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Abstract

As more powerful processors and faster networks are developed, the message interface

is becoming one of the bottlenecks in modern multicomputer systems, and the impor-

tance of more efficient message interfaces is gaining. The overall performance of the

message interface is influenced not only by the efficiency of the processor/network

coupling, but also by the efficiency of the system in performing other end-to-end

tasks in a message operation, particularly target name resolution, protection enforce-

ment, and resource management. To achieve optimum performance, it is necessary for

the message subsystem to take into consideration all these concerns and attempt to

provide balanced and complementary support for them. This thesis examines these

issues, and develops an integrated message subsystem which incorporates efficient

and flexible mechanisms working together in a mutually supportive manner, with a

simple software-hardware interface.
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Chapter 1

Introduction

With its ability to efficiently support most of the major programming paradigms [1],
message-passing has been widely adopted as the underlying communication mech-

anism in many contemporary multicomputers, such as [2, 3, 4, 5, 6]. This thesis

examines the important factors in the design of an efficient integrated subsystem for

message-passing communication, focusing on the message interface itself, sans the

network proper.

In the next section, we outline the purpose of this thesis. Section 1.2 discusses the

background and related previous efforts. We state our assumptions and terminology

in section 1.3, and a framework of the proposed architecture is briefly summarized

in section 1.4. The organization of rest of this writing is included at the end of this

chapter.

1.1 Purpose

As more powerful processors and faster networks are developed, the message inter-

face is becoming one of the major bottlenecks in modern multicomputer systems.

Consequently, the design of more efficient message interfaces are gaining importance.

To design an efficient message interface, several factors, in addition to fast proces-

sor/network coupling hardware, must be considered. From a user's perspective, the

significant criteria are the effective cost and complexity of accomplishing a desired



remote operation. This cost and complexity are in turn influenced by the efficiency of

the system in performing other end-to-end tasks in a message operation, particularly

target name resolution, protection enforcement, and resource management.

Unfortunately, the need to provide adequate support for these functions, especially

protection, can often conflict with the desire to maximize efficiency. To achieve op-

timum performance, it is necessary for the message subsystem designer to take into

consideration all these concerns, and attempt to provide balanced and complemen-

tary support. The purpose of this study is to develop such an integrated message

subsystem which incorporates efficient and flexible mechanisms working together in

a mutually supportive manner, with a simple software-hardware interface. We will

focus particularly on the three issues indicated above.

1.2 Background and Previous Efforts

The message interface is the mechanism and protocol which dictates the interaction

between software threads and the physical words transported in a message. Generally,
this interaction consists of the following phases:

* Composition: Creating the message.

* Sending: Initiating the message delivery process.

* Injection: Moving the data physically into the network/router.

* Transport: Moving the data across the network.

* Receiving: Extracting the data from the network/router.

* Signalling: Invoking the appropriate software thread to handle the message.

* Handling: Fulfilling the request carried in the message.

While these components need not constitute distinct and separate modules of the

message subsystem, each represents a required step in a message-based communica-

tion, and each has an influence on the overall performance of the system. A balanced



message subsystem must therefore provide adequate support for each of these phases.

Also note that the above-mentioned end-to-end functions should be considered as
parts of the composition and handling steps.

As our focus is on message interface design, the study of the transport component is

beyond the scope of this thesis.

A number of message interface studies have aimed at reducing overhead in the send-

ing/injecting and the receiving/signalling of a message. In most cases, this is accom-

plished by exposing primitive mechanisms to the application programmer, in order

to open opportunities for various optimizations [5, 6, 7]. At the sending point, the

overhead of making a system call to inject a message after it is generated is typically

avoided by providing direct network port access to the user. Some, like [8], also at-

tempted to mask latency by overlapping communication with computation. At the

receiving end, a software thread is usually invoked to handle the message from the

network, per Message Driven [9] or Active Message [5, 10] styles, which have been

shown to provide much flexibility. The result from these are simple interfaces with

low overhead.

The issue of naming concerns the need to unambiguously locate an object regardless

of its physical position, which may change dynamically due to migration, or statically

due to load-time relocation. Protection on the other hand is concerned with restricting

changes in the state of the machine that can be effected by each user. It has to

be position-independent, given that the potential relocation of protected states. In

[6], a software-manipulated Global Virtual Address is offered as a solution to the

naming issue. Software implemented name resolution schemes however, generally

incur unacceptable overhead or protection risk in a fine grain environment, as the

system programmer decides between restricting the name resolution function to a

protected but costly system call, or making it accessible as an unprotected but less

costly library routine, for example. A hardware-assisted XLATE instruction using a

software-managed name cache is provided in [7], offering a faster name translation

functionality, but is nonetheless non-transparent to the user, nor does it enforce any

restriction on the set of targets addressable by a thread.

Other recent studies have seemingly converged towards the approach of building the

naming and/or protection functionalities on top of the virtual memory system, such



as in [5, 11, 12]. Such approaches exploit the protection mechanism already present in

the memory system and extend the virtual memory mapping mechanism to indicate

remote accesses. Others, like [4], have taken the stance that it is sufficient to protect

only system-level states, and designed the hardware to exclude user access to those

states. Our study extends the virtual memory mapping approach to provide a finer

grained, user-transparent protection scheme.

The issue of resource management is concerned with avoiding over-commitment of

critical resources required for message operations, which include buffering space, net-

work bandwidth and processor thread slots. Not many systems have thus far provided

primitive mechanisms to support this function, although an efficient mechanism for

this function is needed to ensure balanced performance along the end-to-end message

path. In this study, we build on the buffer management scheme implemented in the

Cray T3D [12], which we show in chapter 4 to be sufficient for avoiding exhaustion

of the resources above.

Further discussion of these efforts will be found in the corresponding chapters in the

rest of this thesis.

1.3 Assumptions and Terminology

There are a number of assumptions made in this study about the environment in

which the message subsystem will be functioning, other than the platform being a

message-passing multicomputer. These assumptions are:

* Multi-user environment. We assume that multiple independent programs/jobs

can share each processor concurrently to optimize machine utilization. The

usual protected operating system schemes are expected to apply here.

* General register load-store architecture. Our study is geared toward machines

of this dominant genre.

* Custom chips. We assume the designer has the freedom to design a custom

chip, so that the message interface can be tightly integrated with the processor.



* Multiple hardware context. The design is optimized for fine grain multi-threading

on a multiple hardware-context machine [13].

Throughout this writing, we use the term "payload" to refer to the data that is
transferred in a message, to distinguish it from the "request", which we use to refer to

the operation requested to be performed. The term "receiver thread" is used to refer

to a thread that is actively expecting a particular message.

1.4 Proposed Architecture

We propose a message subsystem architecture that integrates tightly into the proces-

sor, and leverages off the system's other existing mechanisms 1. To provide a position-

independent naming environment where name resolution is fast, and transparent to

the user, we abandon the more traditional practice of addressing messages to tuples

of (node, memory location), in favor of a globally named message addressing scheme

using a two-layer, hardware-cached name translation mechanism. Protection in this

system is enforced by a combination of extending the protected pointer types from the

M-Machine memory subsystem [14] and restricting the messages to invoke only privi-

leged handlers at the destination. To minimize latency, we try to eliminate redundant

buffering/copying in the message's path, by mapping the message composition space

and the network port to the processor's general registers [15, 16, 17]. Finally, to pre-

vent network congestion, a simple hardware/software solution is included to support

T3D-style [12] message throttling, by inhibiting non-critical messages when buffering

resource is near exhaustion.

The architecture proposed in this thesis is inspired by a number of previous studies
and discussions with members of the MIT Concurrent VLSI Architecture group. It
also builds on mechanisms originally developed in other domains of the MIT M-

Machine[13]. The author's contribution is in the design of:

* A register-mapped, FIFO-based message input interface that exploits the M-

iThe M-Machine multicomputer [13] provides the platform for the studies in this thesis.



Machine's stall mechanism 2 for fast dispatch.

* A register-mapped, dual-bank, compose-and-launch message output interface

using SEND operations that permit independent specification of (recipient x

request x payload) in each message.

* A protection scheme that exploits the M-Machine's protected pointer mecha-

nism to provide control over the target objects addressable by a sender thread,
as well as the remote operations it may invoke on the target object.

1.5 Outline

In Chapter 2, we introduce naming and protection schemes in the context of the

message subsystem. It is followed by the description of the send/receive facility

in Chapter 3. The description of the architecture comes to a completion with the

message throttling mechanism in Chapter 4. Chapter 5 provides an evaluation and

a skeleton implementation of the proposed message subsystem. We conclude this

writing with some suggestions for further investigation in Chapter 6.

