Curves with gaps

When there are gaps in a curve, we want the gaps to be as straight and short as

possible. One possibility is to use the total squared curvature again. Consider a

gap that can be completed by a circular arc of radius r and length £. Then over

this gap k = ,, which increases with length and decreases with straightness, as

desired. Unfortunately, on perfectly straight gaps this measure is 0, regardless of

the gap's length. To alleviate this problem, we add a term for the length of the gap;

specifically, on gaps we use k + J-, where rm is a constant. This term penalizes longer

straight gaps, but we have lost rank scale invariance. We can, nonetheless, obtain a

similar behavior on circles by choosing r, large enough, as follows. On an all-gap

circle of radius r,

(r) = k + = 27r + . (3.8)
r2 r

This function decreases from infinity at r = 0 and grows back towards infinity as r

becomes large. Taking the derivative,

() 2 + . (3.9)
dr r2  r2

Solving dT(r)/dr = 0 gives r = rm. So T(r) strictly decreases to '(rm) = 41r at

r = rm and then strictly increases. Consequently if we set rm to be at least the radius

of largest possible circle in the image, then the function will always decrease as r

grows.

In terms of the criteria for gaps mentioned above, our gap measure prefers fewer

gaps overall and it prefers gaps to lie on the straighter sections of a curve. On the

issue of preferring several small gaps versus a few large gaps of the same total gap

length, the measure exhibits no preference. So on gaps our saliency measure meets

the first two of the three criteria we suggested.

Putting the two terms together gives

T(F) = k + A (kg + (3.10)



where kg is total squared curvature over the gap part of F, g is the total gap length,

and A is a straightness constant greater than one. The larger A is, the straighter the

gaps must be. Using this measure, an upper bound on the cost of the best cycle

through any element is the cost of the largest all-gap circle through that element that

fits inside the image.

Representing the measure in Eq. 3.10 a little differently, we can notice a resem-

blance to the measure used by Shashua and Ullman. Define

= =e- k+A(kg+ - (k+ r k,+g))(3.11)

Taking the exponent did alter the ranking order of curves, and negating the cost

function turned the minimization into maximization. Letting p = e r , we obtain

(F) = prMkg+ge-k (3.12)

Now if we remove the repeated summing for the geometric series in Eq. 2.6, we get

((rF) = p(O, l)C(, 1) = pge- k,  (3.13)

which differs only in missing the kg term for gaps. In our scheme the kg term is

essential in order to prefer straighter completions for gaps. Without this term, an

upper bound on the cost of a best cycle through any element would be the cost of

the shortest all-gap cycle; this shortest cycle is trivially two elements long (starting

from the element and then returning by making a 1800 turn).

Given two arbitrary orientation elements, we can use our shortest-paths framework

to find the curve F* that connects the two elements and minimizes the measure T(F).

To do this we first construct a graph g in which the sum of edge weights amounts to

I(F). We let A 3j = 0 if edge (vi, vj) is actual, and A~j = A if edge (vi, vj) is virtual.

And for every edge (vi, vj) we assign the weight

w(v, v) = k + A k + , (3.14)



where kij denotes the squared curvature produced by the two orientation elements vi

and vj, and where sij denotes the arc length. Then the cost I(F) of a curve F is the

sum of the weights along the path corresponding to F. A shortest-paths algorithm

will then minimize this sum over all curves traveling between the two given elements.

Of course, the cost of a path obtained by such an implementation provides only a

discrete approximation to the true cost T(F).

3.5 Complexity Analysis

An efficient algorithm for finding the single-source shortest paths in a graph with no

negative-weight edges is Dijkstra's. Dijkstra's algorithm can be implemented straight-

forwardly using a binary heap, which is what we used in our experiments. For a graph

with V vertices and E edges, the running time is O(E log V) [24]. Using the same

notation as Chapter 2, the graph 9 has pb vertices, one per orientation element. Also,

there is an edge for every pair of elements that meet at the same pixel in the image.

Each element that is not on the boundary of the image, then, has b edges emerging

from it. In total, this gives bV edges minus the missing boundary edges, which for

an image of dimensions w x h is precisely E = b(pb - (b - 2)(w + h - 4) - (3b - 4)).

Since w and h are O(JFp), E is O(pb2). To produce the saliency map, we run the

single-source computation separately for each pixel whose gradient magnitude is large

enough. In the worst case there would be one active element for all p pixels in the im-

age. Substituting for V and E, this gives a worst-case running time for our method of

O(p2 b2(log p+log b)), using Dijkstra's algorithm with a binary heap. If we instead use

a Fibonacci heap, the running time would be O(p(V log V + E)) = O(p2b(logp + b)).

Moreover, it is possible to do even better because our graph is locally connected,

using the recent, linear-time algorithm of Klein et al. [57]. As a consequence the time

for our method is bounded asymptotically by O(pE) = O(p2b2), which is the same as

the time for Shashua and Ullman's method.

It is worth noting that for most images, we obtain a substantial speedup by

running the algorithm only from the pixels in an edge map. If there are a edge pixels,



then the running time becomes O(apb). The space required to store the graph g is

O(V + E) = O(pb2 ), which is comparable to the space required to store the saliency

network, O(pb). To additionally store the top a optimal paths, we would require

space for about O(a~ji) nodes. This estimate of ,F for the path length comes from

the fact that the optimal closed curves are simple (no loops) and tend to have slowly

changing orientation.

It should be noted that in our method, as in Shashua and Ullman's method, the

issue of discretization is critical for obtaining reasonable performance of the system

(see the discussion in Section 2.4). A faithful implementation requires b = O(v )

orientation elements at every pixel. The overall time complexity becomes O(p3),

which reduces to O(ap2) for binary images. The space requirements become O(p2 ) to

store the graph and O(p3 ) to store the optimal paths between all pairs of elements.

Note that, like Shashua and Ullman's network, our method can be implemented on

parallel architectures to obtain a significant reduction in time complexity.

For the case of a single, gap-free curve in the image, our method is very efficient.

In particular, Dijkstra's algorithm uses a best-first search to find the optimal paths.

For any starting node, we end the search as soon as the optimal cycle back to the

start is found. So in the case of a lone curve, only the nodes on the curve are

examined. For an isolated curve of length e, then, the running time for Dijkstra's

single-source algorithm reduces to O(eb lg e). If fragmentation is added to the isolated

curve, the time for the method should degrade slowly, for Dijkstra's algorithm will

have to explore a small area around the curve as well. When the complexity of the

image increases, the time for the method goes up considerably.

Lastly, we mention some possibilities for speeding-up the method in practice.

First, once a salient closed curve is found, that curve need not be recomputed later,

because a path between any two nodes on the closed curve that does not include the

start node will always be optimal. When there is a salient closed curve in the image,

we expect that the optimal cycles for elements that are on or near the salient closed

curve will pass through that salient closed curve. By re-using the already-computed

optimal paths, we might obtain substantial savings. For the special case of a single



curve in the image, we would only have to run one single-source computation.

Another way we could speed-up the computation is to prune high-cost searches

through background clutter. The idea is that clutter in the image will lead to long

closed curves that pass through a large number of gaps, because the term kg + -

prefers long, straight curves. As mentioned above, a bound on the worst optimal cycle

through any element is the largest all-gap circle through that element that fits inside

the image. Then if we have an estimate of the worst cost associated with the salient

cycles in the image, we can prune searches when the cost of the best path becomes

significantly greater. One way to estimate the cost may be to look for a salient cycle

by choosing among the starting elements randomly.

3.6 Experiments

We first tested our method on simulated images to illustrate the points made above

concerning the saliency measure and the mechanism. Then we tested the method

on real images. We implemented our saliency method using Dijkstra's single source

algorithm to optimize the saliency measure at every source element. For an imple-

mentation of Dijkstra's algorithm, we made use of a library of shortest-paths routines

(called SPLIB) by Cherkassky, Goldberg, and Radzik. All of the reported execution

times are for C code on a SPARCstation 5 with 32M of memory. Unless otherwise

stated, we used twenty-four orientation elements per pixel, which gave the radius of

the largest discrete circle to be r = 22.78 (see Section 2.4). To satisfy the condition

that rm is at least the radius of the largest circle, we set rm = 31.62 (so we multiplied

the gap length by 1/ri = .001). In all cases we used A = 10. The real images were

smoothed with a Gaussian of standard deviation 1 before processing.

The first example demonstrates the operation of the method at junctions. The

leftmost picture in Fig. 3-5 contains two circles, a small circle with no gaps, and a

larger circle with a gap at every other element. After running the shortest-paths

method, the most salient element (for which S = 1.782) was on the smaller circle.

The lower-left picture shows the most salient curve, which is the smaller circle. Even
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Figure 3-5: Shortest-paths method at image junctions. Upper left: the input graph
showing two circles meeting at a junction. Upper right: the shortest-paths saliency
map. Lower left: the most salient curve. Lower right: the top two most salient curves.
The most salient curve has saliency 1.782.

though our saliency measure prefers larger circles, the smaller circle is more salient in

this case because of the gaps in the larger circle. To obtain the second most salient

curve, we first chose the next most salient element in the image that was not any of

the elements on the most salient curve. Then we used the optimal cycle through this

chosen element, which was the larger circle. The lower-right picture displays both

optimal cycles.

For comparison to Shashua and Ullman's method, Fig. 3-6 shows the results of

the Saliency Network on the same input. To get the optimal curves, we first traced

the curve from the most salient element (for which 4) = 131.3), which gave the

smaller circle. Then to get the next most salient curve, we repeated what we did

for the shortest-paths case. That is, we picked the next most salient element after

excluding all the elements on the optimal curve, and then we traced the curve from

this element (third picture from the left in the figure). This next most salient element



Figure 3-6: Shashua and Ullman's method at image junctions. Left to right: The
most salient curve (only the tail points of the elements are shown), the second most
salient curve (which starts from the endpoint of the open curve attached to the circle
and then goes around the circle), and the third most salient curve (which again starts
from the endpoint of the open curve and proceeds around the circle). The saliencies
of the top three curves are 131.3, 21.10, and 8.426.

was an active element on the larger circle and was separated from the junction by

a single gap element. Tracing the curve that followed the chosen element gave the

smaller circle again. Repeating the process to get the third most salient curve gave

the second most salient curve again, except that it was two elements longer (right

picture the figure). From the analysis in the last chapter, elements near the most

salient cycle tend to merge with the cycle and then draw their saliencies from it. The

saliencies of these elements attenuate as they become further away. To obtain the

larger circle, we would have to trace the curve from the least salient active element.

On the two-circle example in Fig. 3-5-top-left, in which there is no clutter, one may

expect a saliency mechanism to run very fast. On this example, the running times

until convergence were 52 seconds for the shortest-paths method and 47 minutes for

the Saliency Network. In fact, the shortest-paths method might have run almost

instantaneously if it had memorized the optimal cycles instead of recomputing them

from all sources (see discussion in Section 3.5).

In more complex images, in which there is significant clutter, our shortest-paths

implementation will be slowed down considerably, since it searches for optimal paths

through every background element individually. To better compare the required times

for the two methods, we also ran the shortest-paths method on the two-circle image

from Chapter 2 that has a cluttered background (Fig. 3-7). There are 200 background



Figure 3-7: Left: two salient circles on a cluttered background of random line seg-
ments. The middle and right pictures show the shortest-paths saliency map and most
salient cycle (for which S = 3.627), respectively.

elements in this image, and the shortest-paths method took 35 minutes. For this image

it is unclear that storing the optimal paths would significantly reduce the search,

since most of the time is spent searching for optimal paths through the background

elements (though there is still the possibility of cutting short such searches). This

example is also worse for the Saliency Network because the most salient cycle is now

larger (Fig. 2-6-center), and we know from the last chapter that the convergence time

grows with the radius squared. As the last chapter reported, on this example the

Network requires 1 hour and 25 minutes.

The next example is a synthetic image of a convex shape among random back-

ground elements (Fig. 3-8). After running the shortest-paths method, the convex

shape is highlighted and the best curve through the shape can be traced. There were

122 active elements, and the method took 19 minutes to complete.

For our first example of a non-synthetic image, Fig. 3-9-left shows a large blob

on a field of smaller blobs that are connected together. To detect active elements,

we thresholded the image to remove the black background and then placed active

elements between all of the surviving pixels. This gave 12954 active elements in the

graph. For a starting element, we randomly selected one of the active elements at

each surviving pixel. The large blob in the picture appears salient partly because of

size and partly because of smoothness. The rest of the image contains less salient

cycles which either surround the small blobs or trace out less smooth curves, via the

connections between the small blobs. In this situation, there are no gaps which must
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Figure 3-8: Left: smooth, fragmented shaped on
shortest-paths saliency map. Right: the most salient

a noisy background. Middle:
curve (S = 0.5445).

Figure 3-9: Smoothness and size can be important for saliency. On the left, the
input image contains a globally salient blob (the image is from [65]). The middle and
right images show the shortest-paths saliency map and best closed curve (for which
S = 0.1272), respectively.

be bridged to find the salient curve, and so the relevant term in the saliency measure

is just the total squared curvature k. Using this measure, the method successfully

found the salient blob. The running time, however, was 5 hours and 42 minutes. We

saw that the network spent a lot of time recomputing paths around the large blob.

Storing the optimal paths may speed-up the method substantially.

Finally we try the method on two real images, shown in Figs. 3-10 and 3-11.

To compute saliency maps for real images, we first process the intensity image to

produce two binary input images, a Canny edge map and a thresholded gradient-

magnitude image. The thresholded image is used to generate the graph, and the

Canny edges are used to select a reduced number of sources. More specifically, the

graph is created by making an element active if the magnitude of the gradient in the



Figure 3-10: Shortest-paths saliency maps for a cluttered scene. The top center image
is a Canny edge map, and the top right image was obtained from thresholding with
the average gradient magnitude. The bottom row shows two saliency maps and the
most salient curve. In the center saliency map, each element is displayed as bar whose
width is proportional to its saliency.

direction perpendicular .to the element (the directional derivative) is larger than the

average gradient magnitude. Then using the Canny edges, source elements are placed

between all neighboring edge pixels. Since the Canny edges resulted in thin saliency

maps, in which it is difficult to see which elements are brighter, we also provide a

thickened saliency map in which each element is represented by a bar whose width

and brightness are proportional to its saliency, up to a maximum width of 4 pixels

(this bar form of display was used by Shashua and Ullman).

For both real images, the thresholded gradient-magnitude maps contain many

junctions and curves to choose from, although they have few gaps. In Fig. 3-10, the

method found the flashlight as the most salient curve (saliency 1.137). In the original

and the bar saliency maps, the flashlight is brightest. In addition, the saliency map

indicates that most of the boundary of the clamp, and parts of the boundaries of the

pliers and the telephone keypad are the next most salient areas. From the saliency



Figure 3-11: Shortest-paths saliency maps for a cluttered scene. The top center image
is a Canny edge map, and the right image was obtained from thresholding with the
average gradient magnitude. The bottom row shows two saliency maps and the most
salient curve. In the center saliency map, each element is displayed as bar whose
width is proportional to its saliency.

map, these saliencies of edges are about 0.75 for the clamp, 0.85 for the pliers and

0.9 for telephone keypad. The other edges have saliencies around 0.3 to 0.6.

In Fig. 3-11, the most salient curve lies on the boundary of a region surrounding

the telephone keypad. This cycle has saliency 1.813. The cycle is rounded because the

method finds the smoothest curve through the edge-thickened map in the top-right

image, starting from a edge point in the top-middle image. In addition to the region

surrounding the telephone keypad, the telephone handset and the mug are clearly

salient as well. From the saliency map, their saliencies are both around 1.45. These

results seem promising considering how little information was used (the total squared

curvature).

In terms of execution time, however, the results are somewhat less attractive. For

Fig. 3-10, the Canny edges gave 1587 source elements and the thresholded gradient-

magnitude image gave 22848 active elements in the graph (the image dimensions are

124 x 117). The program took 13 hours and 18 minutes to run. For Fig. 3-11, there



were 1416 sources and 40654 active elements (the image dimensions are 118 x 104).

