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Abstract

The Id-in-Id compiler is an Id program that compiles Id programs into dataflow graphs. The output
of this compiler currently runs on a graph simulator called GITA, but with minor adaptations it will
also run on the Monsoon dataflow machine, and with more extensive adaptations the output can run
on other parallel machines. Since Id is an implicitly parallel language, the Id-in-Id compiler will itself
run on a parallel machine - providing perhaps the most challenging application with unstructured
parallelism.

This thesis investigates the use of parallel graph reduction techniques in compiler optimizations
for lambda calculus based languages. The Id-in-Id compiler employs such techniques for machine
independent optimizations. Among the innovations of the compiler is DeBruijn chaining, a novel
representation of the lambda calculus used in implementing free variables of lambda terms. Another
novel technique, the Memobook, facilitates efficient and parallel graph traversal. Memobooks make
use of M-structures, an imperative feature of the Id language. Disjoint-set data-structures that can
be unified in parallel have also been developed. These data-structures are useful for performing
mutations on a program graph. The thesis includes both an analysis of the effectiveness of paral-
lel graph-reduction in compiler optimization and a discussion of their future potential in software
development.
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Chapter 1

Introduction

The Id-in-Id compiler is an Id program that compiles Id programs into dataflow graphs. The output

of this compiler currently runs on a graph simulator called GITA, but with minor adaptations it will

also run on Monsoon dataflow machines, and with more extensive adaptations the output can run on

other parallel machines. Since Id is an implicitly parallel language, the Id-in-Id compiler will itself

run on a parallel machine-providing perhaps the most challenging application with unstructured

parallelism.

Efficiency is the great challenge facing any developer of a compiler for functional languages.

Functional programs typically run slowly, and they have a reputation for inefficiency. The compila-

tion process usually proceeds in three stages, and the compiler can try to improve, or optimize, the

efficiency of the output code at all three stages of compilation. First, a compiler can improve the

programmer's source code. Second and more important, it can remove inefficiencies created dur-

ing earlier translation phases of compilation. This kind of optimization is especially important for

functional language compilers because such compilers translate languages especially often. Finally,

the compiler can improve the low-level code it creates, so that the code can run as fast as possible

on the target machine. Conventional compilers that try to optimize their code in each of these

areas often produce code that executes 2 to 3 times faster than compiler code produced without

optimizations. Functional language compilers can produce code that executes up to 20 times faster

than code produced without optimizations.

The challenge faced in designing the Id-in-Id compiler was to incorporate these features into

a compiler written to run on a parallel machine. The thesis describes an approach for meeting

this challenge in the second stage of Id-in-Id compilation, where machine-independent optimizations

occur. It focuses on methods for carrying out well-known functional program optimizations, rather

than on the development of new optimizations. The approach presented here builds on two important

ways of improving the efficiency of functional language implementations (a) compile-time reduction



of programs and (b) use of graph reduction. This introductory chapter gives an overview of the

research area and also provides an outline for the rest of the thesis.

1.1 Overview of the Area

Although the field of functional languages is still in its infancy, the strong points of functional

languages are well-known [9]. Most computer scientists agree that functional programs are easier

to write than conventional imperative programs. This programmer-friendliness does not come from

what functional programs lack-such features as imperative assignment statements, side effects, and

control of flow-but it stems rather from what functional programs uniquely possess. They alone

have higher order composition mechanisms that help programmers to "program in the large," or to

think big.

Computer scientists also agree about another important feature of functional programs. Func-

tional programs are easier than conventional programs to reason about. Statements as simple as the

ones used in basic arithmetic describe the meaning and execution of functional programs. It is no

wonder therefore that functional programming appeals to theorists as much as it does to application

programmers.

These advantages would be enough to justify further work on functional languages, but there

is an additional reason to be concerned with functional programming today. Functional languages

seem especially suited to parallel machines. This is because the functional languages are based on

the language of mathematics, which does not include notions of time or state. Functional languages,

like mathematical formulas, are implicitly parallel. With functional languages, programmers do

not have to deal with state-notions or synchronize operations among processors. They can instead

concentrate on the big picture of program design and leave the smaller but mind-numbing details

for automatic solution by the language implementation.

The merits of functional programming used to be offset by one serious disadvantage. Functional

programs ran very slowly. Programs written in the non-strict functional languages, for example,

sometimes ran as much as 100 times slower than comparable programs written in procedural lan-

guages such as C [19]. The slowness of functional languages undoubtedly affected their acceptance.

Why write an important program in a functional language if it will run at one one-hundredth the

speed of a program written in a procedural language?

1.1.1 Improving Efficiency of Functional Language Implementations

Methods for speeding up the implementation of functional languages therefore continues to be an

active research area today. The current research falls into two major categories, the design of effective

compilers and the design of appropriate execution vehicles. This thesis deals with the former area



and presents techniques for carrying out optimizations during compilation of functional programs.

Two important ways of improving the efficiency of functional languages, in both compilation and

execution, serve as the foundations for these techniques. One of these is compile-time reduction, in

which the compiler reduces the program as much as possible at compile-time to cut down on work

at run-time. The other important approach is graph reduction, in which identical lambda-calculus

expressions are represented by simple pointers rather than copies of the original expressions to cut

down on redundant computations.

Reducing Programs at Compile-Time

Compilers receive high-level source programs as input and produce low-level machine code as output.

It is usual therefore to think of compilation as having three phases: a beginning phase of input, a

middle phase of transformation, and a final phase of output. At each phase, the compiler represents

the program using different data-structures. The job of each phase then is to transform the program

from one representation to another.

Compilers can also be thought of simply as translators that connect programmers to machines.

They translate programs that are understood by programmers to programs that can be understood

by machines. When viewed in this way, compilation does not look like a series of data-structure

transformations, but rather it looks like a series of language translations. Compilation ends with

the final translation of the program into machine language.

Ariola and Arvind used this conception of a compiler to create an abstract scheme for compiling

functional languages [27]. Their scheme posits a series of programming languages: The source

language is the first of these, and a machine-level language is the last. The scheme also contains

reduction rules for translating from one language in the series to the next. The reduction rules

do not give exact computational algorithms for translations. Instead, they give the characteristics

of the program before and after each rule is applied. Their reduction system is implementation-

independent and general enough for use in proofs about properties of program translations, but the

system is also specific enough to provide a blueprint for compiler writers to construct a working

compiler.

Arvind and Ariola's reduction system includes rules for the machine-independent optimizations

that occur at compile-time before the final translation of the program into low-level code. It is

important to note that the Arvind and Ariola's optimizing rules do not translate programs from one

language to another. Instead, they improve, or optimize, the program's use of the language. An

essential component of their optimizing reduction rules is that their use of a reduction technique

called graph-reduction.

Optimizing programs using reduction at compile-time is not a new idea. The same idea is the ba-

sis of compile-time interpretation, a method that has been successfully included in the optimization



phases of many functional language compilers. Interpretation at compile-time can yield important

compilation information that might otherwise be obtained only at run-time. Compile-time interpre-

tation is particularly appealing because the inefficiency of interpretation at compile-time is offset by

the fact that it is performed only once for a program, and costs are therefore amortized by long-term

run-time savings.

There primary difference between compile-time interpretation and Arvind and Ariola's system

is that compile-time interpretation uses only one or two rules to reduce functional programs at

compile-time, whereas Arvind and Ariola's system uses many. Arvind and Ariola's reduction rules

cover many different optimizations, including CSE, code-hoisting, loop-peeling and unrolling, and

inline-substitution. Though the two approaches are different, it is illuminating to note the both

methods rely on the same idea, applying reduction rules at compile-time to optimize programs.

Compile-time interpretation is an accepted tool for optimizing functional programs. A system that

uses more reduction rules, like Ariola and Arvind's, should be equally successful as compile-time

interpretation, if not more, at optimizing programs. Again, the cost of applying additional rules at

compile-time is amortized by long-term run-time savings.

Graph Reduction

Although functional languages differ in their syntactic styles, they are fundamentally all alike. The

basic building block of all functional languages is the function application, and the language un-

derlying most functional languages is the lambda calculus. When the syntactic dressing is removed

from functional languages, what is usually left is the lambda calculus. Landin therefore refers to

functional languages as lambda calculus plus syntactic sugar [11].

Nonetheless, most writers on the subject divide the functional languages into types. The most

common way of categorizing functional languages is by their method of evaluating functions. Strict

languages are those that require the complete evaluation of all arguments before a function call.

Non-strict languages require evaluation of arguments only when they are needed. Today, this is

the primary distinction between these two types of languages. It used to be the case that these

languages were also separated by another characteristic: programs written in non-strict languages

executed much, much slower than those written in strict languages.

Graph-reduction, a technique originally developed by Wadsworth [25], helped to narrow the

gap between non-strict and strict languages. The difficulty with executing non-strict programs is

delaying the execution of argument expressions without making multiple copies of the expressions.

In graph-reduction, computations and their interdependencies are represented using pointers. With

such sharing of computations, wasteful copying and duplication of computations can be avoided.

Wadsworth realized that, with graph reduction, an interpreter that evaluates arguments only when

the arguments are needed can be as efficient as any other kind of interpreter.



Unfortunately, Wadsworth limited his discussion of graph reduction to lambda-calculus inter-

preters. Most modern language implementations, however, do not use interpreters to execute pro-

grams. Instead, compilers compile programs down to low-level code so that they can be executed

directly on conventional Von Neumann machines. Furthermore, Wadsworth assumed that the cost of

manipulating and copying large graph data-structures would be negligible. Those with more hands-

on experience with program implementations knew that this assumption was untenable. Nonethe-

less, some were able to see in Wadsworth's invention of graph reduction an invaluable technique for

speeding up the slow execution speeds of programs written in non-strict languages.

Turner was the first to show that it was indeed possible to use graph-reduction in a workable

implementation for non-strict languages [24]. Turner's idea was to perform reductions on programs

represented as combinator-graphs, which seemed to be more manageable than Wadsworth's lambda-

calculus graph-representations. Johnsson followed up on this work by using Turner's ideas along with

compilation techniques that were state-of-the-art at the time [10]. In Johnsson's scheme, a compiler

translated input programs to super-combinator graph data-structures for execution on an abstract

graph-reduction machine called the G-machine. Johnsson's G-machine served as the model for most

of today's efficient implementations of non-strict languages. In fact, the term "graph-reduction" is

today used almost exclusively to describe G-machine-like implementations.

Why does graph-reduction, a technique that has had such a great impact in the execution of func-

tional programs, have any bearing on the optimization of programs at compile-time? The closer that

a program representation can accurately reflect the constraints of the program's execution model,

the better the representation is for program optimization. Most functional program implementations

represent programs as graphs at run-time so optimizers should too. When optimizing reduction rules

are applied to programs represented as graphs, the result is graph-reduction. Ariola and Arvind have

shown that graph-reduction is not only beneficial, but necessary for optimization using their reduc-

tion rules. Reduction rules for some optimizations, such as CSE, cannot be formulated without the

use of graph-reduction.

1.1.2 Compile-time Graph Reduction in the Id-in-Id Compiler

At its core, Id is very much like other functional languages. Its primary building blocks are functions

and function applications. Like other functional languages, it also supports higher-order and curried

functions. It includes a rich set of data-types and static type-checking for program security. Finally,

it; provides a single-assignment syntax and other syntactic conveniences for writing programs. Nikhil

provides a complete specification for he language Id in [13].

Unlike most functional languages, Id also provides fine-grained implicit parallelism. Functional

programming advocates sometimes say that all functional programs are implicitly parallel. Most

implementations of functional languages, however, restrict language semantics so that programs can



be efficiently compiled for a sequential machine. Programs written in these languages are implicitly

parallel only at a coarse level. Id does not place sequential restrictions on its semantics. In Id, the

parallelism that purportedly exists in all functional languages remains unspoiled [23].

The Computation Structures Group's Id-in-Id compiler follows the compilation scheme outlined

by Arvind and Ariola in [27]. Id-in-Id compilation proceeds as a series of phases, each phase translat-

ing and optimizing programs represented using different languages using reduction rules. The heart

of the compiler is its optimization phase. To represent programs for optimizations, the Id-in-Id

compiler turns redundant computations into shared dependencies in a graph. It performs the actual

optimizations by applying Ariola and Arvind's reduction rules to these program graphs. Because

the compiler is written in Id, it performs the graph-reductions in parallel.

1.2 Organization of this Thesis

The Computation Structures Group has produced the first compiler to carry out graph reductions

in parallel at compile-time. This thesis describes the system of graph-reduction that makes com-

piler optimization in parallel possible. It examines existing methods for graph reduction, identifies

obstacles to using these methods in parallel compilation, proposes ways to overcome the obstacles,

and describes the use of the proposed solutions in the Id-in-Id compiler.

Chapter 2 describes the foundations of this thesis in previous work. This work includes the

development of the Id parallel-programming language and the Kid reduction system for optimizing

programs written in Id.

Chapter 3 presents Kid Graphs, a graphical representation of Kid programs for optimizations.

Kid Graphs use novel technique that involves building chains of pointers, called DeBruijn chains, to

efficiently represent free-variables inside a graph.

Chapter 4 addresses the problem of performing reduction transformations on graphs. It exam-

ines several possible approaches to program transformation, including the use of functional data-

structures and indirection-nodes to represent programs. It settles on one solution, the use of parallel

disjoint-set union operations to perform program transformations, for use in the Id-in-Id optimizer.

Chapter 5 describes the problem of synchronizing multiple transformations on graphs. It presents

a solution to this problem, called memobooks. Memobooks are general purpose utilities for synchro-

nizing operations on any group of objects. This chapter describes how memobooks can be used in

a variety of parallel graph applications and also how they are used in the Id-in-Id optimizer.

Chapter 6 addresses the important question of what reduction strategy is best for optimization.

Researchers in classical program reduction and researchers in compiler development differ in their

solutions to this question. This chapter also describes the overall strategy used by the Id-in-Id com-

piler to optimize programs. It also shows how DeBruijn chains, disjoint-set unions, and memobooks



fit into this strategy.

Chapter 7 summarizes the performance of the Id-in-Id optimizer on several platforms. It shows

how optimization performed by the Id-in-Id compiler compare to those performed by another com-

piler, the Id-in-Lisp compiler. It also assesses the performance of memobooks and disjoint-set unions,

when used in several applications.

Chapter 8 summarizes the results of this research and presents suggestions for further work

in the area. Although the Id-in-Id compiler advances developments in parallel graph reduction

substantially, more work in the areas of compiler technology and parallel implementation is needed

to make its concepts become state-of-the-art in design of compilers for functional languages.



Chapter 2

Background and Problem

Work done during the past decade by the Computation Structures Group provided the foundation for

my work on the Id-in-Id compiler. Among the contributions of this group were (a) the development

of the Id language; (b) the development of Kid, a related intermediate language more suited to

compiler optimization; and (c) the development of a reduction system for examining the correctness

of optimizations made on Kid programs. This chapter describes each of these contributions and

then gives an overview of the problems addressed in the rest of the thesis.

2.1 The Programming Language Id

The input language for the compiler and the language in which the compiler is written is Id. Whiting

and Pascoe provide a succinct description of the development of this language in their history of

dataflow languages [26]. Nikhil provides a complete specification for the language in [13].

Like other functional languages, Id supports function application, the basic building block of all

functional programs. For example, a function that adds its argument to itself may be defined in Id

as:

def DOUBLE x = (x + x)

(DOUBLE 3) is then an Id program to double the value of three, and (DOUBLE (DOUBLE 3) ) a program

to quadruple it.

Higher order functions can be built from existing abstractions in Id. For example, TWICE is a

function that takes two arguments, f and x. It applies the function f to x, then applies f to that

result. TWICE is therefore defined in Id as follows:

def TWICE f x = f (f x) ;

TWICE can also be used to define another function, QUADRUPLE, that quadruples the value of its



argument. This example shows Id's support for currying, a technique introduced by [21] that is

useful for writing programs succinctly:

def QUADRUPLE x = TWICE DOUBLE x ;

or

QUADRUPLE = TWICE DOUBLE ;

More complex expressions can be formed in Id by binding names to expressions and collecting the

bindings together in a let block like the following:

{ a=4* 15

b=3+2;

In (a + b) / (a * c)

The binding statements in this block should not be read like assignment statements in imperative

programs. They do not specify a sequence of events. Their sole pupose is to specify the dependencies

in the input program. Besides let blocks, Id also includes other features common to functional

languages. These include support for polymorphism, static type-checking, and data-structures such

as arrays, tuples, and algebraic-types.

A program written in a functional language can be represented as a set of operator nodes inter-

connected by a set of data carrying arcs. In such a representation, there is no sequential control,

and each operator is free to execute when its data arrive. This is true for all functional programs.

However, most functional languages impose a sequential ordering on the execution of operations. In

Id, these operators are free to execute in parallel.

