
An Interactive Programming System
for Media Computation

by

David James Wetherall
B.E. Electrical Engineering

University of Western Australia
(1989)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science
in

Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology
September 1994

@Massachusetts Institute of Technology 1994. All rights reserved.

Anthor t

Deprtment of Electrical Engineering and Computer Science
August 12, 1994

Certified by

David Tennenhouse
Thesis Supervisor

Accepted by V- , , ,

Frederic R. Morgenthaler
hairman, Depart nital Committee on Graduate StudentsI

I ;1 En

'o' .1 i~ z.a

An Interactive Programming System
for Media Computation

by

David James Wetherall

Submitted to the
Department of Electrical Engineering and Computer Science

on August 12, 1994
in partial fulfillment of the requirements for the Degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

As digital video is manipulated by increasingly powerful computers, many new
applications are becoming viable. This thesis investigates the programming
language aspects of controlling such video applications. It presents the design,
implementation, and use of PAVES, a direct manipulation system that combines
aspects of visualization and multimedia systems to form an interactive video
programming environment.

PAVES is novel in the degree to which it emphasizes liveness and in its approach
to extensibility. It extends the VuSystem media processing toolkit through flow
graph and textual programming windows. Flow graph windows are used to control
the media processing component of applications. Textual programming windows
are used to issue interpreted commands and view source code. They work together
to allow the user to combine methods as needed.

While developing PAVES, I confronted a number of programming language issues
related to the support of multiple program representations. I defined a cooperative
model for translating across these representations and implemented the model by
leveraging a presentation-style synchronization approach and Object Tcl, an
object-oriented extension to the Tcl language.

Thesis Supervisor:
David Tennenhouse
Associate Professor of Computer Science and Engineering

Acknowledgements

David Tennenhouse, my supervisor, encouraged me when I needed it most and
afforded me the latitude to develop ideas into a thesis.

Chris Lindblad was a source of guidance at a formative time, as well as architect of
the VuSystem, which I depended upon so much.

All the members of my research group, my friends, provided the jovial atmosphere
that saw me through.

The University of Western Australia supported this research with a Hackett
Studentship, as did the Advanced Research Projects Agency of the Department of
Defense with funding monitored by the United States Air Force (AFSC, Rome
Laboratory) under contract No. F30602-92-C-0019.

Contents

1 Introduction 13
1.1 Digital Video and Computers 14
1.2 The ViewStation 15
1.3 User Programming Systems 17
1.4 Interactive Video Programming with PAVES 18
1.5 Issues in the Development of PAVES 19
1.6 This Thesis 20

2 Related Work 23
2.1 Programming in Multimedia Systems 23
2.2 Media Support in User Programming Systems 26
2.3 Perspective 28

3 A Cooperative Approach 29
3.1 Cooperative Programming Levels 29
3.2 An Embedded Object System 32
3.3 Synchronization of Views 33
3.4 Research Scope 35
3.5 Perspective 37

4 User Programming with PAVES 39
4.1 A Guided Tour 39
4.2 Broader Tasks 47

5 Design of PAVES 51
5.1 Flow Graph Windows 51
5.2 Supporting Windows 58
5.3 Structuring Conventions 61

6 Object Tcl 67
6.1 Tcl as a Starting Point 67
6.2 Introducing Objects 68
6.3 Classes and Inheritance 71

6.4 Class Implementation
6.5 Introspection 76
6.6 Perspective 77

7 Results and Conclusions 79
7.1 Experience with PAVES 80
7.2 Conclusions 82
7.3 Further W ork 85
7.4 Sum m ary 86

A Structuring Conventions used by PAVES 87
A.1 Standard Classes 87
A.2 Reflective Methods on Entities 88
A.3 Reflective Methods on Ports 89
A.4 Reflective Methods on Collections 90
A.5 Methods Supporting Views on Entities 90
A.6 Methods Supporting Views on Ports 93
A.7 Methods Supporting Views on Collections 93

B Object Tcl Reference 95
B.1 Standard Objects 95
B.2 Object M ethods 96
B.3 Class M ethods 99
B.4 The Method Environment 101
B.5 The Class Precedence Ordering 101

List of Figures

1.1 A preview of the PAVES user interface
1.2 Organization of a VuSystem Program
1.3 The VuNet Environment
1.4 Comparison of Programmable Systems

3.1 Model of Representation Shifts
3.2 Presentation-Style Synchronization Model
3.3 Three views of a video program generated by PAVES . . .
3.4 The spread of VuSystem Programming Methods

4.1 The BlueScreen Program with its Flow Graph
4.2 Before Grouping the BlueScreen Modules
4.3 After Forming the BlueScreen Group
4.4 Peering Inside the BlueScreen Group
4.5 Control Panel for the BlueScreen program
4.6 Sample Code Fragment Window

5.1 Relationship of Xt Widgets to PAVES
5.2 Skeleton of the draw method
5.3 Model of each View
5.4 Skeleton of the panel method..................
5.5 Skeleton of the describe method
5.6 Program Structure
5.7 Model of an Entity........................
5.8 Opaque Grouping of Entities

6.1 Making a stack object by specializing a generic object . . .
6.2 Superclasses and Method Dispatch
6.3 Adding protection to the Stack class with the Safety mixin.
6.4 Class Relationships for SafeStack
6.5 A Class Relationship

B.1 Algorithm for computing the precedence list

40
42
42
44
45
46

.. 102

List of Tables

5.1 Entity Methods Supporting Views 64
5.2 Reflective Entity Methods 64
5.3 Reflective Port Methods 64
5.4 Collection Methods Supporting Views 65
5.5 Reflective Collection Methods 66

6.1 Object Methods 70
6.2 Method Environment 71
6.3 Class Methods 75

Chapter 1

Introduction

Many new uses of digital video are becoming viable as it is manipulated by
increasingly powerful computers. With the right programming tools, video
applications can become more intelligent and responsive through greater amounts
of media processing [36, 22]. This thesis investigates the programming language
aspects of controlling such video applications. It presents PAVES, a direct
manipulation system that allows users to control applications while the
applications simultaneously manipulate live video. PAVES, shown in Figure 1.1,
meets the needs of interactive video programming by combining the user
programming techniques of visualization systems with the temporally-sensitive
processing abilities of multimedia systems. PAVES is novel in the extent to which
it emphasizes liveness of both program and video data, and in its approach to
extensibility through the cooperation of graphical and textual programming
methods.

PAVES extends the VuSystem media processing toolkit [22] with several user
programming windows that are accessible across a range of video programs. A
visual flow graph can be used to observe and control the pattern of media
processing implemented by the application. Control panels, code fragments, and
interpreters work in conjunction with the flow graph so that the user may employ
both textual and graphical methods to solve programming tasks. By exploiting a
specially constructed object system and synchronization model, PAVES can
automatically generate its programming windows and allow each to be
independently and safely used as the programs continue to run. This provides users
the flexibility to choose the programming method most suited to the task at hand.

Figure 1.1: A preview of the PAVES user interface

1.1 Digital Video and Computers

In 1991, Apple Computer Inc. introduced its Quicktime [15] software toolkit for
manipulating time-based media, such as video. Quicktime-based applications gave
many personal computer users a limited capability for recording, replaying, and
combining video. Products for the associated technologies of video capture and
storage are also commercially available. Digital video grabbers, such as SunVideo
and DEC Sound & Motion, allow video sequences to be captured for later
computation. Image compression and decompression codecs, such as those based
on the JPEG [19] and MPEG [18] standards, facilitate the transfer and storage of
video by reducing its sheer size to more manageable proportions.

The falling relative costs of processing video make it possible to encode simple
algorithms in software and apply them interactively. This was not practical with
previous generation workstations where even copying video frames was an
expensive operation. But the memory bandwidth and processing capacity of
modern workstations enable them to perform simple processing well above the
full-motion video rate [22]. Developments in high-speed networking and video

codecs are also encouraging distributed applications where larger computations
may be accommodated by splitting them across multiple computers [34].

Using software to apply algorithms to video yields very different applications than
those commonly given as examples of multimedia programs. Teleconferencing
systems, multimedia encyclopedias, and the like make poor use of the general
computation possibilities of computers. The computer is essentially being used to
move digital data in a timely fashion.

Intelligent video programs will be capable of making decisions based on video
content. For example, a computer scribe may automatically capture and distill a
set of notes from a camera pointed at a blackboard during a lecture [36]. A
programmable television agent may be capable of reorganizing a video broadcast
to meet a user's preferences. Or perhaps a program will be able to distinguish
between video-conference participants and their background so that the
participants can enhance their images with different background scenes.

In-band code

Figure 1.2: Organization of a VuSystem Program.

1.2 The ViewStation

The ViewStation [38] is an environment that is specialized for the study of
intelligent and responsive multimedia applications. Its software development
component, the VuSystem [22], focuses on computer-participative multimedia
applications, where the computer not only manipulates media but also digests it
and performs independent actions based on media content. This makes it suitable
for developing the kind of applications sketched as scenarios in the previous
section.

VuSystem applications are modeled as a graph of reusable processing modules
through which video and other data flow. Some modules correspond to video

/72
Workstation

MultinmrneP'nr

LnK I Storage

Camera Display

Figure 1.3: The VuNet Environment.

capture from the outside world, some to computations such as compression, some
to storage and retrieval, and some to presentation to the user.

Several levels of programming are available to the application developer, each
suited to a different task. The basic programming division arises from the model of
a program as separated into an in-band data stream and an out-of-band control
message queue. This is shown in Figure 1.2.

Programming of the time-critical data stream, where video frames are directly
manipulated, is handled by a library of efficient C++ modules. Generic filtering
modules may be specialized as a simple but constrained way of implementing new
computations. Alternatively, new modules may be written from scratch, with few
operational constraints.

Programming of the control message processing, in which user events are decoded
and user feedback is displayed, is expressed with an extended version of the Tool
Command Language (Tcl) [32]. The system contains an embedded Tcl interpreter,
which provides great flexibility in re-configuring and extending the runtime
environment. Tcl scripts are used to combine modules into applications, as well as
describe standardized user interface panels for configuring each module.

J

Cur;tFkunir~ir

I \ `Multiprocessor

Workstation I

The other component of the ViewStation is the VuNet [1]. It is an ATM-based
gigabit per second local area network, shown in Figure 1.3. By complementing the
VuSystem, it provides a computationally rich environment in which distributed
video applications may be studied. A variety of configurations are possible, linking
workstations and custom video capture peripherals [2].

high

Interactivity

low

HyperCard spreadsheet'
buttons (formulas

visual
Macintosh keyboaprogramming

preferences) macros
spreadsheetý
macros

Document
style sheets)

statistical
[packages

HyperTalk ,

(batch files) (4GLs
I•aliases batch files GL Lisp/AutoCAD

DOS/unix Scribe) (TeX) Lis /emacs
init filesLisp/emacs

customization behaviour behaviour traditional
concatenation creation programming

Expressiveness

Figure 1.4: Comparison of Programmable Systems.

1.3 User Programming Systems

The VuSystem provides specialized media manipulation abilities to application
developers. In contrast, end user programming systems such as PAVES provide
specialized interaction facilities to the end users of applications. With little or no
training, the end user can configure an application to be better suited to the task
at hand.

Many different user programming systems have been devised, with varying degrees
of success; work continues in trying to understand the process of user
programming [23, 11]. Figure 1.4, reproduced here from Nardi [30], conveys a
sense of the diversity of these systems. It roughly characterizes them by their level
of programmability and degree of interaction.

Over a decade of experience with spreadsheets, CAD systems, and statistical
packages prove that successful user programming systems can be created.
Spreadsheets are the most popular user programming system currently available.

They combine the familiar metaphors of a worksheet and calculator to allow users
to construct their own solutions to simple numerical problems. CAD systems are
designed to let users piece together designs, such as circuit schematics, that may
be startlingly complex. They often employ graphical programming-like facilities to
achieve this goal. Similarly, statistical packages can employ languages to describe
the analysis of sets of data.

Most successful general-purpose user programming systems have a textual
programming language as their base. Examples include LOGO, HyperTalk, Visual
Basic, and Tk. The LOGO language is for drawing pictures, and uses the
metaphor of a turtle moving about the screen to help children learn about
mathematics and computational processes. HyperCard [14] uses the metaphor of a
stack of cards containing objects to build hypermedia style documents. Programs
are written in a verbose textual language called HyperTalk, with fragments of the
overall program attached to interface objects to control how they respond to
different events. Visual Basic and Tk [33] work in a similar manner, but use an
interface metaphor based on grouping window elements and their controls.

Visual programming languages have also received much attention. Graphics has
the advantage of a low learning barrier, since much syntax associated with textual
languages is eliminated. But visual languages have proven cumbersome at
expressing control constructs, such as iteration and conditionals, and few purely
graphical systems have proven of general value. To alleviate this difficulty, many
systems combine graphics with text or target a restricted application domain or
set of users. Some recent visual languages, for example, have targeted VHDL
hardware descriptions [28] and the specification of database queries [8]. These
problems have a natural hierarchical decomposition that can be shown visually.

Other successful visual languages have based their representation on the flow of
data between computational processes. Flow graphs reveal the broad scale
structure of a program in terms of the relationship between its input and output
data, rather than as a navigable database of related operations. This view has
proven valuable in problem domains related to video, such as image processing [40]
and scientific visualization [39].

1.4 Interactive Video Programming with PAVES

This thesis describes the design, implementation, and use of PAVES, an interactive
video programming environment. PAVES stands for Programming Active Video
with an Embedded System. It brings the advantages of user programming systems
to bear on computer-participative multimedia applications.

From the user's point of view, PAVES appears as a set of programming windows.

Because it is embedded in an application toolkit, these windows are available in
many video programs, and form a consistent higher level interface for controlling
video programs. A direct manipulation flow graph window shows the overall
pattern of media processing implemented by the application and allows it to be
changed in terms of a visual language. An example graph is shown in Figure 1.1.
Its vertices represent processing modules, and its edges represent the flow of media
between them from left to right. Other windows can be generated to show finer
detail controls and relate the flow graphs to the textual structure of the program.

Video applications in PAVES are implemented with the VuSystem toolkit. In
contrast to Quicktime, this is a programming foundation suited to
computer-participative media applications. With its companion high-speed
network, the VuSystem is tailored for experimentation in the future uses of video in
the workplace, and permits flexible implementation choices. It allows PAVES to be
used to explore the class of video programs that performs significant computation
and so is the most likely to benefit from interactive programming facilities.

Two features distinguish PAVES from other visual language tools. It manipulates
active video, where both program and video data are completely live. Video
frames continue to flow in real-time as it is used. Video processing continues as the
program is changed, and PAVES ensures that the flow graph representation is
always correct. PAVES combines graphical and textual programming methods so
that they can be used cooperatively. As well as the visual flow graph
representation, an interpreter allows textual commands to be entered for
immediate evaluation and code fragment panels show the text that corresponds to
selected portions of the program. PAVES translates between graphical and textual
forms to allow either to be used for a given task and to help the user form an
association between the two.

PAVES is targeted at customization and experimentation tasks, as well as
prototyping and more general program development. It is intended to be accessible
to inexperienced programmers as well as act as an overview level for experts. By
providing continuous video feedback as the flow graphs are altered, it allows the
user to tune the pattern of media processing. Through its embedding in an
application toolkit, it is available for program inspection or reconfiguration as
needed.

1.5 Issues in the Development of PAVES

Two issues need to be addressed in the design of PAVES. To integrate graphical
and textual programming methods, a means of translating between the different
program representations is required. To simultaneously support live video and
manipulations on programs as they run, a synchronization mechanism is required.

To use the PAVES facilities on video programs developed textually, as well as to
capture visual work done with PAVES for later reuse, requires translating between
the visual and textual representations of an application. This is a difficult task
because little is specified a priori about the behavior of video programs. The
translation mechanisms must be general enough to apply to a range of programs,
but flexible enough to accommodate the features of each program. PAVES defines
a cooperative model and uses the properties of object-oriented programming to
implement it.