In this case, the execution time was 8 hours and 33 minutes. As discussed earlier,

one possibility for speeding-up the method is to prevent recomputation of the salient

paths and to cut off high-cost searches. Another possibility is to run the method

on a parallel machine. Parallelism is possible both for running many single-source

shortest-paths computations at the same time, and for the implementation of the

shortest-paths algorithm itself.

An additional possibility to explore is scale-space techniques. If we find the opti-

mal curves in a small, down-sampled image, the results could be used to narrow the

necessary search area at finer scales. With this in mind, we re-ran the shortest-paths

method on the same two real images, but down-sampled to size 83 x 78 for Fig. 3-10

and 80 x 70 for Fig. 3-11. The resulting saliency maps and optimal curves were sim-

ilar to before. The running times, however, reduced to 5 hours and 15 minutes for

Fig. 3-10 and 2 hours and 17 minutes for Fig. 3-11. The reductions are significant,

but still are far from sufficient for a saliency mechanism.

Lastly, we shall demonstrate how an operator can use the shortest-paths output

to obtain the most salient curves from or through any point in an image, or between

any two points in an image. In Fig. 3-12 we picked an element on the boundary of

the stapler, namely pixel (13, 35) at orientation 00. This pixel is on the bottom edge

of the stapler, close to the leftmost point on the stapler boundary. The program then

found the most salient closed curves through the element, shown in the bottom row.

The first two pictures in the bottom row compares the closed curves obtained using

16 and 24 orientations per pixel. As expected, the 24-orientation curve is smoother.

In the rightmost picture in Fig. 3-12, we tried an experiment where we incorpo-

rated the gradient magnitude at the actual elements into the cost function. Specif-

ically, we let cj E [0, 1] be the normalized directional derivative across element vj.

Then for every actual edge (vi, vj) in the input graph, we changed its weight from

w(vi, vj) = kij to w(vi, vj) = kij + A'(1 - cj), with A' arbitrarily set to 0.3. The

resulting cost function resembles the energy functions used in [12, 56, 66, 69, 73]. As

shown in the picture, incorporating intensity compelled the curve to adhere to the



Figure 3-12: User-assisted curve selection, demonstrating the effect of discretization
and the use of intensity information. The user picks a point in the image, and then
the algorithm finds the most-salient closed curve passing through that point. The
upper-left image shows a stapler on a white background. The upper-right image
is the input graph obtained by thresholding the directional derivative across each
element. For the threshold we used the average gradient magnitude. The bottom
row of images show the most salient curves emanating from element (13,35,00). The
left and center pictures show the most-salient cycle using 16 and 24 orientations,
respectively; the 24-orientation curve is notably smoother. The final image shows the
most-salient cycle using 24 orientations that is obtained directly from the intensity
image, suggesting that incorporating intensity may lead to better curves.

actual shape of the object. This application is similar to active contours [56], except

that we require as input one point on the desired shape and active contours typically

require an entire contour near the desired shape.

In Fig. 3-13, the two center pictures show three salient closed curves from the

scene image in Fig. 3-10, which were obtained by selecting one point on each of

their boundaries. More specific control over the optimal curves can be obtained

by supplying two points, which we did in the rightmost picture to obtain a cycle,

composed of two open curves, that demarcates the unoccluded part of the telephone

keypad. Two points also can be used to obtain open curves that cross over gaps,

as described in the figure. In terms of efficiency, after the shortest paths have been

computed for all sources, the most salient curves are located in real time.



Figure 3-13: User-assisted curve selection. The second picture shows three optimal
closed curves obtained from the binary image (see Fig. 3-10 for the original intensity
image). Each cycle was obtained by selecting one point on the boundary of an object,
specifically, the flashlight (for which the cycle contains 43 elements), the clamp (45
elements), and the pliers (26 elements). The third picture shows the optimal cycle that
was found when we selected a point on the boundary of the occluded telephone keypad
(46 elements). Observe that this curve includes edges from both the flashlight and the
keypad. By specifying two points on the occluded keypad's boundary, we obtained
two curves that surround only the keypad, which are displayed in the rightmost
picture (6 elements apiece). The final picture also shows an open curve between two
user-selected points on the boundary of the phone (9 elements). Notice that this
curve fills a gap in the telephone's silhouette. Specifying two points gives the user
more control over the discovered curves.

3.7 Proposed Saliency Measure for Open Curves

In this section we describe a possible approach for evaluating the saliencies of open

curves. For open curves the situation is more complicated than for closed. It is no

longer sufficient to compute the cost of one optimal path from each element, since a

shortest path trivially is one element long. Instead, we would compute the shortest

paths between all pairs of elements. Then for each element, we choose among all the

least-cost paths emerging from it, using a measure that prefers longer paths. More

specifically, our open curve saliency map will be a mapping S : V -+ R which assigns

for every vertex vi E V a value that reflects the saliency of the most-salient open

curve emerging from that vertex. Formally, let Ci denote the set of curves emerging

from vi. The saliency S(vi) is defined by

S(vi) = max S(F), (3.15)
rEC,



where S(F) represents the saliency associated with a particular curve F. Our view is

that the optimal curve has already emerged from the shortest-paths computation, and

we shall define the saliency measure S(F) in such a way to ensure that optimal curves

will be considered more salient than other curves which travel the same distance.

Thus, we will be able to compute S(v ) by considering only the optimal curves. Let

F*(v;, vj) denote the optimal curve from vi to vj. Then, S(vi) is given by

S(vi) = max S(F*(vi, vj)). (3.16)
vEV-{vi}

For the saliencies S(F) we choose a measure that decreases with the cost V(F)

of that curve, because the cost function decreases with the smoothness and non-gap

length of the curve. To encourage long curves as well, we select a measure based on

a notion of "efficiency." Namely, we wish to find those curves that travel the longest

distance while maintaining low total squared curvature and low gap length. By using

the distance between endpoints instead of the actual curve length, we maintain that

the optimal curve (according to T) will always be more salient than any other curve

which travels between the same endpoints. For an open curve F let d be the Euclidean

distance between the endpoints, and as before let k denote the total squared curvature

and g denote the total gap length along F. Assume F contains no gaps (g = 0). One

measure that encourages longer distances and lower total squared curvature is

dP
S(r) = k, (3.17)

where p is a constant (p > 0). This measure is also rank scale invariant. However,

the measure becomes unbound when F is a straight line, in which case k = 0. We

shall see that achieving rank scale invariance for gap-free open curves is non-trivial.

To develop a rank scale-invariant measure, notice that the measure dk is scale

invariant (in the strong sense). It is zero for all straight lines and 27r for all half

circles. This is related to the measure proposed in [95, 19] for finding the best gap

completion between two points by optimizing length times total squared curvature.

Since the measure dk is scale invariant in the strong sense, it cannot be used as a



measure of saliency, but we will use it as a basis for constructing our measure.

Consider the function S(F) = 1/d + k. Clearly this measure decreases with scale.

Furthermore, it is scale invariant in the weak sense, since both 1/d and k are inversely

dependent on z. Since we want a measure that grows with scale (so that a long straight

line segment will have a higher score than a short segment), let us invert it:

1 d
S(F) - d (3.18)

+ k 1 +dk

Notice what happens here. The denominator 1 + dk is scale invariant in the strong

sense. So the only term that changes with scale is the numerator d, and d grows

linearly with scale. Consequently S(zF) = zS(F). In this way we can define other

measures that are rank scale invariant, such as

dP  ed

S(F) = or S(F) = d (3.19)1 + a(dk)s' 1 + a(dk)q'

where a, p, and q are positive constants. These measures can be computed directly

from the output of the shortest-paths algorithm, since

d ed
S(F) = 1 + aand S(F) = 1 + a(d()) (3.20)1 +a (dT(F))' 1 + a (dx(F))

To conclude, we will compute the values of S(F) = d for a few simple curves.

The score of a straight line (k = 0) is simply S = d, the length of the line. The score

of half a circle of radius r (d = 2r, k = ir/r) is S = 2r/(1 + 27r). So half a circle

is always a multiplicative constant below the straight line that connects the same

endpoints.

Next we determine the best circular arc on a circle. Let ar be the length of

a circular arc, then the distance between the endpoints of the arc is given by d =

2r sin(a/2) and k = a/r. The saliency of a circular arc, therefore, is

2r sin(")
S(a) = 1 2+ (3.21)1 + 2a sin()



Taking the derivative with respect to a and equating to zero, we obtain

cos ()- 4 sin2 () = 0. (3.22)

As is expected, since S(F) is scale invariant, the angular span of the best circular

arc is independent of r. Replacing sin 2(a/2) by 1 - cos 2(a/2), we obtain a quadratic

equation in cos(a/2). Letting x = cos(a/2), we have 4x 2 + -4 = 0. And its solutions

are given by

x I ±(3.23)
8

which provides two solutions, namely x, = 0.883, which corresponds to about a = 560,

and x2 = -1.13, which is not feasible. The saliency of a circle as an open curve, as is

reflected by the saliency of the most salient element on the circle, equals the saliency

of a circular arc that spans 560.

3.8 Conclusion

In this chapter, we have cast saliency as a problem of finding shortest paths in graphs.

We defined a graph in which the least-cost paths in the graph amount to salient curves

in the image. The complexity of our method is comparable to that of Shashua and

Ullman's. Like their method, our method can be implemented efficiently on parallel

architectures, though on serial machines the running times of the two methods can

be prohibitive. Even so, we mentioned constraints which may significantly decrease

the required time. Additionally, our method can be an efficient tool for user-assisted

curve selection. Finally, a problem with our method which was carried over from

Shashua and Ullman's is the need for relatively massive discretization of orientation

in order to achieve good approximations of the non-discretized curves. We intend to

address this problem in the future in an attempt to reduce this limitation.



Chapter 4

Uncertainty Propagation in

Model-Based Recognition 1

Given a correspondence between a set of image features and model features, a basic

problem in model-based recognition is to evaluate the correspondence and extend it

if necessary. Important computations involved in evaluating and extending the cor-

respondence include (1) deciding whether the correspondence provides an accurate

alignment of the model the to the image, (2) determining which image features could

correspond to each unmatched model feature, and (3) choosing a new match to ex-

tend the correspondence. These computations are intertwined with the issue of error

propagation, that is, the issue of how uncertainty in a set of matched image features

propagates to uncertainty in the predicted image locations of the remaining model

features.

We consider an approach where points are used for generating correspondences and

where the correspondences are verified using line features as well as points. Given a

set of correspondences, errors in the locations of the matched image points propagate

to uncertainty in the predicted position of any unmatched model feature. The error in

each image point generally can be limited with high probability to some small region.

This observation is independent of the distribution of the error within the region,

'This chapter is joint work between the author and David Jacobs.



and, when looking for additional matches, can be used to limit the necessary search

area in the image. Specifically, we will assume that errors in the sensed or nominal

locations of the image points are bounded by circles of radius e. Then, as the matched

image points move independently around their c-circles, every predicted model feature

traces out a region of possible image locations. We call the sets of possible image

locations the uncertainty regions of the model features, and in this chapter we derive

either bounds on these regions or probability distributions on them, depending on

our model of error.

To illustrate how the uncertainty regions could be used in a recognition system,

we outline a robust version of Huttenlocher and Ullman's 3D-from-2D alignment algo-

rithm [52]. In this algorithm, the 3D models contain both points and line segments.

The points are used for generating hypotheses, and the line segments are used for

verification. We show below that the uncertainty regions for points are circular and

we give a formula for computing these "uncertainty circles." We can use this result

to bound the uncertainty regions of line segments by finding the uncertainty circles

of their endpoints (as was done by Alter and Grimson [4]). Given a model and a

cluttered image of a scene containing the model, repeat the following steps until the

model is identified:

1. Hypothesize a pairing of three model and image points.

2. Using the hypothesis, compute the model-to-image transformation and project

all of the model line segments into the image.

3. Use Equation 4.26 to compute the uncertainty circles for the two endpoints of

every projected line segment. Then construct a tight overestimate of every line

segment's uncertainty region from the two uncertainty circles (see Fig. 4-1).

4. Accept or reject the hypothesis, based on the number of line segments for which

there exist candidate image segments, and on the sizes of the uncertainty regions

(as in [4]). If accepted, return the identified model and pose.

Alter and Grimson demonstrated that this algorithm is expected to be insensitive to



Figure 4-1: Region to search for candidate line segments.

false positives in cluttered scenes.

There are several reasons why it is useful to carefully understand the propagation

of uncertainty, as opposed to assuming some small, simple uncertainty region and us-

ing it in all cases. First, as we will show, uncertainty regions can vary considerably in

size, and may be quite large for the predicted model features, resulting in many candi-

date image features for each prediction. In particular, grouping techniques commonly

find image features that are close together on an object (e.g., [18, 13, 46, 59, 52, 55]),

and we will see that this easily can lead to large uncertainty regions. Even when

the matched features are far apart in the image, the uncertainty regions of the un-

matched points may still be large, due to the depth of the 3D model. Second, both

when the image features are nearby and when they are far apart, there are situa-

tions in which the pose of the model is unstable, and the uncertainty regions assume

surprising shapes. By understanding the propagation of uncertainty, then, we can

determine exactly where to look for features, and we can evaluate the stability of the

pose produced by the initial correspondence.

4.1 Summary of Results

Given a set of matched image and model points, we determine an unmatched model

point's uncertainty region. We handle both scaled-orthographic and perspective pro-

jection models. We also consider two different models of error. As mentioned above,

we consider a bounded error model, in which we suppose that the error distributions

are unknown. In addition, we consider image points detected with errors that have

known, independent Gaussian distributions. Given no other information, Gaussians



may be the preferred error distribution, since image features are displaced by a sum

of error vectors, incurred over a series of processes such as digitization, smoothing,

and edge detection. A bounded error model may be useful, however, when errors con-

tain a consistent bias that results in distributions that are significantly skewed from

Gaussian. In the first case, we show how bounded error in image points propagates to

a bounded uncertainty region describing the possible location of an additional model

point. In the second case, we show how Gaussian error in matched image points

propagates to an uncertainty region with a Gaussian distribution for an unmatched

point.

First we compute the uncertainty regions for unmatched points based on sets of

three matched points. We derive a simple linear expression that approximates the

relationship between the matched and unmatched points. This relationship allows us

to show that, for bounded error, the uncertainty region for a fourth point is circular,

and to derive analytic expressions for the center and radius of the circle. For Gaussian

error, this relationship implies that the propagated distribution of uncertainty is also

Gaussian, and provides analytic expressions for the center and standard deviation.

We perform experiments to verify that these expressions are accurate for the amount

of error that is of interest in most recognition applications.

We also take advantage of the linear relationship by introducing a new algorithm

that allows us to determine the uncertainty region for any number of matched points.

To do this we approximate our bounded error regions with convex polygons, and then

show that we can use linear programming to derive a convex polygon that describes

the uncertainty region of the unmatched model point. We experiment with both

synthetic images and a real image to observe the accuracy of the uncertainty regions

that we compute, and to determine the extent to which they shrink as we match more

points.

Finally, we show how to extend previous work for linear projection models to

the cases of scaled-orthographic and perspective projections. Using the linear ap-

proximation, we show that we can use Baird's [7] algorithm to tell whether a set of

matches between image and model points is geometrically consistent, and that we



can apply Cass' [21] and Breuel's [17] algorithms to find, in polynomial time, the

model pose that aligns the maximum number of model and image features to within

error bounds. We also extend Jacobs' [54] and Sarachik and Grimson's [80] planar

alignment algorithms to 3D objects.

4.2 Projection Models

For reference, we review the models of projection to which we refer in this chapter.

For perspective projection, we can write the corresponding image position (x, y) of a

3D model point (X, y, z) in terms of a 3D, rigid rotation matrix R, a 3D translation

vector u', and a camera focal length f. Letting rij be the elements of R, we have

rllx + r 1 2y + r 13 + U f r 21x + r 22y + r 23 Z + Uy
=f , y =f , (4.1)fr31 + r32Y + r33 +u Uz r 3l-T + r32Y + r z33 + Uz

where the rows of R are orthonormal, and where we assume the origin is at the center

of projection. When the focal length f is known, there are six degrees of freedom, and

consequently three corresponding model and image points are "minimal" to determine

the transformation. Given three corresponding points, there exist up to four solutions

for the model pose [31].

