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Abstract
This research begins with reaction-diffusion, first proposed by Alan Turing in

1952 to account for morphogenesis - the formation of hydranth tentacles, leopard
spots, zebra stripes, etc. Reaction-diffusion systems have been researched primarily
by biologists working on theories of natural pattern formation and by chemists mod-
eling dynamics of oscillating reactions. The past few years have seen a new interest
in reaction-diffusion spring up within the computer graphics and image processing
communities. However, reaction-diffusion systems are generally unbounded, mak-
ing them impractical for many applications. In this thesis we introduce a bounded
and more flexible non-linear system, the "M-lattice", which preserves the natural
pattern-formation properties of reaction-diffusion.

On the theoretical front, we establish relationships between reaction-diffusion
systems and paradigms in linear systems theory and certain types of artificial
"neurally-inspired" systems. The M-lattice is closely related to the analog Hopfield
network and the cellular neural network, but has more flexibility in how its variables
interact. The bounded M-lattice enables computer or analog VLSI implementations
to serve as simulation "engines" for a wide variety of systems of partial and ordinary
differential equations.

On the practical front, we have developed new applications of reaction-diffusion
(formulated as the new M-lattice). These include the synthesis of visual and sound
textures, restoration and enhancement of fingerprints, non-linear programming, and
digital halftoning of images. Halftones were synthesized in the creatively hand-
drawn "special-effects" style of the Wall Street Journal portraits as well as in the
"faithful-rendition" style of error-diffusion.

Thesis Supervisor: Professor Rosalind W. Picard
Title: Assistant :Professor of Media Arts and Sciences,
NEC Career Development Professor Of Computers and Communication
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Chapter 1

Introduction

Alan Turing's 1952 paper 1, titled "The Chemical Basis of Morphogenesis" was

a first attempt to provide a scientific explanation for the patterns of pigmentation in

animals [1]. Many mammals have prominent coat markings. For example, zebras have

stripes, giraffes have contoured patches, leopards and cheetahs have spots; the furs of

many dogs and cats also display various forms of stripes and patches of different color.

In addition, many tropical fish exhibit rich multicolored appearance. "Animals", a

painting by Lenore Ramm, has been the emblem of this thesis (see Figure 1.1). The

artist's harmonious portrayal of the animal kingdom reflects our fascination with the

multitude of colorful textures occurring in nature [2].

1.1 Intuition Behind Turing's Model

Turing proposed to model nature's behavior by an interaction of chemicals that

he called "morphogens". The simplest model uses two morphogens: the "activator"

and the "inhibitor". The morphogens themselves are produced by chemical reac-

tions among particular enzymes in every cell of the animal's skin during the animal's

l'This was the British mathematician's last published work before his untimely death.



Figure 1.1: "Animals", a painting by Lenore Ramm.



embryonic stages.

According to this model, the two morphogens react with each other; however,

the model consisting of reaction alone cannot account for the tremendous variety of

coating patterns observed in animals. Since there is no inter-cellular flow of mor-

phogens in the model, every cell acts as an independent autonomous system, produc-

ing the final morphogen concentrations based only on random initial concentrations.

Therefore, cells end up in stable states that have no correlation or spatial structure,

unlike the majority of patterns occurring in nature. In order to supplement the model

with the needed transport mechanism, Turing incorporated a diffusion term into the

system of equations. Then he showed mathematically that this reaction-diffusion

system is capable of producing a wide variety of spatial patterns.

To gain a qualitative understanding of the operation of a two-morphogen

reaction-diffusion system, consider two morphogens, the activator and the inhibitor,

each reacting with itself and the other. While the reactions influence local concentra-

tions of the two rmorphogens, the diffusion transports the morphogens from cell to cell.

These interactions are depicted in Figure 1.2. Suppose the activator is auto-catalytic

but diffuses slowly. In other words, its concentration increases in proportion to the

amount already present, but its diffusion rate is low compared to that of the inhibitor.

Thus the activator and the inhibitor create two opposing tendencies. On one hand,

the activator concentration grows at a high rate locally, but does not spread fast

enough to replace the inhibitor everywhere. On the other hand, the inhibitor con-

sumes the activator at a low rate locally, but, because of its high diffusion constant,

the inhibitor is delivered faster to remote sites, keeping the activator concentration

finite everywhere. The competition between these two tendencies causes the concen-

tration profiles of the activator and the inhibitor to settle into patterns of peaks and

valleys, 1800 out of phase with each other 2 [3].

2Precise explanation follows in Chapter 3.
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VA(x, t): activator concentration
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Figure 1.2: T'uring's original two-morphogen reaction-diffusion model. Interactions
between the activator and the inhibitor morphogens are shown on a 2-D spatial lat-
tice. Each morphogen diffuses horizontally on its separate layer and reacts vertically
across layers.



1.2 Testing Turing's System On Hydranth

As a case study, Turing modeled the tentacle formation in hydranth (a small

tubular fresh-water polyp, shown in Figure 1.3) with a 1-D reaction-diffusion system.

Since high-speed digital computers were unavailable in his time, Turing was unable

to perform extensive computer simulations of various 1-D and 2-D reaction-diffusion

systems. His approach employed the linear analysis of the 1-D non-linear system for

small deviations of morphogen concentrations around the equilibrium point. He then

argued that the i-D system's non-linear behavior, i.e., its behavior for large excursions

of morphogen concentrations away from the equilibrium point, is not significantly

different qualitatively from the linearized behavior. For the 2-D case, making such

an argument was and still is impossible.

The simple 1-D reaction-diffusion model exhibited several properties desirable

from the biological point of view. For instance, the resulting spatial patterns display

a characteristic wavelength, called the "chemical wavelength", which manifests itself

as a periodic repetition of white and black segments on the hydranth. The chemical

wavelength depends strongly on the relative reaction and diffusion rates of the two

morphogens but only weakly on the initial morphogen concentrations. This means

that all hydranths look similar but every individual hydranth is slightly different.

Another interesting property is that the time it takes for the model to produce

a stationary pattern 3 is comparable to the time it takes for such a pattern to form

in an actual embryo. Incidentally, this property has been the subject of debate in

the theoretical biology literature. Much later, in 1974, Bard and Lauder conducted

a number of computer experiments with the 1-D and 2-D Turing reaction-diffusion

3This is referring not to the real time it takes for a human or a computer to complete a simulation

of the reaction-diffusion system and plot the morphogen concentrations, but to the absolute time

constant (in seconds), which is a property of the reaction-diffusion system.



00004

0 *6

* 0.00X % V t0 0 Y·e s

11111

11111

(a) (b) (c) (d)

STAGES IN HYDRANTH REGENERATION IN TUBULARIA

(after N. F. Britton)

Figure 1.3: The application of Turing's original reaction-diffusion model to the
hydranth, a 1-D organism. The chemical wavelength, predicted by the 1-D linear
analysis, is manifested by a periodic spacing of tentacles in the tubularia.

models in order to test them on biological data [4].

1.3 General Morphogenesis Mechanism

Arguably, one of the most important properties of reaction-diffusion systems

is the commonality of their constituent processes, reaction and diffusion. It is con-

jectured that a simple and flexible mechanism is more feasible than a complex and

rare one from the evolutionary point of view. Probabilistically, nature is more likely

to adopt a process that requires only a few steps and ingredients than a process



that depends on many conditions that are rarely met together. The simplicity of

a chemical reaction among the readily available enzymes coupled with such a ba-

sic and ubiquitous natural process as diffusion has won the reaction-diffusion model

a serious consideration as a physically-based model for natural pattern formation.

All together, these three properties have made the reaction-diffusion phenomenon a

realistic candidate for modeling the process of morphogenesis [5].

The general belief that no single reaction-diffusion model is adequate in all

cases has led researchers to many variants and extensions of Turing's basic two-

morphogen system [6], [7]. Altering the form of reaction among morphogens and / or

varying the number of morphogens in the system produces different concentration

profiles. For example, a five-morphogen model due to Meinhardt has been found to

agree with experimental data collected from various biological systems, such as fruit

flies and sea shells. An extensive study of parameters for this model has been done by

Murray [8], [9], [10]. To complete the list of classical reaction-diffusion publications,

a broad mathematical overview of various reaction-diffusion systems, fortified with

an exhaustive listing of references, can be found in [11], [12].

1.4 Spread Of Interest In Reaction-Diffusion

The fundamental reaction-diffusion system, comprised by (possibly non-linear)

partial differential equations (PDEs) in several spatial and one temporal dimensions

is very general, but its various aspects and capabilities can be emphasized by the

choice of reaction functions and model parameters 4

For nearly four decades, the reaction-diffusion systems stayed primarily in the

4For instance, under a certain choice of the reaction function and the diffusion constant, even the

Shrdedinger equation can be written as a reaction-diffusion system.



domain of theoretical biologists working on theories of morphogenesis, until Murray's

1988 paper in Scientific American sparked a wide-spread interest in reaction-diffusion

systems [13]. In particular, since 1990, there has been a significant surge in interest in

reaction-diffusion systems within the computer graphics and image processing com-

munities. The graphics community's interest in reaction-diffusion systems stems from

their ability to model and synthesize directly on a three-dimensional object a wide

class of natural textures. The various animal coating patterns that Turing's theory

set out to model can now be generated directly on 3-D surfaces of any shape via finite

difference methods. The speed of simulating reaction-diffusion systems on a digital

computer and the mapping of rectangular 2-D textures to 3-D surfaces still remain as

challenging issues [14], [15]. In the realm of image processing, Price used Meinhardt's

five-morphogen reaction-diffusion system for texture classification and for fingerprint

matching [16]. However, a formal justification for using reaction-diffusion systems in

image processing is still lacking.

The large amount of attention reaction-diffusion systems are receiving from

researchers in the engineering disciplines can also be attributed to their inherently

non-linear nature [17], [18]. While linear systems have been the prevalent engineering

tool, the improvement in performance that results from refining the linear model for

many applications has diminished, and the actual performance has saturated. In

contrast, non-linear systems are poorly understood, but understanding them might

help overcome the limitations of linear models in certain problems. Depending on the

performance criteria, the payoff brought about by employing a non-linear model may

be significantly greater than that achievable with a linear model. For example, some

recently published papers in the image processing and pattern recognition literature

have explored the application of non-linear PDEs to texture classification and contour

detection [16], [19], [20].



1.5 Practical Difficulties

In order to possess pattern formation properties in the sense of Turing, a

reaction-diffusion system must exhibit local instability to small non-homogeneous

perturbations. In addition, practical considerations dictate that the system should

be bounded in the large-signal sense. A major difficulty associated with the

reaction-diffusion system paradigm in its standard form is that the system is totally

stable, or even bounded, only for a restricted class of non-linear reaction functions.

This drawback does not present a problem for actual biological systems, because in

nature, morphogen concentrations cannot be negative, nor can they be too large with-

out depleting the supply. On the contrary, it does narrow the scope of the model's

engineering applications.

A common approach aimed at preventing numerical overflow from plaguing

the simulations of reaction-diffusion systems on the digital computer has been to

clip the magnitudes of the state variables by adding a special clause (e.g., an "if"

statement) to the numerical method (e.g., Forward Euler) used for solving the system

of differential equations [15]. For some reaction-diffusion systems, this technique

eventually manages to stop the state variables from changing between successive

time steps, even when the actual state variables are supposed to have non-zero time

derivatives. In general, clipping the state variables of a system of differential equations

from within the numerical method destroys the mathematical integrity of the original

dynamical system, thereby complicating the analysis.

1.6 Proposed Solutions And Other Contributions

The present work makes both theoretical and practical contributions. The

main contribution of this research is the formulation of the M-lattice system. The
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clipping introduced by the M-lattice system addresses the issue of large-signal

boundedness of reaction-diffusion systems in a way that does not dismiss the non-

linearities. Due to its flexibility, the M-lattice system can be employed to simulate

reaction-diffusion as well as many other non-linear dynamical systems, and it can still

be analyzed mathematically. We have identified three main modes of operation of the

M-lattice system: texture synthesis, adaptive filtering, and non-linear optimization.

Thus, using the M-lattice system for signal synthesis and processing is justified by

formally matching one of these modes to the specific computational task chosen for

the given application.

In contrast with the original reaction-diffusion system, various degrees of sta-

bility of the M-lattice system have been observed in computer simulation for many

practical non-linear reaction functions. In order to account for some of these obser-

vations, we prove the total stability of a subclass of the M-lattice system.

As part of the introduction of this general practical model to the signal pro-

cessing community, we establish relationships among reaction-diffusion systems and

the well-known paradigms in linear systems theory and artificial neural systems.

From the practical standpoint, we apply the M-lattice system to the synthe-

sis of visual and sound textures, digital halftoning of images, and restoration and

enhancement of fingerprints.

The rest of this document is organized as follows. Chapter 2 presents the math-

ematical background of typical reaction-diffusion systems. Chapter 3 introduces the

linear-reaction reaction-diffusion system, generalizes it to the convolutionally-coupled

M-lattice system, and examines the latter in the framework of Fourier analysis. Chap-

ter 4 presents the mathematical treatment of the M-lattice system and the clipped

M--lattice system. Chapter 5 illustrates the application of the clipped M-lattice sys-

tem to digital halftoning of images and to restoration and halftoning of fingerprints.

Finally, Chapter 6 summarizes the research.



Chapter 2

Background

Much of the material in this chapter appears in various literature sources.

It is presented here using notation that will simplify the comparison of the

reaction-diffusion system to related models and facilitate the development of the

M--lattice system.

2.1 Reaction-Diffusion Formulation

Let Om(i", t) E R be the concentration of the m-th morphogen

(m= 1, ..., M) as a function of d-dimensional (d-D) space X E Rd and

of time t Ec +. Denote the vector of all morphogen concentrations by

(•, t) E CM = [11(1, t), ... , 4'M(Q, t)]T. Then reactions among various morphogens

are prescribed by Rm,((x, t)), which is a possibly non-linear function for every mor-

phogen. Each morphogen also undergoes steady Fickian diffusion 1, and Dm E 2+

'Fick's law of diffusion says that the flux of material is proportional to the gradient of the

concentration of the material.



is the diffusion constant of the m-th morphogen (the quadratic form stresses its pos-

itivity). Convective flow of any morphogen is described by velocity, Jm E Rd, and

bm E R is the dissipation constant of the m-th morphogen. Using this nomenclature,

we define the reaction-diffusion system.

Definition 2.1.1 General reaction-diffusion system equations.

aOtm(,t) t = Dm V 2~m(x, t) - vV m(m, t) - rTmm(x, t)+ Rm(O(£, t)). (2.1)

All the linear interactions in (2.1) can be combined into Dm, a general derivative

operator of an arbitrary order, which absorbs diffusion constants, velocity (of convec-

tion) vectors, dissipation rates, and any other scaling factors with appropriate units.

For the M-vector of morphogens, define D = [i1, ... , DM]T.

Reformulating (2.1) by applying the linear derivative operator, Dm, to M m(7, t)

gives:

a , = D••m(I,t)+ RmQ (7(,t)) (2.2)

for each morphogen.

By using D and defining ROi((, t)) = [RI( (, t)), ... , RM(O(, t))]T, we

arrive at the definition of the general reaction-diffusion system:

o 1t7D((, t) + R(0((X`,t)). (2.3)

2.2 Mathematical Predecessors

In what is considered as one of the most important papers in theoretical biol-

ogy this century, Turing (1952) pioneered the study of this general multi-morphogen



reaction-diffusion model, known as the interacting-population reaction-diffusion sys-

tem in the mathematical biology literature. Although appearing concise and decep-

tively simple, (2.3) distills over a century of research.

The field's "official" beginning dates back to 1836, when Verhulst proposed

the now familiar logistic growth model for studying population dynamics 2 for single

species. A notable application of a related model is for the spruce budworm outbreak,

a major problem. in Canada.

Initial studies of population growth dealt with differential equations repre-

senting small subsets of (2.3). For instance, in the language of reaction-diffusion, the

single-species models require only one morphogen, which automatically implies that

they do not involve reaction. Likewise, these simple models do not take into account

the spatial detail and spread of the population, meaning that there is no diffusion.

The first interacting-species model was proposed by Voltera (1926) to explain

oscillatory levels of certain fish catches in the Adriatic. This has led to many systems

aimed at studying the predation of one species by another. These equations are now

commonly classified as predator-prey models. They are also known as the Lotka-

Voltera systems, since the same equations were also derived by Lotka (1920) from

a hypothetical chemical reaction, which could exhibit periodic behavior in chemical

concentrations. In the reaction-diffusion lingo, these systems have reaction, but no

diffusion.

The studies of biological oscillators and switches comprise another area of

research that employs diffusionless multi-species models. The systems range from the

simple two-species oscillators, such as the "Brusselator", to more complex models,

such as the one resulting from the Hodgkin-Huxley (1952) theory of nerve membranes.

The reduced analytically tractable version, due to FitzHugh-Nagumo (1961) contains
2 The exponential population growth model, due to the infamous Malthus in 1798, but actually

suggested earlier by the famous Euler, was rejected as unrealistic.



three morphogens.

Studies have shown that diffusion models form a reasonable basis for studying

the dispersal of interacting and competing species of insects and animals. As a model

for the spread of an advantageous gene in a population, Fisher (1937) augmented the

logistic growth model by adding a diffusion term with a constant diffusion coefficient.

The resulting equation is now known as the Fisher equation and is the first single-

species (or single-morphogen, or reactionless) reaction-diffusion system.

The most; widely studied, both theoretically and experimentally, oscillating

chemical reaction is the Belousov-Zhabotinsky reaction (1951). The Field-Noyes

(1974) model quantitatively mimics the actual chemical reactions. This system, some-

times referred to as the "Oregonator", is a three-morphogen non-linear diffusionless

reaction-diffusion system. But by allowing the reactants to diffuse at a constant rate,

almost all the phenomena theoretically exhibited by reaction-diffusion mechanisms

have been found in this real and practical reaction.

Building upon the basic knowledge of calculus, linear algebra, and differen-

tial equations, the books by Murray [12], Britton [11], Meinhardt [6], Segel [21],

and Strogatz [22] provide informative and inspiring excursions into this fascinating

interdisciplinary science.

2.3 Turing's Reaction-Diffusion System

The original 1-D and 2-D reaction-diffusion systems developed by Turing and

studied by Bard use two morphogens and have no convection or dissipation. Let

OA(X, t) and O/(j, t) be the concentrations of the activator and the inhibitor, respec-

tively. Then for Turing's reaction-diffusion model:



RA((, )) = A(X, t) 'I(, t) - VA(x, t) - 12 + q(-),

Ri ( (,t)) = 16--OA(X, t).I(, t)7' I

D')A(X, t) = DAV 2 A(, t),

VDI(ki(, t) = DIV2 bI(F, t). (2.4)

where q(£), called the "evocator", is a waveform of small random perturbations, and

DA1 and D, are the respective diffusion rates. For the 1-D case, the Laplacian reduces

to the second derivative.

The evocator is crucial to the operation of any reaction-diffusion system. To see

this in the particular case of Turing's reaction-diffusion system, note that if q(V) = 0

and 'A(, t = t0) = I(, t = to) = 4, then ,t will be identically zero for

both morphogens for all t. In other words, the concentrations of both morphogens in

every cell are in equilibrium, and will remain in equilibrium forever. According to the

reaction-diffusion model, nature causes the concentrations of various chemicals in the

neighboring cells of an embryo to be slightly and randomly mismatched. This creates

the evocator, which gives rise to diffusion. The diffusion, in turn, sets up a non-zero
A (t. The changing activator concentration causes the inhibitor concentration

to change with time as well, and the system moves away from equilibrium.