2The stall mechanism prevents an instruction from issuing until all its operands become present
[13].



Chapter 2

Naming and Protection

In this chapter, we consider two properties that are crucial in any modern comput-

ing system, without which producing any deterministic program behavior would be

exceedingly difficult:

* Given the name of an object, one should be able to unambiguously locate the

object.

* One should be confident that pieces of critical state are protected from unde-

sired/unexpected modification by unauthorized processes.

In a multicomputing environment, objects may potentially reside on different physical

nodes at different times (e.g. due to load-time/dynamic relocation), while each object

may further be distributed across a collection of physical nodes. The naming scheme

must therefore be able to uniquely locate each interesting piece of an object regardless

of its current physical position, and protection must be upheld across node boundaries.

In the following sections, we present a scheme that provides this ability in the context

of the message subsystem.

2.1 Naming and Messaging on the M-Machine

Given that code/data may not always reside on a single fixed physical node, a message

addressing method using (node, address) pairs is not quite suitable in a multicom-



puter. Therefore, from the point of view of a user-level programmer, M-Machine

messages are always addressed to a target object. In this context, an object can be

any software/hardware entity, such as data structures, threads and process groups,
memory locations and nodes. Each object is identified by a unique global virtual

name/address, implemented as a user-unforgeable data type (the address pointer data

type on the M-Machine).

Using global virtual names in messages allows the programmer to reference an object

in always exactly the same way, regardless of its relative position from the caller, and

decoupled from the actual mapping between the virtual naming space and the physical

resources. The system provides this position-independent addressing by putting the

target object name of messages through a two level translation mechanism 1:

* Global translation to identify the physical node currently hosting the interesting

piece of the object named. This information is used by the low-level network

hardware to deliver the message.

* Local translation at the destination node to further translate the virtual address
of the target object (which is passed along to the destination within the message)

into its corresponding physical address within the destination node, or to detect

conditions requiring exceptional handling, such as in the case of a migrated

target object.

To provide the translation services at minimum overhead without overwhelming hard-

ware costs, the two translation layers are made up of translation tables with hardware

look-aside buffers (TLBs). A Global TLB (GTLB) is used for the global translation

layer, while local translation is facilitated by a Local TLB (LTLB). These TLBs and

their associated translation tables are similar to the translation mechanism commonly

used in conventional paging virtual addressing systems. Misses in these TLBs cause

the system to trap into appropriate routines to respond accordingly. In either case,
the entire translation scheme is completely hidden from user processes. A brief de-

scription of an implementation of the GTLB can be found in Chapter .5.

iThis idea came out from a J-Machine evaluation study [18]



With this translation mechanism, state changes that are local to the node need only

be reflected in the local translation layer, without being communicated to other parts

of the machine. Even for dynamic remapping between names and host nodes, such

as in an object migration, the change need only be registered in the global/local

translation layers of the previous and current host nodes. No extra network traffic is

generated until the object is indeed referenced again. When a message does eventually

arrive for a relocated target object, it can be forwarded to the object's new location

by the LTLB-miss trap routine described above, which may optionally also notify the

sender to modify its GTLB accordingly. The system is therefore capable of providing

a very flexible global naming environment. At the same time, the use of unforgeable

object names in message addressing also facilitates the tight integration of system-

wide protection, as described next.

2.2 Protection and the Message Subsystem

Protection refers to the systematic restriction of each user's ability to effect changes in

the state of the machine. Where the message subsystem is concerned, this restriction

can be achieved in one or both of the following ways:

* Enforce permission checking at the receiving end, before the request carried

in the message is fulfilled. Under this approach, the receiver has finer, and

more dynamic, control over what requests it wants to entertain. The disad-

vantage, however, is that unauthorized requests would have consumed network

bandwidth by the time they are rejected.

* Enforce permission checking at the sending end, before the message is injected.

Since the system must record the permission assignments concerned in this

approach, it is really more suitable for permission assignments that change

infrequently. It has the advantage, however, of being able to avoid unnecessary

network traffic due to unauthorized remote accesses.

The primary protection mechanism of the M-Machine message subsystem falls into

the latter category. The scheme heavily exploits the user-unforgeability of the pointer



data type mentioned earlier. On the M-Machine, each pointer contains three subfields

[13]: the Address field which identifies the object being named by this pointer, the

Permissions field, which specifies the operations permitted on the object, such as

read only, read/write and execute, and the Length field, which limits the extent of

the domain that can be derived from this pointer. In the message subsystem, the

Permissions field provides the basic means for enforcing system-wide protection.

Two pointers are required in order to send a message from a user program, using a

SEND operation. The first pointer, referred to as the destination virtual address, is

the name of the target object as described earlier. This pointer is passed along to

the destination, with its permission field preserved and honored at the destination

node. Therefore, any access control scheme enforced via the pointer permission field

is automatically extended to cover the entire system.

The second pointer required, known as the dispatch instruction pointer (dispatchIP),
must have the execute message permission, which is mutated by the network interface

into execute when the message is injected. This pointer names a code fragment at the

destination called the message handler, which is to be invoked to operate on the body

of this message at the destination upon its arrival. It should be noted that on the

M-Machine, the handler runs concurrently with other threads within the processor,
in its own dedicated hardware context. Therefore no interrupt is caused by a message

arrival.

Failure to adhere to the above pointer conditions results in the system trapping into

an exception routine.

From the fact that pointers are user-unforgeable, two properties can be inferred about

the scheme described:

* Regardless of the physical location of an object, it can be accessed only by

threads that possess a copy of the pointer to it, and the access may only be in

the manners permitted by that pointer.

* The system has complete control over all message handlers, and a thread may

invoke a remote operation only if it possesses a copy of the pointer to the

corresponding handler.



From the above, we see that the permission field of the target object name alone

provides sufficient global protection for simple read/write/execute operations on the

named object. The dispatch instruction pointer further protects classes of critical re-

mote operations from being invoked by unauthorized senders. For more sophisticated

protection needs, the message handler, being a fully programmable code fragment,
has the ability to enforce any receiver-end permission-checking as necessary.

In addition to the above forms of access control, the message subsystem also guaran-

tees against hogging of message resources by any user thread. This is accomplished

by making message injection an atomic operation:

* A message cannot be initiated until it is, in its entirety, ready for immediate

injection into the network.

* A message cannot be interrupted once it has been initiated.

* Injection of a message into the network is guaranteed to complete within a fixed

amount of time after it was initiated. The resources are released automatically

after injection is complete.

The atomicity of message injection is enforced in hardware, without explicit software

interlocks. The system is therefore protected from a user thread's failure to release

control over the shared network resource after being granted permission to deliver a

message. It also ensures that the message resource is allocated to a thread only for

the actual duration the resource is needed by the thread, so that the resource is never

unnecessarily tied up.

At the same time, we require each message handler at the receiving end to be a

trusted thread, guaranteed to complete quickly without risk of a deadlock. This is

enforceable since the system software has complete control over which threads may be

specified as message handlers. For a more elaborate remote operation that may run

for a long time, or involve dependencies on the network ports, the message handler

schedules a separate thread to complete the operation in a regular thread slot (other

than the message thread slot). This eliminates the possibility of the network input

port becoming inaccessible.



The above two conditions guarantee that both the network input and output ports

never become continuously inaccessible for an unbounded period of time. As far as

the message subsystem is concerned, a user thread can thus never preclude other

processes from accessing the network resources. Therefore, this arrangement serves

to prevent user threads from causing deadlocks that compromise the operation of the

entire system.

As will be discussed in Chapter 4, each user message generates an Acknowledge re-

sponse when it is accepted by the destination node. This Acknowledge message must

be returned to the original sender node for correct operation of the system. To pre-

vent the sender from misdirecting the Acknowledge response to a different node, the

network interface hardware attaches the node identification of the sender to each mes-
sage. This provides a trusted return node ID to which the handler can deliver the

Acknowledge message. A count value is also attached similarly, to provide a trusted

account of the message length to the receiver for any necessary checking.

Finally, two independent message priorities, 0/1, are provided on decoupled network

resources, where only priority 0 resources are accessible to user programs. By re-

serving the priority 1 resources for privileged threads, the system is protected from

catastrophic conditions where system management messages are blocked / delayed

due to user errors. The Acknowledge messages described above are generated by the

message handler on priority 1.

It should also be pointed out that the system software is capable of construct-

ing/mutating pointers, and can therefore bypass any of the pointer-related restrictions

above.

