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Abstract

Three-component lamellar phase has been investigated which consists of C12E5 , oc-
tane and water . This is a layered phase, the lyotropic equivalent of a thermotropic
smectic-A phase. X-ray scattering techniques were used on powder and aligned sam-
ples, as well as the optical microscopy investigations to understand the structure and
the interactions that govern this lyotropic system, and also the temperature depen-
dence of such important parameters as layer-periodicity, the layer thickness and the
exponent 77 which characterizes quasi-long range order. Experiments were done with
various surfactant concentrations and oil/water volume ratios.

The system was chosen for two reasons. First of all, a lamellar phase continuously
exists from an oil-rich through an equal oil-water to a water rich region in the ac-
cessible temperature range (- 33oc). Also the lamellar phase continue to exist with
the wide range of the surfactant concentrations, which allowed us to study the dilu-
tion of the lamellar phases. Secondly. since it is a nonionic surfactant. there are no
electrostatic interactions present in this system, i.e. it is a purely sterically stabilized
lamellar phase. Our investigations pointed out the following: (1) The structure fac-
tor that describes the broad lamellar peaks that we found from the powder scattering
should not be confined in the vicinity of peak-position (qo), also the contributions
from higher harmonic terms has to be taken into considerations. (2) The form factor
had to be incorporated because of the finite size of the lamellar layers. A model has
been proposed to describe the electronic density distribution within the layer and
in the direction perpendicular to the layers. The form factor based on this model
has successfully described the scattering intensity profiles with the variation of laver
thickness. (3) Excess scattering was measured as q --+ 0. This has been theoreti-
cally predicted to be due to concentration fluctuations (4) The x-ray scattering from
aligned samples provided information on the temperature dependence of the layer pe-
riodicity within the lamellar phase with the constant surfactant concentration. This
dependence can be described by the fluctuations of membranes.
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Chapter 1

Physical Properties of Lamellar

Phases

1.1 Introduction

Surfactants in mixtures with solvents can self-assemble reversibly into spatially orga-

nized structures which are physically and not chemically associated. These structures

have been of interest to physicists, chemists and biologists.

Water and oil do not mix due to the large surface tension(50mN/m). Addition

of surfactant amphiphilic molecules can 'decrease this surface tension drastically(-

10-3mN/m), and the mixture can form a stable emulsion of solvents with oppo-

site polarity. This property of surfactants can be understood from their chemical

composition. Their molecules have hydrophilic and hydrophobic ends and they can

place themselves at the interfaces of oil and water, to form thermodynamically stable

macro-molecular structures. Among these are the micellar, the bicontinuous/sponge,

the hexagonal, and the lamellar phases.

The surfactant molecules concentrate at the interfaces between different solvents.

Depending on whether the solvents have one or two polarities, they can form mono-

layer or bilayer structures. Monolayers separate oil and water regions, while bilayers

create a separation inside a monopolar solvent. The bilayers are essentially the same

structure as the lipid bilayer membranes which are found in living cells.
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Sponge/Bicontinuous
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Figure 1-1: Some of the Phases encountered by mixing surfactants with solvents

Lamellar Phase

Lamellar phases are layered phases similar to the smectic-A phase of thermotropic

liquid crystals. The order can be described as a one dimensional mass density mod-

ulation in the direction perpendicular to the layers. Within the layers the order is

liquid-like, as there exist no long-range translational correlations. The layers are par-

allel to each other. The system is strongly birefringent as it can be observed with

optical microscopy.

Theoretical and experimental investigations of lamellar phases have been carried

out intensively in the last two decades [1, 2] The smectic layers have separations that

1-19-
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Figure 1-2: Lamellar phases: The geometry can vary depending on the concentration of the
solvents

can range from a few Angstroms to a few thousand Angstroms. They are stabilized

by interlayer interactions, such as the Van der Waals, the electrostatic, and the steric

entropic interaction.

The distance between layers can be varied continuously by changing the concentra-

tion of the surfactant. This procedure is called swelling, and to date, layer separations

of ~ 6000A have been observed[3].

To date, all the experiments as well as the theories have been carried out for

almost-bilayer systems with one polar system. While water-surfactant binary lamel-



Figure 1-3: Sponge/Bicontinuous phase: when the interfaces consist of bilayer for the
sponge, and monolayer for the bicontinuous phase

lae exist, the binary lamellar consisting of surfactant and oil has not been observed.

Bicontinuous/Sponge Phase

The bicontinuous phases are formed by self-avoiding, yet connected surfactant inter-

faces with a spatial distribution that is uniform only at large distances. The interfaces

are curved everywhere with the two principal curvatures having opposite signs(saddle

like local shape). There is no long-range orientational or positional ordering, and the

phase is optically isotropic but shows shear birefringence. The term bicontinuous is

used whenever the membranes are monolayers and sponge is used for the bilayer case.

In spite of the absence of long-range order, the scattering pattern shows a clearly

defined maximum, corresponding to the mean separation of the interfaces of the sur-

factant. The structure model for this system was proposed only recently by Cates

et.al.[4] and also Porte et.al.[5].



1.2 Thermal Fluctuations

Without thermal fluctuations, a lamellar phase would just be a stack of flat surfactant

layers. Thermal fluctuations cause each layer to fluctuate with energy of kT per mode,

where T is the temperature, and k is Boltzman's constant. (1.38 x 10- 23JK - 1) The

relation between the amplitude and the wave length of the fluctuation undulation of

a membrane is determined by the bending rigidity, as well as the interactions between

successive layers.

1.2.1 Bending Elasticity of a Single Membrane

The bending elasticity of a single two dimensional sheet, isotropic within its plane,

shows some interesting features when compared to the elasticity of a one-dimensional

flexible thread.

For a thin thread, the elastic bending energy can be written as,

Fbend = . ( 1 )dl (1.1)

Here, K is the bending rigidity of the thread, R is the local curvature imposed on the

length element dl. This leads to the definition of the persistence length [6],

< 1 >= T (1.2)

that distinguishes between short scales where the thread is stiff, and long scales where

the thread loses the orientational correlation.

In the case of the two dimensional sheet, the elastic bending energy around its

equilibrium position, within the harmonic approximation (the bending curvature is

not large) has been derived by Helfrich[7].

1 1 1 iFbend )2 + T )dS (1.3)
2 RHere, is the bending modulous which is related to the energy spent for a locally2

Here, K is the bending modulous which is related to the energy spent for a locally



R1 > 0

R2 < O

Figure 1-4: Principal radii of curvature associated with point o on the surface:1 is a tan-
gential direction of C-D at o, 2 is the tangential direction of A-B at o, where A-B is
perpendicular to C-D

cylindrical deformation of the surface caused by the thermal fluctuation. This is

analogous to the rigidity of the one dimensional thread, and is always positive. - is

the gaussian bending modulous which has no analogue in the one dimension. R 1 and

R2 are the two principal radii of curvature of the surface in the local area element

dS. Ro is the spontaneous curvature of the film, which depends on the chemical

composition as well as the temperature. In the case of a bilayer system, because of

symmetry considerations one can assume Ro -- oo.

In the sponge phase, the two principal curvatures have the same magnitude but

opposite signs(saddle-like curvature). In the lamellar phase, both curvatures are small.

Consequently, in both phases, the mean-curvature contribution to the elastic energy

is comparable. The main difference between the two phases is brought in by the

second term which is responsible for the topology of the system.
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Figure 1-5: The spontaneous curvature of a monolayer film. It is zero for the bilayer
membrane because of the geometrical symmetry

According to the Gauss-Bonnet theorem:

(1.4)L R dS = 47r(1 - N)
R1 R21

Here N is the number of disjoint components(handles). This relation states that the

integral of the gaussian curvature over a given closed surface(no edges) is a topo-

logical invariant. Consequently the gaussian curvature T is related to the degree of

connectivity of the structure, and is therefore a function only of the topology. As the

energy is constant for a given surface, this term is not important for surface defor-

mations around the equilibrium position. So finally, the elastic energies of lamellar

and sponge phases differ by -47r-n where n is the density of disjoint components, i.e.

N per unit area. It can be expected that negative values of T stabilize the lamellar

phases (Lo), while positive values favour the formation of the multi-connected area

6b
rzc;e

c,,
p



and create sponge phases (L 3 ). Thus while T is very important for a L, to L 3 topo-

logical transformation, it has no effect on the thermal fluctuations, as is the case with

K.

As it is clear from the equation 1.3, the rigidities K and T are both expressed

in units of energy. To acquire a better understanding of the effects of thermal fluc-

tuations, we can define two regimes related to the thermodynamics of the films as

follows:.

1) When K >> kT, the deformation of the films caused by the thermal energy

is small. The films can be considered as rigid as is often the case with the lipid

membranes.

2) When K r kT, the films are flezxible and fluctuate around their equilibrium

positions: This is called an undulation.

Helfrich[8], Peliti et.al[9] and David et.al[10] have demonstrated that the main

effect of small wavelength curvature fluctuations is to renormalize the elastic constants

K and T. Using perturbation theory, they have demonstrated that,

K = KO - 3 kTln(q (1.5)
47r qmin

S= K + 5 )kTln(max (1.6)

Where Ko and o- are the mean and Gaussian bending rigidities without thermal fluc-

tuations respectively, q,,i = 27r/ and qmax = 27r/a are the cut-off wave length where

a is the intermolecular distance (the smallest allowed length scale of fluctuations),

and ý is the in-plane correlation length of the fluctuations. In the case of a free

membrane, ý corresponds to the transverse size of the membrane. The logarithmic

term in this renormalization relation is a well known characteristic of fluctuations in

2-D svstems[6]. Positional correlations break down when the dimension of the sys-

tem is smaller or equal to 2 because of the logarithmic divergence of the fluctuation

amplitude with the increase of the size of the system.

The fact that K is a decreaseing function of the in-plane correlation function



Figure 1-6: The persistence length is defined as the length where the in-plane correlations
goes to zero.

indicates that the films lose their memory of in-plane correlations beyond certain

distance. From Eq. 1.5, we can derive the persistence length ( [11] in the case of a

two dimensional film Fig. 1-6, as the distance at which I goes to zero:

p = aexp( ) (1.7)
3kT

By incorporating both the renormalization of the rigidity and the topological

analysis, several regimes can be identified[12].

1) - < -2K, the surface forms a spherical configuration.

2) - 2K < T < 0, a locally bent conformation with R 1, R 2 having the same sign is

favored (fiat configuration). At very high dilution, La will transform into a dispersion

of spherical vesicles. Sponge/bicontinuous phases are unstable at any dilution.

3) T - -ri, in the case Ro oo, the elasticity of the membrane becomes,

Fbend (([(_)2 (•)2])dS (1.8)

The local conformation only depends on the magnitude of R 1 and R2, and not on

their relative signs. A transition from L3 to L, at high dilution should occur in this

regime.
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Figure 1-7: The schematic of a Lamellar phase

4) T >> -K (presumably positive), the saddle-like configuration is favored at all

dilution levels.

1.3 Thermotropic and Lyotropic Smectic Phases

1.3.1 The Free Energy for Smectic Order

The layer displacement in a smectic-A phase is defined as u = u(x, y, z), In Fig.

1-7 the schematics of the system are shown. Here the direction of : axis is defined

parallel the layer normal. In terms of the periodicity d, the equilibrium position of

the nth layer can be defined as z = nd. Thus, u,(x, y, z) is the displacement of the

nth layer from the equilibrium position.



The free-energy density of this system can be written as a summation of two

elastic energies, as was introduced by de Gennes[13].

1 &2U &2U 1 Ou
f = fo + -KI(- + + + B(-)2 (1.9)

2 d22 y 2  2 az

Here the first term is the splay term with K1 as the elastic constant. The second

term is the compression energy with B as the compressibility constant.

The Absence of True Long Range Order in Lamellae

It was shown by Landau and Peierls[14], [15] that the long-range positional crys-

talline order in less-than-three dimensions, at finite temperatures, is destroyed by

long wavelength thermal fluctuations. The smectic phase has long-range order in one

dimension. It is shown below that in three dimensions, the thermal fluctuations of

the layers diverge logarithmically with the size of the sample[16].

The free energy of the fluctuating membranes was introduced in Eq. 1.9. Using

the Fourier transform and the equipartition theorem for Eq. 1.9 we get for the mean

square displacement due to the qth mode of fluctuation with the expression:

kT
< jq 2 > B(1.10)

The mean square of the displacement of the bilayer can be calculated by summing

over all the wave vectors in the phase space, -oo < qz < oo and qmi,, < q_ < qmax-

Here qmi, = 27r/L where L is the size of the sample, qmax , 27r/a, where a is the

minimum conceivable curvature, typically the in-plane distance between consecutive

molecules. Thus, the total mean square displacement is,

fkT dq
< u(r) 2 >=

(2r)3 f Bq2 + Kiq

kT m_•x, 27rq dq±
(27 )3 . dqz 2 qdq,qmin BqZ + Kqi



kT fmax dqI

kT L
U In -)

47r I a

Here we see the divergence of the displacement fluctuations < u(r)2 > with the

sample size L.This is the Landau-Peierls instability that states the one-dimensionally

ordered system cannot have the true long-range order due to the long-wavelength fluc-

tuations. However, since the divergence is logarithmic, there still exists a quasi-long

range smectic order. This ordering may be defined in general by the density correla-

tions, which as will be shown later, goes as the exponential power of the displacement.

In the case of the one-dimensional system, the ordering shows the algebraic decay with

the critical exponent 7 where we define rj to be,

kT
qK (1.11)87r0 A817

While the calculations described above concern only the thermotropic systems

which consist of a single component for which the phase is determined only by the

temperature, for lyotropic systems, phase transitions depend on both concentration

and temperature. Therefore, for a lyotropic system, we not only have to consider the

layer displacements, but also changes in the local concentration 6c(#i)[1]. This occurs

only when the system consists of more than one component and the local concentra-

tion fluctuates. There are two origins for these fluctuations. The first is the change

of the thickness of the bilayer. The second is the layer displacements at constant

membrane thickness which can also cause the local concentration to fluctuate.