Note that any homogeneous perturbations (q(±) = qgo) to the reaction-diffusion

system in equilibrium decay with time, since a homogeneous perturbation cannot give

rise to diffusion. In the absence of diffusion, there is no flux of chemicals, and each

cell functions as an isolated sub-system. Nature returns every cell of a homogeneously

perturbed reaction-diffusion system to equilibrium. In contrast, a non-homogeneous

perturbation does give rise to diffusion. The presence of diffusion is essential to the

generation of non-trivial spatial patterns. Stability to homogeneous perturbations and

instability to non--homogeneous perturbations is one of the key mathematical proper-
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ties of reaction-diffusion systems, to which we will return numerous times throughout

this document. Diffusion alone, however, cannot produce non-trivial spatial patterns.

Without reaction, the system becomes a heat equation, which is known to smooth

out any non-honmogeneous initial condition.

2.4 Analysis Of The 1-D Turing System

This section, along with Section B.3 of Appendinx B, can serve as a tutorial

on the basic analysis of complex non-linear dynamical systems. We derive the key

properties of Turing's original two-morphogen reaction-diffusion system using the

standard tool-kit consisting of discretization, linearization, and the Discrete Fourier

Transform (DFT).

For x e R, (2.4) becomes:

Ot = tA(Xt)' I(xt) -- A(X, t) - 12+q(x) +DA a2 (
at aX2

O' i(x,t) ) 16- PA(Xt) .I(xt) DIOI(xt)
= 16 - #A ' Ir(, t) + Dr 8O2  (2.5)

2.4.1 Discretization And Linearization

We now assume that the cells of an animal's skin are equally spaced and com-

prise a periodic 1-D lattice with the period of Nx cells. Using a popular discretization

of -the second derivative [23], turns (2.5) into:

dVA (n ,I t)
S = A(nx,t) .I(nx,t) - A(n, t) - 12 +q(nx)

+ DA[A(nx + 1, t) - 2A(, t) A(nz - , lt),

d = 16- A (nx, t) ' I (n, t)dt

+ DI[zI(nx + 1, t) - 201(nx, t) + OI(n, - 1, t)],

A(n• + Ns, t) = OA(nx, t)7

0,(nx + N, t) = 0, (nx, t). (2.6)



(See Section B.3 for a more general treatment of discretization.) The objective is to

solve for each morphogen concentration as a function of n. and t. There are two dif-

ficulties: the system is non-linear in PA(nx, t) and 4i(n,, t), and the spatial variables

are intermixed. In other words, the morphogen concentration at every spatial index

in (2.6) depends on the spatial convolution involving morphogen concentrations at

other indices as well. A common approach used in dealing with such problems is to

linearize the system for small deviations of the concentrations from the equilibrium

(or critical, or fixed) point and then to separate the spatial variables with the DFT,

which turns convolutions into multiplications. For future reference, the DFT and its

inverse transform, IDFT, are:

~ [kx] = exp -j kx I[nz], (2.7)

O[n] =- N exp j kn I T[kx]. (2.8)
kx=O x

First, we approximate every function of the two morphogen concentrations

with a Taylor series expansion about the equilibrium, retaining only the linear terms:

.f[OA(nxI, t),7 i(nxI t)] _ f[OA,eq(nx ,t), VI,eq(nx, t)]

+ 9[f (A (n, t), '1 l(n, t))] A,s(nx, t)
a[VA(nxt)]

+ O9[f (A(nx, t), i(n, t))] 1,s(nz t), (2.9)+ [0, (n , t) ]

where the subscript "eq" denotes the equilibrium value, and the subscript "s" denotes

a small deviation from the equilibrium value. Applying (2.9) to (2.6) and evaluating
O[f(O1A(nr, t), PI(n, t))] and [f (aA(nx, t), II(nxt, t))

a[OA(xIt)] 9(n t)]
?A,eq(nf, t = to) = I,eq(nx,t = to) = 4 produces the following "small-signal"

reaction-diffusion system:



dOA,s('n, t)
dt

do,, (nx, t)
dt

/A,s8(nf + Nx, t)
OI,s (Tix + N, 1t)

= 3 0A,s(fn, t) + 40,,8(nx, t)

+ DA[/A,s(nx + 1, t) - 20A,s(nx, t) + IA,s(nx - 1, t)],

= -44A,s(Tn, t) - 40,,s (nx, t)

+ DI[bi,,(nx + 1, t) - 2P,,s(nx, t) + 4i(nx - 1, t)],

(2.10)

2.4.2 Separation Of Variables

Thus far, the combination of discretization and linearization has turned spatial

derivatives into spatial convolutions, making the variables corresponding to different

spatial wave numbers in (2.10) intermixed 3. Variables are separated in a standard

way by applying the DFT, (2.7), to every term of (2.10), turning convolutions into

multiplications:

&OA,s(kx: t)
at

041,,s(kx, t)

at
/A,s(kx + Ns, t)

0j,s (kx + Nx, t)

= 3'A,s(kx, t) + 410 7,s(k1, t) - 4DAOA,s(ksr t) sin 2

= -4VA,s(kx, t) - 401 ,,s(kx, t) - 4D,1 o,,s(kx, t) sin 2 ( N)

= A,s(kx, t),

= I,s(kx, t). (2.11)

Since both sides of (2.11) depend on the morphogen concentrations at only one spatial

wave number, the variables are now separated.
3This convolutional mixing of variables is not to be confused with the kind of mixing and sepa-

ration of spatial and temporal variables commonly encountered in the studies of PDEs.

=

0A,s(n,, t).Oj,, (nx, t).



2.4.3 Solution Modes Of The System

The two equations comprise a linear system. Thus, it is advantageous to study

a general two-morphogen linear system of the form:

aOA,sdklr, t)
at

at

S A,s(kx, t) r - 4DA sin 2 ( ] + rl2 ,s (k •),\r Nx 1¢,(• )

= 21A,s(kx, t) + ¢p,s(kx, t) r 22 - 4D, sin2 ,N ] (2.12)

where the diffusion rates, DA and DI, are restricted to be non-negative. The constants

rmm 2 are called the marginal reaction rates. Expressed using the matrix notation,

(2.12) becomes:

dOA,s

d t,s
dt

rll - 4DA sin 2 (rkx
Nx )

(2.13)
r22- 4D, sin 2 (kx

== [
for each spatial wave number, kx.

Depending on the eigenvalues and the initial conditions, the system (2.13) can

exhibit six types of solutions:

* A1 (kx) and A2 (ks) are a complex pair with a negative real part - decaying

traveling waves;

* A• (kx) and A2 (kx) are a complex pair with a positive real part -- growing

traveling waves;

* two identical decaying traveling waves moving in the opposite directions --=

decaying standing waves;

* two identical growing traveling waves moving in the opposite directions ==

growing standing waves;



class of both R [A] < 0 either R [A] _ 0 A type of

wave (stable) (unstable) solution

traveling decaying growing complex oscillatory

standing decaying growing complex oscillatory

(sum of a decaying (sum of a growing

traveling wave traveling wave

and its reflection) and its reflection)

stationary decaying growing real non-oscillatory

Table 2.1: The kinds of modes admitted by a 2 x 2 reaction-diffusion system. The
terms "decaying" and "growing" refer to the temporal behavior.

* both A1 (k..) and A2(km) are real and negative -== decaying spatially-stationary

waves; and

* either A(k.) is real and positive ==- growing spatially-stationary waves.

The solution is a non-stationary spatial wave, unless A(k,) is real. Both traveling

wave and standing wave solutions are called non-stationary, because the amplitudes

of such waves undergo sign changes. Table 2.1 summarizes all the possibilities for a

2 x 2 reaction-diffusion system.

Traveling waves cannot model an animal coat texture, because they do not

produce a constant spatial pattern. Also, if the real part of A(k,) is negative, then

the spatial harmonics decay to zero. Thus, for explaining the formation of natural

patterns, such as zebra stripes and leopard spots, the last mode has received attention.

The other modes of reaction-diffusion systems have also been used, for instance, in

modeling the behavior of oscillating chemical reactions [11], [12].

The only mode of the system in (2.13) that is capable of producing stationary



spatial waves is the one corresponding to A(k.) E R, A(k,) > 0 for some range of

k,. Since the amplitude of every k, that belongs to this band of spatial frequencies

grows as a function of time, the system becomes unstable for that particular spatial

frequency. Therefore, in order to produce stationary spatial waves, the system must

be unstable for at least one spatial frequency. The harmonic k, = 0 is excluded from

the band of unstable wave numbers by definition so as to maintain stable equilibrium

levels in the absence of diffusion. Thus, the system's final output should be unaffected

by homogeneous perturbations.

Since (2.13) is a second-order system, it has two eigenvalues. Clearly, as time

increases, the solution will become dominated by the mode whose spatial wave num-

ber corresponds to the eigenvalue having the most positive real part. As we shall

see shortly, only one eigenvalue of Turing's system can be made positive. The other

eigenvalue is always negative for all spatial wave numbers. Assuming that the eigen-

values are distinct, let A(k,) be the dominant eigenvalue as a function of the spatial

harmonic, k,. Since the range of k. = 1, ... , N, is limited, the real part of A(k,) will

attain a maximum for at least one k* 4. In other words, the dominant eigenvalue will

have at least one dominant mode. Hence, using the IDFT, (2.8), on (2.13) produces

the formula for the activator concentration:

lim As , t) C(k) exp kn + A(k)t, (2.14)

where C(kx) depends on the eigenvectors and the initial conditions at k*. As an

illustration, Figure 2.1 plots the spatial-frequency-index response of the dominant

eigenvalue for a system capable of pattern formation.

We have established that (2.14) is the elementary mode of (2.13) that is rel-

evant to pattern formation. The next task is to identify the conditions on DA and

DI, which enable the system in (2.13) to actually become unstable, and to determine

4In Chapter 5, we will show that one can design the reaction-diffusion system to have such

properties.
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Figure 2.1: Plot of the dependence of the dominant eigenvalue on the spatial fre-
quency index for Turing's two-morphogen reaction-diffusion system. Since A(O) < 0,
the system is stable for k, = 0 and will thus attenuate the homogeneous pertur-
bations. The system is unstable for a band of spatial wave numbers characterized
by A(k.) > 0 and will thus amplify the non-homogeneous perturbations contain-
ing these spatial harmonics. The dominant harmonic corresponds to the largest
eigenvalue.

kx, corresponding to the critical values of DA and DI. These relationships can be

determined from the expression for the dominant eigenvalue of (2.13):

( N ) Nx ]
A(k-) = )r(i + r 22 - 4DASin 2 ( kx)- 4Dsin2  ))

- r1r 22 - 12721- 4r 2 2DA sin2  
- 4rN1 D1 i ( )

+ 16DAD sin ( (2.15)

The first requirement is that the system should be unaffected by homogeneous per-

turbations. This leads to the following conditions that guarantee Re[A(kx)] < 0, and



thereby ensure the system's stability for all k, in the case of zero diffusion:

rll + r 2 2 < 0 and rllr 22 - r 12r 21 > 0.

The second requirement is that the system should be unstable to non-homogeneous

perturbations at least for one value of k.. An examination of (2.15) reveals that this

is possible only if:

rlr22 - 12r21 - 4r22DA sin (2

S4r,, sin (n ) + 16DADsin4 (7t) < 0. (2.16)

The left hand side of (2.16) reaches the minimum when

(rkx r22DA+ rlDI
sin2( N, 8DADI (2.17)

At the edge of instability, (2.16) will be barely satisfied even with this optimal value

of sin 2 ( . Hence, using (2.17) and setting p def D turns (2.16) into:Nx ) DA

2 12llr22 - 2r12r21 (r22 )2

2-2 (r 2 2 2 > 0, (2.18)

whose solution for the critical value of IL is:

S> T22 - 2r 12 r 21  22 2 12 r 21
2  T2212
-> 2 2r. (2.19)

T11 T11 \11

In the mathematical biology community, this equation is known as the condition for

the "diffusional", or "Turing", instability. The system is stable if no diffusion is taking

place, but if (2.19') is satisfied, then a sufficient flux of morphogens makes the system

unstable to non-homogeneous perturbations by (2.16). Intuitively, one often thinks

of diffusion as a phenomenon that smoothes temperature and concentration gradi-

ents and brings stability. Counter to common intuition, however, reaction-diffusion

systems are purposefully set up in such a way that diffusion is necessary in order to
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cause instability. A possible intuitive explanation for the diffusional instability can be

stated as follows. Without the diffusion, there is only enough morphogen to sustain a

pilot reaction, and then the system is stable. However, when the morphogen concen-

tration is non-homogeneous, the diffusion "squirts in some extra morphogen", which

"fuels" the reaction. Because reaction of a properly formulated reaction-diffusion

system is auto-catalytic, the morphogen concentration explodes, thereby driving the

system unstable.

Once /t is chosen, (2.17) gives the chemical wavelength, corresponding to the

spatial harmonic with the fastest growing amplitude. The chemical wavelength mani-

fests itself as the prominent textural feature on an animal's fur or skin. Solving (2.16)

for sin 2 (7r yields the entire range of spatial frequencies that can cause instability

for a given IL:

r22DA + r 11 L)I [(r22DA +rllDi 2 12 2  - T1221xS 22A rr22 - r12r21 < sin2 <
8DADI 8DADI 16DAD, Nx·

22DA + 11D + [(r 22DA + 11D 2 11r22 -  1221 (2.20)
8DADI 8DADI 16DADI ,

2.4.4 Chemical Wavelength Of Hydranth

Now we use (2.14) - (2.20) to analyze the behavior of Turing's actual model

for the hydranth regeneration in tubularia (refer to Figure 1.3 . From (2.11), we read

the marginal reaction rates:

r11 = 3, r12 = 4, r21 = -4, r22 = -4. (2.21)

These values give rll + r22 = -1 and r11r22 - r12r21 = 4, thereby satisfying (2.16). If

DA is set to unity, then (2.19) dictates that Dr > 4. Substituting D, = 4 into (2.17)



gives:

sin2 r• )= (2.22)

For the given marginal reaction rates and ratio of diffusion constants, the spatial

frequency index satisfying this expression is the only one that can cause instability.

Therefore, the dominant spatial wave number is:

k* Nx (2.23)

Finally, we obtain the characteristic chemical wavelength for the 1-D Turing

reaction-diffusion system:

2r
2 = 6 cells, (2.24)27r

Nxk *

regardless of Nx, the period of the lattice.

As the amplitude of the dominant mode grows, the linear analysis ceases to

be valid. However, Turing argues that the linear behavior predicts the overall non-

linear behavior reasonably well, because by the time the non-linear effects take over,

the supply of morphogens is preempted, and the pattern stops changing. Bard's

computer simulations indicate that this is generally true for the 1-D case, but not

straightforwardly so for the 2-D case [4], [24].

Note that Turing derived the particular form of the reaction functions in (2.4)

along with the values of diffusion constants from biochemical arguments for the case

of the hydranth. 'This means that the regular tentacles, seen in the hydranth, are the

manifestations of peaks and valleys in the morphogen concentration, present during

the hydranth's development. The spacing of these peaks and valleys, observed in the

hydranth, generally agrees with the chemical wavelength of 6 cells, predicted by the

theory.



2.5 Pattern-Forming Property Of

Reaction-Diffusion And Related Systems

The discussion leading to Table 2.1 emphasizes that only a limited subset of all

the possible modes of operation of a reaction-diffusion system are capable of setting up

and sustaining spatial waves. This implies that our quest for textures places certain

restrictions on the model's parameters.

As our analysis has shown, a reaction-diffusion system can synthesize non-

trivial images, provided that it exhibits the Turing instability. And the actual test

for the presence of the Turing instability in a reaction-diffusion system is performed

on the corresponding linear-reaction reaction-diffusion system, which we obtained

by linearizing the original system near its equilibrium. Looking ahead, Chapter 3

introduces the convolutionally-coupled M-lattice system as a generalization of the

linear-reaction reaction-diffusion system, and Chapter 4 introduces the new M-lattice

system, based on both the convolutionally-coupled M-lattice system and on (2.3), a

reaction-diffusion system whose linear interactions are not restricted to the standard

diffusion. Since the Turing instability is the instability caused by diffusion, we need

a more general definition for evaluating the pattern-forming aspects of these more

inclusive models.

Definition 2.5.1 Linearize the dynamical system near a fixed point and suppose that

the resulting small-signal dynamical system is stable to homogeneous perturbations

and unstable to non-homogeneous perturbations 5. Then the original system is said

to possess the pattern-forming property (see Figure 2.2).

SThe terms "perturbation" and "evocator" are used interchangeably to denote q-1).



NEAR FIXED POINT REACTION-DIFFUSION SYSTEM MUST BE

* STABLE TO HOMOGENEOUS (DC) PERTURBATIONS

time

* UNSTABLE TO NON-HOMOGENEOUS (AC) PERTURBATIONS

j

time

Figure 2.2: An illustration of the pattern-forming property in 1-D. The pattern-
forming property is the generalization of the Turing (or diffusional) instability.



It is important to emphasize that stability to homogeneous perturbations is

a crucial part of Definition 2.5.1. Without this condition, the constant (DC) level

of the morphogen concentration profile can grow without bound, overshadowing the

variations. Since concentrations are plotted as pixel intensities, these variations are

responsible for the non-trivial image detail. Suppressing the DC component preserves

this detail (or texture).

As we shall see in the coming chapters, the classic reaction-diffusion system is

by far not the only dynamical system with the pattern-forming property. Other mod-

els, such as the convolutionally-coupled M-lattice system and the M-lattice system,

can also synthesize textures.

2.6 Computer Simulations Of Turing's 1-D And

2-D Reaction-Diffusion Systems

This section reviews the steps that have been commonly used by other re-

searchers in order to produce reaction-diffusion textures [14], [15].

Section B.3 reviews some basic techniques for simulating PDEs such as

(2.4) numerically on a digital computer. Using these techniques, the 1-D Turing

reaction-diffusion system, (2.6), discretized as follows:

flA(nn, nt + 1) = 'A(nf, nt) + At{'A(n, nLt) . 0i(n., nt) - 'A(n., nt) - 12

+ DA['A(nx + 1, nt) - 20A(nx, rt) + /A(nx - 1, nt)]} + q(nx),

I, (nx, nt + 1) = 4I(nx, nt) + At{16 --A(nl, nt) ' I(n ,n t)

+ Di[ (nx + 1, nt) - 20,(nx, nt) + 0,(nx - 1, nt)]},

'LA(n7 + Nx, nt) = /A(nx, nt),
v/j(n. + N, nt) = V), (n., nt), (2.25)



where nt is the time index, and At is the time step, was simulated to convergence. The

time step must be made sufficiently small in order for the approximate discrete-time

system (2.25) to faithfully track the actual continuous-time system (2.6). In order to

reflect physical constraints, the morphogen concentrations must be kept non-negative.

If a morphogen is depleted, then its concentration is fixed by the program at zero

for the remainder of the simulation (negative concentrations do not make sense) 6.

The evocator was emulated by a pseudo-random number generator. The plot of

morphogen concentrations for N, = 60 cells, D1 = 4 appears in Figure 2.3. Notice

that the peaks in concentrations are separated by approximately 6 cells, predicted by

analysis.

The isotropic 2-D Turing reaction-diffusion system (i. e., with identical diffusion

rates in the x and the y directions) using D1 = 6.25 was simulated for Nx = N, = 64.

The diffusion constant of the inhibitor had to be increased in order to comply with

the 2-D equivalent of (2.19) (see Section B.3). For displaying purposes, the values of

concentrations were linearly scaled to fit between 0 and 255. Figure 2.4 shows the

activator concentration, revealing a pattern similar to leopard spots. To illustrate the

reaction-diffusion system's high sensitivity to its parameters, DI is further increased

to D1 = 16. This causes the spots to turn into "wiggles", as shown in Figure 2.5.