2.3 Related Efforts

Traditional approaches to the protection issue include requiring explicit permission-

checking in software, restricting message resource to be accessible only via system

calls, and enforcing gang scheduling [6]. Unfortunately, without adequate primitive

mechanisms, these approaches were often not reliable, incurred too much overhead,
or provided only a coarse level of protection.



In the more recent generation of multicomputers however, efficient protection schemes

have been attracting more attention. Many of these studies have converged towards

exploiting/extending the virtual memory system to address the protection needs.

The CM-5 [5] for example directly maps the network port to memory locations,
and a message is generated by directly writing the words to be delivered into these

memory locations. On the Cray T3D [12], a message is implicitly generated by

a cache-line write to a remote memory address, which is subsequently translated

by hardware into a destination node identifier needed for routing. The user-level

message interface in the Stanford FLASH [11] system is accessed via memory-mapped

commands which invoke a transfer handler on its MAGIC controller chip to perform

the message delivery. Given that the memory locations concerned can be mapped into

protected pages of the memory address space, these systems can therefore restrict

access to message operations and/or prevent messages from being sent to specific

addresses.

The Alewife [19] system holds the philosophy that protection is enforced only to pre-

vent errant user code from accessing system level operations (differentiated by the

major opcode value). The message interface is based on a memory-mapped output de-

scriptor array, which is used to describe the message before it is atomically launched.

Hardware restriction is imposed such that system level message operations are not

accessible to the user.

The approaches taken by these system are quite adequate for isolating critical system

states from user processes. They differ from our protection model however in that

the remote request in most of these systems is generally specified by an unprotected

opcode. This implies the lack of full control over permissible combinations of (sender

x recipient x request), a flexibility feature for enforcing fine grain protection. At the

same time, our approach also deviates conceptually from most existing systems in

that our messages request an operation to be performed on a target object, instead

of asking a receiver thread to perform an operation. Finally, our two-level translation

scheme provides additional flexibility in protection enforcement, as discussed in the
previous section.





Chapter 3

Processor-Network Interface

In this chapter, we present the design of an efficient interface between the software and

the hardware in the message subsystem. Our major goal is to minimize the overhead

of sending and receiving messages while preserving system-wide process isolation. It

is important that the primitives presented to the user for message sending/receiving

are simple and efficient so that programmers are not driven to amortize the effort/cost

by using only large, infrequent messages. The interface mechanisms must also offer

enough flexibility to support development of higher level protocols on top of them.

3.1 Common Models of Network Interface

In this section, we begin by surveying the common models of network interface de-

signs.

3.1.1 Network Output Interface

In terms of the network output unit, existing models can be broadly divided into two

classes:

* Compose and Launch: The sender thread is required to first compose the com-

plete message in some buffering space, and then launch the message into the

network via some mechanism such as executing a dedicated instruction or ac-

cessing a special register/memory location, such as in [6, 8, 19, 20].



* Generate and Inject: The sender injects the message into the network on-the-fly

as each word is produced [5, 7].

It may appear that the former approach is at a disadvantage since each word in the

message must be copied into the buffer, and out again into the network. In contrast,
in the latter category , no such copying takes place. However, such comparison does

not take into account the protection issue. To ensure against interruption of an on-

going message and splicing together of messages, the Generate-and-Inject model must

rely on some semaphore scheme. This semaphore, whether implemented in hardware

or software, guarantees an atomic region of execution in the sender thread while the

message is being injected. Note that this implies a dependence on the sender thread

to release the semaphore when it is done injecting the message. Such dependency

risks deadlocks and resource-hogs when the sender is a user level thread.

Conceivably, a watchdog timer may be used to interrupt the processor after a period

of inactivity, to avoid the above deadlock situation. There is a complication however,
in that the network input must then be augmented to handle incomplete messages,
e.g. when a thread is interrupted due to a timeout condition while in the middle of

injecting of a message. This also implies that the message cannot be handled until

it is received in its entirety, or the handler must take special care to be prepared for

the case where the message it is handling turns out to be incomplete.

On the other hand, the compose-and-launch approach has a well-defined upper bound

of time after the Launch operation during which the sender needs to be granted the

network output resource. It is thus safe to provide direct network output access to

user processes without deadlock risks, and without system software intervention.

A number of variations may further exist in the compose-and-launch category, that

revolve around the mapping/location of the buffering space. This buffer space may be

addressed as register(s), or memory location(s), or accessed via special instructions,

while physically residing in dedicated registers, or main memory, or a special FIFO

storage, for example. The resulting efficiency of the interface is influenced by both

the logical and physical mappings of the buffer. The logical mapping dictates the

manner in which the buffer is accessed (and hence the number of instruction cycles

required to perform this access) while the physical mapping determines how fast the



buffer may be accessed (i.e. the latency up to the completion of the access). A

study of the relative merits of each variation is found in [17], which suggests that

the overhead can be minimized by mapping the buffer to processor register address

space. As will be shown in the next few sections, by further mapping the buffer

physically into the processor registers, the copying overhead objected to earlier can

be almost eliminated. Taking into account the deadlock issue, compose-and-launch

can therefore be the preferred message subsystem model in a multi-user system.

3.1.2 Network Input Interface

In the recent network input designs, there are generally the following approaches to

message handling:

* Direct access: In this case, it is assumed that the message is expected by a certain

receiver thread, at either the application or the system level, which will directly

consume the message into its computation. This receiver thread is given direct

access to the network interface so that it can actively extract message words from

the network buffer via some mechanism such as special registers/instructions.

An example is the pathway mechanism on the iWarp [16].

* Hardware intensive interface: The network interface controller itself interprets

and performs the request in the message. It may sometimes trap into software

to extend its capability. Two examples can be found in the P-Machine [21] and

the Network Interface Processor [22].

* Software Handlers: Each message specifies a trusted handler to be invoked

upon its arrival at the destination. The trusted handler has direct access to the

message contents and performs the requested operation. Examples include the

MIT J-Machine [7] and the Fujitsu AP1000 [8].

The direct access model allows a receiver thread to have very fast access to the

message, and is most efficient when the programming model is based on threads

directly communicating with each other. It is however not appropriate for a multi-

user system. Since user-level receiver threads will have access to the network resource,



in order to preserve process isolation, the sender/receiver threads must be scheduled

in a synchronized fashion, such that the correct receiver is always monitoring the

network interface when the corresponding message arrives. Alternatively the message

arrival must raise a processor interrupt which then wakes up the right receiver to

extract the message. (An interrupt may also be required when the incoming message

has no well-defined and awaiting "receiver", e.g. a remote procedure call.) Being

costly operations, both alternatives may well defeat attempts to exploit fine-grain

parallelism.

The hardware intensive approach is most appropriate where a small collection of re-

mote operations dominate the message traffic. These frequent operations could be

wired-in into fast hardware, while other less frequent operations trap into software to

complete. It is however not economical to implement complicated functions entirely

in hardware, given that the marginal increase in performance is nonetheless limited

by the availability of other shared resources in the system. Therefore, as we take

into account the required end-to-end functions in a message operation, the perfor-

mance/cost ratio of a hardware intensive interface is not likely to be substantially

higher than a software-handler based interface.

On the other hand, software handlers offer a much higher degree of flexibility over

the other approaches. In a multi-threading / multi-user environment, this flexibility

becomes even more essential as we consider the increasing complexity in the operations

required of a message. (Consider, for example, the need to manage semaphores,

maintain various models of memory coherence and arbitrate for shared resources.)

Adding the low hardware cost advantage, this approach is therefore our preferred

choice.

3.2 The M-Machine Message Architecture

As discussed, the compose-and-launch and software handler message interface models

are the appropriate choices for the environment of our study. In this section, we

present the design of the interfaces in detail.



3.2.1 Network Output Interface

The network output interface adopts a user-level compose-and-launch mechanism,
using a subset of the general registers directly as the compose buffer. These registers,
called the Message Composition registers (MC registers), are in fact regular processor

registers, which are used as source/destination in normal instructions, just like any

other general register.

There are two independent banks of MC registers on each M-Machine cluster [13]

corresponding to its two register files. Each MC register bank has 10 registers, plus

an extra two which are accessible to system level threads for system management.