Because of the concentration fluctuations, the expression for free energy density
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Figure 1-8: The two contributions for the concentration fluctuation:A) The fluctuation
of the thickness of membranes. B) The fluctuation coming from the displacement of the
membranes. cl and c2 are the two local surfactant concentrations

Eq. 1.9 must be modified. Introducing the new parameter 6c(r), it becomes:

B ou 2 1 )2U a2U 1 u
f = fo + -(-) + -K( - +  ±+ _c+ )Cc2-C (1.12)

2 9x 2 2y 2  2X (Z

Here K is the splay constant which was introduced as K1 before in Eq. 1.9, and B is

the compressibility modulus at fixed concentration. Note that in the case of lyotropic

lamellae, the second term which describes the energy necessary for the configuration of

the bending corresponds to the splay mode for thermotropic liquid crystals, and the

terms bending constant or bending/bulk modulus are commonly used for K. - is the

osmotic compressibility, where only the compression of the bilayer at fixed periodicity

is considered. C, is the coupling constant between the layer displacements and the
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Figure 1-9: Schematic representations of the compression of a lyotropic smectic-A. The
elastic stresses are controlled by the three elastic constants B, B, x respectively.

concentration fluctuations.

In the Appendix, it is shown that B which is defined by B = B - XC', is

the compressibility at fixed chemical potential, thus, the compressibility at constant

surfactant-membrane thickness.

Macroscopic and Microscopic Parameters

The elastic constants B, B and X depend on several microscopic parameters that

characterize the system[17].

Here we define 6 as the bilayer thickness, d, as the layer periodicity, d as the

intermembrane distance so that dP = d + 6, p as the total mass density, c as the



surfactant mass fraction of the total, m as the surfactant mass and v as the surfactant

volume. The molecular number density of the surfactant is given by the equation:

pc 6n = - (1.13)
m, dpv

For a membrane that is part of a layered structure, its thickness is affected by the

presence of the neighboring membranes, so that it is more compressed than a free

membrane. So, in the free energy for the bilayer structure, there exist two terms:

the compression of the membrane, and the intermembrane interaction. So, if we

determine 60 to be the membrane thickness without compression interaction, then

dpo is the periodicity calculated from Eq. 1.13 using 60 and the free energy density

can be written as:

1 pc,, - So V(d,)f = C-( )2 + (1.14)
2m 6o d,

Here V(dp) is the intermembrane interaction, and e is the surfactant characteristic

energy, evaluated by Golubovic et.al.[18] and typically of the order of kT

Using Eq. 1.13, we can write Eq. 1.14 in the form:

1 pc d, - do V(d,)
f = ( )2 (d + (1.15)2 m do dp

The equiliburium periodicity for this system is the periodicity which minimizes the

free energy,

Of pc dp - do a V(d,)
f _ ( ) + ( P)= 0  (1.16)8d, m do md, dp

using a Taylor expansion, the free energy density can be written as:

1 2pf )2 f 2ff = fo + 2[id (dp - dpeq) 2 + (dp - dpeq)S + 26C2

Here dpeq is the equilibrium periodicity of the membranes. Using Ou/z: = (dp -



dpeq)/dpeq, and comparing with Eq. 1.12:

B = U + ( d )dpeq
do d clM

U 3d
c - ( peq - 2)

C do

-1 3dpeq 2)

Where,

Using the definition B = B - )-C'C

U pc dpeq
m do

and Eq. 1.16,

Using the definition of rl 1.11,

The bending modulus of I

function of the rigidity of the

--2 V((dP)
B = dpeq ( )

peq

2 kT
9 = qgo,87rv

the lyotropic smectic

individual membrane:

K = -
dpeq

(1.20)

(1.21)

layers K can be expressed as a

(1.22)

In order to proceed with the calculation, we have to know the intermembrane inter-

action V(d). In the next section, we will discuss the different types of interactions

and their persistent lengths.

1.4 Interlayer Interactions

The interactions between membranes have a variety of origins. The most important

ones are described here.

(1.17)

(1.18)

(1.19)



1.4.1 Steric interaction

The idea of repulsive interactions between the layers, as the result of the decrease of

the entropy due to layer stacking was introduced by Helfrich in 1980 [19]. For a freely

undulating membrane of rigidity K, the local bending energy can be described using

u, the displacement of the membrane from the equilibrium position, The free energy

is written as

F = Fo + (VIu)2dS (1.23)

Here, dS is the area element perpendicular to the layer normal. And

U 2u = 2u
VU2 = + y (1.24)

From the equipartition theorem we have

kT
S < jUqL12 >= U (1.25)

where S is the membrane area. Now, if the membrane is sandwiched between two

boundary walls, a large number of initially allowed bend conformations is forbidden

because the membranes cannot intersect the walls. This constraint in the number of

possible states is brought in by introducing the cut-off wave length for the fluctuations:

this causes a decrease in the configuration entropy and induces a steric repulsive

interaction. The energy density of the interaction can be understood from Fig. 1-10.

Expressing the displacement as u(r)= f uqeiq'rdq , we have from Eq. 1.25

< 2 (r) >= JUql 2d2qj (1.26)

S qmax kT 1
_ _• 2qdqdO (1.27)(27r)2 J fqman S rq
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Figure 1-10: The undulating membrane with the given energysandwiched by the walls.

kT 1 1
- ( 2 2 )4 q, q~m qmax

(1.28)

where qm, and qmin are the wave vectors in the in-plane direction of the minimum

and the maximum allowed wave length. We call ý as the largest allowed wavelength

at energy kT for the membrane between the walls. By definition, qmin = 27r/ý. The

minimum physically acceptable curvature is related to the mean intermolecular in-

plane distance a, and in the case of surfactant membranes, a is typically about 5A1.

So qmax = 27r/a qmax < qmin, and we can neglect the term qmax. The Eq. 1.28

becomes,

< u 2(r) kT 2

The maximum amplitude of the fluctuations d is the separation between the mem-

ZOOO*ýýýý



branes, and it is thus connected to ý via:

We can consider the interactions between membranes as resulting from pressure

due to undulations. Using Boltzmann's equation,

kT kT (kT) 2
P - - N (1.29)V Nde2  -rd3

This leads to the free energy density per unit area F/S of the form,

F (kT) 2

Vsteric(d) = =A (1.30)
S Kd2

The exact calculation using the Landau-de Gennes elastic energy for the smectics

gives A = 3 r2/128[19]. Thus, this is the interaction which works repulsively between

membranes, and becomes important only when the membranes are flexible, that is

when K is in the range of kT.

This steric interaction is an entropic effect as it costs energy to introduce order

(the layer structure), to a disordered system. The free energy is of the order of 1/Kd2

Thus, in the case of a >» kT, this effect is not observable except when d is extremely

small. This is probably why its discovery had to wait until fluid membranes with

large flexibility were studied intensively.

1.4.2 Electrostatic interaction

Nonionic solvent

When ionic surfactants are mixed with nonionic solvents, they form membranes where

the total charge is spread uniformly on the surface. As is always the case for the

lamellae, the ends of surfactant molecules in adjacent membranes that have the same

polarity face each other. Therefore the electrostatic interactions are always repulsive.



The contribution to the free energy per unit area from the electrostatic force, in first

order to d, is proportional to 1/d. It was precisely calculated by D. Roux [20] who

obtained

7r2kT 1 c
Velec-nonion = ( 1 -( -). (1.31)

4Le d Led

Here Le has units of length and it is defined as Le = re 2 /ckT [21], c is the

surface area per charged polar head, e is the electron charge and C is the surfactant

characteristic energy as was introduced before and has typical values of the order of

kT. (For pure water at room temperature. Le P 5A.)

Ionic solvent

When the solvent is ionic, the ions screen the charges on the surface of the mem-

branes and the interactions between the membranes become proportional to the ion

concentration in the solvent [22]. In this case

d
Velec-ion = Eoexp(- ) (1.32)

AD

Here AD is the Debye length which determines the range of the interaction, and is

defined as AD = 3.04/c where c is the ion concentration per molel-1, Eo is proportional

to o 2/c, where a is the surface charge density. Typically, the Debye length AD is much

shorter than the periodicity. Thus for the system with beyond certain periodicity,

addition of salt, which screens the charges of ionic surfactants, can be assumed to

create a system without the electrostatic interaction.

1.4.3 Hydration interaction

At the surface of a membrane where the hydrophilic head groups lie, there exist

a thin layer of water. As two surfaces approach, dehydration of the surface occurs.



The energy cost is the origin of the repulsive force between these surfaces. This force

decays quickly and is given empirically as an exponential function of the distance[23].

d
VH = Hexp(--) (1.33)

Here As is a constant, typically 2 - 3A, and Ho is a constant of the order of 2 x 103

erg. cm -2 This interaction dominates for distances less that 10 A but is negligible for

distances larger than 30A.

1.4.4 Van der Waals interaction

The induced dipole-dipole interaction between the surfactant molecules in adjacent

membranes is called the Van der Waals interaction. Since the axis of the dipole is

perpendicular to the plane of the membrane, the interaction between membranes is

attractive. It is well known that the force between the two dipoles is proportional

to 1/d 6 . By integrating over the entire plane, we find that the energy of the two

membranes which consists of vertically suspended dipoles is

-H 1 1 2
12r d2  (d + 26)2 (d +6)2

Where 6 is the thickness of the membrane, d is the periodicity, and H is the

Hamaker constant. Ninham et.al. [24] have evaluated this constant to be - kT,

which was confirmed experimentally by Marra et.al.[25]. When d 0 6, VVDW ; HId2,

but when d > 6, VVDW - HS2/d4 .

Thus, for r, ; kT, the Helfrich interaction is comparable to the VDW interaction

for small periodicities, but becomes dominant as the periodicity increases. The elec-

trostatic force decays very slowly with the layer separation. As a lamellar phase is

swollen, it is the most intense force. By choosing a non-ionic surfactant, or adding

salt to the solvent to screen the charges of the membranes, charge-neutral membranes

can be created. In these cases, interactions between the membranes will be doninated



by the steric force, where the fluctuation itself is the origin of the stabilization of the

phase. Until recently, charge-neutral membranes with small rigidity had not been

studied. Thus the experimental exploration of this theoretically developed system is

very interesting, and is the main goal of this thesis.

1.5 Elastic Constants

1.5.1 Non-Ionic Systems

For a non-ionic system, the dominant interaction is the steric interaction. The inter-

action potential per unit surface has been previously derived Eq. 1.30:

3r 2 (kT) 2

Vsteric(d) = 3 2 (kT 2  (1.34)128 rd2

Substituting into Eq. 1.20 we get:

97r 2 (kT) 2 d (135)B = 64q (1.35)64 r d4

Using the relation K = K/dpeq , and 71 as given in Eq. 1.11 we obtain the

universal relation,

4 6
= -(1 - d) 2  (1.36)

3 dpeq

For the dilute bilayer system the expansion around the equilibrium state gives

(do , dpeq = d). By substituting Eq. 1.30 into Eq. 1.17, 1.18 and 1.19, and using,

12r 2'vK

(1 - 1)6d 2

as calculated by Lubensky et.al.[18], we find for the elastic constants:



(1.37)

(1.38)

- 1 12'72p 2v2K

(1 - - )m2V 2d

B

(1- 4 )d3 ,

127 2pv,

Co (1 - )mbd2 '

972 (kT) 2

64 d3 ' (1.39)

B only concerns the interaction, while B is related to the intrinsic energy of the

bilayer and the interaction. From the relations above,

B 256 2

B 3- kT

In the case where ic kT, B/B " 150

1.5.2 Electrostatically Stabilized Lamellae

In the case of electrostatically stabilized lamellae in a nonionic solvent (Eq.

above)
SIkT

V (d) -
4 LBd

Thus,

S7r kT dpeq
2 LB d3

and

1.31

(1.40)



and

FrkTLB 6
r =(1- )3 (1.41)2,d d

With an approximation similar to that used for the steric system, we obtain,

-1 P2 v E d B 6X m , B- C, dCo pemm2 6 Vd

and

rkT
B 2Ld2  (1.42)2Lad2

1.6 Dilution of a Lamellar Phase

As we have mentioned before, it is possible to swell a lamellar phase by reducing

the concentration of the surfactant. With the swelling of this periodic system, some

interesting phenomena have been observed.

The periodicity of the membranes exhibits a logarithmic dependence on the con-

centration caused by thermal fluctuations [26], [27]. This had, in the case of the

bilayer system, allowed the extraction of the membrane bending rigidity k. Within

the first order approximation, it is natural to imagine that the periodicity of lamellae

is determined only by the concentration of the surfactant, as given by the dilution

law,

6

where, 6 is the bilayer thickness, and 0 is the surfactant volume fraction. However,

as the fluctuation amplitude increases, because of the difference of the actual surface

area of the membranes and the projected area, the increase of the periodicity deviates

from being proportional to 1/q. In order to describe this idea, we will again use the

model of a membrane between two walls. For an undulating membrane, the relation
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Figure 1-11: The Actual membrane area S and the projected area So

between the projected area(S) and the actual surface area of the membrane(So) can

be written as,

S = So[1 + AS]

1
S = So[1 + -(Vu) 2]2

Now, as described before, for a sandwiched membrane we have Eq. 1.25,

S kT< Uq nq4
< sq

Thus,
1AS ~ 22I qmaqmin

kTq 2qdq
4 2rqdq

'CQ

kT r
(1.43),-'O - in

K 6

As ( z d, ( Eq. 1.4.1), and 6/d = € to first order, and So = V/d, S = 'V/6, we

get:

kT d
InS ~ So[1 +



UT 1S So[1 + In -]

This leads to,

6 kT 1
d - - T[1 + In-] (1.44)

The exact calculation gives[27],

6 kT 6 FR1
d = -[1 + In(c- ý ] (1.45)

4 4rr a kT

Here, a is the square root of the area per polar head for a surfactant molecule.