Because Id programmers do not specify a parallel ordering in their programs, this sort of paral-

lelism is often called implicit parallelism. Other parallelel languages require programmers to explic-

itly manage control and data in a parallel machine. These languages are often tailored for writing

programs of a specific type, such as scientific applications, to make the task of explicit management

easier. Id, on the other hand, is a general-purpose programming language. Because of its fine-grained

parallelism and expressive power, it is both an appropriate language in which to write a parallel

optimizer and an appropriate target languages for compiler optimization. Traub has already demon-

strated the dramatic effect that optimizations have on programs written in Id. The effectiveness of

an Id optimizer of Id programs, however, remains to be demonstrated.

2.2 Optimization of Id

Id is a high-level language whose features are designed to help programmers express complex ideas

simply and succinctly. Before programs written in high-level languages can be executed, they must

be translated into machine-language statements, and before this translation can take place, the



high-level statements must be broken down into smaller statements that correspond to the machine-

language statements. An Id program at this phase of compilation is at a level intermediate between

its high-level and machine-language form. Optimization of a program at this intermediate phase can

pay rich dividends.

Traub has concluded that the intermediate language used in a functional compiler should be

grounded mathematically in an abstract reduction system [23]. He believes, however, that an ade-

quate kernel language would meet several other criteria:

1. The language would be non-strict and thus serve as a model of both lenient and lazy evaluation.

2. It would have primitive constructs for features ordinarily treated as primitive by functional

language implementations.

3. It would be a minimal language without "syntactic sugar."

4. Its operational semantics would accurately model the behavior of realistic functional language

implementations.

5. The language and its operational semantics would have a formal structure that makes it easy

to study the relation between the individual computations that comprise the execution of a

program.

The core language for all functional languages is the lambda-calculus, a small language with

a precise semantics that can be described using reduction rules. The lambda-calculus is therefore

an obvious candidate for an intermediate, or kernel, language in a functional compiler. Traub

has concluded, however, that the lambda calculus cannot serve this function. The language fails

very obviously on Traub's Criterion 2. Its only primitive constructs are functions and function

applications; other primitive features (e.g., numbers) must be simulated in the lambda calculus

through the use of functions.

Furthermore, it is not possible to express some fundamental optimizations as transformations

on lambda-calculus programs. Common-subexpression-elimination, or CSE, is one example. The

idea behind CSE is to eliminate redundant computations by sharing them. If a sub-expression

C is common to two different expressions A and B, then A and B can share C's computation.

Conventional compilers perform optimizations like CSE because modern functional language imple-

mentations must share computation wherever possible. Sharing of computations is critical for the

efficiency of these implementations.

The lambda-calculus is a powerful language that captures many ideas about computations, but

unaided it cannot represent even the simplest notions about sharing of computations. It is not

possible, for example, to formulate the idea "let A and B share C's computation" in the pure

lambda-calculus. Formulating an optimization rule to express this same idea is likewise impossible.



Compile-time detection of sharing is critical in optimization, and the lambda-calculus therefore also

fails on Traub's Criterion 4.

2.2.1 The Intermediate Language KId

Designers of functional compilers have therefore used other intermediate languages, such as IF1 [22],

FLIC [17] and Term Graph Rewriting [4] systems, to model functional language implementations.

The Computation Structures Group have devised three intermediate languages based on their expe-

rience with Id programs. The first to be devised was Traub's Functional Quads [23], which provides

a "three address" syntax for program graphs. Next came Ariola and Arvind's P-PTAC, or Parallel

Three-Address Code [1]. The most recent of these languages is Kid, or Kernel Id [27].

Kid also maintains the features of dataflow graphs and representing sharing of expressions in

programs. Kid is not quite as low-level as these other languages, however, making optimization of

Kid programs easier. Its grammar is given in Figure 2-1. KId programs are similar to Id programs

in most respects, but the Kid language lacks some of the extraneous syntactic notation found in Id.

The name KId, in fact, stands for "Kernel Id" and is meant to suggest that Kid programs contain

the significant part, the kernel, of Id programs.

Figure 2-1: Grammar for the kernel language KId.

The most important feature to note in the Kid grammar is the use of block notation to express

shared computations in programs. In Kid, a block is a collection of statements that bind meta-

variables to expressions. The meta-variables indicate sharing of expressions. Expressing shared

computation makes it possible to: a) perform important optimizations b) maintain side-effects cor-

rectly. For example, to represent the idea that the expressions (+ (* a b) 3) and (- 1 (* a b))

can share the computation of (* a b), one could add a binding of the form c = (* a b) to the

PFI ::= Allocate
PF2  ::= + - ... I Equal?

Select I Apply
SE ::= Variable I Constant
E ::= SE I PF(SE,...,SE)

I BoolCase(Se, E, E)
I Block
A (xl,..., x,).E

Block ::= {[Statement;]* In SE}
Statement ::= Binding I Command
Binding ::= Variable = E
Command ::= Pstore(SE, SE, SE)

I Storeerror IT,



program and then transform the original expressions to (+ c 3) and (- 1 c).

The command construct given in Figure 2-1 is used to represent side-effecting commands in Kid

programs. Side-effects destroy referential-transparency, a property of programs that ensures that an

expression and a copy of the expression are indistinguishable from each other. In Id, an expression

and a copy of the expression are distinguishable from each other. For example, if two expressions,

A and B, depend upon a side-effect expression C, this dependency must be represented by using

pointers to the shared-expression. If A and B contained copies of the expression C, the side-effect

would occur twice at run-time. Blocks make it possible to create and maintain shared dependencies,

and therefore side-effects, correctly.

2.2.2 Kid Reduction Rules

The real proof of the power of Kid is in its reduction rules: Each Id optimization mentioned by Traub

in [23] can be expressed in terms of Kid reduction rules. The optimizations are: inline substitution,

partial evaluation, algebraic rules, eliminating circulating variables and constants, loop peeling and

unrolling, common subexpression elimination, lift free expressions (loop invariants), loop variable

induction analysis, and dead-code elimination. The full set of optimizing Kid reduction rules is given

in [27].

Figure 2-2 (a) shows how to formulate a CSE optimization rule for Kid programs. The top

part of the rule specifies the precondition of the rule. The bottom part specifies the reduction to

be performed when this precondition is met. The rule given in Figure 2-2 specifies that if some

meta-variable X is bound to an expression E and meta-variable Y is not bound to X, then any

binding of the form Y = E should be reduced, or rewritten, to the binding Y = X. Figure 2-2

(b) shows the reduction of a Kid program, with blocks, using the CSE rule. The program has been

improved because the new program computes (+ b c) once, whereas the old program computed

it twice. Reductions like this are called graph-reductions. Wadsworth coined the term to refer to

reduction of programs as graphs. Figure 2-2 (c) shows how the reduction given in (b) is actually a

reduction on the dependencies of the program when represented as a graph.

There are several advantages to formulating optimizations as reduction rules. Reduction rules

provide a precise notation for reasoning about program transformations. Ariola has used the abstract

reduction rules of the Kid language, for example, to show that most Kid optimization rules are

confluent. A confluent optimization rule is one that is guaranteed to reduce a program to its normal

form after repeated application. The order in which the rule is applied to the program does not

matter. This means that optimization rules can be applied to programs in a variety of orders,

including parallel order, to reach optimal forms. Partial-evaluation and inline-substitution are the

only rules that are not guaranteed to reach the normal-form of a program if it exists.

Ariola has also used the Kid reduction rules to prove the correctness of certain well-known op-
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(b) { a = (+ b c) ;
d = (+ b c)
In

(a d)} ;

{ a (+ b c);
d=a
In

(*a d) ;

d + reduces toa

b

aord +
cb

Figure 2-2: The CSE optimization rule for Kid programs (a) and its application to a Kid program
(b). CSE reductions can also be depicted pictorially, as in (c).

timizations. An optimization is said to be correct if optimized and non-optimized versions of the

program produce the same result. Both correct and partially-correct optimizations reduce expres-

sions that have a normal form to other expressions that have the same normal form, but correct

and partially correct optimizations differ in their effect on expressions that do not have a normal

form, or Q expressions. Correct optimizations reduce Q expressions to Q2 expressions, but partially

correct optimizations may reduce 0 expressions to expressions that have a normal-form. Several

algebraic-identity optimizations are shown in Figure 2-3. These optimizations reduce the number of

arithmetic operations in a program by following the identity laws of algebra. The first two of these

optimizations are correct. The third is only partially correct because it would reduce the expression

(+ Q 0) to 0.

(+ E 0)
(*E 1)
(, E 0)

correct
correct
partially-correct

Figure 2-3: Optimizing reduction rules for algebraic-identity optimizations.
Optimizing reduction rules for algebraic-identity optimizations. The third rule is only partially
correct because it would reduce the expression (+ * Q 0) to 0.



Finally, it is possible to describe optimization precisely and cleanly using reduction rules. This

makes reduction rules appealing not only for use in mathematical proofs. It also makes reduction

very appealing for use in the design of real optimization systems. Reduction rules can represent the

essential features of optimizations without being biased toward a particular implementation.

2.3 Problems and Purpose

Arvind and Ariola have set the stage for the development of a parallel optimizer for Id. They have

described an intermediate language that captures the essentials of Id programs. They have also given

precise rules for performing compiler transformations. They have proven that correct programs can

be generated by applying these optimization rules to Kid programs in parallel. Still, to draw a

complete picture of a parallel optimizer, we need to solve some additional problems.

First, we need to develop a way of representing Kid programs as graphs. A Kid program is a

textual representation of a program graph. A compiler needs to manipulate actual program graph

data-structures, however, not text. With simple programs (such as the one given in Figure 2-2),

translation from a program into graphical form is straightforward. But with complex programs,

difficult questions arise. What happens to variable names in graphs? How are blocks to be repre-

sented?

When programs are represented as graphs, a second set of problems arise. Graph-reduction in-

volves the repeated transformation of graphs. Again, the simplicity of transforming simple programs

as text or pictures is misleading. How can these transformations be carried out efficiently using real

program memory? Functional language implementations use a technique called indirection nodes to

perform transformations efficiently during graph reduction, but is this the best approach?

A third set of problems arise in synchronizing reductions in a parallel environment. It is necessary

to keep some record of actions that take place concurrently in a parallel environment to prevent

collisions. In the Id language, I-structures are the logical place for keeping such records. But how

can I-structures be used in this job?

Finally, where do optimizations stop? To answer this question, we must have some sort of con-

ception of what an optimized program looks like, and we must also have a strategy for optimization.

Previous research in program reduction and compiler techniques differ in this matter, which should

apply to a program reduction compiler?

The next four chapters of the thesis deal with these practical issues.



Chapter 3

Representing Programs as Graphs

The basis for the Id-in-Id optimizer is the Kid optimization system described by Arvind and Ariola.

The rules in this system apply to program code in the Kid language. The actual Id-in-Id optimizer

optimizes programs that are represented as graph data-structures called Kid Graphs. This chapter

discusses the design of Kid Graphs. Section 3.1 gives an overview of Kid Graphs and describes their

correspondence to Kid programs. Section 3.2 discusses a major obstacle to representing Kid programs

as graphs: the representation of lambda bodies and the variables that they use. Section 3.3 presents

a solution to this problem, a novel technique called DeBruijn chains, and discusses how DeBruijn

chains can be used in Kid Graphs.

3.1 Kid Graphs

A Kid Graph is a uni-directional, distributed graph representation of a Kid program. Kid graphs are

uni-directional because all the arrows in the graphs point in only one direction. If parent nodes in a

uni-directional graph keep pointers to their children, then the children do not keep pointers to their

parents. Kid graphs are distributed representations because the nodes are not kept in one central

location. A distributed graph is similar to a list data-structure: the only way to obtain all of its

elements is to traverse it from a single node, called the graph's root. The main advantage in using

distributed graph representations is that it simplifies garbage collection. If a node in a distributed

graph is changed so that it is no longer referred to by a parent node, it can be automatically reclaimed

for re-use by a garbage collector. In a centralized graph representation, explicit garbage collection

is needed since one reference to every node in the graph remains through all changes. The question

of introducing cycles into Kid Graphs is addressed in a later chapter.

Each node in a Kid Graph is a record. All nodes contain tags that indicate node-type and usually

some additional data, such as pointers to other nodes. These pointers form the dependencies of the

graph. Figure 3-1 gives the grammar for Kid Graph node-tags. Although the Kid Graph tags form



a grammar, they can not be used to write syntactic programs. In order to illustrate the practical

matters of manipulating Kid Graphs, additional notation is needed. Throughout the rest of the

thesis, pictures will be used to illustrate Kid Graph programs. Figure 3-2 shows a Kid program and

a picture of its corresponding Kid Graph. The circles in the picture correspond to node records and

the contents of each circle indicates the node's tag. If node a contains a pointer to node b, it will be

depicted as a line originating from the bottom of a's node to the top of b's node. The highest node

in the graph is the root of the graph.

Figure 3-1: Grammar for Kid Graph nodes.

One difference between Kid Graphs and Kid is in the use of blocks. Figure 3-2 shows a KId

program that contains a block and a Kid Graph of that program. Two kinds of information contained

in the program block are not represented in the Kid graph. First, the Kid block contains bindings

that tie variables to expressions. For example, the binding d = (x + b) links the variable d to the

expression x + b. The compiler uses these links to create graphs; it would be superfluous to note

the bindings explicitly on graphs. Second, Kid blocks contain scoping information since each block

represents a separate lexical scope. It is also unnecessary to keep track of such scoping information

in Kid graphs. Long before a compiler converts a program to a graph, it analyzes lexical scopes and

changes variables to reflect this analysis.

Because blocks are no longer required for denoting lexical scopes, blocks exist in Kid Graphs

only to collect computations for lambdas. They collect information about potentially side-effecting

commands, such as A x] = c and (g x). When such commands appear in a block, they are called

the roots of the block. Second, a block collects information about the expression to which the

lambda evaluates, called the result of the block. Kid graphs must keep pointers to these expressions.

Pictorially, if a block does not contain any roots, the block node itself will be omitted from the

picture and replaced with a pointer that points directly to its result, as in Figure 3-3.

This use of blocks in Kid graphs pays a handsome dividend: It simplifies dead-code elimination.

PF1  ::= Allocate
PF 2  ::= +I-I... IEqual?
Exp ::= VariableI Constant

PF, (Exp,...,Exp)
J Bool-Case(Exp, Lambda, Lambda)

Lambda ::= A(x1,..., x).Block
Block ::= {[Root;]* In Exp}
Root ::= Exp Command
Command ::= P.store(Exp, Exp, Exp)

Store-error ( T,



When a side-effect-free expression is no longer referenced in a program, the expression can be elim-

inated from the program. Because side-effect free expressions are not kept in a central location in

Kid graphs, no pointers to the expressions remain in the graph when they are no longer referenced

in a program. Id's garbage-collection mechanism automatically eliminates this dead-code from the

graph corresponding to the expression. If side-effect-free expressions were kept on blocks in a graph,

the nodes corresponding to these expressions would have to be eliminated explicitly as dead-code.

Furthermore, because side-effecting expressions are always kept on blocks, the nodes correspond-

ing to these expressions are never eliminated as dead-code. This is desirable because side-effecting

expressions should never be removed from a program.

Def f A = a

{c=gx;
A[x] = c ;
d=x+b;

In
-d } ;

Figure 3-2: A KId program containing a block (a) and the KId graph corresponding to the program
(b).

3.2 The Problem with Lambdas and Free-Variables

The biggest difficulty that arose in the development of Kid Graphs was finding a way to represent

programs as graphs that could be copied efficiently during reduction. Wadsworth noted the centrality

of the graph-copying problem in his original paper on graph reduction of the lambda calculus, and

the problem has continued to trouble developers of compilers for lambda-calculus-based languages

since that time. The problem is simply this. Whenever a lambda expression is reduced, the body of

the lambda has to be copied. Such copying is simple when lambdas use only those variables which

they define, but it is difficult when lambdas also contain free expressions, or expressions that are

bound outside their scopes, because only the bound expressions are copied in graph reduction. For

accurate copying it is necessary therefore to represent graphs in such a way that free expressions are

distinguished from bound expressions.



There are two lambdas in the Kid Graph depicted in Figure 3-3. In this figure, those nodes

that are bound by each lambda, called the extent of the lambda, are enclosed in a shaded region.

According to Wadsworth, in order to perform the reduction of the expression ((A z. (+ y (* z

x))) x) those nodes and only those nodes that fall within the extent of the lambda (A z. (+ y

(* z x))) should be copied. If you started copying the lambda from the node marked #, however,

it would be difficult to tell where to stop copying. The difficulty with graphs is that the nodes that

fall within the extent of a lambda can not be easily distinguished from the nodes that are reachable

from a lambda.