A non-blocking SEND instruction is used to launch the message from the appropriate

bank of MCregisters (from MC#0O to MC#length-1) into the network. It also specifies

the destination and the request, in the form of a destination virtual address and a

dispatchlP, as described in the previous chapter:

SENDO bank length dest dispatchIP ccreg

Injection of each message into the network output buffer is guaranteed to be an

atomic operation. This is achieved by stalling the SEND operation until all of the

MC registers involved are present 1. Once the SEND operation is issued, the message

words are non-interruptably extracted from the MC registers into the network output

buffer. This atomicity guards against mutation of messages by a third party, and
against deadlocks due to network resource hogging.

Each SEND instruction also specifies a Condition Code target register, ccreg (for

predicated execution). This ccreg is marked not-present by the hardware when the

message send is initiated, only to be is set to TRUE and present again by the hardware
when the entire message has been extracted from the MC registers over a number of
cycles. This is used as a barrier to stall attempts to mutate the MC registers before
their contents have been extracted. All operations may proceed normally immediately
after a SEND is executed, so long as they do not mutate the MCregisters before ccreg

'The presence bit mechanism keeps track of the validity of the content in each register [13].
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becomes present. Using a MC register as a source before ccreg becomes present is

however permitted. The presence bits of the MC registers are nevjer affected by the

network interface.

The delivered message format is shown in Figure 3.1. Note the addition of the count

and senderlD fields, as discussed in the previous chapter. These two fields could be

packed into the message header and expanded into full words by the network input

unit at the destination.

3.2.2 Network Input Interface

The M-Machine has a software-handler based network input interface with a register-

mapped network input FIFO.



Upon a message's arrival from the network, it is streamed into a hardware FIFO,
called the message queue. The message queue is tied to 2 special registers, Rhead and

Rbody, which appear as two of the general registers of a dedicated message thread

slot 2. When it is read, the Rhead register returns the dispatchIP specified in the

next unread message in the FIFO. It also performs the side effect of flushing left over

words, if any, from the incoming message before this dispatchIP, eliminating the

security hole due to the user sending a message that is longer than expected by the

handler.

Each subsequent read to the Rbody then pops and returns the next word from the

message at the front of the FIFO. Any attempt to further read Rbody when the words

from the current message have been exhausted will return an error value.

Note that Rhead and Rbody are accessible from a dedicated message thread slot only.

Typically, a dispatcher thread runs in the message thread slot, branching to the

dispatchIP software handler when a message arrives. The software handler then

extracts the rest of the message via Rbody, performs the requested operation, and

then branches to the next message's dispatchIP when it is done 3.

Each of Rhead and Rbody has a presence bit similar to the general processor registers.

Exploiting the stall mechanism mentioned above, the message thread is automatically

stalled when it tries to read Rhead or Rbody in the absence of a pending incoming

message. This allows the message thread to make progress as soon as the first word

of next message word arrives, without resorting to expensive mechanisms such as

busy-waiting for the next message word or taking an interrupt when the next word
arrives.

3.3 Discussion

In this section we will examine how the proposed message architecture compares to
the message handling mechanisms in other systems.

2The M-Machine supports up to 24 active thread slots simultaneously, each with its own hardware
context.

3Running in the message thread slot, the message handlers on the M-Machine have the added
advantage that they can quickly mutate any user thread's state, including its register contents, via
the configuration space facility.



We begin with a summary of the strengths of the proposed architecture. At the

network output end, the advantages can be described in the following:

* Decoupling of orthogonal components in a message. The target, request and

payload can each be specified independently of the others, as destination virtual

address, dispatchlP and MC registers, allowing any/all of these components to

be reused in a subsequent message.

* Minimization of redundant copying. By arranging for the message to be gen-

erated (or loaded from memory) into the appropriate MC registers directly, no

further copying is needed to prepare the message for launching.

* High computation-communication overlap. By alternately filling and launching

from the two banks of MC registers, the system can easily achieve very high

overlap ratio 4

At the same time, the network input of the proposed architecture has the features

described below:

* Low dispatch overhead. The message handler is invoked quickly after the dis-

patchlP arrives at the destination 5. There is no need to wait for the rest of

the message. Since the dispatchlP uniquely identifies the message handler, it

involves no overhead to look up the appropriate action.

* No explicit buffering. The message is not buffered explicitly before it is given

to the handler. Each word in the message becomes available to the handler

immediately upon its arrival, without waiting for the rest of the message.

* Minimal copying overhead. For requests that can be fulfilled immediately, the

Rbody register can be used directly as an operand to regular instructions exe-

cuting the request. There is no need to explicitly move the word into a register

before hand.
4The SEND operation can even be executed in the same cycle as two other operations from the

same thread on the M-Machine.
5By using Rhead directly as the source to a JMP instruction, the handler thread can be started

within one branch delay (3 cycles delay slot on the M-Machine) after the arrival of the dispatchIP.



To further understand the utility of mapping the interfaces to processor registers as

described, we include here some architectural comparisons, in terms of a few common

primitive message operations, against two contemporary models of message subsystem

which also deliver messages from registers. To avoid being distracted by specific

features of a particular machine that are not due to its message interface, we consider

hypothetical machines M, J, T, each with a message interface resembling the M-

Machine, J-Machine [9], and *T [6, 23] respectively. Each of these hypothetical

machines will adhere to the following restrictions:

* Processor executes one instruction per cycle. Branch operations have a 3-cycle

delay slot, with conditional (predicated) execution in the delay slot.

* Multiple hardware contexts with one reserved for message reception.

* Bandwidth between processor and memory is 1 word per cycle, fully pipelined.

Startup latency for memory accesses is ignored.

* Bandwidth between processor and network is 1 word per cycle, fully pipelined.

System M has a message interface as described in this chapter. The relevant charac-

teristics of the other hypothetical systems, as derived from the original machines, are

as the following:

* System J: Injects messages by explicit SEND instructions, at up to two words

per SEND instruction (1 cycle) from processor registers. Message is completed

with a SENDE instruction. Message is dispatched at the destination by hard-

ware (4 cycles) to a software handler in a reserved hardware context.

* System T: Composes/receives messages in a set of transmitter/receiver (tx/rx)

registers, accessible with dedicated store/load instructions (sttx/strx (up to 4

words per cycle), and ldrx/ldtx (up to 2 words per cycle)). Messages can be

launched from either the tx or the rx registers, and are launched with a ded-

icated instruction stty.go (1 cycle). Check for success is needed after each

message launch (2 cycles). Message arrival is detected by polling (2 cycles).



Since the *T does not provide a comparable name resolution mechanism, and the

J-Machine does not have a comparable protection scheme, we will assume that the

destination specification and remote operation specifier/IP are already available in

registers. So that this comparison of the architecture is not influenced by the actual

register file size, we also make the number of rz and tx registers in system T equal to

2R, same as the number of MC registers in system M. Listed below is the number of

processor cycles required for some common message functions on each of the above
systems:

# Processor Cycles Needed
No. Remote Operation System M System J System T

1 Send N words from 1 ((N/2)+1) ((N/4)+3)
processor registers

2 Generate & Send (N+1) (N+(N/2+1)) (N+(N/4+3))
N words

3 Multicast N words from D (Dx((N/2)+1)) (N/4+(Dx3))
processor registers to D nodes

4 Block Transfer N words (N+N/R) (N+(N/2)+l) (N+((R/4)+3) x (N/R))
words from memory

5 Receive N words to memory (N+4) (4+(2xN)) (5+((N/2)-3)+N)

6 Return N words from memory (6+N+1) (4+2+((N+N/2)+1))) (5+(N-3)+N/4+3)
to sender

7 Fetch & Add (4+1+1+1+1+1) (4+4+1+1+1+1+1) (2+3+1+1+1+1+3)
=9 = 13 = 12

In row 1 of the table, we consider sending an N-word message, where the words are

already present in user registers. In row 2, the message is first generated or loaded

into registers before it is sent. We have assumed that care is taken to generate the

message words in the right MC registers directly in system M.

In row 3, a particular message of N-words is delivered to D destinations. The entire

message is assumed to be already residing in registers. We note that the message body

is preserved on the sending end after launching on systems M and T, which allows

it to be reused directly in the next message. (Name resolution, and the generation

of the next destination specifier, are not accounted for here.) System J on the other

hand needs to repeat the entire send sequence for each of the D messages.

In row 4, we are interested in how fast each system can transfer N words of data. N

is assumed to be large, and we have ignored memory startup latency. The block is

packetized into (N/R) messages for systems M and T. The two MC register banks



are used alternately for maximum overlap between message injection and memory

accesses. In the case of system J, for top speed injection, we have assumed that the

entire block is transferred as one monolithic message. (The thread must guarantee

that no exceptional conditions will be encountered while in the middle of the message

in this case. Otherwise, to packetize the block into messages of size R, it would take

(N+(N/2)+N/R) processor cycles.)