Note that these textures correspond to non-equilibrium systems. Depending on the

diffusion constant, it takes approximately 2000 iterations at the time step of 0.01 sec.

This thesis emphasizes the use of reaction-diffusion models for synthesis and

analysis of textures, regardless of whether or not every detail of the model considered

is biologically plausible. The following remarks explain some of the trends found in

the reaction-diffusion literature and reshape them in a way that sets the stage for the
6This clipping method destroys the consistency of the finite difference method, used for simulating

the system. Since reaction-diffusion systems are designed to be unstable, clipping the morphogen

concentrations in order to prevent them from overflowing the machine precision is a major issue.

See Chapter 3 and Chapter 4 for how this problem is fixed in the M-lattice system.
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Cell index

Figure 2.3: Turing's original 's reaction-diffusion model of morphogenesis (for the
hydranth). The figure shows the concentration of the activator morphogen as a
function of position. The chemical wavelength, predicted by the 1-D linear analysis,
can be clearly observed in the plot.

Figure 2.4:
DI = 6.25.

Leopard spots modeled by Turing's reaction-diffusion model;



Figure 2.5: "Wiggles" produced by modifying the parameters of Turing's
reaction-diffusion model. The diffusion rate of the inhibitor is increased to DI = 16.

remainder of this document.

2.6.1 Parameters For Pattern Formation

This section comments on reaction-diffusion system parameter studies that
have been performed by other researchers. A wide range of natural textures have
been modeled by RD [4], [24], [8], [9], [6], [10], [7], [13], [15], [14].

Diffusion Rates And Boundary Conditions

Many of these studies involve keeping the same reaction function for all simu-
lations and altering only diffusion rates and boundary conditions in order to produce
various textures. We have already seen that diffusion rates have a tremendous effect



on the final pattern. In addition, the shape of the 2-D surface on which the sim-

ulation is carried out, along with the boundary conditions on that surface, greatly

influence the spatial arrangement of the possible kinds of texture. For example, the

same reaction-diffusion model can produce long stripes when simulated on the sur-

face of an object shaped like a zebra and short stripes when simulated on a cat's

tail [24], [8], [9], [13].

Time Step And Simulation Accuracy

However, some studies erroneously interpreted the time step parameter, At,

in (2.25) as the speed of reaction [4], [15]. One must keep in mind that the time step

is an artificial parameter, used solely for the purposes of simulating continuous-time

differential equations numerically on a digital computer. While it is true that a larger

At speeds up the simulation, this speed has no relation to the speed of chemical reac-

tions in an embryo (i.e., the actual organism - the biological system). Changing the

value of At affects only the numerical properties of (2.25). For example, the numeri-

cal accuracy of solving (2.6) with (2.25) deteriorates as At increases. Moreover, if At

exceeds a certain critical value, then the equations in (2.25) become numerically un-

stable, producing noisy oscillations of growing amplitude, and thus losing connection

with the original equations. Bard studied the speed of pattern formation by gener-

ating concentration plots using (2.25) for a wide range of At values [4]. However,

some of those values lie outside the stability region, making the reported simulations

meaningless. As a, rule, At should be well inside the stability region and small enough

for an acceptable accuracy. Assuming that in computer simulation the morphogen

concentrations are represented by double-precision floating point numbers, At = 0.01

is adequate for both 1-D and 2-D Turing's reaction-diffusion systems.



2.6.2 A Note On Evocator

We found that the evocator term, q(i), does not really need to be present as

part of the reaction of the activator for the entire time-evolution of (2.4). Simulations

show that the behavior of the system is unaltered by simply using q(Y) as the initial

condition (i.e., applied only at nt = 0). This minor change puts (2.4) into the

convenient standard form of a PDE with initial and boundary conditions:

at

R,(0 ( , t))

DA(£, t)

-D0 I/(, t)

'CA(X, t = 0)

,0(x = 6, t)

= Dm'm(£, t) + Rm( (£, t)),
-= 'A(XI,t) 'I 1(~,t) - 'A(•,Jt) - 12,

S16 - A (,t) ,I(t),

= DAV2 0A(', t),

= jI(-, t = 0) = q(),

= 'A(x =N, t),

- ?I(x=Nt).

2.7 Chapter Summary

As a review of the literature, we formulated a general reaction-diffusion sys-

tem, presented a linear analysis of the 1-D Turing reaction-diffusion system, devel-

oped stability / instability conditions, and included computer simulations of the 1-D

and the 2-D Turing reaction-diffusion systems as examples. The new information

presented in this section includes a critique of the role of the time step in numer-

ical simulations, the additional finding that the evocator needs to be present only

as an initial condition, and a working definition of the pattern-forming property for

evaluating dynamical systems.

(2.26)



Chapter 3

Linear-Reaction

Reaction-Diffusion And M-Lattice

Systems

As presented in Chapter 2, reaction-diffusion systems with non-linear reaction

are commonly analyzed with the help of linearization. Furthermore, numerical simula-

tions reveal that the linearized equations oftentimes successfully account for the large-

signal non-linear behavior. Therefore, a thorough understanding of reaction-diffusion

systems with linear reaction is of primary interest. This is the aim of the present

chapter, and it contains two main parts:

1. First, we mathematically describe the class of reaction-diffusion systems whose

constituent morphogens react linearly.

2. Second, we generalize the concept of a linear-reaction reaction-diffusion system

to that of a convolutionally-coupled M-lattice system and solve the latter in

closed form. The convolutionally-coupled M-lattice system is a special case of

the M-lattice system, the topic of Chapter 4.



3.1 Linear-Reaction Reaction-Diffusion System

3.1.1 Definitions And Notation

Definition 3.1.1 The general linear-reaction reaction-diffusion system equation is:

S = R (, t) + E(#, t), (3.1)
Ot

where R E ~Mx , R = [rmim 2] is the reaction matrix, whose elements, rmlm2, specify

the reaction rates between the morphogens indexed by m, and m2; D is a general

derivative operator of an arbitrary order, just like in (2.3).

We will develop the convolutionally-coupled M-lattice system by starting with

a specific case of A, an anisotropic Laplacian, discretized on a 2-D spatial lattice.

The anisotropy comes from allowing different weightings of the second derivatives in

x and y coordinate axes. The discretization of D in 2-D is discussed in Section B.3

of Appendix B, and the result for our case is:

D)(nx, ny, t) = D [#(nx + 1, ny, t) - 2 (n, ny,t) + (n - 1, ny, t)]

+ Dy[I(nf, n, + 1, t) - 2 (n,, n,, t) + (nx, ny - 1, t)], (3.2)

where n, = 0, ... , Nx- 1 and n, = 0, ... , N,- 1 are the spatial indices, and

Dr E: MxM and Dy E HMXM are the diagonal matrices of diffusion rates in the

subscripted dimensions. Therefore, the linear-reaction reaction-diffusion system on a

discrete 2-D lattice becomes:

o (n, = R(nn, ny, t)at R (nnt)

+ Dx[(n, + 1, ny, t) - 2#(n., ny, t) + (n - 1, ny, t)]

+ DY,[(nx, n, + 1, t) - 20(n,, ny, t)+ (nx, nY - 1, t)]. (3.3)
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3.1.2 Solution

We employ the 2-D DFT for solving (3.3):

(kX, kY, t)

6(nx, ny, t)

Nx-1N, --0 N, -1

E &x , n., t)exp
n.,=o

2 ~x
-3j NNxf )exp

-j -xn

1 N- Ny-i 27 .

= kN IF k (kx,I ky, t)Oexp ( •kxnx exp
N k,=O ky=O

27r

2N

ky,

Taking the 2-D DFT, (3.4), of both sides of (3.3) yields:

at
A(kA, k,)

T(kX, ky, t)

= A(k, ky)T(kx, ky, t),

= R-4 (sin2 N D x
wka N/~U

-4 (sin2 Dk,)

= exp [A(kX, ky)t] I(kx, ky, t = 0).

The last equation in (3.6) is the solution of the system 1 with the initial condition

(k Formally summarized, the t = 0).

Formally summarized, the model is (3.6) with the following for m = 1, ..., M:

det [R] # 0, Vm Re [Am(R)]

(stability to homogeneous perturbations);

det [A(kx, ku)] : 0, ,m Re [Am(A(kx, ku))]

< 0

> 0

(3.7)

(3.8)
(instability to non-homogeneous perturbations).

3.2 Convolutionally-Coupled M-Lattice System

The purpose of this section is to show that by introducing some new nota-

tion, the linear-reaction reaction-diffusion system can be written as a special case

'The reader may recognize this system as a multidimensional form of a first order differential

equation.

(3.4)

(3.5)

(3.6)

A

w



of a new system, which we call the "convolutionally-coupled M-lattice". The new

convolutionally-coupled M-lattice system will be used later in this chapter to an-

alyze some of the existing reaction-diffusion systems and in Chapter 5 to design

reaction-diffusion systems, implemented as M-lattice systems, for practical applica-

tions. The new notation is based on the DFT, which has been used extensively in

the analysis of spatially-discretized PDEs.

3.2.1 Matrix Convolution

We now show how to arrive at the definition of the convolutionally-coupled

M-lattice system. The right hand side of the first equation in (3.6) is a multiplication

of the matrix, A.(), by the vector, (k, t), where the notation emphasizes the de-

pendence of the elements of the matrix and the vector on the 2-D spatial frequency,

S== [kX, k ]T. Noting that the diffusion term of (3.2) is a spatial filter on a discrete

lattice, we generalize the linear-reaction reaction-diffusion system, (3.3), by replacing

the diffusion term with an arbitrary 2-D spatial linear Finite Impulse Response (FIR)

filter [25]. Then we study the resulting equations using the Fourier analysis. From

linear systems theory, multiplication in the spatial-frequency domain corresponds to

convolution in the spatial-index domain [26]. Denoting the 2-D unit sample function

by 6(n'), we propose the following new notation:

r11(n') ... rlM6(n)
R 6 () dd . , (3.9)

rM, 6(n') ... rMM6 (n')

in order to write:

R(n, n d, t) de (R6(i))* (, t). (3.10)



Then using (3.10) inside (3.3), we obtain:

v()l, t)
at

= RO (n, t) + D(n-) * (n, t)

= (RS(n)) * j(n, t) + D(n) * 4(-, t)

= (RS(n) + D(n)) * 0(n, t)

= A(n') (n, t), (3.11)

where D(n') E sMxM is a diagonal matrix of the filter coefficients (one convolution

mask for each morphogen).
In general, R can be a full 2-D FIR filter, R(ni), and D(n') does not have to be

diagonal. Thus, A(n') = R(n') + D(n') becomes the generalization of a single-lattice

filter to convolutionally-coupled multiple lattices. The corresponding matrix-vector

convolution, defined as follows:

a1 1(n')

aM l(n')

S.. alM (n')

•... aMM (n)

'O (')n

aI (n~) * V) l(n') + ... + alM(n) * iM() ()

S. , (3.12)

aM, (n) * '01(n') +... + aMM(n') * ,M(n')

is consistent with the original linear-reaction reaction-diffusion system, (3.11).

Under the DFT, (3.4) a general matrix-vector convolution, (3.12), becomes a

general matrix-vector multiplication:

A11()) ... Alm(k) T1() All(k)TI1(k)

Ampl(y) ... AMM(3) to(3) Am(1) p (k)

Applying (3.12) and (3.13) to (3.11) produces:

+"...+ AM(k)'M(kC) 1
. (3.13)

+ ... + AMM()WM(f()

aOT(k, t) = (f(, t)
at

A(k) = R+B(k),

(k, t) = exp [A()t] (, t = 0),

where B(k) is the element-by-element DFT of D(ni).

(3.14)



3.2.2 Developing The Convolutionally-Coupled M-Lattice

Comparing (3.3) with (3.11 and (3.6) with (3.14) makes it clear that the

linear-reaction reaction-diffusion system is a special case of a linear coupled-lattice

system, in which all interactions are convolutions with linear filters. Generalizing the

diffusion to any linear filter allows for a variety of new applications, as we will see in

Chapter 5.

Definition 3.2.1 A coupled-lattice system obeying the following equation is a

convolutionally- coupled M-lattice system:

0 t A(n) •(, t),
Ot

(k, t) = exp [A()t] (k, t = 0), (3.15)

where A(n') is of arbitrary form.

The origin of the name "M-lattice" comes from its roots in the

reaction-diffusion paradigm, where M stands for the number of morphogens, or layers,

in the lattice. This is illustrated in Figure 3.1.

3.2.3 Analyzing Turing's Linearized Model As

Convolutionally-Coupled M-Lattice

We now use the theory developed in Section 3.2.1 to gain further insight into

the linearized version of Turing's two-morphogen model. This problem is thoroughly

treated in Appendix C. Here, we state the main points.

The pattern-forming property, stated in Definition 2.5.1, requires the system

in (3.15) to be unstable for one or more non-zero values of I. This, in turn, implies
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Figure 3.1: Spatial organization of the layers of the convolutionally-coupled
M-lattice system. All the intra-layer and the inter-layer interactions are convo-
lutions. Here M = 3.

that A(k) must have an eigenvalue with a positive real part. For the M = 2 case,

this is assured by satisfying either or both of the following conditions:

1. The trace of A(k) is positive.

2. The determinant of A(k) is negative.

Notice that the first condition cannot be satisfied by a system whose D operator is

just the standard diffusion (as opposed to a general FIR filter; see Chapter 1). While

the standard diffusion can produce only one eigenvalue with a positive real part, the

full FIR filter case can produce two. Correspondingly, there are more possibilities for

(3.15) to form spatial patterns than for the linear-reaction reaction-diffusion system,

(3.1).

Transfer Function Of Convolutionally-Coupled M-Lattice System

Consider (3.15) for a fixed length of time, t. During that time interval, the
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convolutionally-coupled M-lattice system can be viewed as an M-variable 2-D linear

shift-invariant system. Then, in the language of the linear systems theory, T(k, t = 0)

is the DFT of the input signal, T(f, t) is the DFT of the output signal, and the matrix

exp [A(k')t] plays the role of a transfer function.

However, there are fundamental differences between 1-variable and M-variable

systems. In 1-variable systems, the transfer function is the DFT of the unit-sample

response of the entire system, whereas in M-variable systems, every element of the

transfer matrix is a 1-variable transfer function relating one of the inputs to one of

the outputs.

Nevertheless, for certain special systems, exp [A(Q)t] contains redundant in-

formation, which can be ignored. For example, the input signal to the two-morphogen

linear-reaction reaction-diffusion system is restricted in its functional form, because

it has the meaning of the evocator (see Section 2.6.2). The evocator signal, q(r), can

be introduced to the system as one of three possible perturbations:

* Only the activator is perturbed: 0(k, t = 0) = [q() ]T .

* Only the inhibitor is perturbed: 0(k, t = 0) = [0 q()]T

* Both morphogens are perturbed by the same signal: 0(k, t = 0) = [q(Q) q(E)]T

For all of these types of the initial condition, the transfer function is a 2-variable

vector, but is constructed and used differently.

Appendix C analyzes all three cases. As an example, we state here the

equivalent time-dependent transfer function of the two-morphogen linear-reaction

reaction-diffusion system for the case when the initial condition is the same for both

morphogens.

exp(A1 t) (2 a12 + JV- 4 P + ±Te + To)

k t) 2 - +e 2  (3.16)
1(kkY, t) k5 exp(A1 t) (2 a 21 + T-4 2 - T) (3.16)

62



where f, T,, and To are the determinant, the even trace, and the odd trace, respec-

tively, of A(k) as defined in Appendix C. By eliminating the redundant information

from exp [A(')t], we are able to give H(kx, ky, t) the usual interpretation of a transfer

function. Each element of H(kX, ky, t) is the DFT of the unit-sample response for the

corresponding morphogen.

Due to its exponential growth in time, the transfer function of the

linear-reaction reaction-diffusion system is monotonically growing in amplitude for

large t (i.e., after the transients have died out). This implies that in the limit

as t -- oc, the linear-reaction reaction-diffusion system approaches an ideal band-

pass (or "notch") filter. We can think of the transfer function of the linear-reaction

reaction-diffusion system as an "AND" operation between the frequency response

of the exponentiated eigenvalue and the frequency response of the "pre-filter" that

shapes it. Then, as long as the pre-filter is bounded and is either positive for all

spatial frequency indices or negative for all spatial frequency indices, the response of

the linear-reaction reaction-diffusion system is shaped by the frequency response of

the larger eigenvalue. The wave numbers, for which this eigenvalue is positive, will

be amplified as a function of time, while the wave numbers, for which this eigenvalue

is negative, will be attenuated as a function of time.

For example, consider the case where the transfer function of the linear-reaction

reaction-diffusion system is positive for all spatial frequency indices at time zero. A

band of wave numbers, for which the eigenvalue is positive, will be amplified con-

tinuously with time. Suppose we are designing a notch filter whose purpose is to

select a single spatial frequency index. This situation is shown in Figure 3.2. The

linear-reaction reaction-diffusion system can be designed to have a positive eigen-

value at that particular wave number and a negative one for all the rest. This

means that the linear-reaction reaction-diffusion system will drive the amplitudes

of all spatial frequency indices to zero, except for the particular wave numbers of



interest, whose amplitude will be increased. For a sufficiently long t, this results in

an FIR filter with an extremely large attenuation of the unwanted spatial frequency

indices. A traditional FIR filter, designed to accomplish the same feat, will tend to

have a large spatial mask - the size of the whole image; however, the linear-reaction

reaction-diffusion system can do this with just six parameters (four marginal reac-

tion rates and two diffusion constants). In effect, for a given quality of filtering, the

linear-reaction reaction-diffusion system trades off time for the number of filter coef-

ficients. In Chapter 5, we will apply this property to pattern extraction in fingerprint

images.

Inverse Visual Appearance Of Morphogens

It has been mentioned in the literature that the plots of the activator and

the inhibitor appear as the negatives of one another [4], [24]. This is illustrated in

Figure C.5. To our knowledge, the derivation presented in Appendix C is the first

published mathematical demonstration of this phenomenon [3].

Separable Versus Non-Separable Filtering

Observe that the diffusion mask that has been used in reaction-diffusion sys-

tems has non-zero coefficients only on the x and the y axes. Hence, the DFT of

this mask does not have terms that mix the spatial frequencies in the two principal

directions. However, because the two morphogens interact within the system, the

equivalent reaction-diffusion system filter does have cross terms, albeit in a restricted

fashion. We now show that the two-morphogen linear-reaction reaction-diffusion sys-

tem, whose diffusion filters are separable in 2-D, exhibits a non-separable 2-D filtering

behavior.



I I I I I I2
5 10 15 20 25 30

(a)

(b)

-50

-250

(c)

Figure 3.2: Time-dependent transfer function of the linear 1-D Turing's 2-lattice
with N. = 32 and a unit sample applied to both morphogens as the evocator input.
The temporal snapshots of the transfer function illustrate how the system evolves
into a notch filter. The labels Ha and Hi refer to the activator and the inhibitor
morphogen components of the transfer function, respectively. (a) the transfer func-
tion at t = 0 sec; (b) the transfer function at t = 1 sec; (c) the transfer function at
t = 5 sec.
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To see this, examine the diffusion terms of exp [A(Q)t] in (C.6):

B(k k,) = 4 sin D,- 4 sin 2  D, and (3.17)

B 2(kx, ky) = -4 sin 2  D2,x -4 i y D2,y (3.18)

The last term in (C.6) causes the mixing of the wave numbers, k, and k,:

16 (D1 ,xD2,y + Di,yD 2,x) (sin2 1rk )(in2 (3.19)

Distortion In Time-Varying FIR Notch Filter

Since (3.16) has no poles, this linear-reaction reaction-diffusion system is a

spatial FIR filter with the marginal reaction rates, the diffusion constants, and the

time serving as design parameters. However, the properties of this filter are different

from those of traditional FIR filters. A distortion of the initially set up combination

of spatial frequencies occurs as a function of time, due to the exponential behavior.