Hughes developed an influential solution to the problem of distinguishing between free and bound

variables in lambda abstractions. His solution involves the transformation of a graph into supercom-

binator expressions before graph-reduction occurs. When a lambda-calculus program is transformed

to a supercombinator-program, each lambda in the program is replaced by a special constant, called

a supercombinator. A single reduction-rule is then added to the reduction system, corresponding to

that constant. When this rule is applied, it will have the same effect as the application of the original

lambda to its arguments. For the purposes of this discussion, it is sufficient to think of a super-

combinator as a special kind of lambda. What makes a super-combinator lambda special is that it

contains only references to its own bound-variables or to other super-combinators. By eliminating

all free expressions from lambdas, supercombinator-transformation also eliminates the problem of

distinguishing between nodes reachable from lambdas and nodes that fall within the extent of the

lambdas. Hughes's approach is called lambda-lifting. It results in "flat" supercombinator programs

in which all nested lambdas are found in the outermost level. Figure 3-4 illustrates a program graph

before and after it has been lambda-lifted.

Supercombinator-transformed graphs are very useful at execution-time, but they are not an

ideal graphic representation of programs for compile-time optimization. A major difficulty is that

important optimizations cannot be applied directly to supercombinator-transformed graphs. Take,

for example, the constant-propagation optimization. In a program in which the variable x is bound

to the value 3, as in Figure 3-5 (a), the constant propagation rule replaces all uses of x in the

program with the value 3. With programs represented in the pure lambda-calculus, the optimizer

can perform this operation by scanning the programs for all occurrences of x. With programs

represented as supercombinators, the optimizer cannot use the constant propagation rule because x

can only occur within one scope, the scope in which it is defined. Uses of x in other lambdas have

been transformed so that x is an argument to these lambdas. After transformation of a program to

supercombinators, it is extremely difficult to reconstruct which arguments of each lambda correspond

to x in the original, un-lambda-lifted program. Figure 3-5 (b) shows the lambda-lifted counterpart

to the program depicted in (a). It takes extra work to figure out that 3 can substitute for xi in the

second program.



Figure 3-3: Graph representing the expression (A x. ((A z. (+ y (* z x))) x)) (a). The
extent of each lambda is indicated by differently shaded regions. (b) shows the same graph, except
with shared variables represented using shared nodes.

3.3 DeBruijn Chains

Is it possible to determine the extent of lambdas efficiently without first flattening the programs
through lambda-lifting? The shaded regions in Figure 3-4 circumscribe the extent of each lambda
in a program graph. This program could also be represented as in Figure 3-6. In this figure,
each node in the graph has been given a name, which appears in italics next to the node. Each
lambda in the graph is annotated with a list, and each list contains the names of the nodes that fall
within the extent of that lambda. In a real implementation, these names would correspond to the
addresses of the nodes. The original graph has only been annotated, not transformed, to achieve this
representation. Constant-propagation on this program is as easy as it would be using the original
program. Most importantly, when programs are represented this way, one can quickly determine
the extent of any lambda by looking at its list.

Unfortunately, reductions that occur within the extent of a lambda can change the extent of the
lambda. In Figure 3-7, a single reduction in a lambda adds new nodes and removes old nodes from
the extent of the lambda. If the list is not updated, then the extent of the lambda would be listed
incorrectly. One could improve this technique by reducing the number of nodes that are kept in
the list of every lambda. For instance, each lambda list might contain only the nodes that fall on
the boundaries of the lambda's extent. The lists would still have to be updated, however, whenever
boundary nodes were affected by a reduction. These solutions would be particularly cumbersome to

Y · ~



(a) A(b)

(c) ((F1 X) Y) - (((F2 X) X) Y)
(((F2 X) Y) Z) -+ (((+ Y (* X Z))))

Figure 3-4: Graph for the expression ((A x. ((A z. (+ y (* x z))) x)) 3) (a) and its super-
combinator representation (b). Both the lambdas in the original graph (a) have been transformed
to supercombinator constants and two new reduction rules added to the reduction system (c).

(a) def f y = (b) def f y=
{x=3; {x=3;

def g z = (+ x z) ; def g xl z = (+ xi z) ;
In (g y) } ; In (g x y) } ;

Figure 3-5: A program (a) and its lambda-lifted counterpart (b).

implement in parallel because they involve repeatedly checking and updating lists.

Another solution to this problem is to place special nodes on all arcs that leave the extent of

a lambda. I will call these special nodes free-nodes because they reside on arcs that lead from the

expressions defined in a lambda to expressions that are free in that lambda. With this solution, it

would not be necessary to maintain centralized lists of free-nodes. The extent of a lambda could

be determined by recursively searching for all nodes that are reachable from the lambda, stopping

whenever a free-node is reached. A graph that uses this approach is given in Figure 3-8. The extent

of each lambda is enclosed in a shaded region and free-nodes are marked with the tag Free. Note

that all arcs crossing these shaded regions are marked with free-nodes. Note also that the free-nodes

are chained together. Thus, if lambda B is nested inside lambda A and if B uses a free-variable

that is also free to A, then B's free-node points to A's free-node. Variable y in Figure 3-8 has been

chained twice.



V, e, w)

def g x =
{ a = (b c) ;

b = (d x) ;
c =(d z); y
def d y = {fun w = y} ;

In w
(a) a (b)

Figure 3-6: A simple program (a) and its graphical representation using lists to denote the extent
of lambdas (b).

For an optimizer developer, this program-representation is more useful than a supercombinator-

representation would be. Note that by following a free-node chain, it is possible to find the bound

version of any free-variable. This information is useful in performing optimizations. For example, it

can be used to perform constant-propagation. To propagate a constant 3 for every occurrence of x

in a program, replace all free-nodes in x's chain with the constant 3.

This technique is called DeBruijn chaining because of its similarity to a technique originally

developed by August DeBruijn. The goal of DeBruijn's approach was to improve upon the con-

ventional method of naming variables in lambda-calculus programs. In the conventional approach,

symbolic names represent variables. DeBruijn's approach uses integers, called DeBruijn numbers, to

represent variables. A DeBruijn number denotes the number of lambdas that come between the defi-

nition of a variable and its use, sometimes called its nesting-depth. Once every variable is assigned a

proper DeBruijn number, the original name of the variable can be discarded. For instance, the con-

ventional lambda-calculus program (A x. (A y.x) x) becomes (A. (A. 1) 0) in DeBruijn notation.

In these examples DeBruijn numbers are italicized so that they can be distinguished from integer

constants.The original DeBruijn notation was designed for representations in which lambdas were

restricted to only one argument, but the notation can be extended easily to representations in which

lambdas have multiple arguments. Several researchers have developed successful implementations

that use this approach [12] [16]. An overview of DeBruijn's representation and its use in program

transformation can be found in [15].

Figure 3-10 through 3-12 depict three possible representations of a program as graphs. The first

graph in the Figure 3-1.0 does not use any special system for representing variables within the graph.

Each variable is given a single node, and every occurrence of the node in the program is represented

by a pointer to this shared node. Again, shaded regions delineate the extent of each lambda.
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f (x, a, ,, a, y, e, W)

b c

Y y

w D w

(a) (b)

{fun x = {fun x =
{ a = (b c) ; { a = (b f) ;

b = (d x) ; b = (d x) ;
c (d z) ; f = {fun v = v z} ;
def d y = {fun w = y} ; def d y = {fun w = y} ;
In In
a}}; a}}

Figure 3-7: Reduction of a program (a) and reduction of a corresponding graph that uses lists to
denote the extent of each lambda (b).

The second graph in Figure 3-11 depicts the same program, this time using DeBruijn numbers

rather than names. Note that the sharing across nested lambdas that was present in Figure 3-10 has

been broken by the numbered renaming in Figure 3-11. Only variables with the same name and the

same scope are shared. Also, the number of each variable corresponds to the number of extents the

edge to the variable once crossed. Under a DeBruijn number representation, variables in different

scopes can easily be distinguished from each other. All the nodes that fall within the extent of a

given lambda are marked with the number 0.

The third representation is a hybrid of the first and second. Like the second, only variables

within the same lambda can be shared, so that variables in different lambdas can be distinguished

from each other. However, chains of pointers have been added to link the use of a variable within

each scope. For instance, the use of the variable Y in the expression (A F. (...) Y) is linked to

its use in expression (A X. (...) Y) and its definition in (A Y....). The length of these chains is

the same as the DeBruijn number used in the second graph. This third graph illustrates the use of

DeBruijn chains.

There is one clear disadvantage in using either DeBruijn names or DeBruijn chains in graph reduc-
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Figure 3-8: Graph representing the expression (A x.n ((A z. (+ y (* z x))) x)) using De-
Bruijn chains. The extent of each lambda is delimited by a shaded region. No arcs in the graph
cross the boundary of a shaded region without passing through a free-node.

tion. DeBruijn representations require more overhead during reduction than do super-combinator,

lambda-lifted representations. This is because DeBruijn representations use relative offsets to ex-

pressions to represent variables names. If an expression moves, then the relative offset of a variable

may change. Take, for example, the following reduction of a textual program:

(a) def g x = (b) def g x =(+ 1 x) ;

{ def f a = (+ a x) ;

In (f 1) };

When the application (f 1) is reduced, the variable that was previously free in the body of f in

(a) is no longer free in the copy of f in (b). It has moved into the scope of the enclosing lambda.

If these programs had been represented using DeBruijn numbers, the use of the variable x would be

represented using the DeBruijn number 1 in (a) and 0 in (b). Similarly, if this program had been

represented using DeBruijn chains, the use of x in the first program would have a chain of length

one in the first program and would not have any chain at all in the second program.

DeBruijn's original scheme included a set of rules for maintaining DeBruijn numbers during

reductions [8]. Figure 3-13 gives the algorithm for performing a beta reduction on a DeBruijn

expression'. The expression ((A. E1) E2 ) can be reduced by calling the function BETA 0 E 2 El.

1 Neither this algorithm nor the one for reducing DeBruijn chains given in Figure 3-15 includes steps for maintaining
sharing within the reduced graphs. It is assumed that some mechanism for maintaining shared dependencies exists.
The subject of maintaining sharing correctly will be addressed in Chapter 5.



The main function for performing the beta-reduction is the recursive function BETA which, besides

El and E2 , takes an integer argument i, indicating the current nesting-depth of the recursion. This

extra argument is required because beta-substitution of an expression ((A x.E 1 ) E2 ) requires

replacing all occurrences of x in El with occurrences of E2 . If El contains nested lambdas, then

different occurrences of x in these lambdas appear as different DeBruijn numbers, each reflecting

a different occurrence of x. BETA uses i to keep track of the nesting-depths so it can correctly

determine which DeBruijn number corresponds to x.

The expression E2 may also contain expressions that are bound outside of E2 and therefore also

outside of El. These indices will change when E2 is substituted for x. The amount of change in an

index depends on the nesting-depth of the x . It is therefore necessary to make different copies of

E2 for each substitution of E 2 for x. This is accomplished by the SHIFT function in the DeBruijn

algorithm given in Figure 3-13. Besides E, the expression to be shifted, SHIFT takes in two other

integer arguments i and d. The integer i indicates the nesting-depth of z, the variable that will be

replaced by E. Because SHIFT is itself recursive, it also needs to keep track of the nesting-depth of

its own recursions, using d. SHIFT makes a copy of E, shifting the indices of E depending on i and d.

Figure 3-14 depicts the reduction of a program using DeBruijn numbers. Note that the expression

corresponding to (a z) occurs twice in the final program.

The algorithm for reducing DeBruijn numbers can be used to reduce DeBruijn chains, except

that the rules for altering numbers must be altered to apply to chain lengths. Figure 3-15 gives

the algorithm for performing a beta-reduction of the expression ( (A x. E 1) E2) using DeBruijn

chains. Again, the main beta-reduction function BETA takes an argument i that keeps track of the

current nesting-depth of the recursion, and the initial reduction would start with a call to BETA 0 E2

x El. Note that changing a variable in the outermost depth of nesting has the effect of changing an

entire chain of variables in a DeBruijn chain representation. By removing one length of a DeBruijn

chain in the outermost scope, the optimizer reduces by one the distance of all nodes in nested scopes

to the end of the chain. By substituting one expression in a DeBruijn chain in the outermost scope,

the substitution can be seen by all nodes in nested scopes to the end of the chain. The function

BETA therefore only makes changes in the graph when i, the nesting depth, equals 0. Figure 3-16

depicts the reduction of a program using DeBruijn chains. What is interesting about this example is

that, in order to replace the variable y with the variable z in the program, the BETA function has to

enter a nesting-depth of depth 1 and then exit to nesting depth 0 after encountering the free-node

for y.

In terms of the Id-in-Id compiler, the crucial difference between DeBruijn numbers and DeBruijn

chains is that DeBruijn chains work well in graph-reduction and DeBruijn numbers do not. The

problem with DeBruijn numbers should be apparent in Step lb in the DeBruijn number algorithm

given in Figure 3-13. The algorithm requires making separate copies of E2 for each occurrence of



x. The primary motivation for using graph-reduction is to avoid making separate copies of E 2 for

every occurrence of x. DeBruijn chains use pointers to represent relationships between program

elements. It is not necessary to make separate copies of E 2 when performing a substitution on a

program represented with DeBruijn chains. In addition, it must be reiterated that it is not possible

for each occurrence of x to point directly to E2 with DeBruijn numbers. This is because the DeBruijn

numbers within E:2 represent the nesting-depth of variables in E2 's environment, not x. Figure 3-17

depicts an example of what would happen if occurrences of x were allowed to point directly to E2

in the DeBruijn number representation.

To summarize, Wadsworth identified a difficult obstacle to the use of graph reduction in compilers

in his original article describing the invention of the technique. He pointed out that one must be

able to find the extent of lambda bodies in order to perform graph reduction correctly, and finding

the extent of lambda bodies is not always easy. One technique that has been used to overcome

this obstacle is the super-combinator approach to graph representation. Although this technique

has worked well with interpreters, it is not useful with optimizers. The Id-in-Id compiler solves the

problem of finding lambda bodies by employing a unique approach to naming: DeBruijn chains.

These chains are similar to DeBruijn numbers in some respects, but unlike DeBruijn numbers, they

are suitable for use in graph reduction. A revised grammar for Kid Graphs, using DeBruijn chains,

is given in Figure 3-18.
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Figure 3-9: Reduction of the expression ((A x.
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((A z. (+ y (* z x))) x)) 3) usingDeBruijn
a layer of indirection is removed from each lambda

y



Figure 3-10: The program (A y. A x. ((A F. (F X) Y) Y)) represented as a graph.

Figure 3-11: The representation of (A y.A x.((A F. (F X) Y) Y)) using DeBruijn numbers.

--



Figure 3-12: The representation of (A y. A x. ((A F. (F X) Y) Y)) using DeBruijn chains.
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Figure 3-13: Beta-substitution algorithm for programs represented using DeBruijn numbers.

BETA i E 2 El:

1. If E 1 is the DeBruijn number j:

(a) If j < i then j is a variable bound within El, but not by El. Return
DeBruijn number j.

(b) If j = i, then j is the variable bound by E1 and should be substituted
with E 2. Make a copy of E 2, E' by calling SHIFT with arguments i 0
and E 2 . Return E2'.

(c) Otherwise, j is a DeBruijn number representing a free-variable of El.
Return DeBruijn number j - 1.

2. If E 1 is not a DeBruijn number, then copy the children, c1 ... c, of E1 to
c • ... C

n
:

(a) If E1 is a lambda with child cl, copy cl by calling BETA i + 1 E cl.

(b) Otherwise, copy each child ci by recursively calling BETA i E2 ci.

3. Use c' ... c' to create a copy of El, E'. Return E'.

SHIFT i d E:

1. If i is zero, then the indices of E do not need to be shifted. Return E.

2. If i is not zero and E is DeBruijn number j, where j > d, then j must be
shifted. Return DeBruijn number j + d. Otherwise, return DeBruijn number
j.

3. If i is not zero and is not a DeBruijn number, then E and its sub-expressions
must be shifted. First shift the children, or sub-expressions, c1 ... c, of E to
Cl . .. C n :

(a) If E is a lambda with body cl, then shift cl by calling SHIFT i d + 1 cl

(b) Otherwise, copy each child ci by calling SHIFT i d ci.

4. Use c' . . . c: to create a copy of E, E'. Return E'.
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Figure 3-14: Reduction using DeBruijn numbers of expression ((A y. (A x. (y x))) z), where the
use of variable z is three lambdas away from its definition.

Figure 3-15: Beta-Substitution algorithm for programs represented using DeBruijn chains.

BETA i E2 x El:

1. If E1 is the variable x and i is 0, then return E 2.

2. If E 1 is a free-node pointing to node c and i is 0, then return c.

3. If E1 does not satisfy either of the above two conditions, then copy of the
children, cl . . . c, of E 1 to c . . . c' :

(a) If E 1 is a free-node with child cl, copy cl by calling BETA i - 1 E2 x c1.

(b) If E1 is a lambda with child cl , copy cl by recursively calling BETA i + 1
E2 X c1.

(c) Otherwise, copy each child ci by recursively calling BETA i E2 x ci.