Rows 5 and 6 show, respectively, the number of processor cycles needed to receive N
words to memory, and to return N words from memory in response to the sender's

request. The ((N/2)-3) and (N-3) terms for system T account for the ability to

execute ldrx in the branch delay slot, and should be set to 0 if these terms turn out

negative. In row 7, we add a value in message to a word in memory, store it back to

memory, and return to sender the original word read from memory .

We observe that system M consistently consumes fewer processor cycles for each of

the operations shown. The main contribution to this lowering of overhead is from the

direct sharing of registers between the processor and the network ports, such that no

extra cycles are spent moving message words between register files. In most cases, the

majority of the words within a received message are used only once (i.e. immediately

stored in memory, or operated upon once), the pop-after-read characteristic of Rbody

in system M is therefore a valuable optimization that eliminates the need to explicitly

dequeue each word from the network input.

Notice that in one cycle, 4 words can be moved into the tx registers on system T,
while only 2 words can be extracted from the rx registers. This results in an imbal-

ance between the maximum message injection and extraction rates. Therefore, the

sustainable message rate would be limited by the extraction rate. (If we adhered

strictly to the assumptions listed earlier, the message rate would be further limited

6The memory latency is ignored. The cycle counts are derived from the following:

M JMP (delay slot: get address) + load + add + store + get returnAddr + send
J Dispatch + (get/setup address/value/returnAddr/returnIP from network input)

+ load + add + store + SEND(destination/IP) + SENDE(data)
T Polling + (delay slot: get/setup address/value/returnAddr/returnIP

from network input) + load + add + store + strx + launch



by the network bandwidth of one word per cycle.)

We note that the functions compared above are rather representative of the primitive

building blocks for most common message operations (e.g. A remote procedure call

is made up of operations similar to case 2 and case 6, while cases 1,4 and 5,6 are

representative of most remote read/write operations.). It seems therefore that this

lower overhead will have an impact on the efficiency on most message operations, and

hence is likely to influence the overall performance of applications with non-negligible

communication activities. As an attempt to estimate the extent of this influence, we

refer next to a J-Machine/CM-5 performance evaluation study by Spertus et. al. [24].

3.3.1 Quantitative Analysis

In an evaluation study of mechanisms for fine-grain programming by Spertus et. al.

[24], the effectiveness of the mechanisms in the J-Machine was compared against those

of the CM-5, using the TAM (Threaded Abstract Machine [25]) execution model to

abstract away from the specific implementation differences between the two machines.

The comparisons were based on normalized models of the two actual systems, called

J'-Machine and CM-5'. In this section, we compare the performance of our proposed

mechanisms against that of the J'-Machine which have restrictions very similar to

what we have imposed on the M and J systems described in the previous section.

A suite of six benchmark programs (QS, GAMTEB, PARAFFINS, SIMPLE, SPEECH,

MMT) were used as the basis for comparison. Running under the TAM model,
the communications component for these programs is predominantly due to heap-

messages implemented as ifetch / istore messages. (A small portion of the com-

munications component also comes from other messages, but we shall ignore them

here due to the small percentage (< 9%) of their contribution to the total communi-

cation cycles.) The ifetch operation reads an element by sending a message to the

processor containing the data, which then returns the value to a reply inlet [25]. The

istore operation writes a value to an element, and resumes any deferred readers.

Using the system Mmodel from the previous section, we can implement the ifetch /

istore operations to examine their costs. For the purpose of comparison, we have as-



sumed that a cfutures mechanism similar to that of the J-Machine [9] exists on system

M. (We have avoided using the presence bit mechanism on the M-Machine to imple-

ment the futures functionality, in an attempt to isolate this comparison from being

influenced by mechansisms that are not part of the message subsystem.) The reader

is referred to the M-Machine instruction set manual [26] for the detailed definition of

the instruction syntax used in the example code fragments.

The if etch operation can be implemented as follows:

/* we use i.count, i.vaddr, i-senderID, iLtarget etc */

/* as symbolic names for registers */

.mesg-dispatch:

ialu jmp rhead; /* Jumps directly to handler. */

ialu mov rbody, i.count; /* Use the jump delay slots to */

ialu mov rbody, i-senderlD; /* read off some parameters */

ialu mov rbody, i-vaddr; /* from the message */

.ifetch:

/* message format (input): */

/* ifetch mesg (dispatchIP) */

/* i-structure */

/* offset */

/* return address (implicit JIIR fp) */

/* return inlet (dispatchIP) */

/* */
/* message format (output):

/* return msg */

/* return fp */

/* value */

/* ''i-structure'' should be in the register i.vaddr by */

/* the time control flow reaches here. the next read to rbody */

/* returns ''offset'' */

ialu lea i-vaddr, rbody, itarget; /* target address */

memu ld i.target, sO, i-value /* read the value */



ialu mov rbody, ireply;

ialu send tbankO, #counti, ireply, rbody ; /* send it back */

_doneistore:

ialu jmp rhead; /* wait for next message

-reply:

/* 2nd phase of the ifetch operation which writes the returning

/* into the frame

/* ''return fp'' should be in the register i.vaddr by

/* the time control flow reaches here. the next read to rbody

/* returns 'value))

memu st rbody, *0, iLvaddr;

.done-reply:

ialu jmp rhead;

/* store the value

/* wait for next message

The istore operation is implemented as the following:

/* we use i-count, iLvaddr, iLsenderlD, i.target etc

/* as symbolic names for registers

.mesgdispatch:

ialu jmp rhead;

ialu mov rbody,

ialu mov rbody,

ialu mov rbody,

icount;

isenderlD;

ivaddr;

/* Jumps directly to handler.

/* Use the jump delay slots to

/* read off some parameters

/* from the message

_istore:

/* message format:



i-store mesg (dispatchlP)

i-structure

offset

value

/* ''i-structure'' is should be in the register i.vaddr by

/* the time control flow reaches here. the next read to rbody

/* returns ''offset)'

ialu lea i-vaddr, rbody, i.target; /* target address

memu ld i-target, *0, i-deferred; /* number of deferred reader

ialu lea iLtarget, #8, i.flag; /* synchronization flag

ialu st iO, $0, i.flag; /* clear the flag

memu st rbody, #0, i.target; /* store the value

ialu ieq i-deferred, #0, ccO; /* done if no deferred readers

ialu cf ccO br .istore.service.deferred;

_done.istore:

ialu jmp rhead; /* wait for next message

.istore.servicedeferred:

ialu ieq ideferred, #CFUT, cci;

ialu cf ccl br .bad;

/* C.future expected

ialu lea i.target, ideferred, i.reply;

ialu mov replydeferred.read, i.command; /* assume the dispatchlP

/* was saved away in some

/* register

ialu send *bankO, #counti, i.reply, i.command; /* send it back

.check.for.more.deferredreader:

/* check for more deferred readers, and repeat

/* _istoreservice.deferred if necessary.

/* (left out for brevity since the check does not rely on messaging

/* mechanisms)

The above code fragments are based on the ifetch / istore implementation for

the actual J-Machine, used by Spertus in her study '. The cycle counts for the above

'The author is grateful to Ellen Spertus for showing her library functions.



TAM operation cycles needed
J'-Machine System M % improvement

Ifetch message 24 13 45.8 %
Istore message 15 11 26.7 %

Table 3.1: ifetch / istore costs

code fragments and the cost for the ifetch / istore operations for the J'-Machine

as quoted from [24], are shown in Table 3.1. The cycle count for istore is for the

case where there is no deferred reader.

As can be seen, system M demonstrates a 26% - 45% improvement over the J'-

Machine in the ifetch / istore operations. Several factors contribute towards this

improvement. We first note that the handler on system Mis able to use rbody directly

as an operand to its instructions, instead of having to move the value into a register

first. Then we observe that by carefully mapping the reply values such as ivalue,

i_deferred etc. to the appropriate MC registers, the reply message can be deliv-

ered without additional copying. The virtual naming scheme also contributes to this

improvement by allowing the return node number and frame pointer to be specified

using a single address word. Finally, by using the JMP delay slot (_mesgdispatch)
to save away the i-structure address, the dispatch latency is turned into productive
use.

For each of the six benchmarks involved in [24], the dynamic instruction mix statistics

for different classes of operations were recorded. The percentage of total execution

cycles due to heap-messages for each benchmark on the J'-Machine is reproduced in

Table 3.2 (CPT = normalized Cycles per TAM instruction).