This work extensively considers scaled-orthographic (also known as weak-perspec-

tive) projection, in which a 3D object is scaled down and projected orthographically

into the image. This projection model is appropriate when the camera is far from the

objects being viewed with respect to their sizes. In this case, the image position of

(T, y, z) can be written in terms of the first two rows of a scaled, 3D rotation matrix,

S = sR, and of a scaled, 3D translation vector, b. Letting sij be the elements of S,

we have

X = s81 1 + 812Y + 813 5 + be, y = S21X + 822F + S23 Z + by, (4.2)

where 11 (11, 8 12, 813) (21, 822, 23) I and (811, 812, 13) (821, 22, 23) = 0. There

are six degrees of freedom in the scaled-orthographic model-to-image transformation,



and consequently three corresponding points are minimal to determine the transfor-

mation. Given three corresponding points, the transformation always exists if the

model points are not collinear and it generally has two solutions [52, 2]; in particular,

the scale factor and translation are always unique, and the'rigid rotation matrix is

unique up to a reflection of the rotated model about a plane parallel to the image.

For 3D linear projection, we remove the two non-linear constraints on the rota-

tion parameters in the scaled-orthographic projection model. This transformation is

equivalent to applying a scaled-orthographic transformation to the model, and then

applying a scaled-orthographic transformation to the resulting image; in total, this is

like taking a picture of a photograph [55]. There are eight degrees of freedom in linear

projection, and four corresponding points are minimal to determine the transforma-

tion. Given a minimal set of matches, this is the only transformation of the three

(perspective, scaled-orthographic, 3D linear) in which the unmatched model points

can be written linearly in terms of the matched image points. In particular, let the

four image and model points be (xi, yi) and (xi, yi, zi), respectively, for i = 1, 2, 3, 4.

Then we can obtain the first row of the transformation by solving

x1

X2

X3

x 4

Xl Yi z1  1

X2  Y2 Z2  1

X3  Y3  3  1

X4 Y4 Z 4 1

s11

S1 2

S13

bX

(4.3)

A similar equation holds for the second row of the transformation. These equations

give linear expressions for the transformation parameters in terms of the image point

coordinates. Since multiplying a matrix by a vector is a linear operation, applying

the computed transformation to any unmatched model point gives a linear expression

for the model point's image position in terms of the matched image points.



4.3 Fourth-Point Uncertainty Region

In this section, we assume we are given exactly three point correspondences, and that

the correspondences are used to calculate a model pose and then project a fourth

model point into the image, obtaining its predicted image position. We specifically

address the following problem: Given exactly three matching point pairs, (t, r~o),

(i1 , ri), and (i 2, i 2), where the locations of io, i• , and i2 contain small amounts of

error, what is the error in the predicted image position of a fourth model point, M'3?

This section presents an analytic solution to this problem, which is based on a first-

order approximation, and results in a linear relationship between the errors in the

matched (basis) image points and the error in an unmatched, projected model point.

Here we consider weak-perspective projection, and in a later section we extend the

results to perspective.

For weak-perspective projection, we show that the linear relationship takes a sim-

ple form that can be used to predict the uncertainty region for an unmatched model

point when there is bounded error or Gaussian error in the image points. When we

allow the three basis image points to be perturbed within bounded error regions,

the resulting uncertainty region is also bounded. When we allow for Gaussian error

in the image points, the uncertainty region is a probability distribution. Previously

these uncertainty regions were known analytically only for planar objects [54, 80].

Our results have no such restriction, and they reduce to the known solutions when

the model is planar. Furthermore, when the error in the image points is bounded by

circles, the region takes the form of a circle centered at the "nominal point," which

is the point that mr3 projects onto when there is no error in the basis points. This

result agrees with the experimental observations of Alter and Grimson [4].

4.3.1 The Basic Geometry

We begin by examining the propagated uncertainty when there is error in exactly one

of three matched image points, Z2. To do this, we introduce a particular representation

for any third model point that allows us to see how a change in the location of the



third image point affects the projected location of any unmatched model point. In

this representation, we let the origin of the image coordinate system be at i0, the z

direction be orthogonal to the image plane, and the x axis point in the same direction

as zo01, where zo0 = ii - io.

Furthermore, we use the following representation of 3D model points in terms of

the three basis model points (see Fig. 4-2): Originally, the model points lie in some

model coordinate system. For any model point Mri, i > 0, let ri be the length of

the perpendicular from Mri to the infinite line containing ri 0 and ri 1, let di be the

distance from rio to the intersection of the perpendicular and the line, and let Ti be

the rotation of the perpendicular off the basis plane (the plane containing the three

basis points).

A view of a 3D model is determined by choosing the six parameters of a weak-

perspective transformation that will be applied to the model. (There are two param-

eters for in-plane translation, three for rotation, and one for scale.) In this section we

have fixed io and Z1. By fixing the locations in the image where two of the model points

project, we have determined four of the transformation's parameters. In particular,

we initially can rigidly transform and scale the model so that roio = io, •l = ii, and

mm

/i

mot. di m

Figure 4-2: Every model point has unique (di, ri, ri) coordinates, unless it is on the
line through rio1, where ri is unrestricted. Note that 7i = 0 for points in the basis
plane.



nm2 is in the z = 0 plane-in so doing, the model is scaled by

so= I (4.4)

In order to keep o0 and 'rh projecting onto io and il, respectively, there can be no

further in-plane translation nor in-plane rotation. As shown in Fig. 4-3, we still are

free to rotate about the y axis as long as Mil continues to project onto i1 , which means

that any such rotation about the y axis determines the scale factor. After rotating

about the y axis and rescaling, the only remaining degree of freedom is a rotation

about the vector rn0 1.

Next we derive an expression for the image position of ri2 as a function of the

two free parameters. As illustrated in Fig. 4-3, the model is scaled by s, then rotated

by q about the x axis, and then rotated by 0 about the y axis (denoted by R{(0 ,)).

This aligns the projections of the three model points with their corresponding image

points. As in Fig. 4-2, we let m 2 's coordinates relative to the basis model points

be (d2 , r2, 72 ) = (d, r, 0), where we have dropped the subscripts. Notice that the last

element is 0 since 4 2 is in the basis plane. So fi 2 = R {o,y(sd, sr cos 0, sr sin 0), where

m2

Ss sr/
| -y.

iomu _ .x
sd d

Figure 4-3: The out-of-plane rotations: a rotation about the y axis and a rotation
about the vector 0oi.
about the vector r•i0l.



SE [0, 27r), which gives

cos 0 - sin 0 sd d cos 0 - r sin 0 sin q

i2 = 0 1 0 sr cos = s r cos € (4.5)

sin 0 cos 0 sr sin ¢ d sin 0 + r cos 0 sin q

By our choice of image coordinate system, 0 E [0, 7r/2). Project orthographically:

4i = (x, y) = (sd cos 0, 0) + sr(- sin 0 sin q, cos €).

As Mri' rotates around the y axis, the scale factor is constrained to keep ril pro-

jecting onto iz. From Fig. 4-3, this constraint is

s r rMoil cos 8 =l •0, I IS = (4.6)II moI cos 0 cos 0

Consequently,

(x, y) = (sod, O) + sor - tan 0 sin 0, cos (4.7)cos 0
which gives the image position of ri 2 as a function of the "out-of-plane" rotation

angles 0 and €. Fig. 4-4 shows graphically the successive rotations of ri' 2 by 0 and 4,

followed by the orthographic projection.

By setting (x, y) in Equation 4.7 to the nominal location of Z2, we could solve for

the nominal values of 0 and q. If done, this would provide a solution to the problem

of recovering 3D pose from three corresponding points. There are several solutions

to this problem already, however, and instead we could apply one of them and then

use the solution to compute 0 and € (see [3] for a review of the solutions).

4.3.2 First-Order Approximation

Next we allow for error in one of the basis points, i 2 . The problem is to determine

how fi• changes as a function of i2, with io and i1 remaining fixed. In Section 4.3.4,

we explain how to extend the result to the case where all three points can move. The

out-of-plane rotations, 0 and 0, and the scale will change as 2 moves in the plane.



If the changes in 0 and q are sufficiently small, then the changes in x and y as a

function of 0 and q will be given by their first derivatives. From Equation 4.7,

Oy
ao

1
S-sor •  sin ,

cOS2 0
sin 8

= -sor c••os ,
cos 0

sin 0
= sor cos q

Cos 2 9

= -s or sin ¢
cos 0

= (- , ) and t= , ) are the tangent vectors at the point (x,y) to the

image curves that are traced out by changing 0 and €.

I to 11

| £;II

sor
co si2 + sin 2 0 cos 2

COS
2 

0

s0 r
= s sin 2  sin 20cos2 €

cos 0

(4.10)

(4.11)

For a small change in 0, let ao represent the direction in which the image point 12

moves, measured counter-clockwise from the x axis, and similarly for q and ao. Then

m2

"10

-i-

io ,mo  i1

Figure 4-4: The image position of r32 is a function of the out-of-plane rotations 0 and

0.

ax

ax
8o€

(4.8)

(4.9)



since 0 E [0, 7/2)

S= tan- 1  , = tan-1 (sin 0 cos q,- sin q) (4.12)

ao = tan-' ( , tan-'(- sin 4, - sin 0 cos €) (4.13)

The dot product of the arguments to the inverse tangent is 0, and so the tangent

vectors to and to are perpendicular. We can use the normalized cross product of the

arguments to see whether the angle between to and to is +90':

(- sin )) sin in 4) - (sin 8 cos 0)(- sin 8 cos 0)
S(- sin , sin 0 cos ) (- sin 0 cos ¢, - sin ) )I

Thus a• = a• + 900.

4.3.3 Relative Error between the Third and Fourth Points

We still are considering the case where only Z2 moves. This section shows that if

the projected third model point moves by a small amount, then any projected fourth

model point moves by a constant factor times that small amount, and in an analogous

direction. We also show that the two weak-perspective solutions lead to different

constant factors.

Equations 4.10 and 4.11 give the magnitude of the changes in i VI for small changes

in 0 and 4. The only differences for "ii are in the relative coordinates of the model

points (Fig. 4-2). For rfi2 , the coordinates are (r 2, d2,T 2) = (r, d, 0). For r'i3, let the

coordinates be (r 3, d3 , T3 ) = (r', d', T'). Consequently, in the expressions, we change

r -- r' and d -+ d'. Further, 0 and so do not change since they are measured with

respect to i 0 and rMil, and do not depend on whether we are considering ri 2 or ni3-

However, 4 is the amount of rotation of ri2 away from the plane of the wedge in

Fig. 4-4. For any other model point, r3, the amount of rotation away from the

wedge is given by 4 + ±', since, according to Fig. 4-2, 7' is the amount of rotation of



rnM3 away from Mr2 . Hence for M'3 , we change 5 -+ q5  7'. All together, we get

-t' - 20 V7i| (0 +  ') 2+ in 0 COS2 ( + T,) (4.14)
Coso

S= vsin2((0 + ') + sin 2 0 cos2( + 7) (4.15)

Note that t / to = / t . Therefore, when either q or 0 changes,

the ratio of the size of the change in rM to the size of change in M`i equals

r' sin 2(•( + T') + sin2 0 Cos2( + T')
r sin 2  + sin 2 Cos 2  (4.16)

Note that due to 0 and 4, this expression depends on the viewpoint from which the

model is observed, which is not true in the planar case [54]. In the planar case 7' = 0,

because all model points are in the basis plane (Fig. 4-2), and Equation 4.16 reduces

to r'.

Recall that there are two reflective solutions to the weak-perspective geometry [2].

The two solutions correspond to a reflection of the basis model points about the image

plane. From Fig. 4-4, this reflection corresponds to negating 0 and 4. Plugging into

Equation 4.16, the constant scaling factors for the two solutions are

r' sin 2(o4+ T') sin2 2 (Sn ) cos 2 (0 + T')

r \ sin2(go) + sin 2(0) cos2 (crq) where a = ±1

r' sin2(ad + 7') + sin 2 0 cos 2(go + T-')
(4.17)

Sr ssin 2  + sin 2 0 Cos 2  (

Thus the two weak-perspective solutions give different scaling constants. Again, this

differs from the planar case, in which the scaling constant in both cases is r. Morer

generally, in the planar case the two solutions collapse to one when projected onto

the image, and so the existence of two solutions makes no difference.



From Equations 4.12 and 4.13,

0' = tan-l'(-sin( + '),sin cos( + 7')) (4.18)

at = tan-l(-sinGcos(q + T'), - sin(+ -r')) (4.19)

Through the same calculation that showed sin(ao - ao) = 1, we can calculate that

sin(a' - a') = 1, so that

ao - ao = (a - ao = 900 . (4.20)

Thus the angles between the tangent vectors and their relative sizes are the same for

i•i and mi. As a note, this implies that the mapping between curves traced out by

changing 9 and 0 for ri~ and gr is conformal [1].

Since we are making a first-order approximation, any movement of ir" in the

image plane can be viewed as the sum of the effects of changes in 0 and q. From

| t' / t I=1 t' I / 1 I|, we see that for any change in ir~r by some

small amount, there is a change in ri by that amount times a constant, given by

Equation 4.16. Furthermore, as 0 changes, M` and ir each moves in some direction,

by some amount. Then as 0 changes, Equation 4.20 implies that the two points

move at right angles to their previous directions. Hence any change in r~i produces

a change in irg that is scaled and rotated by fixed amounts. Consequently, any error

region about the nominal position of mrA results in a mathematically similar error

region about the nominal position of •ii, which means they are related by an image

plane translation, rotation, and scaling.

We can explicitly write the relationship between the errors in Mr and r" using

a 2 x 2 scaled rotation matrix A. (A is a similarity transform with zero translation.

In the sequel we will refer to A interchangeably as a scaled rotation matrix or a

similarity transform.) A must satisfy

t' =Ato and t' = Ato, (4.21)
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which gives four equations in four unknowns. Actually only two of the equations are

needed: In general, let a11 , a12 , a21 , and a22 be the elements of a 2 x 2 matrix A.

Then for a similarity transform, a21 = -a 12 and a22 = a11. Solving the equations

leads to (Appendix B)

all = k(cosT7' - cOS2 cos Cos( + r')) (4.22)

a12 = -k sin7'sinO, (4.23)

where k = - os 2 C  (4.24)

Note that the constant scale S from Equation 4.16 must equal va 1x + a12 .

4.3.4 General Formula for the Fourth Point Error

We can use Equations 4.22-4.24 to obtain a formula for the error in r"i as a function

of the error in i0 or i1 in the same way. This gives three scaled rotation matrices

relating the individual errors in the basis points to the error in rii. Under a first-

order approximation, these errors affect the error in rir independently and the total

error in ri3g is the sum of the individual errors. Let A be the scaled rotation matrix

between io and mr- , B be the scaled rotation matrix between ii and m`, and C be

the scaled rotation matrix between z2 and r'ig. Also let o0, ex, and e2 be the errors in

the basis points, and, for i > 3, let ei be the error vector from the nominal position of

fi• to its true position (see Fig. 4-5). Then the error in riA is given by the following

linear relationship:

P'3 = Ao0 + B Ce + C '2  (4.25)

The two weak-perspective pose solutions, (0O, 0), lead to two possibilities for each of

A, B, and C, and for the error in the fourth point e'3. When we combine the errors

in Equation 4.25, we must be sure to use the same weak-perspective solution for the

three matrices.

Suppose now that the error in each image point is bounded by some amount C.