4. Use cI . . .c' to create a copy of E1, E'. Return E'.
4. ns cI I..I

1)
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Figure 3-16: Reduction using DeBruijn chains of expression ((A y. (A

use of variable z is three lambdas away from its definition.
x.(y x))) z), where the



{ def g x = a
def f y =

{ def h z =
In (y h) }

In
(f g) }

{ def g x = a ;
def hl z = (g z)
In

(g hi) }
(y z) ;

Figure 3-17: Graph-reduction of a program, one represented using DeBruijn chains (a) and the
other represented using DeBruijn numbers (b). Notice that the node marked # appears twice in the
reduced DeBruijn number graph (a) and only once in the reduced DeBruijn chain graph.

Var



PF1  ::= Allocate
PF 2  ::= +I-I ... Equal?
Exp ::= Variable I Constant

PF, (Exp,...,Exp)
Free Exp
BoolCase(Exp, Lambda, Lambda)

Lambda ::= A (x, .. , x).Block
Block ::= {[Root;]* In Exp}
Root ::= Exp I Command
Command ::= Pstore(Exp, Exp, Exp)

Store_error I T,

Figure 3-18: Grammar for Kid Graph nodes.



Chapter 4

Data-structures for Performing

Reductions

The Id-in-Id optimizer optimizes programs by applying reduction rules to them. Practically, this

means that the optimizer changes, or transforms, program graphs. In a parallel optimizer, these

transformations are made in parallel, so the graphs that represent the programs must be amenable

to parallel transformation.

At its core, Id is a functional language and supports a wide variety of functional data-structures

such as lists, arrays, records, and union-types. In theory, any of these data-structures can be used to

represent program graphs. One advantage of using functional data-structures is their expressivity.

It is easy to reason about functional data-structures in parallel programs because, once created, they

can not change.

The disadvantage of using functional data-structures in programs is in memory management.

Because functional data-structures cannot be mutated, it is necessary to copy them in order to

achieve the effect of mutation. For instance, to change one element of functional array A, it is

necessary to create a new array A' that contains the new element and copies of all the other elements

of A. The implication is that in order to perform a single reduction, a reducer might have to copy

an entire program graph. This approach requires both time and memory space.

Along with compiler optimization and run-time garbage collection, careful programming can

often reduce these inefficiencies. Figure 4-1 shows a picture of a small graph. If one were to change

node A in graph G certain nodes in G could be taken directly from G to form the new graph G'.

These nodes include all of the descendents of A and all of the siblings of A. However, all the nodes

that are direct ancestors of A must be copied to form the new graph G'. Using this technique, a

reducer would have to check at every step in reduction to determine whether the descendants of a

node have changed and whether or not the node must be copied. Though this technique reduces the



amount of memory that is required to perform reductions, it increases the amount of time required

to perform them.

In light of this, it seems worthwhile to explore the possibility of using mutable graphs for program

transformation. The appeal of using mutable data-structures is that a change in a graph can be

performed directly, on the graph. As soon as such a mutation is made, the change is visible to the rest

of the graph. Mutation does not require copying. Mutation also seems worthwhile because, as Barth,

Nikhil, and Arvind have noted [20], the use of mutable data-structures in functional programming

can sometimes lead to programs that exhibit even more parallelism than programs that do not.

Is mlUi UV beUpIeU

th)

" these nodes can be shared J~

Figure 4-1: In order to change a node in a functional graph, only ancestors of the node have to be
copied to create the new graph. The graph in (a), above, needs to be changed at the node marked
#. The changed version of the graph in (b), shares nodes with (a) that are descendants and cousins
of the node marked #.

4.1 Indirection Nodes

Many sequential implementations of graph-reduction add special nodes to graphs, called indirection-

nodes, to aid in the transformation of mutable graphs. The idea of using indirection-nodes was

introduced by Wadsworth and a complete description of indirection-nodes is given in [18]. Peyton-

Jones illustrates the importance of indirection-nodes by posing the following question: What does

it, mean, in terms of the mutation of pointers and memory locations, to perform a single reduction

A&- __ --. j

·̀



from x to y in a graph? Peyton-Jones cites two possibilities, illustrated in Figure 4-2 and Figure 4-3:

1. We could construct a copy of node y at location x. All previous references to a would now see a

node that is identical to y, so the desired effect would be achieved. This kind of transformation

is shown in Figure 4-2.

2. We could construct a special indirection-node at the memory location marked by x. The

indirection node would contain a pointer to the memory location for y. All previous references

to x would now see the indirection node. By dereferencing the indirection-nodes, the expression

y could be obtained. This kind of transformation is shown in Figure 4-3. The indirection node

is represented with the symbol V.

The problem with the first solution is that, in the example given in Figure 4-2, a single application

of f to 6 becomes two applications. Duplicating applications decreases program efficiency. In

addition, if the expression (f 6) contains side-effects duplicating applications may lead to incorrect

program execution. The indirection-node solution does not duplicate expressions. Indirection-nodes

do take time to dereference, however. Peyton-Jones suggests that this weakness can be overcome

by short-circuiting indirection-nodes after they have been dereferenced. Figure 4-4 shows how a

graph containing multiple indirection-nodes can be short-circuited. Although this approach works

satisfactorily in a sequential environment, one would have to solve additional problems before using

indirection nodes in a parallel environment.

(a) (b)

Figure 4-2: Beta-reduction of the program ((A z.z) y), where y = (f 6), using copying. As a

result of copying, a single application of f to 6 in (a) becomes two applications in (b). This is

problematic if y is referred to by other expressions.

4.2 Unions of Disjoint-Sets

Another approach is to look at the problem at a higher level. The purpose of reduction is to equate

one expression with another. When we reduce the expression (+ 1 2) to the expression 3, we

perform the reduction because we know that the expressions are equivalent, or interchangeable. More
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Figure 4-3: Beta-reduction using indirection-nodes. As a result of indirection nodes, all references
to a in (b) must be dereferences to obtain the expression (f 6).

generally, when we reduce expression X to expression Y, we are saying that we believe expression

X is equivalent to expression Y and furthermore that everything that is currently equivalent to X

or will ever be equivalent to X is also equivalent to Y. We are also saying that everything that is

currently equivalent to Y or ever will be equivalent to Y is equivalent to X and all its equivalents.

The advantage of looking at reduction in this way is that it does not focus on single, individual steps

but on the overall effect that reduction tries to achieve.

Another advantage of looking at reduction in this way is that it highlights the similarity between

performing reductions on expressions and performing unifications on disjoint-sets. A disjoint-set is

a collection of objects. Disjoint-sets can be joined, or unified, together and queried to see whether

two objects are members of the same set. Disjoint-sets have proved to be a useful tool in a wide

variety of programming applications, and researchers in programming algorithms have long been

interested in their efficient implementation. Solutions for finding the connected components of a

graph, for instance, make heavy use of disjoint-sets. In these solutions, each connected component

is represented by a disjoint-set. When edges connecting two components are discovered, the sets

corresponding to the components are unified.

Sophisticated data-structures for representing disjoint-sets and algorithms for performing opera-

tions on them have been invented to fulfill this need. It would be nice if these same data-structures

and algorithms could be used for reducing graphs. In a typical disjoint-set data-structure, each set

is identified by some representative, which is a member of the set. The member of the set that gets

to be the representative may be chosen by some prespecified rule, such as the smallest member of

the set. Two operations can be used to manipulate disjoint-set data-structures, REPRESENTATIVE

and UNION. Given an element of a set, the operation REPRESENTATIVE finds the representative

of the set that contains that element. REPRESENTATIVE can therefore be used to tell whether two

items belong to the same set. Given two elements of two sets, the UNION operation unifies the sets

to which the elements belong. It follows that the representative of two sets that have been unified

is the same. A summary of disjoint-set data-structures and algorithms for implementing them are
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Figure 4-4: Multiple beta-reductions can lead to chains of indirection-nodes. The graph in (d) figure
shows the use of short-circuiting to shorten the length of indirection-node chains in (c).

given in [6].

One approach to representing disjoint-sets is to use disjoint-forests. In a disjoint-forest represen-

tation each member of a set contains one pointer. The pointer points to another member of the set,

called its parent. The member of a set that is also the representative of the set is its own parent.

Figure 4-5 (a) shows a picture of two disjoint sets, where c and g are the representatives of the two

sets. Each set is called a tree. The algorithm for performing a REPRESENTATIVE and UNION opera-

tion on disjoint-sets represented as disjoint-forests is given in 4-7. A UNION operation on two trees

changes the representative of one set to the other by altering the parent node of the representative as

in Figure 4-5 (b). The representative of a member of a set can be found by chasing parent pointers.

A more efficient way of implementing the REPRESENTATIVE operation is to simultaneously chase

parent pointers and rewire the parent pointers directly to the representative. This method is called

path-compression and the revised algorithm for REPRESENTATIVE using path-compression is given

in Figure 4-8. An example illustrating path-compression is given in Figure 4-6.

It is possible to use disjoint-forests to implement graph-reduction. In this approach, each node

~
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Figure 4-5: Two disjoint-set forests (a) and their union (b).

in the graph is also a member of a set. Before reductions begin, no unifications have been performed

so every node is the only element in its set. To reduce node a to node b, perform a UNION on a and

b. Any further queries about "What have a and b been reduced to?" can be answered by finding

out to which set a and b belong using the REPRESENTATIVE operation. In order for this scheme to

work correctly, the: UNION operation can not choose the representative of the unified set arbitrarily,

but in a left-to-right order. For instance, if we reduce variable a with the integer 1 by performing a

UNION operation and then ask for the representative of 1, we expect the answer to be 1, not a.

The top left graph in Figure 4-9 is a program graph where every expression of the graph is also

an element of its own disjoint-set. There are two different kinds of pointers depicted in this graph.

The pointers without arrow-heads represent dependencies within the program graph. The pointers

with arrow-heads represent dependencies within each set. The following two graphs illustrate beta-

reductions of this graph using the disjoint-set UNION operation. The REPRESENTATIVE operation

can be used to find out the tag of node a after the reduction/unification. The final figure in Figure 4-9

shows the effect of path-compression on the reduced graph.

4.3 Comparing Indirection-nodes and Disjoint-Set Unions

The similarity between Figure 4-4 and Figure 4-9 is undeniable. If we replaced indirection nodes with

disjoint-set forest members in Figure 4-4, or replaced disjoint-set forest members with indirection

nodes in Figure 4-9, the figures would be identical. It is, in fact, possible to perform disjoint-set

union reductions using an indirection-node representation. By convention, a member of a set would

be any node that has the tag V. If the node had a tag other than V, then the node would be the

representative of its set. The representative of any member of a set could be found by chasing the

1-_>
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Figure 4-6: The path from member f to its representative c in a set (a) can be compressed (b).

Figure 4-7: The operations UNION and REPRESENTATIVE for disjoint-set forests.

children of V nodes. Figure 4-10 depicts the UNION and REPRESENTATIVE algorithms modified to

use these conventions.

Why would anyone choose to use the disjoint-union approach over the original indirection-node

approach? At first glance, the differences seem mostly stylistic. Indirection-nodes blur the line

between program graphs and the data-structures that are used to represent program graphs. As a

result, it is common a common mistake to assume that indirection nodes have a place in language

grammars and reduction rules, even though they are semantically meaningless. The disjoint-set

forest approach hides indirection-nodes under a layer of data-abstraction.

It is tempting to say that, apart from the stylistic difference, the approaches are otherwise the

same. There is an important algorithmic difference between the two, however, that surfaces when we

ask the question, What happens in each approach when we reduce a to b, when the representative

of b is not known? An example of where this situation may arise is in the reduction of an expression

(+ E 0) to the expression E, using the identity rule for addition. At the time of the reduction the

1:

UNION x y:

1. Find the representative of x and y by chasing parent pointers.

2. Set the parent of x to be y's parent. Some versions of UNION use a test to
decide whether x's parent or y's parent should become the representative of
the unified set.

REPRESENTATIVE x: Chase parent pointers to find x's representative and return
this representative.



Figure 4-8: The modified REPRESENTATIVE operation, using path-compression, for disjoint-set
forests.

representative of a, the node with the addition tag, must be known otherwise it would not have been

possible to determine that a could be reduced. The representative of b, or E need not be known

at the time of the reduction. Figure 4-11 (a) provides a picture of such an expression, represented

as a program graph using indirection-nodes. Figure 4-11 (b) shows the result of applying the pure

indirection-node reduction algorithm to this graph. Figure 4-11 (c) shows the result of applying

the disjoint-forest UNION reduction algorithm to this graph. The difference between the approaches

becomes clear. The indirection-node approach alters the representative a so that it points to b. The

disjoint-set union approach alters the representative a so that it points to b's representative.

The disjoint-set union algorithm may seem inferior to the indirection-node algorithm because

it requires chasing b's indirection-node chain unnecessarily. Consider the case where the operation

directly succeeding the UNION a b is REPRESENTATIVE a. The length of a's chain in Figure 4-11

(c) is shorter than the length of a's chain in (b). Performing REPRESENTATIVE on a in (c) requires

fewer steps than performing REPRESENTATIVE on a in (b). The total number of steps required by

a UNION operation followed by a REPRESENTATIVE operation is the same for both algorithms.

The algorithm that a specific application should use therefore depends on the mix of UNION

and REPRESENTATIVE operations expected for that application. The disjoint-set union reduction

algorithm is optimized for the case where an even mixture of UNION and REPRESENTATIVE oper-

ations on sets is expected to occur. In this case, the pure indirection-node approach to reductions

would not fare as well as the disjoint-set union approach. In the case where many more UNION than

REPRESENTATIVE operations are expected to occur, than the indirection-node approach is superior

to the disjoint-set union approach. Program optimization involves many more REPRESENTATIVE

than UNION operations. In this case, either either algorithm would be sufficient.

This chapter examined several data-structures for program transformations. It briefly examined

functional data-structures, which were deemed too inefficient for use in a compiler. It also examined

the problem of using mutable data-structures to represent programs and outlined two solutions,

indirection-nodes and disjoint-set unions. Though these solutions were developed entirely indepen-

dently, in the end, their differences are small. For the Id-in-Id compiler project, the most important

difference between approaching reductions using indirection-nodes and using disjoint-set forests has

REPRESENTATIVE 2:

1. If x is a representative, then return z.

2. If x is a member with parent-pointer pointing to y, set x's parent to be
REPRESENTATIVE y, rather than y.
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Figure 4-9: Using disjoint-sets to implement beta-reduction.

to do with parallelism. The task of implementing a parallel, disjoint-set forest data-structure is

less intimidating than the task of implementing parallel, indirection-node reduction. In fact, before

the Id-in-Id compiler project began, Barth had already accomplished a parallel implementation of

disjoint-set forests in Id using m-structures in [5]. The Id-in-Id compiler therefore uses Barth's

disjoint-set forests to perform reductions on KId graphs.
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Figure 4-10: Revised UNION and REPRESENTATIVE operations, using V nodes to represent members
of sets.

(a) (D) a (C) a

TT
cV cv
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Figure 4-11: A program graph (a) representing the expression (+ x 0) that can be reduced using
the algebraic-identity optimization rule. The figures to the right depict the reduction of this program
using the pure indirection-node algorithm for reduction (b) and the disjoint-set union approach to
reduction (c).

UNION x y:

1. Find the representative of x and y by calling REPRESENTATIVE.

2. Change x's tag to be V.

3. Set the V's child-pointer to point to y's representative.

REPRESENTATIVE x:

1. If x does not have a V tag, then return x.

2. If x has tag V with child-pointer to node y, set x's child-pointer to be REP-
RESENTATIVE y rather than y.

I
h ( ) b ()



Chapter 5

Keeping Track of Reductions

Parallel graph reduction is team work. A parallel machine carrying out graph reductions is like a

human team whose members are working separately on interrelated parts of a project. The biggest

challenge for the team manager would be to coordinate the work of the members. The biggest

challenge in parallel graph reduction is coordinating the separate reductions.

The challenge of coordinating tasks in parallel graph-reduction is the subject of Section 5.1. Sec-

tion 5.2 describes the Id-in-Id optimizer's solution to this problem, called memobooks. Memobooks

are a general purpose utility for recording information about and coordinating operations on graphs.

Examples illustrating the flexibility of memobooks are given in Section 5.3.

5.1 Simple Graphs Tied Into Complicated Knots

Certain operations on graphs require careful coordination. Consider, for example, the following

problem. We are given a directed, acyclic program graph. Each node in the graph contains pointers

to its children, and the nodes in the graph are not stored in a central-location. The graph data-

structure is functional and must be copied in order to reflect changes. We are to perform two

complete developments on the program graph. Recall that during a single development, we can only

reduce the nodes that were reduceable before the development began.

What would happen if we did not use auxiliary mechanisms to keep track of the development?