As shown in Table 3.2, more than 20% of the total execution cycles on average are

due to heap-message operations. As a rough estimate, the improvement we saw

earlier in Table 3.1 therefore translates into a 6.2% (istore dominates) to 10.5%

(ifetch dominates) overall performance boost in these benchmark programs. We

further suspect that this is an under-estimate, since the comparison above focuses

on message handling, and we have yet to consider the utility of the MC registers to

threads that are initiating the ifetch / istore messages, nor the savings due to



Fraction execution time due to heap-messages
Benchmark

CPT due to heap-messages
total CPT

QS (2.0/12.25) a 16.3%
GAMTEB (1.7/11.5) a 14.8%
PARAFFINS (3.9/14.25) a 27.4%
SIMPLE (3.4/12.5) a 27.2%
SPEECH (4.1/12.25) a 32.8%
MMT (2.6/13.0) a 20.0%

AVERAGE II 23.1%

Table 3.2: Fractional Execution Time due to Head-Messages

automatic name translation, nor the savings due to the integrated protection scheme.

When these other factors are taken into account, we therefore believe the proposed

message interface will contribute an even higher performance gain.





Chapter 4

Message Throttling

Given that a message's functions are basically transferring data and causing further

processing activity, we understand that the operation of the message subsystem relies

on the availability of the following system resources:

* Buffering space for temporary storage of message words during composition and

reception, and for buffering a message until it is processed.

* Network bandwidth for the actual transport of the message.

* Thread slots 1 for performing the additional processing caused by the message.

As all three are shared system resources, depletion of any of the above is likely to

cause severe system-wide performance degradation, sometimes with hysteresis and

domino behavior. The message subsystem must therefore be cautious not to over-

commit the resources concerned. To maintain a sustainable consumption rate of the

limited resources, the message subsystem must then ensure balanced rates of message

creation/completion. In the next section, we will consider the need for low-level

architecture primitives to efficiently support this message throttling task. We then
study a Return To Sender throttling method, which keys message back-pressure to

the exhaustion of local buffering space. Finally we present a primitive mechanism on

the M-Machine that supports low-overhead and user-transparent message throttling.

1Here we refer to the hardware resources needed for running a thread.



4.1 Architecture Support

Message throttling implementations generally fall under two broad categories of ap-

proach:

* System-imposed throttling. In this approach, each sender must first obtain some

permit 2 from the system before it is allowed to generate/inject new messages.

By monitoring resource availability, the system is able to ration the permits and

control the resource consumption rate accordingly.

* User self-imposed throttling. Here, each sender abides by some programming

convention to cooperatively avoid excessive resource consumption. Usually a

sender/receiver pair would agree on some handshake protocol (e.g. various

message window protocols) to ensure that their outstanding messages take up

no more than a certain amount of system resources at any time.

Notice that in either approach, the overhead can be substantial if throttling were

implemented as an add-on to a conventional message subsystem. To enforce a permit

policy without the benefit of low-level architecture support, the system software must

intervene to validate every message injection, effectively turning each message SEND

into a costly system call. And to adopt the latter approach, we must assume a trusted

programming environment, which is not always possible in a multi-user environment.

Overhead is also incurred as each user explicitly manages its share of resources and

handshake protocols.

Considering we are interested in fine grain messages that are only a few (N 10) words

long, any protocol that adds more than a few cycles of overhead to the message

delivery time is not reasonable. We are therefore motivated to consider including

primitive mechanisms to support low overhead message throttling.

2By "permit" we merely mean any form of privilege without which a message injection would be
blocked. The permit may or may not expire after some number of messages or some duration of
time.



4.2 "Return To Sender" Throttling

Having identified earlier the three resources critical to the message subsystem, we

note that they could be made to "spill over" into one another, such that the system

could be kept stable as long as we can properly manage one of the three elements. One

example of such spilling is shown in Figure 4.1. While the figure seems to suggest

a vicious cycle when overhead is added along the way as work is spilled from one

stage to the next, the chain can be broken by conditioning one of the transitions

shown upon the availability of the other two resources from which the transition does

not emanate. If each of the states could then continue to perform its function, the

accumulated work in each state would eventually be consumed, and the corresponding

resource would be freed up.

mn extra threads
ndle messages
crease message
traction rate

storage space
running low i Ship work to

remote node

Messages Buffered

Hardware
thread Slots
exhausted

Software Schedule
Threads in Memory

Figure 4.1: Message resources spilling



In particular, by inhibiting injection of new messages when available buffering space

runs low, we can ensure that the network stands a chance to drain. The buffered

messages are meanwhile being processed, and the buffering space eventually returned

for reuse. The messaging capability can then be restored when sufficient buffering

space is again available. A stable load could then be sustained in the cycle shown.

Ideally, injection of a message should be inhibited when its destination node is short of

buffering storage, so that an injected message could always be accepted by its receiver.

No network bandwidth is ever wasted that way. It however requires each and every

potential sender to be constantly updated with the availability of buffers in all its

potential receivers. Obviously this is not feasible without incurring large amounts of

extra network traffic. Further more, as each sender must record the availability of

buffers in all potential receiver nodes, the local memory for that purpose must scale

linearly as we grow the machine size. The system then cannot be scaled by simple

replication of nodes.

A compromise where only local information is tracked, is found in the Cray T3D

[12]. In this approach, each sender keeps track of its local free buffers, instead of its

receivers' available space. A buffer is reserved at the sending node before each message

is injected, and the message is bounced back to its sender for buffering if the receiver

is unable to handle the message quickly nor to buffer it locally. If the message is

successfully received, an acknowledgment from the receiver causes the reserved buffer

to be released.

The T3D approach effectively disallows any sender from flooding the system with

excessively many messages, thereby providing the back-pressure desired for sustaining

the cycle in Figure 4.1. In the following section, we describe how the we build upon

the T3D approach to provide throttling on the M-Machine message subsystem.

4.3 Message Throttling Mechanism

The key features of the message throttling mechanism we propose are its transparency

to user-level programs and its low overhead.

The system uses a hardware counter, called the Outstanding Message Buffer Counter



(OMBC), to keep track of the number of bounced messages that can be buffered in the

available local space. At initialization, the system software reserves a local memory

segment for buffering bounced-messages, and sets the OMBC value accordingly 3. As

each message is injected, the counter is automatically decremented by one. Hardware

support is also provided for the OMBC to be incremented/decremented atomically

by system software. When the counter reaches zero, SEND operations are inhibited

from issuing.

The message handlers are written to respond to each user level message with an Ac-

knowledge message. As each Acknowledge message is received back at the originating

node, it invokes a message handler to increment the OMBC as necessary. If a mes-

sage is bounced, the message handler at the originating node places it in the reserved

space. Fig 4.2 shows a successful transaction example, where the acknowledgment is

piggy-backed on the reply message.

Note that there is no need to statically associate each message with a particular

buffer at its injection. When a message is indeed bounced, it can be placed in any

unoccupied but reserved buffers. As long as every injected message is accounted for,
each bounced message is guaranteed adequate buffering space.

There are two caveats to this scheme. Firstly, to guarantee freedom from deadlock,
critical messages must be able to bypass the restriction imposed by the throttling

mechanism. An Acknowledge message, for example, must always be allowed into the

network in all cases. A reply generated by the message handler, such as that shown

above in Figure 4.2, may also safely bypass the decrementing of its OMBC, since it

is guaranteed to be accepted by the original sender who had reserved a buffer.

The M-Machine thus provides a subset of its SEND family of operations that permit

system level messages to be impervious to the throttling mechanism. User messages

are not allowed to bypass the throttling system. Unlike replies generated by mes-

sage handlers, each user-level "reply" message must count as a new transaction that

warrants the reservation of an additional buffer. This is because user-level threads
are not guaranteed to complete quickly like message handlers, therefore treating user-

3The OMBC is set to the number of maximum-size messages that can be accomodated in the
reserved segment. The actual management of the buffers is decided by the system software pro-
grammer, though a link list of buffers might make it easier to recycle them.
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generated replies in the same fashion as handler-generated replies would unnecessarily

tie up for a long time the buffer reserved at the originating node. An example is shown

in Figure 4.3.

Secondly, the system must be able to swap out threads that are stalled by the throt-

tling mechanism, to vacate their thread slots for use by message handlers that will

process any buffered messages. This is needed in order to be consistent with the

earlier assumption that each of the states in Figure 4.1 could continue to consume

accumulated work in all instances. This guarantee is already provided on the M-

Machine in the form of a timeout watchdog counter that causes a trap into system

routines when a user thread has failed to make progress for a predetermined period

[13]. The trap handler could then swap out the stalled thread.