Unless the positive eigenvalue stays extremely flat in the desired band of frequencies,

the system, with time, turns into the above described notch filter. As time increases,

the frequency with the largest eigenvalue will eventually dominate.

3.2.4 The One-Morphogen (Or Reactionless) Case

In addition to the above mentioned differences, there is another important

distinction between the general FIR case and the standard diffusion. Since the dif-

fusion coefficients have meaning only when they are non-negative, there is no possi-

bility of achieving a positive eigenvalue without reaction. However, since there is no

non-negativity restriction on the FIR filter coefficients, reaction is not needed for a

two-morphogen linear-reaction reaction-diffusion system to reach instability 2. Since
2Mentioning FIR filters and instability in the same context might at first appear absurd, since

FIR filters are always stable. But the discussion is consistent, since the FIR filters operate in the

spatial domain, and the instability of interest takes place in the temporal domain.
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we have not seen a formulation of this before, we now show that with an arbitrary

FIR filter instead of diffusion, instability to non-homogeneous perturbations can be

obtained even with only one morphogen. In other words, a two-morphogen reac-

tionless linear-reaction reaction-diffusion system is equivalent to a one-morphogen

linear-reaction reaction-diffusion system.

With all the reaction terms set identically to zero, (C.4) becomes:

1

trace[B(k)] trace[B(k)] _  _#A1,2(A(k)) -= 2 - Bl(k)B 2(k) (3.20)

1

= Bl(k) + .k) () (3.21)2 2 2

Either of the two conditions stated in Section 3.2.3 can be easily satisfied by the

general FIR filter matrix, B(k). Thus, instability is assured if Bi(k) > 0. The spatial

frequencies for which this holds will have growing amplitudes, while the rest will have

decaying (or unchanging) amplitudes. The convolutionally-coupled M-lattice system

equations become:

at (3.22)
4(1) = exp [B(')t] 4(k', t = 0).

In order to determine the conditions under which the one-morphogen system

is equivalent to the two-morphogen system we need to compare (3.22) with (C.25),

say, for the activator part. Upon equating the respective terms, we obtain:

B(k) = A• (k) and (3.23)

4(t=, 0) = [2 al 1 + 4 +Te 2 '( +, t = 0o)22 '4f3+Te2 '

where the quantities on the left refer to the one-morphogen system, and the quantities

on the right refer to the two-morphogen system.



Note that in stating these equations, we relied on the fact that the same initial

concentrations are given to both the activator and the inhibitor. Hence, the scalar

quantity, T9(k, t = 0), serves as the initial condition.

The transfer function is the quantity that multiplies the input, which is the

initial condition. In the case of the full linear-reaction reaction-diffusion system,

that quantity is the exponential times the pre-filter, as in (C.25). In the case of the

reactionless system, that quantity is just the exponential, as in (3.22). Since the

exponential depends on the scalarly weighted time and on no additional terms, it is

impossible to make the transfer function of the reactionless system to be identical to

that of the full reaction-diffusion system.

3.3 Chapter Summary

In this chapter, we studied the linear-reaction reaction-diffusion system as

a first step towards understanding a wider class of reaction-diffusion systems. To-

ward this goal, we stated the linear-reaction reaction-diffusion system problem

and its solution using the R matrix. In addition, we determined the restrictions

on the R and the A(k) matrices to comply with the definition of the pattern-

forming property. A central contribution of this chapter is the observation that

the linear-reaction reaction-diffusion system is a subset of a more general coupled-

lattice linear system, which we call the convolutionally-coupled M-lattice system.

We extended the notation of convolution to a matrix-vector case and showed that the

convolutionally-coupled M-lattice system can be formulated with the help of this ex-

tension. We applied this new technique to the classical two-morphogen linear-reaction

reaction-diffusion system and found the exact solutions for the morphogen concentra-

tions as functions of time and spatial indices. We then found the transfer function for

the convolutionally-coupled M-lattice system and used it to explain the out-of-phase

visual appearance of patterns formed by Turing's reaction-diffusion system. This vi-



sual appearance has been reported in the literature, but never explicitly accounted

for until the present work. We also used the transfer function to provide quantitative

explanations for anisotropy and distortion in filtering associated with the qualitative

features of textures synthesized by Turing's reaction-diffusion system. This chap-

ter also states that a single-lattice convolutionally-coupled with arbitrary FIR filters

system (which is reactionless) is capable of forming spatial patterns.



Chapter 4

M-Lattice System

This chapter presents the main theoretical contribution of this research - the

novel non-linear dynamical system, called "M-lattice". As mentioned in Section 3.2.2,

the system's name is inspired by its roots in reaction-diffusion, where M is the num-

ber of morphogens, or layers in the lattice. Indeed, the M-layered lattice, or the

M-lattice for short, is the last in the chain of models we have been developing in

order to analyze and implement the general reaction-diffusion system, (2.3). The

linear-reaction reaction-diffusion system, introduced in Chapter 3, is the first model,

owing its formulation to the benefits of the linear analysis, presented in Chapter 2.

The linear-reaction reaction-diffusion system can be used to analyze the pattern-

forming properties of any standard reaction-diffusion system. The second model,

the convolutionally-coupled M-lattice system, introduced in Chapter 3 as the gen-

eralization of the linear-reaction reaction-diffusion system, facilitates the analysis of

pattern-forming properties of any model typified by (2.3).



4.1 Need For Bounded And Continuous

Reaction-Diffusion

However, while the convolutionally-coupled M-lattice system is a useful ana-

lytical tool, it is impractical. The difficulty is that the pattern-forming dynamical

systems, such as reaction-diffusion, are designed to be unstable, and without some

form of limiting, the growing sinusoids will eventually overflow machine precision.

It is also desirable for the bounding method to preserve the continuous-time

aspect of reaction-diffusion systems. Even though a discrete-time system can faith-

fully track the time-evolution of its parent continuous-time system, non-linearities

generally make discrete-time systems more difficult to analyze mathematically.

4.1.1 Bounding Morphogens In Nature

Note that in morphogenesis, the issue of boundedness does not warrant serious

concern because nature takes care of both the lower and the upper bounds automat-

ically. Zero is the lower bound, since negative chemical concentrations do not make

sense. The upper bound varies from one biological system to another, but always

exists, because an animal's body carries a limited supply of chemicals.

4.1.2 Bounding Morphogens In Engineering Systems

In contrast with nature, where the non-linear limiting of concentrations is

caused by the depletion of morphogens, engineering systems require dedicated mech-

anisms for preventing overflow. We consider three possibilities:



1. Other researchers have forced the limiting (or "clipping") on the morphogen

concentrations in computer simulations by adding an "if" statement to the nu-

merical method (e.g., Forward Euler, reviewed in Section B.3.2 of Appendix B)

used for solving the system of differential equations [15]. This approach ar-

tificially prevents the morphogen concentrations from exceeding the specified

bounds. But it also upsets the mathematical consistency of the original dynam-

ical system., because it turns the continuous-time reaction-diffusion model into

a discrete-time approximation. Furthermore, the exact functional form of this

discrete-time version is different for every numerical method.

2. The primary goal is then to develop a continuous-time system that can con-

trol the overflow occurring in reaction-diffusion systems and still be readily

analyzed mathematically. The classical approach, based on the the vast body

of literature on population dynamics, would encourage an attempt to deter-

mine what additional non-linear terms will guarantee boundedness [27], [28].

While many of these diffusionless systems have relied on the non-linear terms

to thwart the excessive growth of linearly-unstable solutions [22], the presence

of diffusion adds an enormous complexity to the model. This makes the job

of finding the non-linearity that will guarantee boundedness and still preserve

the pattern-forming property a formidable search. In fact, we are aware of only

one success along this avenue of research [29]. Typically, reaction-diffusion sys-

tems are derived from biological arguments, with the primary effort aimed at

capturing the mechanisms of animal pattern formation, and not at ensuring

boundedness [6].

3. We propose a novel method for controlling the morphogen concentrations of

reaction-diffusion systems. This method draws inspiration from the way nature

handles chemical resources in biological systems (see Section 4.1.1). By using



a "warping" function to facilitate boundedness, the new M-lattice system is

continuous in time and allows more flexible non-linear interactions than the

reaction-diffusion system 1. Due to its flexibility, the M-lattice system can

be employed to simulate reaction-diffusion as well as many other non-linear

dynamical systems. Furthermore, a set of its own mathematical properties,

independent of pattern formation, fortifies the M-lattice system with additional

modes of operation.

4.2 Mathematical Assumptions

Assume throughout this chapter, unless specified otherwise, that every lemma,

proposition, corollary, or any other such statement depends on all the assumptions

appearing before that statement. In other words, assumptions accumulate.

4.2.1 Warping Function

Any "sigmoidal" non-linearity can serve as the warping function. The main

features of a sigmoidal non-linearity are the low and the high clipping levels and the

transition region.

Let /i(t) E_ R be a state variable as a function of time at each lattice point

i, where i = 1, .... , N. Let Xi(t) be an output variable, obtained from Oi(t) via

Xi(t) = Gi(Oi(t)). The warping functions, Gi(u), can be of different form for dif-

ferent index i. Construct (t) and '(t) by concatenating 0 1(t), ... , gN(t) and

XI(t), ... , XN(t), respectively, into column vectors.

1If the original dynamical system is already bounded on its own, then the warping function

performs a "NO-OP" (i.e., it has no effect on the system).



We will use the following assumption in Section 4.3 and and Section 4.4.

Assumption 4.2.1 Assume that each function, gi(u), has the following properties:

* gi(u) is continuous on u E R;

* gj(u) is real-valued: {gi : R --- , , ri C R};

* gi(u) is odd: gi(u)= -gi(-u);

dgi(u)
* gi(u) is increasing: du > 0, E ;

* gi(u) is invertible: {(g• : Fi -- R ); and

* gl(v) is increasing: dg > 0, v E ri.

Define each warping function, Gi(u), as a shifted and / or scaled version of gi(u):

Gi(u) = yj + a gi u , (4.1)

where yi, ai E ~ and ai = 0.

Remark 4.2.1 Assumption 4.2.1 implies that inf Li = lim,,_,o gi(u) and

sup ri = limu-,+o gi(u), which means that lim,-,infr g% (v) = -oo and

lim,,nSupr g• 1(v) = +o0.

For example, gi(u) can have the basic form of one of the standard sigmoids,

such as the hyperbolic tangent:

g(u) = tanh(T), (4.2)

g-'(v) = Tarctanh(v), (4.3)

where the value of the "temperature" parameter, T C R+, determines the steepness

of the sigmoid. These functions are plotted in Figure 4.1.

In numerical simulation, the warping function is typically applied to each mor-

phogen's concentration after every time step.
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(a) (b)

Figure 4.1: Plots of the sigmoidal warping function for three different temperatures.
(a) the sigmoid, (4.2); (b) the inverse sigmoid, (4.3).

4.2.2 Assumptions On Comprising Functions

Unless stated otherwise, yi = 0 Vi and ai = 1 Vi for simplicity of notation.

This does not reduce the generality of (4.1), because all state variables can be shifted

and / or scaled if' needed.

Assumption 4.2.2 Assume that the functions, {ai(4(t)) : _Q" R }, are defined,

continuous, and also differentiable and integrable with respect to Oi(t) on any infinite

subset of W.

Assumption 4.2.3 Assume that the functions, (f,((t)) : (U1 r;) -Z }, are de-
fined, finite, continuous, and also differentiable and integrable with respect to xi(t) on

any infinite subset of the open set F- C R. Specifically:

13 / E G + : R (+-(t)) <• 1, where



4.2.3 M-Lattice System Definition

Definition 4.2.1 An M-lattice system is a possibly non-linear autonomous dynam-

ical system, described by the following equation:

= ai( (t)) + fV (I(t)), i = 1, ... , N. (4.5)

Define { ( (t)) :N _. •N} by concatenating al(O(t)), ... , aN(O(t)) into a col-

umn vector. Likewise, define (f( '(t)) : (UiNI ]ri) - N} by concatenating

Af.(x (t)), - fy (I(t)) into a column vector. Expressed in a matrix-vector form,

(4.5) becomes:

d(t) = '((t)) + f (X(t)). (4.6)

We will use the following assumption in Section 4.3 and Section 4.4.

Assumption 4.2.4 Assume that one or both of the following are true:

V x dt = 6; (4.7)

x d(t = 6, (4.8)

where the subscript indicates the variable, with respect to which the curl is taken [30].

Remark 4.2.2 Dynamical systems, derived from either formula in Assumption 4.2.4,

belong to a general class, called "gradient systems". The name comes from a funda-

mental theorem in vector calculus, which states that if the curl of a vector field is

zero, then that vector field must be the gradient of some "potential" function. Gradi-

ent systems are reviewed in Section B.1.4 of Appendix B.



4.3 General Convergence Proofs

Mathematical background assumed in this section appears in Section B.1 of

Appendix B.

Lemma 4.3.1 The trajectory of the Oi(t) (state) and the Xi(t) (output) variables of

the M-lattice system, (4.5) or (4.6), does not contain cycles.

Proof: According to Section B.1.4, (4.9) below is a gradient system, and (4.11)

below is an almost-gradient system. By Lemma B.1.1 and Corollary B.1.1, respec-

tively, neither system contains cycles. Here, we summarize the essential points of the

analysis.

If (4.7) in Assumption 4.2.4 is true, then there exists an auxiliary function,

E(O(t)), with the property:

ViE(¢(t))
dv)(t)

dt
(4.9)

We compute the time derivative of E(t) d E( (t)) by the chain rule:

) T[d(t) do(t) [d'(t)
dt dt > 0. (4.10)

dxi (t)Hence, E(t) is strictly increasing, except when = O, Vi (or
dt

d-(t)
dt

= 6), if that

ever happens, at which time E(t) reaches a local maximum and stops changing.

If (4.8) in Assumption 4.2.4 is true, then there exists an auxiliary function,

E(;g(t)), with the property:

)t~~f(E d) = (t) (4.11)

We compute the time derivative of E(t) de E('(t)) by the chain rule:

dE(t)
dt Sdtd

dE(t)
dt

N X *t)/)]

r•

--- T -dV)(t) d;ý(t)
dt dt



11dl i(t) i [dyg(t)11 C dG-1 (xi(t))J dy(t)dt dt dt dZ

[dG (i(xt)) [dx> 0. (4.12)
[ dxi(t) dt I

Hence, due to the squared term and Assumption 4.2.1, E(t) is strictly increasing,
da (t) d2(t)

except when di(t = 0, Vi (or = 6), if that ever happens, at which time E(t)
dt dt

reaches a local maximum and stops changing.

From Assumption 4.2.1 and Assumption 4.2.4, E(/(t)) is a continuous function

of the Oi(t) (state) variables, and E( (t)) is a continuous function of the Xi(t) (output)

variables. This means that, in either case, the curves of constant E(t) (level sets) are

closed curves (see Figure 4.2).

The M-lattice system's trajectory (in time) starts at the contour, correspond-

ing to the initial values of the Oi(t) (state) and the Xi(t) (output) variables. From

(4.10) and (4.12), it follows that the trajectory always moves away from the starting

corLtour, without the possibility of return. Moreover, the trajectory moves in the

direction of contours with a higher value of E(t), tending toward the nearest local

maximum [30]. 1

Remark 4.3.1 Lemma 4.3.1 establishes that the trajectories of the M-lattice sys-

tem's state and output variables do not contain cycles; however, by itself, it provides

no information regarding the boundedness of (t) or that of either form of E(t).

Lemma 4.3.2 The functions, fi '(t)), saturate with time. In other words:

lim f-( (t)) = F, (4.13)
t-0oo

where F is a constant vector.

Proof: The proof follows from Assumption 4.2.1, Assumption 4.2.3, and

Lemma 4.3.1. I



E0 (X,1,X) <EI(X 1 ,X )<Emax (X,X 2)

Figure 4.2: The curves of constant E( (t)). The level sets are closed curves. The
trajectory always moves away from the starting contour in the direction of contours
with a higher value of E(t).

Assumption 4.3.1 Assume that all eigenvalues of the Jacobian of d( (t)) are neg-

ative at every fixed point of interest, b. Formally:

(4.14)

where Jit(O) a(o(t))

Proposition 4.3.1 Every fixed point of interest, 0, of the M-lattice system, (4.5) or

(4.6), is locally asymptotically stable.

Proof: Using Lemma 4.3.2, we rewrite (4.6) in the limit as t -+ oo:

lim d'(t)
t-+oo dt

lim a( (t)) + F.
t--oo

(4.15)

By Assumption 4.2.2, there exists a sufficiently small local neighborhood around every

fixed point of interest, 4, with the property that in any such local neighborhood, (4.15)

Vi A [J,(] < 0,

h,



becomes:

lim d =(t) lim Ja()( (t) - b). (4.16)
t--+0 dt t--oo

We recognize (4.16) as a linear system for large t. By Assumption 4.3.1, every fixed

point of interest of (4.16) is asymptotically stable, implying that (4.16) converges to a

constant set of states [31], [23]. Then so does (4.6), provided that the initial condition

is sufficiently close to the fixed point of interest. I

The following assumption helps strengthen the conclusion of Proposition 4.3.1

and leads to the engineering of practical M-lattice systems.

Assumption 4.3.2 Assume that a'((t)) in (4.6) is linear in 4~(t) (and there is no

constant term):

d(b(t)) = A/(t), (4.17)

where A E RNxN, A = [aij].

Under Assumption 4.3.2, (4.6) turns into the following special case of the

M-la.ttice system:

d(t) A (t) + f (2(t)). (4.18)
dt

Lemma 4.3.3 The state vector, V(t), of the class of M-lattice systems, (4.18) with

the previously stated assumptions, is eventually confined to a bounded region. In other

words:

dBr { EEN, r E R : j]j < 1(4.19)
V b(to) 3 r = RE R+ : lim (t) E BR,

t--+oo

where BR is the closure of BR.



Proof: Let A1 be the smallest eigenvalue of -A and consider the following globally

positive-definite function:

W(t) de t [(t)T [(t)] . (4.20)

From (4.18), the time derivative of W(t) is:

dW(t) [M]T d_(t)

dt dt

= [(t)]T [A-(t)+ f+Mt))]

-A, 11 -(t 2 +fl 1 -4(t)

= I1 (t) -A1  (t)J + 1) . (4.21)

From (4.21), di < 0 if 1(ol) > . Hence, all solution trajectories eventually
enter into the closed ball, BR (in the b-space) of radius, R = •-, centered at 0, and

stay there. By Assumption 4.2.1, there is a corresponding compact subset in the

X-space, to which all solution trajectories are eventually confined [32], [33], [34], [35].

Lemma 4.3.4 If (4.7) in Assumption 4.2.4 is true, then the auxiliary function,

E(t) = E('Vp(t)), defined in (4.9), is a Lyapunov function. Similarly, if (4.8) in

Assumption 4.2.41 is true, then the auxiliary function, E(t) = E( (t)), defined in

(4.11), is a Lyapunov function. In other words, either applicable form of E(t) is a

Lyapunov function.