A synchronization mechanism preserves the illusion of direct manipulation by
ensuring that the flow graph window accurately reflects the program to which it
corresponds. Because video programs continue to run as they are manipulated, it
is possible for them to alter their pattern of processing. Any such changes must
result in the updating of the flow graph. This is difficult to accomplish because all
PAVES facilities are intended for a range of video programs. They are
automatically generated and cannot be specially coded to accommodate the
vagaries of a particular video program. PAVES implements a generalized
synchronization scheme with a presentation-style approach [4].

In tackling both these issues, the interpreted programming environment of the
VuSystem is valuable. It provides a language midway between the visual and
C/C++ program languages, a reference point that can be related to both
languages. Because it is interpreted, it can be used to issue commands at any
time, including commands that investigate the current structure of the program.
Much of the foundation of PAVES relies on organizing video programs into object
structures that are expressed in terms of an interpreted VuSystem language.

1.6 This Thesis

This thesis presents PAVES, an interactive video programming system. To meet
the needs of controlling programs while they are manipulating live video, PAVES
combines the aspects of visualization systems with those of multimedia systems.
Related work in these fields is presented in Chapter 2.

PAVES employs a programming approach that allows both graphical and textual
programming methods to be used simultaneously. I refer to this as a cooperative
approach, and describe it in Chapter 3. It appears to the user as a series of
programming windows. Both visual windows, including a direct manipulation
program representation based on flow graphs, and textual windows, including an
interpreter for issuing commands, are available. Their use is demonstrated in
Chapter 4. To implement them, a means of translating between graphical and
textual forms is needed, as is a means of keeping these forms synchronized with

the program they represent. The design and implementation of these mechanisms
and the structuring conventions that support them are described in Chapter 5.
They build on top of a specially constructed object system that provides the
infrastructure necessary to programmatically manipulate video programs. The
design of this language, Object Tcl, is presented in Chapter 6. Appendices A and
B serve as detailed references for the structuring conventions and Object Tcl,
respectively.

Experience with PAVES has helped to evaluate the role of interactive video
programming, as well as more general programming concerns such as the value of
a cooperative approach and use of abstractions. It has also suggested further work
in these areas. These results are discussed in Chapter 7.

Chapter 2

Related Work

A body of research in multimedia systems and user programming systems is
relevant to this thesis. In the introduction I have discussed these areas in general,
and this chapter now investigates specific prior work. I concentrate on the
intersection of multimedia systems and user programming systems by examining
the programming support in multimedia systems and conversely the media
support in user programming systems. The contrast helps to place in perspective
the interactive programming system of this thesis.

2.1 Programming in Multimedia Systems

Besides the VuSystem [22], there are other multimedia systems that support
programming activities. In this section I investigate the programming aspects of
multimedia systems that are designed from the ground up to manipulate video,
since its timeliness and visual properties drive this research.

Most often, programmable video systems are software libraries with an application
programming interface (API) that allows their routines to be combined using a
textual programming language. They are described as toolkits and are targeted at
professional programmers seeking to create new products. Their development
environments are typically not interactive, but are worth examining because the
programming models they employ are usually well-developed from a programming
language standpoint.

Multimedia applications can also provide programming-like facilities for the end
user. These may include a fixed set of primitives for manipulating video, along
with a means of combining the primitives, and support for stereotyped tasks such
as the customization of preferences. Though they do not constitute programming

in the traditional sense, these systems are worth examining because they explore
frameworks that allow users to specify operations on video and other media.

2.1.1 Quicktime and other toolkits

Apple Computer's Quicktime [15] is a commercial toolkit for manipulating
time-based media in the Macintosh environment. It is notable as the most popular
system in use today for programming multimedia applications. Many existing
applications, such as word processors, have been extended to support video by
incorporating its functionality.

The developer programming model used in Quicktime is based on the notion of
components, each of which implements some processing function. Components
form a primitive object system, and serve to encapsulate drivers for special
hardware, such as video sequence grabbers. A set of pre-defined components
provides all the functionality necessary to add video playback capability to
applications. As such, Quicktime may be argued to take a document-centric
perspective, where video is treated as simply another type of data managed by the
application.

Quicktime provides no direct programmability for the application user, leaving this
task to the application developer. It does include several user interface
components, and encourages developers to use them. These components were
created to reduce development effort and promote interface consistency. They
provide standard ways for the user to interact with movies. A movie controller
element lets the user navigate through video clips during playback; standard dialog
boxes let the user configure parameters such as brightness, hue, frame rate,
compression type, and audio input level prior to capture.

Other platforms have developer toolkits, but again they provide no direct
programming features for the application user. Microsoft's Video For Windows [7]
is the equivalent of Quicktime for the Windows environment, and includes a set of
tools for editing video sequences. Solaris LIVE! is a set of libraries [17] and an
architecture for Sun workstations. It emphasizes media computation more than
does Quicktime but supports no interface elements except for media display.

2.1.2 Premiere, VideoShop and Director

Video editing systems such as Adobe Premiere, DiVA VideoShop, and MacroMind
Director [12, 6, 16] provide users with facilities for combining video segments in
sophisticated ways. VideoShop and Director emphasize the integration of video
with other media more than Premiere, but for our purposes they all present a

higher level interface to Quicktime and equivalent toolkits - an interface more
accessible to users.

Video editors do not present a programming model to the user, but do provide a
visual framework for directing the processing of digital video. Sequences are
composed in a workspace that shows the temporal dimension of each of many
simultaneously active tracks; objects in this video programming model are media
rather than processing operations.

Filtering operations can be used to transform the color, spatial, and temporal
components of sequences of images, or tracks. They include brightening, blurring,
sharpening, zooming, panning, enlarging, and freezing frames. A variety of
operations such as cuts, fades, wipes, and morphs can be used to combine tracks.
There is no form of procedural abstraction for the user, though some extensibility
may be provided. Premiere, for example, has standardized an interface for
third-party processing modules, or plug-ins that augment its capabilities.

Despite their accessible interfaces that let users direct the simple processing of
video, editing systems are a weak model for the interactive system of this thesis.
Their lack of programming language features could be remedied. But they are
modeled on the previous generation of analog editing suites, which treat editing as
an off-line activity. They are not suited to live media, nor do they produce their
video result interactively. Instead, they transform a given sequence of video into a
new one in an unconstrained amount of time, without provision for producing the
new sequence as it is needed for play-out.

2.1.3 VideoScheme

VideoScheme [24] is a programmable video editing system developed to research
the automation of routine video processing tasks. It addresses the programming
weaknesses seen in Premiere and similar systems by using the Scheme language to
specify operations. This brings the generality of a real language to bear on the
specification of video processing. It has enabled VideoScheme to be used for
decision and analysis tasks such as silence and cut detection.

In terms of this work, VideoScheme is limited in two directions. It requires users
to be familiar with a textual programming language. Though Scheme is a high
level and interactive language, hiding details such as memory management and
compilation, it does not compare with the easy-to-use graphical interfaces of
Premiere and the like. The situation is analogous to that of the VuSystem and its
Tcl programs, on top of which the research presented in this thesis is built.

VideoScheme also inherits the off-line or batch processing nature of editing
systems. Though the Scheme program may be developed interactively, it cannot

produce its video result in real-time since there is no resource scheduling based on
real-time.

2.1.4 Medusa

The Medusa applications environment [41] is a prototyping system for distributed
video and audio applications, based on a peer-to-peer architecture for controlling
networked multimedia devices. It uses simple, reliable, and unbuffered channels for
connections and capability-based proxies for security. In Medusa, programs are
modeled as active objects, which are implemented as C++ classes. A Medusa
server that is implemented as an extended Tcl/Tk interpreter provides an
interactive interface for composing video programs and building graphical
browsing and debugging tools.

Like VideoScheme and the VuSystem, Medusa lacks a graphical programming
environment for specifying video computations'. It is similar to the VuSystem in
its ability to handle live video and its use of Tcl as a means of combining video
manipulation modules into programs. It differs in its emphasis on distributed
programs rather than visual processing, with a correspondingly less well-developed
system for constructing program user interfaces.

2.2 Media Support in User Programming Systems

As the use of video becomes widespread, it is natural to expect it to be the subject
of specialized user programming systems and be incorporated into others. In this
section, I examine existing user programming systems that do not support video
but could parallel future systems that do support it. These systems are designed
for specialized problem domains that share characteristics with video processing:
image processing, computer vision, and scientific visualization.

2.2.1 AVS

The Application Visualization System (AVS) [39] has set a de facto standard as a
commercial tool for scientific visualization. It provides a visual programming
interface with which users may combine processing elements into a program that
represents the visualization. Different colored connections are used to convey
various types of data and constrain the connections between modules to those that

1Work is in progress to extend the interactive environment of Medusa, but no specifics are

available to me at this writing

are legal. Given a program graph, raw experimental data is passed through it,
being processed along the way and then presented.

Though it does not handle real-time data, AVS emphasizes liveness of the program
and result by allowing changes to the program at all times and re-computing the
visualization result as needed. It also constructs a simple user interface for the
visualization based on the processing modules it contains. This interface allows
module parameters to be examined and adjusted. The system is extended by
adding to the library of modules, linking in routines written in languages such as
C or FORTRAN. Alternatively, AVS may be linked into existing applications.

AVS offers a well-tried model for a visual programming system, though it offers
weak abstraction mechanisms for the user. The programming system presented in
this thesis draws on many of its features, while adapting them to support video.

2.2.2 Cantata, VIVA, and MAVIS

There are a variety of media flow style visual languages for image processing,
including Cantata, VIVA, and MAVIS [40, 37, 31].

Cantata provides a graphical front to the KHOROS signal processing system. It
lets the user construct a pictorial representation of processing operations, from
which a valid KHOROS program is constructed and executed. This has proven a
convenient way to prototype applications.

VIVA is similar to Cantata. It is notable for emphasizing "liveness", the extent to
which program elements provide feedback to the user as they are manipulated. In a
VIVA session, editing the program graph causes the results that are dependent on
it to be updated. MAVIS too is fully live, incorporating liveness with continuous
image processing as part of its design for computer vision tasks. Elements in
MAVIS represent processes that execute continually, firing whenever their input
conditions are met. Allowing users to access these conditions and control resource
scheduling policies lets them model real-time image processing systems.

These systems are useful precedents for the interactive system, but lack means for
combining the visual programming level with other levels. AVS, with its
capabilities for visually building new applications as well as linking to existing
textual applications, provides greater flexibility. As was the case for AVS, the
systems also provide weak languages because they do not support user level
abstraction facilities.

2.3 Perspective

The interactive programming system presented in this thesis is novel in the way it
uses visual programming in conjunction with video processing to form a video
programming environment accessible to application users.

The systems discussed in this chapter do not adequately support emerging video
applications. Visualization and editing systems support user interaction, but not
the timely computation, distribution and presentation of video. Multimedia
systems support timely manipulations, but provide weak programming facilities for
the user.

Beyond the combination of these systems, there are two important differences as
compared to prior work. The interactive system emphasizes liveness to an unusual
extent because even the video data may be live. Further, it is intended to be used
in a different manner than most editing, visualization, and image processing
environments.

Media in the interactive system is always flowing because it is constructed on top
of a programming system that respects the temporal characteristics of the data.
Changes to the system take effect immediately, and the user interface always
reflects the instantaneous state of the program.

This differs from digital video editing systems, which combine video segments to
create further video segments. Their user interfaces may attempt to be responsive,
yet the combination process is inherently off-line because it must run to
completion before any output may be replayed. Similarly, visualization systems
may provide responsive interfaces, but they are fundamentally simulation style
environments. Rather than trying many image processing operations to find the
best for a given dataset, video may be digitized from a camera, processed, and
then displayed, all without being stored in any persistent form.

The interactive system is intended to be available across many video programs, as
well as work in conjunction with the other programming methods of the
VuSystem. This differs from visualization and image processing applications,
which are often standalone environments in which a program of analysis is
prototyped. The focus on live video means that the system will often be used to
manipulate running applications, as opposed to constructing fresh ones. Here,
reprogramming may be secondary to simply using the application, and should be
consistently available on demand without interfering with program operation.

These modes of use place greater weight on the integration of programming
methods than is found in systems such as Cantata. They favor abilities such as
hiding the visual program editor and linking to existing applications, both features
of AVS.

Chapter 3

A Cooperative Approach

In this chapter, I present the approach used to design and implement PAVES as an
extension to the VuSystem. The approach stresses the integration of the media
flow graphs and other graphical programming tools with the remainder of the
toolkit through cooperative methods of programming. I present a model for
achieving this that addresses the difficulties of providing programming tools across
a range of video programs, as well as synchronizing them with the state of the
application and hence each other. It is implemented by embedding an object
system and presentation-style model in the VuSystem.

3.1 Cooperative Programming Levels

I developed a cooperative model that allows the flow graph and textual
programming windows to be used cooperatively. In PAVES, flow graphs can be
used to manipulate VuSystem programs, and interpreted VuSystem commands can
be used to manipulate program flow graphs. Each is a programming facility
a,ccessible from the other.

This strategy addresses a weakness of many visual programming systems. They
are often well-suited to their specific tasks, but can lock users to their interface for
a larger set of tasks, and become frustrating to use after a promising beginning.

Graphical shells, such as the Macintosh Finder, exhibit the shortcomings of
approaches that are not cooperative. They are apt for small file management
tasks, but not appropriate for more complicated tasks. Other shells, such as the
command line utilities found in UNIX and DOS, can accomplish more complicated
tasks, such as archiving files not recently accessed. But they can prove cryptic to
the beginner. There is no easy way to combine the strengths of both methods.

Applications such as SchemePaint [9], on the other hand, demonstrate the use of
cooperative programming methods. SchemePaint is a graphics application that
augments a direct manipulation paint system, similar in spirit to MacPaint, with
an interpreter for graphics-enriched Scheme. This allows the simultaneous use of
different drawing methods, letting the user decide how to accomplish each task.

Int

execut

describe!

ternal Form Int

draw

Program
Database

,/evaluate
/i _. '

Figure 3.1: Model of Representation Shifts

3.1.1 Defining Cooperation

An abstract model of the cooperating programming levels of PAVES is shown in
Figure 3.1. Three forms of representation of a single video application can be seen.
Each generic form is presented to the user through different types of views that
capture observable information about the executing program image. Many
different views can reveal different aspects of the application.

In the middle, the internal form represents the video program as it evolves from
moment to moment. Its views are depicted by the program database because they
provide momentary direct access to the running VuSystem application. An
interpreter is a view of internal form.

The interface form models the executing program image across the graphical user
interface. Its views are depicted by windows because they provide a direct

Text Form

source code

erface Form

e

manipulation representation of the application. The media flow graph, showing the
pattern of processing currently implemented by the application and allowing it to
be altered, is a view of interface form.

The text form models the running video program in terms of the source code that
corresponds to it. It is extended Tcl code that is interpreted by the VuSystem
shell to run the application, and is edited as the traditional means of
programming. Views of text form are depicted by lines of source code because
they provide a snapshot of a portion of the program database at the moment they
were constructed.

The path moving from left to right represents the course of action for traditional
applications: stored code is interpreted to yield a program image, which presents a
standard interface to its users. It is the reverse path, from right to left, that
enables cooperative programming between different interfaces.

In PAVES, the flow graph may be used as a consistent means of expressing
one-time customization tasks (such as tuning the appearance of video and resource
usage) across video programs. It may be used for rapid prototyping by starting
with an empty application, constructing a program interactively, and then saving
it as source code for later refinement.

Conversely, a VuSystem program written directly in the interpreted language may
be examined with the flow graph interface, perhaps for a better understanding of
its function, or perhaps to be reconfigured and saved. This last type of
re-programming is more powerful than the customization facilities found in most
applications because any change that may be expressed in the graphical language
may be effected, not just a fixed set of changes anticipated by the program
developer.

These modes of use require a means of mapping between the interface, text, and
internal forms, since any view can be used to drive the others. The mappings are
represented in Figure 3.1 with the addition of the evaluate and describe operations.