This results in some bounded uncertainty region about m". From Section 4.3.3, for
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each image point separately its 6-circle propagates to a circle around r that is scaled

by S (Equation 4.16), which gives a radius of Se. The error in each image point affects

the fourth point independently, and so the uncertainty region around the fourth point

is a circle centered at rAi, and the three radii simply sum together (where we must be

careful to use the radii from the same weak-perspective solution). In Equation 4.25,

let So = at1 + a12 , S1 = b•b1 + b 2, and S2 = c21 + c22 . Then the radius of the

uncertainty circle for r"' is

R = Soco + Slc i+ S262 + 63, (4.26)

where 63 is added to account for error in sensing '3 (an image point that corresponds

to r).

When the error in the image points is normally distributed, the linear relationship

allows us to determine the propagated uncertainty distribution about any fourth

point. If the Gaussian error in the ith image point has standard deviation ei, then the

uncertainty distribution about 'r3 is normally distributed with standard deviation

(Appendix D)

S= - + S + S2cU + 1. (4.27)

In summary, we have explained why Alter and Grimson found that the uncertainty

regions for three matched points are circular. Moreover, we have provided a simple,
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Figure 4-5: For each model point Aii, there are three points of interest in the image:
(1) its nominal (detected) position i;, which is determined by the feature detector,
(2) its no-error (true) position r'ý, which would equal ji if there were no error, and
(3) its predicted position min, which is computed using the first three point pairs to

compute the pose and project M'i, into the image. For i < 3, Mri = ii. For any i, we
define eg to be the correction vector from rM to Mii.



analytic expression for those uncertainty regions.

4.4 A Study of Uncertainty from One Basis Point

We showed in Section 4.3 that for any shape traced out by the third model point, the

fourth model point traces out a mathematically similar shape, up to an approxima-

tion. This section provides a study of the true shape of the uncertainty region. We

begin by considering exactly how larger changes in 0 and 0 effect the appearance of

each additional model point. Using Equation 4.7, it is straightforward to see that,

as q changes with 9 held constant, (x,y) traces out an ellipse, with center at (sod, 0)

and with the major axis parallel to the y axis. We rewrite this equation as

(x, y) = (sod, 0) + (-a sin €, b cos €), (4.28)

with minor axis a = sor tan 0, major axis b = sor sec 0, and eccentricity e = Vb- a2 =

sor. For 0 = 0, the ellipse equation becomes (x, y) = (sod, 0) + (0, sor cos 0), which

forms a line segment between the points (sod, sor) and (sod, -sor). As 9 increases

from 0, the center of the ellipse is unchanged; Fig. 4-6 shows the 3D interpretation. In

addition, as 0 increases both axes a and b grow, and the ratio a/b = sin 0 approaches

1. Consequently increasing 0 sweeps out a growing family of concentric ellipses that

become increasingly circular.

As 9 changes, (x, y) traces out a hyperbola, which we can see by eliminating 0

from Equation 4.7. From the x and y coordinates, we have respectively:

x - so = tan2 0, and = sec2 o.

sor sin sor cos )=2 e2  .

Using 1 + tan2 9 = sec2 9,

sor sin € + Y = 1. (4.29)

This equation is a hyperbola centered at (sod, 0), with foci (sod, ±sor), vertices
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iormo

(sod, ±sor cos q), and asymptotes x = ±y tan q + sod. For q = 0, i7, the hyperbola be-

comes (x, y) = (sod, 0) ± (0, o ), which gives two vertically infinite half-lines starting

at the foci. As q increases, the center and foci are unchanged, and the asymptotes

rotate about (sod, 0), becoming increasingly parallel to the x axis. Consequently,

changing q from 0 or 7r sweeps out a concentric family of hyperbolas that reach the

x axis at = , 3.

To capture the dependence of (x, y) on the out-of-plane rotations 0 and €, we will

switch to a set of normalized coordinates (X, Y) that depend only on 0 and ¢. These

coordinates shall allow us to plot graphs which make it easier to view the dependence

of the error in the predicted fourth model point on the error in the third image point.

By a simple translation and scale of (x, y), we get the equation

(X, Y) = ((, Y)- (so, d))= (-ta n 0 si n  cos (4.30)

Fig. 4-7 plots families of curves for changing q and 0 for this equation. The elliptical

curves are functions of 0, and the hyperbolic curves are functions of 0. Observe

that, although the plots are for (X, Y), the corresponding plots for (x, y) would look

the same, differing only in the labels on the axes. This is because the effect of the

normalizing translation is to center the plots at (0, 0) instead of (so, do), and the effect
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Figure 4-6: As 0 changes, ro 01 is scaled so that r5I always projects onto il. The figure
shows that any point on the line through io01 always projects onto the same location
in the image. When € changes, ri 2 rotates about a point on this line, and that point
projects to the ellipse center; therefore the ellipse center does not change.



of the normalizing scale cannot be seen since the plots are rescaled to fit the page.

The plots in Fig. 4-7 are for I translated and scaled. For Mi, we again shall

switch to normalized coordinates (using a different normalizing translation and scale):

(X', Y') = I ((x' y') - (so, d')) = tan sin( + r'), + T ' ) . (4.31)
sor cos 0

In the resulting equation for (X', Y'), the only difference from (X, Y) is in T'. That

is, varying € causes (x,y) and (x',y') to traverse ellipses that may differ in translation

and scale, but that do not differ in shape. In Fig. 4-7, we show the image regions

that the projected points ri and rii" occupy as a result of varying 0 and q. Since we

normalized the plots, as the third model varies along an ellipse, the fourth model point

projects onto the same ellipse. If (X, Y) moves along the curves in Fig. 4-7 and traces

out a closed region, then so will (X', Y'). The two filled-in areas in each plot illustrate

a different pair of bounded error regions that could be traced out simultaneously by

some (X, Y) and (X', Y'); (X, Y) or (X', Y') could be either error region. In this

case, as one point varies within one of the bounded error regions, the other point will

vary within the other error region, illustrating how uncertainty propagates.

In the figure, there are two distinguished points where the grid collapses. These

points are the hyperbola foci (0, ±1), which were (sod, ±sor) in the original (x, y)

curve. These foci correspond to (0, q) = (0, 0) and (0, 7r), which occur when the plane

containing the basis model points is parallel to the image. From the areas around

(0, 1) in Figs. 4-7 and 4-8, it is clear that an (X', Y') uncertainty region may not be

simply a scaled and rotated version of the (X, Y) region. Therefore, circular error in

the third point in general will not produce circular uncertainty, exactly, in the fourth

point. In fact, we can see from Fig. 4-8-left that when 0 and 0 are small, uncertainty

in the third image point can lead to strange shapes for the propagated uncertainty

region: Suppose that (X, Y) traces out the large region on the right (region A). If

7' = 128 deg, then (X', Y') traces out the similar-looking, large region on the left

(region B). But if 7' = 72 deg, then (X', Y') traces out the non-convex, curved region

on top (region C). It should be kept in mind that the shapes not the sizes of these
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Figure 4-7: Families of curves traced out by (X, Y) as 0q and 0 change. The elliptical
curves are functions of 4, and the hyperbolic curves are functions of 0. The four plots
show the same figure for different ranges of 0, plotted at different scales. In left-to-
right, top-to-bottom order, each plot is a close-up of the center area in the next plot.
Upper left: 0 E [0, 12] deg. Upper right: 0 E [0, 45] deg. Lower left: 0 E [0, 60] deg.
Lower right: 09 [5, 85] deg. The curves are separated by changes in angle of 4 deg,
5 deg, 6 deg, and 10 deg (in left-to-right, top-to-bottom order).
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regions are what matters here, since the plot is normalized: After being scaled by ,'

the region on top may be significantly larger than then the region on the right, but

its unusual shape would be unchanged. As a result, odd-shaped uncertainty regions

can occur even when there is little error in the basis points.

When the third point's error region contains one of the foci, then the two un-

certainty regions for the fourth point's two weak-perspective pose solutions are one

and the same; otherwise the regions will be distinct, although they may overlap. As

an example, in Fig. 4-8-left suppose now that region C is traced out by (X, Y). If

r' = 72 deg, then the two large regions correspond to the two weak-perspective solu-

tions for the (X', Y') region, obtained by alternating the sign of (0, 0). If 7' = 8 deg,

then the two uncertainty regions for the two solutions would overlap, but they still

would be distinct. On the other hand, suppose that the region traced by (X, Y)

additionally includes the point (0,1), as in Fig. 4-8-right (region D). Then when

7' = 72 deg the two large regions merge into the single, "H"-shaped uncertainty re-

gion shown in the figure (region E). So we see that the similarity transform can be a

poor approximation for poses with small values of 0 and 0 even with small amounts
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of error.

For large 0 (bottom, right picture in Fig. 4-7), the ellipses become concentric

circles, and the hyperbolas become straight lines. In this circumstance, any (X', Y')

region is the same as the corresponding (X, Y) region, except for a rotation about

the origin. In this case, a similarity transform will exactly relate the errors, and will

be independent of the model pose (as it was for planar objects).

Another conclusion we can draw applies when the third point has a bounded error

region that is very large. Suppose there is circular error of radius E in the third point.

As c grows, the error circle will include the point where the two pose solutions merge,

and the boundaries of the error circle and the fourth point's propagated uncertainty

region will reach the range of 0 where they are related by a similarity transformation.

For large enough c, then, the error in the third point will result in a single, circular

uncertainty region for the fourth point, regardless of where the image and model

points are nominally located. This is surprising because one might expect that the

error incurred by using the similarity-transform approximation grows as C grows. Even

though this may be true when E is small, for large enough c the error will decrease.

Finally, the above discussion shows that the similarity-transform approximation

may hold further than the two first-order approximations that we used to compute

it. To obtain an analytic expression for the propagated uncertainty, Section 4.3 took

first-order approximations to the errors in the third and fourth points in terms of

the 3D pose parameters, 0 and q. Then these approximations were combined to get

a similarity transform that directly relates the errors in the points. This similarity

transform may hold further than the two first-order approximations. For instance,

for high values of 0, where the similarity transform holds exactly, the first-order

approximations do not (see Fig. 4-9). This suggests that higher-order error terms may

be cancelling when we combine the two first-order approximations to get a similarity

transform. Section 4.5.3 empirically shows that the similarity transform can hold

further than the first-order approximation. This indicates that it may be wise to

propagate errors directly in image space rather than from transformation space, as

was done for example in [37].
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4.5 Experiments

We have run three experiments to test the results in Sections 4.3 and 4.4. The first

experiment compares our results to those of Alter and Grimson [4], who studied the

case of bounded, c error. In particular, we test our formula for the radius of the fourth

point error circle. The second experiment looks more generally at the accuracy of the

similarity transforms in Equation 4.25 for predicting where the fourth point moves

when there is error in the basis points. This experiment is repeated for uniform

and Gaussian error. The third experiment compares the accuracy of the similarity

transform with the first order approximation used to derive it.

4.5.1 Comparison to past results

Alter and Grimson assumed bounded error in the image points using circles of ra-

dius c. They showed experimentally that the uncertainty region for a fourth model

point is closely approximated by a circle centered at the nominal point, which is

the uncertainty region we derived analytically in Section 4.3.4. Following Alter and

Grimson, we refer to these fourth-point error circles as uncertainty circles. Alter and

Grimson computed the radius of an uncertainty circle by densely sampling the fourth-

point uncertainty region, and then took the radius to be the maximum distance from

the nominal point to a sampled point. As a result, the computed uncertainty circle

was an upper bound on the uncertainty region, up to the fineness of the sampling.
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Figure 4-9: For large 0, the ellipses traced out by changing € are circles. In this case,
changing 0 causes movements in (X, Y) and (X', Y') that are exactly related by a
similarity transform. First-order approximations to the movements, however, assume
that the two points move along the tangent lines at (X, Y) and (X', Y'), which is
correct only if the movements are small.



To see how our uncertainty circles compare to Alter and Grimson's, we run a series

of trials like those in [4]: At each trial, we randomly generate three pairs of model

and image points and a set of seven unmatched model points. We let C = 5 pixels.

For each unmatched model point, we use Equation 4.26 to compute our predicted

radius (Rf). To compute the "maximum radius" (RM) as in [4], we take 25 samples

along the boundary of each c-circle, and then take all triples between the samples

to get 15,625 triples. For each triple, we solve for the model pose and use the pose

to project each unmatched model point into the image. This gives 15,625 projected

model points per uncertainty region. For each uncertainty region, we compute the

maximum distance from the nominal point to any of its projected model points. For

an error measure, we use the relative error from our radius to the maximum radius,

that is, R-

We tested 1,163 uncertainty circles, over which the average relative error was

1.45%. Table 4.1 shows the percent of uncertainty circles for which relative error was

less than some threshold. The results show that our circles reasonably approximate

the maximum-radius circles from Alter and Grimson, who showed that the maximum-

radius circles reasonably approximate the true regions. The results also show that

the maximum-radius circles can at times overestimate our circles by a significant

amount. For instance, 1.2% of the time our circles will be 10% smaller than the

maximum-radius circles.

Table 4.1 could be used to determine a correction factor for the circle radius:

Suppose that a recognition system has matched three model and image points and

is using the analytic solution for the uncertainty circles to decide what region in the

image to search for additional matches. Suppose further that we want the system to

conservatively estimate the effects of error, so that it can give some guarantee of no

false negatives (i.e., that no valid image points will be missed) some high percentage

of the time, while at the same time increasing the chance of false positives as little

as possible. Then, for a chosen percent of the uncertainty circles, the percent relative

error in the table tells us by how much to increase the radii of the circles so that all

points in the true uncertainty region are included.
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4.5.2 Accuracy of the similarity transform

Section 4.3.4 showed how we can approximate the effects of error in the basis points

using three similarity transforms. Equation 4.25 gives the error in the fourth point as a

function of the errors in the basis points. The next experiment estimates how well this

approximation works when the error in the image points is distributed uniformly, or

according to a Gaussian. We run a series of trials like those in the previous experiment,

where at each trial we generate a random model and a random image triple. Assuming

uniform error for now, we then uniformly perturb each image point within a circle of

radius c. 'Using the perturbed image points, we compute the distances between where

the similarity transforms predict the fourth model point will appear and its actual

projected location. For each unmatched model point, there are two such distances

corresponding to the two weak-perspective solutions. For each trial, there are seven

unmatched model points, giving fourteen distances per trial. Over 10,000 trials,

140,000 unmatched model points were tested.

For uniform error, the average distance between the similarity point (the point

predicted by the similarity transforms) and the true point was .06 pixels. Table 4.2

gives the percent of unmatched points for which the distance is less than various

amounts of tolerated error. The results show that the similarity transforms very

accurately predict the movement of the fourth point, with 98% probability of being

in error by less than one pixel.

For Gaussian error, we run the same experiment but instead sample a 2D Gaussian

distribution, using a standard deviation of 2.5 pixels as was done by Sarachik and

Grimson [80]. We still use a bound of c = 5 pixels on the allowed error in the image

points to guarantee that Gaussian error will lead to better results than uniform error.

In fact, we might expect the results to be significantly better, since the sampled
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Percent relative error 2 4 6 8 10 12
Percent of uncertainty circles 86.7 94.2 97.1 98.2 98.8 99.0

Table 4.1: The percent of uncertainty circles for which the relative error between the
circles predicted by our formula and by Alter and Grimson's method is less than a
given percent.



points will tend to contain less error. It turns out, however, that the results are

only slightly better than for uniform (see Table 4.2), with the same average error of

.06 pixels. It appears that for Gaussian error to improve over simple uniform error,

the Gaussian distributions would have to be significantly more peaked around their

nominal positions.

In conclusion, the two experiments on random model and image points indicate

that the linear approximation is reasonably accurate for up to five pixels of error.

Fig. 4-10 shows circular uncertainty regions that we computed using a real model and

image of a telephone. By hand, we measured corners of the telephone to obtain a

model and selected corresponding corners in the image. The three smaller circles are

the error bounds for the matched image points. The remaining circles are the correct

search regions for finding additional matches.

4.5.3 Similarity transform vs. a first-order approximation

We have used two first-order approximations. One relates changes in "rh to changes

in pose. The second relates changes in pose to changes in Ari. When we use both

approximations, we obtain a similarity transform. We will now compare this to

the results of using an exact determination of the effect of changes in mi on pose,

along with a first-order approximation to the subsequent effect of pose changes on

-r7. If the effects of these two first-order approximations are uncorrelated, we would

expect to obtain more accurate results when we replace one with an exact value.