When we tried to copy a node a to a new node a', we would need to create copies of a's children,

cl ... cj. We could create these copies, of course, but we would have no way to record which nodes

we copied. When we tried to copy another node b that shared a child ci with a, we would have no

way of retrieving the copy of ci that we made for a'. We would have no choice but to make another

copy of ci. Though b and a shared a common child, b' and a' would not. Without any auxiliary

mechanisms, even single developments could not be performed correctly.

Now compare the problem of performing developments on functional graphs to the problem of



performing them on mutable graphs. With functional graphs, the fact that the entire graph must be

copied enforces some order on a development. Every node in the functional graph must be copied,

and no node can be copied before its children are copied. This dependence that orders operations

on a functional graph does not order operations on mutable graphs. The mutation of a parent node

does not require the mutation of its child first. The development of mutable graphs contains all of

the pitfalls of functional graph development, plus others:

1. It may be that reduction of one node a depends on the reduction of another, b. Without proper

coordination, there is no way to detect when the reduction of b is complete. a may therefore

examine b before, during, or after its mutation.

2. The reduction of two nodes a and b may be inter-dependent. If we use locks to ensure sequenc-

ing of reductions, a and b may end up waiting for each other indefinitely.

3. Two reductions may simultaneously attempt to mutate a memory location. This could result in

garbage being written to the memory location or a double-write error. Even if only one of the

mutations succeeds, the process that attempted the unsuccessful mutation must be notified

that its mutation was unsuccessful. Otherwise this process will believe that the mutated

memory location contains one thing, when in fact it contains another.

With multiple, parallel developments, matters are even worse. With functional graphs, a develop-

ment cannot proceed until a prior development has completed its copy of a graph, but with mutable

graphs, all developments may proceed in parallel on the same graph. There is no way to prevent one

development from overtaking another. A development has no way of knowing whether the informa-

tion that is examining is its own result or the results of another development. The development also

has no way of knowing whether, as it does make changes to the graph, it is destroying information

created by another development. Performing parallel, developments on a mutable graph without

careful coordination is a recipe for disaster. All of these problems are summarized pictorially in

Figure 5-1.

5.2 Memobooks

If you were to send a team of workers out to simultaneously solve a set of interrelated sub-problems,

you might coordinate their work by setting up a memo board on which the workers could post and

read messages about the progress of their work. This same idea can be extended to parallel graph

reductions. If you placed a memo board on every node on a graph, then parallel reductions could

use the memo board to resolve issues such as:

* Has anyone tried to reduce this node yet?



* If someone has tried to reduce this node, is the work finished?

* What has this node been reduced to?

This model works very well for single developments of a graph, but as Barth, Nikhil, and Arvind

have shown, it breaks down with multiple developments [20]. When several developments try to

use the memo board for different purposes, the developments might get their memos mixed up, and

the memo board might soon become cluttered with garbage memos. The solution is to separate the

memos from the nodes. By placing memos in the hands of the development, the optimizer can keep a

single development from confusing its own memos with those of other developments. A development

can also throw away its memos once it has finished reducing a graph. Memobooks are the complete

realization of this solution.

Figure 5-2 displays an abstract picture of a memobook. A memobook is a table, and each entry

in the table is a memo. Memos contain three fields for storing information: a filled? flag, an object,

and a result. The filled? flag is a boolean value that is changed when a memo has been filled.

When a memo is created, the filled? flag is always false. Because the filled? flag has M-structure

semantics, it is possible to use this flag as an exclusive lock on the memo. The object field of a

memo is functional and indicates the object to which a given memo corresponds. Finally, the result

field is available to users for storing values. The result field has I-structure semantics. When the

memo is created, the result field is empty, and it can be filled only once. Attempts to read the value

stored in the result field return a value only when the field has been filled. Complete descriptions

of I-structures and M-structures are given in [3] and [20].

When a memobook is first created using the function MK.MEMOBOOK, it does not contain

any memos. Two functions add information to and request information from memobooks: PRO-

DUCE-MEMO and READ_MEMO. PRODUCE.MEMO takes a memobook, a function, and an object as

its arguments. The job of PRODUCE-MEMO is to use the memobook to ensure that the function,

called a producing-function, is only called with the given object as its argument. PRODUCEMEMO

does this by looking up the object in the memobook and finding the memo corresponding to that

object. If a memo does not yet exist for that object, PRODUCE-MEMO creates one and inserts it into

the table. PRODUCEMEMO then checks the memo to see whether it has been filled. If not, PRO-

DUCEMEMO marks the memo as filled. It fills the result field of the memo by calling the producing

function with the object as its argument. In any case, PRODUCE-MEMO reads the value of the result

field and returns this value.

READMEMO takes a memobook and an object as its arguments. The job of READ_MEMO is to

find the memo for the object and read the value from the result field of the memo. If a memo does

not yet exist for that object, READ_MEMO creates one and inserts it into the table. It then reads

the value in the result field and returns that value, regardless of whether the filled? field of the

memo is true or false. READMEMO can read a memo that has not yet been filled because of the



I-structure semantics of the memo's result field. Figure 5-3 gives the algorithms for these operations

and Figure 5-2 depicts some typical operations on a memobook.

The key to making these algorithms work in a parallel environment is to ensure atomicity of two

actions. The first action is the insertion of memos into a table. Only one memo should appear in the

table for any given object. If the insertion of memos in the table is not atomic, then independent

processes may simultaneously discover that no memo exists for an object, and they may insert

multiple memos for that object. Atomicity can be ensured by locking the elements of the table

during lookups. The second place where atomicity is important is in the production of results for

memos. Memobooks must also ensure that only one producing-function is ever called for any given

object. Atomic production of values is ensured by using the filled? field of a memo as a lock. In

order to check whether a memo has been filled, PRODUCE-MEMO has to take hold of this lock. Once

it has the lock, it is certain that the value of the filled? field is the current value, and cannot be

changed. If the filled? field indicates that the memo is not filled, PRODUCE-MEMO changes the

value of the filled? field and replaces the lock. An Id implementation of memobooks is given in

Appendix A.

It is important to note that memobooks do not provide more atomicity than is necessary. Notice

what would happen, for example, if we used a global lock to ensure that only one producer examined

the memobook at a time? If we called PRODUCE..MEMO with function f, we would lock the entire

table and prevent anyone else from accessing the memobook until f had completed. The use of a

global lock is appealing because it is a simple way to guarantee that double-writes never occur. On

the other hand, use of a global lock sequentializes all accesses to the table. Furthermore, if function

f contained a call to PRODUCEMEMO, f would end up waiting forever to gain access to the lock.

5.3 Memobooks in Parallel Graph Algorithms

Memobooks were specifically designed so that they do not interfere with the parallelism of the

applications that use them. Specifically, they were designed so that producing functions could be

composed with each other the way that regular functions can be composed. This is convenient for

formulating graph programs recursively. Memobooks were also designed so that consumers could

consume memos even before values had been produced for them. The following examples show how

memobooks can be used in a variety of parallel applications.

5.3.1 Copying Functional Graphs

First consider the problem of copying a graph like the ones that have been presented before. A

recursive algorithm for copying a node in the graph would be to first construct copies of the nodes

children, and then use these copies to make a copy of the node itself. This algorithm works perfectly



well for tree data-structures, where two parents can not share a single child. In order to make this

algorithm work for graphs, it is important to ensure that that all parent nodes who share the same

child node in the original graph point to the same copy of the child node in the new graph.

Figure 5-4 illustrates two functions for copying trees and graphs, COPYTREE and COPYGRAPH.

Both functions copy the elements of their data-structures recursively. The main difference between

them is that COPY-GRAPH is mutually recursive with another function CHECKAND COPY, rather

than with itself. The job of CHECK_AND_COPY is to memoize COPY_GRAPH using memobooks. Thus

COPY_GRAPH will only be called for any given node once. Though this is a relatively simple example,

it raises several important points. First, the use of memobooks does not interfere with the inherent

parallelism of the applications. In both COPY_GRAPH and COPY-TREE, sibling nodes are copied

in parallel and child-nodes are copied before their parents. Second, memobooks are easy to use.

Compare the code for COPY_TREE with that for COPY_GRAPH. Without the use of the memobook,

the graph-copier and the tree-copier are almost identical. The memobook in the graph-copy merely

ensures that repetitive recursions do not occur. It is often possible to develop a program for graph

manipulation from an analogous program for tree manipulation. To make the tree-manipulation

program apply to a graph, use a memobook to prevent repetitive recursions.

5.3.2 Constant-folding Cyclic Graphs

An interesting question to ask is, what happens if we use COPYGRAPH to copy cyclic graphs like

those given in Figure 5-5 (a) and (b)? Assuming that lenient-order reduction is used to execute the

COPYGRAPH algorithm, COPYGRAPH would be able to copy both graphs in Figure 5-5 without

deadlocking. This may seem surprising, because COPYGRAPH memos r would end up calling

COPYGRAPH memos r. Wouldn't PRODUCE.MEMO halt on the recursive invocation of the copy

procedure and wait for itself indefinitely? Because of lenient-order reduction, COPY_GRAPH does

not have to complete all of its computations before returning a value to its caller. This means that

the first invocation of COPY-GRAPH memos r can return a value to PRODUCE-MEMO as soon as it

can allocate a pointer for the copy of node r. The second invocation would retrieve this pointer from

the memobook and the copy would proceed normally.

Now consider the problem of constant-folding a graph. To constant-fold a graph means to

replace arithmetic expressions with their equivalent constants, such as reducing (2 * 3) to 6. The

algorithm for performing constant-folding using memobooks is given in Figure 5-6. Though the

algorithm differs little from the algorithm for copying graphs, CONSTANTFOLD would not be able

to constant-fold the graphs given in Figure 5-5 (a) and (b) without deadlocking. The reason that

CONSTANTFOLD deadlocks is because CONSTANTFOLD can not return its new node until it has

checked the contents of its children's new nodes. Unlike COPY_GRAPH, CONSTANTFOLD must first

finish executing its recursive calls before it can return a value.



It would be nice if CONSTANT.FOLD could detect cycles in graphs and abort any attempt to fold

them, rather than hanging forever. One approach to cycle detection used in sequential programming

is to keep a list of all nodes traversed along a path, and abort the traversal if a node is ever

encountered twice. A modified algorithm for constant-folding using paths to detect cycles is given in

Figure 5-7. The modified version of CONSTANTFOLD does not deadlock on the graph in Figure 5-5

(a), but it still deadlocks on the graph given in (b). To see why, imagine that CONSTANT-FOLD starts

recursively folding the graph at the node marked v. It spawns two separate recursions simultaneously,

one that traverses w and one that traverses x. One of these recursions then begins to fold node y,

the other node z. So far, none of the paths indicate that a cycle has been traversed. At this point,

CONSTANT_FOLD deadlocks, as the two paths of recursion wait indefinitely for the other to finish

folding w and x.

Unfortunately, many other useful optimizations other than constant-folding exhibit this same

behavior when performed on cyclic graphs. The problem of designing a parallel reduction system

for cyclic graphs is a difficult one and is beyond the scope of this thesis. One possible solution, to

be explored in future work, is to perform cycle-detection as a separate pass before optimizations.

5.3.3 Summing the Values in a Mutable Graph

Now consider a problem that involves the summation of values on a graph. The problem is more

complex than copying functional graphs. Suppose that we are given a graph that has been marked

with integers. The integer value on any given node can be changed, or mutated. We wish to set the

integer field of each node on the graph to be the sum of all the integers of its sub-graphs. Figure 5-8

gives the algorithm for performing the summation using memobooks. In this algorithm, the summing

function does not return its result until the mutation is complete. This forces the consumers of a

node's sum to wait until the mutation is complete before reading the sum.

This algorithm works well with a single summation on the graph. Now consider the problem of

performing multiple summations on a graph. If we use this algorithm to perform multiple summa-

tions in parallel, we will encounter the same problems that arose with multiple developments. There

will be no way to keep multiple summations from overtaking each other. It is possible, however, to

use memobooks to create a data-dependence between two summations. The second summation can

then check on the progress of the first in the memobook, and it can use the information it finds to

throttle its own progress and ensure that it never overtakes the first summation. With memobooks,

it is often possible to pipeline two operations on a graph. The algorithm for performing a pipelined

summation using memobooks is also given in Figure 5-8.

Memobooks are a very useful, flexible abstraction. They can be used in applications where the

dependency of operations is very well structured, such as copying a functional graph, or where they

are not, such as multiple summations of mutable graphs. The next chapter explores the difficulties



of designing parallel reduction strategies for optimization. Memobooks provide enough flexibility to

fulfill the complicated synchronization requirements of these strategies.
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Figure 5-3: The operations PRODUCE..MEMO and READ_MEMO.

Figure 5-4: The COPY-TREE and COPY_GRAPH operations for copying trees and graphs.
COPYGRAPH uses memobooks to avoid copying a node more than once.

MK-MEMOBOOK: Creates an empty memobook containing no memos.
PRODUCE._MEMO memobook producing_function object:

1. Find the memo for object in memobook. If no memo has ever been created,
create one and insert it into the table so that subsequent lookups find this
memo. It is vitally important that this operation be atomic, otherwise multi-
ple memos for a single object will be created.

2. Check the memo to see whether anyone has produced a result for the object
before:

(a) If not, change the memo to say that an object is being produced for the
memo. This must also be atomic. Otherwise, multiple producers may
succeed in producing an object. Fill in the result field of that memo by
calling producingfunction on object.

(b) Otherwise, return the item that is in the result field of the memo. Note
that this can be done even before the result field contains a value.

READ_MEMO memobook object:

1. Find the memo for object in memobook. If no memo has ever been created,
create one and insert it into the table so that subsequent lookups find this
memo. It is vitally important that this operation be atomic. Otherwise,
multiple memos for a single object will be created.

2. Return the item that is in the result field of the memo. Note that this can be
done even before the result field contains a value, and note also that it does
not matter whether or not a producing function has ever been called on that
memo.

COPY_TREE n:

1. Make a copy of n's children, cl . . . c, by recursively calling COPYGRAPH.

2. Use the copy of n's children to create a copy of n. Return this copy.

COPY_GRAPH memos n:

1. Make a copy of each child, ci, of n by calling CHECKANDCOPY GRAPH
memos ci.

2. Use the copy of n's children to create a copy of n. Return this copy.

CHECKANDCOPY memos n: Use PRODUCEJIMEMO and memos to memoize the
function COPYGRAPH on argument n. Return the answer that PRODUCE-MEMO
returns.
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Figure 5-5: Two cyclic graphs.

2. If n's has tag p, where p is a primitive binary operator, and c' and c' are
constants, apply p to the constants. Return the constant that results.

3. Otherwise, use the copy of n's children to create a copy of n. Return this
copy.

CHECK ANDCONSTANT-FOLD memos n: Use PRODUCEMEMO and memos to mem-
oize the function CONSTANT_FOLD on argument n. Return the answer that PRO-
DUCE.MEMO returns.

Figure 5-6: The CONSTANT-FOLD operation for constant-folding graphs.

CONSTANT-FOLD memos n:

ci, of n by calling CHECK_AND_CONSTANT FOLD1. Constant fold each child,
memos ci.



CONSTANT_FOLD memos 1 n:

1. Create a new path list, 1', by appending n to 1.

2. Constant fold each child, ci, of n by calling CHECKAND_CONSTANT_FOLD

memos 1' ci.

3. If n's has tag p, where p is a primitive binary operator, and c' and c' are
constants, apply p to the constants. Return the constant that results.

4. Otherwise, use the copy of n's children to create a copy of n. Return this
copy.

CHECK AND CONSTANT -FOLD memos I n:

1. Check to see whether n is a member of list 1. If n is a member, we have hit a
cycle. Abort by returning n immediately.

2. Otherwise, use PRODUCEMEMO and memos to memoize the function CON-
STANTFOLD on arguments I and n. Return the answer that PRODUCE-MEMO
returns.

Figure 5-7: A modified CONSTANTFOLD operation that uses paths to detect cycles.



SUMGRAPH memos n:

1. If n is a leaf node, return n's value, v, without mutating n.

2. If n is not a leaf node, for each child ci of n, compute the sum, si, of that
child by calling CHECK-ANDSUM memos ci.

3. Sum all si's with v to get s, the sum for n.

4. Mutate n's value to be s. Only after this mutation has completed, return s.

CHECK_AND_SUM memos n: Use PRODUCE-MEMO and memos to memoize the func-
tion SUM-GRAPH on argument n. Return the answer that PRODUCE-MEMO returns.

PIPELINESUM GRAPH memos1 memos2 n:

1. If n is a leaf node, return n's value without mutating n.

2. If n is not a leaf node, for each child ci of n, compute the sum, si, of that
child by calling CHECK_ANDPIPELINE_SUM memosI memos2 ci.

3. Find the current value of n, v, by calling READ-MEMO memos1 n.

4. Sum all si's with v to get s, the sum for n.

5. Mutate n's value to be s. Only after this mutation has completed, return s.

CHECK_AND_PIPELINE SUM memosl memos2 n: Use PRODUCE.MEMO and memos2

to memoize the function PIPELINE SUMGRAPH on argument n. Return the answer
that PRODUCEMEMO returns.