Typically a - 5A, c is a model dependent constant, and for dilute lyotropic smectic-A

phases, Glubovic et.al. [18] have proposed c = (32/37r)1/2 1.84. 6 is the thickness of

the membrane. This shows that the periodicity of the fluctuating membranes deviates

from the linear dilution law and shows a logarithmic correction, The correction part is

proportional to the temperature, and the logarithm of the surfactant volume fraction.



Chapter 2

X-ray scattering : Theory

In this chapter, the theory of x-ray scattering from lamellar phases will be described.

X-ray scattering is a powerful technique to probe the structure of materials in the

atomic/molecular scale, when the characteristic length of the system is comparable

to the wavelength of the x-rays(CuK,, : A ~ 1.54 A). The x-rays are scattered by

the electrons in the matter. Thus, they contain direct information on the positional

correlations of the atomic electrons.

One of the features of the interaction between x-rays and atomic electrons is that

because of the high energy of an x-rays (- 1OKeV)photon compared to the electronic

energy - eV , the difference in the magnitude of the incoming and the outgoing wave

vectors is negligible. The scattering under this condition is called quasi-elastic where,

Ikin| M |koutI

The scattering vector is defined by the difference between the incident and scat-

tered x-rays,

qscattered = Ikout - kinl

The incident photon is scattered by the electron cloud of the material which has
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Figure 2-1: The scattering of x-rays by matter.

density p(x). The scattering cross section is proportional to p. The amplitude of the

scattered x-ray can be written as

A(q) = y p(x)eiq'xd 3X (2.1)

The Intensity scattered by the volume V is,

(2.2)I(q) =< IJ p(x)eiq'xd 3 x 2 >JV

The precise derivation of this equation is done in Joel Brock's thesis[28].

2.1 Scattering from a one-dimensional periodic

system: Lamellae

Let us model a lamellar system as a one-dimensional periodic order with no fluctua-

tions. Such a system will be a regularly spaced stack of N membranes with periodicity

dp, and thickness 6. The density distribution along the z direction (defined as parallel

to the layer normal) of the system is,

N-1

p(x) = E po(z - nd)
0

for x1 < L (2.3)

Skin

/
/
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Figure 2-2: The schematic of the surfactant density as a function of z.

Here p(x) is the density profile of membranes stack of N within the crystal with

transverse size L, and po(z) $ 0 only when 0 < - < 6. Substituting into Eq. 2.2, the

intensity profile can be rewritten as,

N-1

I(q) =< I eiqz(m-n)dl/// po(r)eir-qdrl2 >
n,m=O0

The first factor represents the structure factorS(q):

N-1

I eiqz(m-n)d
n,m=0O

(2.4)

(2.5)

---- J



The second part of the Eq. 2.4 is the form factor of a unit cell:

J po.(r)eiq'rdr 2  (2.6)

The size of this unit cell in the z-direction is the thickness of the membrane 6 and

L is the in the in-plane width.

We now introduce a parameter to describe thermal fluctuations. As shown in

chapter 1, this is the surface displacement u. The density function Eq. 2.3 can be

written as,

N-1

p(x) = po(z - nd + un) forxz < L (2.7)
0

Where u, is the displacement of the nth layer from its equilibrium position. Substi-

tuting into 2.4, we get as the structure factor,

N-1

S(q) = eiqz(mn)d d2r±d2r'eiq.(r± - r ) < exp(iqz(un(r±) - um(r'))) >,
n,m=O

(2.8)
The structure factor contains the undulation originated from the displacement u,.

If we assume that the thermally undulating membranes have no internal structure,

i.e. infinitesimally thin membranes, the density profile Eq. 2.4can be written as a 6

function. Since the Fourier transform of the 6 function is a constant, the intensity is

the structure factor multiplied by a constant.

2.1.1 Smectic Structure Factor

Caille has calculated the structure factor for smectic liquid crystals under the ap-

proximation that the density is a continuous function of the positional vector r in all

direction, which corresponds to the approximation that L = nd, -- 00 . The struc-

ture factor can be written as the fourier transform of the density density correlation



function in three dimension:

S(q) - e-iq.r g(r)dr, (2.9)

where g(r) is the density density correlation function:

g(r) =< p(r)p(O) >, (2.10)

In the case of thermotropic smectics that consist of infinitesimally thin membranes,

this correlation function includes only contributions from the thermal fluctuations of

the membranes. The electronic density distribution is:

p(r) = Acos[q,(z - u(r))], (2.11)

then within the harmonic approximation, where u(r) is much smaller than the

periodicity of the smectic (< Ju(r) - u(O)12 > /d2 < 1), u(r) can be considered to be

a Gaussian variable. It will be shown later that the amplitude of this displacement

u(r) caused by thermal fluctuations is a function of temperature. By increasing the

temperature, it increases to the point where this condition does not apply anymore.

In such cases however, the system undergoes a phase transition from the smectic

phase to a more disordered phase. Thus. the density correlation function takes the

form,

2

g(r) = A2cos(qz)exp(- < Ivu(r) - u(O)12 >) (2.12)

In order to calculate < Iu(r) - u(0)12 >, expression for the free energy derived for

the thermotropic smectics was used Eq. 1.9. Using the equipartition theorem as it

was done in the Chapter 1 for calculating uq 2, and by including the phase factor,

we obtain

< ju(r) - u(O) 2 >= (2 < u(q)2 > (1 - )dq,



Substituting in Eq. 1.10, one finds

2kT J (1 - e -' 2r)
< u(r)-u(0)2  27)3 q + Kq 2 qdqdq,

where B is the compressibility constant and K is the bending constant. Note here that

his approximation for z -+ co results in replacing the summation for each descrete

mode in qz by the integral. By extending the q, upper limit to oo, the calculation

described in the Appendix gives,

kT r2 2

< Iu(r)- u(0)|2 >= 4 (2v•(2 + 21 + E-L( )) (2.13)a2 4A)zj

where A = K/-B is the penetration depth, 7 = 0.5772156649..., is Euler's constant

and El(x) is the exponential integral function,

E lo, W e-tE(x) = t

Ei(x) = -- lnZ- (-1)(
n=1 n(n!)

Substituting into Eq. 2.12 we obtain[29],

g(r) = e-2M(2)2Mexp(-MEl(r2)/4Az) (2.14)r_

Here M is the Debye-Waller factor:

M = q2kT (2.15)

In the vicinity of scattering vector close to q = qgo Eq. 2.14 can be written as,

g(r) = e-2 27(2)nexp(-zEi(r )/4Az) (2.16)

We also define ,
q2 kT (qom) 2kT

M = = m2r2 (2.17)



where m is the integer which determines the higher harmonic terms. From the density

density correlation function Eq. 2.14, we can see that the correlation decays with r1

and z as a power law with exponent M, rather than exponentially which in the

vicinity of quasi Bragg-peak position, M becomes q. This is the characteristic of a

two-dimensional system. We can look at the asymptotic limits: r1 = /x72 + y2 < Z.

or z < r1 ,

In these limits, the correlation function calculated from Eq. 2.14 takes the forms,

g(r) = )Mexp(-My), r1 << (Az)1/ 2

g(r)= Az )1/2 (2.18){ )Mexp(-2M-y), rI > (Az)1/2

Here, it is assumed that smectic structure is uniform in the plane, so x and y are

treated equally.

The Fourier transform of Eq. 2.14 gives the intensity profile. Because of the

El function, it is impossible to perform the integration explicitly, but instead, the

asymptotic cases can be again calculated.

S(q., qz) = d2rdze-iq_ re-i(q,)z g(r) (2.19)

In order to see the q dependence close to the quasi-Bragg peak, we substitute q = qo,

and by replacing M by q we get,

qL = O

. 4d'_2  /4,

S(O, qz) - d2rdzei(q. - °( r. )e-(r(2.20)

By changing the variable, r2/4Az = y also d2r1 = ridr±d4, this becomes,

S(o, q,).~ d Zei( -o ) diyy-exp(-E(y)) (w2.'21)

where the last integral is a constant. Through dimensional arguments we can get,



1
S(O, qz) ? z q 7 (2.22)

By a similar calculation and by changing 4Az/r 2 = y we get,

qz =O 0

1
S(q,O0) ~ 4 (2.23)

These are the well known asymptotic structure factors of the smectic-A liquid

crystals. q± = 0

A similar calculation for the correlation function of displacements has been done

by Gunter et al[30], and more recently in an unpublished work by Zhang et.al. In their

calculations, they use ndp in stead of z where d4 is the periodicity of the smectics

and q, by n7r/L. Thus, for the calculation of their correlation function, they replaced

the z-direction calculation by the summation over n where n is the index of the layer.

The calculation of Gunter et. al. gives,

< lu,(r 1) - uo(0)12 > -kT [ln(r[)2 + 2 7 + E(L) f( Ad)] (2.24)4 7r Výi 2a 4Az| ra2

by using Eq. 2.12,

g(r) = (2d)2X e- 2Bex p (- X E l (r )/4Az) (2.25)r,

E(x) is the same integral function which was introduced for the Caille's function. X,

B are defined by,

q2kT X Ad
X B = -(2y - f( (-)) (2.26)

8 7r /I 2 r2

Here f(x) is
2 • d t a n - ' y

f (x)= - dy (2.27)

Their result differs from Caille's function by the introduction of the function f(x).



As x -- oo, f(x) diverges logarithmically:

f(x) -- In(x) (2.28)

The calculation by Zhang et.al gives:

2q Y 1 - cos(nrz/L) r 2

< lu(rI,z) - u(0,0)12 >= 2( + ) (2.29)
q0 n=o n 4Az

Very close to the m-th order peak, the approximation qz = qm was made in Eq. 2.12

where qm is defined as qm = mqo. Also by employing the relation qm = m2re, they

get,

N 1 - cos(nrz/L) -mr ,

g(r) = exp(-qm E )exp( ) (2.30)
n=0 n 4Az

The difference between the two is that Zhang accounts for the finite size of the

system, Gunter et.al.'s calculation is done for an infinite size approximation. The

calculation of these two density density correlation functions shows however, a close

agreement by substituting qz - qm in the calculation by Gunter et.al. except of very

large z where the infinite size approximation deviates from the calculation done for

the finize size sample. The comparison was done by Zhang et.al. along with the

comparison with the Caille's correlation function. They showed that both of them

have a significantly higher value than Caille's correlation function Eq. 2.14. The

ratio was shown to be,

g(Gunter, Zhang) 4 7X Ad, m
g il) = _( 

2 
)lm > 1 (2.31)

9 (Caille) a

For lipid bilayers, d•A > a2, where A is the penetration depth, d, is the periodic-

ity, and a is the intermolecular distance between the surfactants. 7 ,m is positive by

definition.



2.1.2 Fluctuations of the Concentration

As we have seen in the first chapter in the case of lyotropic lamellae, we have to take

into account the concentration fluctuations. The electronic density is a function of

both concentration and displacement u(r) From Eq. 2.11, we have ,

p(r) = p(c+ < 6c(r) >) + A < cos[qzz,- - u(r)] > (2.32)

In order to calculate the correlation functions of the concentration and the displace-

ment, we can start from the free energy expression, Eq. 1.12.

Using the equipartition theorem, and the calculation done in the Appendix, we

get, [31], [32]

kT
< |Uq 2 >= qT (2.33)Bq2 + Kq4

~ (q)kT(Bq 2 + Kq4 )
< 6c(q)6c(-q) >= -y q( + i4q (2.34)

kTXCqz
< 6c(q)u_q[ >=< Uq6Sc(-q)l >= zqi 4 (2.35)

Bq? + KqA

The density-density correlation function, which contributes to the intensity profile.

can be written as [32],

2
g(r)= p< c(r)6c(O) > +A os(q)ep- < u(r - u()2 >] (2.36)

The Fourier transform of the density correlation, Eq. 2.36, gives the expression for

the intensity scattered by a two-component smectic-A. It contains two terms: The

first term comes from the concentration fluctuations < Sc(r-ýc(O) > and the second

term is the quasi-Bragg part, related to the smectic ordering. Thus



2

(q) = p2 < c(-q)c(q) > + dre-i rcos(q )e p[  < ju(r) -u() 2 >] (2.37)

Scattering at q -- 0

While the intensity profile originating from concentration fluctuation was given by

the correlation function in the Eq. 2.34, in fact X is a decreasing function of q [32].

In order to calculate explicitly the intensity increase at small q, we have to include

the higher order terms for the concentration fluctuations in the free energy. As it was

calculated in [32],

X(q) + (2.38)
1+ q + 2 qi

where X is the osmotic compressibility of the membrane as defined in Chapter 1,

and ýz , ý± are the correlation lengths for the concentration fluctuations along and

perpendicular to the layer normal respectively. This gives the small angle excess

scattering. From Eqs. 2.34 and 2.37, it can be shown that the intensity increases

anisotropically at low q in qz direction and q± directions.

< 6c(qz,O)6c(-q,,O) >--+ kT as q, - 0 (2.39)

< 6c(O, q±)bc(O, -q±) >-- kTX as q± -+ 0 (2.40)

Quasi-Bragg peak

The second term in Eq. 2.37 which originates from the quasi-Bragg scattering is the

same as the classical structure factor of the one-component smectic-A. It also diverges

anisotropically as a function of q in the vicinity of the Bragg peak position as shown

in Eqs. 2.22, 2.23.



It had been shown[30] that the intensity of the first order Bragg peak scales as

A'-7/d 2 , where A the penetration length that was introduced before, can be written

as A = (K/B)1 /2 . Substituting for K and B from Eqs. 1.35 and 1.22, for a sterically

interacting system. A can be written as, A = (8/37r)(Kd/kT). Thus, the quasi Bragg

peak intensity decreases as d- - ' q+ I, i.e., with the increase of the periodicity.