Proof: By Lemma 4.3.1, E(t) is monotonically increasing. In addition, by

Lemma 4.3.3, neither the Oi (t) (state) variables nor the Xi(t) (output) variables escape

to infinity. Thus, it remains to show that E(t) is bounded above. Using Lemma 4.3.2,

we rewrite (4.18) in the limit as t -+ oo:

lim t) lim AO(t) + F. (4.22)
t 0 dt t--oo
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We recognize (4.22) as a driven linear system for large t with the constants, Fi, making

up the driving terms. By Assumption 4.3.1 and Assumption 4.3.2, all eigenvalues of

A are negative. Hence, every fixed point of (4.22) is asymptotically stable, so that

(4.22) converges to a constant set of states [31], [23]. In other words, lim d4i(t) = 0t--0oo dt

(or limr = ). This indicates that in the limit as t --+ oo, E(t) stops increasing.t-, di
Therefore, E(t) is a Lyapunov function. I

Proposition 4.3.2 The M-lattice system, (4.5) or (4.6), is totally stable and, there-

fore, converges in both the bi(t) (state) variables and the xi(t) (output) variables.

Proof: The proof follows immediately from Lemma 4.3.4. I

Corollary 4.3.1 All fixed points, 4, of the M-lattice system, (4.18), are contained

in a compact subset of ~N.

Proof: Since the set of equilibria of (4.18) consists of isolated points only, it is

sufficient to prove that this set is bounded [32]. In other words:

302 1+ -< 02. (4.23)

Using Assumption 4.3.2 and Proposition 4.3.2, we rewrite (4.18) in the limit as t -+ oo:

o = lim AO(t) + F, or (4.24)
t--oo

- lim A (t) = F, or (4.25)
t-*c•

lim 4'(t) = -A - 1 F . (4.26)
t-oo

The matrix, -A. is invertible, since it is a positive-definite matrix by Assump-

tion 4.3.1. Then by [35] (4.26) gives:

/2 = A-' 111. (4.27)



Remark 4.3.2 It is important to emphasize the distinction between Proposition 4.3.1

and Proposition 4.3.2. Proposition 4.3.1 states a local property of a fixed point. If

the initial condition is sufficiently close to a fixed point of interest, then the solution

trajectory approaches it exponentially with time. However, nothing can be said about

the solution if the initial condition is not close to the fixed point of interest. The

trajectory may head toward another fixed point, get locked into a cycle, or wander off to

infinity. On the other hand, Proposition 4.3.2 asserts a property of the whole system.

It will converge to some fixed point, regardless of the initial conditions. Various

kinds of stability and the significance of total stability are explained in Section B. 1 of

Appendix B.

4.4 Examples Of Stable M-Lattice Systems

This section presents two M-lattice systems that satisfy several assumptions

of Section 4.3, which ensures their (at least local) asymptotic stability. While we

are not aware of any practical uses of the first M-lattice system, we show that the

second M-lattice system generalizes the continuous-time continuous-valued (analog)

Hopfield network to non-linear objective functions.

Define:

Mlf(t) def () dplGi(I); (4.28)

Yi(t) di(t) xif( dpGC ' (p). (4.29)

For both of the following examples, assume that the given functions, O(0(t)), ((i#(t)),

E(ii(t)), and P(I(t)), are continuous, twice-differentiable, and bounded at least above.



4.4.1 Example 1: Diagonal-Output M-Lattice

Define E(t) as follows:

= e((t)) + (,j(t)). (4.30)

Then the M-lattice system becomes:

d~(t)
dt

= VE(#(t)).

Clearly, of the two equations in Assumption 4.2.4, (4.31) satisfies (4.7). Explicitly:

doi(t)
dt

+ari (t)) (4.32)

By Proposition 4.3.1, every fixed point of interest of this "diagonal-output" M-lattice

system, (4.31) or (4.32), is locally asymptotically stable.

4.4.2 Example 2: Diagonal-State M-Lattice And Hopfield

Network

Define E(t) as follows:

E(t) E(X(t)) = o(D(t)) + ((t)). (4.33)

Then the M-lattice system becomes:

d(t)
dt

- VkE(X(t)).

Clearly, of the two equations in Assumption 4.2.4, (4.34) satisfies (4.8). Explicitly:

di(t~(t) _ e((t)) ?P( x(t))
idt (t) +dt 8vi(t) oxi(t) (4.35)

By Proposition 4.3.1, every fixed point of interest of this "diagonal-state" M-lattice

system, (4.34) or (4.35), is locally asymptotically stable.

(4.31)

(4.34)

E(t) d E( (t))

ao(~(t>>
a~(t>



Special Case: Hopfield Network

In order for (4.18) to fit the definition of the diagonal-state M-lattice system,

(4.34) or (4.35), Assumption 4.3.2 must be simplified as follows:

Assumption 4.4.1 Assume that A is a diagonal matrix with negative elements on

the main diagonal. In other words, let:

ae ( (t))
avi (t)

A

= ai, where Vi ai < 0;

(4.36)= Diag {al, ... , aN},

= A (t).

The resulting diagonal-state M-lattice system becomes:

doi(t) a o (x (t))
dt a(t) + .(t)
dt 874(t)

(4.37)

By Proposition 4.3.2, this particular diagonal-state M-lattice system is totally sta-

ble [35]. Combining (4.29) with (4.37) gives explicit formulae for EO(i(t)) and E(t) in

(4.33):

- aivi(t) =
i i

{Jxi(t)
Sai vi(t) + 4D(I)(t))= Z

i i
o X(t)

and (4.38)

dlti [aiGla'(i)] } + P(X(t)). (4.39)

The following additional assumption reduces the diagonal-state M-lattice sys-

tem, (4.37), to the continuous-time continuous-valued Hopfield network [36], [37], [38]:

Assumption 4.4.2 Assume that fi( (t)) def (D(tth) Oi(t) in (.4.37) is linear in Xi(t):

-
xd~t)

where Be RNxN, B = [bij], B = BT, and ge 8 "N

We summarize the result.

E(i7(t))

E(t)

(4.40)o,-~ (X'(t>) = B-(t) + S,

dlt lai~i '(jj)



Proposition 4.4.1 The continuous-time continuous-valued Hopfield network:

di(t) = ai i(t) + bijXi(t) + si (4.41)
dt 3

is a special case of the diagonal-state M-lattice system. Both systems are totally stable,

but the diagonal-state M-lattice system with Assumption 4.4.1 enables the continuous-

time continuous-valued Hopfield network to operate with objective functions, Q(f),

that are not necessarily quadratic in the Xi (output) variables.

4.4.3 Optimization With Diagonal-State M-Lattice

Since the diagonal-state M-lattice system is totally stable, we have:

i = lim iO(t), (4.42)
t--oo

= lim (t), (4.43)
t-+oo

Xi = lim xi(t), and (4.44)t---•oo

S= lim X;(t). (4.45)
t--oo

Proposition 4.4.2 Suppose that (D) is a continuous objective function with con-

tinuous partial derivatives with respect to Xi for i = 1, ... , N. Let G (u) and gj(u) Vi

be given by (4.1) and (4.2), respectively. Let T -0 and consider the diagonal-state

M-lattice system, (4.34) or (4.35), with Assumption 4.4.1 in the limit as t -* oo.

Under these conditions, the diagonal-state M-lattice system seeks to increase (()

on E {-1, 1}N

Proof: According to the hypothesis, Proposition 4.3.2 applies. Put T --+ 0 in (4.2).

Then use (4.3) and consider (4.39) in the limit as T -- 0 and t -- +o:

lim lim E(t) = lim lim [ x. { dLi [aiG ~(pi)] + (N4(t))
t-4oo T-40 t- oo T--+0 )

= lim lim Xi.{J dii [aiTarc tanh(Ipi)]}+ @('(t))
t--+oo T-+0 0

= lim ((t)) = ,(8). (4.46)
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By Lemma 4.3.1, E(t) increases. Then (4.46) shows that under the stated conditions

the diagonal-state M-lattice system evolves such that o(X'(t)) increases as well. I

Remark 4.4.1 It is important to draw distinctions among the functions that are

maximized with respect to time, the functions that are maximized with respect to ',

and the functions that are merely increased. By Lemma 4.3.1, the diagonal-state

M-lattice system, evolves toward a local maximum of E(t) with respect to time, t. In

addition, by (4.12) and Proposition 4.3.2, the system's trajectory tends toward a local

maximum of E(j;) with respect to '. When T -* 0, the system seeks local maxima of

I(D(t)) with respect to time, since E(t) -+ 4)( (t)) by Proposition 4.4.2. However, it

does not seek local maxima of D(;) with respect to ', since V7() 0 6 in general.

In other words, I(() is merely increased as a function of X.

Nevertheless, there are situations, in which the diagonal-state M-lattice system

can be said to compute local maxima of 'J(D) if the notion of a local maximum is suit-

ably redefined. For example, it has been shown that if O() = 0 Vi and T - 0, then

the dynamical system seeks local maxima of (X') with respect to X on ' E {-1, 1}E,

where the locality is defined in terms of the Hamming distance of one [37], [35].

Remark 4.4.2 The diagonal-state M-lattice system, (4.34) or (4.35), can be com-

pared to the non-linear programming neural network, which optimizes objective func-

tions exclusively on the interior of the N-dimensional hypercube [39], [40], [41]. In

contrast, the diagonal-state M-lattice system seeks to increase the values of objective

functions on the corners of the hypercube.

4.5 Clipped M-Lattice System

In this section, we suspend the continuity, required by Assumption 4.2.1, and

consider the M-lattice system, (4.18) with f(--(t)) def •(((t)), in which Gi(u) is
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given by (4.1), but gi(u) Vi is the following "clipping" function:

dg(u) Jul < T;

du 0, Jul > T. (4.47)

g (u) = ( +1 -u 1); T 9 +.

This function is plotted in Figure 4.3.

For clarity, we provide a formal definition of this new "clipped M-lattice sys-

tem".

Definition 4.5.1 Suppose that the given function, 4( (t)), is continuous,

twice-differentiable, and bounded at least above. Let Gi(u) and gi(u) Vi be given by

(4. 1) and (4.4 7), respectively. Then the clipped M-lattice system is the following

non-linear dynamical system:

d(t) = A(t) + 4(I((t)). (4.48)
dt+

The diagonal-state clipped M-lattice system is the clipped M-lattice system with As-

sumption 4.4.1.

The topic of the following subsection is the total stability of the diagonal-state

clipped M-lattice system, (4.48) with Assumption 4.4.1.

4.5.1 Basic Convergence Proofs

Mathematical background assumed in this section appears in Section B.1 of

Appendix B.

Proposition 4.5.1 The diagonal-state clipped M-lattice system, (4.48) with As-

sumption 4.4.1, is totally stable and, therefore, converges in both the Oi(t) (state)

variables and the -)i(t) (output) variables.
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Figure 4.3: Plot of the clipping warping function for three different temperatures.

Proof: The proof will be presented in steps:

1. Find a Lyapunov function, E(t), and prove the stability of every fixed point.

2. Use the continuity of E(t) to prove the asymptotic stability of every fixed point.

Lyapunov Function And Stability

By Lemma 4.3.3, the O4(t) (state) variables and the Xi(t) (output) variables of

the clipped M-lattice system, (4.48), are bounded. Consider the following auxiliary

function for (4.48) with Assumption 4.4.1:

E(t) df E(X(t)) = T(t)TA2(t) + X(((t)). (4.49)

Define:

I = {i : bil <T (or xil < 1)} (4.50)

and denote the complement of I by "c.

For E(t) to fit the definition of a valid Lyapunov function near a stable fixed

point, 4 (or ~), it is essential that:

VZE( -(t)) = 0 (4.51)



at '. From (4.49), VýE(-(t)) is:

V E(e(t)) = t E((t))

= Ja((t)) [TAX(t)+ ((t))]

= 1 aii(t) + o ,9(t) iEC IS T axi (t)
0, i c I

= dt , T (4.52)
0, ie IC.

Since both parts of the last equation in (4.52) identically vanish at a fixed point, the

necessary condition in (4.51) is satisfied.

By Assumption 4.3.1, Definition 4.5.1, and (4.47), E(t) is bounded above.

In order to show that E(t) is non-decreasing, we observe that according to (4.47),

Je((t)) is a positive-semidefinite matrix. Then differentiating E(t) with respect to

time gives:

dE(t) _(] T db(t)

S d) i ( t) i c I dEi(t)= T dt ) dt }
0 , iE IC

ST d(t) = T [dxi(t)] > 0. (4.53)
iET iE1

Thus, the auxiliary function, E(t), is bounded above and non-decreasing, and

its extrema coincide with the fixed points of the system. By this reasoning, one of the

fixed points must correspond to the upper bound or the global maximum of E(4(t)).

Other fixed points correspond to the local maxima, the saddles, and the local minima

of E(.0(t)). The saddles and the local minima of E(4(t)) correspond to unstable fixed

points, because E(t) is non-decreasing along the non-trivial solution trajectories. For
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the same reason, the local maxima of E(4(t)) correspond to stable fixed points,

and since E(4(t)) has a global maximum, the system has at least one stable fixed

point. Hence, every trajectory of the diagonal-state clipped M-lattice system, (4.48),

contains a stable fixed point, 0 (or ;), and E(t) is a Lyapunov function.

Strengthening Stability To Asymptotic Stability

We now proceed to show that every such 0 (or •) is asymptotically stable as

well. It is evident from (4.53) that:

l dE(t) d$4(t) dy;(t)lim dE(t) = 0 l lim di (t)= 0, Vi E I. (4.54)
t-oo dt t-oo dt t-oo dt

Observe that since:

dg(#4(t)) d 0, Vi E Z1 , (4.55)
di' (t)

lim dEt) is unaffected by lim i I (or lim ,dx iE IZ). In other
t--0oo dt - -oo dt t-'oo dt
words, once all i E(t), i E Z stop changing, E(t) reaches a constant value and stays

there forever, regardless of any possible dynamics of Xi(t) E {-1, 1}, i E 1c.

The next step is to show that, in fact, no dynamics of Xi(t) E {-1, 1}, i E I1

are possible in the limit as t -+ oo. Formally, we must prove that:

lim xi(t) =: Xi, i E IC and hence lim X;(t) = lim t)= 6.(4.56)t-0oo t-0oo t-oo dt

dE(t)Consider the following alternative expression for in the limit as t oo c:
dt

dE(t) dI(t)lim = lim E((t)) = 0, (4.57)t-oo dt t-Ioo dt

where the last equality is due to (4.53) and (4.54). According to (4.57), aVE(X(t))

tends to become orthogonal to the system's trajectory, X(t), in the limit as t - oo.

This is consistent with (4.53) and means that the trajectory tends toward a level
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set of E(t). Now, assume that the converse of the second statement in (4.56) is true.

Then in the limit as t --* oo, the trajectory traverses the level set. Thus, taking (4.54)

into account, we have:

Ei E Z1 , 37 E d, 7 --+ 00 : 0. (4.58)
dt t=T

The statement in (4.58) is equivalent to:

3i E ZI, 3T E R+,, 7 --00, 3 E R+, e -- 0 : Xi(7 + e) = -Xi(T). (4.59)

In order to satisfy (4.59), the trajectory, '(t) or 0(t), of the diagonal-state clipped

M--lattice system. along the sought level set of E(t) must encounter a discontinuity.

But this would violate the continuity of E(t), thereby contradicting Definition 4.5.1.

In other words, Xi(t) cannot toggle without passing through the continuum of inter-

mediate values, which is impossible in the limit as t --+ o0, for E(4(t)) reaches a local

maximum, and I and 2T become constant sets (i.e., the counts of indices comprising

the sets and the indices themselves stop changing with time). Hence, the conjecture

in (4.56) follows.

Effectively, we have shown that the trajectory of the Xi(t) (output) variables

does not contain cycles, meaning that the conclusions of Lemma 4.3.1 extend to the

clipped M-lattice system. Then (4.54) becomes:

dE(t) d'i(t) d (t)lim dt 0 lim = 0, Vi E I; lim = 0. (4.60)t-0 dt t-+oo dt t-*o0 dt

Finally, we invoke (4.47), Definition 4.5.1, and (4.60) in order to adopt Lemma 4.3.2

and Lemma 4.3.4 to the diagonal-state clipped M-lattice system. As a result, (4.54)

and (4.60) are strengthened to:

dE(t) d(t) d0(t
lim =0 - lim lim = 6. (4.61)t.-oo dt t-oo dt t-too dt

This completes the proof. I



Remark 4.5.1 If T = 1, f('(t)) = deV((t)) is linear in Xi(t), JjQk) is a cir-

culant (or block-circulant) and symmetric matrix, and ai = - al , V i, then the

diagonal-state clipped M-lattice system reduces to the reciprocal cellular neural net-

work [42], [43], [44], [45], [46] 2:

do (n=, t) Iab(-i, t)+ b(f) * x(n', t)+ s(n') or (4.62)
dt

= - al Oib(t) + Z bi,jXj(t) + si. (4.63)
dt

Since the clipped M-lattice system, (4.48), permits arbitrary linear interactions among

the state variables, non-linear interactions among the output variables, and allows any

T E R+, it is a generalization of the diagonal-state clipped M-lattice system and of

the reciprocal cellular neural network. However, the clipped M-lattice system is not

totally stable for all parameter values.

4.5.2 Designing Clipped M-Lattice System To Have Binary

Outputs

Many applications that rely on solving the so-called "coordinated decisions

problems" require binary outputs. Digital image halftoning, edge and corner detec-

tion, pattern extraction, and texture classification are some examples of coordinated

decisions problems in the field of image processing. In this subsection, we derive

conditions for driving the outputs of two subclasses of the clipped M-lattice system

to the corners of the hypercube. These results are applied in Section 5.3.

2The authors of the original cellular neural network paper [42] presented a sketch of the proof of

total stability, but it contains errors and omissions.



General Condition For Binary Outputs

For notational convenience, denote d(t) in (4.48) by 6(0(t)). Then the fol-

lowing lemma contains the goal of a design procedure that guarantees binary outputs.

Lemma 4.5.1 Suppose that the clipped M-lattice system, (4.48), is totally stable and

consider its evolution towards an asymptotically stable fixed point, 0. If Je(b) (the

Jacobian of c6((t)) at 01) is such that 3i Re (Ai [Ja(k)]) > 0, then I = 0. In other

words, II = 0, 2IcI = N, and the stable fixed point is 6 {E-1,1}N

Proof: By Assumption 4.2.2, Assumption 4.2.3, and Definition 4.5.1, there exists

a sufficiently small local neighborhood around the fixed point, for which (4.48) be-

comes [30], [47], [48]:

dot

= (A + Ht(0)J( )) ((t)- ), (4.64)

where Ho($) is the Hessian of ('(1t)) at the fixed point, 0(t) = :

H14 () E RxN, He() = [hij()] , hij(?) =. (4.65)
Dxi(t)Oxj(t) 0(t)=

Assume that the premise of the total stability holds, but IZI > 0 (i.e., I = 0). Accord-

ing to the hypothesis on the eigenvalues of the Jacobian, the linearized (small-signal)

system, (4.64), is unstable [31], [23]. Because of this, the overall (large-signal) clipped

M-lattice system is also unstable [47], [48]. But this contradicts the assumption of

total stability. Hence, the conclusion follows. I

Remark 4.5.2 If IIl = 0 for the general clipped M-lattice system, (4.48), then

H(I ,)J-(0) = 0, implying that every fixed point of the form, 2 E {-1, 1}N, is

locally asymptotically stable by Proposition 4.3.1.



Solution For Circulant Symmetric Matrices

Now, consider a class of the clipped M-lattice system, in which A and H4(O)

are restricted to be circulant. Such matrices correspond to 1-D finite impulse response

(FIR) filters. For 2-D filters, A and Hi( ) become block-circulant. In a circulant

or a block-circulant matrix, the same number appears on the main diagonal. A 1-D

filter, h(n), is symmetric if h(n) = h(N - n). For 2-D FIR filters, the symmetry

requirement is: h(n,, ny) = h(N - n,, N - ny). If the filter is symmetric, then the

corresponding circulant or block-circulant matrix is also symmetric.