Figure 5-8: Two functions, SUMGRAPH and PIPELINE_SUM GRAPH, for summing values stored on

a graph.



Chapter 6

Optimization Strategies

The goal of all optimizers, sequential or parallel, is to optimize programs by eliminating all redundant

operations. Optimizers never achieve this ideal, however. Instead, they use internal standards to

determine when a program has been improved enough to be passed from one stage of compilation

to the next. In a sense, then, compiler designers must build a definition of "optimal" into their

optimizers. This chapter discusses the difficult issues involved in defining an optimal program state

and deciding how much optimization is enough. The chapter also discusses strategies used to achieve

optimization and describes the specific strategy used in the Id-in-Id optimizer

6.1 Strategies for Optimizing with a Single Reduction Rule

Although the Id-in-Id optimizer uses a set of rules in carrying out optimizations, it is instructive

to begin our consideration of optimization strategies with a strategy that uses only one reduction

rule. Because of its long history in functional programming, the beta-reduction rule is the logical

rule with which to start. Modern functional compilers often use this rule in optimizing programs,

and it is the basis of the compiler optimization technique called compile-time interpretation, or

partial evaluation. In this technique, the compiler converts input programs to graphs and feeds

them to an interpreter. This interpreter, in turn, interprets the program as much as possible using

the beta-reduction rule. When no further interpretation of the program is possible, the next phase

of compilation proceeds.

Is it possible to improve on this approach to optimization without adding more optimizing

reduction rules to the system? Figure 6-1 (a) shows a Kid program, before and after interpretation

by a beta-reduction interpreter. Note that the interpreter does not perform reductions within the

top-level definition for f because f is not applied to any arguments. A quick look shows that

interpretation within the body of f could yield a reduction of function calls within f. One way to

improve this system therefore would be to allow interpretation within a function definition, even if



the function is not applied. Figure 6-1 (b) shows another optimization of the same Kid program,

this one produced by an interpreter that interprets within unapplied function definitions.

This approach seems to be an improvement. Why not continue interpreting until all the re-

ductions in the program have been performed? Figure 6-2 shows a Kid program, before and after

interpretation by an interpreter that uses this approach. Note, however, that this after-picture

could not be produced by an actual machine because a real interpreter would go on interpreting this

program forever.

Def f b = Def f b =

(a) b * (g 1 2) + (g 2 3)) ; b * ((g 1 2) + (g 2 3)) ;

def g a b = (a + b) ; def g a b = (a + b) ;

Def f b = Def f b =

(b) b * (g (g 1 2) (g 2 3)) ; b * ((1 + 2) + (2 + 3)) ;

def g a b = (a + b) ; def g a b = (a + b) ;

Figure 6-1: Optimization of Kid programs using an interpreter. A real interpreter would not optimize
the function f in (a) because it has not been applied to any arguments. However, it would be useful
to interpret expressions in f, as in (b).

Def f n =

if (n == 1) then 1
Def f n = else (n +

if (n == 1) then 1 - if ((n-1) == 1) then 1
else (n + (f (n-1))) ; else ((n-1) +

if (((n-i)-1) == 1) then 1

else .....

Figure 6-2: An example of too much compile-time interpretation.

Conventional compilers that do not use interpretation employ a different strategy for optimiz-

ing programs. The approach used in these compilers is often more practical than reduction-based

interpretation. These optimizers usually repeat the cycle of optimizations a fixed number of times,

and programs therefore usually have no influence on the number of optimization cycles. In such

compilers, the definition of an optimal program is simply "a program that has iterated over n times

by the optimizer," where n is a fixed number. Compiler designers usually select n through trial and

error.

In addition to deciding on a termination strategy, a compiler designer must make other deci-

sions in designing a reduction strategy. Efficiency is one major concern, and correctness is crucial.

For instance, using a normal-order reduction strategy to reduce a program that executes using

applicative-order at run-time would be only partially correct. That is because a normal-order reduc-



tion strategy might remove infinite loops from programs that would otherwise execute at run-time

using an applicative-order reduction strategy. Even with a single reduction rule, the number of

factors and choices to consider when choosing an optimizing reduction strategy is bewildering.

6.2 Adding Reduction Rules

When multiple reduction rules are used to reduce programs, choosing a reduction-strategy for op-

timizations becomes even more difficult. The first problem with reduction using multiple rules is

normalization. A reduction strategy is said to be normalizing if it guarantees reduction to normal

form of all programs that have a normal form. When multiple reduction rules are used to optimize

programs, however, a normal form program is a program to which none of the entire set of reduc-

tion rules applies. Such programs may not exist because one reduction rule may always produce

programs that are the redex of another reduction rule. The use of multiple reduction rules forces us

to rethink conventional notions of terminating reductions.

The second problem with multiple reduction rules is that at a given step in reduction, a single

expression may be the redex of several different rules. Is the order in which the rules are applied

important? One needs only to look at conventional compiling models to see that the answer must

be yes. Conventional compiling models usually optimize programs in phases. The entire program is

first optimized using one particular optimization; then it is optimized using another and another and

so on. Researchers have tried to determine which optimization strategies are most effective and how

optimizations should be done within and between phases for each compiler. One conclusion that can

be drawn from this research is that the ordering of different optimizations has a significant impact

on the effectiveness of the optimizer. An optimizing reduction strategy should therefore specify an

ordering on the rules themselves, not only on the redexes available in the program.

When program reduction is used in optimization, the resulting model is a cross between classical

reduction and conventional compilation. Clearly, the two camps differ on the subject of reduction

strategies, and there seems little hope for compromise. If a compiler limits reductions to a fixed

number of iterations, it would be impossible for theorists to prove anything about the optimality of

the compiler's output programs. Surely this approach is more practical than continuing reductions

until some provably optimal program is produced, however. Taking other factors into account, such

as correctness, parallelism, interference of multiple rules, and inter-optimization strategies, confuses

matters even more. The problem of choosing a reduction strategy for the Id-in-Id compiler is more

difficult than just choosing an "off-the-shelf" strategy.



6.3 Lenient Reduction in the Id-in-Id Optimizer

The strategy used by the Id-in-Id optimizer to reduce programs when multiple reductions are present

is modeled on the strategy used in interpretation of Id programs. In almost all cases, the strategy

is lenient. This strategy gives some assurance of normalization, although the guarantee is not

absolute. A lenient strategy also allows reductions to be performed in parallel. Most important, a

lenient strategy allows newly created redexes to be considered during a single reduction. This makes

it a very efficient strategy. More reductions are performed in a single pass than are possible with

strategies that put newly created redexes off-limit.

Let a single pass of optimization be defined to be a single lenient-order reduction of the entire

program. A single lenient-order reduction involves the recursive, parallel reduction of all the available

redexes in the program, plus new redexes that occur during reduction. Because of the interference of

rules, however, it is also possible for the program to be in normal-form with respect to only certain

rules at the end of a single pass. Still, almost all of the available optimizations can be achieved by a

second single pass. Two single passes are enough to reduce the majority of optimizations available

in the program. The number of reductions performed in a single pass of the Id-in-Id optimizer is

then dependent upon the program itself, just as in classic program reduction. The Id-in-Id optimizer

performs a fixed number of single passes, however, as in a conventional optimization.

When we started designing the Id-in-Id optimizer, all we had to work with was an abstract

language for describing Id programs, Kid, and a set of reduction rules for optimizing them. We

then developed a concrete representation for Kid programs as graphs, a method for performing

single reductions on these graphs, a method for coordinating reductions, and a reduction strategy

for optimizations. Now it is time to pull all of these elements together to present a general algorithm

for optimizations.

Performing a Single Pass. The general algorithm for performing a single pass of optimizations

in the Id-in-Id compiler is shown in Figure 6-3. The single-pass engine is made up of two functions,

REDUCE and CHECK-AND-REDUCE. REDUCE is the function that actually performs optimizations

on the graph. CHECK_ANDREDUCE uses a memobook to ensure that REDUCE is only called once

for every node on the graph.

The function REDUCE takes four arguments, a continuation function, an optimization environ-

ment, a memobook that memoizes the reductions, and the Kid Graph expression to be reduced. If

the input expression is an expression other than a free-node or a lambda-node, REDUCE reduces

the sub-expression of the input expression using CHECK_AND..REDUCE. If the input expression is a

free-node, then the free-node's child falls in a different scope from the scope of the free-node itself.

Instead of reducing this node using CHECK.ANDREDUCE, REDUCE recursively reduces the node us-

ing the continuation function. Likewise, whenever reduction proceeds into a new lambda definition,



REDUCE creates a. new continuation function and a new optimization environment for optimizing the

nodes within that lambda. After the sub-expressions have been reduced, REDUCE checks the new

sub-expressions arid the optimization environment to see whether the input node can be optimized

to another node. If so, it performs a mutating UNION on the input node and the optimized node. If

the input node cannot be optimized, REDUCE returns the input node without making a copy of it

or mutating it.

Figure 6-3: Algorithm for performing a single pass.

With mutable graphs, problems arise in using memobooks that do not occur when memobooks

are used only with purely functional graphs. For example, unification of a node A with a node B

changes the identity of node A. This is problematic because PRODUCEMEMO uses the identity of

nodes to insert and retrieve memos from the table. Imagine that the optimizer traverses node A,

and A is entered into the memobook and marked as traversed. Subsequently, another reduction

unifies A with B, a node that has never been traversed. An entry for A exists in the table, but no

entry exists for B. Anyone attempting to traverse A would then look up B in the table and find

CHECK-ANDREDUCE cont env memos v:

1. Call the function REDUCE with the above arguments using the memobook
function PRODUCE-MEMO to ensure that REDUCE is only called once per
node.

2. Return the result given by PRODUCEMEMO.

REDUCE cont env memos v:

1. Reduce the children, Cl .... c, of v to c... c'•

(a) If v is a free-node, use cont to reduce v's child, cl .

(b) If v is a lambda-node, create a new continuation, new_cont using env.
Create a new environment, new.env and reduce v's children using
CHECK_AND.REDUCE, new_cont, newenv, and memos.

(c) If v is neither a free-node nor a lambda-node, call CHECK-ANDREDUCE
with the above arguments to obtain c' ... c'.

2. Use c . .. c',, optimizing reduction rules, and the current optimization envi-
ronment env to determine whether v can be optimized.

(a) If v can be optimized:

i. Determine v', the Kid Graph expression that v reduces to given that
v's children are now c' . . . c' and the current environment is env.

ii. Reduce v to v' by calling UNION, the parallel disjoint-set union op-
eration.

iii. Return v' , the optimized version of v.

(b) If v is not reduceable, return v as the optimized version of v.



that it had never been traversed.

There are several ways to get around this problem. The Id-in-Id optimizer solves it by inserting

a dummy memo in the table for B before unifying A with B. The optimizer thus ensures that

unifications are only performed on nodes that are marked as traversed.

Performing Multiple Passes. Multiple single passes also require special attention. It might seem

at first that multiple passes could be pipelined using memobooks, an approach that was illustrated

in Chapter 5. Although pipelining is an ideal approach in many respects, there is one insuperable

obstacle to the approach: Bottom-up traversals cannot be pipelined when the traversals can change

the shape of the graph. Here bottom-up refers to the fact that the children of a node are always

traversed before the parent. The traversal performed by the summing procedure given in Figure 5-8

sums the values on a graph bottom-up, but the summation does not alter the structure of the graph,

only the values that are stored on the graph. Reduction, on the other hand, does change the shape

of the graph. This means that it is not possible to determine the structure of the top node until all

of the nodes below it have been reduced. Try as you may to pipeline the traversals, the result would

be that one traversal would run to completion before the next traversal began.

Figure 6-4: Algorithm for performing two single-passes.

It would be wasteful to use elaborate pipelining mechanisms to ensure that one traversal finishes

completely before another begins. It is simpler to use barriers to ensure that one set of computations

terminates completely before another set of computations stops. In addition, the Id-in-Id optimizer

does not make any attempt to run multiple single-passes in parallel. Parallelism is allowed within

single passes. Using barriers, each single pass is performed sequentially.

The Id-in-Id optimization strategy may seem like it was arbitrarily chosen. This is almost

true. Even when past research into optimization and reduction strategies are taken into account,

OPTIMIZE g:

1. Create a new memobook, memos1, optimization environment, envl, and
dummy continuation, contl, for the first reduction.

2. Reduce g by calling CHECKAND_REDUCE contl envl memosl g.

3. Using a barrier, wait for CHECKAND REDUCE to completely terminate.

4. Create a new memobook, memos2, optimization environment, env2, and
dummy continuation, cont2, for the first reduction.

5. Reduce g by calling CHECK_AND_REDUCE cont2 env2 memos2 g.

6. Using a barrier, wait for CHECKAND REDUCE to completely terminate.

7. Return g.



a confusing array of possible strategies remain. The Id-in-Id optimizer design resembles that of

the conventional compiler-the choice of optimization strategy was made mostly by trial and error.

Fortunately, as the next chapter shows, it turns out that the Id-in-Id optimization strategy is able

to optimize programs quite well.



Chapter 7

Results

There are several different platforms which can be used to test and run Id programs. GITA was

the first platform ever available for running Id programs. GITA is a simulator for the Tagged-

Token Dataflow (TTDA) Architecture. In the TTDA architecture, instructions are represented by

tokens with inputs and an output. The machine contains waiting-matching units to route tokens for

execution when their inputs arrive. The term Tagged-Token comes from the fact that each token

carries a tag that indicates to the waiting-matching units to which instruction the token is headed.

GITA simulates a TTDA machine with an infinite number of processors and zero communication

overhead between processors. GITA provides support for profiling the performance of Id programs

and is outlined in [2].

Monsoon, the successor of GITA, is a real dataflow machine for executing Id programs. Monsoon's

waiting-matching unites differ from GITA in that they allocate "frames" of storage for entire blocks of

instructions, rather than on a per instruction basis. This aspect of Monsoon is considered a significant

improvement, in terms of resource management, over GITA. MINT is a simulator for Monsoon

that, like GITA, simulates a Monsoon dataflow machine with infinite processor resources and zero

communication overhead between processors. MINT and Monsoon support statistics collection and

are outlined in [14] and [7].

Although it is possible to run Id programs on single, commercial processors using GITA and

MINT, their speed is limited by the layers of simulation that they provide. A recent approach to

compiling Id code has been to use a compiler to partition Id programs into sequences of instructions,

called threads. These threads can, in turn, run on stock hardware. The Id2TLO compiler is one

such compiler and it can compile Id code into threaded code for TAM. The Threaded Abstract

Machine (TAM), developed at the University of California at Berkeley, is an abstract machine that

dynamically schedules programs that have been partitioned into threads. Current implementations of

TAM, and therefore Id, run on sequential SPARC processors and also the CM5. The most important



result of this work is that it is possible, using TAM, to get acceptable sequential performance out

of Id code.

Perhaps the anticlimax to the Id-in-Id compiling project is that, of these various platforms,

only one platform is suitable for running the Id-in-Id compiler. The Id-in-Id compiler comprises

approximately 32 KB of source code, making it by far the most significant body of Id code ever

written. Compiled with the Id2TLO compiler, which uses C as an intermediate language, the Id-in-

Id compiler comprises 32 MB of object code. Both GITA and MINT are simulators and the Id-in-Id

compiler would take a day to compile even the most trivial program running on these simulators.

'The CM5 and Monsoon are both real parallel machines. They provide the fastest execution vehicles

for Id programs. However, these machines do not provide any support for virtual memory. Since

code-size makes it impossible to load even the parser tables of the Id-in-Id compiler into the program

memory of one of these machines, it is not possible to run the entire compiler on these machines.

The only platform that fits all of the requirements for running the Id-in-Id compiler is a commercial,

sequential processor. The compiler that compiles parallel programs in parallel currently runs on a

Sun workstation.

This chapter attempts to provide some assessment of the Id-in-Id compiler optimizer. Section 7.1

discusses some tests of the Id-in-Id compiler running on a Sun workstation. Though the tests cannot

reveal anything about the parallelism of the Id-in-Id optimizer, they do say something about the

effectiveness of its optimizations. Section 7.2 discusses the cost of using memobooks to perform

memoization, as measured on a GITA simulator. Finally, Section 7.3 discusses the advantages of

using parallel disjoint-unions in graph-reduction.

7.1 The Id-in-Id Compiler Running on a Sun-Workstation

The Id-in-Id compiler, running on a Sun workstation, compiles Id source code to Tagged-Token

Dataflow Architecture (TTDA) graphs. Another compiler, called the Id-in-Lisp compiler, was devel-

oped several years before the Id-in-Id compiler and is written in Lisp. This compiler can also compile

Id code to TTDA graphs. By compiling benchmark programs with each compiler and running their

TTDA output on GITA, it is possible to compare the quality of the code that each compiler produces.