On the other hand, for the scattering at q - 0. the intensity is proportional to -(q)

which, at q = 0 is proportional to dp, which is the periodicity of the smectics.

Experimentally, it is not possible to separate the scattering at q --+ 0 from the tail

of the quasi-Bragg peak, and to date there exist no quantitative measurements of the

the small angle scattering(q - 0) without the contribution from quasi-Bragg peak.

Safinva et.al. [2] have constructed the structure factor by using Caille's expression

in the vicinity of the Bragg peak position, taking into account the finite size effects

and the powder averaging, while neglecting the scattering at low q. Starting with the

definition of the structure factor,

S(q) C fdrg(r)e- i q r, (2.41)

where g(r) is given above 2.14. We introduce the average crystalline size of the powder

sample L, as it was introduced by Dutta and Sinha [33], where they have modeled

finite size effects by a Gaussian function. In order to perform the powder averaging

the scattered intensity was averaged over the sphere of equally probable orientations

with q being fixed in space, which in fact is equivalent to averaging the scattering

vector over all possible directions. Taking the real part of the exponential and using

q± = qsinO q, = qcosO, we find

e-q.r sinqr (2.42)
qr

S(q) ocx dz dr±g(r, z)exp(- -) L qr .  (2.43)
where Lq =

where q) = 27/d,



2.1.3 Scattering From the Finite Size Thickness Bilayer

For all of the above, we considered membranes that were infinitesimally thin. In

reality, membranes have a finite size. Therefore, a zero thickness description is inade-

quate for describing the lineshape of the scattered x-rays, especially when the bilayer

thickness becomes comparable to the periodicity itself.

Nallet et a1.[34] have recently modeled the scattering spectrum of lyotropic bilayers

of finite thickness by taking into account both the structure factor and the form factor

and also by including harmonic effects in the structure factor expression.

Under the assumption that the the displacement of the nth layer u, around its

equilibrium position z = nd,, is a function of only z and it is independent of the

transverse coordinates, which corresponds to the case where the curvature energy is

negligible compared to the compression energy, the electronic density distribution Eq.

2.3 can be written as,

N-1

p(x) = j po(z - nd + un), xj < L1  (2.44)
0

p(x) = 0, otherwise (2.45)

Substituting into Eq. 2.4, and by similar calculation as for Eq. 2.4 we obtain,

N-1 6 L

I(q) =< eiqnd < exp(iqz(Un -Uo)) > fo drLp(r)eiq.rdzdr 2 > (2.46)

N-i 1 f L

I(q) = E cos(nqzdp)e-2<IU-n°oi> < oop(r)e.rdzdr 2 > (2.47)
0

The intensity can be described as the product of the structure factor and the form

factor. Assuming the in-plane form factors in the x and y-direction to be equal, and

P(q.)P(qy) = P(q,), and



I(q) = NS(q)P.(qz)P±(q_±)

S(q), is the structure factor with the higher order harmonic terms , P±(q±), and

P-(qz) are the form factors of lamellae, in-plane and in the z direction respectively.

Form factor :along the z-axis

The form factor in the z-direction is the mean square of the Fourier transform of the

density profile of the membrane in that direction:

P= p(z)eiqzdz12 (2.49)

where 6 is the thickness of the bilayer, and p(z) is the electronic density difference

between water and oil. In a simplistic bilayer model, the density profile is modeled as

follows: The electronic density of the head is assumed to be the same as that of water,

while the density of the tail is assumed to be the same as that of oil. This assumption

should not be too far from the reality since the chemical composition of the tails is

C12H25 . The electronic density of the molecule which is the closest to this structure

is that of C12H 26 (0.26 e/A3 ) while octane is CsH1 s and the electronic density is (0.24

e/A3). For the head part, the electronic density for the ether [CH 2 - CH2 - O]" is

0.37, while it is 0.33 for water.

Using the model shown schematically in Fig. 2-3,

p(z) Pwater - Poil, 0 < z < 6 (2.50)
0, otherwise

This leads to,

Pz = 4 (pwater - Po0 )2sin2(q6z/2) (2.51)
qz

(2.48)
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Figure 2-3: The density profile modelled for the L, phases

Form factor: in-plane

The form factor in the in-plane (1) direction, which is correlated to the domain size

L, is not as obvious as for the z-direction form factor. We can model the unit cell

for the electronic density of the membrane for in-plane direction to have a disk-like

shape and of radius L. We can also assume that the density is uniform inside this

unit cell. From a calculation similar to that done for P(z), but with L instead of 6.

we get,

P = Ieiqx L e'Y•dy 2 (2.52)
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where we have assumed that the density is uniform in the in-plane direction for the

membrane. This leads us to

P = 2 sin2 (qL/2)sin2(qL/2) (2.53)
(qxqy)

Structure factor

Using 2.24 for the calculation of the structure factor, and assuming we can ignore

the transverse correlation, ( r± -+ o, and z = nd) the correlation function of only n

< (u" - uo) 2 > can be shown to be

< Un(r ) - (0) 2 >= [n(n) + 7 + In - f( )] (2.54)
2(2 r)a 2 -a 2

By approximating f(Ad,/ira2) = In(Adp/a 2) under the assumption Ad, > a2 , we can

rewrite this as,

<(u - uo) 2 >= 7#k[ln(rn) + -y]d (2.55)

From Eq. 2.48 the structure factor can be written as,

N-1 2

S(qz) = 1 + 2 (1 - N)cos(nqdp)e-<(un-u) 2>
1

Note that we did not make the approximation qz = qn to get the structure factor.

Convolution with the Resolution function

In the detection of the scattered intensity, the finite instrumental resolution must

be taken into account. Calling R(q) the resolution function, we can express the

convoluted intensity as

I,(q) = I(q')R(q - q')d3 q' (2.56)

The resolution funcion R(q) can modeled as a Gaussian function of width Vq,

R(q) = (2rVq2)-23e2Vq7 (2.57)



Figure 2-4: The disk-like electron density model used for the derivation of the form factor

with Vq (Full width at half maximum:FWHM) .

In the in-plane direction, normally the resolution is much wider than the inverse of

the size of the crystals. (From microscopy observations the crystal size in the powder

sample is typically _ 5pm, which corresponds to ; le-5 A-1 for the powder sample,

and much larger for the oriented sample: L±Vq > 1 and NdVq > 1 ). Since PI(qi)

is a much sharper function of ql than the resolution function, we can approximate

the form factor by a 6 function. Thus, convoluting the resolution function, modeled

as a Gaussian function, we get

2rL 2  2
P,7 (q±) = exp( q ) (2.58)Vq2  2Vq

In the z direction, the structure factor varies much more rapidly with qz, than the

form factor P,. Therfore, we approximate the convolution of the resolution function

only with the structure factor.

N-i nqzd, 2qidja(n) + Vq2 dn 2

S,(q,) = 1 + 2 (1- )cos( ) exp( xVqdn1 )N 1 + 2Vq 2d-(n) 2(1 + 2Vq2d a(n))



1X (2.59)
1 + 2Vq2dpa(n)

Where a(n) - < (u, - uo)2 > /2d . Thus. the intensity convoluted with the

resolution can be written as.

I,(q) = PPr(qI)Sr(qz)Pz(qz)

Powder averaging

For a randomly oriented "powder" sample, we have to integrate the scattering vector

over all possible directions in space. Since Pr,(q±) is a much more rapidly varyng

function of q± than PZ(q,) or S(qz) are of q,, we can assume P. and S to be constants.

taken at the point where Pr, is maximum. Thus the powder average becomes,

< P(q) >powder =  sinOdOd Pr(q±) (2.60)

With I q = Iqlsin(O) - qsin(9), the form factor integrated over entire space takes

the form,

ir/2 sinOdO
< Prz(qi) .>powder= 2j 2 Pl (qsin(O)) (2.61)

Substituting Eq. 2.58 into Eq. 2.61 and with x = cos(0) we get,

< Pri(qi) >powder (L2 dx exp(- 2(V 1 - 2 )) (2.62)< P(q.l)> , 2(Vq)2

This is the powder averaged form factor in the in-plane direction. For q much

larger than Vq, we notice that the integrand is always very small except at x ; ±1,

thus, by approximating (1 - x2) P 2(1 - x), and changing the variable 1 - x = u we

get,

< Pr(qj) >powde•= (V) 2 du exp(- (q)2 (2.63)



_ (V0) du exp(-(Vq) 2 U) (2.64)

= 2L  (2.65)
q2

Note that this approximation is only valid with the condition q/Vq > 1, because of

the assumption we made above.

Finally, using the relation N = V/dL2 , we can write the intensity as,

NL2
I(q) = 27r q2 P(q)S(q) (2.66)



Chapter 3

Experimental Techniques

In this chapter, we will describe the system which was investigated. The description

of the sample preparations will be given first, followed by a description the techniques

used for the characterization of the samples. Then, the established phase diagrams

will be given. Finally, we will describe the various x-ray scattering techniques used

for data acquisition.

The system we studied is a mixture of surfactant, water and oil. The surfactant

was is C12Es5 (Pentaethylene-glycol-monododecyl-ether). The chemical structure is

given in Fig. 3-2. The essential character of this surfactant is that it is non-ionic. By

comparison with the more commonly studied surfactants which are ionic, the special

interest of our system is its total suppression of the electrostatic effects so that we can

study a purely sterically stabilized system. In order to study the steric interaction,

in a system with an ionic surfactant, salt must be added to screen the electrostatic

interaction. This makes the system at least ternary, or quaternary if there are two

solvents. In our case. the number of components is kept minimal, and its physical

chemistry becomes simpler to describe.

The second and even more important reason for which the present system at-

tracted our interest is related to its phase diagram: Various phases are stable within

an accessible range of temperature. Moreover in certain regions of the phase dia-

gram: it is possible to go continuously from an oil rich region to a water rich region

while remaining in the same type of phase. In particular the lamellar phase ranges
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Figure 3-1: Phase diagram of C12Es studied by Strey et.al. The surfactant fraction and
water to oil ratio was measured in weight%

from a water bilayer embedded in oil to an oil bilayer embedded in water, through a

symmetric phase with similar amount of oil and water separated by a monolayer of

surfactant. This unique feature of our system allows us to study the cross over from

an asymmetric to a symmetric system.

Another special feature of our system is that the lamellar phases can be well

aligned by methods described later. This allows us to perform x-ray scattering studies

on oriented samples.

3.1 C12E5: Sample Preparation

The chemical form of this surfactant is shown in Fig. 3-2 C12E5 was synthesized by

Fluka Chemical Co. with a purity > 98%. An important concern of the study has

been the stability of the surfactant, which can be easily oxidized by air. In order
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Figure 3-2: The chemical structure of C12E5

to minimize its degradation, several precautions were taken, and its stability was

followed over time.

The bottles, which are hermetically sealed, have always been stored in a refrigera-

tor well below the melting point ( 23°C). After a container was opened, the surfactant

was stored in a nitrogen environment. Under these conditions, it was still found that

the surfactant did not remain stable for more than a month. Moreover, during the

actual preparation of samples, contact with air could not be avoided, and the surfac-

tant started to degrade more rapidly. For this reason, new samples were made every

few days.

The level of the degradation was checked by the shifts in the isotropic to lamellar

transition temperature, as well as by the changes in the critical (clouding point)

temperature, ( the 2 % solution of C12E5 becomes biphasic at 320C).

The octane was also made by Fluka, with a purity of > 99.5%. The water used

was deionized. For the samples used in the experiment at MIT, millipore purified

water was used, while for the powder sample experiments, tridistilled water was used.

The samples were prepared by mixing the components directly in glass test tubes

in order to minimize the number of transfers. They were weighed using a Mettler

balance with a precision of 0.1mg. Once prepared, they were tightly sealed with teflon

caps. Because of the low .vapor pressure of octane, it is crucial to have a good seal in

order not to change the composition due to evaporation.

The volume composition of samples that were made were:



Vsurfactant = 0.15, 0.20, 0.25, 0.30.
Vsurfactant + Vwater + Voil

a Voi = 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80.
Vwater + Voil

We also made a = 0.10 and 0.90 samples, but these did not exhibit a lamellar

phase at temperatures comparable with the others. Since it was essential that we

perform the experiments at the same temperature in order to measure the character-

istic constants which depend both on temperature and concentration, we could not

use them.

In order to plan the scattering experiments, it was crucial to construct the phase

diagrams of the system that shows the transition temperatures and the tempera-

ture range of the lamellar phase. Because of the strong birefringence as well as the

high viscosity of the lamellar phases, optical characterization could be used for these

studies.

3.2 Phase Diagrams

Glass vials containing the samples were placed in a flat acrylic cell which can contain

up to 12 vials. The inner dimensions of the cell are 12cm x 12cm x 1.5cm. Water

flows through the cell from a Neslab heat bath, which regulates the temperature of

the water within ±0.20 C. Two rotating polarizing filters were placed on each side of

the cell. This allowed us to observe the texture and the birefringence with polarized,

and nonpolarized light,.

The basic features of the phase diagram of the CiEj, series which have been

established by Strey et.al.[35], are more or less common to all the studied systems.

There exists a two phase region at high temperatures, where both phases are isotropic,

One of the phases looks turbid while the other phase is transparent. The structure



of the turbid phase has not been studied to date. As the temperature is lowered,

the transparent phase region expands, and . the system enters a one-phase isotropic

phase. This transition is not shown in our phase diagram: in the case a = 0.6, this

transition occurs at around 47°C for ~ = 0.30, and around 400C for y = 0.15. Since

our interest lies in the Lc phase, we did not perform any further investigations of

this phase. Also, in order to avoid phase separation, we were careful not to heat the

samples up into this two-phase region. The one-phase region which lies under the

two phase region is transparent and nonbirefringent at rest. This phase turns out

to be a sponge phase L3, as determined by an NMR study[36]. As we approach the

lamellar L, phase by cooling, the system goes through a two-phase coexistence region.