The evaluate operation represents the interactive re-programming of the
application via its graphical interface, such as edit actions on the media flow
graph. Since the edit actions are not artificially restricted, they may effect general
program changes. For example, a user might remove components of the
application, rearrange them, or substitute entirely new components. This
generality requires the user interface to be updated to match the altered program,
complicating the usually straightforward draw operation. For example, controls
associated with components that no longer exist must be automatically removed.

A describe operation represents the serialization of the program into equivalent
source code, code of the same type originally interpreted to launch the program. It
allows the application to be saved in Tcl format. This code may be refined as well

as reused, in contrast to lower level representations, such as a suspended process
image, that are opaque to further development.

Determining the source code that is in some sense equivalent to a running
application raises the issue of what state should be observed. Some state
information captures the intent of the application, such as the sequence of media
processing operations it performs. Other state information pertains only to a
particular run of the program, being derived from the content of the video and
other environmental bindings. These types of state must be separated during the
describe operation.

3.2 An Embedded Object System

The natural approach for adding an interactive programming interface to the
VuSystem is to embed it in the toolkit. This has the advantage of reinforcing
causal programming use, since interactive facilities are then accessible from all
video programs if and when they are needed. There is no separate environment for
development.

By embedding PAVES in the VuSystem toolkit, a consistent user programming
interface is provided for an entire range of applications. This benefits the user. It
also minimizes effort on the part of the application programmer, since applications
need contain little, if any, code dedicated to generating their own media flow
interfaces. Rather, they expect to gain the advantage of automatic user
programming tools by adhering to the toolkit structuring conventions.

Embedding also serves to delimit the class of video programs PAVES can
manipulate and facilitate the mappings between representations. Programs written
with the VuSystem toolkit must adhere to its coding conventions. Greater freedom
in program form will translate to fewer and more general manipulations for a given
level of implementation complexity. The conventions exist to ensure there is
sufficient structure to map between forms. They imply that all toolkit programs
have the potential to be manipulated with PAVES.

3.2.1 Object Tcl

The basis I have used for mapping between representations is the Object Tcl
language, constructed as part of this thesis. Toolkit structuring conventions alone
cannot implement the mapping. A scheme to recover structure is needed, and it
must be dynamic since toolkit programs may evolve during their execution. To
affect all video programs, the scheme must be specified in a generic manner, yet it
must account for the peculiarities of each program.

Object-oriented programming provides inheritance and naming properties that are
well-suited to capture the patterns of similarities and differences between
programs. Objects naturally model a program of interconnected media processing
modules and the operations they undergo.

An example of applying this object model is that of printing objects in human
readable form. Even though objects differ in their semantics, each object may be
printed by using a consistent syntax. Many objects may have similar printing
needs, such as different types of number that share a common format. This may
be accomplished by inheriting behavior. Other objects may require special
handling, perhaps the number 3.14159... should be printed as 7r. This may be
accomplished by specializing behavior.

The object system is useful for even simple manipulations of programs. But it
becomes essential to capture more complicated patterns of behavior. Abstraction
operations, where a group of modules is treated as a single module, demonstrate
the power of the object system: operations on groups can readily be defined in
terms of combinations of the operations on the group members.

3.3 Synchronization of Views

To preserve the illusion of direct manipulation, a strategy for updating the user
interface to match the executing program is needed. A video player program, for
example, may instantiate a set of objects that depends on the compressed format
of the video and whether the video is local or remote. Similar unanticipated
behavior can occur in many useful video programs, and the flow graphs and other
windows must be able to cope with it. Since the windows are generated by
programmatic means, however, it is difficult to special-case operations that may
cause inconsistencies, and a more general scheme is needed.

Providing a synchronization scheme creates significant flexibility beyond that of
supporting unpredictable programs. It does not matter where the configuration
change that triggers an interface update occurs. This means that the simultaneous
use of different programming levels is supported by synchronization. When views
of interface, internal or text form are capable of accomplishing a given task, any
may be used with the same result. Further, a changing and functionally
overlapping set of interface displays can be in use, and all views will be maintained
correctly.

User Interface Boundary

presenters

--- recognizers

Figure 3.2: Presentation-Style Synchronization Model

3.3.1 A Presentation-Style Model

The synchronization model I chose is a refinement of the presentation model of
Ciccarelli [4]. In this model, the notion of the state corresponding to the user
interface and its objects is collected into views that are separated from the
underlying program database.

Figure 3.2 shows the synchronization model tying several user interface views to
the executing program image they represent. These views represent the flow
graphs, control panels, and code fragments (shown with an example in Figure 3.3)
that are generated and maintained by PAVES.

Each view is synchronized with the program database by a presenter process.
Presenters monitor the program database and present to their view any changes
that should be reflected across the user interface. To allow a view to affect the
program database, a recognizer process tracks user manipulations, and converts
them into the appropriate program state changes. The act of changing program

(
Executing
Program
Image

View 1

View 2

View n

state then causes the presenter process to update the interface view.

An example of a presentation-style model can be seen when using the Emacs [35]
editor. Emacs can display multiple editing buffers at a time, and it is allowable for
a single buffer object to be shown more than once. In this situation, if the user
types then the result appears in all copies of the single buffer object. Typing
causes characters to be appended to the single buffer object. Each change in the
buffer object triggers the updating of all screen buffers that reflect it. An indirect
model is being used, often with the same observable behavior as direct
manipulation, but occasionally revealing more sophisticated behavior.

)--: MLVAL I1

Omat

D1usSc

BlusScBlusSc
Dium1c

;Disiss

Vvstaticnuwj

Threshold 10*
Constar Cotin10

i...... ...~.~...-................ I
BlockSize 1

Nose sits 0 j..:.._.; _~;

VvNotioQGete

Thmesholdi 10
4 ~...

D~uuic Ranm i0

Dismiss

mncde w -1j (vsI

ctem.cdm -c4 ~

I

Figure 3.3: Three views of a video program generated by PAVES

3.4 Research Scope

This thesis investigates programming methods. In particular, it investigates the
programming language aspects of the visual language and its integration with the
underlying interpreted language. To reduce the scope of this effort I have
emphasized these areas over other aspects of the system.

I assume that VuSystem video programs can be substantially represented by the
media flow graph structure. This kind of representation has been successful in

VvStatiora vs.dmo stat
-blockSize (1 1)I-callbe a 0-2iIICMie 0 \-confsCallbi (0 \
-dustr6Caiibmck 0
-fill (0)\
-aomelits (0) \
-threshold (10) \
-two (cmst)
-Aosition-rPwition (70)

:vs.dBmo.start.outxA correct vs.dwo.mg.irqut1

-Di.i.s

I

;.;...... .a ...

...........

si*)i sr

I ~j rm I

previous efforts, and should capture a useful class of video programs. Other
programs, which have a large amount of state not captured by the flow graph
representation, cannot be differentiated by the interactive facilities. For them, the
value of flow graphs as a means of programming is diminished.

Though the user interface may change in response to changed media flow
configurations, I do not study methods for configuring user interfaces in their own
right. Modeling video programs by their media flow implies that only the portion
of the user interface corresponding to the flow may be controlled with the visual
programming interface. With my approach, a system for managing user interface
widgets would largely parallel that for managing media processing objects. Much
other work, going by the general name of user interface management systems
(UIMS) and surveyed in [26, 27], addresses these interface configuration issues.

Finally, when necessary I have traded appearance for functionality.
an austere interface design, while being careful not to sacrifice ease

I have adopted
of use.

Accessibility

/ visual\
flow
graphs

/ visual
controli command

\ panels / interpreters)

\ module,
i scripts

application
scripts

(filter ,general modules
modules ,/

graphical methods Tcl

Generality
C/C++

Figure 3.4: The spread of VuSystem Programming Methods

simple
to use
interactive
facilities

detailed
coding
cycles

3.5 Perspective

Cooperative programming and the embedding of a user programming facility in an
application toolkit are approaches that are not tied to PAVES or media
computation. A specialized problem domain lets program structuring conventions
that are restrictive yet still useful be defined, and drives the form of the user
interface: specialization makes the approach feasible. But the methodology is
intended to be general. It should be applicable to other domains whose programs
can be well-defined, and for which video programs serve as a testbed.

With this approach, the programmer is presented with a continuum of
programming methods instead of a dichotomy. Figure 3.4 shows visual
programming as the most accessible though least general method available within
the VuSystem. A series of other methods for module and application script tasks
lead to programming with the interpreted Tcl language. Below this, primitive
modules may be developed in C and C++ when Tcl no longer suffices. At each
step a wider range of tasks may be accomplished, but at the cost of learning and
using a more detailed programming tool.

Object Tcl allows this continuum to be provided. By exposing it across the user
interface, it bridges the gap between the interactive visual levels, and the C/C++
development levels. Object Tcl is tied to the flow graphs and control panels
through the Tcl widget set of the VuSystem, which translates between Tcl
commands and widget manipulations. Object Tcl is tied to C/C++ through by
the tight integration of Tcl and C, which allows routines in either language to be
called from the other.

The programming methods are intended to overlap to let more than one method
be used for a, given task. This encourages experimentation. It provides a gradual
learning path from initial user interface programming through the development of
new primitive modules. And it means that video programs are extensible, and do
not need to be rewritten as features are added.

Chapter 4

User Programming with
PAVES

In this chapter, the user interface of PAVES is presented. All programs
manipulated with PAVES have several types of windows in common. A sample
application is investigated to demonstrate their use to perform a set of user
programming tasks. The broader uses of the programming windows are then
discussed.

4.1 A Guided Tour

The BlueScreen program is the example video application with which the system is
presented. It segments moving objects from a stationary background by assuming
a fixed camera position, and is named because of its similarity to the chroma-key
technique that is used to combine analog video'. The BlueScreen program has
several features that make it a suitable example. It is a real application that was
developed as part of the COMMA project [36]. The segmentation task it performs
is non-trivial, and generalizes from keying by color to keying by motion so that an
artificial background is not needed. Yet it is implemented with a small number of
more primitive processing modules and is itself used as a subsystem in larger
applications.

Figure 4.1 shows the user programmable interface of the BlueScreen program. The
upper window, titled "BlueScreen", displays the input and output video streams,
along with overall program control buttons. In this case it shows a moving person

'In chroma-keying, a specially colored background is eliminated and substituted by a different
background. Saturated blue is traditionally chosen as the special color because it is unlikely to
occur in natural scenes.

...............- ---------------..

BlueScrven:
BlueScreen: .

Figure 4.1: The BlueScreen Program with its Flow Graph

segmented from the office scene in the background. The window is named after the
program because it presents the main user interface, displaying those widgets that
are always present for navigation and media results. This type of window varies in
appearance with the application.

As well as a main window, each application presents a varying number of
programming windows that are automatically generated by PAVES. These are the
flow graphs, interpreters, control panels, code fragments, and other windows that
are discussed in the next sections. In terms of the cooperative model, they
correspond to different views of the interface, text, and internal forms of the
program.

4.1.1 Media Flow Graphs

The lower window in Figure 4.1, titled "Flow Graph for BlueScreen", is a direct
manipulation interface that shows the media flow graph for the program. It was
summoned from the main window via the Program button. It is an interface form
of view, tailored to show the pattern of media processing that the BlueScreen

program currently implements.

The flow graph window is the principal means of observing and effecting changes
to the overall structure of a program. It shows the program in terms of its
VuSystem in-band processing modules. The vertices of the graph are labeled and
represent the processing modules themselves, and the edges represent the flow of
media between them. Media flows from left to right.

For the BlueScreen application, media originates at a VideoSource module,
corresponding to live video input. It is then replicated with a Dup module. One
Dup output goes directly to a Sink module, to display the unprocessed video on
the right-hand side of the main window. The others are processed to achieve the
segmentation effect.

Segmentation is computed in four steps. First, a Stationary module performs
temporal filtering to construct a background image. A MotionGate module then
computes the raw movement mask by comparing the stationary image with the
input video. This estimate is refined with median filtering and region growing
techniques, implemented in the MaskObj module. It is finally combined with the
input image by a Color module to pass only the moving foreground for display.

There are several intuitive ways to change the program structure by interacting
with the flow graph. Processing modules are objects that can be created,
destroyed, combined, and grouped to form new objects. With these operations -
a library of primitives, a means of combination, and a means of abstraction - flow
graph manipulations form a language and support a method of programming.

All flow graph manipulations work in terms of the current selection. Figure 4.2
shows five selected modules, each of which is indicated by having its background
and foreground colors reversed. Ports and modules are selected by clicking the
pointer inside their boundary. The selection is extended by shift-clicking, and reset
by clicking outside of all object boundaries.

Connections between the ports of modules can be rearranged to alter the
combination of media processing. New connections may be made or old ones
broken by first selecting input and output ports and then choosing the Connect or
Disconnect button as appropriate.

Existing modules can be destroyed, and new ones created from a library of
primitives. Tb delete a module and all of its ports, it is first selected and then the
Destroy button is chosen. To create a new module of the same type as an existing
module, the existing module is selected and the Create button is chosen. If no
module is selected, the user is presented with a dialog that lists all the possible
types of module that can be constructed.

Modules may be grouped to form a single composite module, adding a new

BlueScre n: ----------- ------------ -- -------
ilueScreen: Iame for the grow:

BlueScreen:BlueScreen:
BlueScreen:

lue Dlslss
BlueScreen:

Disaliss

Figure 4.2: Before Grouping the BlueScreen Modules

BlueScreev:
BlueSreen:
BlueScreen:
BlueScreen:
BlueScreen:IBlueSceen:
BlueScreen: group BlueScreen vs.deeo (vs.deeo.stat vs.deeo.mg vs.demo.dp v
VsBlueScreen
BlueScreen

Dismiss:

Crate which dbject:
;VsfdloFileSfri
VsAudWileSorce

Vs~udioSfr
VsBlockShift

Vsbjtestrsm
Vs=NscPUPIaer
VsCaption1rk
VsCeaptiorfoce
j VsaweelSelnct
VsawrielSet
VsCotor24to8
VsCofrr24toGay
VsColor8to2W
'IsDe"La
VsEffect
VsEntlty
VsExercise
VsExtarnalSirk
VsteamylSoLrze
VsFade
VsFilter
Vs\ateNl
VsIrpAPort
VsJpqc
Vslpegfl
VsLoCStyle

Create:

Di4eiss;

Figure 4.3: After Forming the BlueScreen Group

I

definition to the module library in the process. This is demonstrated with Figures
4.2 and 4.3, which show the flow graph before and after grouping the modules that
comprise the segmentation effect. In Figure 4.2, five modules are selected for
grouping and a dialog window is present. The dialog is summoned by choosing the
Group button, and is used to specify the name for the new grouping prior to its
construction. In Figure 4.3, the grouping is complete and the five modules have
been replaced by a new module labeled BlueScreen. The default creation dialog
can also be seen, and now includes the BlueScreen module as a candidate since
new BlueScreen modules can now be manufactured.

All grouped modules are displayed as a single module in the flow graph. Grouping
involves creating an encapsulation or abstraction barrier, below which the flow
graph allows observation but not editing. To peer inside a grouped module, it is
first selected and then the Graph button is chosen. This is demonstrated in Figure
4.4, where the internal arrangement of the BlueScreen group can be seen. To
emphasize the encapsulation barrier, the internal and external flow graphs are
drawn in separate windows. The internal window has all of its editing buttons
disabled to prevent changes. Observation buttons remain enabled to allow the user
to peer inside groups within groups.

Control of the flow graph also flows in the reverse direction, from executing
program to user interface. This is because the graph is an interface form of view in
the model, requiring it to be synchronized with the program it represents.
Programs may create or destroy modules or alter their connections as a normal
part of their operation, and these changes will be reflected by the graph. This
means that the graph is safe to use over a wide range of applications and in
combination with other methods of programming.

Several conventions are silently enforced as the flow graph is manipulated.
Modules may be freely repositioned by dragging them with the pointer. This is
accompanied by continuous feedback, including the "rubber-banding" of module
connections. Repositioning does not alter media processing, but does enable a
more aesthetically pleasing layout. To encourage this, positioning information is
saved between flow graph sessions. A default layout is also provided for graphs
with no positioning information. This makes the flow graph a convenient interface
even for completely hand-coded programs (which naturally have no associated
layout).