Table 7.1 shows statistics that were collected by compiling several benchmark Id programs to

TTDA and running them on the GITA simulator. The table shows how each program performed

when it was compiled with the Id-in-Id compiler and the Id-in-Lisp compiler, with compiler opti-

mizations off and compiler optimizations on. The table shows that the Id-in-Id compiler is almost

as effective as the Id-in-Lisp compiler at performing optimizations. One of the chief differences be-

tween the Id-in-Id compiler and the Id-in-Lisp compiler is that one uses DeBruijn chains to represent

programs, the other uses super-combinators. These figures seem to indicate that it is possible to



perform just as many optimizations using DeBruijn chains as super-combinators. This is an encour-

aging result, given that these figures were taken when the Id-in-Id compiler was in its infancy. The

Id-in-Lisp compiler, the group's work-horse, had been fine-tuned to produce optimal code over the

course of many years.

Benchmark program Floating-Point Ops I-Fetches Critical Path
Id-in-Lisp Id-in-Id Id-in-Lisp Id-in-Id Id-in-Lisp Id-in-Id

Matrix Multiply (unoptimized) 4,800 4,800 3,206 3,206 754 527
Matrix Multiply (optimized) 3,240 3,240 0 8 435 459
Paraffins (unoptimized) 510 510 5,984 5,320 3,986 1,511
Paraffins (optimized) 252 396 4,878 5,228 1,516 1,512
SIMPLE (unoptimized) 40,390 38,675 79,353 80,123 807 622
SIMPLE (optimized) 38,613 38,576 31,294 32,909 583 625

Table 7.1: Performance of programs compiled by Id-in-Id and Id-in-Lisp compilers.

7.2 Memoized Fibonacci and Factorial on GITA

If you observed the Id-in-Id compiler compiling a program on a Sun workstation and the Id-in-Lisp

compiler compiling the same program on a similar workstation, you would observe that the Id-in-Id

compiler takes 3 to 5 times longer to compile the program than the Id-in-Lisp Compiler. Though this

is an interesting observation to make, it isn't possible to draw any significant conclusions from it.

The comparative slowness of the Id-in-Id compiler might be due to many factors. The two compilers

have very different designs and therefore very different implementations. The compilers are written

in different languages. Id is an implicitly parallel language. Id programs are not intended to run on

sequential machines, Lisp programs are.

More interesting observations about the performance of the Id-in-Id compiler can be made by

testing individual pieces of the Id-in-Id compiler on parallel simulators or parallel machines. For ex-

ample, memobooks seem to provide an elegant abstraction for performing memoization in a language

like Id, but how practical are they?

The code in Figure 7-1 shows two versions of factorial, the program for computing the the factorial

of a number n, written in Id. The first version, facti, is recursive with only itself. The second

version is mutually recursive with a memoized factorial function check_andact. checkand-fact

checks its input argument n to see whether fact2 n has been calculated before. The implementation

of memobooks used for these examples is given in Appendix A. If so, check_and-fact returns the

result of that calculation, rather than re-calculating fact n. Examination of factorial shows that

calling factorial of n results in the calculation of factorial of n - 1, then n - 2, and so forth. Calling

factorial of n will never result in the calculation of any n - i twice. In this example, the memoization



of factorial in fact2 is superfluous.

Table 7.2 shows the results obtained by simulating both of these factorial programs on MINT. As

expected, the relationship between the number of instructions executed and n, the input to factorial,

is linear. It takes approximately 40 instructions to perform an unmemoized call to fibonacci. It takes

approximately 200 instructions to perform a memoized call to fibonacci. We can deduce from these

results that performing the memoization adds 160 instructions on to the time required to execute

a normal function call. Performing a memoized call requires 5 times as many instructions as an

unmemoized call.

def factl n = def fact2 memos n =
if (n == O) then 1 if (n == 0) then 1
else (times~int n else (times~int n

(facti (n-1))) ; (checkandfact memos (n-1))) ;

def check_and_fact memos n =
(producememo (fact2 memos) memos n)

Figure 7-1: Un-memoized factorial, facti, and memoized factorial, fact2.

Input N/ Critical Path Total # Instructions
Number of Calls fact 1 fact2 fact fact2

1 40 670 105 1,394
25 420 2,100 1,090 6,194
50 820 4,080 2,114 11,194
75 1,220 6,050 3,139 16,194
100 1,620 8,040 4,164 12,194

Table 7.2: Performance results of fact and fact2.

If the cost of performing a memoized function call is so high, why use them at all? For some

examples memoization using memobooks may be worth the cost. Figure 7-2 shows two functions for

calculating fibonacci numbers, one that is memoized and one that is not. Unlike factorial, recursive

calls to fibonacci do require computing a single fibonacci number more than once. In fact, the number

of redundant calls to fibonacci performed by the fibi is exactly fib(n) - n. Adding memoization

to fibonacci is useful, because recursive calls can re-use results calculated by other calls. Given an

input of n, the second version of fibonacci, fib2 does not perform any redundant calls. The total

number of calls performed by fib2 is n. Table 7.3 shows the results of executing these programs on

various input values for n. As expected, the use of memoization pays off for sufficiently large n.

In conclusion, if there is a lot of redundancy in the input program, memoization using memobooks

can be worthwhile. On the other hand, if there isn't very much redundancy, then there is a big

penalty for memoizing things that don't need to be memoized. When memobooks are used to



perform graph-reduction, the amount of redundancy depends entirely on the input program graphs.

Sometimes there will be redundancy, other times not. Even though the Id-in-Id compiler does not

run on a parallel machine, it is probably safe to assume that any improvement in the efficiency of

memobooks would greatly improve the general efficiency of the compiler.

def fibl n =
if (n == 0) then 0
else if (n == 1) then 1
else (plus~int (fibl (n-1))

(fibl (n-2))) ;

def fib2 memos n =
if (n == 0) then 0
else if (n == 1) then 1
else (plus-int (check_and_fib memos (n-1))

(check_and_fib memos (n-2))) ;

def check_and_fib memos n =
(produce_memo (fib2 memos) memos n) ;

Figure 7-2: Un-memoized fibonacci, fibi, and memoized fibonacci, fib2.

Input N Number of Calls Critical Path Total # Instructions
fibi fib2 fibi fib2 fibi fib2

1 1 1 30 670 74 1,365
3 3 4 100 670 466 2,563
8 21 8 200 670 3,343 4,127
12 12 12 290 740 23,080 5,691
16 987 16 390 940 158,362 7,255

Table 7.3: Performance results of fibi and fib2.

7.3 Comparing Functional Reductions to Disjoint-Set Unions

on GITA

The previous experiments showed that, depending on the application, the cost of memobooks may

outweigh their usefulness. It is interesting to examine whether the same might be said for using

mutable disjoint-set unions to perform reductions on graphs. One way to test disjoint-set data-

structures is to construct several interpreters for simple lambda-calculus graphs. All the interpreters

would use the beta reduction-rule to decide which nodes to reduce and the same reduction strategy

for applying the rule. The interpreters would differ in that each would use a different scheme, chosen

from the following three schemes, to make changes in the graphs:

Scheme 1 Make a clean copy of each node in the graph to form the new graph, regardless of whether
the original node was reduced or not.

Scheme 2 Copy nodes conservatively. Only copy nodes that are reduced or ancestors of nodes that
are reduced.



Scheme 3 Copy only nodes that are reduced. Use disjoint-set union to mutate the unreduced node
to its reduced copy.

Each interpreter could be run on a variety of graphs and compared. Ideally, we would expect

the first scheme to perform the best on an input graph where all the nodes in the graph must be

reduced. We would expect the third scheme to perform the best on an input graph requiring few or

no reductions. We would expect the second scheme to fall somewhere between the two.

There are several problems with the above experiment, however. First, the experiment tests

more aspects of reduction than the cost of performing transformations. It also tests the time each

interpreter takes to make decisions about reductions. This includes the time that it takes to obtain

information, to test the precondition of the reduction rule, and to construct the results of a reduction.

Any data that the experiment produces may be influenced more by these factors than by the different

schemes used to perform transformations. More importantly, it would be difficult to characterize

the input graphs for such an experiment in a useful way. Several graphs might differ not only in

their size and number of possible reductions, but also the number of reductions in the graph that

can from other reductions, the size of individual reductions, the number of irreduceable nodes that

are ancestors of reduceable nodes, etc. With so many ways to vary the input graphs, it would be

difficult to set up systematic tests to perform.

Consider instead the following experiment. We are given an ordinary binary graph. An oracle

has thoroughly analyzed this graph and has figured out exactly which nodes in this graph need to

be reduced. It has marked the nodes to be reduced with "Reduce!" It is the job of the reducer to

actually carry out these transformations. In this experiment, the cost of making decisions about

reductions has been minimized. In order to further reduce extraneous costs, we could specify that to

perform a reduction, the reducer must simply change a node marked "Reduce!" to a node marked

"Reduced". A figure illustrating such a reduction is shown in Figure 7-3.

Simplifying the experiment this way ensures the time each reducer takes to reduce a graph is made

up primarily by the time it takes to perform individual transformations. A desirable result of this is

that each input graph for this experiment can be quantified using three characteristics. Each graph

can be quantified by the total number of nodes, the number of "Reduce!" nodes, and the number of

non-reduceable ancestors of "Reduce!" nodes it contains. The graph given in Figure 7-3 (a) contains

a total of 8 nodes, 2 of which are "Reduce!" nodes and 2 of which are non-reduceable ancestors of

"Reduce!" nodes. Table 7.4 summarizes ten input graphs in terms of these characteristics. Table 7.5

shows the result of reducing these graphs, using each of three different transformation schemes. The

Id code for implementing these reductions is given in Appendix B.

The previous examination of memobooks showed that the extra work required to use memobooks

may outweigh their usefulness. Fortunately, the results given in Table 7.5 show that using disjoint-

set unions to avoid copying does pays off. The results show that in those examples where there are



Figure 7-3: A graph with
reduced (b).

nodes marked to be reduced (a) and the same graph after it has been

Graph Name Size Reduce! nodes ancestors
Graphl 20 0 0
Graph2 20 5 5
Graph3 20 10 10
Graph4 20 20 0
Graph5 41 0 0
Graph6 41 2 39
Graph7 41 5 5
Graph8 41 10 5
Graph9 41 18 20
Graphl0 41 41 0

Table 7.4: Ten input graphs and their characteristics.

few changes, mutation requires the fewest number of instructions. For those examples where the

entire graph changes, mutation takes the most number of instruction. Mutation seems to pay off,

except in the examples where the graph is dominated by changes. In terms of optimization, these

results are encouraging. Though optimization often requires making many, many changes to graphs,

the number of changes is usually small compared to the size of the input graph.



Graph Name Critical Path Total # Instructions
Scheme 1 Scheme 2 Scheme 3 Scheme 1 Scheme 2 Scheme 3

Graphl 700 780 1,090 6,060 10,771 4,820
Graph2 700 790 1,090 9,214 10,829 4,820
Graph3 700 870 1,090 9,214 12,038 4,820
Graph4 700 700 2,770 9,214 9,214 16,948
Graph5 3,350 3,760 1,540 18,440 21,622 5,259
Graph6 3,350 3,910 1,540 18,440 23,020 5,384
Graph7 3,350 3,770 1,590 18,487 22,284 5,428
Graph8 3,350 3,410 1,800 18,492 21,189 5,928
Graph9 3,250 3,290 1,600 18,457 20,728 5,398
Graphl0 3,350 3,350 5,380 18,440 18,440 25,614

Table 7.5: Performance results of different transformation schemes.



Chapter 8

Conclusions and Future Work

If you were to ask a group of compiler writers to list the sequential languages in which they would be

willing to implement a compiler, you would probably get a very short list. Ask the same group for

a list of parallel languages in which they would be willing to implement a compiler, and you would

probably get an empty list. Compiler designers are smart. Compiler design is daunting enough in a

sequential world.

Yet a compiler that can execute on parallel machines has been successfully implemented. The

compiler is not just a "toy-compiler." It works, and it works well. It uses sophisticated compiling

techniques such as parallel graph-reduction, and it produces high-quality code. If for no other reason,

the Id-in-Id compiler is remarkable because parallel compilation seems so unlikely a proposition.

Although Id-in-Id is the first compiler to compile programs in parallel, I do not believe that its

development is the main contribution of this research project. I believe instead that the techniques

developed for graph reduction in this project have broader significance. For example, DeBruijn chains

can be useful in any implementation of a functional language. It does not matter whether these chains

are used in implementations for parallel or sequential machines or in parallel or sequential compilers.

These techniques are the principal findings of this thesis. This chapter summarizes each of these

techniques and suggests how each may contribute to future in various areas of software development.

DeBruijn Chains

The representation of free variables in lambda-calculus programs is a problem that all functional

language compilers and run-time systems must face. DeBruijn chains are the Id-in-Id solution to

this problem. They work well within the framework of Kid Graphs. DeBruijn chains, like other

elements of Kid Graphs, do not need to be kept in centralized locations on a program graph. They

also facilitate certain optimizations, like constant-propagation and code-hoisting.

This thesis does not really test the limits of DeBruijn chains, however. One reason for this is



practical. The goal of the current Id-in-Id compiler was only to perform as many optimizations

as the current Id-in-Lisp compiler. There are some optimizations involving free-variables that the

Id-in-Lisp compiler does not attempt, because it uses a super-combinator representation. Future

versions of the Id-in-Id compiler should be able to attempt these other optimizations using DeBruijn

chains.

The other reason has to do with cyclic graphs. This thesis has only discussed aspects of reducing

acyclic Kid Graphs, but eventually the optimizer should should be able to optimize Kid Graphs

that contain cycles. Chapter 5 provided some discussion of cyclic graphs and asserted that perhaps

the only solution for performing parallel reductions on such graphs is to detect cycles in a separate

]phase before reduction. This approach uses detection to essentially break cycles before they can

cause any trouble.. In order for this scheme to hold up theoretically, one must be able to prove

that optimizations would never introduce new cycles into a graph or remove old ones. What does

cycle-breaking have to do with DeBruijn chains? The most obvious way to introduce a cycle into

a program graph is through a recursive function call. A function that calls itself references itself

as a free variable and would therefore be represented as a cycle through a DeBruijn chain. If the

cyclic graph problem is ever to be solved for Kid Graphs, it will definitely involve re-examining the

DeBruijn chain algorithm for the case of cyclic graphs.

Disjoint-Set Unions

Disjoint-set unions were introduced as an alternative approach to mutating graphs during program

reduction from the indirection-node approach. In the end, it turned out that the differences between

the two were minor. Where the approaches differ the most is mostly in abstraction barriers.

I do think that the exercise of coming up with the disjoint-set unions for reduction was an il-

luminating one, though in the end the differences between them may have been small. Even when

reduction is approached from the most abstract level, in the end the solution involves indirection-

nodes or something equivalent to it. So one conclusion to draw may be that the indirection-node

approach to reduction is not only a good one, but it is an essential one for implementing reduc-

tions. More importantly, though, the exercise sheds light on other work that functional language

imrplementors can draw upon to implement reductions. Algorithms researchers have many tech-

niques for implementing disjoint-set unions efficiently, and it would be interesting to see whether

functional-language implementations could make use of them by carrying them over to indirection

nodes. Furthermore, researchers would be able to make use of any future work that was done in

disjoint-set unions.