For example, circularly convolving with the following symmetric 1-D FIR filter:

ho, n =
h(n) = hi, n =

hi, n =

is equivalent to multiplying on the left by the follov

ho hi hi

H = hi ho hi

hi hi ho

Analogously, if the symmetric 2-D FIR filter is:

hoo, (nx, ny)

hol, (nx, ny)

ho0, (nx, ny)

hio, (nx, ny)

h(nz, ny) = h11, (nx, ny)

h12, (n5 ny)

hio, (n•, ny)

h12, (nx, ny)

hni, (n., ny)

95

0;
1; (4.66)

2
ving symmetric circulant matrix:

(4.67)

(0, 0);
(0, 1);

(0,2);
(1, 0);

(1,1);

(1,2);
(2,0);
(2,1);
(2,2)

(4.68)



then the corresponding symmetric block-circulant matrix is:

H =

Ihoo hol hol' 'hlo hil h121 'h10  h12  hllI

Ihol hoo hola Ih12  h10  hill 1hll h10  h 121
I I I I I I
Ihol hol hooi Ihll h1 2  h10 1 h12  hll h10l
L----- L- ----- L -----

r----- 1 r---- -- i r--- - -

Ihlo h12  hll hoo00  h01  h01
I 'h10  h11  h12'

I I I I I I
lhll hio h1 21 hol0 hoo00  h011 Ih12  hio hll
I I I I I I
Ih12  hll h10i ho01  h01  hool Ihll h12  h10i
L -- - L----- J L- ---- J

r ----- " r -- - I r-- ------

'hlo hll h1 21 h1io h12  hll hoo00  h01  h01o
I I I I I I
Ih12  hlo h11 l Ihll ho1  h121 ho01  hoo ho01
I I I I I I
Ihll h12  h10 i h12  hll h10  ho01  h01  hoo00
L----- L ----- J L---- -J

(4.69)

Using symmetric FIR filters as parameters of clipped M-lattice systems is

convenient. First, the FIR computation is local in nature. Locality is beneficial,

because it minimizes the inter-processor wiring requirement in VLSI realization and

the amount of floating point operations in computer simulation. Second, the added

symmetry makes the computation not only local, but also modular. Symmetric FIR

hardware is a scalable structure, built out of identical computation / communication

modules.

Moreover, as we will show, properly choosing just one parameter, h(n' = 0), is

sufficient in order to drive the outputs of the diagonal-state clipped M-lattice system

to ±1. For notational simplicity, we have dropped the dependence of Ht(<) on 0,

but it should be clear that the requirements to be derived must hold for any value of

0. Simplifying the notation of Hn(/) to H is strictly legitimate only when Ht(4) is

a constant matrix.

Thus, the goal is to satisfy the condition of Lemma 4.5.1 by choosing h(0) such

that Je(o) has at least one eigenvalue with a positive real part for I1I > 0.

-~------ ------- -------



Proposition 4.5.2 Assume that the clipped M-lattice system, (4.48), is totally sta-

ble. Suppose that A and H used in the clipped M-lattice system, (4.48), correspond

to symmetric filters, and the following conditions are satisfied:

h(ak)h(k)a(d) + -h(6) Ja((n)! > a(i) + Ta() + h(k) + a |(n'

a(h) + -d- a() > 0, (4.70)

where k = argmax a(n) + T

Then ' E {-1, 1}N

Proof: Introduce additional notation:

B = Je() = (A + HJe()). (4.71)

For the purposes of illustration, we will use the 3 x 3 example of (4.66) and (4.67):

dg(i1) dg( 2) dg(93)ao + ho 1 al + h al + h
d0 d 2 d03

dg(0 1) dg(0 2) dg(4 3)B I al + hi ao + ho a + hi d (4.72)

dg( 1) dg(2 ) dg(3)al + hi ai + a + hi dg ao + hodli d02 d03
There is no loss of generality, and the proof is valid for B of any size.

Observe that the worst-case situation occurs when only one output variable

has not yet saturated to ±1 (i.e., the trajectory of the clipped M-lattice system is

moving along an edge of the N-dimensional hypercube):

h0ao + ,a al

Bedge = al +- a a1  . (4.73)

al +- al ao
T

The! chosen value of ho must guarantee that the trajectory will not terminate on the

edge, but head to a corner.



In order to see this, consider (4.72) at an interior point:

ho hi hi
ao + a -+ a ± +

Bint = al + ao + - al + (4.74)

al + al + •• o +
T T T

Since Bint is circulant, it has the same value on the main diagonal. Recall that A

is a circulant and negative-definite matrix, which implies that ao < 0. Then setting

ho > -Tao gives trace [Bint] > 0. Since Bint is symmetric with positive trace, it

possesses at least one positive eigenvalue. This makes interior fixed points unstable,

and some output variable must saturate to +1.

With one output variable saturated, the candidate fixed points are on the faces

of the hypercube, and:

ho hi
ao + a, + al

Bface = a +- ao 0  - a, (4.75)

al +- al+- ao
T T

Note that Bface is neither circulant nor symmetric, and one diagonal element is always

negative. Hence, in order for Bfrace to have an eigenvalue with a positive real part, h0

cannot be less than what it was in the case of Bint. Therefore, since eigenvalues are

continuous functions of matrix elements, Bedge depicts the worst-case scenario.

Also observe that all the B matrices, representing the edges of the hypercube,

have the same eigenvalues. This is a consequence of the fact that the B matrix that

describes an edge can be obtained from the B matrix that describes any other edge by

performing one row exchange and one column exchange. When the total number of

row and column exchanges is even, the characteristic polynomial and, consequently,

the eigenvalues of a matrix are preserved. Since all the edges of the hypercube are

equivalent in this sense, any convenient choice of Bedge, such as the one in (4.73), is

appropriate.



The remainder of the proof employs Gerschgorin's

circle theorems [49], [31], [50], [23]. One Gerschgorin circle of Bedge is centered at

ao + -, with the radius ro = l a()lj. All the other Gerschgorin circles of Bedge are

centered at ao with the maximum radius r,,u = a() + + la( )l. It is

known that an isolated Gerschgorin circle contains exactly one eigenvalue [49], [50].
ho

According to the hypothesis, (4.70), the circle centered at ao + h- is isolated from

the rest and is situated entirely in the right half plane. Hence, 3i Re (A~ [Bedge]) > 0.

Then by Lemma 4.5.1, edges of the hypercube do not contain stable fixed points.

Therefore, X• {f-1, 1 }N. I

Remark 4.5.3 From (4.70), the Bedge matrix of the diagonal-state clipped M-lattice
ho

system is lower-triangular, and one of the eigenvalues is ao + •. Since the

diagonal-state clipped M-lattice system is totally stable by Proposition 4.5.1, setting

ho > -Tao guarantees that ' E {-1, 1}N . When T = 1, the diagonal-state clipped

M-lattice system reduces to the reciprocal cellular neural network [42], [43], [44], [45],

[46]). Thus, setting ho > -ao guarantees that X E {-1, 1 }N

It is interesting to study how the conditions of Proposition 4.5.2 vary in the

limit as T -- 0. Intuitively, the specifications on h0 ought to become less stringent

in the high-gain limit, since any noise in the oi(t) (state) variables gets amplified to

nearly +1 in the 7X(t) (output) variables. In slightly more technical terms, a higher

gain facilitates the process of making interior, face, and edge fixed points unstable.

This alleviates from ho some of the burden of satisfying the conditions of Lemma 4.5.1.

Formally, letting T - 0 in (4.70) gives:

h() - h(k)* > 0,
h(0) > 0, (4.76)

where k = argmaxlh(n')l.
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Remark 4.5.4 For the analog Hopfield network or the reciprocal cellular neural net-

work operating in the high-gain limit, h(O) > 0 guarantees that ' {E -1, 1}N

Remark 4.5.5 Analysis of the general M-lattice system is also relevant for deter-

mining the stability of practical realizations of diagonal-state M-lattice systems (or

analog Hopfield-type networks) [51], [52]. Since the circuit parasitics are unavoidable,

the M-lattice system, (4.18), is a more accurate model of the actual electronic circuit

than the diagonal-state M-lattice system, (4.37). While the diagonal elements of A

reflect intended circuit parameters, the off-diagonal elements capture the parasitic re-

sistances, coupling the state nodes of the network. Therefore, prior to committing the

VLSI layout of, say, an analog Hopfield network to fabrication, the parasitics have to

be carefully modeled and the entire design simulated as a full M-lattice system in order

to verify that the network is totally stable and produces appropriate output values.

4.6 Optimization With M-Lattice

The M-Lattice can solve non-linear programming problems for binary-

valued and for real-valued non-linear objective functions. In either case,

the constrained-optimization (i.e., programming) problem is transformed into

the! more straightforward task of plain (unconstrained) optimization via the

Karush-Kuhn-Tucker conditions [53].

4.6.1 Binary-Output Case

It has been shown that if T -+ 0, then the analog Hopfield network seeks local

optima on E {-1, 1}N in the sense of the Hamming distance of one of objective

functions that are multilinear polynomials [37], [35]. In this section, we state the
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conditions, under which the M-lattice system, (4.18) with f-((t)) =ef (I(t)),

or the clipped M-lattice system, (4.48), do the same. The necessary mathematical

background appears in Section B.4 of Appendix B.

Proposition 4.6.1 Suppose that 4(D) is a multilinear polynomial, let T - 0, and

assume that the M-lattice system is totally stable. Then the M-lattice system seeks

local maxima of (D) on ' e {-1, 1}N in the sense of the Hamming distance of one,

provided that the following parity condition is satisfied:

Vi: sign -yEajj = sign (0i). (4.77)

Proof: Due to the total stability, the M-lattice system converges in the limit as

t -- o00:

0 = A +V (2), or (4.78)
- A = Ve(X), or (4.79)

E- aj = [ ())]i q =) V i. (4.80)

By Proposition B.4.2, X is a strict local maximum of 4, provided that:

V i: sign ([ D (X)])= sign (Xi). (4.81)

But sign (Xi) = sign (0i) for all standard sigmoidal (refer to (4.2), (4.3), and Assump-

tion 4.2.1) and clipping (refer to (4.47) as one example) warping functions. With that

in mind, inserting (4.81) into (4.80) recovers the conclusion, (4.77). I

4.6.2 Real-Output Case

If +(t) = } (t) and Assumption 4.2.3 is satisfied, then the non-clipped version

of (4.48) becomes a gradient system, associated with the following auxiliary function:

1def 1
E(t) = E(p(t)) = 2 (t)T Ao(t) + Td(f(t)). (4.82)
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This is confirmed by taking the gradient of E(4(t)) with respect to O(t):

VjE(0(t)) = A(t) + T (I )1 (2(t)) = A(t) + (t (t)), (4.83)

which vanishes at the fixed points. Since Assumption 4.2.3 is satisfied, Lemma 4.3.3

still holds, and by Lemma B.1.1, (4.48) does not contain cycles. Then it follows that

(4.48) is totally stable by Lemma 4.3.2, Lemma 4.3.4, and Proposition 4.3.2. Hence,

expressing D,-(J ) in terms of VE(O(t)) and inserting the result into (4.48) leads

to fixed points, , corresponding to local maxima of E( (t)) in (4.82).

We summarize the result for T = 1.

Proposition 4.6.2 Suppose that Assumption 4.2.3 is satisfied with X(t) = (t) and

set V,(D((t)) to:

=gA(f(t)) = E(0(t)) - A•(t). (4.84)

Then the M-lattice system, (4.48), seeks local maxima of the following function:

E() = 2 TAo + #(2) (4.85)

with respect to b.-

Remark 4.6.1 If A is set to 0, then (4.48) turns into the non-linear programming

neural network [/9], [40], [41]. When A = 0, Lemma 4.3.3 does not apply. Thus,

in order to operate this system, one must assume that O(t) is bounded. This is a

stronger assumption than Assumption 4.2.3, required by Proposition 4.6.2.

4.7 Pattern-Forming Property Of M-Lattice

When the M-lattice system is organized as shown in Figure 4.4(c) and is the

discrete-space version of a particular case of the general reaction-diffusion PDE, stated
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in (2.3), its small-signal equivalent becomes a convolutionally-coupled M-lattice sys-

tem. In such cases, determining whether or not the original M-lattice system is capa-

ble of pattern formation is particularly straightforward. The given M-lattice system

possesses the pattern-forming property if its corresponding small-signal dynamical

system is a pattern-forming convolutionally-coupled M-lattice system.

4.8 Chapter Summary

We developed and mathematically analyzed the M-lattice, proposed as a novel

alternative to reaction-diffusion. While retaining the crucial pattern-forming property

of reaction-diffusion, the M-lattice is bounded. In addition, it allows more flexible

interactions among its variables than its close relatives, such as the analog Hopfield

network and the cellular neural network. Flexibility and boundedness enable the

M-lattice to capture the behavior of reaction-diffusion and many physical systems in

a controlled manner.

Investigating the convergence properties of various forms of the M-lattice and

- in the cases of convergence - studying the types of equilibrium output values has

been this work's main theoretical thrust. For a subclass of the M-lattice, called the

diagonal-state clipped M-lattice system, we provide a proof of the total stability,

and this proof applies to the cellular neural network as well. The total stability is

an important property, because it guarantees convergence to equilibrium states with

potentially practical interpretation.

By analyzing the stability of fixed points, we derive the conditions for driv-

ing the equilibrium outputs of the M-lattice to binary values. Systems capable of

converging to binary-valued equilibria are useful for solving coordinated decisions

problems, and this binarization result also contributes to the theory of other related
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(a)

(b)

(C)

Figure 4.4: Three of many ways of arranging the M-lattice on a spatial grid. (a)
layers with flexibly defined boundaries with arbitrary linear and non-linear intra-
layer and inter-layer interactions; (b) rectangular layers with arbitrary linear and
non-linear intra-layer and inter-layer interactions; (c) rectangular layers with the
intra-layer interactions restricted to be linear and the inter-layer interactions re-
stricted to involve only the output variables corresponding to the same spatial index
(i.e., at vertically aligned sites).
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models. Specifically, for the cellular neural network, the analysis in this chapter is a

precise formulation of an earlier argument based on circuit diagrams. And for certain

special cases of the analog Hopfield network, this analysis explains why the output

variables converge to binary values even with non-zero neuron auto-connections. This

behavior, observed in computer simulation by other researchers for quite some time,

has been unexplained until now.

As another practical interpretation of equilibrium states, we have determined

the conditions under which various forms of the M-lattice converge to local optima

of non-linear objective functions. For binary-valued outputs, the M-lattice, like the

analog Hopfield network, is capable of seeking local optima of multilinear polyno-

mials in the sense of the Hamming distance of one. For real-valued outputs, the

clipped M-lattice performs optimization in the standard sense and provides a realis-

tic mathematical model for the non-linear programming neural network circuit.

This chapter ends with the observation that, based on the definition given

earlier, many types of the M-lattice possess the pattern-forming property. This prop-

erty makes the M-lattice suitable for pattern-synthesis and pattern-extraction appli-

cations.

Table 4.1 compares the new M-lattice model with its predecessors.
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Model Linear Sigmoid Non-Linear External

Interactions Interactions Input

(On State (On Output Inclusion

Variables) Variables)

RD diffusion not limited wide

only required variety variety

Hopfield diagonal required symmetric diagonal

Network matrix* matrix matrix

Non-Linear diagonal not limited any

Programming matrix* required variety

Circuit

Cellular diagonal required symmetric matrix

Neural matrix* matrix

Network

M-Lattice matrix* required wide any

variety

Table 4.1: Comparison of the M-lattice system with other related models. The
"'*" indicates that all eigenvalues must have a negative real part. The column ti-
tled "External Input Inclusion" refers to the variety of ways the input signals can
intertwine before the result entering the system.
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Chapter 5

Applications

This chapter demonstrates how various modes of operation of the M-lattice

system, presented in Chapter 4, are applied to image and sound synthesis, image

restoration and enhancement, image halftoning, and non-linear programming.

5.1 Synthesizing Visual And Sound Textures

As a "sanity-check" application of the new M-lattice, we first use it to imple-

ment Turing's reaction-diffusion system. We verify that the M-lattice can simulate

the basic reaction-diffusion mechanism by duplicating a number of published visual

textures. Then we generate new visual and sound textures.
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5.1.1 M-Lattice For Synthesizing Visual Textures With

Turing's Reaction-Diffusion

Consider the following modification of Turing's two-morphogen

reaction-diffusion system (in 1-D for the simplicity of notation):

dgA (nz, t)
dt = XA(n, t) Xr(nx, t)-- A(n , t) - 12

+ DA[A(nx + 1, t) - 20A(n, t)+ OA(n, - 1, t)],

d~l(nz,t)i( = 16 - XA(n, t) " XI(nx, t)
dt

+ Di[4i(nx + 1,t) - 2'i(n, t) + i(nx - 1, t)], (5.1)

where Gi(u) uses (4.47) with T = 1 and is clipped below at zero. Clearly, by collecting

the linear and the non-linear terms, (5.1) can be phrased in the form of (4.5). The

basic linear term is the discretized diffusion. The linear term of the activator also

absorbs -- A(nx, t), originally a part of reaction. With this arrangement of terms,

(5.1) satisfies Assumption 4.3.1. The non-linear term is comprised of the non-linear

part of reaction, whose functional specification is the same for all spatial indices, nx,

and the actual reaction interaction is only between the site itself and the site at the

same spatial index on the other lattice.

In order for (5.1) to form patterns, it must obey the local stability / instability

requirements of Definition 2.5.1. Since (4.47) with T = 1 is a unity-slope straight

line near the fixed point, 'A(nm, t = to) = Ob(n•, t = to) = 4, this M-lattice system

inherits all the pattern-forming properties of Turing's reaction-diffusion system. In

fact, we have found that since the sigmoid with T = 1 also appears as a unity-slope

straight line for small deviations about the fixed point, this M-lattice system retains

all the pattern-forming properties of Turing's reaction-diffusion system if Gi(u) uses

the sigmoid of (4.2) with T = 1 and is saturated below at zero.
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(a) (b)

Simulation of this system gives results that were very close to those of the orig-

inal Turing system with the clipping done inside the numerical integration method.

This is not surprising, because the M-lattice system takes care of the clipping by the

virtue of its form.

In addition to repeating the spots of Figure 2.4 and the stripes of Figure 2.5,
a number of additional textures have been synthesized with the M-lattice, operating

in the reaction-diffusion mode. This "texture gallery" appears in Figure 5.1.

5.1.2 M-Lattice For Synthesizing Sound Textures

We have seen that reaction-diffusion on a 2-D spatial grid can synthesize a wide

variety of natural-looking visual textures. Suppose that we remove one dimension.

Then one can design the resulting 1-D reaction-diffusion system to synthesize natural

1-D patterns. Treating the hydranth as the ring of cells proved useful for trying

to explain the growth of tentacles in tubularia (see Section 2.4.4 of Chapter 2) [1].
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(c) (d)

This model can also be applied to sound synthesis if the audio waveform is treated

as the ring of sound samples. The goal is to harness the pattern-forming property

of reaction-diffusion to synthesize natural-sounding music textures. The bounded

and flexible M-lattice facilitates the design process, captured in Figure 5.2. For the

purposes of listening, the final sample values are sequenced and played through the

loudspeaker. In fact, the periodic boundary conditions allow the "seemless tiling"

(repetition) of the same sequence. Thus, the sound waveform can be looped over and

over for prolonged listening without audible discontinuities.