On the other hand, if error in the first-order approximations tends to cancel, the

similarity transform that follows from both approximations will tend to be more

accurate. Section 4.4 showed analytically that this can happen in some circumstances.
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Allowed distance error (px) 1 2 3 4 5
Uniform error (percent) 98.25 99.60 99.79 99.87 99.90
Gaussian error (percent) 98.53 99.64 99.82 99.88 99.91

Table 4.2: For uniform and Gaussian error, the percent of unmatched model points
for which the distance between the similarity point and the true point is less than
some tolerated number of pixels.



We now explore this possibility experimentally.

In the same way as in the previous experiment, we generate trials of random

models and image triples, and project the random unmatched model points into the

image. As in Section 4.4, we put error in only one of the basis points, say i2. To better

compare the first-order and similarity approximations, at each trial we generate an

error basis point as follows: We change either 0 or 0 from its value at the nominal

pose until 72 moves 5 pixels from its nominal position. This gives us an error vector

in the third image point. For each of the projected, unmatched model points we

compute the scaled rotation matrix A as in Equation 4.21, and apply it to this error

vector. This gives the error point predicted by the similarity transform.

To compute the error point predicted by a first-order approximation from pose

space, we move the projected point along one of the tangent lines t' or t', defined

in Section 4.3.3. The amount we move is determined by which pose parameter we

changed to compute the error in Z2. In particular, for changing 0 the first-order error

vector is AO t' and for changing 0 it is AO t' , where we know AO and AO exactly

from our generation of the error basis point.

To measure propagated error, we first use the error basis point to calculate the
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Figure 4-10: Circular uncertainty regions computed for points at the corners of a
telephone. The three smaller circles show error regions of five pixels about the three
points used to generate the model pose. The remaining, larger circles show uncertainty
circles. Small crosses show the actual locations of the image points, which were
selected by hand but are still a bit noisy. Small dots show the projected locations of
the model points in the determined pose.

I



two possible locations where the fourth point actually goes. To measure the error

in the similarity transform, we calculate the distance from the point predicted by

the similarity transform to the closer of the two actual points, and similarly for the

first-order approximation. Table 4.3 shows the results from histogramming the error

data over a series of 10,000 trials with seven projected points per trial. In the table,

the similarity transform is about two to five times more accurate than the first-order

approximation. This suggests that better results may be obtained by propagating

error directly from the basis image points to the predicted locations of the fourth

points. By first estimating the errors in pose space and then propagating these errors

back to image space, some accuracy may be lost, unless special care is taken to make

sure the appropriate high-order error terms cancel.

4.6 Perspective Projection

In this section we apply the same technique to perspective projection to obtain again

a linear relationship between the errors, but in this case the form of the linear rela-

tionship is much more complicated. As before, we begin by looking at the effects of

error in exactly one of the basis points. We assume we know the camera focal length

f and the center of projection c.

We introduce a similar representation for any third model point to the one we used

in the scaled-orthographic case. Since 0O and i• are fixed, the line segment between

ro and M'1 is free to rotate and translate in the plane through (',i,o), as long as

mo and r'i1 remain on the lines through (', i0 ) and (', i•), respectively (see Fig. 4-11).
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Absolute error (px) 99%: Changing b 0 90%: Changing q 0

Similarity trans. 0.57 0.51 0.09 0.09
1st-order approx. 1.02 1.67 0.26 0.45

Table 4.3: The amount of error allowed in the fourth point that includes 99% or 90% of
the tested points. The error is the distance from the true location of the fourth point
to the location predicted by the similarity transform (which is the approximation we
suggest) or the location predicted by the first-order approximation. In this experiment
there was error in one basis point, which was moved 5 pixels by changing either 0 or
0 from its nominal value.



After this rotation and translation, the only remaining degree of freedom is a rotation

about the line through (~io, Mi).

Initially, we rigidly transform the model so that no = zo, 7ioi points in the same

direction as i01, and r2 is in the z = 0 plane. For the image coordinate system, we let

the origin be at Z0, the z direction be orthogonal to the image plane, and the positive

x axis be along o01. Also, we let ii be the unit vector that is normal to the plane

through (c, o, i1 ). Next the model is rotated by q about the x axis, then rotated by 0

about fi (denoted by R{0,0 }), and then translated by it. Let 'equal the second model

point after the 4 rotation. Then using the relative coordinates for the model points

from Fig. 4-2, 7 = (d, r cos q, r sin ), so that

rn2 = i+ R{9 ,2}zp. (4.32)

For the translation iu', let L be the distance from E' to rFio, and let vi be the unit

vector pointing from c to io = (0, 0, 0), which implies v- = -c/elI c' 1. Then i = c'+ Lv,

where L must still be determined. In Fig. 4-11, let I be the angle between c'- io and

ii - zo, and let 00B be the angle between io - •'and •1 - ~. Also let Rol be the distance
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Figure 4-11: a, b, and L are the distances from c to io, ii, and rIo, respectively.



between Mro and r2l. Through some trigonometry, Appendix C computes that

L = sin( + + o)( sin01o (4.33)

Let 4r2 = (, , •). Since the image coordinate system is based at To with the

camera center point at C' = (c,, c,, -f), projecting r£2 into the image gives

-4 7r = (-, Y = - + f Y - Cy
M = (,y) = f-; c f ) . (4.34)

From this equation, we can compute the partial derivatives of x and y with respect

to 0 and €, which give to and to. By substituting r' for r, d' for d, and 0 + T' for

0, we can analogously compute t' and t' . Then we can solve Equation 4.21 for

A, and we will get a linear transform relating the error in i 2 to the error in mr3i (see

Appendix C): Let x = , y = and similarly for xo, yo, x', y', x', and y'. ThenApp Yond ai L 0, 0o = oo,

A = 1 y[xb - yo1x -x'x + xox' (4.35)
Xo - XqO [ ysYe - YoYo 0s~y + Xey 1,

If there is bounded, circular error in i 2, the linear transform will produce an ellip-

tical uncertainty region for Mr, whose parameters could be determined analytically.

This differs from the scaled-orthographic case, where the uncertainty region is a disc.

To handle circular error in all three points for scaled-orthographic projection, we had

to convolve together three circles. For perspective, we would have to convolve three

ellipses. To handle bounded error in three basis points using perspective projection,

we can apply the algorithm that will be proposed in Section 4.7.

For Gaussian error, on the other hand, the method in Appendix D applies equally

well to linear transforms as to similarity transforms. As before, we get an analytic

solution for the uncertainty region of a projected model point, and that uncertainty

region is normally distributed. The only difference is that the normal distribution

need not be circularly symmetric.
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4.7 nth-Point Uncertainty Region

It has been shown [37] that recognition algorithms that use a small number of

randomly-matched points to determine pose are sensitive to false positive identifi-

cations of objects, because these poses are not sufficiently stable and lead to large

uncertainty regions. One solution to this difficulty is to use poses based on more

information to derive smaller uncertainty regions. Assuming a bounded error model,

this section shows how to compute the uncertainty region of an n + 1'st model point

given n matched model and image points, for any value of n. Our linearized mod-

els of projection allow us to determine linear constraints on the set of feasible error

vectors consistent with a match between model and image points. Having expressed

our knowledge about pose using linear constraints, we apply linear programming to

optimize a set of objective functions whose solution tightly bounds the uncertainty

region. In general, this technique applies to any linear projection model, including

affine models and including the linearized perspective and weak-perspective models

that we derived in this chapter.

To demonstrate the idea, we suppose that the error in each image point is bounded

by a square of width 2e. We emphasize, however, that the same reasoning will apply

to any convex, polygonal error bound, so that we may approximate a circle, or any

other convex error bound, as closely as we wish. With square error bounds, a match

between image and model points can be consistent only if there exists a pose that

brings the x- and y-coordinates of all matched points to within e pixels of each other.

Let r•i' = (x, y[) be the projection of the i'th matched model point, in some nominal

pose. Let i = (xi, yi) be the location of the corresponding image point. Also, let

Ci = (xý, yý) be a vector representing the deviation between a model point's projected

position in the nominal pose and its true position (see Fig. 4-5). Since we choose

a pose by aligning the first three model points with image points, for 0 < i < 2

this deviation is also the actual error that occurred in sensing the image points. For

i > 3, 'i does not depend on where we have sensed the i'th image point, but rather

is a function of the sensing error in the first three image points. We then model error
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by assuming a model point's true position, m~ + gi, is within c of its corresponding

image point, Zi. That is,

xi-6 < LX + x ~ < x i + c and yi-6<_y'+y' <yi+E (4.36)

Previously, we used the matrices A, B, C to represent linear transformations be-

tween error in the first three points and the fourth point. We now let Ai, Bi, Ci be

the corresponding matrices for the i + 1'st point (e.g., A 3 = A). We let al and aý

be the first and second rows of the matrix Ai, and define b , b , c , similarl. In

both the cases of scaled-orthographic and perspective projections, we know that we

can write

b1 2 .(C1 12 (4.37)
ei = (ai • eo, a. -e) + ( bl . e, b e ) e t e2

for 3 < i < n - 1. Consequently, for matched points 3 through n - 1, we may substi-

tute a linear combination of the first three error vectors for ei, giving us additional

constraints that the first three points must meet in order to lead to a consistent

solution. In all, we get the following constraints:

For i E [0, 2], -C < yX < Y 6, (4.38)

xi - c < x' + a. eC + bl C + . -4 < xi +6,

For i G [3, n - 1], (4.39)
yi - Y+a o+ bc < l + c eQ2 < ,2 +y+.

This set of constraints can be satisfied if and only if there is a set of error vectors for

the first three points that will bring all projected model points to within the error

bounds of their matching image points.

We have formulated our knowledge of model pose, based on a match between

n image and model points, in terms of linear constraints on the components of the

three error vectors go, eg, and g2. We may now use linear programming to maximize

any linear objective function, subject to these constraints. In particular, we can
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formulate linear objective functions that express, for several directions, the errors in

an additional model point's predicted position, and then extremize these functions.

For example, if we maximize the linear objective function

S= a* eo0 + b l + c- 1  2, (4.40)

we will find the maximum x displacement that the projection of the n + 1'st model

point can have from its nominal position. By maximizing the negation of this ex-

pression, and similar expressions for the y values, we may put a rectangle about the

possible locations of the n + l'st point.

Using a similar method, we can in general place a convex polygon of any shape

about the possible locations of the n + 1'st point. Suppose we wish to bound the

location of the n + 1'st point in some direction other than along the x or y axis. Let

(Ax, Ay) be a vector in that direction. Then we may achieve this by maximizing

the objective function formed by taking the dot product of (Ax, Ay) and 4'. By

substituting our expression for 4' as a linear combination of the first three error

vectors, we get a linear expression in these values. By finding the extreme values of

the feasible positions of the n + 1'st model point, we may put a convex polygon about

these positions which will be more accurate than a square.

We should note that linear programming is very efficient. It is known to be

polynomial time in the worst case. In practice, for problems with 1 variables and

m constraints, the most common algorithm, simplex, is found to usually take time

proportional to Im ' (Strang [84]), and many highly optimized commercial implemen-

tations of simplex exist. Our problem has 6 variables and 4n constraints when n

points are matched. When the number of variables in a problem is fixed and only

the number of constraints grows, as in our case, there are algorithms that take linear

expected time (see Seidel [81], for example).

When the errors in the image points are Gaussian distributed and there are more

than three matched points, the Kalman filter can be used to recursively compute

Gaussian distributions for the error vectors e'o, e, and ' 2 , similar to Hel-Or and
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Werman [45]. Given Gaussian distributions for e'0, Ce, and g2, Appendix D shows how

to obtain a Gaussian distribution for the possible locations of any n + 1'st point.

These methods could be quite useful to the indexing or alignment approaches to

recognition that we previously described. To illustrate, a recognition system that uses

the linear programming method might work as follows:

1. Match k image and model points, using a search or indexing method. Assume

that the error in each image point is bounded by some m-sided polygon.

2. Use the matches to generate km linear constraints on the possible errors in the

first three matched points.

3. For each unmatched model point, run 1 linear programs to compute an 1-gon

bounding the point's possible image locations. Look there for a matching image

point.

Recognition systems commonly use more complex features such as line segments for

verification, instead of points. As discussed in Section 4.3.4, it would be straightfor-

ward to use our results to bound the uncertainty regions of line segments by finding the

uncertainty regions of their endpoints. Additionally, our results allow us to measure

experimentally the extent to which additional point matches decrease our uncertainty

about the location of unmatched points. We discuss this in the next section.

4.8 Experiments

To demonstrate the value of narrowing the feasible region in which model points may

appear by using additional matches, we have implemented a test system for the case of

weak-perspective projection. In this system, we match some image and model points.

We then examine the regions in which additional points might appear. We can see

how much smaller these feasible regions become as we derive additional constraints

from more matches.

We first describe the results of this system on synthetic data. This allows us to

systematically explore two key issues. First, since our linear transformation is only
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an approximation, how often might it cause us to make errors? Second, how much

can the addition of further matches reduce the space in which we must search for

even more matches?

We use the following experimental conditions. First, we generate random sets

of seven model points inside a cube. We form an image by projecting these points

orthographically, scaling so that the cube projects to a 1000 x 1000 square image.

We then add error so that each sensed point shows up inside a circle of radius five

pixels centered at the projected position of the point. For error, a uniform random

distribution is used.

We then match the first three noisy image points and model points, and use this

match to generate a noisy pose of the model. This pose is then used to compute

the linear transformations describing the location of each additional model point as

a function of the error in the first three image points. Of the two possible model

poses that can be derived using a match of three points, we automatically select the

one that is closer to the correct pose. In a real system, of course, we would have to

explore both possibilities, and see which led to more confirming evidence.

Given these linear transformations, we allow for a square error bound of width 10

pixels around each error circle. As described above, we then compute a rectangular

bound on the image location of each additional model point using linear program-

ming. Next we check to see which image points actually appear within the predicted

rectangular boundary. Since we have perturbed the image points within their error

circles, any time we fail to find a model's image point in the predicted rectangle, this

mistake must be due to limitations in our linear approximation. When we do find an

image point, we record the size of the rectangle in which we looked.

We then augment our hypothesis by matching the fourth image and model points,

and, using the additional constraints, we further narrow down the location of the

remaining model points in the image. Again we keep track of how often we fail to

find a model point in a predicted rectangle, and we record the areas of the successful

rectangles. We continue this process with additional matched points. We repeat this

experiment 2,500 times, continuing to perturb each image point by up to five pixels,
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but allowing for varying levels of error in our predictions. We can use these results

to see how many mistakes of the system could be eliminated by overestimating the

expected error, and how much of a price we would pay for this by producing larger

rectangles.

Table 4.4 lists the results. There are several conclusions we may draw. First, we

see that few overall mistakes are made. The predictions are generally between 95%

and 99% accurate. The significance of this will depend on exactly how we incorporate

these error regions into a recognition algorithm. But typically, recognition systems

search through many hypothetical matches between image and model points, and it

is understood that a system may have to consider more than one correct hypothesis

before recognizing an object. This is because even a correct set of matches may lead

to an inaccurate pose. We can quantitatively see that our method of computing error

regions leads to few such unstable poses.

Second, we can see that additional matches do provide considerable extra con-

straint in determining the locations of unmatched points. The most dramatic effect

occurs when one matches a fourth point. This can reduce the size of possible error

regions by a factor of fifteen or more. But even after the fourth point, there is a con-

tinuing significant benefit in using additional matches to constrain the error regions.

These results also help us to assess in general the stability of poses generated by a

small number of feature matches. We can see that if we use three points to compute

a pose, small changes in these points can result in large changes in the locations of

additional points. Poses computed from more points would be much more stable.