Modules are drawn to show all of their input and output ports, whether connected
or not. This provides visual cues, since the shape of the module implies its
function. For example, modules with output but no input represent sources of
media, such as live video from a camera. Similarly, modules that consume media
use the operating system to export it from the VuSystem, perhaps to a screen or
storage device. Modules with both inputs and outputs filter and transform media.

Media flows between modules are not visually differentiated and no restrictions are
made on the connections between modules. Each flow may contain payloads of any
type, and modules process only those types they recognize, passing the rest
without error. It is thus allowable, but not useful, to pass video data to an audio
processing device.

The flow graph can also be used to summon control panels and code fragments
with its Panel and Code buttons. When invoked, these buttons cause the
generation of a control panel or code fragment, respectively, that corresponds to
the selected modules. If no module is selected, the windows correspond to the
entire program. The operation of these windows is explained in the following
sections.

Figure 4.4: Peering Inside the BlueScreen Group

4.1.2 Interpreters

An interpreter window can be seen in the lower section of each flow graph window
in Figures 4.1 through 4.4. These provide direct access to the underlying program
in its native interpreted language. In terms of the model they correspond to an
internal form of view, recording queries and commands at the moment they affect
the executing program.

The interpreter functions similarly to a command-line interface, assembling typed
input into complete commands and causing them to be evaluated. It is useful for
issuing commands that are too complicated or specialized to express with the flow
graph, as well as for querying the current state of objects. It also monitors flow
graph activity. When a graph operation is completed and executed, its textual
equivalent is displayed in the interpreter window as though it had been typed.
This mechanism allows either interpreter or flow graph to be used as appropriate,
and helps the user form an association between textual and graphical commands.

VldsdPlx

Port

i D pth................................

...- 24 bitsi

... .-.....- ... -4

.................

.................Frae Ret. p 0.000000

miss...........

j WStxtiawv Rvte RMto- Resize

--- --s---d 10l Pemulds/s=C: sca le 0.50!
:;jij Pantrr calool d TW9

- All i idth 320
COwSt.,t cow',10 :W Wdh

Ow mrl N.om..........
jZU'o (km Te;Height 240

fTreshold 10

~Rate Motor Resize
l Rawm 0 Peploeds/sec : - ScaLe 0.501~I~ ~ ~ j, ~ladTbP· ijscale 50(1::~::

37 P~janedTe All Aioi YWidth .320

Mdan d indow0lr 0..............I ,w a ku a Height 240.......... - 1 ý..: ::
Srde Window

WColwr

Foa vr .10

DEckgrur -1
...

Figure 4.5: Control Panel for the BlueScreen program

4.1.3 Control Panels

The control panel window is another interactive programming view that
complements the program window. It is summoned by choosing the Control
Panel button on the main window, or the Panel on the flow graph view. Like the
flow graph, it is an interface form of view that dynamically reflects the contents of
the application. During the design of PAVES it became apparent that control
panels, which already existing in the VuSystem, fit the role of an interface form of
view, and they were re-written accordingly2 .

2Because they are a VuSystem legacy, control panels are not fully integrated with the model. In
particular, they are synchronized with the application only each time they are recreated.

I I_

............ I

The control panel is the principal means of making small adjustments to a
program, tuning or customizing it by using visual feedback. Rather than allowing
modules to be rearranged, it displays selected parameters internal to modules and
allows them to be altered.

The control panel for the entire Bluescreen program is shown in Figure 4.5.
Multiple choice boxes, scrollbars, and other controls are arranged by module for
each module of the program. On the left, a column titled "VideoPix" has controls
such as port, scale, color, frame rate, etc. for the VideoSource module. The
right-hand columns have controls for the Sink modules that display video on the
main window. These include scale and rate information. In the middle column, the
Stationary, MotionGate, MaskObj, and Color modules can be seen to each have
various parameters related to their processing operations. Adjusting these
parameters has an immediate effect on the displayed video.

r•N'•,-N

VsBlueScreen vs.demo.objl \
-callback (} \
-configCallback () \
-destroyCallback 0 \
-Position (10) \
-yPosition (10)

vs.demo.obji.outpu
t
0 connect vs.demo.sink2.input

vs.demo.obji.outputl connect vs.demo.sinkl.input

VsTclClass VsBlueScreen -setSuperClass VsOpaque

VsBlueScreen proc create (m args) (
apply $self nextProc $m Sargs
VsDup $m.0 \
-callback () \
-configCallback (} \
-destroyCallback () \
-numOutputPorts (4) \
-xPosition (140) \
-yPosition (180}

VvStationary $m.l \
-blockSize [1 1} \
-callback (} \
-configCallback (} \
-constantCount (10) \
-destroyCallback {} \
-fill (0} \
-moveBits {0} \
-threshold (10) \
-type (count) \
-xPosition (235) \
-yPosition (70}

VvMotionGate $m.2 \
-callback (} \
-configCallback (} \
-destroyCallback (} \
-dynamic_range (0) \
-hold (0} \
-threshold (10) \

iRecord
I

Dismisss
.............

Figure 4.6: Sample Code Fragment Window

4.1.4 Code Fragments

A further type of window is the code fragment window, which reveals the

interpreted VuSystem code corresponding to a portion of the video program. It is

summoned by choosing the Code button on the flow graph view. In terms of the

model, it is a text form of view that reflects the state of the program when the
view was created.

The code fragment window provides a means of linking the graphical views of the
program with the underlying textual representation. It shows a serialization of the
application code that is generated from the program as it runs. This code can be
used to better understand the function of the program. It can be saved as a
snapshot of the program configuration or for later refinement.

Figure 4.6 shows the code fragment window corresponding to the BlueScreen
module after it has been grouped. Its name and attributes and their values, as well
as all connections are pretty-printed. Because it is a user-formed grouping, its
module definition was manufactured by PAVES and it is also shown. The fragment
can be appended to a working file by choosing the Record button. This is valuable
for prototyping new abstractions that will later be added to the permanent class
library.

4.2 Broader Tasks

The BlueScreen program demonstrates that there are activities the visual facilities
support directly that are awkward to accomplish with textual programming alone.
Reorganizing the broad structure of an application and prototyping a new
construction are two examples. The following paragraphs generalize from the
BlueScreen examples to discuss the tasks that PAVES can be used to perform
across a range of video programs.

4.2.1 Customization

PAVES is well-suited to customization tasks. Media is always flowing, providing
visual feedback to guide the customization process, and the embedded facilities are
close at hand for even small and frequent tasks.

Visual results are subject to qualitative tuning, rather than quantitative tuning
that may be automated. Some qualities of video that are frequently manipulated
by the user include frame size, frame rate, colorspace, contrast, brightness and
hue. Audio and other media have a similar range of characteristics. VuSystem
modules typically encompass a range of behaviors. For example, the Edge filter
module offers a choice of algorithms, each with a range of parameters, and each
appropriate in a different context domain.

Preferences can also depend on the available resources. Processing live video is
computationally intensive and will remain so for some time. This makes choices,

such as compression format, that allow the user to trade the quantity of
computation for the quality of result valuable. A VuSystem experiment with
collaborative load shedding is investigating the effectiveness of automatic resource
customization [5]. Such systems will likely prove useful for improving the default
behavior of programs, but they cannot obviate the need for customizations.

4.2.2 Experimentation and Prototyping

With the visual programming windows, an existing program can be readily
transformed into a new application. This promotes experimentation because
temporary changes in the form of computation can be evaluated quickly. It
promotes prototyping because, once found, new and useful combinations of
modules can be grouped and saved as code fragments. They can then be refined as
needed and added to the module library, making them available to all users and
across a range of programs.

Prototyping new abstractions is typically easier at a visual programming level than
with textual tools alone. With textual tools, there is much overhead in
manufacturing new combinations. It may be automated and hidden at the visual
level of manipulation.

Grouping can be used to extend the system as many times as is necessary. Each
grouping can be manipulated in the same ways as primitive modules, including
being regrouped to construct larger modules. The first-class nature of PAVES
groupings is based on the structural equivalent of procedural abstraction, as found
in CAD tools, rather than an automatic selection extension mechanism, as found
in drawing packages such as MacDraw.

4.2.3 Documentation

Some on-line documentation needs can be well-served by PAVES. By presenting an
executive summary of the structure of a program as a diagram, the operation of
the program is revealed as a configuration of smaller modules. This is the manner
in which the behavior of the BlueScreen program was deduced. By showing the
available customizations of each module in a standard graphical form, its range of
behaviors is described. These descriptions are always available, always up-to-date,
and have a consistent style.

4.2.4 Program Development

Ultimately, the preceding tasks fall under the broader banner of program
development. PAVES promotes the manipulation and evolution of programs by
their users. As an extensible system, it is not constrained to specific tasks such as
minor customizations. It may grow and become more useful as the library of
modules and programs expands.

To foster general program development, the visual interface is integrated with the
other textual programming levels. This gives the user the flexibility to chose the
most appropriate programming level. Work may then be performed at the best
level of detail for the task at hand: the visual level for broad structural changes,
and the textual levels for specific extensions within modules or the development of
new modules. The system encourages learning by translating between these
languages.

These capabilities make PAVES attractive to sophisticated users. They can apply
their knowledge of a problem domain to specific tasks, such as enhancing the
features of an ultrasound scan to assist in diagnosis, without first learning a new
programming language. Yet PAVES is an extensible tool with an evolution path
for progressively learning and applying programming techniques.

Chapter 5

Design of PAVES

The previous chapter presented PAVES from the perspective of the user, to whom
it appeared as a series of windows with different capabilities. This chapter
investigates the mechanisms that enable those windows to function. The
discussion focuses on the visual programming window because it is the most
well-developed of all views, having the greatest synchronization and presentation
needs. The supporting control panel, code fragment, and interpreter windows are
then discussed. The final section of the chapter describes the underlying
structuring conventions, which allow the interactive facilities to work across a
range of video programs.

5.1 Flow Graph Windows

The design of the visual programming window is split between a visual language
and manipulations on video programs. The language provides a representation of
programs, while the manipulations provide a means of linking the flow graphs to
the executing program so that one may affect the other.

5.1.1 Visual Language

Recall from the previous chapter that most features of the visual language are
evident from the flow graph window because of its austere style and few hidden
semantics. Though they require little explanation to use, these features represent
design choices. They are discussed in the following paragraphs in terms of
language primitives, means of combination, and means of abstraction.

Primitives

The primitives of the visual language are the media processing modules. All
primitives are drawn as rectangles and labeled with their type to indicate their
function. Icons are an alternative to a text label, but are not implemented in the
current version of PAVES because they are essentially syntactic sugar. The ports
of modules are always shown, whether connected or not. Input ports are drawn to
the left and output ports to the right. This puts a practical limit of approximately
five input and five output ports on each module, though there has been no need to
exceed this to date.

This scheme means that objects of the same type are visually indistinguishable,
implying that they are functionally interchangeable. Drawing the ports visually
hints at the role of the object. For example, source modules appear more similar
to each other than to sink modules, because sources always have some ports to the
right and none to the left, while sinks are reversed.

The primitives are freely moveable within the workspace so that the user may
customize the program layout. They are selectable too, with operations specified in
an object fashion by first picking the primitives and then indicating the operation.

Combinations

Combinations in the visual language are connections between the ports of
modules. They represent the flow of media, and are drawn as lines. Unlike AVS,
the flows are visually undifferentiated because VuSystem payloads are self-typing.
This implies that all connections between a pair of input and output ports are
legal, though not necessarily useful.

The rendering of combination is closely related to the module layout. The shape of
primitives and their method of combination is such that media prefers to flow from
left to right. This gives the user a direction of reference. PAVES includes an
algorithm that organizes flow according to this model. When presented for the
first time, a flow graph may have no associated layout information because the
video program was constructed textually. Automatic layout is applied in this
special case.

As a matter of convenience, more general layout tools would be useful to assist the
user in tidying layouts after they have been manipulated. Despite much research
on diagram layout (surveyed in [3]) it is difficult to find algorithms that reliably
produce good results, are computationally simple, and are stable across user
interactions.

Abstractions

An abstraction in the visual language is a set of interconnected modules that
function as a single larger module. The visual language admits new abstractions
by grouping a set of primitives and/or existing abstractions. New modules of the
same type as the new abstraction can then be created. This usage appears
straightforward to the user, but involves a series of manipulations reminiscent of
programming by example techniques.

When grouped, a set of modules is used to form the definition of a new kind of
object. The set is then re-organized into an instance of this new type. Forming the
definition requires generalizing from the modules to be grouped to an abstract
recipe. It requires specifics to be distinguished from generalities.

The problem of generalizing is solved by the notion of options. These are
supported by the structuring conventions described later in the chapter. The
attributes of modules that are marked as options contain the instance-specific or
optional state. It can safely be ignored when forming the general definition. This
scheme passes the burden of classifying state to the module developer, rather than
the video program user.

Flow graphs respect the encapsulation barrier of abstractions, which are drawn in
the same manner as primitives. The two are not visually differentiated because
abstractions are first-class: they can be manipulated in the same fashion as
primitives. PAVES does provide a means of peering inside abstractions, but places
the view in a separate window to reinforce the existence of an encapsulation
barrier. Abstractions may be also formed textually, outside the control of the
graphical system, and graphically prototyped abstractions may later be refined
textually. The visual system cannot distinguish these cases, however, and so it
cannot safely break the abstraction barrier to allow editing within a grouping.

Implementation

The screen representation of the visual language is drawn with two Xt constraint
widgets developed in support of this thesis. Figure 5.1 shows how the Graph and
WorkSpace widgets, along with other widgets in the Athena widget set (Xaw),
relate to views in PAVES. Widgets control the presentation and editing of the flow
graph by translating between the X and Object Tcl domains so that PAVES does
not need to deal with window events directly. To respond to user manipulations, X
events are translated into Xt actions and their equivalent Object Tcl callbacks. To
display program feedback, Object Tcl commands and their equivalent Xt resources
alter widget state and trigger a refresh of the display. The Object Tcl commands
and callbacks correspond to the presenter and recognizer activities of the

Object Tcl Interface

Commands Resources

(Presenter)

Callbacks Actions

(Recognizer)

Xt Widget
Domain Graphical User Interface

Graph

X eventsWorkSpace

Xaw widgets

raph

Figure 5.1: Relationship of Xt Widgets to PAVES

synchronization model.

The WorkSpace widget acts as a container for the Graph widgets. It maintains the
current value of the selection resource for the graph, along with the translations
and actions that affect the selection. The workspace also maintains translations
and actions for moving its Graph widgets, allowing them to be arranged into a
more aesthetically pleasing layout.

Auxiliary buttons are used to combine partial commands with the selection to
form a complete command, which is then issued. For example, destroying media
objects is accomplished by first selecting them and then pressing the Destroy
button. The widget corresponding to the button translates the X clicking event
into a Tcl callback that retrieves the value of the selection, uses it to form a
complete command, and finally issues it to destroy the module.

The Graph widgets act as containers for a variable number of widgets that
represent ports. Each port has a gravity and a join resource, which determine

where they appear in relation to the graph node and what they are connected to,
respectively.

The Graph widget redraws itself when moved, creating a "rubber-banding" effect
as the connections between ports are stretched. If no position information is set
for the overall graph, the Graph widget computes a basic layout. A topological sort
algorithm applied to the connections between ports makes media flow from left to
right. No line crossing elimination is performed.

5.1.2 Manipulating Flow Graphs

The two major aspects of manipulating flow graphs are generating the initial graph
of the executing program, and maintaining it in synchrony with program execution.

Generating the Initial Flow Graph

Each module in the video program is a specialized instance of the VsEntity
object, from which the draw method is inherited. Draw walks the internal form of
the program and generates the set of interface widgets that is the flow graph view.
In performing this walk, draw relies on the structuring conventions adopted by all
PAVES programs. These conventions are described later in the chapter.

A skeleton version of the draw method is shown in Figure 5.2. To produce a flow
graph, draw is called for a portion of the program. The overall flow graph is
generated by calling it on the program root, while the flow graph for an abstraction
is generated by calling it a grouped module directly. The argument w represents
the widget in which to construct the graph. It is specified by wrapper code that
performs initializations, which include creating the top WorkSpace widget.