The present technique belongs to the class of "tape methods" (as opposed to

"real-time methods") of sound synthesis. This is because all samples are updated at

the same time during synthesis, and the temporal order is not enforced until playback.
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(e) (f)

Figure 5.1: Reaction-diffusion texture gallery, synthesized by the M-lattice. (a)
the "monkey brain" texture, generated by using Turing's model with DI = 256 and
the evocator having a random spatial-frequency spectrum; (b) the "worms" tex-
ture, generated by using Turing's model with DI = 256 and the evocator having
random spatial-domain samples; (c) the "wiggles" texture, generated by using a
linear-reaction reaction-diffusion system with DI = 256 and the evocator having a
random spatial-frequency spectrum; (d) the "circles" texture, generated by using
a linear-reaction reaction-diffusion system with DI = 400 and the evocator having
a white spatial-frequency spectrum; (e) the "target" texture, generated by using
a linear-reaction reaction-diffusion system with DI = 256 and the evocator hav-
ing a white spatial-frequency spectrum; (f) the "artistically-halftoned Lena" image,
generated by using a linear-reaction reaction-diffusion system with D1 = 400, the
original "Lena" image of Figure 5.8(a) as the evocator, and the system designed as
an aggressive band-pass filter.
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By experimenting with a large number of linear and non-linear reaction func-

tions, describing the correlations among samples on different scales, we have synthe-

sized several natural sounds, most notably:

* burning match;

* cello; and

* brass.

These sounds possess distinctively rich timbre. Furthermore, it has been re-

marked that they exhibit "warm" analog-like qualities, even though the synthesis

algorithms have been implemented on the digital computer [54]. We attribute this

phenomenon to the fact that the M-lattice is an analog system, and its evolution is

tracked accurately in simulation by discretizing the time axis into finely-quantized

steps.

5.2 Estimating Local Orientation

For the applications that follow in Section 5.3 and Section 5.4.1, we will use the

local orientation in the image to guide the action of the M-lattice system. The physi-

ological evidence for orientation detectors in the human visual system system [55] has

led to widespread recognition of the importance of orientation for both human vision

and perceptually-based image processing. Not only is orientation perceptually signifi-

cant, but image processing algorithms that sense local orientation are better equipped

to adapt to inhomogeneous data. Rather than compute orientation at all possible

angles and then decide which angle dominates, we employ the computation-saving

"steerable" set of basis filters described in [56] and used in [57]. The output of the
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Figure 5.2: Synthesizing reaction-diffusion sound textures using the M-Lattice.

113



steerable filters at each pixel gives the angle, Oi E [-7r, 7r], and relative strength (or

magnitude), mi E [0, 1], of the dominant orientation present at that pixel.

For example, to design a low-pass adaptive filter that rotates to the dominant

orientation, denote the diagonal matrix of variances by Vi and the rotation matrix

by Oi:

Vi = [ 01, - cs (5.2)
0 .,j sin O9 cos Oi

The relative sizes of o4, and o,? depend on mi and determine the skewness of filters

with respect to the dominant orientation:

L

a?2 = 2 a = L - (5.3)

where L x L is the size of the filter mask in pixels. Let n E Z 2 be the pixel position.

Then the (unnormalized) oriented low-pass filter is given by:

hi(n') = exp (-iTOTViOin. (5.4)

5.3 Restoration And Halftoning Of Fingerprints

Using M-Lattice System

A typical fingerprint identification system contains a pre-processing step, which

involves the halftoning of the original scanned and finely-quantized fingerprint image.

The essential steps comprising the identification sequence are: determining the type

of the fingerprint, counting of ridges and bifurcations, and locating the core. A

binary fingerprint image is more amenable for these tasks than a gray-scale fingerprint

image [58].
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In this section, we propose a pre-processing scheme that not only halftones the

original fingerprint image, but also removes artifacts that can hinder the identifica-

tion process. The method uses the ability of the clipped M-lattice system to excite

locally-growing stationary spatial waves, which are the signature of reaction-diffusion

systems, as well as to produce equilibrium images that have binary pixel values.

The motivation for using the reaction-diffusion aspect of the clipped M-lattice

system is that fingerprint images have distinct patterns of thin curves, remotely resem-

bling zebra stripes. Reinforcing the harmonics that create these curves will emphasize

the essentials of the fingerprint, while suppressing the artifacts [59].

In light of this analogy, it is interesting to note that the reaction-diffusion ap-

proach to image restoration models the signal (as opposed to modeling the noise [60]).

Many traditional, such as Bayesian or Wiener, approaches model the degradation and

then design the model parameters so as to attennuate it [61], [62], [63], [25], [64], [65].

As shown in Chapter 4, halftoned images that are fixed points of the M-lattice

system are asymptotically stable. This means that even though reaction-diffusion is

a small-signal phenomenon, the large-signal evolution of the system toward a binary

output image does not destroy the restoration performed by the linear behavior.

5.3.1 Small-Signal Regime: Reaction-Diffusion

Following the discussion of Section 4.5.2 of Chapter 4, let A and H be block-

circulant symmetric matrices. Then the clipped M-lattice system, (4.48), can be

written as follows:

d , t) a() * V (n, t) + s(ni) - h(n') * X(n, t), (5.5)
dt

where n' E Z2 , a(h) and h(n') are the FIR filters, corresponding to A and H, respec-
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tively, and s(n') E [-1, 1] is the original finely-quantized input image signal '. The

advantage of using this type of the clipped M-lattice system for the pre-processing

of fingerprints is that it can be guaranteed to produce binary outputs.

Choose A and H such that the unique interior fixed point, 0(n') E (-1, 1), of

(5.5) is at s(n'). Denote the DFT representations of the filters by A(k) and H(k).

Then all the A(k) coefficients must be negative [23]. Before b(n', t) reaches the clipping

levels of (4.47), (5.5) simplifies to:

d (n-, t) 1
dyit) s() + (a(i) - h(-) ) (, t). (5.6)

This is a one-morphogen reaction-diffusion system, introduced in Section 3.2.4 of

Chapter 3. Taking the DFT of both sides of (5.6) yields:

do(E, t) 1d t = S(+ (A() - TH(r (,t), (5.7)

whose solution for each k is:

S(k) S(k)
0(k, t) S() +F( exp (F(+F)t) F(k)' (5.8)

where F(k) = A(k) - TH(k), and the initial condition is set to S(f), the DFT equiv-

alent of the original image.

In Chapter 2 and Chapter 3, it was shown that making F(k) positive for a set

of spatial frequencies creates the onset of growing spatially-stationary waves.

The H(k) filter is designed in a way that incorporates the orientation infor-

mation of the fingerprint image as described in Section 5.2. Pertinent to fingerprint

restoration is the kind of filtering that delineates the ridges, while canceling fluctu-

ations in the DC level and getting rid of extraneous information. Thus, H(k) and

A(k) are constructed in a way that makes the frequency bands corresponding to the
1

ridges have negative DFT coefficients, and the - factor amplifies the effect.
T

1 Actually, s(n') is obtained by scaling and shifting the original 256-gray-level image, I('):

= ( -1116.
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5.3.2 Large-Signal Regime: Halftoning

Proposition 4.5.2 gives sufficient conditions for ensuring that the large-signal

equilibrium output pattern is binary. As was discussed in Section 4.5.2 of Chapter 4,

these conditions place restrictions on the elements of h(n'). The needed additional

flexibility is provided by the A(k) filter, which has negative DFT coefficients. For

instance, in fingerprint restoration, we use A(k) to cancel the unwanted harmonics,

most importantly the DC term, k = (0), which is not possible with H(k) acting alone

or with a(n') oc -6().
Figure 5.3(a) is a typical scanned and finely-quantized fingerprint image from

the NIST database. The original image is 512 x 512 pixels and was low-pass filtered

and down-sampled by a factor of 2 in each dimension in order to speed up the com-

putation. From the figure, it can be seen that the original fingerprint is corrupted by

a number of scratches, and several regions are obscured by uneven illumination. As

shown in Figure 5.3(b), the standard fingerprint halftoning method, based on adaptive

median filtering and thresholding, only makes these artifacts more apparent, because

it increases the image's contrast [66]. The adaptive threshold is set to the average of

the minimum and the maximum gray levels within some neighborhood surrounding

each pixel of the original fingerprint image. The optimal size of the window was de-

termined to be 5 x 5 pixels by trial and error. Other standard halftoning methods,

such as ordered dither or error diffusion, will perform poorly also, because they have

no built-in restoration mechanism and will halftone both signal and noise alike.

Using a two-stage system, consisting of some conventional image restoration

algorithm, followed by adaptive-thresholding type of halftoning is another viable al-

ternative. However, there are two arguments in favor of using the clipped M-lattice

system-based approach. First, the analysis of Chapter 3 implies that the attainable

signal-to-noise ratios can be very large. Essentially, the clipped M-lattice system
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applies the filters, a(n) and h(n'), an infinite number of times by the virtue of be-

ing a continuous-time system. Second, no separate halftoning step is needed, since

the clipped M-lattice system binarizes the image by setting the elements of hn' in

accordance with Proposition 4.5.2.

Other researchers have succeeded in using the reaction-diffusion paradigm for

performing operations that are relevant to the pre-processing of fingerprint images.

One effort, which, incidentally, was not specifically targeted for fingerprint restoration,

deals with replacing portions of fingerprints with patches, whose visual appearance

resembles that of a generic fingerprint texture [67], [68]. However, the inserted patch

may turn out to be substantially dissimilar from the missing section of the original

image. Another report describes the restoration of noisy fingerprints with a particular

reaction-diffusion system [29]. However, the output image is not a halftone. Our new

technique is inspired by these previous approaches and accomplishes restoration and

halftoning simultaneously.

Figure 5.3(c) displays the processed fingerprint image. The scratches have

been removed and the unevennesses in the DC levels throughout the image have been

eliminated. Essential detail such as ridges and bifurcations appear as continuous black

curves, distinctly enhanced against a noise-free white background. Moreover, ridges

and bifurcations have been extended even into the regions where they are barely

detectable in the original image. This illustrates the celebrated synergetic property

of reaction-diffusion systems: the emergence from noise of a spatial pattern, whose

qualitative characteristics are pre-determined by the system's parameters [1], [12].

Using the connection machine (CM-2), the final image is produced in 25 iterations at

the time step of 0.1 sec. For viewing convenience, Figure 5.4 shows a 128 x 128 pixel

middle-top section of each respective image of Figure 5.3, magnified by a factor of 2

in both dimensions.
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(a)

(b) (c)

Figure 5.3: Restoration and halftoning of fingerprints. (a) the original "finger-
print" image; (b) the "fingerprint" image halftoned by a standard adaptive-threshold
method; (c) the "fingerprint" image restored and halftoned by the clipped M-lattice
system operating in the reaction-diffusion mode utilizing orientation information at
each pixel of the original.
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(a)

(b) (c)

Figure 5.4: Magnification of a 128 x 128 pixel middle-top section of the images in
Figure 5.3. (a) original; (b) halftoned by a standard adaptive-threshold method; (c)
restored and halftoned by the clipped M-lattice system.
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5.3.3 Reaction-Diffusion And Optimization

In addition to acting as a reaction-diffusion system in the small-signal or linear

mode of operation, (5.5) is capable of performing non-linear optimization in the large-

signal mode. Following the discussion of Section 4.6, suppose that h(ni), designed to

amplify the required spatial harmonics, allows setting h(d) = 0. Also, let T -+ 0, since

this is the only means of obtaining binary outputs. Finally, ensure that a(') * W(E)

and 0(n') have the opposite signs V i. Then the resulting equilibrium image is a local

minimum (in the sense of the Hamming distance of one) of the following objective

function:

- () = -(f - TH;), (5.9)

where H is the equivalent matrix representation of h(n').

5.3.4 Comparison To Related Models

The cellular neural network can also give rise to reaction-diffusion by designing

the h(n') filter as discussed in Section 5.2. However, the cellular neural network does

not perform optimization in the sense of the Hamming distance of one, because it

requires h(0) $ 0 in order to assure binary outputs [42].

The analog Hopfield network performs optimization in the sense of the Ham-

ming distance of one, because it has h(0) = 0 [37], [35]. But the a(n') filter and the

h(n') filter are undefined, unless they are shift invariant, in which case the analog

Hopfield network becomes a cellular neural network. Furthermore, when the a(n')

filter is defined, a(n') oc -6(n'), so that A(k) is the same negative number for all (W).

This makes it difficult, if not impossible, to suppress the growth of the unwanted

harmonics.
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In contrast, the M-lattice system combines the attractive features of both

networks. The flexibility brought about by the a(n') filter makes it easier to design the

frequency bands that are amplified during the small-signal reaction-diffusion regime.

Finally, if the A, which corresponds to the a(n') filter is substantially diagonally

dominant, then the M-lattice system also performs optimization in the sense of the

Hamming distance of one, since h(0) = 0.

5.4 Halftoning

The halftone process, in which the tonal values of the image are represented

by dots of varying sizes on a white background has played an important role in the

graphic arts and printing industries since the late 1800s [69].

Halftoning can be viewed as a transformation from the gray-scale domain to

the dot-matrix domain. Because of the limited spatial frequency response of the

human visual system, the dots appear to merge at normal viewing distances (e.g.,

8 - 14 inches), thereby producing the same impression as the original gray-scale im-

age. Since the final part of the overall display system is the human viewer, the

halftoning method must perceptually yield an image which appears similar to the

original gray-scale image [70].
dots

The recent proliferation of medium-resolution (e.g., 300 ) binary output
inch

devices, such as FAX machines and laser printers has brought increased attention to

optimal (in the sense of the eye and the printer models) image halftoning methods

that meet inexpensive parallel hardware constraints [71]. Halftoning methods that

are optimal in the least-squares sense are summarized in Appendix E.
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5.4.1 Halftoning Using Diagonal-State M-Lattice

In this section, we consider the problem of synthesizing a binary caricature

that brings out the directional content of an image. The resulting halftoning method

must yield an image that appears similar to the original gray-scale image in some

indirect sense. A least-squares halftoning approach, such as the filtered-squared-error

halftoning method of Section E.1, is appropriate for this task, because it can employ

an explicit model of perception as the measure of performance [72]. Here we show

how to implement such an approach using the diagonal-state M-lattice system.

Suppose if E Z 2 ; s(ni) E [-1,1] is the finely-quantized original input image

signal; y(n') { -1, 1} is the output halftone image; and h(n') is a 2-D filter (not

necessarily the same as h(n) in the previous section). Let B = HTH, where H is a

circulant matrix with h(n') in the first row. The problem of halftoning can be stated

as a non-linear program. In order to solve this problem using the diagonal-state

M-lattice system, we combine the objective function to be minimized, (E.6), with

the N constraints, (E.7), into the Lagrangian cost functional with the help of the

Karush-Kuhn-Tucker conditions [53]:

minl ((), where

1 1
£(Y) = 1Y-B - (B) T ?+ - Pi(y- - 1), (5.10)

pi < 0, pi(yi- 1) = 0. (5.11)

The Lagrange multipliers, pi, are the varying penalty terms that enforce the con-

straints according to (5.11). As a result, the unconstrained minimization of I£(7) in

(5.10) produces the optimal halftone image.

The optimization problem, (5.10), is "programmed" onto the M-lattice system,

(4.48), by setting ' equal to ', 4(2) to -L£(W), and taking partial derivatives. This
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(a) (b)

Figure 5.5: Orientation-sensitive halftoning. (a) the original "Einstein" image;
(b) the "Einstein" image adaptively halftoned using orientation information at each
pixel of the original.

yields:

d A (t) + Bs-- B (t) - P-(t), (5.12)dt

where P = Diag {pl, ... , PN}. The elements of a(n') are chosen so as to guide

the system towards an optimum corresponding to a perceptually-pleasant halftone.

In the next section, we will show that A = B - I is a good choice, because it filters

out objectionable correlated spatial patterns.

Halftoning with the Hopfield network would be similar, but requires setting

bi2 > 0 [73]. Otherwise, the optimal values of y2 will not be binary [37]. In addition,
the Hopfield network restricts the quality metric to be a symmetric matrix, B. Since

no effort is made here to design H in a way that would result in bii > 0, the non-linear

constraints provide the only mechanism for driving the output pixels to the limits of

the gray scale.
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Treating halftoning as a non-linear programming problem and solving it with

the diagonal-state M-lattice system offers considerable flexibility in the choice of

the quality metric and in the functional form of constraints. In order to demon-

strate this flexibility, we incorporated orientation detection (see Section 5.2) into the

halftoning quality metric. The adaptive filter matrix, H, was designed so as to in-

clude the information about the dominant orientation at each pixel of the original

image, shown in Figure 5.5(a). The corresponding binary image, produced by the

diagonal-state M-lattice system, appears in Figure 5.5(b). Since no effort is made

to design H in a way that would result in bij _ 0, the non-linear constraints pro-

vide the only mechanism for driving the output pixels to the limits of the gray scale.

In the language of Section 4.5.2, the non-linear constraints make interior, face, and

edge fixed points unstable without affecting the stability status of corner fixed points.

Orientation-sensitive halftoning performed on two other test images is illustrated in

Figure 5.6 and Figure 5.7.

All three of Figure 5.5, Figure 5.6, and Figure 5.7 exhibit more of the line

and curve features found in hand-drawn halftones (such as the Wall Street Journal

portraits). On the CM-2, the simulation takes 3000 iterations at the time step of

0.01 sec. This amounts to about a minute of real time. We emphasize that in con-

trast, the actual Wall Street Journal portraits are drawn by hand, without the aid of

computer, and the entire process takes an artist three to five hours [74].

5.4.2 Noise-Shaping Least-Squares Halftoning With

Clipped M-Lattice System

In this section we combine the noise shaping theory and the M-lattice system

concepts in order to derive a novel halftoning algorithm based on the least-squares

optimization. We show that the binary images produced by the new method offer the
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(a) (b)

Figure 5.6: Orientation-sensitive halftoning. (a) the original "Reagan" image; (b)
the "Reagan" image adaptively halftoned using orientation information at each pixel
of the original.

advantages of both the error diffusion and the least-squares halftoning algorithms.

It is generally agreed that error diffusion produces the best results in terms of

artifacts. The detail rendition capabilities of error diffusion are excellent. Highlight,

mid-tone, and shadow detail are all capable of being reproduced [75]. Due to the in-

loop non-linearity of the one-bit comparator, the conventional error diffusion system is

restricted to be causal in order to be recursively computable. Since the neighborhood

of the error filter is causal, the decisions at any point in the image depend on the

"past" decisions only. This causality of the error diffusion algorithm prevents it from

making sharp transitions and tracking edges properly. It produces correlated artifacts

of directional hysteresis that result from the raster order of processing. The serial

nature of the algorithm means that the errors get propagated in the direction the

image is scanned, which results in these artifacts [76], [73].
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(a) (b)

Figure 5.7: Orientation-sensitive halftoning. (a) the original "Alex holding koala"
image; (b) the "Alex holding koala" image adaptively halftoned using orientation
information at each pixel of the original.

Different error propagation schemes have been proposed to cope with this.

But this is an impossible challenge. There is no proper way to directly extend error

diffusion to 2-D, because there is no natural order in 2-D. Non-causality is what

error diffusion algorithms really miss [73], [77], [78]. A non-causal algorithm makes

the decisions at any point in the image, depending on the "past" as well as on the

"future" decisions, which can alleviate these shortcomings [71].

Generally, least-squares halftoning techniques render edges well, but suffer

from granular artifacts. We show that the M-lattice system naturally combines noise
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shaping with least-squares optimization, thereby offering the benefits of both.

Appendix D reviews the noise shaping theory, which is the underlying principle

of operation of the error diffusion algorithm and the oversampling A / D converter

(used in digital audio systems) [79], [80], [81], [82], [83], [73], [84], [85]. Least-squares

halftoning principles are summarized in Appendix E. Here, we use the least-squares

intensity-approximation halftoning method of Section E.2 in order to illustrate that

the clipped M-lattice system, (4.48), is inherently suited for incorporating the noise

shaping structures into the existing least-squares halftoning techniques.