In addition to that, a system event is raised whenever OMBC reaches zero. This
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notifies the system about the exhaustion of the allocated buffering space, so that it

could:

* swap out the stalled thread quickly instead of idling until a timeout event.

* rearrange thread priorities such that any buffered bounced messages are handled

first.

* dynamically reallocate more memory for buffering if necessary.

4.4 Advantages

The message throttling mechanism described above has several advantages:

r



* Transparency to user programs: The OMBC counter, stalling mechanism, mes-

sage acknowledging/bouncing and buffering are all completely transparent to

user threads, freeing the programmer to concentrate on the task at hand.

* Low overhead: Since the message is not copied into a buffer before injection,
no latency at all is added to the message injection/delivery time. In the nor-

mal case where a message is accepted by the receiver, the total cost added by

the throttling system is only 5 cycles 4 of processor time after the message is

received.

* Dynamic control over network load: By dynamically resetting the value of the

OMBC counter, and reallocating bounced-message buffer space if needed, the

system on each node may independently adjust the load it imposes' on the

network.

* Scalability: Depending on the topology, the network bisection bandwidth, and

therefore the saturation message rate, may grow either linearly or sub-linearly as

the machine scales up in size. As a result, the average sustainable message rate

for each node either remains the same or decreases. In either case, the bounced-

message buffering requirement on each node does not increase. Therefore the

throttling mechanism itself places no restriction on machine scalability.

Note that this mechanism does not restrict the system to one form of throttling tech-

nique. The system could well take advantage of the ability to dynamically disable

user messages 5 in implementing various higher order protocols. If desired, the prim-

itive throttling mechanism could even be effectively disabled by setting the OMBC

to a large value and simply resetting it when it reaches zero.

4In the best case where the message handler slot keeps frequently-used values in live registers, it
takes one cycle to send an Acknowledge message, and 4 cycles to invoke the message handler back
at the originating node and increment OMBC.

5By setting OMBC to zero.



Chapter 5

Evaluation

In this chapter, we shall examine the result of having the mechanisms we have dis-

cussed thus far working together in one system. The reader is referred to [13] for a

full implementation of this message subsystem. Here we shall keep our focus on the

relative merits of the architecture, as compared to other similar architectures. A brief

discussion of implementation issues is however included in this chapter.

5.1 Performance

It is difficult to quantify performance without a point of reference. To evaluate how

our proposed architecture performs, while isolated from other unrelated features of

specific machines, we therefore refer again to the hypothetical systems M, J and T

developed in chapter 3 for our discussion in the following sections. As a reminder,
system M represents our proposed message architecture, system J is similar to the

J-Machine [9] and system T resembles the *T [6]. These machines provide fine grain

message facilities closely resembling what we have discussed, delivering message words

from registers. The example code fragments in this section are based on the M-

Machine instruction set and its implementation of the message mechanisms [26].



5.1.1 Latency

The primary strategy for reducing latency is the elimination of redundant buffering

and software overhead. We shall examine this characteristic through the following

remote-write example 1.

/* at the sender */

_sendmesg:

/* i_addr contains remote write address,

/* idisp contains the dispatch IP for the remote write handler

ialu add ii0, ill, i4; /* compute the word to be written */

ialu send #bankO, #countl, iaddr, idisp, ccO;

ialu .... /* continue with computation

/* at the receiver */

-dispatch:

ialu jmp rhead;

ialu mov rbody, icount;

ialu mov rbody, isenderID;

ialu mov rbody, ivaddr;

/* Jumps directly to handler.

/* Use the jump delay slots to

/* read off some parameters

/* from the message

/* message handler */

writewordhandler:

memu st rbody, #0, i-vaddr; /* store the word

ialu sendip #bankO, #countO, i-senderlD, iACK, ccO;

/* send an acknowledge

ialu br -dispatch; /* done, wait for next mesg

ialu

ialu

ialu

nop;

nop;

nop;

'A Remote Procedure Call is performed in very much the same manner, except the data would
contain the procedure entry point and arguments, while a message handler to fork the requested
thread would be specified in the SEND operation instead.



Notice that the word to be written (the result of ilO+ill) is computed directly into

a message composition register i4, with no intermediate copying before the message

is launched. Similarly, at the receiver node, the data word is stored from rbody

directly into its final destination by the handler (i-vaddr contains the same value

as the sender's iLaddr, passed in the message.), giving a total end-to-end latency of

((N + 1)+ Network Latency +4 + (N+ Memory Latency )) cycles, where N is the

number of words transferred. The significance of this is perhaps best illustrated in a

comparative time line diagram, as shown in Figure 5.1.

Observe in the first panel that there is no need to buffer the message before it is

injected, since the entire message is guaranteed to be present in the MC registers, and

can be streamed out without interruption. The network is thus safe from undesired

bubbles. Also note how the message can be dispatched as soon as its first word

arrives at the destination. These account for the shorter latency compared to the

other panels.

5.1.2 Protection

We must realize that the time line comparison in Figure 5.1 does not explicitly take

into account any protection operations. The panel shown for the M message archi-

tecture however, already includes its primitive protection mechanisms. To support

full control over the possible combinations of (sender xrecipient xrequest) for each

message, the time line for our design need only be extended by a one-time system-

call or memory-load to obtain the appropriate protected dispatch pointer. (E.g., the

system could statically allocate dispatch pointers to be placed in each thread's data

segment/stack at its initialization, and then dynamically change the binding of the

pointers to appropriate message handlers as necessary.) This privilege can further

be dynamically, yet transparently to the user, modified by the system software via

remapping of the virtual dispatch pointer to a different handler.

Much more however is required for the alternative architectures to be able to provide

the same granularity of protection. For the J-Machine message architecture, there is
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really no effective way to prevent a sender from making inappropriate remote requests,

given that that sender may use any integer number as the destination specifier, and

any physical address as the handler specifier. Therefore, to have any protection at all,
its handlers would need to to explicitly check into every message to filter out unau-

thorized accesses. Meanwhile, the *T does have some hardware mechanisms to trap

messages that are not meant for the currently active job on the receiver. Nonetheless

it is unable to provide the flexible control over (senderx recipient xrequest) above

without dropping into a system routine or enforcing gang scheduling. The proposed

architecture therefore stands at a further advantage when protection enforcement is

taken into account.

5.1.3 Communication/Computation Overlap

As the processor is not blocked after the SEND operation is executed, the proposed

architecture also allows substantial overlap between the message injection time and

computation/memory operations. The following large-block transfer example demon-

strate this feature:

/* idest contains the destination , i_disp contains the dispatch IP, */

/* iaddr contains the source address, */

/* iiter contains the number of iterations to loop

ialu mov #num.iter, iLiter; /* number of iterations needed */

/* to complete the transfer */

ialu ieq iO, iO, cc2; /* make cc2=T for ist iteration */

_loadbanki:

memu Id iaddr 8, i4; /* load up MC bank 0 (i4..i12) */

memu ld iaddr 8, i5;

memu id iaddr 8, i12;
ialu ct cc2 send #bankO, #countl0, idest, idisp, ccl;

/* launch it $/
_loadbank2:



memu ld iaddr 8, f4; /* load up MC bank (f4..fi12) */
memu Id iaddr 8, f5;

memu id iaddr 8, f12;

ialu lea idest, #64, idest; /* destination of the next block */
ialu ct ccl send #banki, #countlO, idest, idisp, cc2;

ialu igt i-iter, iO, ccO;

ialu ct ccO br _loadbanki;
ialu sub iiter, #1, i_iter;

-done:
ialu cf ccO exit;

ialu nop

Notice in the given example how the two banks of MC register are loaded up al-

ternately so that the next message is composed in parallel with the injection of the

current message. Since the injection process is performed by the network output

controller, independent of the processor, the overlap time is available for normal

computation, so long as the critical MC registers are not overwritten until the injec-

tion completes. By comparison, the alternative architectures have a period of network

port "deadtime" between subsequent messages, needed for moving the message words

from/to the registers. Again, this is best illustrated with a time line diagram, Fig-

ure 5.2. Note that the loop operations have been left out from the diagram for

clarity, since they do not contribute to differences between the normalized M, J and

T systems.

Note that object relocation has not been taken into account in the given time lines.