The lamellar phase which is birefringent first appears at the bottom of the vial. It

expands in volume until it takes over the entire sample space. The temperature range

of the one-phase lamellar region depends on the composition. As shown in the phase

diagram 3-3, it ranges from - 1.5°C for the 7 = 0.15, to - 150C for -y = 0.30. In

general, the lamellar temperature range is larger for the more concentrated (larger 7

) samples and for the asymmetric bilayer configuration ( a -0.2, or 0.8). By cooling

further, another two-phase coexistence region appears in a similar way as at the higher

temperatures.

Because the isotropic to lamellar transition is a first order transition, there will

always be a two phase coexistence region at the phase boundary. For the present

system, this region is about 1.5 0C wide, and does not seem to depend much on the

surfactant fraction y nor the oil to water ratio a. A technical problem with this

transition is that since the densities for the lamellar and the isotropic phases are

quite different, and also the viscosity of the lamellar phase is large, during the slow

cooling from the isotropic phase, they phase-separate due to gravity, and once they

are separated, even after we reach the temperature of one-phase lamellar phase, the

inhomogeneity of the sample does not disappear even after several days.

This unhomogeneity is a serious problem. We need to have an homogeneous

sample in order to carry out the optical or scattering experiments. Therefore, we

developed several procedures to bypass this problem depending on the experiment
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we wished to perform. When we wanted to get homogeneous, randomly-oriented

samples, we found the best way was by quenching. From the isotropic L3 phase, the

system is cooled rapidly (> 100C per minute) into a temperature in the middle of

the lamellar phase. This way we do not allow time for the two phases to separate.

Occasionally, the sample was also mechanically shaken while cooling from the isotropic

phase. However, this latter procedure is not good when we want to align a sample

or to determine the transition temperature. Another way to reduce the gravity effect

is to reduce the sample-cell's vertical height when the system is cooled through the

two-phase coexistence. This way, a more uniform sample is achieved.

3.2.1 Microscope

The flat glass cells used for the optical microscopy studies were purchased from Vitro

Dynamics Co. They have a inner thickness of either 100pm or 200ym, a width of

either 1mm or 2mm, and a length of either 5cm or 10cm.

The cells were cleaned either with Chromic acid, or a glass cleaning solution RBS

pF, and then rinsed throughly with the distilled water. Before loading, the samples

were kept at the temperature which corresponds to one-phase La. The loading was-

done by the use of a syringe. The samples were sealed by flame, taking caution to

assure that they were not burned.

Two microscopes, both with polarizers, were used for the observation with a mag-

nification of 10x 10. One was a Leitz Wetzler microscope equipped with a polaroid

camera. The temperature of the sample on the stage of the Leitz microscope was

regulated by a Mettler hot stage FP52, which allows for temperature scans of 0.2 to

10 deg/min. The other microscope was a Nikon (Optiphoto-Pol): pictures were taken

with a Nikon camera. The temperature of the sample at the Nicon microscope was

regulated by an Instec programmable hotstage HS-1. This allowed cooling rates as

slow as - 0.05 deg/min. In this configuration, we could investigate the effect of the

cooling rate and also the step size of the cooling on the alignment of the lamellae.



Figure 3-4: Spherulite defects observed between the crossed polarizers

Rapid Cooling

As we cool down from the isotropic phase, which shows complete darkness under

crossed polarizer, into the two phase coexisting region, we start to observe interesting

defects. These defects are spherical and have a dark cross in the center. The direction

of the cross depends on the direction of the two polarizers Fig. 3.2.1. This defect was

named Spherulites, by Benton et.al.[37]. and is a known structure of defect lamellar

phases, and has an onion-like texture[38]. The layers are formed in a concentric

manner, with a dislocation in the center caused by the finite curvature allowed by

lamellar membranes. Fig. 3.2.1

The core size of the defects increases as the temperature is lowered deeper into

the lamellar phase. This may indicate that the allowed curvature for the lamellae

is smaller away from the sponge-lamellar transition. As we go into the one-phase

lamellar region, the stars increase in number as well as in the diameter, and eventually,

the entire sample is covered with them.



Figure 3-5: Spherulite defects covering the entire sample

Slow Cooling

By cooling slowly, we could achieve well aligned samples. We start cooling from high

temperatures where we have the dark isotropic region. As we enter the two phase

coexistence region, we first see a bright birefringent line appearing along the glass

edge for about 0.3OC Fig. 3-8. This is a perfectly oriented lamellar phase of only a

few-layer thickness, in contact with the glass surface that causes the alignment. Very

few star defects (spherulites) can be seen, and by cooling to the one-phase lamellar

region, these stars disappear. The sample becomes completely dark. This indicates

that the lamellae are aligned parallel to the glass surface: When the lamellae are

aligned paralell to the glass surface the axis of the molecules is perpendicular to the

polarization of the incoming light. Thus the evidence of good alignment is to see a

completely black sample except at the edge of the cell where, because of the curvature

of the glass, dislocations are found Fig. 3-9. These defects are called oily streaks, and

have been studied by Boltenhagen et.al.[39].

By these optical observations, we determined that the rate of cooling needed in

order to achieve good alignment is< O.10C/min for the 200/im , and > 0.2 0C/min

i
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Figure 3-6: Spherulite defects observed without the crossed polarizers. The dislocation
cores in the center can be observed.
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be seen, towards the center, the

for the 100am cell, the best results were achieved. With the cooling rate slightly

above the good alignment rate another pattern appears, the snake skin-like pattern

Fig. 3-10. This was theoretically modeled by Clark et.al.[40] for the smectic-A liquid

crystals, and corresponds to a periodic network of dislocations caused by the applied

strain. In the biphasic region, the periodicity of the lamellae changes with the change

of temperature until the temperature reaches that of the one-phase region, and the
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Figure 3-8: Crystalline layers directly at the surface of the glass capillary

periodicity of the lamellae reaches the final the one-phase periodicity determined by

the concentration and the thermodynamics. However, this increase causes a strain,

and when the rate of the temperature change is faster than the lamellae can adjust

their periodicity, it causes the periodic dislocations.

In fact, there is a slight uncertainty in the determination of the transition tem-

perature of the two phase coexistence to one phase lamellae, since we cannot see

the lamellae growing when the sample is cooled down slowly (both are black). The

lamellae are extremely hard to see. On the other hand, when we cooled down fast, we

do not really see the equilibrium state for each temperature. In order to optimize the

equilibrium, we stayed at every 0.20 C, for about a day, and looked at it with the non-

polarized light. The boundary between the stars caused by the biphasic coexistence

disappeared in the one phase region. But, since the speed of the phase separation,

increases at the transition temperature, it was never quite clear where exactly the

borderline was. In the phase diagrams 3-3, these lines are presented as a dotted line.



Figure 3-9: An Oily streak at the edge of glass

Figure 3-10: Snake skin-like pattern of the dislocation caused by the strain



3.3 X-ray scattering, experimental setup

We have used two different x-ray scattering setups in order to perform high-resolution

and low-resolution scattering. In both cases we used the Rigaku rotating anode source

(Rigaku RU2000) that produces the C, K,, lines (AK,, = 1.541)

3.3.1 X-ray scattering from powder samples

The Rigaku RU2000 source was operated at 1kW (25mA, 40kV). The output was

collimated by a gold-plated quartz mirror. A nickel plate was placed at the output

in order to eliminate the K, lines. The detector was a linear detector with 512

channels (99 channels /cm) and was placed 81 cm from the sample position. The

beam path was in vacuum. The resolution of the direct beam was measured to be

Aq = 1.7 x 10-3A - 1 full width at half maximum (FWHM) The schematics of the low

resolution apparatus are shown in Fig. 3-11

The samples were loaded into 1 mm diameter glass capillaries and six of them

at a time were placed in a sample holder. They could be moved horizontally, which

made data aquisition easier and faster.

The temperature within the sample holder was controlled by a Neslab heat bath

with a temperature accuracy of +0.10 C. The glass capillaries were bought from

Mark-Roehrchen. Because the capillaries had a size destribution, their diameters

were remeasured at the lab and only the ones with diameters of 1 mm + 5% were

used. The thickness of the glass was chosen to be 10pm in order to minimize the

attenuation of x-rays, they were thus, extremely fragile. To fill these capillaries, we

made tiny pipets out of the glass tubes, that fit inside the capillaries. Once filled,

they were sealed by flame. To make sure of the tightness of the seal, they were also

covered by epoxy. The sealed capillaries were then put in the sample holder. The

peak intensity was normalized by the transmission of the direct beam. In order to

subtract the background, we measured the scattering from the pure solvent and the

glass and subtract it from the signal.

. The most important technical difficulties involved the production of homogeneous
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Figure 3-11: The experimental setup for the x-ray scattering of the powder samples.

samples and their protection from evaporation. An inhorriogeneous sample gives rise

to multiple x-ray peaks and evaporation causes a shift of the x-ray peak-position as a

function of time. Thus, the samples must be well mixed and in the one-phase lamellar

phase when we put them into the cells. The cells should be as filled as possible and

the seals must be perfectly tight.

The gravity inside the one-phase lamellar did not have and important effects.

No difference in the periodicity of the lamellae between the top and the bottom of

the sample cell was observed as we scanned across the 4 cm of sample height. Slow



Figure 3-12: Leek-like alignment

cooling through the two-phase coexistence region will cause phase separation. As all

of the samples turned out to be in one-phase lamellar phase, at temperature 33Co,

the samples were stored at 33Co, and the experiments were also carried out at the

same temperature.

If the samples remained within the capillaries for long periods of time, (3 days)

leek-like alignment was produced due to the contact with the capillary walls Fig. 3-

12. So fresh samples had to be made every so often, since we wanted randomly

oriented samples without any prefered long-range orientations. We also checked the

powderness using the microscope before and after the scan to make sure that the

sample did not orient during the data acquisition.
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Figure 3-13: The geometry of the non-dispersive orientation of the monochromator and
analyzer crystals and sample.

3.3.2 High-Resolution X-ray Scattering from Well Oriented

Samples

For these experiments, the Rigaku was operated at 7.42 kW ( 140 mA, 53 kV). Ger-

manium (111) crystals were used as monochromator and analyzer in the nondispersive

mode as shown Fig. 3-13[16]. Both K,, = 1.54051A and KI2 = 1.54433A lines were

used in order to gain intensity. The longitudinal resolution could be modeled as a

Lorenzian with Aq = 4.5 x 10-A4- 1 full width at half maximum. The technique is

illustrated in Fig. 3-14

The sample was placed at the center of rotation of a four-cycle Huber goniometer

inside a homemade sample holder Fig. 3-15. In order to orient the samples, two pieces
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of glass 8mm x 4mm x 1mm glued upon each other with a separation of 100Pm were

used. As the absorption of x-rays by the glass is high, we developed a technique in

which the x-ray does not have to pass through the glass. The two pieces of glass

are attatched through the silicon separator, only at the top and the bottom, and are

open on both sides where the x-ray beam comes in and goes out. This sample cell
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is housed inside a beryllium cell, which is also the sample reservoir. Beryllium was

chosen because it is highly transparent to x-rays.

Temperature stability and homogenity and slow temperature scan rates were es-

sential for good alignment . Heating was produced by a Minco heater (R = 37.5Q)

A 300kQ (YSI 44014) silicon thermistor was used to measure the temperature. A

Lakeshore 93C controller was used for the temperature control and was operated by a

GateWay Computer through Camac to achieve scan rates of - 0.1 deg/min. To keep

the homogenity of the temperature, the oven was covered with the acrylic holder,

except for the beam path, also the entire goniometer was covered with a big sheet of

paper which seemed to efficiently decreased the temperature fluctuation. The tem-

perature stability was ±5mK. Also as it has been emphasized before, having a large

sample height during the slow cooling down in the biphasic region, enhances the phase

separation. Because of the configuration of the setup, we had to have the sample in

the vertical position as the scattering experiment was performed. So we established

the procedure where the cooling was done while the sample holder was kept in the

horizontal position(minimum height), and we changed to the vertical position only

during the data acquisition. As a measure of the homogenity, we used the repro-

ducibility of the periodicity when we heat up and cooled down in cycle. With the

cautions mentioned above, the difference of the periodicity of the cycle was < 0.5A.

To orient the samples, we used a thermal treatment. The samples were kept at

the temperature where the system was isotropic, for about one hour, then they were

cooled down very slowly, - 0.05 deg/min. Different speeds were required for the

different phases: at the isotropic phase, it is not necessary to cool down so slowly

(- 0.1 deg/min), inside the two-phase coexistent region however, we found it to be

critically important to slow down (for 0.02 deg/min). Any instablity in this region

can cause the inhomogenity of the lamellae, thus, causes the multiple peaks. Once the

system is in the lamellar phase, one can increase the speed to F 0.1 0C per minute.

The glass pieces were placed at the center of rotation, and after the calibration of

the zero positions for 20, 0 and the translational position, the scattering in L and K

directions were recorded . With the q± = 0, q, was rocked, for the L scan, with qz = 0.
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Figure 3-16: The intensity profiles from the two scattering techniques.

q± was rocked for the K scan. The typical periodicity of the lamellae studied was

a 100pm. The scattering angle was around 0.40. As the lamellae are aligned along

the glass surface, two non-parallel glass slides can cause the dislocation lines. The

glass pieces were glued together by hand, and after numerous practices, we managed

to get them parallel as < 0.10. For the good alignment, the glass surface has to be

completely oil-free. So, we were especially careful to clean the surface of the glass

every time we load the samples with a glass cleaning solution RBS pF.