The error regions we compute are in general quite large. Several factors, however,

may have exaggerated the sizes of the error regions. First, if we truly wish to consider

error as bounded within a disc we should use polygonal error regions that more

closely approximate a circle. Rectangles were used in this example only for the sake

of simplicity. Second, a uniform error distribution bounded by five pixels may be

pessimistic. In real systems, sensed image points probably tend to cluster around

the point's true, error-free position, and the error may well be less than five pixels.

Therefore a system that allowed for less error may produce much smaller error regions,
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Error Num. Points
Allowed for Matched

Rectangle
Average Area

16,700 1

Percentage
Correct

98.9 1
4 1,460 97.6
5 823 96.2
6 599 94.6

3 18,300 99.0
4 1,600 97.8
5 898 1 96.7 1
6 655 95.5

5.5 3 10,800 98.9
4 1,750 98.0
5 969 97.0
6 730 96.4

6.0 3 12,700 99.2
4 2,200 98.8
5 1,370 98.4
6 948 97.9

6.5 3 12,400 99.2
4 2,380 98.7
5 1,410 98.4
6 1,080 98.0

7.0 3 16,600 99.4
4 2,950 99.0
5 1,740 98.9
6 1,350 98.8

Table 4.4: This shows the size of error regions computed as more points are matched,
and the frequency with which noisy model points fail to appear in these error regions.
Image points are always perturbed by a uniform error bounded by five pixels. The
first column gives half the width of the square error bound that we allow for in each
image point. The second column gives the number of matches used in computing
the error region for an additional point. The third column gives the average size of
this error region, and the fourth column gives the percentage of times that a model
point's image shows up in this predicted error region.
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without making many mistakes. Of course, allowing for less error should only make

our linear approximation more accurate.

It is also interesting to note that the accuracy of the error regions drops a bit as we

add more point matches. It seems that errors in the linear approximation accumulate

as we compute the feasible set of error vectors. One way to compensate for this

effect would be to allow for slightly more error as we use more matched points. For

example, if we allow for 5 pixels of error when we match three points, we might allow

for 6 pixels when matching four points. This would allow us to significantly reduce

the size of the error regions, while keeping the error rate essentially constant.

As before, we have run this system on a real model and image to further illustrate

its performance. Fig. 4-12 shows the resulting rectangular error regions for C = 5.25.

The figure demonstrates how the uncertainty regions shrink as we match more points,

while still containing the true image points.

In summary, we have used linear programming to compute the propagated uncer-

tainty regions in simulation and in a real image for matches with more than three

model and image points. The experiments demonstrate that additional matched

points can significantly reduce the uncertainty regions with little loss in accuracy.

4.9 Applications

We have shown how to approximate the effect of changes in model pose using a linear

relationship between the error vectors. For predicting the locations of unmatched

points, we have demonstrated that this approximation is quite good within the range

of error usually considered by object recognition systems. This suggests that for many

recognition applications we may model this relationship linearly.

In past research, the use of linear projection models has led to algorithmic sim-

plicity. Projection of a 3D object may be approximated as a 3D-to-2D affine transfor-

mation to gain the advantages of linearity, at the loss of fully capturing the rigidity

of objects. Also, scaled-orthographic projection of a planar object is equivalent to a

2D affine transformation of the object, which is linear. Many algorithms have taken
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advantage of this linearity, either to find matches that are consistent with a bounded

error model (e.g., [7, 21, 17, 54]) or to find likely sets of matches assuming Gaussian

error (e.g., [76, 80, 96, 10]). We can now extend some of these algorithms to full

3D-from-2D recognition while maintaining object rigidity.

In Section 4.7, we outlined an algorithm which could be useful to most alignment

and indexing approaches to recognition. Some alignment approaches use grouping

methods to generate an initial match of more than three points (such as Lowe's [64],

Roberts' [77], Jacobs' [55], and Wayner's [92]), and some alignment approaches create

an initial alignment using only three points [77, 31, 64, 52, 91]. In the latter case, a

recognition system might attempt to add matches, and use these additional matches

to narrow the area in which it must search for still more consistent matches. Addi-

tionally, the algorithm from Section 4.7 may be useful in methods that match image

to model features by indexing, and then verify these matches [60, 23, 55, 88, 78, 92].

In these approaches, some model features are matched to image features to determine

a model pose, and then this pose is used to find matches for additional model features.

Our results show exactly where to search for these matches when we have matched

three image and model points.

As mentioned above, other approaches to recognition have derived linear con-

straints on model poses using linear projection models. The linear constraints were

used to robustly match models and images in the presence of bounded uncertainty.

This line of work originated with Baird [7], who considered models of 2D points un-

dergoing 2D rotation, translation, and scaling. Baird used convex polygons to bound

the errors in the image points. He then showed that, when we match an image point

to a model point, each side of the polygon places a linear constraint on the set of

feasible model poses, if the transformation from matched image points to projected,

unmatched model points is linear.

Baird used these constraints as part of an interpretation-tree approach to recogni-

tion. His system searched a tree that represented all possible ways of matching image

and model points. At each node of the tree, linear programming was used to decide

whether the proposed matches were consistent with the polygonal error bounds. In

125



Section 4.7, we went beyond Baird, not only in handling the scaled-orthographic pro-

jection of 3D objects, but also in showing how to use linear programming to find the

uncertainty regions of unmatched points.

Breuel [17] used a modification of Baird's approach to produce a tree-search algo-

rithm that in the worst case runs in polynomial time. Cass [21] used linear constraints

to show that finding the pose of the model that aligns the most image and model

features to within error bounds is inherently a polynomial-time problem. Jacobs [54]

showed how to perform a Hough transform in error space, instead of model pose

space, by discretely computing the feasible region in error space (the space formed

by the cross product of the error vectors in the first three image points).

Jacobs makes use of a linear relationship between error vectors that exists for

the case of affine transformations of 2D objects. Our linearized perspective and

weak-perspective models give us a linear relationship for 3D objects as well. As a

consequence, Jacobs' method readily can be extended to 3D objects, and without

increasing the dimensionality of the problem.

In addition to Jacobs' method, our linear relationship can be used to extend any

of the above methods. To illustrate, we extend Cass' approach to the case of scaled-

orthographic projection. Suppose we match three image to three model points and

wish to know which pose will match the most additional model and image points. We

know that these three matches give us simple linear constraints on the first three error

vectors, just from the image points' error bounds. Now match each additional model

point to each additional image point. These give us more linear constraints. Each

linear constraint describes a 5D hyperplane in a 6D space of the possible error values:

e{o,},, eo,y, e,, e {1,}, e{2,X), e{ 2,y}. If we take each set of six linear constraints, the

constraints in general will intersect at a point. This point corresponds to a set of

error vectors for the first three points, and hence to a possible pose of the object. As

Cass showed, if we now consider all of these poses, we will be guaranteed to find one

that matches the most model points to image points. In fact we will find all poses

that match the model to different collections of image points.

Cass has developed efficient heuristic algorithms for exploring the space of poses
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Uncertainty Region 3 matched points > 3 matched points
Scaled ortho., Gaussian Circularly-symmetric Gaussian Gaussian
Scaled ortho., Bounded Circle Linear Programming
Perspective, Gaussian Gaussian Gaussian
Perspective, Bounded Linear Programming Linear Programming

Table 4.5: Propagated uncertainty regions for circularly-symmetric Gaussian and
bounded errors in the image points. Our solution for the uncertainty region either is
analytic, in which case a description of the analytic solution is given, or is numerical,
in which case the solution can be found by Linear Programming.

in the case of a rigid 2D rotation and translation. For 3D recognition, the algorithm

becomes costly, however. In our case, if we have m model points and n image points,

for each of the O(m3 n3 ) initial matches we must consider O(m 6n6 ) poses. Hope-

fully, however, a polynomial-time formulation of matching for scaled-orthographic

projection may lead to more efficient heuristic solutions, such as the ones that Cass

has found in other domains. Alternately, Jacobs' approach of performing a Hough

transform in error space may be more effective since error space is more compact.

4.10 Conclusion

This work will allow recognition systems to accurately take account of the effects of

sensing error, during a process that finds supporting evidence to confirm a hypothet-

ical set of matches. We showed that a linear approximation to scaled-orthographic

projection is accurate when reasonable amounts of sensing error have occurred. In

addition, we showed how to compute the propagated uncertainty regions for the rigid

projection of a 3D model into a 2D image. The uncertainty regions for three matched

points are described by a simple analytic expression, for the projection and error

model cases of (scaled-orthographic, Gaussian), (scaled-orthographic, bounded), and

(perspective, Gaussian). When more points are matched, there are simple and ef-

ficient algorithms for computing the uncertainty regions. Table 4.5 summarizes the

results.

Both analytic results and experiments have demonstrated the value of accurately
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computing the uncertainty regions. The uncertainty region of a point can vary greatly

depending on both the model geometry and pose. Therefore, any naive approach that

uses an hypothesized pose to match additional model and image points is likely either

to match many of the model points to image points they could not have produced,

or to miss many image points they could have produced.

We found that uncertainty regions based on randomly matching only three points

tend to be quite large, supporting past work [37, 4] that they will lead to many false

matches. We also observed, however, that uncertainty regions shrink dramatically

when we match even one more point, and still further when we match more. This

demonstrates that matching larger sets of points, while being careful about error, can

produce much more accurate recognition systems.

Finally, we extended several existing approaches to handling error in recognition

systems, which were previously restricted to domains with linear projection models.

Availability

To facilitate the use of the results in this chapter, we have made available our C

code for computing the 3D pose solution implied by 3 point correspondences under

weak perspective, the three scaled rotation matrices (Equation 4.25), and the un-

certainty circles (Equation 4.26). To retrieve the code, ftp to "ftp.ai.mit.edu," then

log in as "anonymous," then cd to "pub/users/tda/," and then get and uncompress

"alignment-code.tar. Z."
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Figure 4-12: Rectangular uncertainty regions from matching more points. The rect-
angles in the top left image were computed after matching only three points. The
following images show the rectangles that resulted from successively matching one
more point. When an additional point was matched, we stopped computing rectan-
gles for that point.
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Chapter 5

On-Line Evaluation of Hypotheses

in Alignment

This chapter proposes a new method for implementing alignment robustly. To moti-

vate the approach, we review the basic model-based recognition problem discussed in

Chapter 1. Briefly, we are given a 3D model composed of point and line features, and

an image of a scene which may contain the modeled object, along with any amount

of clutter. We run the image through a feature detector to get an image of points and

lines similar to the ones in the model, except these point and lines contain errors due

to the feature detection process. The problem is to find which image features, if any,

correspond to model features and to exactly which model features they correspond.

Approaches to model-based recognition can be divided into three main classes.

Constrained search searches the space of all possible correspondences between model

and image features (e.g., [13, 32, 71, 39, 40, 46]). It has been shown that most

implementations take exponential time in the numbers of model and image fea-

tures [33], though it can be done in high-polynomial time [17]. Transformation clus-

tering searches the space of all possible transformations between model and image

features (e.g., [8, 89, 88, 63]). Although most implementations take low polynomial

time, they are sensitive to false positives, that is, they are likely to incorrectly iden-

tify the model [34]. There are implementations of this technique that are robust to

false positives, but they require high-polynomial time [21]. The third technique is
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alignment, which is low polynomial, and one of the goals of this chapter is to show

how to make alignment robust as well.

5.1 Our Approach

We consider an alignment method in which poses are based on minimal sets of fea-

tures. As in the last chapter, we use points for generating sets of correspondences

(hypotheses), and we verify the hypotheses using extended features as well as points.

Hypotheses, then, contain three point pairs, since three is the minimal number needed

to compute a pose. We model the way in which a 3D object is brought into the im-

age as a rigid transformation followed by weak-perspective projection (orthographic

projection plus a scale).

Chapter 1 discussed how alignment can be viewed in the context of a tree search

(see Fig. 1-2). Given a minimal set of features, the alignment method computes

the model pose and then uses it to project each unmatched model feature into the

image to locate a corresponding data feature. In so doing, the method considers all

additional pairings of model and image features that are consistent with the first

three pairings up to error. In terms of the search tree, this corresponds to proceeding

down one level beyond the minimal set, and so global consistency is not guaranteed.

Given a hypothesis, the key steps of alignment are to

1. decide which image features could correspond to each unmatched model feature,

and

2. use the candidate image features to accept or reject the hypothesis.

Huttenlocher and Ullman [52, 51] found candidate image features by looking in a

region of fixed size and shape about each unmatched model feature, and then accepted

or rejected the hypothesis using a threshold on the number of model features for

which candidate image features were found. Alter and Grimson [4] showed that the

correct search (uncertainty) region, however, can vary considerably in size, using only

simple, circular bounds to model error in the image points. For computing the regions,
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Chapter 4 gave a solution that is efficient and easy to use.

Having computed the correct search regions, the next step is to use the candidate

matches to evaluate the hypothesis. To do this, we make use of the likelihood ratio

test [87]. Given a hypothesized pairing of three model and image features, we must

decide whether to accept or reject this hypothesis, where accepting implies we have

found an instance of the model. Let H be the event that the given three-point match

is correct. The decision is whether H or H is true given the image, which we call

event I. So we choose H if Pr[H I] > Pr[H I], and otherwise we choose H. Using

Bayes' rule, this decision can be rewritten as

pick H

Pr[IjH] > Pr[H]

Pr[II H Pr[H]'
pick 7F

where this notation says to choose H if > is true and otherwise choose H. This rule is

the likelihood ratio test. The test minimizes the probability of making an error, and

consequently treats false positives (choosing H when H is true) and false negatives

(choosing H when H is true) equally. To penalize one of these more than the other,

we can associate costs with correct and incorrect decisions: Let Cxy be the cost of

choosing X when Y is true. Minimizing the expected cost generalizes the above rule

to

pick H

Pr[I H]  > Pr[H] CH- - C-H-
Pr[I H] Pr[H] (CIH - CHH

pick H

This generalized rule reduces to the previous one if we set the costs of deciding

correctly, CHH and Cy-, to 0, and if we make equal the cost of a false positive, CH7-,

and the cost of a false negative, CHH. In general, the user of the system will pick

these costs. Therefore if we can compute the ratio Pr[IJH]/Pr[IJH] and the a priori

probability Pr[H] = 1 - Pr[H], then the above rule tells how to judge the hypothesis.
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5.2 Our Domain

We are searching for an instance of a model in the image, and all image features that

do not come from the model are spurious. To evaluate Pr[IjH]/Pr[IIH] and Pr[H],

we need to define more precisely what we mean by events I and H, which we will do

in Secs. 5.4-5.6 for different types of features and error distributions. In general we

will suppose that there are two processes by which image features are produced: If the

hypothesis is correct, then we know that a "model process" produced an image feature

for each unmatched model feature. By this process, image features are produced by

first projecting 3D model features into the image and then corrupting them according

to a noise distribution. The noise distribution allows for errors in feature detection,

which results in uncertainty in feature position and, for line features, in orientation

and length.

All image features that do not come from the model process are produced by a

"random process." This process produces image features by dropping spurious fea-

tures uniformly over the image. In truth, when the hypothesis is correct, spurious

features arise from events such as object edges that are not represented in the model,

other objects in the scene, shadows, and specularities. When the hypothesis is incor-

rect, spurious features also arise from edges of the model. So we are assuming that

the features these events introduce effectively occur at random. This assumption

has been made before for analyzing the verification stage of 2D recognition, and has

yielded accurate results [36].

It is important to understand that the event I is dependent on the recognition

algorithm. For instance, for Huttenlocher and Ullman's alignment algorithm, I is

the event that a particular number of search regions contain one or more features,

since this is the only information that Huttenlocher and Ullman use to evaluate the

hypothesis. Given the number of non-empty search regions, the hypothesis is accepted

if and only if the number is greater than a pre-chosen threshold. The alignment

algorithms examined in [36], [38], and [4] evaluate a hypothesis using a threshold on

the probability of a false positive, that is, of a random feature arising in each of the
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search regions. In these algorithms, I is the event that a false positive occurs.