Therefore the name-resolution step is shown once in every panel. If object reloca-

tion were to be considered, then the name resolution should be performed for each

individual message so that the most updated information is obtained. This addition

has no effect on the time lines in the top panel since the translation is built into

the subsystem. It will, however, extend the other two panels, which must explicitly

translate each destination address.
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5.1.4 Multicasting

The fact that MC registers retain their content after a message is injected also means

the message could be (sequentially) delivered to multiple destinations without re-

peated copying:

/* iLaddr contains remote write address,

/* iLdisp contains the dispatch IP for the remote write handler

/* iLcount contains the number of messages to send

_generate:
ialu add ilO, iii, i4;

ialu sub ilO, ill, i7;
ialu and ilO, ill, i8;

_init:
ialu

ialu

ialu

-launch:

ialu

ialu

ialu

ialu

ialu

ieq

ieq

mov

iO, iO, ccO;

iO, iO, ccl;

#numMsg icount;

ct ccO send #bankO, #count5,

ct ccl br _launch;

lea iaddr, #stride, iadd2

sub i.count, #I, icount;

igt icount, iO, ccl;

/* generate the message

init the condition code register

init the condition code register

init number of messages to send

iaddr, idisp, ccO;

/* 3-cycle branch delay slot

r; /* next destination

-done:
ialu exit;

No explicit synchronization/test needs to be performed to ensure the previous mes-

sage has completed. Condition register ccO simply does not become present until

the injection is complete, therefore the next message cannot be initiated due to the
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implicit stall mechanism. If it does stall on the cco, the message will nonetheless be

injected as soon as the network port becomes available again. Also observe the util-

ity of the GTLB, which facilitates striding across the destinations by simple LEA 2

operations. As shown in Figure 5.3, system T has a similar arrangement, with the

addition of the check for success after each message. System J on the other hand

requires the entire message to be queued explicitly with SEND operations for each

destination.

The comparisons in Figures 5.1, 5.2 and 5.3 are summarized in the table below. The

first 2 rows refer to Figure 5.1 (network latency ignored), while rows 3 and 4 refer to

Figure 5.2 and Figure 5.3, respectively.

# Processor Cycles Required
Comparison System M System J System T

Generate & send 8 words 9 14 19
Dispatch (until message 4 12 8
body is available in registers)
Send 2 consecutive 8-word 18 27 32
messages
Send one message to 2 16 20 28
destinations

5.2 Implementation

The preceding sections demonstrated that the proposed architecture outperforms the

designs it is compared against, in terms of latency minimization and masking, while

efficiently providing the essential facilities as discussed in the previous chapters. To

understand the cost we must pay for these advantages, we will now examine a skeleton

implementation of the architecture 3 based on the M-Machine system. We divide our

discussion into two parts, the network output and the input units.
2Load Effective Address. Refer to section 5.2 for more descriptions on the GTLB.
3 For this evaluation, we consider only a single-cluster implementation. The reader is referred

to [27] for a four-cluster implementation of the architecture, where hardware SEND arbitration is
discussed.
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5.2.1 Network Output Unit

The responsibilities of the network output unit include name resolution, pointer-type

validation, and message injection. Given that type-checking is a mechanism common

to systems that provide protected data types, we will not concern ourselves with its

implementation here.

Name resolution depends on the GTLB/LTLB pair. Physically, the LTLB is no

different from a regular TLB in a paging memory system. The difference is that the

LTLB miss handler is enhanced to also look into the GTLB for the virtual address
referenced.

A very flexible implementation of the GTLB 4 is described in [13]. In essence, it

features an entry format that permits regions of the virtual address space to be dis-

tributed across prisms of nodes using one single GTLB entry, as shown in Figure 5.4.

As a result, for regular address mapping patterns (E.g. dividing the machine into

sub-regions for running different processes, each with a separate region of the address
4 This design is attributed to Nicholas P. Carter
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space, or physically distributing pieces of a object across a sub-region of nodes.),

GTLB misses can be made extremely rare, even with a very small GTLB cache. In

the event of a GTLB miss, a handler simply performs a global page table lookup,
in much the same way as the operation of the LTLB miss handler. In terms of

the hardware, both the GTLB/LTLB can be implemented using regular cache/TLB

technology.

The architecture prohibits a SEND operation from being issued unless all MC regis-

ters involved in the message are present. This restriction can be enforced by a simple

SEND validation module as shown in Figure 5.5. The function of this module is to

assert the stall signal that prevents the SEND operation from issuing, when the MC

registers concerned are not present or the network resource is busy. This implementa-

tion relies on a thread timeout watchdog timer in the processor to avoid deadlock, in

the case where an MC register is never validated due to program error. The network

output controller can be implemented as a simple FSM, shown in Figure 5.6.
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5.2.2 Network Input

The network input unit is responsible for providing the Rhead/Rbody interface. This

implementation assumes that a hardware context is reserved for a message dispatcher

thread in a multiple context processor [13]. The dispatcher thread is responsible

for executing a JMP operation to Rhed (which causes the thread to jump to the

specified message handler) when it is ready to accept the next message As shown in

Figure 5.7, the network input unit manages the presence bits of Rhead/Rbody to stall

the dispatcher/handler when no message word is available, or otherwise returns an

error value when appropriate. Also note that an incoming FIFO is deployed so that

messages can be extracted from the network quickly to avoid congestion.

The operation of the network input controller is shown in Figure 5.8. As can be seen,
this function can be easily implemented as a simple FSM.





Chapter 6

Conclusion

We have presented in this thesis a message subsystem architecture featuring integrated

primitive mechanisms that efficiently support the basic message-related operations.

The system provides a globally named, position-independent naming environment,
with a completely user-transparent name resolution facility. Dynamic and transparent

object relocation is supported via a two-level hardware-cached translation mechanism.

To minimize message send/receive overhead, all redundant buffering is eliminated

by mapping the network ports directly to the processor register space. A message-

handler based network input interface is chosen for its flexibility. Also considered to

be of critical importance is system-wide protection, where fine grain access control is

accomplished via a combination of protected pointers and message handlers. Finally,
as a low overhead measure to prevent network congestion, the system incorporates a

primitive user-transparent message throttling mechanism.

Based on comparisons with existing architectures and a brief study of the implemen-

tation issues, we have also shown that this proposed architecture delivers improved

performance and user transparency at only a cost comparable to conventional FSM

and cache designs.

In conclusion, we demonstrated that balanced and efficient support for every phase of

the end-to-end message path is essential for optimal overall performance of a message
subsystem. To minimize overhead in a fine grain programming environment, this
support should be integrated tightly into the processor, provided by efficient primitive



mechanisms, which were further shown can often be implemented by exploiting the

mechanisms already existing in other domains of the system.

6.1 Future Studies

While we have shown that the architecture proposed here meets the needs of message-

passing operations at a comparative advantage to existing models, there are at least

two unresolved issues arising from this study.

Firstly, we note that the MC registers cannot be used as targets for instructions

when the message is being injected into the network. Depending on the number of

other registers available to the programmer during this period, this constraint may

discount the usefulness of the ability to overlap computation with the injection time.

One plausible solution to this problem is to provide shadowed MC registers, where

two physical registers, primary and secondary, are mapped to each MC register ad-

dress. The primary register is used for regular read/write operations to the associated

register address. During a write to the primary register however, the instruction may

optionally also deposit a copy of the datum into the secondary register. Messages are

extracted from the secondary register set only. With this arrangement, the system

will have the same no-copy launch feature we have described, yet the user is not

required to explicitly avoid the MC registers during message injection. The reader is

referred to [17] for an idea similar to this.

On the other hand, since the secondary register set must take up silicon area, there

might be some flexibility gained by using this area to simply expand the regular regis-

ter set, and amending the SEND operation to accept MC register specification in the

form of (begin, end), instead of (bank, count) as we have described. The user/compiler

would then have more freedom in optimizing the register allocation policy. The

penalty however would be the need for a larger register address space, and a more

complex validation logic for the MC register presence bits. The tradeoff between the

two alternatives is as yet not clear.

Secondly, cache effects at the destination have not been considered in this study.

Given that message handlers are likely to have a lower frequency of invocation com-

pared to the other pieces of code running on a node, expectedly a cache miss is also



likely to accompany a message arrival. The effective dispatch time that we have as-

sumed is therefore perhaps optimistic. Conceivably, this latency can be minimized

by caching / hard-coding the handlers in specialized / reserved fast storage. It is

nonetheless not clear how the utility of that approach compares to the flexibility of

the arrangement described in this study, given that the former is likely to be restricted

to a small number of handlers due to area considerations, while the latter provides

arbitrary access to the virtual memory space. These alternatives, and perhaps others,
should be explored to find a reasonable compromise between flexibility and efficiency.
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