Draw walks the program structure in two passes. In the first pass, dNodes is called
recursively to create all vertices of the graph. For each media processing module it
creates a Graph widget, with a Label widget for each input and output port.
Vertices contain a text label, and their widget names are mapped from the names
of the media entities they represent. Input ports are positioned on the west border
of the node, and output ports on the east. The vertices are also positioned.

In the second pass, dEdges is called recursively to completes the graph with edges.
It sets the join constraint resource on ports to point to each other. This
completes the media flow graph with edges and the draw method returns. The
wrapper code that called it then realizes the widgets, causing them to render
themselves on the screen. During this process, the Graph widgets are responsible
for drawing the media flows and use the flow information to create a default layout
if all positioning information is null.

VsEntity instanceProc dNodes {w} {
set Ivl $w_[tail $self "."]
if {[$self children] == {}} then {
Graph $lvl \
-label [$self class] \
-xPosition [$self xPosition] \
-yPosition [$self yPosition]

foreach i [$self inputs] {
Label $lvl. [tail $i "."] -gravity west

}
foreach i [$self outputs] {
Label $lvl.Etail $i "."] -gravity east

}
} else {
foreach i [$self children] {$i dNodes $lvl}

}

VsEntity instanceProc dEdges {} {
if {[$self children] == {}} then {
foreach i [$self inputs] {
if {[$i bind] != {}} {

[vx $i] setValues join [vx [$i bind]]
[vx [$i bind]] setValues join [vx $i]

}
}

} else {
foreach i [$self children] { $i dEdges }

}

VsEntity instanceProc draw {w} {
$self dNodes $w
$self dEdges

}

Figure 5.2: Skeleton of the draw method

Synchronizing Flow Graphs

Once the flow graph has been generated, it must be kept consistent with the
program it represents as it is both used and the program continues to run. Recall
from Chapter 3 that this is achieved with a presentation-style model. It allows for
changing the program by manipulating the graph, as well as for updating the
graph in response to program state changes.

Figure 5.3 shows the presentation-model in more detail. A view, representing one
flow graph window, is linked to the executing program by recognizer and presenter
activities. The recognizer translates edit actions on the flow graph into program
commands. The presenter translates in the reverse direction.

Both recognizer and recognizer pass their messages via evaluators. These represent
the means for causing the translated commands to take effect. The default

User Interface Domain

A Branch of the Program Tree
a.

presenter presenter
activity evaluator

hook

e~-uy,-- recognize.evaluator activity
ooK

A Screen View

Figure 5.3: Model of each View

evaluator is simply the Tcl eval command, corresponding to executing the
command. Other evaluator mechanisms are useful for monitoring traffic along
these pathways.

Implementing the recognizer activity is accomplished by using the event
translation functionality of Xt widgets. Instead of using eval directly, translated
commands are evaluated by passing them to the interpreter object that sits below
the flow graph. This displays the commands in the interpreter window as they are
evaluated.

Implementing the presenter activity is more difficult because feedback from each
recognizer to all presenters must be generated. Many ad hoc schemes can be
invented to cater to particular situations, but they will work at the cost of
restricting flexibility.

PAVES implements the presenter activity by specializing the behavior of
operations that affect the flow graph. As well as performing their function, the
operations check their outcome. If appropriate, they package the change and
distribute it amongst the presenters. This is accomplished with the
evalConf igCallback function, which uses the conf igCallback attribute

mm

6ýr

Program Domain

registered on modules to contact the appropriate presenters.

Presenters are responsible for compressing multiple change messages into a single
flow graph edit. For example, destroying a media processing module causes all of
its ports to be destroyed too. Multiple messages are generated, yet only one screen
widget (corresponding to the entire module) should be destroyed.

5.2 Supporting Windows

The control panel, code fragment, and interpreter windows complement the flow
graph window. This section discusses their design.

5.2.1 Control Panels

Control panels are constructed with the panel method'. It forms a composite
panel of controls that reflect the internal structure of the video program.

Panel elements are grouped into rectangles to show the functional hierarchy of the
program; boxes within boxes is an alternative form of tree representation that
maps well to a windowed display. The different levels of grouping are emphasized
with alternating horizontal and vertical tiling of the rectangles. This scheme
conveys considerable information without being visually intrusive.

A skeleton version of the panel method is shown in Figure 5.4. It is called
recursively to combine the contributions of all modules. The alternate horizontal
and vertical tiling is indicated by the orientation variables and supported by the
layout functionality of the Xaw toolkit.

Panel relies on the individual media processing modules to define their selected
controls. By convention, the controls correspond to options that may take on a set
of values but not otherwise affect the structure of the program. They are
represented as pushbuttons, scrollbars, and other combinations of standard user
interface widgets.

Two special cases are handled when composing the panel. First, not all media
processing modules need a user interface for controls. This is accommodated by
pruning empty panels as they are found. Second, default controls for abstractions
should be computed without requiring user input. They are automatically
generated as the sum of their internal controls, labeled with the name of the
abstraction.

1Chris Lindblad developed and implemented the control panel organization before it was incor-
porated into the visual programming system.

VsEntity instanceProc panel {w orient args} {
set ch [keyarg -children $args \

[$self children]]
set args [keyargs -children $args exclude]
apply Form $w $args
set args [keyargs {-fromVert -fromHoriz} \

$args exclude]
if {$orient == "-fromVert"} then {

set o "-fromHoriz"
} else {

set o "-fromVert"

set last {}
foreach i $ch {

set j [tail $i "."]
if [apply $i panel \

$w.panel$j $o $args] != {}} then {
if {$last != {}} then {
$w.panel$j setValues $orient $last

}
set last $w.panel$i

if {$last == {}} then {
$w setValues -width 10 -height 10
$w destroy
return {}

return $w

Figure 5.4: Skeleton of the panel method

5.2.2 Code Fragments

Code fragment windows are produced with the describe method. It attempts to
serialize a portion of the program into code that is useful across application
sessions. The most expedient format for this purpose is Tcl code itself. It may be
saved to be later evaluated by a VuSystem program, and in a proper environment,
to re-create the portion of the program it describes. It may be cut from the code
fragment window and pasted into another window, such as the interpreter.

A skeleton version of describe is shown in Figure 5.5. It walks the program tree
recursively, in a similar manner as the draw and panel methods. It accumulates
two sets of results: the media objects themselves with their current settings, and
the connections between objects.

As was the case for abstractions, the notion of options is used to classify state.
Options determine which module attributes should be retrieved and which are
irrelevant outside of the current application session. The attribute values are
retrieved by calling the option methods with no arguments. This uses the

VsEntity instanceProc describe {args} {
foreach i [lsort [$self info options]] {

append olst " -$i "
append olst "[list [$self $i]] \\\n"

}
set olst "[$self class] $self \\\n$olst"
set olst "[string trim $olst "\\ \n"]\n"

foreach i l[isort [$self outputs]] {
if {[$i connect] != {}} then {
append ops "$i connect [$i connect]\n"

}
}

foreach i [lsort [$self children]] {
set dCh [$i describe]
append olst "\n[lindex $dCh 0]"
append ops "\n[lindex $dCh 1]"

}
set ops [string trimleft $ops "\n"]
return [list $olst $ops]

Figure 5.5: Skeleton of the describe method

"set-and-get" convention honored by all media processing objects.

When producing the code, several steps are taken to ensure execution safety and
to enhance readability. The values of options are protected with the list
command. This escapes special character sequences so that the output will be
correctly interpreted when it is re-read as input. Modules definitions always
precede their connections so that the code may be linearly executed. Lists of
options and their values are pretty-printed, one option per line in alphabetical
order. Modules, inputs, and outputs are also listed in alphabetical order.

Special modules use their own describe method. For example, the generic
VideoSource object is realized as a different set of objects (a hardware peripheral,
a file on disk, or a network connection) depending on the run-time environment.
Its version of describe accounts for this variation. In this manner, objects that
are more than the sum of their parts are wrapped so that they can be safely used
with the interactive programming facilities.

5.2.3 Interpreters

Interpreter objects provide direct access to the VuSystem language while the video
program executes. Their design addresses three issues.

They need to simulate a command-line interface in the midst of an X windows
application. This is accomplished by configuring and combining standard user

interface widgets. They need to assemble fragments of text into complete
commands. This is achieved with the Tcl library routine TclCommandComplete.
They need to select an execution context and operate within it. For simplicity, the
top-level environment of the current interpreter is used for evaluation. Other, more
flexible, execution contexts are useful for debugging.

The interpreter window serves two purposes. As well as accepting typed
commands, it monitors the flow graph. By acting as the recognizer evaluator hook
for the flow graph view (see Figure 5.3), it displays the textual equivalent of flow
graph operations, treating them as though they were typed. This provides a record
of activity that may be cut and pasted into another X application.

5.3 Structuring Conventions

The interactive facilities of the previous sections are dependent on program
structuring conventions. These govern how video programs may be expressed.
They reuse and extend the original VuSystem model [22], contributing to flow
graphs, control panels, and code fragment in two important ways.

VuSystem conventions support a model of the video program in terms of objects
and their relationships. Manipulations defined in terms of this a model are safe for
all conforming video programs. This means the problem of producing many flow
graphs for many applications is reduced to that of producing flow graphs for the
model program.

The conventions provide video programs with functionality through the
inheritance mechanisms of object-oriented programming. Base objects, upon
which all programs build, provide default implementations of the flow graph and
other functionality. This ensures that some flow graph representation can be
provided for all programs. More sophisticated programs can improve on this
default to cater for special needs. In this manner, the similarities and differences
between programs are accommodated. Chapter 6 describes Object Tcl, the
language created for this purpose.

5.3.1 Programs as Entity Trees

The main convention for structuring a video program is the arrangement of its
media objects into a tree with an embedded directed graph. Media objects
comprise the essential portion of a video program by describing the pattern of
processing that it implements. General information about the types of processing
is nominally considered to belong to the system libraries.

yvs

vs.source Svs.filter

vs.source.video

vs.sink

vs.sink.bluescreen

Figure 5.6: Program Structure

The tree for the BlueScreen program, the example used to tour the user interface
in Chapter 4, is shown in Figure 5.6.

The branches of the tree convey a functional decomposition. The root of the tree
corresponds to the entire program. For the BlueScreen program, it is split into
three branches: a source, a filter, and a sink. The source branch has a single leaf,
corresponding to the module that generates video. The sink has two leaves, one for
each of the video display windows. The filter branch contains all the remaining
processing modules, which achieve the segmentation effect. Each branch of this
example has the same depth, but this is not required.

The leaves of the tree represent the media processing operations. They are
connected in a directed graph that conveys the flow of media as it is processed by
the program. In this case, video originates in the source branch and travels to the
sink branch for display. The filter branch splits its input into two output flows.
One is unprocessed, the other is passed through four leaves. These four leaves
combine the unprocessed video with processed video, finally producing a flow that
contains only the moving foreground.

When used with a sensible naming scheme, much of the meaning of the program
can be inferred from these two structures.

Entities Output Ports

vs

vs.ent.inl

vs.ent.in2

inputs

vs. ent:. inn

pL

parent - vs. ent. outl

- vs.ent.out2

outputs

s. ent

/

children
AA

vs.ent.chl vs.ent.ch2 vs.ent.chn

Figure 5.7: Model of an Entity

5.3.2 Media Processing Entities

All media objects are based on a foundation object that is specialized to
implement different processing functions. The VsEntity foundation class is
provided by the toolkit to define the default functionality of all program objects.

The model of an entity is shown in Figure 5.7. Its input and output media ports
are modeled by separate objects. General entities have both ports and children,
but specific entities need only ports or children. The root of the program tree is an
instance of VsEntity. When used as branch nodes, entities signify transparent
containment in the program tree. When used as leaves, entities typically have a
fixed number of input and output ports and implement a specific media processing
operation. The objects of classes MotionGate, Color and MaskObj were used as
leaves in the BlueScreen program.

Input Ports

vs.ent.outn

name I description

Table 5.1: Entity Methods Supporting Views

Entities include infrastructure for generating flow graphs, control panels, and code
fragments. These methods have been discussed in the previous sections and are
summarized in Table 5.1.

name description

inputs list input ports
outputs list output ports
children list child entities
parent get parent entity
info options list option methods

Table 5.2: Reflective Entity Methods

name description type

bind get connected port input port
connect get bound port output port
entity get owning entity input/output port

Table 5.3: Reflective Port Methods

Entities also include reflective or introspective methods that provide access to the
structure of the program as it runs. These are necessary because the program may
be extended or reconfigured while it is used, and the flow graphs and other
windows should change accordingly. The reflective methods for entities are
summarized in Table 5.2. Those for input and output ports are given in Table 5.3.

option define option method
xPosition horizontal position
yPosition vertical position
reparent change parent
configCallback presenter notification callback
evalConfigCallback notify presenter of change
draw make flow graph
panel make control panel
describe generate source code

I ·

) :-, parent

'- exported public leader

opaque entity

/ \--

aliased port

----- captured private children

Figure 5.8: Opaque Grouping of Entities

5.3.3 Media Processing Collections

A second foundation class extends the model of entities to handle opaque
collections of media processing objects. This allows patterns of media processing
to be captured in a reusable way. It is the basis for forming abstractions with the
visual language.

VsOpaque builds on VsEntity to enable a collection of entities to be grouped and
treated as a single larger entity. The model for this is shown in Figure 5.8. One
entity acts as a public leader and represents its children, which remain hidden
from the view of the interface windows. Media ports on the children that are
available for use are aliased to appear as though they belong to the collection.

The BlueScreen module, grouped in Chapter 4, is an opaque collection. It acts as
a single module, but is internally composed of all the modules that implement the
BlueScreen effect.

name description type
capture hide private entities addition
advertise make public interface addition
panel make control panel override

Table 5.4: Collection Methods Supporting Views

To correctly represent flow graphs and other windows, VsOpaque defines two new
methods and redefines an existing one. A capture method is used to specify the
children to be hidden by the abstraction. Two children are hidden in Figure 5.8.
They are removed from the list of publically available children and placed on the
list of private children. An advertise method is used to manufacture a public
interface on the leader. For each method on a hidden child that is to be publically
available, advertise places a code stub on the public leader. When invoked, the
stub redirects the call to the hidden child. The panel method is changed so that
the hidden children may contribute to a default interface. Table 5.4 summarizes
these methods.

name description type

inputs list input ports override
outputs list output ports override
children list child entities override
info options list option methods override

Table 5.5: Reflective Collection Methods

Collections support reflective methods as entities so that programs may be
examined dynamically. This requires several of the methods to be redefined so
that they do not report hidden children. Table 5.5 summarizes these methods.

Chapter 6

Object Tcl

This chapter describes Object Tcl, the object system constructed as part of this
thesis. Previous chapters have presented the architecture and user interface of the
interactive video programming system, assuming the existence of an appropriate
object foundation on which to build. Object Tcl is that foundation.

The chapter presents Object Tcl as a general-purpose object system, concentrating
on motivations and the ensuing language design and implementation issues. Its
development is traced, from the starting point of Tcl through the introduction of
objects and their inheritance, class, and introspection mechanisms. Object syntax
and semantics are exposed along the way. The final section discusses the role of
Object Tcl in PAVES. Appendix B contains a reference guide to the language.

6.1 Tcl as a Starting Point

The Tool Command Language (Tcl) (32] is a simple yet extensible interpreted
language. Its easy syntax and use of strings plus its interpreted and dynamic
nature make for rapid prototyping. Its compatibility with C and lightweight
implementation mean it can be embedded in extensible applications.

Object Tcl is an extension to the Tool Command Language (Tcl) for the
management of complicated data types and dynamic object-oriented programming
in general. It arose out of the prior object command mechanism employed to
organize VuSystem modules. Its design was driven by the needs of the visual
programming system to create a foundation with powerful abstraction and
introspection capabilities. It retains both the spirit and benefits of Tcl, and at
2000 lines of C/C++ it forms a small extension to the 25000 lines of Tcl.