Using the likelihood ratio test to evaluate the hypothesis would improve over using

a fixed threshold, but we could improve even further by taking advantage of more

information. To use all possible information, we would define I to be the event that

the image features arose at their precise locations. Computing the probability of this

event, however, requires enforcing all the constraints between model features, which

is what the Backtracking Search algorithm does. As we discussed in Sections 1.1.2

and 5.1, the idea of alignment is that we can ignore the constraints between the

unmatched model features. This assumes that their projected image locations can be

treated independently. A choice of I that is consistent with this alignment philosophy,

and uses more information than [52], [36], [38], and [4], is the event that the actual

numbers of image features arose in the uncertainty regions. We investigate this choice

in Sec. 5.4 for bounded error.

If the noise distributions for unmatched model points are known, for example, to

be Gaussian, we could set I to be the event that the sum of the Gaussian-weighted

contributions from the image points is a certain value (as in [80]). Even though this

measure is somewhat intuitive, it is an arbitrary choice. In Sec. 5.5.2, we look in detail

at the question of the appropriate measure for Gaussian or any distributed error.

We note that Pr[IJH]/Pr[IIH] measures how much relevant information is con-

tained in our choice of I. Specifically, it measures how effective is the choice of I at

distinguishing the images where the model is present from ones where it is not.

5.3 Uncertainty Regions and Selectivity

Chapter 4 showed that the uncertainty region for a model point generally is a disc

centered at the nominal location, and gave a formula for its radius. Chapter 4 also

mentioned that we can use this result to bound the uncertainty in predicted line

segments. In particular, we assume that the orientation of an image line segment is

constrained such that its endpoints lie within E circles. Then, for each model line seg-

ment we calculate the uncertainty circles for its endpoints. Next, we find candidates
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for each model segment by gathering all image line segments that lie entirely within

the uncertainty region formed by the uncertainty circles and their common outer

tangents (Fig. 4-1) and whose extensions intersect both of the uncertainty circles.

We define the selectivity of an uncertainty region to be the probability that a

feature distributed randomly over an image falls into an uncertainty region [38]. This

quantity will be used in the next section to compute Pr[IIH]/Pr[I|H]. For point

features, the selectivity is the area of the region divided by the image area, A-, where

the area. of the region takes into account the uncertainty in the unmatched image

points by expanding the propagated region outwards by e.

For line features, the selectivity is the chance that a spurious line segment ran-

domly falls into a line uncertainty region. For an image line segment of any given

length, [4, 3] derived a formula for the line selectivity (repeated for convenience in

Appendix E). The formula computes the selectivity to be the range of rotations and

translations that both keep the line segment within the line uncertainty region and

the line segment's extensions intersecting the two uncertainty circles, divided by the

range of rotations and translations over the entire image.

5.4 Image Probabilities for Bounded Error

This section computes the image probabilities Pr[IIH] and Pr[IIH] for the basic

alignment method discussed in Sec. 5.1. Since this alignment method does not care

where in an uncertainty region that an image feature arises, we define the image I to

be the event that the particular numbers of image features were found in the regions,

ignoring their locations. As in Sec. 5.1, H is the event that the three-point match

is correct. We assume for simplicity that the search regions do not intersect. Let

k be the number of unmatched model features whose search regions are non-empty,

and let r equal the number of unmatched image features. Further, let pi denote

the selectivity of region Ri, and ri be the number of image features found in Ri, for
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i = 1,2,..., k. Also, let

k

rk+1 = r - ri (5.1)
i=1

k

Pk+1 = - Pi (5.2)
i=1

Ik+1 is the selectivity of the background. In the domain of Sec. 5.2, if the hypothesis is

incorrect, then all features in the uncertainty regions arose at random. For uniformly

distributed features, the chance of rl features landing in R 1 ,. r 2 landing in R2,... , rk

landing in Rk, and rk+1 landing in the background is 1' M1 2  The number of

ways to choose ri, r 2 , . .., rk features from r is given by the multinomial coefficient,

rl, r2,..., rk+1) r1 !r 2 . rk+1l

so that

P -[IrH] = Ur2=+ 1 - k (5.3) ,klrl, r2, .. , rk+1

Next, assume that if the hypothesis is correct, then the model features the system

found matches for were not actually occluded. Then we get Pr[IIH] by just subtract-

ing one feature from every propagated region:

Pr[IjH] (r- 1, 2 - , k - 1,rk+ -1 r2-1. rk-1 .k+l (5.4)

Dividing Equation 5.4 by 5.3,

P[IIH] (r - k)!rr 2 ... rk( 1 (5.5)

P[IIH] r!• 412 "lk

Note that the number of multiplications is about equal to three times the number of

regions k, which is relatively small.
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5.5 Image Probabilities for Distributed Error

The alignment algorithm we have considered so far looks only at the numbers of

image features within the uncertainty regions as evidence for the model. This treats

all of the image features in a region as being equally likely to come from the model.

However, we might expect image features that are closer to the nominal location of

the predicted model feature to be more likely. If so, taking this likelihood into account

could increase the effectiveness of alignment.

For distributed error, we must take into account the actual positions of the image

features within the uncertainty regions. And we will do so in a way that is consistent

with the alignment approach, so that we do not have to enforce global consistency.

In particular, we re-define I to be the event that the image features arose at their

particular locations and that the model process produced features in the regions inde-

pendently of one another. As before, if the hypothesis is incorrect, then all the image

features arose randomly. Let p be the probability that a feature dropped randomly

into the image lands at a particular location: p equals L for points and - for lines.

Then the probability of the r image features landing at their particular locations

is p'. Since there are r! possible orderings of the image features, the probability of r

spurious features occurring at the r locations is

Pr[IIH] = r!pr (5.6)

Now suppose that the hypothesis is correct. Then for each search region in which

there is at least one image feature, one image feature came from the model process

and the rest occurred randomly. As before, let Ri be the search regions in which

at least one image feature occurs, for i = 1,2,..., k, and let ri be the number of

features found in the ith search region. We number the features in region Ri from

t; = 1 to ti = ri, for i = 1... k. Also, let Mi represent the ith model feature, and

let Di(ti) be the propagated distribution for the uncertainty region Ri, which we

assume is known: D i (ti) = Pr[Mi = ti]. We consider the probability of a particular

assignment to the model features: {M( = t4, for i = 1 ... k}. For the remaining
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features, there are always (r-k)! ways for them to have landed in the image at random.

Then the probability that the model process produced the particular assignment,

{ Mi = ti, for i = 1 ... k}, and that the random process produced the rest is

Pr[Mi = t A M2 = t A ... A Mk = tk](r - k)!p'-k

Dl(t1 )D 2(t 2 ) ... Dk(tk)(r - k)!pr- k

where independence comes from our choice of I. For each region, the image feature

that was produced by the model is free to be any of the ri candidates, where we

assume again that the regions are disjoint. Summing over all of the possibilities for

the correct image features,

Pr[IjH] = ~... - Di(ti) ... Dk(tk)(r - k)!pr- k

tl1 1 tk=l

S(r - k)!p r - k Di (ti) ... Dk(tk) (5.7)

Then

Pr[I H] (r - k)! 1 r1 rk

DPr[I (- 1 D, D(t) ... - Dk(tk) (5.8)
Pr[IIH ]  r! pk = tk=

5.5.1 Uniform Uncertainty

If the model features are uniformly distributed as well as being independent, then

the actual locations of the image features in the uncertainty regions are irrelevant, as

in the case of bounded error. Note that having uniformly distributed model features

is not the same as the errors in the image points being uniformly distributed, a case

which we do not consider. If H is true, then Eq. 5.6 gives Pr[IIH]. If H is true, then,

in each region, one point occurred due to the model and the rest arose randomly.

Let pi be the probability that a feature dropped randomly into region Ri lands at a

particular location, for i = 1... k. For points, pi = and for lines, p=. Since
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the uncertainty is uniform, Eq. 5.7 becomes

Pr[IIH] = (r - k)!pr-k (rp1)(r2 2) ... (rkpk)

= rr2 ... rk(r - k)!pip2 ... PkPr-k, (5.9)

so that,
Pr[IIH] (r - k)!rlr 2 ... rk lP2 k (5.10)

Pr[IjH] -r! pk ,

which equals Eq. 5.5 for bounded error, since ti =

5.5.2 Gaussian Uncertainty

Gaussian uncertainty distributions are of particular interest, since when there is Gaus-

sian error in the image points, the uncertainty distributions for point features gener-

ally are Gaussian as well, and Chapter 4 gave a closed-form solution for the distribu-

tions: In Eq. 5.8, let
1 d2

DA = Gi 2 2

where d is the distance of the image point to the the nominal image location of the

unmatched model point, and where oa is given in Chapter 4. Then

Pr[IH] - ! A Gli(ti) ... ( Gk(tk) (5.11)

For line features, we do not have an analytic solution for how Gaussian error in

the image points propagates. For analysis, we could estimate the distribution of line

features numerically by sampling. For use in a system, we could then try to fit an

analytic function to the distribution.

5.6 Hypothesis Probability

Pr[H] is the a priori probability that the three-point hypothesis is correct. The

hypothesis is correct if the three model points are visible and if they happen to
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project within the error bounds of their corresponding image points. Let V be the

event that the model points are visible. Then

Pr[H] = Pr[HIV]Pr[V]

Assuming that the model is equally likely to be seen from any point on a viewing

sphere, we could estimate Pr[V] for a given model by computing the fraction of points

on the sphere from which the triple is visible. Then we could estimate Pr[HIV] by

the fraction of visible viewpoints from which the three projected model points can be

scaled, rotated in 2D, and translated in 2D to lie within the error circles of the three

image points. These estimates could be obtained by sampling the viewing sphere.

For each sample, a non-trivial problem is how to compute whether three 2D points

can be rigidly-transformed and scaled to lie within the error bounds of three other

2D points. It is possible to do this with linear programming.

It will be useful to see how important is Pr[HIV] at distinguishing correct hy-

potheses. Its importance will depend on the effectiveness of the "probabilistic peaking

effect," studied by Ben-arie [9] and applied to alignment by Olson [70]. The point

of the probabilistic peaking effect is that, although all configurations of image triples

can be produced by the model triple, some of these configurations may be much more

likely.

5.7 Discussion

It would be informative to check whether the formulas we derived exhibit the intuitive

behavior described in Section 1.2.1. In particular, we expect a hypothesis to be less

likely to be correct if the uncertainty regions are larger or if there are more random

features in the image. In either case, the features in the uncertainty regions could

more easily have arisen at random. In addition, we would expect the likelihood of a

hypothesis being correct to increase with size of the image, since as the image grows it

becomes less likely that the the features fell into the same-sized uncertainty regions.

140



Consider the case of point features and bounded error, in which Equation 5.5 becomes

P[I|H] 1r2 " " "rk ( Ak

P[ItH] r(r-1)-- (r-k 1) AA2 -. Ake

This quantity decreases with Ai and r and increases with A, as desired.
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Chapter 6

Applications

In Chapter 1 we discussed an approach for recognizing three-dimensional objects from

two-dimensional images. We pointed out that many of the techniques assumed by the

approach were already in place, including techniques for 3D pose solution, alignment,

and indexing. In addition, we argued that, for the approach to be effective, there were

two fundamental problems which required further study, namely saliency with a close

link to grouping and error propagation. Over the next four chapters, we investigated

and developed new solutions to these two problems. As a result, we are now in a

position to put these solutions together with the existing techniques and demonstrate

a complete recognition system. Nevertheless, we have not built such a system. In this

chapter, we describe (without building) how we envision the solutions in this thesis

fitting into a specific recognition system.

First we summarize the procedure that we propose for recognizing three-dimensional

objects from grey-scale images, and next we will detail the steps for a specific exam-

ple. The input to the imagined system is an intensity image and library of models

composed of points and line segments. As illustrated in Fig. 6-1, the image is first

preprocessed to obtain a binary edge map. Then a grouping system is used to extract

curves which are likely to come from the same object. From each curve, a set of

feature points is extracted, which could be corner points at the intersections of line

segments or invariant points on curves (e.g., zeros of curvature, which are always in-

variant, or curvature extrema, which are invariant over limited ranges). Each group of
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points is then used to index into the library of models to extract those sets of models

points which produce the group of image points under projection (as in [55]). Since

some of the points in any group of image points may be spurious (i.e., not correspond

to feature points in the model), indexing shall be also be performed using subsets of

the points in each group, if larger groups do not lead to recognition. For each set of

correspondences between model and image points obtained from the indexing step, a

robust alignment is performed to verify the correspondence.

Next, we describe in detail the steps of the imaginary recognition algorithm. Al-

though at times we will provide pictures of example input and output of the various

steps, these pictures were created artificially by the author for the sake of illustration,

and in particular are not the results of applying any existing code. For concreteness

in our description, we choose a particular object to be recognized from a particular

scene image. For the object, we use the clamp which appeared in a cluttered real

image in Chapter 3. This image, shown again on the left in Fig. 6-2, will serve as the

input to the recognition process. Our basic recognition approach consists of grouping

followed by 3D alignment, as follows.

1. Grouping stage

(a) Saliency. The shortest-paths saliency method converts the input image

into a saliency map that emphasizes edge points which lie on salient closed

curves (center image in Fig. 6-2). In addition, the saliency method delivers,

for each edge point, the most salient closed curve through that point.

(b) Focus of attention. A simple method for narrowing the set of curves to be

considered is to threshold the saliency map (Fig. 6-2-right).

(c) Curve selection. We begin with the set of points in Fig. 6-2-right along with

the optimal cycle through each such point. For selecting out a few salient

image curves, we propose the following voting scheme: Each point casts a

vote for its own optimal curve. After collecting each total number of votes,

we divide by the curve length (to prevent long curves from being overly

weighted). The curves are then considered in decreasing order of average

143



number of votes. The idea behind this scheme is that a salient curve

generally will have a large percentage of its contour elements choosing that

curve as the most salient curve. Although we have not implemented this

grouping scheme, we imagine its output to look like the leftmost picture

in Fig. 6-3.

(d) Feature detection. The task of feature detection is to select feature points

from the set of image curves. These points will be used as a basis for

pose computation and alignment. Since the clamp's edges are long and

straight, this property can be used as a constraint. In particular, for each

curve point we would apply a dedicated line-fitting process that looks back

in the intensity image at the area around the curve to find long, straight

line segments (see for example Burns et al. [20]). The endpoints of these

segments become our basis points. We suppose the output from this step

looks like that shown in Fig. 6-3-center.

2. Alignment stage. The alignment stage expects as input several groups of feature

points, where the points in each group are mostly from a single object. It is

likely, however, that some points in a group shall not be from the object, due

to occlusion or poor feature detection. For each group, we consider all triples

of points from the group and match them to all triples of model points in

turn. If the groups contain more than three points, then we would first try

indexing with larger subsets of the points. In any case, for the remainder of

this discussion, we just use minimal triples. In Fig. 6-3-center, there are three

groups of points, two of size four, and one of size six. This gives 2 (4)+ =() - 128
image triples to try. For each unique pairing (hypothesis) of image and model

triples, the alignment stage uses the pairing to bring the model into the image

for verification. The verification utilizes the results of Chapters 4 and 5 to

achieve robustness. Specifically, the system repeats the following steps for each

hypothesis:

(a) Pose computation and model projection. Using the hypothesis, compute
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the model-to-image transformation and project all of the model line seg-

ments into the image. This is illustrated on the right in Fig. 6-3. Note

that the modeled line segments do not need to cover the entire boundary

of the object. The picture shows a case in which the pose is correct.

(b) Uncertainty regions. Use Equation 4.26 from Chapter 4 to compute the

uncertainty circles for the two endpoints of every projected line segment.

Then construct a tight overestimate of every line segment's uncertainty

region from the two uncertainty circles (see Fig. 4-1).

(c) Selectivity computation. For each projected model line segment, com-

pute the selectivity of its line uncertainty region using the formula in Ap-

pendix E.

(d) Evaluation of the hypothesis. Gather all image line segments that lie

entirely within the uncertainty region formed by the uncertainty circles and

their common outer tangents. Then use Equation 5.5 and the likelihood

ratio test to accept or reject the hypothesis, as described in Chapter 5.