The peak width of the oriented sample was much smaller than that of the powder

scattering. Therefore, we could determine much more accurately 1iA the peak

position, However, the glass which we were using to orient the samples reflects x-ray

at low angle i.e. below the critical angle of the glass-water interface, thus, we chose

samples which had Bragg peak far from the critical angle: i.e. y = 0.30.



Chapter 4

Powder Samples:Data Analysis

In this chapter, the data obtained from x-ray scattering measurements from powder

samples are presented. The experiment was carried out for the following concentra-

tions that were also studied by optical microscopy:

Vsurfactant = 0.15, 0.20, 0.25, 0.30.
Vsurfactant + Vwater + Voil

a_ Voil = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.
Vwater + Voil1

The typical data acquisition time for each spectrum was 600 seconds, in order to

get the good signal to background ratio. The temperature was set at 33. ± 0.1 0 C

for which all the samples are in the one-phase lamellar phase. All the intensity were

normalized by the intensity of the directly transmitted beam. In order to make sure

that there was no evaporation of the octane, we made time-series measurements in

order to check that the peak position did not shift with time. Within the data

acquisition time of about 5 hours, the peak shift was less than le-4' - 1 which is

negligible.



4.1 Lineshape Analysis

4.1.1 Scattering spectrum of the lamellar phase

The x-ray intensity profiles are shown in Figs. 4-1 - 4-4. As can be seen from these

figures, the sharpness of the peaks as well as the peak intensity are largest for a = 0.5

and decrease for a :- 0.5, for all "y's. The very interesting feature of the spectra is that

they clearly show two contributions. The Bragg-like part at qo = 27/dp, where dp is

the smectic periodicity, and an intensity increase as q -+ 0. These two contributions

have been discussed in Chapter 2. The Bragg-like peak is due to the quasi-long-

range smectic ordering, while the intensity increase as q -- 0 is due to concentration

fluctuations in the correlation function.

In the analysis of the data, we will attempt to separate the two contributions.

4.1.2 Scattering at q --+ 0

We have seen in Chapter 1 that the concentration fluctuations can cause anisotropic

scattering peaked at q = 0. For powder samples, we have to average over all directions.

In spherical coordinates we get:

fo 27 fi 2irq 2sin(O)dO

ISAXS = 27 d < 6c(q)6c(-q) > (4.1)
o 47rq 2

ISAXS = 7r < 6c(q)&c(-q) > 2q 2sin(O)dO (4.2)
o 4rq2

Here ISAXS (Ismall Angle X-ray Scattering is the intensity originated from the concen-

tration fluctuations. Substituting qz = qcos(O), and q± = qsin(O) into Eq. 2.34 in,

we get

SAX ;TS k Bcos 2() + Kq2 in(O) (4.3)
S 2 oBcos2 (0) + Kq2sin4(O0) O

Here, as it was mentioned in Chapter 1, K is the bending constant of the smectic

layers, B is the compressibility modulous at constant surfactant concentration, B is
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Figure 4-6: The excess scattering as q - 0 originating from the concentration fluctuations.
Here B/B = 100

the compressibility modulous at constant membrane thickness, and y is the osmotic

compressibility of the membrane. This integration turns out to be nonanalytical. We

performed a numerical computation in order to estimate the general behavior and the

results are shown in Fig. 4-6. From Chapter 1, we have seen that B/B ~ 100 > 1.

The intensity profiles are shown in figure 4-6 for several values of K/B where we have

chosen the value B/B = 100. More precisely, x is also a function of q that converges

to the expression given in Chapter 1, as q -- 0
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In reality, the scattered intensity as q --+ 0 is superimposed on the intensity of the

direct beam. However, we will still be able to make several qualitative arguments.

We have obtained in Chapter 1, the value for B, B, as well as X, for the lamellar

phases which are stabilized by steric interactions. Using 1.38, 1.37 and 1.39 we

get,

B 1m
ISAXS(q=o) = kTX M .mT p)2Kd.2 (4.4.)

Now, let us see how the small angle x-ray. scattering(SAXS) intensity depends on

a and -y separately. In order to be able to compare the intensity, the intensities at

a given q are normalized by the Bragg peak intensity, and q was chosen safely away

from the Bragg-like peak position qo, (q = 0.01- 1). From the data, Figs. 4-7, 4-8,

we can observe that the intensity is larger for the lower surfactant concentrations i.e.

smaller 7, and also for the more single-solvent-type system, ( a = 0.20 or 0.80).

Dilution at constant oil to water ratio

When, a is fixed and y is varied, that is when we keep the oil to water ratio constant

and change the surfactant concentration, we can see Fig. 4-7, that by decreasing the

concentration of the surfactant, the periodicity d, increases, and from Eq. 2.34, this

will cause an increase in the intensity ISAXS. Also the mass density of C12E5 is 0.963

g/ml, for water it is 0.998 g/ml and octane is 0.703 g/ml. By deducing the electronic

density to be correlated to the mass density, thus the decrease of the volume fraction

of C12E5 which causes a decrease in the total mass density p, which in turn will cause

an increase of the intensity. The other varying parameters here c and 6. For these

parameters, there are two possible scenarios.

Monolayer System

In the first scenario, the oil and water are equal in volume, thus the system con-

sists of a stack of monolayers separated by the same thickness of either oil or water.

Now, we are going to make the following assumption: In this system, it is not clear



whether monolayers interact with each other via the Helfrich (steric) interaction.

Since Helfrich-type interactions require the absence of any spontaneous curvature,

consequently, the lowest-energy equilibrium geometry for the membrane will be the

flat configuration. Thus the bending energy can be calculated from deviations from

the flat position. This assumption is valid for a bilayer because of its symmetry.

However, when we deal with a stack of monolayers, it is not clear whether we can

neglect the spontaneous curvature and apply the steric law. Nevertheless, for the

analysis presented here, the monolayer-case will be treated as a membrane with zero

spontaneous curvature and half the bilayer thickness. In this case, neither K nor 6

change with the decrease of the surfactant concentration(y decrease), since they are

associated with the bending rigidity of a single surfactant layer. So. when a r 0.5,

the intensity is mainly controlled by changes in d and q.

Bilayer System

For the case of the bilayer system, where the ratio oil/water is much larger, or

smaller than one, by increasing y at fixed a, we are increasing the membrane thickness.

Now, the relation between the bending rigidity of a monolayer and a bilayer without

any swelling(in single solvent) has been theoretically modeled by Porte et al. [5],

Kbilayer = 2
Kmonolayer (4.5)

Note here that this result does not agree with the usual law of strain on a two

dimensional solid board [15] where the rigidity increases as the cubic power of the

thickness. This difference comes from the assumption that the two monolayers slide

on each other so we can ignore the shearing force between them.

In our case, we are not dealing with a bilayer system with a single solvent. Nev-

ertheless, we can use the qualitative argument that the rigidity of the membrane K,

increases with the thickness of the membrane. Considering that the thickness of the

membrane is proportional to dpy, we can conclude that t increases as -' increases.

Thus from Eq. 4.4, the SAXS intensity should decrease with increasing surfactant

concentration -y . This is in agreement with the results that are shown in Fig. 4-7.



Therefore, in the almost-bilayer cases, the intensity ISAXs with the dilution at fixed

a, is controlled by 6, r, d and 0, and all of them contribute towards increasing the

intensity. This is indeed the case with our results as a --+ 0 or a -- 1 as shown in

Fig. 4-7

Variation of oil to water ratio at constant surfactant concentration:

We will now look at the changes in the SAXS intensity as a changes at fixed -y. In

this case, we will also examine two extreme cases, i.e. a -- 0 or 1 (bilayer), or when

a = 0.5, (monolayer ). The periodicity for a monolayer is half the periodicity of

a bilayer d, the bending rigidity is nmono with mono = bilayer,,/2. The membrane

thickness is 6 for the monolayer and 26 for the bilayer. From Eq. 4.4 , we expect the

highest intensity for the bilayer case. The data are in agreement with this, Fig. 4-8.

4.1.3 Quasi-Bragg Scattering

As we have seen in Chapter 3, the scattering intensity can be expressed as the

product of the structure factor and form factor.

N-1 8 L
I(q) = cos(nqzd)e- <(un- uo 2 > < Ijpo(z)eiqzdzl2 iqjp(r±)eiqrdr2 > (4.6)

Form Factor

By using the density profile introduced in Chapter 2, the form factor for the bilayer

system can be calculated as,

4 6
Pz = (Pwater - Poi)2 sin2(q ) (4.7)

q 2

Usually, the lineshape analysis of a smectic system is done by assuming the form

factor to be constant. [2] [16] If the thickness of the bilayer is much smaller compared

to the repeating periodicity, one can approximate the form factor to be constant.

As it is shown in Figs. 4-9 and 4-4, this is not a good assumption for the present
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system. It is important not to neglect the form factor particularly as we increase the

thickness of the bilayer at constant surfactant concentration: i.e. constant periodicity,

especially when the periodicity of the order parameter is comparable to that of the

bilayer thickness. In Fig. 4-9 we show the dependence of the form factor on the bilayer

thickness 6.
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Structure Factor

The dependence of the lineshape for the quasi-Bragg peaks on rq, for the three struc-

ture factors derived in Chapter 2, Eqs. 2.43, 2.30 2.59 and are shown in Figs. 4-10,

4-11 and 4-12.

(1) The structure factor proposed by Safinya et.al.[2] originated from a Caille-

type correlation function as was modified by Kaganer et.al.[41].The density correlation

function g(x), is calculated with the integration over qz with q-a" - oo This model

is expected to be valid only in the near vicinity of peak position because of the

approximation q = qo done in order to get the correlation function

S(q) = dzg(O, z)exp(-iqzz) (4.8)

In order to get Eq. 4.8 from Eq. 2.43, the following approximation was done. Since

the powder averaging part in Eq. 2.43, sinqr/qr, is a rapidly oscillating function and

the only considerable contribution to the integral comes in near the z axis , where

r1 <« z, by approximating r1 = 0 leads to a one-dimentional integral in Eq. 4.8.

(2) The structure factor proposed by Gunter et. al.[30]

The correlation function was calculated with the summation in q. direction re-

placing qz by nr/L This model also uses the approximation q = qm in calculating

the density density correlation function.

N-1

S(q) = 1 + 2 (1 - )cos(nq dp)e - 'mn(i7n ( )+Y] (4.9)

(3) The structure factor proposed by Nallet et.al.[34] originated from the same

correlation function model of Gunter et.al. [30]. The approximation q = qm is not

made and the model should work well away from q = qm

N-i n2
S(q) = 1 + 2 (1 - )cos(nqd)e 2 (r)+)d (4.10)

1

As it can be seen, the difference between Eq. 4.8 and Eq. 4.9. Eq. 4.10 is

the absence in the higher harmonics in 4.8, and also that the summation over n in
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z direction with z = ndp is taken place by the integral, thus the . The difference

between Eq. 4.9 and Eq. 4.10 is that while Eq. 4.9 is valid only close to the quasi-

Bragg peaks, 4.10 can continuously describe the behavior of the intensity profiles

away from qgo since the approximation q = qgo is not made.

4.2 Fitting of the Data and the Variation of the

Parameter

4.2.1 The Comparison of the Three Structure Factors

We fitted the data with the three expressions for the structure factors. The fitting

of the data was done by using Certified Scientific Software's C-PLOT data analysis

program with non-linear squares fitting routines. The spectra were fit to the structure

factors multiplied by the form factor 4.7. In the case of 4.8 and 4.10, the resolution

was convolved only with the structure factor with the approximation that the struc-

ture factor is a much faster varying function, while in the case of 4.9, the convolution

was done to the product of the structure factor and the form factor, because of the

relatively simpler structure factor.

1)

_rr 2 )2 2.e1 • 2 .
I(q) = Ao dzg(0, z)exp( )exp((-Vq)2r2)ep(-iqz) Vp 2(q-)) (4.11)-7 L2 q4 2

2)

A0  N-1
I(q) = -q(1 - e-(6Vq)/2cos(bqz) + (1 - n/N)(2e27(1 - cos(nr/N)))- r/ 2

Sn ----1

x (2e-(ndp)2Vq2/2COs(ndpqz) - e- (ndp-) 2v, 2/2cos((ndp - b)q,)

-e-(ndp+6) 2Vq2/2cos((ndp + 6)q,)) (4.12)



-1 n nq2d 2q d2n + q2d2n 2
I(q) = Ao(1 + 2 (1 )cos( ) 2q +p( c(n) + Vq

Z1 1 + 2Vq2d2a(n) 2(1 + 2Vq2d2a(n))

1 1 6
x )  Vp 2sin2(q-)) (4.13)

1 + 2Vq2d2Q(n) q9

where ac(n) =< (u, - uo)2 > /2d 2.

For the fitting range, we chose q,in = qo/2 to avoid the excess scattering at

q -- 0. For qma,, in the case of Eqs. 4.11 and 4.12, it was chosen to be q,,, = 1.8qo,

while for Eq. 4.13, since it was possible to fit simultaneously of the first and second

harmonics, it was chosen to be q,,, = 2 .5qo. The density difference p was chosen

to be the electronic density difference between water and octane which is 0.09eA-3

and Vq = 0.0017A - 1 was the half width half maximum of the measured resolution

function.

The fitting was attempted for all three functions Eqs. 4.11 4.12 and 4.13, the

fitting for two of the peaks are shown in Figs 4-13. Fig. 4-13 shows, the two functions

Eq. 4.11 and 4.12 which use the approximation q, = qO, do not fit the tail of the

broad peaks. Therefore, finally, we chose the function Eq. 4.13 to be the most

adequate fitting function for our system, In Figs. 4-14 - 4-20, and Tables 4.1

4.4, the fitted intensity profiles as well as the fitted parameters with the function (3),

Eq. 4.13 are given.

4.3 Discussion

First of all, from the Fig. 4-18, we can see the trend of the membrane thickness 6.