An introduction of objects to Tcl is effective both as a means of managing

complicated data and for providing a powerful abstraction mechanism. Objects
provide a natural way to group related operations and data, such as video
processing modules and their parameters. They complement and extend the
built-in Tcl structures of lists, arrays, procedures, and commands. And with a C
interface they are especially useful for data that is not readily converted to and
from strings.

The result is a compact, dynamic, and introspective language, more in the spirit of
CLOS [20] (the object system that extends common lisp) than static models such
as C++ [10]. This distinguishes it from [incr Tcl] [25], an alternative Tcl-based
object system that aims to supplement Tcl with a structured programming
environment. The Object Tcl approach shares goals with languages such as Dylan
[13], which attempt to be practical on small machines while providing many of the
language features found in CLOS and other advanced object systems.

6.2 Introducing Objects

In Tcl, all commands and values are represented as strings. It is easy to pass data
between the Tcl interpreter and commands written in C code in an application:
the C code need only be able to convert the internal representations to and from
strings.

When data too complex to be readily converted to and from strings must be
managed, the implementation may be pushed further into the command written in
C. With an object command approach, each object of complicated data is
registered with the interpreter as a single command. Operations on an object are
performed with subcommands by using the first argument to the command to
specify the operation. The Tk [33] graphical user interface toolkit uses this
approach to manage widgets.

6.2.1 Objects

Object Tcl formalizes the notion of grouping related data so that object models
may be realized without replicating the infrastructure that would otherwise be
necessary. For example, objects include a dispatch mechanism for finding and
invoking the method implementation that matches the method name. Without
using this infrastructure, each object would need to implement its own dispatch
mechanism. Objects support the same flexibility in combining Tcl and C as the
Tcl language itself. Methods may be implemented in C or Tcl as appropriate,
leading to objects with a mixture of implementations.

Object create astack

astack set things {}

astack proc put {thing} {
set things [apply list $thing $things]
return $thing

}

astack proc get {} {
set top Elindex $things 01
set things [1replace $things 0 0]
return $top

}
astack put toast ==> toast
astack get ==> toast
astack destroy

Figure 6.1: Making a stack object by specializing a generic object.

Each object in Object Tcl is a single command registered with the interpreter.
This is a straightforward way of combining objects with the existing Tcl
interpreter, though like C++ it restricts operation dispatch to depend on the type
of a single object; a more general dispatch on the types of multiple objects is found
in the CLOS multi-methods model.

Objects are created by executing the command that corresponds to their type or
class and passing the name of the new object as an argument. An example is
shown in Figure 6.1, where the object astack is created as an instance of the
generic class Obj ect. With one instance variable and two methods it implements a
stack.

Objects are deallocated and release their storage by invoking a consistently named
method, the destroy method. The astack object destroys itself at the end of the
example. Destroy uses the polymorphism provided by the naming of the object
system. This is in contrast to the C++ style delete operator and the Tk destroy
command that take the object as an argument and then reverse the situation,
eventually calling the destructor for the specific object.

6.2.2 Methods

Methods are the operations that are executed on behalf of a particular object.
Object Tcl methods are added with the proc method that mirrors the behavior of
the Tcl proc command. This is shown in Figure 6.1, where the put and get
methods are a,dded to the stack object. The methods that Object Tcl defines for
all objects are summarized in Table 6.1. As well as Tcl methods, C methods can

Table 6.1: Object Methods

be added with an analogous CreateCommand function.

In Tcl, procedures are digested with the TclProcCmd to form closures of a function
of type TcLCmdProc plus a single item of type ClientData. This is the internal
representation for all Tcl commands. They are executed uniformly by calling the
function with its clientdata and arguments, arranged in an argc/argv style array.
The function that interprets procedures does so within a new innermost stack call
frame. The closures are stored by command name in a hash table in the interpreter
for efficient access. They return a single string result and an integer error code.

Object Tcl reuses the Tcl scheme and its implementation for finding and executing
methods. This ensures a light footprint and a high degree of integration with the
Tcl interpreter. In effect, objects are packages or namespaces within which the Tcl
implementation is reapplied.

Methods are stored as closures in an object hash table by their name.
TclProcCmd is used to digest Tcl methods into the common closure format of a
single function and token of ClientData. Argument values and return results use
the Tcl calling conventions. Methods look like procedures during their execution.
This means that Tcl commands that access information further up the call chain
(like uplevel, global, upvar, and info) function correctly. By convention, the
object can be reached via the Clientdata.

name description

class set class
name get the primary name
names get all names
alias make secondary name
destroy destroy object
proc define Tcl method
set define Tcl variable
auto demand load Tcl method
info procs list Tcl methods
info commands list Tcl/C methods
info vars list Tcl variables
info class list classes

name description type

name variable defined with set var
self name of the object var
proc name of the method var
class class method defined var
next next shadowed method proc

Table 6.2: Method Environment

6.2.3 Instance Variables

Object Tcl instance variables are introduced with the set method, which mirrors
the Tcl set command. Figure 6.1 provides an example, using things to store the
items currently on the stack. Again, the Tcl implementation of variables is reused.

Instance variables are made accessible during method execution with the same
mechanism as used by upvar and global. They do not need to be declared (as do
globals and locals in upper call frames) before they are used; all are made available
automatically. This approach was chosen because most object-oriented languages
treat instance variables as locals within methods, and local variables in Tcl do not
need to be declared before they are used.

Some special variables are also defined to describe the context during method
execution. For example, self holds the name of the object for which the method
is executing. It is the equivalent of this in C++. Table 6.2 summarizes the
environment in effect during method execution.

6.3 Classes and Inheritance

By themselves, objects allow related data and procedures to be grouped.
Inheritance mechanisms strengthen this model by allowing the sharing of
functionality between different types of objects. This encourages code reuse.

Inheritance is based on classes and their superclasses. In Object Tcl, each object is
an instance of a class, and inherits its functionality from that class and its
superclasses. Figure 6.5 shows the class relationships for the astack object used in
the example of Figure 6.1. It is an instance of the class Object, and so inherits its
behavior from the root object of the system. Object Tcl supports multiple
inheritance -- each class may have many superclasses. The class of an object is
discovered with the info class method and changed with the class method.

A method is dispatched by searching first the object table of methods, then

, root root
class class

>..

super- super-
class class

superclass 1
relationship

class ssobject s
4 b, , object

(more specialized classes)

Figure 6.2: Superclasses and Method Dispatch

methods associated with the class, and then through the superclasses (Figure 6.2).
The standard method for all objects are given in Table 6.1. The first method
located is invoked, so methods closer to the object shadow more distant ones. This
scheme requires a linear ordering of superclasses. Object Tcl uses a CLOS-like
ordering, where the direct superclasses of a class take precedence from indirect
superclasses.

This ordering is intuitive as well as simple to implement. It is intuitive because the
local superclass orderings are respected globally: the programmer may think in
terms of many small local orderings rather than a single large global ordering. It is
simple because it may be determined with a topological sort algorithm, a variant
of a breadth-first search of a graph that may be implemented in a handful of lines.
To ensure efficiency, the ordering is cached since the running time of the algorithm
is proportional to the size of the superclass graph. The code that specifies the
method combination algorithm is given in Appendix B.

Figure 6.3 gives an example of multiple inheritance. Two classes that adhere to a
protocol for managing collections are defined. The Safety class adds safety
checking to collections, catching attempts to withdraw from empty collections.
The Stack class implements a last-in-first-out queue, or stack. These classes are

Class create Safety -superclass Object

Safety proc create {acollection} {
$self next $acollection
$acollection set count 0

}
Safety instproc put {thing} {
incr count
$self next $thing

}
Safety instproc get {} {
if {$count == 0} then { return {} }
incr count -1
$self next

}
Class create Stack -superclass Object

Stack proc create {astack} {
$self next $astack
$astack set things {}

}

Stack instproc put {thing} {
set things [apply list $thing $things]
return $thing

}
Stack instproc get {} {

set top Elindex $things 01
set things [1replace $things 0 0)
return $top

}
Class create SafeStack -superclass {Safety Stack}

SafeStack create astack
astack put toast ==> toast
astack get ==> toast
astack get ==> {}

Figure 6.3: Adding protection to the Stack class with the Safety mixin.

class meta-objects

I class

class

CClass Safe

superc
class

Obje

/superc lasc

Stack astack '

lass
A

SSafeStack

Figure 6.4: Class Relationships for SafeStack

combined to form a SafeStack class, which is then demonstrated. Figure 6.4
shows these class relationships. The Safety class can be combined with any type
of collection (for example, stack, queue, and set) but is not required. It is known
as a mixin in Flavors [29], and demonstrates an intuitive use of inheritance that is
difficult to achieve with only single inheritance.

The inheritance mechanisms cause a minor complication to demand loading.
Methods written in Tcl should be auto-loaded in a similar fashion as procedures.
This distributes the startup time taken to parse method definitions and reduces
unneeded parsing. However, because the dispatch follows a search path, shadowing
methods may not be loaded in favor of their more primitive methods already
loaded by other paths. To overcome this complication, auto-loading is supported
with the auto method. This inserts a code stub that forces demand loading if the
method is invoked. The stubs are typically inserted at application startup, but are
considerably faster than loading the methods themselves.

6.3.1 Method Combination

Multiple inheritance needs method combination to be effective. Method
combination allows the functionality of a method to be split across classes, rather
than simply being shadowed or not. It increases the abstraction capabilities of

class-objects objects

Safe--~tack

inheritance.

As an example, a constructor in C++ implicitly invokes the constructors of all its
base classes -- it combines their construction methods. Similarly, destructors in
C++ combine the destructors of their base classes, but in a reverse order. Making
the combination mechanism accessible to the programmer allows derived classes to
refine the behavior of their subclasses by wrapping functionality around them.
CLOS terms these combinations before, after, and around methods.

In Object Tcl, method combination is achieved with the next method. When
called within a method, it causes the next most shadowed implementation of the
method to be invoked. It determines this automatically according to the
precedence ordering and is not told explicitly.

The example in Figure 6.3 uses method combination. The get and put methods of
the Safety mixin class first contribute their functionality and then call the next
most shadowed method. For the SafeStack class, method combination ensures
that the get and put methods of the Stack class are called, even though the
Stack class has no direct relationship to the Safety class.

Table 6.3: Class Methods

class meta-objects

C Class
class

class-objects

I class

objects

i/ superclasses

class
Object astack

Figure 6.5: A Class Relationship

name description
create make new instance (default)
superclass set superclasses
instproc define Tcl method for instances
instauto demand load Tcl method for instances
info instances list instances
info superclass list superclasses
info instprocs list Tcl methods for instances
info instcommands list Tcl/C methods for instances

6.4 Class Implementation

In Object Tcl, classes are implemented as objects that have the added ability to
create and manage other objects. They support the superclass relation and serve
as a repository for methods on behalf of their objects. This approach means the
power of the object system can be applied to influence class behavior.

Table 6.3 lists the methods for class objects. The superclasses of a class are
discovered with info superclass and changed with superclass. Instproc is
used to define methods for use by instances. Get and put in Figure 6.3 are
inherited methods. Instauto is used to set demand loading of methods used by
instances. The create method is used to manufacture new instances. As the
default method, it allows the name of an instance in the method position to cause
its creation.

Because they are implemented as objects, classes can have their own methods and
instance variables. This provides a convenient location for information that is
shared by the instances of a class, known as static members in C++. Making
classes be objects helps Object Tcl provide increased functionality without
increasing the size of its implementation.

6.4.1 Class Meta-Objects

Since classes are themselves objects, they are managed in turn by other classes.
These managing objects form a third category of objects called class meta-objects.

They are closed under the class relationship, in effect responsible for managing
themselves. Figure 6.5 illustrates this by showing the class relationships for the

astack object of Figure 6.1.

The standard class meta-object is called Class. Its create method is used to make

new class objects. New class meta-objects may be manufactured too, as derived
classes of Class. This allows the behavior of classes to be widely changed, and is

especially useful in conjunction with the introspective features of the language.

6.5 Introspection

Introspection allows the running program to discover information about itself.
Object Tcl makes information about the state of the object system available in the

same manner that Tcl does for its procedures and variables. Each object has an

info method that matches the Tcl info command by performing an analogous

function for objects. It is used to list the methods and instance variables for
objects, as well as the class of an object. These methods are summarized in Table

6.1. For class objects, the info method has additional options for listing
information about superclasses and instances, and methods managed on behalf of
instanced. These methods are summarized in Table 6.3. Finally, during method
execution, special instance variables are bound to describe the execution context,
such as the name of the object and the location of the method implementation.
These bindings are summarized in Table 6.2.

Introspection is most useful when the program structure is dynamic and may be
altered at any time. Tcl itself is dynamic in that variables and commands may be
removed as well as created, and Object Tcl commands match this model.

6.6 Perspective

PAVES uses Object Tcl as the foundation on top of which video programs are
built. Objects naturally model the VuSystem media processing modules and the
operations they undergo. By using Object Tcl to organize programs instead of
simply following an object-style, PAVES gains the advantages of inheritance,
introspection, specialization, and extensibility.

The structuring conventions described in Chapter 5 use these mechanisms to
embed the functionality of PAVES in a range of video programs. An object
naming scheme is well-suited for defining manipulations on programs since it can
express the patterns of similarities and differences between programs in a modular
fashion. Inheritance allows the behavior of opaque collections of modules to be
defined in terms of the behavior of its members.

Chapter 7

Results and Conclusions

In this thesis, I have presented an interactive programming system for media
computation. I have discussed its motivation, architecture, implementation and
use. PAVES combines the programming aspects of multimedia and visualization
systems to allow users to control applications while they are manipulating live
video.

PAVES is available throughout a range of video applications as a set of
automatically generated programming windows. A direct manipulation interface
based on flow graphs is used to observe and control the broad structure of media
processing implemented by the application. Control panel, code fragment, and
interpreter windows complement the flow graph. Together, these windows permit
the user to employ both textual and graphical methods to solve programming
tasks.

In designing PAVES, I developed a cooperative model for integrating the graphical
and textual representations of an application. This allowed PAVES to be used to
control video programs created outside of the visual programming environment. I
solved the problem of keeping the windows in synchrony with the program to
which they correspond by adopting a presentation-style approach. This supports
the cooperative model by allowing the different programming windows to be used
simultaneously. The implementation of the model is built on Object Tcl, an
object-oriented extension to Tcl that I developed for the purpose. An interesting
aspect of PAVES is its support for grouping in the flow graph window. This not
only permits specific modules to be encapsulated, but results in the manufacture
of an abstraction that is a first-class object.

The following sections describe experience with using PAVES, and the results it
has yielded. IFuture work, based on the results, is then suggested.

7.1 Experience with PAVES

Half a dozen users have experimented with PAVES through a variety of video
programs'. It has successfully been used as a consistent programming means for
controlling video applications while they manipulate live video.

7.1.1 Suitability

A strength of the system is that its programming windows support both textual
and visual operations, and are suited to tasks that are largely complementary.
This equips the user with a set of tools that comprise a programming interface
across a variety of tasks, with the role of each tool becoming well-defined.

Flow graphs show the broad structure of a program. They are apt for
reconfiguration tasks, but not for fine-tuning. Conversely, control panels emphasize
the detailed options of the program rather than its structure. They are apt for
customization tasks, but not the large-scale re-organization of the program.

Interpreters cooperate with the flow graphs. Both tools overlap in terms of the
tasks they can accomplish, and this gives the user flexibility in deciding how to
accomplish a given task. The visual methods are suited to rapid or special case
changes. The textual methods allow a recourse for complicated or repetitive
changes. Textual monitoring of graphical actions helps the user form an
association between the two and encourages the use of both methods.

Code fragment windows are useful for prototyping. They take the association
between visual and textual representations further by showing the interpreted
VuSystem code that corresponds to the selected modules of the flow graph. They
provide access to a representation midway between the flow graph view of modules
and their C++ implementation, to which there is no run-time access.

7.1.2 Modes of Use

Over time, several modes of use have become dominant. Programming is often a
secondary concern to simply using the application. The embedding of the
programming tools is valuable because it allows the visual programming windows
and other tools to remain hidden until they are required.