The accepted hypotheses are returned as the recognized instances of the model.

The framework underlying this recognition system applies to a large but nonethe-

less specific class of images and objects. In particular, the objects should be rigid

and contain a number of long, sharp edges, so that these edges can be modeled accu-

rately with sets of rigidly-connected geometric features. Man-made objects like those

in Figs. 3-10 and 3-11 satisfy this condition. Furthermore, since ultimately identifi-

cation of an object is based on its edge contours, these edges must be rich enough

to distinguish the objects of interest in the image. This places some constraint on

both the types of objects and the amount of clutter in the images. Another limit

on the set of images arises from our saliency mechanism. In particular, appropriate

images are ones where the modeled objects produce the most salient shapes in the

image, in terms of the size, smoothness, and connectedness of its bounding contours.

These requirements steer the immediate domain of applicability to tasks where the

environment can be controlled. Even so, the task itself may include the problems
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of occlusion, noise, and scene clutter. Tasks of this form.arise most naturally in

industrial settings, including the inspection of parts for metric accuracy, the identifi-

cation of defects in circuit boards, and the recognition and localization of objects on

a conveyer belt (perhaps for subsequent manipulation by a robotic arm).

As a specific example, Grimson et al. [41] recently reported a model-based system

that accurately inspects three-dimensional, bent cylindrical sections, which are used

in aircraft. The system performed alignment-based recognition and incorporated a

bounded error model. For tube lengths averaging 6" and diameters in the range

[i", 3"], the tube axis was consistently estimated within ±.008". The recognition

method relied on range data obtained from a laser light scanner. The results in

this thesis would enable one to build a similar system that could work from two-

dimensional images obtained from an off-the-shelf CCD camera.
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A Model-Based Recognition System

Image

Edge Detection

Feature Extraction

Points

Indexiing

Candidate Models

Recognized model and pose

Figure 6-1: Flowchart for a model-based recognition system. The input to the system
is a grey-scale image and a database of three-dimensional models. The system's goal
is to return, for any instance of a model in the image, the model itself and its pose.
The thicker boxes show the steps to which this thesis contributes. In particular, the
grouping box is comprised of a saliency mechanism for focusing attention on edges that
are likely to correspond to modeled objects, and a curve-selection process for choosing
salient curves through those edges. After grouping determines a set of salient curves,
the feature detector picks invariant points from those curves. Each group of points is
used to index into the database to find the models which could produce those points.
Given a set of matched model and image points, the robust-alignment step uses the
error- propagation solution in this thesis to verify the presence of the model in the
image while controlling propagated error.
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Figure 6-3: Left: Three salient image curves which we suppose are the top three
curves obtain by the curve selection step. Middle: Points and line segments which
we suppose are detected on the curves. The three larger squares show one triple
of alignment points, which correctly contains three point features from the clamp.
Right: When the model line segments are projected using this triple of basis points,
they will be correctly aligned with the image, since in this example the basis points
do not contain error.
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Figure 6-2: Left: Input is a real image of a scene containing occlusion and multiple
objects. Center: Saliency map obtained by the shortest-paths method (max saliency
1.137, average positive saliency 0.5675). Right: Binary image for informing curve
selection where to focus its attention, which was obtained by thresholding the saliency
map (threshold 0.7).



Chapter 7

Conclusion

Man-made environments typically contain many objects with well-defined boundary

edges. These edges often determine the shapes of the objects and are invaluable in

their identification. This thesis was about using such edge information for recogniz-

ing three-dimensional objects in images. We represented our objects by metrically

accurate geometric models, within a representational approach called "model based."

For model-based recognition systems to be computationally feasible, bottom-up

grouping would be useful as a precursor to recognition. To address the problem

of grouping in complex images, we have described a method for using smoothness,

connectedness, and size to identify objects that are globally salient. This is a specific

kind of saliency, nonetheless, and it is not appropriate for all saliency tasks, such as

finding a circle in a field of squares. The basic motivation is that a curve through a

number of randomly placed, short edge segments is usually not smooth. The method is

intended for detecting man-made objects that produce long, smooth edges in images

with surface markings, textures, and specularities that produce short, fragmented

edges.

In our study of saliency, we first analyzed an existing, noteworthy approach to

the problem, Shashua and Ullman's Saliency Network. We showed that the Network

has problems with junctions. We also showed that the Network converges according

to a geometric series and that this increases the complexity of the saliency measure.

Partly for this reason, the saliency measure's rankings of curves are not invariant to
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scale, and the measure may prefer short open curves next to salient closed curves.

To overcome some of the drawbacks of the Saliency Network, we proposed a new

method for saliency which is based on algorithms for finding shortest paths in graphs.

Using shortest-paths algorithms, our method identifies the optimal curves in the image

according to a saliency measure that prefers contours that are long, smooth, and

connected. The experiments demonstrated that, using this saliency measure, the

shortest-paths method is capable of finding salient curves in complex images.

For the verification stage of model-based recognition, we considered how to make

the verification robust to locational errors in the image features. Error in the im-

age features leads to uncertainty in the projected model features. We showed how

error propagates when poses are based on three pairs of model and image points,

for both Gaussian and bounded error in the detection of image points, and for both

scaled-orthographic and perspective projection models. This result applies to objects

that are fully three-dimensional, where past results considered only two-dimensional

objects. In addition, we showed how we can utilize linear programming to compute

the propagated error region for any number of initial matches. Furthermore, we used

these results to extend, from two-dimensional to three-dimensional objects, robust im-

plementations of alignment, interpretation-tree search, and transformation clustering.

Finally, we gave a new scheme for rapidly evaluating hypotheses in robust alignment

that is formally grounded in a model of error.
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Appendix A

Bellman-Ford Single-Source

Shortest-Paths Algorithm

This appendix describes the Bellman-Ford algorithm, drawing from [15]. We assume

we are given a graph g = (V, £) and a weight (or cost) function w : S -+ R. In

the Bellman-Ford algorithm, we first pick a vertex called the "source" and compute

the shortest paths (not just the costs of the paths) from the source to every other

vertex. Specifically, denote the source by vo. For every vertex vi, we store an upper

bound on the weight of a shortest path from vo to vi and a pointer to vi's predecessor

vertex along that path. We denote the upper bound by T(i) and the pointer to the

predecessor vertex by 7ri. Initially, for the source vertex vo we set ý(0) = 0 and

7o = v0 , whereas for all other vertices we set I(i) = oc and 7ri = NIL. For a graph

with V vertices, the Bellman-Ford algorithm performs V - 1 iterations, in which each

iteration passes over every edge (vj, vi) of the graph and performs the operation

If 'J(i) > 'I(j) + w(vJ, vi), (A.1)
(A.1)

then T(i) -T_ (j)+ w(vj,vi) and i +- vj.

Note that the predecessor pointer ri is updated each time the upper bound T(i) is

reduced. At the end of the computation, the 7ri values induce a subgraph 9, that

is a tree of shortest paths back to the source [24]. Formally, G, = (V,, E,), where
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v - {vi : 7ri NIL}U {vo} and 8• , {(ri, vi) : vi E V, and 7i : NIL}.
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Appendix B

Scaled-Orthographic Similarity

Transform

This appendix solves the following equations for A.

t o = A to -and____and t' =-Ato,

Let Jx o, yo = o, and similarly for x0, y¢, xo, yo, x¢, and y'. Then let to =

(Xo, Yo), o =- (xo, y), to = (xlo,Yb), t = (xv, y' ). Expanding the first row of each

equation gives xz = a11xo+a 12xo and x = allx-+al2y0, which implies [all a 12]T

T-'[zk x']iT, where T =
xo Yo

Then from Equations 4.8 and 4.9,

SOr

COS 2 0

- sin

- cos 0 sin 0 cos

sin 0 cos ¢

- cos 0 sin 1

cos2 2)

Sol' } cos 8(sin 2 0 + sin 2 0 cos2 0)

- cos 0 sin 0

cos 0 sin 0 cos q

- sin 0 cos

- sin

- cos 0 sin ¢

cos 0 sin 0 cos

- sin 0 cos

- sin ]
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Lastly we multiply T-' by

x COS 2 -0cos 0 sin 0 cos(5+ T÷')

to get

S11  SO'/ cosO

a12  Cos2 sor(1 - Cos 2 0 COS 2 q5)

- cos 0 sin - sin 0 cosq5 - sin(4q + T')

cos 0 sin 0 cCo - sin 0 cos( + T')

r' 1 sin q sin(q + T') + sin 2 0 cos q cos( + T')

r 1 - cos 2 8 COS 2 0 -- sin 0(cos 0 sin(o + T') - sin 0 cos(4 + T'))

r( 1 cos T' - Cos 2 0 COS q COS( T 1 (B.1)

r 1- cos 2  0 CO2  - sin 800

This equation gives A, since a21 = -a 12 and a 22 = a 11.
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Appendix C

Derivation of the Perspective

Linear Transform

Using perspective projection, this appendix derives a linear transform that relates

the errors in third and fourth points. First we compute the 3D position of rfi2 in

camera coordinates, as given in Equation 4.32. In Fig. C-1 (a copy of Fig. 4-11), let

the normal to the plane through (5' io, ii) be

= - (0, ny, nz) (C.1)

By Rodriguez' formula,

Ra0,pp = (cos 0)! + (1 - cos 0)(i -pi +sin 0(i x pJ

= (d cos 0 + r sin O(n, sin- n, cos 0),

r cos qcos 0 + r(1 - cos 0)(n, cos + nz sin q)ny + nzdsin 0,

r sin 0 cos 0 + r(1 - cos 0)(n, cos q + nz sin q)nz - ndsin 0) (C.2)

To compute the translation iu, let a and b be the (known) distances from g to io

and from E to ii, respectively. From the Law of Cosines,

d - a2 - b2 1 (b2 a2 - d  (C.3)
001 = cos-1 0 = cos-1 2 (C.3)o

2ab '2adoi
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Figure C-1: a, b, and L are the distances from d'to io, i1 , and Mio, respectively.

where O01, V) E (0, 7). From the Law of Sines,

L = sin(7 - (0 + i)) - 001) ( Rolsin 001
= sin(O + 0 + sin R ol( i 01

O)\smn 0ot

In total, we have

(C.4)

Substitutitutg , y, and - into Equation 4.34 gives M2 .

Next we take a first approximation to x and y in Equation 4.34 with respect to 0

and q. Let xZ = o, yo = , and similarly for x2, yo, Y0, Y,, o, y and Lo. From

Equation 4.34,

O - _fjf
Xo = f -ý+f( zo + f ( + f) 2 (C.5)

For xz and yo, we substitute q for 0 in these equations. Using Equations C.2-C.4,

o = -dsin 0 + r cos 0(n, sin - nz cos ) + Lovx (C.6)

rcos sinO + rsinO(nycosq + nzsin )ny + nzd cosO + Lovy (C.7)
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0 = -r sin sin + sin O(nycos + nz sin )n - nydcos 0 + Lovz (C.8)

Lo = cos(O + 0 + 001) -Ro (C.9)

vs = rsin (nycos + nzsin ) (C.10)

S= -r sin cos 0 + r(1 - cos )(-n, sin + nz cos )n (C.11)

S= rcos cos 0 + r(1 - cos 8)(-ny sin + nZ cosq )nz (C.12)

The above equations give to and to. By substituting r' for r, d' for d, and 0 + 7'

for 6, we get t'. and t' . Solving Equation 4.21 leads to

A1 [y' - yox'/ -xOx's + xOx'
A1 F 0 0+ 1 (C.13)

XOYO - Zxyo YO9qY - YOY9 -ZXy/ + XOY
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Appendix D

Gaussian Error Propagation

For this appendix, we adopt Therrian's notation [87]. In general, let X be a Gaussian

random vector and let 7= MY + b, where M is n x m. For random vectors X and y,

respectively, denote their expected values by Mi' and iY and their covariance matrices

by Kx and Ky. Then

() 1 21 Y-my)TKy "--m-y)

(2,x)a JKyj½

where 'r, = M •i + b and Ky = MKxMT [87]. In our case, we have four two-

dimensional Gaussian distributions, corresponding to the errors in three matched

image points and one unmatched image point. This gives eight uncorrelated Gaussian

random variables, of which we are taking a linear combination. When io, il, i 2 , and Z3

are normally distributed with standard deviations uo, Ul, a2, and a3, respectively, Kx

is a diagonal matrix with on-diagonal elements (or, 2, ora, o 2, o , or, a32, a ). Further,

the linear combination in Equation 4.25 is given by

M = all a12 b11 b12 C11 C12 1 0 , (D.1)
a21 a22 b21 b22 c21 C22 0 1
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where n = 2 and m = 8. Expanding MKxMT leads to

a21 + a12  aa 21 + a12a22  2 b21 + b2
a11 2 1 + a12a22  1 2 b21 + b2b22

a2 1 + a22 b11b21 + b12b22

C11C 21 + C12C22

C21 + C22
3+ 1

0 1

b1lb21 + b12b22

b21 + b 2

(D.2)

Under weak-perspective projection, a21 = -a 1 2, a 22 - all, b21 = -b 1 2 , b22 = bll,

C21 = -C1 2, and c2 2 = 11l. Letting So = g[al 1+ a12 , S1

c21 + c22 , the expression for Ky simplifies to

-- bi ý+ b2 , and S2 -

1 0

0 1
(D.3)

Then

1( I_ •II2
PY - ~27r0 e 2

where

2 = Vy = 2S2 S2 12 + S2( 2 +
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C 1c21 + C12C22

(D.4)

2
( To

Ky -= So2- + S' a2 + S + 0-2 2),(" 1 2 + '73



Appendix E

Line Selectivity Formula

Given a model line segment, [3] derives the following formula for its selectivity, yl.

Let r and R be the radii of the two uncertainty circles for the endpoints of the line

segment, such that r < R (Fig. E-1). r and R can be computed using the technique

given in Chapter 4. Next, let L be the distance between the centers of the two circles,

and let f be the expected length of a random line segment in the image. Define

v(I W1 , 2 ) = (R + r - £)2r(( 2 - W1) + 2YL(sin w2 - sin i 1 )

v2(.•1,W2) - (R T- r - f)(R + 7)(W 2 - w1 ) + (R + r £- )L(cosW2 - COsW1i)

+(R + r)L(sin w2 - sin W1)- L2(sin2 w - sin2 w)

v3(W, W2) = (2R - )2r(w2 - 1)

v4 (w•1, 2 ) = (2R - f)(R +•r)(w2 - i) + (2R•- )L(cosW 2 - COS 1)

If R + r < L, let

R-r . _R+r _ ___-R __

01 = sin R2 = Sin- r  S (•-( R + r )

L 2  = Sn L L

Otherwise, if R - r < L < R - r, let

01 R , 1 R-r cos -) i R+rL
L L 7/2 otherwise.
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Next, if R + r <

V=2

L, let

vi(0, 7)
v (0, 01)

vi(0, 01) v2(01,0 2)

if 0 : 01,

if0 1 - 0 < 2,

if 02, < ,

otherwise.

Otherwise if R - r < L < R + r, let

vi(0, 0) if 9 , 0'1,o ,

vI (0, 01) + v21, if 01 < 0 < 0o,

= 2 v1(0, 01) + v2 (01,00) + v4(0, 7r/2) if 01 < 0' < I,

Vl(0,08,) + v3 (0',7r/2) if 0 < i < Oi,l

vl(0, 0() + v3(0 ,0 1) + v4(01,7r/2) if 0' < 01x _ €,

0 otherwise.

Otherwise if L < R - r, let

V = 27rr(2R - f) if t e 2R,
O otherwise.

Finally, let w and h be the width and height of the image, and let

VI = 7rwh - 2(w + h) + e2.

The line selectivity is
V

a = VI

S< R + r + L,

I < R + r + L,

I R + r + L,

I R + r + L,

I R + r + L,
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Figure E-1: The uncertainty region for a line segment is constructed from the
uncertainty regions of the segment's endpoints.

R+ r + L,

R+ r + L,

R + r + L,
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