Memobooks

The development of memobooks has opened up the door for the development of a parallel graph-

reduction optimizer in Id. Without them, it would be possible to perform individual reductions,

but impossible to coordinatethem. Two things make memobooks worth noting. They are flexible

enough to be used in a variety of applications. They also have a simple synchronization protocol

which does not limit the parallelism of the programs that use them. Computer scientists have long

noted the usefulness of memoization in programming and algorithms such as theorem provers, game-

tree algorithms, and dynamic programming applications. The development of memobooks has not

only opened up the door for the development of a parallel optimizer, but it has opened the door for

the development of these other parallel applications too.
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Appendix A

Memobook Implementation

%% Type definition for Mutable Lists

type MList *0 *1 = MCons !(Sbox *0 *1) !(M-List *0 *1) M_Nil ;

%% Type definition for a Memo, or Sbox

type S-box *0 *1 =

{record object = *0;

full? = !B;

value = .*1 }

A memobook is a hash table:

a hash table is an array of m-lists, each containing a memo

def create~memobook number_of_buckets =

{1D_M_array (0,102) of

[i] = M_nil II i <- 0 to 102 };



%% Memobook functions

defsubst read_memo table key =

(lookup_insert_not_found

table

key).value ;

defsubst produce .memo fn table key =

{

box = lookup_insert _not _found table key;

(full? = box!full?;

box!full? = true)

in

if full? then box.value

else

{ result = fn key ;

box.value = result ;

in result }

U. Utility functions for manipulating the memobook table

defsubst lookup_insert _not-_found ht_array key =

{ index = mod~int key 103;

(bucket_headptr,member_result_l ist) =

member?_andinsert~M_list key bucket ;

(bucket = htarray![index];

ht_array![index] = bucket_head_ptr );

in

member_result_list!!m_cons_1

};

defsubst member?_and_insert~M_List key mlist =

if M nil? mlist then

{ new_sbox =

{record object = key;



full? = false } ;

newend-of list =

(M_cons new-sbox M_nil)

in

(new_end_of_list,new-endoflist) }

else

if (eq~int ((mlist!!Mcons_1).object) key) then

(mlist,mlist)

else

{ (mlist',found_list) = member?_andinsert~M_list key mlist!MPcons_2;

mlist!M_cons_2 = mlist'

In

(mlist,found_list) } ;



Appendix B

Code for Reduction Tests

Y%%% THE GRAPHS

".Y%% Datatype definition for the graphs.

type node =

Reduce uid node node

Reduced uid node node

No_Reduce uid node node

Leaf uid

Reduce_leaf uid

Reducedleaf -uid

type mnode =

MReduce mnode set mnode_set

MReduced mnodeset mnode_set

MNoReduce mnodeset mnode set

MLeaf

MReduced_leaf

MReduce_leaf ;

type mnodeset

{record

set_id = I

setlock = ! I

setparent = !mnode_set ;

settype = !SET_DESCRIPTOR



set_object = mnode ;

set_IDs = (make_counter 0);

type SET_DESCRIPTOR = Member

Representative



X%% Utilities for manipulating graphs

def Reduced? n1 nl' = (not (same_node n1 ni'))

def get uid ni =

{case ni of

Change uid _ _ = uid

I No-change uid _ _ = uid

I Leaf uid = uid

I Changeleaf uid = uid

def samenode ni n2 = (eq-int (get uid ni) (get_uid n2)) ;

def getmuid bl = (get_rep bl).set-id ;

def hash_mnode range node = (mod~int ((get rep node).set id) range)

def mk_node exp =

{record

set_id = (get-andtincrement_counter set_IDs);

set_lock = 0 ;

set_object = exp

set_type = Representative;

};



%%% DISJOINT-SET UNION code

type assignmentdescriptor =

EQUATE I ASSIGN I REVERSE_ASSIGN ;

defsubst arbitration-fn descl desc2 = ASSIGN ;

def get_rep cell =

{ lock = cell!set_lock ;

ctype = cell!!set_type ;

In

(if (Representative? ctype) then

{ the_rep = cell ;

cell!setjlock = lock ;

in

the_rep

else

{ parent = cell!set_parent ;

new-parent = (get-rep parent) ;

(cell!setparent = new_parent ;

cell!set-lock = lock ;);

In

new_parent

})

def unify celll cell2 =

X Because make-assignment has the potential to mutate the

% first cell, we immediately take a lock on the first cell

{ lock = celll!set_lock ;

(if (same? celll cell2) then

{ celll!set_lock = lock ;



celll

}
else

{ case cell1!!set_type,cell2!!set_type of

% Both cells are representatives, make the assignment

I Representative,Representative =

% Use the arbitration function along with cell ids

% to decide whether the order of the assignment

X should be reversed

(if (((Equate? (arbitration_fn celll.set.object cell2.set_object))

and

(It-int cell2.set_id celll.set_id)) or

(Reverse_assign? (arbitrationjfn celll.set_object

cell2.set_object))) then

% Reverse the order of the assignment

{ celll!set_lock = lock ;

In

(unify cell2 cell1 )

}

else

% Make the assignment

{ celll!set_parent = cell2 ;

celll!!set_type = Member ;

celll!setlock = lock

In

cell2 })

% In the following cases, we need to keep chasing

% parent-pointers until we get to the representatives.

I Representative,Member =

{ parent = cell2!!set_parent ;

celll!set_lock = lock ;

in

(unify celll parent)

}



Member,Representative =

{ parent = celll!!set_parent ;

celll!set_lock = lock ;

in

(unify parent cell2)

}

Member,Member =

{ parentl = celll!!set_parent ;

parent2 = cell2!!set_parent ;

celll!set_lock = lock ;

in

(unify parentl parent2)

}

}

def sameset celll

cell2 =

{ repl = get_rep celll ;

rep2 = get_rep cell2;

In (same? repl rep2)

};



%%% THE REDUCERS

%%% SCHEME 1

def checkand_reduce memos n =

producememo (reducel memos) memos n ;

def reducel memos n =

{case n of

Reduce n n12 =

(Reduced (mk_uid ()) (checkand-reduce memos nl) (check_and_reduce memos n2))

I NoReduce _ n1 n2 =

(No_Reduce (mk_uid ()) (check_and_reduce memos ni) (checkandreduce memos n2))

I Leaf _ = Leaf (mk_uid ())

I Reduce_leaf _ = Reducedleaf (mk_uid ())

def toplevel_reduce n =

{ memos = create~memobook ()

n' = check_andreduce memos n ;

In

n'} ;

%% SCHEME 2

def checkand_spec memos n =

producememo (spec_reduce memos) memos n ;

def spec_reduce memos n =

{case n of

Reduce - n1 n2 =

(Reduced (mk_uid ()) (check_and_spec memos nl) (check_and_spec memos n2))

I NoReduce _ n1 n2 =

{ nl' = (check_and_spec memos ni) ;

n2' = (check and_spec memos n2) ;

In

if (Reduced? ni ni') or (Reduced? n2 n2') then



(No_Reduce (mk_uid ()) nl' n2')

else n }

I Leaf = n

I Reduce_leaf _ = Reduced_leaf (mk.uid ())

def toplevelspec n =

{ memos = create~memobook ()

n'= check_andspec memos n ;

In

n' } ;

UX SCHEME 3

def checkandjmreduce memos n =

produce_mmemo (mreduce memos) memos n ;

def mreduce memos n =

{case (getrep n).setobject of

MReduce n1 n2 =

(mk-node (MReduced (check_and_mreduce memos nl) (checkandcmreduce memos n2)))

I MNoReduce nl n2 = n

I MLeaf = n

I MReduceleaf = (mk_node MReduced_leaf)

def toplevelmreduce n =

{ memos = create~memobook ()

n' = check_and_mreduce memos n ;

_ = {for i<- 0 to 30 do

bucket = memos!!Ei] ;

= {while (M_cons? bucket) do

e = bucket!!M_cons_1 ;

(next bucket) = bucket!!mcons_2 ;

o = e.object ;

v = e.value ;

- = unify o v ;

finally () } ;



finally () }

In n' }



%7 TEST GRAPHS

def mreducejleafnode = (mk-node Mreduce_leaf) ;

def mleafnode = (mk_node Mleaf) ;

def graphl =

{ al = (no_reduce (mk-uid ()) (Leaf (mk_uid ())) (Leaf (mk.uid ()))) ;

a2 = (no_reduce (mk-uid ()) (Leaf (mk_uid ()))

(no_reduce (mk.uid ()) (Leaf (mk-uid ())) (leaf (mkuid ())))) ;

a3 = (no_reduce (mk-uid ()) (Leaf (mk_uid ())) a5) ;

a4 = (no_reduce (mk-uid ()) (Leaf (mk_uid ()))

(no_reduce (mkuid ()) (Leaf (mk uid ())) (leaf (mkuid ())))) ;

a5 = (noreduce (mk-uid ()) (Leaf (mk_uid ())) a2) ;

In

(Noreduce (mkuid ())

(No_reduce (mkuid ()) al a2)

(No_reduce (mkuid ()) a3 a4))

def mgraphl =

{ al = (mknode (mnoreduce mleafnode mleafnode)) ;

a2 = (mk_node (mnoreduce mleafnode

(mk_node (mno_reduce mleafnode mleafnode)))) ;

a3 = (mk_node (mnoreduce mleafnode a5)) ;

a4 = (mk_node (mnoreduce mleafnode

(mk_node (mno_reduce mleafnode mleafnode)))) ;

a5 = (mknode (mnoreduce mleafnode a2)) ;

In

(mknode (mno-reduce

(mk_node (mno_reduce al a2))

(mk_node (mnoreduce a3 a4))))

def graph2 =

{ al = (Reduce (mk-uid ()) (Leaf (mk_uid ())) (Leaf (mk-uid ())))
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a2 = (Noreduce (mk_uid

(no_reduce (mk_uid ())

a3 = (noreduce (mk-uid

a4 = (Reduce (mk_uid ())

(noreduce (mk_uid ())

a5 = (no_reduce (mk_uid

(Noreduce (mk_uid ())

(No-reduce (mk_uid ())

(No-reduce (mk_uid ())

()) (Leaf (mk_uid ()))

(Leaf (mkuid ())) (leaf (mk_uid ())))) ;

()) (ReduceLeaf (mk_uid ())) a5) ;

(Leaf (mk_uid ()))

(Reduceleaf (mk_uid ())) (Reduceleaf (mk-uid ()))))

()) (Leaf (mk_uid ())) a2) ;

al a2)

a3 a4))

del

fI

def

* mgraph2 =

- al = (mknode (mReduce mleafnode mleafnode))

a2 = (mk_node (mno_reduce mleafnode

(mk_node (mnoreduce mleafnode mleafnode))))

a3 = (mknode (mno_reduce mreduceleafnode a5))

a4 = (mknode (mReduce mleafnode

(mk-node (mno_reduce mreduceleafnode mreduce_leafnode)))) ;

a5 = (mknode (mnoreduce mleafnode a2))

In

(mk_node (mno-reduce

(mk-node (mno_reduce al a2))

(mknode (mno_reduce a3 a4))))

graph3 =

al = (no_reduce (mkuid ()) (Reduce_Leaf (mk_uid ())) (ReduceLeaf (mk_uid ()))) ;

a2 = (noreduce (mk_uid ()) (Reduce_Leaf (mk_uid ()))

(no_reduce (mk_uid ()) (reduceLeaf (mkuid ())) (Reduceleaf (mk-uid ()))))

a3 = (noreduce (mkuid ()) (Reduce_Leaf (mkuid ())) a5)

a4 = (no-reduce (mk_uid ()) (Reduce_Leaf (mkuid ()))

(noreduce (mkuid ()) (Reduce_Leaf (mkuid ())) (Reduce-leaf (mk.uid ()))))

a5 = (no-reduce (mk_uid ()) (Reduce_Leaf (mk_uid ())) a2)

In

(No_reduce (mk_uid ())

(Noreduce (mkuid ()) al a2)

(No_reduce (mk_uid ()) a3 a4))



def mgraph3 =

{ al = (mk_node (mnoreduce mreduceleafnode mreduceleafnode))

a2 = (mknode (mnoreduce mreduceleafnode

(mknode (mno_reduce mreduce_leafnode mreduce_leafnode)))) ;

a3 = (mk_node (mno_reduce mreduceleafnode a5))

a4 = (mk_node (mno_reduce mreduce_leafnode

(mk_node (mno_reduce mreduce_leafnode mreduce_leafnode)))) ;

a5 = (mknode (mnoreduce mreduce_leafnode a2))

In

(mknode (mno-reduce

(mk_node (mno_reduce al a2))

(mk_node (mno_reduce a3 a4))))

def graph4 =

{ al = (reduce (mkuid ()) (ReduceLeaf (mk-uid ())) (Reduce-Leaf (mkuid ())))

a2 = (reduce (mkuid ()) (ReduceLeaf (mk.uid ()))

(reduce (mk_uid ()) (Reduce-Leaf (mkuid ())) (reduceleaf (mk_uid ())))) ;

a3 = (reduce (mkuid ()) (Reduce_Leaf (mk.uid ())) a5) ;

a4 = (reduce (mkuid ()) (ReduceLeaf (mk-uid ()))

(reduce (mkuid ()) (Reduce_Leaf (mkuid ())) (reduceleaf (mk_uid ())))) ;

a5 = (reduce (mkuid ()) (ReduceLeaf (mk-uid ())) a2)

In

(reduce (mk_uid ())

(reduce (mkuid ()) al a2)

(reduce (mkuid ()) a3 a4))

def mgraph4 =

{ al = (mk_node (mreduce mreduce_leafnode mreduceleafnode)) ;

a2 = (mk_node (mreduce mreduce_leafnode

(mknode (mreduce mreduce_leafnode mreduce_leafnode)))) ;

a3 = (mk_node (mreduce mreduce_leafnode a5)) ;

a4 = (mk_node (mreduce mreduce_leafnode

(mk_node (mreduce mreduce_leafnode mreduce_leafnode)))) ;

a5 = (mk_node (mreduce mreduce_leafnode a2))

In

(mknode (mreduce
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(mknode (mreduce al a2))

(mknode (mreduce a3 a4))))

} ;

def graph5 =

{ root = (no-reduce (mkuid ()) (Leaf (mkuid ())) (Leaf (mk-uid ()))) ;

in

{for i <- 1 to 19 do

next root = (No_reduce (mkuid ()) (Leaf (mk.uid ())) root) ;

finally root }

} ;

def mgraph5 =

{ root = (mk_node (Mnoreduce mleafnode mleafnode)) ;

in

{for i <- 1 to 19 do

next root = (mknode (MNoreduce mleafnode root))

finally root }

} ;

def graph6 =

{ root = (noreduce (mk_uid ()) (Reduce_Leaf (mkuid ())) (Reduce_Leaf (mkuid ()))) ;

in

{for i <- 1 to 19 do

next root = (No_reduce (mkuid ()) (Leaf (mkuid ())) root) ;

finally root }

def mgraph6 =

{ root = (mknnode (Mno_reduce mreduce_leafnode mreduceleafnode)) ;

in

{for i <- 1 to 19 do

next root = (mk_node (MNoreduce MLeafnode root)) ;

finally root }

} ;

def graph7 =

{ root = (noreduce (mkuid ()) (Leaf (mk-uid ())) (Leaf (mkuid ()))) ;

root2 =
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{for i <- 1 to 14 do

next root = (No_reduce (mkuid ()) (Leaf (mk-uid ())) root) ;

finally root } ;

In

{for i <- 1 to 5 do

next root2 = (No_reduce (mk.uid ()) (ReduceLeaf (mk_uid ())) root2) ;

finally root2 }

def mgraph7 =

{ root = (mk_node (Mno_reduce mleafnode mleafnode)) ;

root2 = {for i <- 1 to 14 do

next root = (mk_node (MNoreduce mleafnode root)) ;

finally root }

in

{for i <- 1 to 5 do

next root2 = (mk_node (MNoreduce mreduceleafnode root2))

finally root2 }

def graph8 =

{ root = (noreduce (mk_uid ()) (Leaf (mk-uid ())) (Leaf (mkuid ())) ;

root2 =

{for i <- 1 to 9 do

next root = (No_reduce (mkuid ()) (Leaf (mk_uid ())) root) ;

finally root }

root3 =

{for i <- 1 to 5 do

next root2 = (Reduce (mk_uid ()) (Reduceleaf (mk_uid ())) root2) ;

finally root2 } ;

In

{for i <- 1 to 5 do

next root3 = (No-reduce (mk_uid ()) (Leaf (mk-uid ())) root3) ;

finally root3 }

def mgraph8 =

{ root = (mknode (Mnoreduce mleafnode mleafnode)) ;

root2 = {for i <- 1 to 14 do
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next root = (mk-node (MNo_reduce mleafnode root)) ;

finally root } ;

root3 = {for i <- 1 to 5 do

next root2 = (mk_node (MReduce mreduceleafnode root2)) ;

finally root2 }

in

{for i <- 1 to 5 do

next root3 = (mknode (MNoreduce mleafnode root3))

finally root3 }

def graph9 =

{ root = (Reduce (mk_uid ()) (Reduce_Leaf (mkuid ())) (ReduceLeaf (mkuid ()))) ;

root2 =

{for i <- 1 to 9 do

next root = (Reduce (mkuid ()) (Reduce_Leaf (mk_uid ())) root) ;

finally root } ;

In

{for i <- 1 to 10 do

next root2 = (No_reduce (mk_uid ()) (Leaf (mk_uid ())) root2) ;

finally root2 }

def mgraph9 =

{ root = (mk_node (MReduce mreduce_leafnode mreduceleafnode)) ;

root2 = {for i <- 1 to 9 do

next root = (mk_node (MReduce mreduce-leafnode root)) ;

finally root }

In

{for i <- 1 to 10 do

next root2 = (mk_node (MNoReduce MLeafnode root2)) ;

finally root2 }

def graphlO =

{ root = (Reduce (mk_uid ()) (ReduceLeaf (mkuid ())) (ReduceLeaf (mkuid ())) ;

in

{for i <- 1 to 19 do

next root = (Reduce (mk-uid ()) (Reduceleaf (mk-uid ())) root) ;
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finally root }

def mgraphlO =

{ root = (mknode (MReduce mreduceleafnode mreduceleafnode))

in

{for i <- 1 to 19 do

next root = (mk_node (MReduce mreduce_leafnode root))

finally root }
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