It has a maximum at a = 0.50, as the membrane thickness is the maximum when the

oil-water ratio is 1:1. It can be defined that 6(a > 50%) -- water bilayer thickness,

6(a < 50%) - oil bilayer thickness,
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7 = 0.15
0.2
0.3
0.4
0.5
0.6
0.7

0.976
0.757
0.551
0.496
0.517
0.685

52.2
60.1
71.4
79.8
79.4
70.2

dp (A)
194
192
199
208
202
197

0.0369
0.0272
0.0317
0.0325
0.0341
0.0333

Table 4.1: Fitted parameters for y = 0.15

7 = 0.20
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.849
0.602
0.458
0.367
0.395
0.505
0.684

6(A)
23.9
39.3
52.9
61.8
61.9
54.5
36.4

d, (A)
138
146
149
150
150
148
131

Ao
0.0553
0.0419
0.0409
0.0405
0.0430
0.0338
0.0588

Table 4.2: Fitted parameters for y = 0.20

- = 0.25 a
0.3
0.4
0.5
0.6
0.7
0.8

0.515
0.403
0.357
0.271
0.467
0.636

6(A)
29.9
33.4
51.8
42.6
36.0
34.9

d, (A)
119
124
118
119
117
116

0.0509
0.0649
0.0269
0.0781
0.0484
0.0738

Table 4.3: Fitted parameters for 7 = 0.25

- = 0.30
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.510
0.380
0.219
0.197
0.217
0.394
0.446

6(A)
8.99
23.3
32.2
39.6
42.0
37.9
29.1

d, (A)
92.8
96.7
98.5
97.9
98.9
94.7
87.4

0.218
0.0622
0.0554
0.0551
0.0698
0.0774
0.0414

Table 4.4: Fitted parameters for 7 = 0.30
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Figure 4-20: r7 vs y for various y's.

The periodicity as a - 0 or 1 is smaller than for a = 0.5. although the surfactant

concentration -y is fixed. We will discuss this phenomenon in detail in the next chapter

focused on aligned samples.

Another interesting feature which is quite striking is the intensity variation with

the change of a. As we have mentioned in Chapter 2, the first order Bragg peak

intensity scales as A'l-/d [30] where A = IT/B: Acharacterizes the decay of

an undulation distortion at the surface of the smectic. Using the elastic constants
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derived in Chapter 1 in the case of sterically interacting lamellae, this relation can

be reduced to be IBragg ~ d -". Therefore an increase of 77 should lead to a decrease

of the intensity at constant periodicity. From Figs. 4-20 and 4-5 we can see the

agreement.

4.3.1 Bilayer Model

To deal with a lamellar system as mode of three components with different densities

and characteristics will require an enormous mathematical computation. Instead, one

can perform several approaches with reasonable approximations in order to simplify

the problem, one of which is to apply the bilayer model and take the case of the

a = 0.50 to be the extreme case of a thick bilaver.

First, we want to discuss the variation of qI with 7, as well as a. Here we in-

troduce the notation o,, 'w, q, for the volume fraction of oil, water, and surfactant

respectively,

0o + Ow + Cs = 1 (4.14)

By definition,

a = 0o/( 0o + ~,), + = &s (4.15)

We can rewrite Eq. 1.36 derived for the bilayer lamellar system. where either

00 = 0 or O, = 0 by noting that the intermembrane distance d = d,~, or d = dpoo

we get:

S9·.2 (kT) 2  1
B = for 0o = 0 (4.16)

64 K d3 04

972 (kT)2  12 (T for , =0 0 (4.17)
64 d3 4'

By using K = K/d, these lead to,

4,2 4
S= 382 or 7 = 3-0 (4.18)
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Combining with Eq. 4.15, we get,

1 = 2(1 2 a , 1 (4.19)3

4
4= (1 - a) 2(1 -) 2  a 0 (4.20)

3

In Fig. 4-21 we show the 7r values from the fitting and also the theoretically

predicted values for 7 using Eq. 4.19 and 4.20, for each -y as a function of a. The

data show not only a good qualitative agreement with the theory for the decrease as

a -- 0.5, we also see a reasonably good quantitative agreement.

However, this theory clearly breaks down as a -- 0.5, since the derivative of

Eq. 4.19 and 4.20 is discontinuous at a = 0.5.

4.3.2 Swelling of the lamellae with monolayers

We have also checked the deviation of the periodicity from the linear dilution law. We

have discussed in Chapter 1 that the excess area caused by the thermal fluctuations

gives a logarithmic correction to the linear dilution law. [27]

6 kT c6 f-1
d = [1 + log( I (4.21)4rtc a kTIL

Where 27/a = qmax is the shortest possible wavelength of the fluctuation which is

taken to be the distance between the molecules in the'smectic plane, a - 5A, c is a

proportionality constant between the periodicity and the longest allowed wave-length

of the fluctuations (.

S= cc d (4.22)

Here the exact value of the constant c is model-dependent. According to the uni-

fied microscopic theory for a dilute lyotropic smectic-A phase proposed by Golubovic

and Lubensky [18] c = (32/3r)1/ 2 = 1.84
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fit with the theoretically predicted Eq. of the logarithmic correction

In our case, neither 6 nor 6/0 is constant as y is increased. Moreover, the change

in the membrane thickness 6 will also affect the value of K. However, in the case

of a = 0.5 , on the assumption that the interactions between the monolayers are

Helfrich-like, we can assume a constant monolayer thickness and carry on the theory

of swelling from the bilayer system to the monolayer case. In Fig. 4-22, we show dP,

vs Inq. From a least-square fit to 4.21 we get

kT
6- = 2.61 ± 0.61 (4.23)

47r K

From the first order approximation, dp = 6/q. By substituting dp, 100A, as

measured for = 7y = 0.30 we get, 6 bilayer = 30A. We speculate that the thickness of
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a monolayer in the lamellar phase is 6,,,, mono bilayer/2 • 15 A. Using 4.23 we get for

the monolayer bending rigidity:

,mono a 0.45kT (4.24)

4.3.3 Monolayer Model

We can also approach the problem by modeling a monolayer as a bilayer membrane

with the bending rigidity of the monolayer. The interactions with the water and oil

layers are both approximated to be Helfrich-like. We can write the free energy of

the system to be the sum of these two interactions. The interaction energy of two

monolavers with oil in between them is written as Vo, and with water is written as

Using similar arguements as in Chapter 1, we will derive the expression for B

for a monolayer system. We shall continue to use the notation of O's as the volume

fraction of the three components. The free energy of the system is a function of 0,

and ,w only, and can be written as

F = Jd3xf( 0ow) (4.25)

In this case, we can assume the free energy density to be the sum of two interaction

energies.

f ( =o, 1) [Vo(dp o) + Vl(dp4,)] (4.26)

Here dpo 0 and d,•, are the oil and water thickness respectively. Vo,(w) is the

interaction energy per unit area between two surfactant interfaces separated by the

solvent layer of the thickness (x).

As was done in Chapter 1, we again, perform a Taylor expansion of f to second

order of the concentration fluctuations bo,, 6ow,.

1 2 + f 2 2f 2  P a2f  (
f = fo + +s[64obu, 2 - (4.27)
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The elastic constants of the two component smectic system were defined by the free

energy density written as

B (u
f = fo + 2 ) +2 (z

1 02U
2 22•

2U

)2jy2
1 ~

+ -6C 2 + Cc&-2X Oz (4.28)

Here we will only consider compression. Defining, bc - 6o, - 66, as a concentration

variable, and also using Ou/az = bd,/d, = (6S, + 6oq)/s,, and by comparing,

and 4.28 we get,

B = d_[W (1 -Io + €w) 2 + Wo(1 - €o + ¢0)2]

Sdu- = [W- + Wo]
-d

4.27

(4.29)

(4.30)

(4.31)

Where W,, Wo are 62V,~6Sd and 62V o/S6d , respectively. Thus, using B = B-C2X

we get,

Ww -Wo
W, + Wo (4.32)

Now, from our assumption that both Vo and V, are Helfrich-like potentials, they

can be written:

kT 2

Vo = A

Kd2

(4.33)

(4.34)

where A = 37r2/128. Substituting into 4.32, and using, do = dbo0 dw = de, we

get,
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Figure 4-24: The two theoretical models are plotted for the same -y = 0.15. The solid line
is the bilayer-mode approach, and the dashed line is the monolayer-model approach

Ad(kT) 2  1
= Ad(T) (d 0o)4 (d1 )4  (4.35)

K (d€0)4 +(dO,)4

A(kT) 2  1d = (4.36)
xd 3  b

In the limit of 0o - 0 or 0, 0 , we get the value for the bilayer system which

has been introduced previously i.e.:
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A(kT) 2

B= - d3 (4.37)

It should be noted that n in this case is the bending rigidity of a single membrane.

We can assume that K -- /0.5d is on the average constant with a where d is the

periodicity from a water/oil layer to the next water/oil layer: For a = 0.5, n0.5 =

Kmono/O.5d, for a = 0 or 1, o0,i = lbilayer/d = 2Kmono/d = co.5.

Now, using again the definition of 7, and also using o, = a(1 - y), Ow = (1 -

a)(1 - 7) we get:

2 kT

4
77= (1 - )2  4 + (1 - a) 4  (4.38)

From Fig. 4-24 , we can see a good agreement of the q value, between the two

models (the bilayer and the monolayer). For a $ 0.5 the bilayer model gives smaller

value as a -+ 0.5.

We can also try to get the 6 value for the monolayer. Using Eq. 1.36 and by

substituting dp = dp,measured/2 we get,

S= 4/3(1 - )2 (4.39)dp/2

Here we get the value 6 = 23.9±1.3A, which is larger than Sbilayer/2 = 30/2 = 15A.

In Fig. 4-25, y vs q7 is plotted along with the theoretically predicted fit Eq. 4.39.
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Figure 4-25: 7 vs -y for a = 0.2, 0.3 and 0.5. The solid and dashed lines are the theoretical
values for a = 0, and 0.5.
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Figure 4-26: l as a function of the periodicity dp. The solid line is the fit to Eq. (4.39)
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Chapter 5

Data and Analysis: Aligned

Sample

In this chapter, the data obtained from the aligned samples are presented. For these

experiments, the samples chosen were

surfactant

surfactant + water + oil

oil
= ce = 0.3, 0.4, 0.5, 0.6, 0.7.

water + oil

5.1 Temperature dependence of the Lamellar Pe-

riodicity

For the oriented samples, it was found that even though a complete alignment can be

achieved under the microscope, the mosaicity which affects the K-scans (q. direction

scans) could not be effectively decreased in order to perform the satisfying line shape

analysis. The typical mosaicity was - 0.40 However, because the L-scans (q, direction

scans) were quite sharp, which allows to distinguish the difference in periodicity in the

order of 0.1 A. Therefore, we decided to concentrate on the investigation of the shift
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of peak positions with temperature which was not possible with the low resolution

powder-sample experiments.

Figs. 5-2 shows the evolution of the quasi-Bragg peak as the temperature was

cooled down from the isotropic phase into the L, phase.

As the temperature is lowered between 410C - 390 C, the peak position shifts

towards larger values of the periodicity

When this is compared with the phase diagram in Chapter 3, we notice that this

corresponds to the two-phase coexistence range between sponge and L. phases. This

means that the periodicities of the La in this region are smaller than the periodicity

when the system is homogeneously in the L, phase., and this leads to the argument

that the surfactant density of La phase , in the biphasic region, is higher than the

coexisting sponge phase, which is consistent with the observations made by optical

investigations.

5.1.1 Logarithmic correction of the lamellar periodicity with

thermal undulations.

Dilution Line

Another interesting feature is the temperature dependence of the peak position inside

the La phase. The peak position shifts towards a larger values at higher tempera-

tures. The shift is typically, 11/100 C. We have made sure that this is a reversible

effect. This raised a question about the dilution line of the system: The solubility of

surfactants in solvents is a function of temperature, therefore, when the observation

of La is made with the change of temperature, we have to take into account this

solubility effect as we change the temperature and measure the periodicity. Because,

as the solubility increases, we lose more surfactant monomers from the membranes

in the solvent, which will cause the swelling of the lamellae even though the total

volumic fraction of the surfactant in the solution is fixed. In other words, the number

of the surfactants in the membrane has to be fixed with the change of temperature,

and when this solubility changes with temperature, we have to add or subtract in
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Figure 5-1: The Scattering Spectra from the oriented samples: -7 = 0.30, a = 0.6 with the
temperature 37, 33 and 26 OC
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Figure 5-2: The Scattering Spectra and the temperature dependence of their peak positions:
y = 0.30, a = 0.6 and the temperature is changed between 25 and 45 OC
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order to maintain the same number of surfactant in the membrane. This line in the

phase diagram is called dilution line.

We used the Critical Micellar Concentration(CMC) for estimating this effect. The

Critial Micellar Concentration is the concentration beyond which, the surfactants are

unstable to stay in the solvent as monomers and form micells. This may not be exactly

the same concentration of the surfactants in the solvents in L, phase, however, since

both determine the saturation concentraion of monomer in the solvent, we estimated

that the difference is not too large.

The solubility of C12E5 in water is known to be 0.002 wt% [42], moreover, the

change is negative with the increase of the temperature, which should give a decrease

in the periodicity with increasing temperature, since we could not measure such a

small effect, thus, this will neglected within the range of the temperature of interest.

No data for the solubility of C12E5 in octane could be found in the literature. However,

finally we determined the effect not to be important from the following argument.

When the solubility of the surfactant monomers is an increasing function of tem-

perature, and the temperature dependence of the solubility in water is neglected, the

increase of the periodicity with the increase of temperature should be larger when

the oil content in the sample is higher. So the increase of the periodicity should be

higher for the larger a values. As it is shown in the table 5.1, the slope for the

different oil to water ratio a does not increase with a. This allowed us to conclude

that the temperature dependence of solubility of the monomer into the octane is not

significant.