'Actually, many more have used PAVES. The TNS World Wide Web technology demonstrations
are available throughout the Internet and include several video programs from which PAVES is
accessible. The feedback gained from this exposure was positive, but not detailed enough to include
in this section.

The flow graphs are used by novices and experts alike to study program structure.
Because they show the modules created during a particular session, the flow
graphs are often used by developers to check the program contents for debugging
purposes. The flow graph is a natural and accurate representation that explains
the operation of the program at a high level. It is quickly grasped because it is a
diagram, and has the added advantage that it is active: it may be tweaked to test
hypotheses.

Customization and experimentation tasks are frequent. When a program is being
examined, changes are effected quickly and consistently. And they are accompanied
by continuous visual feedback. Most customizations are temporary, lasting only for
the duration of a session. This is because default behaviors plus command line
overriding tend to capture the parameterization needed between runs.

PAVES has also proved feasible for one-step prototyping by saving and refining the
code of user-grouped constructions. But it is weak when used for the iterative
development of applications by alternate graphical and textual refinement. The
major difficulty is that the quality of synthesized code does not match that of code
written by developers, especially in terms of naming and procedural abstraction.
In effect, multiple passes through the graphical layer tend to undo the
programmer's organization, if not end result.

7.1.3 Applicability

At the outset, it was unclear what range of programs PAVES would be able to
control. There is an inevitable tension between the design of an expressive visual
language and that of a clear user interface. Beyond this, the success of the
cooperative approach impacts the range of programs.

PAVES has been applied to video programs written directly in Object Tcl, and has
faithfully represented them. Such programs now represent the majority of the
applications used in conjunction with the system. The flow graph language has
proved adequate for managing these programs, which are typified by the
BlueScreen application of Chapter 4, that is, programs that process video rather
than simply browse it. Some aspects of programs fell outside the system, but this
often did not adversely affect the use of flow graphs. Many visual processing
experiments, for example, calculate figures of merit for their result decisions, but
this portion of the program is independent of the flow graphs.

A practical difficulty lies in the failure modes of the system. Since general
programs may not comply with the structuring conventions, the system can fail in
ways that are not easily visible or are difficult to understand. For example, the
code synthesized from such programs may appear correct but not be useful. It
may omit needed functionality or bind too tightly to the environment in effect

when it is created. This problem has tended to restrict development with the
system to one-step prototyping.

7.2 Conclusions

Experience with PAVES has shown computations on video to be a problem
domain in which both interactivity and programmability are useful. Video is a
temporal and visual medium that is naturally manipulated when live and in a
graphical environment that provides continuous feedback. A programming system
based on a visual representation readily lets many interesting computations be
applied to video in a systematic manner. Beyond this observation, several more
general conclusions can be drawn.

7.2.1 Cooperative Programming Methods

As a whole, the system shows the feasibility and usefulness of the cooperative
approach: many programs of different origin were used with both graphical and
textual programming facilities. Few commercial applications combine methods in
this manner, and I speculate this is because of the necessary infrastructure, rather
than because the technique is of little value.

Implementing cooperation required a synchronization mechanism to ensure that
the graphical windows accurately reflected the program to which they
corresponded. This is a general useful mechanism that is not limited to PAVES.
Implementing cooperation also required a means of translating between program
representations. This was supported by the introspective and specialization
properties of Object Tcl.

Much of the implementation success was the result of focusing on a specialized
problem domain with its consequent reductions in the scope of the design task.
Specializing allowed the structuring conventions to balance restrictions for the
programmer against the regularities needed to programmatically manipulate
programs.

The conventions cost the programmer little, but benefited the user greatly. The
philosophy used was to adopt conventions that did not restrict the type of
programs that could be formed but did simplify the extraction of useful
information. For example, the root of the program tree is conventionally called vs,
though any name would be valid. This does not reduce the number of useful
programs, but does make it simple to find the root of the program tree. On the
whole, few conventions were needed beyond those of regular VuSystem

applications, with the notable exception of rewriting the object library to better
support abstractions.

7.2.2 Visual Program Representations

The flow graph form of representation is apt for describing many
computer-participative video programs. As for the domains of scientific
visualization and image processing, flow graphs provide a natural visual
representation of the computation that occurs as media is processed by a video
program.

An important aspect of implementing the flow graph, and especially manipulations
on it, was Object Tcl. This acted as an intermediate form between the compiled
C++ code and the graph itself. As a scripting language, Object Tcl hid many of
the C++ implementation details that were not relevant to higher level
representations. As an interpreted and introspective language, Object Tcl allowed
the running program to be used as the basis for its own representation, obviating
the many consistency problems caused by using more than one database.

The approach of using a visual representation as a higher level interface to running
scripts is not limited to PAVES. It may be applied to Tk [33], for example. This is
because Tk arranges its user interface widgets in terms of a containment tree,
which has a natural visual representation.

7.2.3 Abstractions in User Programming

As well as extensibility for the user, abstraction mechanisms are useful for
importing and exporting objects between the user programming system and the
environment on which it rests.

An ability to abstract over patterns of usage is the basis for extensibility, which is
often the difference between toy systems and real-world systems. Yet few user
programming systems support it. This may be because it is not necessary to begin
using a system or because it complicates the interface design. It can require the
user interface to view the program at different levels and to convey distinctions
between classes and instances of a class. Neither of these may be necessary
otherwise.

In PAVES, abstraction was presented visually as groupings, and textually as the
opaque structuring of a collection of modules. Both representations were useful.

Abstraction was useful for importing textual modules to the graphical
environment, encapsulating their less constrained functionality so that it could be

safely used. This is essentially the third-party extensibility of XCMDs in
HyperCard and plug-ins in Adobe Premiere and PhotoShop, though used with a
different emphasis. Hypercard and the others use the import mechanism in place
of user extensibility. It is a poor substitute because it presents too steep a learning
curve to be useful to the majority of users.

Conversely, abstraction was useful for exporting visually grouped constructions to
the development library. An encapsulation barrier sanitized groupings for inclusion
in hand-crafted programs. It was used to separate synthesized code from
hand-crafted code. The grouping mechanism itself was interesting because it
allowed general group definitions to be inferred after-the-fact from specific
modules. This is counter to the sequence of operations in traditional textual
programming languages, such as C++, but is well-suited to interactive
programming because it provides an evolution path that minimizes outstanding
operations.

7.2.4 Object-Oriented Programming

Implementing the system led to two insights about object-oriented programming.

Multiple inheritance proved simple and efficient to implement as well as intuitive
to use. Mechanisms for combining methods to not need to be complicated, as
demonstrated by the topological sort algorithm. At the same time they may be
natural to use, as exemplified by the mixin model of Flavors [29].

The lack of automatic method combination in C++ appears to be the major
reason why multiple inheritance is perceived to be complicated and of little value
there. In C++, the next most shadowed method must be specified explicitly using
the scope resolution operator. This is suited to static superclass relations and
unnecessarily propagates information about the class hierarchy to methods. It
becomes more difficult for multiple inheritance because it forces the programmer
to deal with the large global ordering rather than thinking in terms of small local
orderings. It is also less powerful. The example programs of Chapter 6, for
example, would fail if organized in the same way in C++. They rely on calls
across the hierarchy rather than to direct superclasses, and so cannot be specified
explicitly.

Object naming is effective at capturing approximate models. Manipulating
programs, for instance, was a task in which one model was effective in the majority
of cases. Inheritance allowed it to be applied as a default. Specialization then
accommodated particular cases by letting them substitute a specific model for the
general one. Together, inheritance and specialization allowed an approximate
operation to be specified in a modular way. Object Tcl provided strong support
for this style by allowing both individual instances and classes to be specialized.

7.3 Further Work

There are several interesting directions for future work that are motivated by the
results. The cooperative approach can be explored further, and the role of
abstractions in user programming can be studied.

7.3.1 Cooperative Development

The cooperative use of graphical and textual programming may be extended to
cooperative development as well as applied in other problem domains. Much of the
power of the system derives from its ability to combine programming methods
during a session. Combining them across iterative development cycles would allow
for different modes of use than the current system can support.

The problem with using both programming methods repeatedly lies with the
quality of the synthesized code. Automatic code generation is not trivial and is
unlikely to reach human standards in the near future. A pragmatic approach is to
extend the system to incorporate the input of human programmers.

A better model of default values would obviate the need for specifying the value of
much program state. It could also retain knowledge of session-specific parameters,
such as command-line options, which are effectively a higher level default.

Conventions for tuning the generation process would allow the programmer to
improve on general behavior as a special case. By using introspective facilities, the
system may be able to retain hand-crafted idiosyncrasies such as the use of
variable names instead of literals.

Schemes that allow the system to remain open in terms of the programs it can
control yet ensure that manipulations are safe are also needed for robustness. The
ability to manipulate legacy video programs created textually, not visually, is a
strength of PAVES. But its implementation suffered from the tendency to silently
fail while appearing to work successfully. This is because it lacked mechanisms to
verify the legality of programs. A better implementation would fail gracefully,
perhaps by using redundant structuring conventions for checking the integrity of
the program against its model or gauging its level of conformance.

7.3.2 Manipulating Abstractions

A systematic means of visually manipulating abstractions would strengthen the
system. PAVES uses abstractions as a barrier to import objects into the graphical
system as well as to export user groupings. It uses the same internal representation
for both, making user groupings first-class. This avoids artificial restrictions on the

groupings, but makes them subject to the same limitations as imported
abstractions - their internals cannot be safely manipulated by the visual system.

A system for manipulating abstractions must convey several semantics across the
user interface. For user groupings, the internal composition is essentially a
definition, which is open to editing. For imported objects, the internal composition
reveals the instantaneous state. Both are instructive to the user. The system must
further distinguish editing a single grouping from editing the definition of the
grouping. For imported abstractions, it must resolve the difficulties of what to
present and how to signal the implications of editing. Imported abstractions may
have state that cannot be represented visually, and if they are manipulated then
future operations, such as synthesizing code, may fail.

7.3.3 Extending Object Tcl

Improvements and additions to the Object Tcl language can make it more
generally applicable to user programming systems.

A meta-object protocol (MOP) [21] would let the language user incrementally
modify and extend the Object Tcl definition. It would then occupy a region of the
design space, rather than a point, and consequently be more widely applicable.
Basic object traits such as creation, destruction, method dispatch, and precedence
orderings for inheritance should be accessible via a MOP in both Tcl and C.

Standard tools, such as program browsers, could provide a lead-in for user
programming interfaces. By using introspective capabilities, each object can be
described in detail and the entire class inheritance graph can be displayed. In
conjunction with a MOP, these tools can monitor events such as object creation
and destruction and aid in debugging. They should also be customizable by using
inheritance.

7.4 Summary

In conclusion, interactive programming using visual representations is a valuable
technique for controlling video applications. This thesis has combined a specially
constructed programming system with a graphical language by mapping between
visual and textual representations as the video program runs. A cooperative
model, supported by a synchronization mechanism, allows the visual and textual
programming methods to be used simultaneously.

Appendix A

Structuring Conventions used
by PAVES

This appendix summarizes the key objects and methods used to structure video
programs. The standard classes are described first. Then their reflective methods
and methods supporting the flow graph, control panel, and code fragment views
are catalogued.

A.1 Standard Classes

Video programs are arrangements of objects derived from three base classes.

A.1.1 Modules and Transparent Collections

The VsEntity class implements the functionality common to media processing
objects, including collecting them into hierarchies. Its instances are generic
modules or entities. It is derived from Object, the root class of Object Tcl. It is of
class Class, since it is able to manufacture modules.

A.1.2 Ports

The VsInputPort and VsOutputPort classes implement the functionality of input
and output media ports, respectively. Ports are associated with entities and do not
exist in isolation of them. These classes are derived from Object and are of class
Class, since they are able to manufacture ports.

A.1.3 Opaque Collections

The VsOpaque class implements the functionality common to collections of media
processing objects that act as a single larger media processing object. It is the
basis for abstraction over media objects. Its instances are opaque collections that
are functionally indistinguishable from generic modules or entities. It is derived
from VsEntity, supplementing it with the ability to encapsulate media objects. It
is of class Class, since it is able to manufacture opaque collections.

A.2 Reflective Methods on Entities

Each entity has access to the following
of all objects.

introspective methods over and above those

A.2.1 Inputs

<entity> inputs
==> <inputs>

The inputs method gets the names of the input ports of the entity. It returns:

inputs (Command List) The names of the input ports.

A.2.2 Outputs

<entity> outputs
==> <outputs>

The outputs method gets the names of the output ports of the entity. It returns:

outputs (Command List) The names of the output ports.

A.2.3 Children

<entity> children
==> <children>

The children method gets the names of the child entities of the entity. It returns:

children (Command List) The names of the child entities.

A.2.4 Parent
<entity> parent

==> <parent>

The parent method gets the name of the parent entity of the entity. It returns:

parent (Command) The name of the parent entity.

A.2.5 Info Options
<entity> info options [<pattern>]

==> <options>

The info options method provides the names of option methods for the entity.
The names of both primitive option methods, implemented in C/C++, and option
procs, implemented in Tcl, are accessible. It takes:

pattern (String) A regular expression.

It returns:

options (List) The list of option method names that match the
pattern. If no pattern is supplied, all option method names are
returned.

A.3 Reflective Methods on Ports

Input and output ports have access to the following introspective methods over
and above those of all objects.

A.3.1 Bind
<input port> bind

==> <output port>

The bind method gets the output port bound to the input port. It returns:

output port (Command) The name of the output port. If the input
port is not bound then an empty command is returned.

A.3.2 Connect

<output port> connect
==> <input port>

The connect method gets the input port connected to the output port. It returns:

input port (Command) The name of the input port. If the output
port is not connected then an empty command is returned.

A.3.3 Entity
<port> entity

==> <entity>

The entity method gets the name of the entity that owns the port. It returns:
entity (Command) The name of the owning entity.

A.4 Reflective Methods on Collections

Opaque collections support the same introspective methods as entities and use the
same syntax. To accomplish this, the implementation of the following methods is
overridden:

inputs The names of input ports are aliased to appear as if they
correspond to a single object.

outputs The names of output ports are aliases to appear as if they
correspond to a single object.

children Captured children are not reported.

info options Option methods are redirected to appear as if they
correspond to a single object. Their names are qualified as
necessary to avoid clashes.

A.5 Methods Supporting Views on Entities

Each entity has a default implementation of the following methods that support
the construction of flow graphs, control panels, and code fragments. It may
override them to cater to special cases.

A.5.1 Draw
<entity> draw <w>

The draw method translates the entity and its children into a set of widgets that
represents their flow graph. It takes:

w (Command) A name of a widget within which to construct the flow
graph.

A.5.2 Panel

<entity> panel <w> <orient>

The panel method translates the entity and its children into a set of widgets that
represents their control panel. It takes:

w (Command) A name of a widget within which to construct the
control panel.

orient (-fromHoriz I -from Vert) An initial orientation (horizontal or
vertical) for tiling the panels.

A.5.3 Describe

<entity> describe
==> <code>

The describe method translates the entity and its children into a code fragment.
It returns:

code (String) The executable Tcl code that represents the entity and
its children.

A.5.4 Option
<entity> option <name> <args> <body>

The option method defines an option method for the entity. It is similar to the
proc method on all objects in syntax and use, except that the method is marked
as an option for future reference. It takes:

name (String) A name for the option method.
args (List) A list of formal parameters to the option method.
body (List) A body for the option method.

A.5.5 XPosition
<entity> xPosition [<pos>]

==> <pos>

The xPosition method sets and gets the x position of the entity. It takes:

pos (String) An x position of the entity.

It returns:

pos (String) The x position of the entity.

A.5.6 YPosition
<entity> yPosition [<pos>]

==> <pos>

The yPosition method sets and gets the y position of the entity. It takes:

pos (String) A y position of the entity.

It returns:

pos (String) The y position of the entity.

A.5.7 ConfigCallback
<entity> configCallback [<callback>]

==> <callback>

The configCallback method sets and gets the configuration callback code of the
entity. It takes:

callback (String) A callback string for the entity to execute when its
configuration changes.

It returns:

callback (String) The callback string the entity will execute when its
configuration changes.

A.5.8 EvalConfigCallback
<entity> evalConfigCallback <args>

The evalConfigCallback method causes the configuration callback code of the
entity to be invoked. It takes:

args (List) A list of arguments to pass to the configuration callback.

A.5.9 Reparent
<entity> reparent <parent>

The reparent method moves the entity to a new parent. It takes:

parent (Command) A new parent for the entity.

A.6 Methods Supporting Views on Ports

Input and output ports provide no methods for supporting views directly; they are
manipulated through the entity that owns them instead.

A.7 Methods Supporting Views on Collections

Opaque collections provide the same methods for supporting views as entities and
use the same syntax. To accomplish this, the implementation of the panel method
is overridden to create a default panel that is the sum of the captured children. In
addition, opaque collections provide the following two methods that support
viewing abstractions.

A.7.1 Capture
<collection> capture <names>

The capture method adds selected children of the entity to the opaque collection.
It takes:

names (Command List) A list of names of the children to be captured.

A.7.2 Advertise
<collection> advertise <name> [<methods>]

The advertise method creates a public interface to the given methods of the
entity on the named entity. It takes:

name (Command) A name of an opaque collection on which to create
the public interface.

methods (List) A list of the methods to advertise on the entity.
Elements of the list are one or two element lists. If two elements,
they give the public and private name of a method, respectively.
If one element, the public and private name is identical.

Appendix B

Object Tcl Reference

This appendix summarizes the behavior of the Object Tcl language. First, the two
standard objects are listed, followed by their methods. Then the environment in
which methods execute and the class precedence ordering are described.

B.1 Standard Objects

Object Tcl appears to the programmer as two standard class objects which may be
specialized as needed.

B.1.1 Object

The Obj ect class implements the functionality common to all objects. Its
instances are generic objects. It is a root class, having no superclass. It is of class
Class, since it is able to manufacture objects.

B.1.2 Class

The Class class implements the functionality common to all classes. Its instances
are generic classes. Its superclass is Object, since classes are objects too and
inherit object behavior from the standard object. Its class is Class, since it is able
to manufacture objects. Class is the meta-class object.

B.2 Object Methods

Each object has access to the following methods.

B.2.1 Name

<object> name
==> <name>

The name method gets the primary name of the object. It returns:

name (Command) The name of the object.

B.2.2 Names

<object> names [<pat>]
==> <name>

The names method gets all names of the object. It takes:

pat (String) A regular expression.

It returns:

name (Command) The name of the object.

B.2.3 Alias

<object> alias <name>

The alias method makes a secondary name for the object. It takes:

name (String) A name of for the object.

B.2.4 Class

<object> class [<name>]

The class method sets the class of the object. It takes:

name (String) A name of a class object.

B.2.5 Destroy
<object> destroy

The destroy method destroys the object, deleting all of its methods and instance
variables before removing the command from the interpreter.

B.2.6 Proc
<object> proc <name> <args> <body>

The proc method defines a method for the object. It is similar to the proc
top-level command, except that the procedure is defined on the object. It takes:

name (String) A name for the proc.
args (List) A list of formal parameters to the proc.
body (List) A body for the proc.

B.2.7 Next
<object> next [<args>]

==> <value>

The next method provides access to methods defined further up the class graph.
It is called within the implementation of a Tcl proc on an object to reach the next
most method in the class precedence ordering with the same name. It takes:

args (List) A list of arguments to pass to the next method.

It returns:

value (String) The value returned by the next method.

B.2.8 Auto
<object> auto <name> <command>

The auto method installs a stub that forces a method implementation to be
demand loaded if and when the method is invoked. It takes:

name (String) A method name that is to be demand loaded.
command (String) A command that is evaluated to load the named

method.

B.2.9 Info Procs
<object> info procs [<pattern>]

==> <procs>

The info procs method provides the names of methods for the object. Only the
names of procs, implemented in Tcl, are accessible. It takes:

pattern (String) A regular expression.

It returns:

procs (List) The list of method names that match the pattern. If no
pattern is supplied, all method names are returned.

B.2.10 Info Commands

<object> info commands [<pattern>]
==> <commands>

The info commands method provides the names of methods for the object. The
names of both primitive methods, implemented in C/C++, and procs,
implemented in Tcl, are accessible. It takes:

pattern (String) A regular expression.

It returns:

commands (List) The list of method names that match the pattern.
If no pattern is supplied, all method names are returned.

B.2.11 Info Vars

<object> info vars [<pattern>]
==> <vars>

The info vars method provides the names of instance variables for the object. It
takes:

pattern (String) A regular expression.

It returns:

vars (List) The list of instance variable names that match the pattern.
If no pattern is supplied, all instance variable names are returned.

B.2.12 Info Class

<object> info class [<class>]
==> <0 I 1 I class>

The info class method provides the access to the class of the object and tests
class membership. It takes:

pattern (String) A class name.

It returns:

0 o 1 class (String I Command) If no pattern is supplied, the class of
the object is returned. Otherwise, a true or false result is returned
depending on whether the object is a member of the class
specified by the pattern.

B.3 Class Methods

Each class has access to the following methods over and above the methods
accessible to all objects.

B.3.1 Create
<class> create <name> [<keyword> <value> ...]

==> <object>

The create method creates and initializes a new object that is an instance of the
class. It is the default method for classes, and the create method argument
specifier may be omitted if the request remains unambiguous. It takes:

name (String) A name of the object to be created.
keyword (String) A name of a method the instance provides.
value (String) A value used as the argument to the method.

It returns:

object (Object) The newly created object.

B.3.2 Superclass
<class> superclass [<classes>]

The superclass method sets the superclasses of the class. It takes:

classes (List) A list of classes.

B.3.3 InstProc
<class> instproc <name> <args> <body>

The instproc method defines an instance method for the class. It is similar to the
proc top-level command, except that the procedure is defined on the class for use
by its instances. It takes:

name (String) A name for the proc.
args (List) A list of formal parameters to the proc.
body (List) A body for the proc.

B.3.4 InstAuto
<class> instauto <name> <command>

The instauto method installs a stub that forces an instance method
implementation to be demand loaded if and when the method is invoked. It takes:

name (String) An instance method name that is to be demand loaded.
command (String) A command that is evaluated to load the named

instance method.

B.3.5 Info InstProcs
<class> info instprocs [<pattern>]

==> <instprocs>

The info instprocs method provides the names of instance methods for the class.
Only the names of instance procs, implemented in Tcl, are accessible. It takes:

pattern (String) A regular expression.

It returns:

instprocs (List) The list of instance method names that match the
pattern. If no pattern is supplied, all instance method names are
returned.

B.3.6 Info InstCommands
<class> info instcommands [<pattern>]

==> <instcommands>

The info instcommands method provides the names of instance methods for the
class. The names of both primitive instance methods, implemented in C/C++,
and instance procs, implemented in Tcl, are accessible. It takes:

pattern (String) A regular expression.

It returns:

instcommands (List) The list of instance method names that match
the pattern. If no pattern is supplied, all instance method names
are returned.

B.3.7 Info Instances
<class> info instances [<pattern>]

==> <objects>

The info instances method provides the names of instances of the class. It takes:

pattern (String) A regular expression.

It returns:

objects (Command List) The list of objects instances that match the
pattern. If no pattern is supplied, all instances are returned.

100

B.3.8 Info Superclass
<class> info superclass [<class>]

==> <0 I 1 I classes>

The info superclass method provides the access to the superclasses of the class
and tests superclass membership. It takes:

pattern (String) A class name.

It returns:

0 1 classes (String I Command List) If no pattern is supplied, the
superclasses of the class are returned. Otherwise, a true or false
result is returned depending on whether the class is a subclass of
the class specified by the pattern.

B.4 The Method Environment

During method execution, all instance variables (that were previously declared
with the set method) are accessible. They appear as local variables, but their
state is saved across method invocations.

In addition, the following special variables are always defined:

self The object on behalf of which the method is executing.

proc The name of the method which is executing.

class The class on behalf of which the method is defined, or null is the
method is defined on a non-class object.

B.5 The Class Precedence Ordering

When a method is invoked, it is searched for on the object itself and then along
the class precedence ordering. The first method found is executed. The next
method may be used to continue the search and combine method implementations.

The precedence ordering always begins with the class of the object. It orders
superclasses with a CLOS-like scheme. The following rules always hold locally and
are useful for determining precedence:

1. A class always has precedence over its superclasses

void
VsTclClass::TopologicalSort(VsTclClass* base) {

color = True;
for (ClassList* 1 = SuperClass(); 1 != 0; 1 = 1->next) {

VsTclClass* next = 1->cl;
if (next->color == False)
next->TopologicalSort(base);

}
ClassList* chain = base->precedence;
base->precedence = new ClassList;
base->precedence->cl = this;
base->precedence->next = chain;

void
VsTclClass::ComputePrecedence() {
while (precedence != 0) {

ClassList* n = precedence->next;
delete precedence; precedence = n;

}
TopologicalSort(this);
for (ClassList* 1 = precedence; 1 != 0; 1 = 1->next)

l->cl->color = False;
cache = True;

Figure B.1: Algorithm for computing the precedence list.

2. Each class sets the order of its direct superclasses by the order
they are specified with the superclass method

The complete precedence ordering is computed for a given class by the topological
sort algorithm given in Figure B.1.

102

Bibliography

[1] J. F. Adam, H. H. Houh, M. Ismert, and D. L. Tennenhouse. A Network
Architecture for Distributed Multimedia System. In Proceedings of the
International Conference on Multimedia Systems and Computing, pages
76-86, Boston, MA, May 1994. IEEE.

[2] Joel. F. Adam and David. L. Tennenhouse. The vidboard: A video capture
and processing peripheral for a distributed multimedia system. In Proceedings
of A CM Multimedia 93, pages 113-120, Anaheim, CA, August 1993. ACM.

[3] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for
drawing graphs: an annotated bibliography. ftp from wilma.cs.brown.edu
(128.148.33.66), June 1993. file /pub/gdbiblio.ps.Z.

[4] Eugene C. Ciccarelli. Presentation based user interfaces (revised Ph.D.).
Technical Report MIT/AI/TR 794, Artificial Intelligence Lab., Massachusetts
Institute of Technology, August 1984.

[5] Charles L. Compton and David L. Tennenhouse. Collaborative load shedding
for media-based applications. In Workshop on the Role of Real-Time in
Multimedia/Interactive Computer Systems, Raleigh, NC, November 1993.

[6] Digital Video Applications Corp. DiVA VideoShop: Users Guide. Digital
Video Applications Corp., November 1991.

[7] Microsoft Corporation. Microsoft Video For Windows Users Guide. Microsoft
Corporation, 1992.

[8] Isabel. F. Cruz. DOODLE: A Visual Language for Object-Oriented
Databases. In Proceedings of SIGMOD. ACM, 1992.

[9] Michael Eisenberg. Programmable applications: Interpreter meets interface.
Technical Report AI Memo 1325, MIT, October 1991.

[10] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference
Manual. Addison-Wesley, 1990.

103

[11] M. Gantt and B. Nardi. Gardeners and Gurus: Patterns of cooperation
among CAD users. In Proceedings of CHI, pages 107-117, May 1992.

[12] Adobe Systems Inc. Premiere. Adobe Systems Inc., 1991.

[13] Apple Computer Inc. Dylan: an object-oriented dynamic language. Apple
Computer Inc., April 1992.

[14] Apple Computer Inc. HyperCard (version 2.2). Apple Computer Inc., 1993.

[15] Apple Computer Inc. Inside MacIntosh: Quicktime, Inside MacIntosh:
Quicktime Components. Addison Wesley, 1993.

[16] MacroMind Inc. MacroMind Director (Version 3.0): Overview Manual.
MacroMind Inc., June 1991.

[17] Sun Microsystems Inc. Solaris XIL 1.1 Imaging Library: Programmers'
Guide. Sun Microsystems Inc., November 1993.

[18] ISO/IEC JTC1/SC29. Coded Representation of Picture, Audio, and
Multimedia/Hypermedia Information. Committee Draft of Standard ISO/IEC
11172, 1991.

[19] ISO/IEC JTC1/SC2/W10. Digital Compression and Coding of
Continuous-Tone Still Images. IEC Draft International Standard 10918-1,
1992.

[20] Sonya E. Keene. Object-Oriented Programming in COMMON LISP: A
Programmer's Guide to CLOS. Addison-Wesley, December 1988.

[21] G. Kiczales, J. des Rivieres, and D. Bobrow. The Art of the Metaobject
Protocol. The MIT Press, 1992.

[22] C. Lindblad, D. Wetherall, and D. Tennenhouse. The VuSystem: A
Programming System for Visual Processing of Digital Video. In Proceedings
of ACM Multimedia 94. ACM, October 1994.

[23] Wendy E. Mackay. Triggers and barriers to customizing software. In CHI'91
Conference Proceedings, pages 153-160. ACM, April 1991.

[24] James Matthews, Peter Gloor, and Fillia Makedon. Videoscheme: A
programmable video editing system for automation and media recognition. In
Proceedings of ACM Multimedia 93, pages 419-426, Anaheim, CA, August
1993. ACM.

[25] Michael J. McLennan. [incr Tcl] - Object-Oriented Programming in Tcl.
AT&T Bell Laboratories, 1994. ftp from harbor.ecn.purdue.edu.

[26] Brad A. Meyers. State of the art in user interface software tools. Advances in
Human-Computer Interaction, 4, 1992.

104

[27] Brad A. Meyers and Mary Beth Rosson. Survey on User Interface
Programming. In Proceedings of SIGCHL ACM, 1992.

[28] D. L. Miller-Karlow and E. J. Golin. vVHDL: A Visual Hardware Description
Language. In Proceedings of Workshop on Visual Languages, pages 133-139,
Seattle, WA, September 1992. IEEE.

[29] David A. Moon. Object-Oriented Programming with Flavors. In Proceedings
of ACM Conference on Object-Oriented Systems, Languages, and Applications
(OOPSLA) 1986. ACM, September 1986.

[30] Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End User
Computing. The MIT Press, 1993.

[31] Thomas J. Olsen et al. MAVIS: A Visual Environment for Active Computer
Vision. In Proceedings of Workshop on Visual Languages, pages 170-176,
Seattle, WA, September 1992. IEEE.

[32] John Ousterhout. Tcl: An Embeddable Command Language. USENIX, 1990.

[33] John Ousterhout. An X11 Toolkit Based on the Tcl Language. USENIX,
1991.

[34] Brent Phillips. A Distributed Programming System for Media Applications.
SM Thesis Proposal, Department of Electrical Engineering and Computer
Science, MIT, July 1994.

[35] Richard Stallman. GNU Emacs Manual. Free Software Foundation, March
1987. Sixth Edition, Version 18.

[36] William Stasior. Visual Processing for Seamless Interactive Computing. in
MIT/LCS/TR-590, November 1993.

[37] Steven L. Tantimoto. Viva: A visual language for image processing. Journal
of Visual Languages and Computing, 1(2), 1990.

[38] D. L. Tennenhouse, J. F. Adam, D. Carver, H. Houh, M. Ismert, C. Lindblad,
W. Stasior, D. Wetherall, D. Bacher, and T. Chang. A Software-Oriented
Approach to the Design of Media-Processing Environments. In Proceedings of
the International Conference on Multimedia Systems and Computing, Boston,
MA, May 1994. IEEE.

[39] C. Upson et al. The application visualization system: A computational
environment for scientific visualization. IEEE Computer Graphics and
Applications, pages 30-42, July 1989.

[40] C. Williams and J. Rasure. A visual language for image processing. In IEEE
Computer Society Workshop on Visual Languages, Skokie, IL, 1990. IEEE
Computer Society.

105

[41] S. Wray, T. Glauert, and A. Hopper. The Medusa Applications Environment.
In Proceedings of the International Conference on Multimedia Systems and
Computing, pages 265-273, Boston, MA, May 1994. IEEE.

106