Logarithmic Correction

Thus, the reason for the change of the periodicity with temperature has to come from

the thermodynamics of the system. We will again approach this problem using the

theory of logarithmic correction to the periodicity of the of the lamellae caused by

thermal fluctuations 1.45, which was introduced in Chapter 4
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6 kT cU C 1
d= -[1 + In(- -)]

S47rnK a kT
(5.1)

Here, a is the square root of the area per polar head for a surfactant molecule, c is

a model dependent constant, and for the case of a dilute lyotropic smectic-A system,

it has been proposed to be [18], c = (32/3r) 1/ 2 ~ 1.84. 6 is the thickness of the

membrane.

In order to see the periodicity dependence on the temperature change, we may

assume that the term inside the logarithm changes much slower than T. Therefore

we get,
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Figure 5-4: Lamellar periodicity vs a for T = 32.5 OC

bdp 6 kT 1 cI b ( 1
- log(- -) (5.2)

6T 47rt T a kT 6

Now, if we make the approximation that dp 6/q = 100 in first order and use the

measured d, ; 100 A, and € = 0.3, we get b6 30 A, also substituting a = 5,

c = 1.84 , dp/6T z 0.1 we get Kbilayer r 0.95kT. This is in close agreement with the

value we got in Chapter 4 deduced from the swelling of monolayer 4.24 considering

tbilayer = 2 Kmono-

5.1.2 Bilayer Monolayer transition

In Fig. 5-5, we show 6d/6T for the different samples with a = 0.30, 0.35, 0.40, 0.50, 0.60, 0.70,

127

T = 32.5 OC

,U



Ci 17
U. I 3

0.11

i-

- 0.09

0.07

0n nr

~ · I I

i~0

0 0.2 0.4 0.6 0.8 1.0

Figure 5-5: Variation of bd/6T vs a

a 0.30 0.35 0.40
6d/6T 0.077 ± 0.010 0.088 + 0.004 0.107 ± 0.014

a 0.50 0.60 0.70
6d/6T 0.122 ± 0.003 0.118 ± 0.001 0.062 ± 0.007

Table 5.1: 6d/ST for various a

From the Fig. 5-5, it is also shown that 6d/6T is largest for a = 0.50 and decreases

for the asymmetric cases of a. Now, as we have done in the Chapter 4, we will consider

the case of a = 0.5 to be the case where each monolayer is the oil/water interface.

And each monolayer is separated by the distance d' = d/2, Also we shall neglect

spontaneous curvature of the monolayer inside the lamellar phase, by assuming the

interactions of interfaces with oil and interfaces with water are both steric (Helfrich)-
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like interaction. From the Eq. 5.1, we can compare the two cases,

6 kT lcC
dbilayer = -[1 + Inn(

d<= 4 7Kbilayer a
h ~bilayer ) (5.3)

(5.4)dmono - mono1 + kT In( cS K
C4KT ln(Cmono mono aa kT €)

Where ,5 ono is the thickness of the monolayer. Now, we approximate the thickness of

bilayer and monolayer by bmono 6 6/2. Also by realizing dmono' is not the distances

between the interfaces but the periodicity, which determines the position of the Bragg

peak. The real distance between the interfaces dmono is:

dmono=
dmono,

(5.5)

Thus, 5.4 becomes,

Using 5.2,

6 kT c K mono 1

dm = [1 + kT log( C
47K ~0mono a kT k

Sdbilayer S kT 1 log( Kbiyer 1
ST -4 

4 7rxbilayer T a kT )

(5.6)

(5.7)

bdmono,, kT 1 cS Vmono 1
T - log( ) (5.8)

bT 47KmonoT a kT 0

Assuming the term inside the logarithm to be constant A, thus, the difference is

simply,

Sdbilayer 6 kT A
ST = 47rKbilayer T

(5.9)
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6dmono k T A

ST - 4rKmono T

This leads us to,

/ dbilaye Imonoo/Kbilayer (5.11)
ST ST

As we have seen from the previous chapter, the relation between the bending

rigidity of monolayer and bilayer can be written as,

nbilayer = 2Kmonolayer (5.12)

In our case we do not have the pure bilayer case, nevertheless, from the increase in

6d/ST as a --+ 0.5, we can confirm the relation between the thickness variation with

temperature and the bending rigidity.

Also, if we compare Eqs. 5.1 and 5.6, they are in agreement with what is observed

in Fig. 5-3 that the measured periodicity is larger for a = 0.50 than a = 0.50 Fig.

5-3 which also originates in the relation Eq. 5.12

From above, we could conclude that the temperature dependence of the change

in periodicity originates in the thermal fluctuations which enhance the actual mem-

brane area of a membrane with the increase of temperature from when it is in flat

configuration, consequently, larger periodicity is observed. This fluctuation is higher

for the more flexible membrane (smaller K ): in our case, the monolayer system.

This observation allows to extract the information of only K while the study of

the scattering intensity profile gives us r, which is a function of the product of the

bending constant B and the elastic constant K.
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Chapter 6

Conclusion

We have investigated the three-component lamellar phase with non-ionic surfactant,

oil, and water. Samples with various oil-water ratios at fixed surfactant concentra-

tions, where the systems consists of either water-rich bilayers, equal ratio of water

and oil with monolayers, or oil rich bilayers were studied , as well as samples with

different surfactant concentrations(dilution) at constant oil-water ratio. With optical

investigations, we determined phase diagrams which show a temperature range where

all the samples were in the lamellar phase.

The system was probed using x-ray scattering technique both with powder and

aligned samples.

The first achievement was the success of the fitting of the powder sample peaks

which are broadened by the undulation fluctuations. For the dilute lamellar phases

which are sterically stabilized, the quasi-Bragg peaks of the powder samples are quite

broad, and the usual approximation done for the structure factors which is to expand

around the peak position and which is successful in explaining the intensity profiles

only in the vicinity of the quasi Bragg peaks, failed in explaining the intensity profiles

away from the peak positions. The contribution of the higher harmonic terms was

also shown to be important. Our data show that , especially for the more concen-

trated samples, it is important to be able to fit the intensity profiles with the higher

harmonics, which could not be reproduced with the usual structure factor as their

approximation is constrained to be in the vicinity of the Bragg peak positions. The
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structure factor proposed by Nallet et.al., provided the effective fit in all scattering

vector range except the very small q where their approximation is not valid.

The validity of using the form factor was confirmed. As the membrane thickness

becomes comparable to the periodicity itself, the form factor cannot be assumed to

be constant. With a form factor based on the model to describe the electronic density

distribution within and in the direction normal to the layers, we could successfully

explain the variation of the membrane thickness. As we continuously changed the

oil-water ratio at constant surfactant concentration, i.e. change the thickness of the

membrane.

The excess scattering at q -- 0 was observed. The scattering which was caused by

the concentration fluctuations, shows the increase in intensity as the system becomes

more dilute. In the situations where the surfactant concentration was fixed and the

water-oil ratio was varied, we found the decrease in intensity as the system was more

symmetric, i.e. oil and water are equal in volume.

Another important effect observed was that we could establish the model for

the monolayer system as the continuation of the bilayer lamellae. By employing

the universal relation between the bilayer thickness, the periodicity and the critical

exponent r which is the characteristic parameter for the density density correlation,

thus the parameter which states the order of the system, we could rewrite this relation

as a function only of the surfactant concentration and the oil to water ratio. The data

could be described for the cases where the oil to water ratio was asymmetric. Close to

the system where oil and water were equal in volume, this universal relation had to be

reconsidered. We modeled the free energy as a sum of two compression energies of the

two different solvents and by assuming the both energy to originate in Helfrich-like

interactions, we could reproduce the relation between these three parameters through

all the range of water to oil ratio. The data showed the agreement with the prediction

which states that the approximation of taking both interactions to be Helfrich-like is

indeed valid, This model states that q should be smaller for the more concentrated

system, and also for the more symmetric system. Finally, this discussion leads to

the conclusion that both the bending modulus and the compressibility of the system

132



are larger for the more concentrated systems. However the bending modulus is not

affacted by the change of the symmetry of the system, (changing the oil-water ratio)

while the compressibility is higher for the more symmetric cases, (water -oil ratio is

equal), therefore the order parameter 7 is smaller for the symmetric case at the same

surfactant concentrations.

By the deviation of the periodicity from the linear dilution law, we could see that

the deviation was indeed logarithmic power of the surfactant concentration, even for

the monolayer system, while the logarithmic correction theory assumes the bilayer

system with the Helfrich interaction. From this we could get the bending rigidity of

a monolayer.

Finally, the close agreement of the values for 77 and the membrane thickness from

the fitting and the theoretically derived, confirmed the validity of the fitting function

employed.

For the scattering done for oriented samples, because of the extreme sharpness

of the peaks in q, direction, and also because of the high stability with temperature

acquired, we could get the stable and reproducible smectic periodicity as a function

of temperature, and also it was possible to distinguish the very small differences

in periodicities. It was found that even though the surfactant concentrations are

constant, there is a small periodicity change with the change of the oil to water ratio,

as well as with the change of temperature, This could be explained by taking into

account the fluctuation of membranes: The fluctuation of the membranes increases as

a function of temperature, thus the periodicity which is linearly related to temperature

also increases. The dependence of this periodicity increase with temperature, which

is the first derivative of the periodicity with temperature, depends on the bending

rigidity of a single membrane, and by calculating the two extreme cases: monolayer

and bilayer cases, the trend of the change in this derivative was explained which is

also directly related to the difference in periodicity as a function of oil to water ratio

at constant surfactant ratio.

Also from these calculations, we could deduce the bending rigidity of a membrane

of the order 0.5kT, which was in agreement with the value gotten from the powder
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sample experiment.
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.1 AppendixA : B and B,the comporessibility with

the constant membrane thickness

At the equilibrium state, the chemical potential is defined as

1surfactant - /solvent

1 OFeq
V 0c

where V is the sample volume.

for the perturbed state, the change in the chemical potential can be written as

1 6F
V Sc

1 OFeq
V 96c

Using the free energy defined 1.12,

6A = Cfczu + x-1'c

so, when the chemical potential is constant, we get, Ccazu = -x-' c .

By substituting back to the '1.12, we get,

B - Cix BuzF = Fo + ( )2 +
2 0z

(u 2
8z

B
F = Fo + 2

1 (9 2u
-~K (9 X2

2 )

1y2

1 82U

2 5Ti 2 )2
(y2

Now, the concentration c can be written as c = a/d, where a is the layer thickness.

6a +- c
C
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au
az +- c

C

When the chemical potential is constant,

1 1
= c(- )

c Cox

in the simple geometrical models, elastic constants Cc and X are such that Cc = c

Thus, when the chemical potential is constant, 6a = 0 which leads to the constant

membrane thickness. And the B is the compressibility with the constant membrane

thickness.

.2 AppendixB : The Density Density Correlation

Function

The free energy is written as,

B
F = Fo + 2

au
)2 +az 1 &2u +2U)2

+ ) 2)
8y2

+ -65C2 + C,6c6zu
2X

We replace 6c(q) by 3c(q) = 3c(q) + XCcOu/dz, then,

F = fo + ( )2 +2 Oz
1 a2U
2 a2

d2U1 )2
1

+ _(C2)2X

Using the equipartition theorem,

< Uq 12
kT

Bq2 + Kq•

< 1526 2 >= kTx

< ýc(-q) Uq >=< U_q6 ý(q) >= 0

< I6c2 >=< (6c(q) - xCcuqz)(&c(-q) + xCcu•_qz) >

136



< 16c12 >=< I~Cj2 > - 2xCc < SCUq > qz + X2C2 < Uq 2 >

kT
kTX q x 2C2 kTBq2 + Kqi

Bq 2 + Kq4
= kTX- Kq

kTXCqz< j6c(q)uq >= -i
Bqz + KqI

(.1)

.3 AppendixC : The Displacement Correlation Func-

tion, Caill6's Calculation

The displacement correlation function proposed by Caill is written as,

< u(r) - u(O) 2 >= (1 - ir) qdqdqz(2r)3--- q + Kq1
24 d dz

J

This integral was performed first over qz using

(.2)

S0o 1 - cos[a(b - x)] d
-00oo 2 + c2 -[1 - e-accos(ab)]

c

Thus .2 becomes,

•" 1 - cos[qzz + q p]q

2 2 dq

With 0 as the angle between q± and r1

I 27r q
[1 -e zcos(q

= 2Aq [1 - e-AZcos(q±.2Aq 2

-r±)]dO
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S27 - exp(-Aqj2z)
r

cos(qlpcosO)dO

This integral can be compared to the bessel function ,

Jo(x) = fos(xcosos)dO
The integral in the equation .2 can be writen as,

kT qJqma 1- exp(-Aq 2z)Jo(q±P)

4 qmin Aq qdq

qmax can be estimated as 2r/a where a is the distance between the two surfactant

molecules, and qmin = 0, so, if we substitute the series expantion for Jo(x) ,

X2n,(_)n
Jo(x) = Z 22n•n

n=O 22 n

Then comparing with the exponential integral function El(x),

E (x) = - - log x - (- )
n=1 n(n!)

y is the Euler's constant, we find

< ju(r) - u(O)12 >
kT L2 2

aIn( 4AI Eja,. 4AlzI

.4 AppendixD: Gaussian Variable

For a Gaussian Variable x,

e-(12/232)
P(x) = 2
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< cos(x) >=

1

2 22

1 OO .2

- fc2 ocos(x)e 2 ddx

S00
_ (eix

-oo

±2

+ e-ix")e- dz

1 2 I
- (X+ia)2 +

) 2 +
e- g(" - ia)2+ Td z

2
__ "-f

Now,

< 2 • x2edx72 0-0oo

-_ 1

= --

1 d 1

=Thus, we can derive the following relation,

Thus, we can derive the following relation,

< cos() >=
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