Letting j = ' and inserting (E.9) into (4.48) at equilibrium gives:

=(2) = (H T s-')TT - 1 T HT H-, (5.13)

V4(X) = H-T- HTH-, (5.14)

- AO = HTg - HTHX, or (5.15)

- (A - HTH) = HTg - HTH( -  ). (5.16)

Now set - (A - HTH) = I, and let X- be the quantization error (or the

quantization noise). Then (5.16) becomes:

= H r ' - HTHq.  (5.17)

Thus, according to (5.17), the clipped M-lattice system performs non-causal

error diffusion in the steady-state limit (see Section D.1 of Appendix D). For percep-

tual reasons, it is desirable to minimize the low-frequency content of the quantization

error. Since HTH is a smoothing filter, HQ def I - HTH becomes a high-pass filter.

Then it follows that A = -HQ. The action of the high-pass noise shaping filter,

HQ, gives the quantization noise the perceptually pleasant "blue" character [69].

We exploit the fact that A can have off-diagonal elements by making it act as a

perceptually-based filter. Therefore, the resulting images correspond to local minima

that are visually more pleasant than those produced using a diagonal A matrix.
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Starting with the equation for error diffusion, (5.17), and reversing the above

steps leads to (5.14), the equation for the clipped M-lattice system in steady state.

Error diffusion has been modeled as a Hopfield network that uses q(,i) in place of

g(4i) [73]. However, the non-monotonicity of q(oi) causes instability. In contrast,

slightly perturbing A so as to make it negative-definite guarantees that (4.48) will

be stable for binary outputs. Hence, the clipped M-lattice system is a more suitable

model than the Hopfield network for non-causal error diffusion.

The performance of the new M-lattice halftoning method was evaluated in

comparison to the error diffusion algorithm, using the test image, shown in Fig-

ure 5.8(a). Figure 5.8(b) shows this image, halftoned by error diffusion. For the sake

of simplicity and fair comparison, the low-pass filter, programmed into the clipped

M--lattice system, is the symmetric non-causal version of the original Floyd & Stein-

berg error diffusion filter [80]. Both filters are given in Figure 5.9 2. The result

of halftoning the original image using the clipped M-lattice system appears in Fig-

ure 5.8(c). In addition, the two close-up versions are provided in Figure 5.10 for

comparison. The new method provides accurate detail rendition without introducing

correlated texture.

Several key aspects of the least-squares halftoning with the clipped M-lattice

system are unique. Unlike the analog Hopfield network or the cellular neural network,

the clipped M-lattice system allows the A matrix to have off-diagonal elements. In

conjunction with a quadratic quality metric, this enables the clipped M-lattice system

to perform blue noise filtering as well as make the resulting halftone images optimal

in the least-squares sense.

In addition, with this example we have shown that the noise shaping archi-

tectures can incorporate all the enhancements presently attributed to the flexibility

2'This choice of a non-causal filter has no justification with regard to optimality; we believe it

could be improved if effort was invested.
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(a)

(b) (c)

Figure 5.8: Faithful-rendition halftoning. (a) the original "Lena" image; (b) the
"Lena" image halftoned using the original Floyd & Steinberg error diffusion algo-
rithm; (c) the "Lena" image halftoned using the clipped M-lattice system with the
symmetric non-causal version of the original Floyd & Steinberg error diffusion filter.
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(a) (b)

Figure 5.9: Noise-shaping filters. (a) the original Floyd & Steinberg error diffusion
1

filter (x -); (b) the symmetric non-causal version of the original Floyd & Steinberg
16

error diffusion filter (x ).
32

(a) (b)

Figure 5.10: Faithful-rendition halftoning. Magnification is x2 on a side. (a)
the "Lena" image halftoned using the original Floyd & Steinberg error diffusion
algorithm; (b) the "Lena" image halftoned using the clipped M-lattice system with
the symmetric non-causal version of the original Floyd & Steinberg error diffusion
filter.
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of the least-squares halftoning methods. The most important strength of the latest

least-squares halftoning approaches is that they can employ explicit models of the

human visual system and of the printing device [86], [72].

5.5 Chapter Summary

In this chapter, we have described how the M-lattice can be applied to signal

synthesis and processing tasks. The model has many modes of operation, and every

application explores one or more of these different regimes.

First, we performed a "sanity-check" on the M-lattice system by confirming

that it could synthesize visual textures, which look virtually indistinguishable from

those generated by discretizing the original Turing's reaction-diffusion system and

bounding the variables from within the numerical integration method. Then we used

it to synthesize reaction-diffusion sound textures, the first of their kind. They are

generated digitally with the M-lattice, but contain pleasant "analog" timbres.

Second, we identified the problem of fingerprint restoration and halftoning to

be a natural application of the clipped M-lattice system, because of its ability to

synthesize zebra stripes, which appear qualitatively similar to ridges and bifurcations

comprising human fingerprints. Using orientation detection for designing the system

parameters so as to emphasize the significant features of a fingerprint image causes the

clipped M-lattice system to act as an infinitely-aggressive band-pass filter. As a result,

ridges and bifurcations are extracted at the highest contrast, even if they are only

faintly detectable in the original image, while scratches, unevennesses in illumination,

and other extraneous detail are removed. The contrast of the restored features is

enhanced with the help of the binarization capability of the clipped M-lattice system.

Third, we have applied the M-lattice to digital halftoning of images. As a non-
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linear programming technique, the M-lattice system is capable of solving constrained

optimization problems with flexible objective functions. Orientation-sensitive halfton-

ing makes use of this property. When the objective function is a quadratic form, the

M -lattice can be designed to perform blue-noise filtering. This implies that the re-

sulting halftone images can be made not only optimal in the least-squares sense, but

also perceptually pleasant.
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Chapter 6

Conclusions

If this thesis had to be summarized by one picture and one sentence, then that

picture would be Figure 6.1, and that sentence would be the caption, accompanying

the figure. In a nutshell, this work presents the novel "M-lattice system", developed

for solving practical signal-processing problems with reaction-diffusion. It is remark-

able that the same mathematical model that can synthesize animal coat markings

can also generate high-quality printouts, seek local optima of non-linear objective

functions, and perform a handful of other engineering applications. The next sec-

tion summarizes theoretical and practical contributions of this research to the field

of signal processing.

6.1 Contributions

The main theoretical contribution is the formulation of the M-lattice system,

which addresses the issues of flexibility and boundedness of reaction-diffusion systems.

The experimental contributions of this research make use of the theoretical results.

Various modes of the M-lattice system have been demonstrated to be useful for signal

processing. These contributions are stated more precisely below.
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Figure 6.1: M-lattice: From spots and stripes on animals to signal processing.
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6.1.1 Theoretical Contributions

Flexibility: The reaction-diffusion system restricts the interactions of its state vari-

ables (or morphogens). Specifically, the linear interactions are restricted to

intra-layer diffusion. In addition, the non-linear interactions are restricted to

inter-layer reaction and only among the state variables at the same position in

the lattice. In contrast, the M-lattice system allows the linear and the non-linear

interactions in the lattice to be both intra-layer and inter-layer. This flexibility

enables the M-lattice to capture the behavior of many physical systems. (See

Section 2.1 and Section 4.2.3.)

Pattern-forming property: The ability to form patterns is what makes

reaction-diffusion a useful model for signal processing. By defining what it

means for a non-linear dynamical system to possess the pattern-forming prop-

erty, we show that the conventional reaction-diffusion systems are not the only

ones that can synthesize textures. For example, based on this definition, a

one-morphogen M-lattice system (i.e., a I-lattice) possesses pattern-extraction

capabilities, because it can be designed to perform infinitely-sharp bandpass

filtering. (See Section 2.5.)

Boundedness in practice: Reaction-diffusion lacks a mechanism for keeping its

state variables bounded, which is a problem in practical applications. In con-

trast, the convergence of the M-lattice has been observed in computer simu-

lation for a large variety of non-linear reaction functions. We show that un-

der certain condition the state variables of the M-lattice system are bounded;

therefore, even when the M-lattice does not converge to an equilibrium, it has

"nice" numerical properties. Hence, it can be applied to practical tasks. (See

Section 4.3.)
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Total stability: In order to account for some of these observations, we prove the

total stability of a subclass of the M-lattice system. This subclass is called the

diagonal-state clipped M-lattice system and is a generalization of the cellular

neural network. While the cellular neural network is totally stable, the proof,

given by its inventors, contains imprecise statements and omissions. The proof

of the total stability of the diagonal-state clipped M-lattice system applies also

to the cellular neural network. (See Section 4.5.1.)

Relationships to established models: The proposed M-lattice system is closely

related to the analog Hopfield network and the cellular neural network, but has

more flexibility in how its variables interact. (See Section 4.4, Section 4.4.3,

and Section 4.5.1.)

Binary outputs: An important problem is how to cause the outputs of various

types of the M-lattice to assume binary values in equilibrium. We develop the

sufficient conditions on the parameter values and study the limiting case of

an infinite sigmoidal gain. The analysis concerns the stability of fixed points,

making precise an earlier argument based on circuit diagrams that was published

for the case of the cellular neural network. For the special case of the analog

Hopfield network, the analysis here explains why the output variables converge

to binary values if the neuron auto-connections are non-negative. In other

words, in order to cause binary outputs, the neuron auto-connections do not

necessarily have to be strictly zero, but can also be positive. Observing this

behavior in computer simulation has puzzled researchers for a period of time,

and, to the best of our knowledge, this result provides the first theoretical

account. (See Section 4.5.2.)

Non-linear optimization: We have classified the kinds of non-linear optimization

that various subclasses of the M-lattice can perform and how they relate to
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the optimization aspects of the established models, such as the analog Hopfield

network and the non-linear programming neural network. For binary-valued

outputs, the M-lattice, like the analog Hopfield network, is capable of optimiza-

tion in the sense of the Hamming distance of one for objective functions that

are multilinear polynomials. For real-valued outputs, the clipped M-lattice per-

forms optimization in the standard sense and provides a realistic mathematical

model for the non-linear programming neural network circuit. (See Section 4.4.3

and Section 4.6.)

Non-causal-neighborhood error diffusion: In addition to simulating reaction-

diffusion, the M-lattice possesses other signal-processing aspects. For example,

we have shown that the M-lattice is the most appropriate dynamical model

for the non-causal-neighborhood error diffusion halftoning algorithm. (See Sec-

tion 5.4.2.)

Blue-noise halftones as local optima: This modeling provides a parity condition

that allows one to check whether or not the equilibrium binary image is a local

minimum in the sense of the Hamming distance of one of a certain quadratic cost

functional. The fact that error diffusion performs blue-noise filtering together

with optimization is a possible explanation of the high quality of the resulting

halftones. (See Section 5.4.2.)

6.1.2 Practical Contributions

Signal synthesis: First, we verified that the M-lattice can simulate basic

reaction-diffusion by duplicating a number of published visual textures. In

addition, we have used the M-lattice to synthesize sound textures, samples of

which have been played by the author in a computer music performance. (See

Section 2.6 and Section 5.1.)
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"Special-effects" halftoning: The fact that the M-lattice can perform constrained

optimization is explored in a new halftoning algorithm. By incorporating ori-

entation information into a quality metric and relying on explicit constraints

to enforce binary values, we have synthesized pictures of Einstein, Reagan, and

others in the creatively hand-drawn halftoning style of the Wall Street Jour-

nal portraits. To the best of our knowledge, this is the first method for doing

this type of halftoning automatically (as opposed to doing it by hand). (See

Section 5.4.1.)

"Faithful-rendition" halftoning: Using the fact that the M-lattice is a natural

choice for modeling the non-causal-neighborhood error diffusion halftoning al-

gorithm, we have applied the M-lattice to the problem of synthesizing binary

images that are perceptually close to the original images. Thus, in addition to

optimizing a quadratic objective function, this system performs blue-noise filter-

ing. The resulting halftones exhibit excellent detail rendition without the annoy-

ing correlated artifacts found in the halftones generated by causal-neighborhood

error diffusion. (See Section 5.4.2.)

Restoration and halftoning of fingerprints: The pattern-forming property

makes reaction-diffusion a natural model for the preservation of ridges and bi-

furcations in fingerprint images. We have applied the pattern-forming property

of the one-morphogen M-lattice to the restoration of the significant detail in

fingerprints. The contrast of the restored features is enhanced with the help of

binarization capability of the M-lattice. (See Section 5.3.)
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Chapter 7

Future Work

Throughout this thesis report, we have marveled at the rich diversity of op-

erating regimes demonstrated by reaction-diffusion and the M-lattice. Chapter 5

describes the details of how a subset of these modes of operation is explored in prac-

tical signal-processing applications. In the present chapter, we propose two new

applications of the M-lattice that were not researched in depth as part of this thesis.

The first application is texture restoration and employs the real-valued non-linear

programming regime of the M-lattice. The second application is data encryption and

uses the chaotic regime of the M-lattice.

7.1 Texture Restoration

Consider an image restoration problem, where the image in question contains

several textured regions, possibly corrupted by noise. In this problem, the goal is

to recover each of the uncorrupted texture regions. If the regions are supported by

different models, then this leads to a difficult non-linear problem.
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Figure 7.1 illustrates the proposed feature-based approach for texture enhance-

ment. The feature vector is judiciously chosen so as to be able to sort the given

collection of textured images into a sufficiently diverse set of classes. The elements

of the feature vector can have different scales. The only requirement is that each

feature is represented by a real number. The textured image to be enhanced is

divided into regions, sufficiently large for computing the features reliably, but suffi-

ciently small for the enhancement to adapt to the given sampling resolution. The

classification / enhancement process is performed at every region concurrently.

Each dashed box encloses the model of one texture class. The distance metric

determines how close the features of the observed degraded image are to those of the

textures that would hypothetically be generated by all the models. The Gaussian

switch produces - 1 if the two compared textures have similar features and e~ 0 if

their features differ significantly. Assuming that at most one of the models agrees

with the observation, the winning model's low-level texture synthesis algorithm will

be selected to enhance the degraded image.

The specific mechanism by which the models communicate with each other

and trade off the amount of synthetic texture for the actual texture observed in the

degraded image is based on the regularization principle. For each model's low-level

texture synthesis algorithm, there is an associated penalty term for not using that

algorithm. Selecting a particular model implies a certain amount of prior knowledge

about the underlying texture, and neglecting that knowledge in favor of being faithful

to the observed data carries a penalty.

It is important to emphasize that the entire optimization process goes on in

feature space, so there is no need for synthesizing the enhanced texture explicitly, until

the end. At the very end, when the equilibrium is reached, the enhanced synthetic

image is generated from the features computed for each region.

While the proposed scheme has a "winner-take-all" flavor, the Gaussian switch
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Figure 7.1: Texture classification / enhancement using the M-lattice system.
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will not produce binary outputs for all regions, given a real-world enhancement task.

Thus, if the texture synthesis algorithms can be carefully tuned to depend on the

features of the neighboring regions and not only compete but also cooperate with

one another, then it should be possible to generate synthetic images that do not

suffer from artificial abrupt texture boundaries. Since the feature space is continuous

and since the Gaussian switches are not binary threshold elements, the features of the

observed image will mix with the features produced by the cooperating and competing

texture synthesis algorithms [87]. We believe that while facilitating the dominance of

the texture prevalent in a given region, this smoothness will also provide for a natural

blending together of neighboring textured regions in the processed image.

In Section 4.6.2, it was shown that if the objective function of a continuous

vector-valued variable is bounded, then the M-lattice system can be used for opti-

mizing this objective function. It remains to make an argument for choosing distance

metrics and penalty terms such that the total cost functional is bounded and has a

minimum; otherwise, the problem has no solution. There is no no benefit in allowing

distance metrics or penalty terms to produce greater discrepancies than a certain

upper bound, chosen in a way that renders the corresponding textures virtually un-

related. If no class can be found to model the texture in the given region accurately,

then there are two possible outcomes. One choice is to leave the synthesized image

as an approximation of the observed degraded image, because all of the Gaussian

switches will be open. Since the Gaussian function rolls off rapidly, there is no sense

in making its argument significantly greater than is necessary to turn the switch off.

The other choice is to signal a "class unknown" error message.
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message

Figure 7.2: A data encryption / decryption scheme that employs a chaotic system.

7.2 Communication Using Chaos In M-Lattice

Normally, one thinks of chaos as a fascinating curiosity at best, and a nuisance

at worst, something to be avoided or engineered away [88], [22]. But people have found

ways to exploit chaos to do some practical things. For example, recent discoveries in

the theory of chaotic systems have led researchers to novel methods for communicating

secret messages [89], [90], [91]. The encryption / decryption scheme is illustrated in

Figure 7.2. According to the diagram, the useful message signal is added to a high-

amplitude waveform produced by a chaotic system. This scrambled signal is then

transmitted. The mixture is unscrambled on the receiving end with the help of an

identical chaotic system. The two chaotic systems are synchronized by connecting the

second chaotic signal to an appropriate circuit node in the receiver [89]. The original

message is then recovered by subtracting the synchronized chaotic waveform from the

scrambled signal [90], [91] 1.

'Many people would doubt the marvel that two chaotic systems could be synchronized. After

all, chaotic systems are sensitive to slight changes in the initial conditions, so one might expect any

errors between the transmitter and the receiver to grow exponentially [89], [22].
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Figure 7.3: Chaotic 3-lattice circuit. Operational amplifiers are the only required
non-linear elements.
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Figure 7.4: Chaos in the M-lattice system. The plot shows the "strange" attractor
in the state-space.
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The first actual circuit built on this principle [90] uses the chaotic system, de-

scribed in the pioneering work by Lorenz [92]. Lorenz's system contains the quadratic

non-linearity, whose implementation requires analog multipliers.

Here, we propose a chaotic circuit based on the M-lattice system that uses

only operational amplifiers and linear resistors (see Figure 7.3). Each operational

amplifier plays the role of the warping function, and this is the only source of non-

linearity needed in the circuit. Preliminary computer experiments indicate that the

following clipped 3-lattice exhibits chaos:

= A (t) + B-(t), (7.1)dt

-9 4 4 9 -3 -6
1

4 4 -9 -1 -9 10

The "strange" attractor of this clipped M-lattice system, (7.1), is shown

The points were plotted only after the transients have decayed.

1
4

(7.2)

in Figure 7.4.

7.3 Chapter Summary

In this chapter, we have suggested two additional applications of the M-lattice

for future research. One is the adaptive texture restoration; it relies on the ability of

the M-lattice to perform the real-valued non-linear programming. The other is data

encryption; it explores the chaotic regime of the M-lattice.
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Appendix A

Glossary

A.1 Mathematical Symbols

We will state the notation for the case of continuous space, 7, and continuous

time, t. For the case of discrete space, 7 is replaced by (e.g., in 2-D) n' = (nx, ny),

and for the case of discrete time, t is replaced by nt. For every discrete variable that

does not have a continuous counterpart, the notation will be stated explicitly.

R: Set of real numbers.

W+: Set of positive real numbers.

D: General derivative operator.

x: Position vector in continuous space.

n == (nt, ny): Position vector in discrete (2-D) space.

t: Continuous time.
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nt: Discrete time.

m: Morphogen index.

M: Total number of morphogens.

d: Number of spatial dimensions.

/m,,(7, t): Concentration of the m-th morphogen as a function of space and time.

'(7, t): Vector of M morphogen concentrations, ,bm(X, t), m = 1, ... , M.

Rm( (0(', t)): Reaction function of the m-th morphogen, which can depend on all M

morphogen concentrations at 7 and t.

R(il): Coupling matrix due to reaction for morphogens in a linear-reaction

reaction-diffusion system or a convolutionally-coupled M-lattice system as a

function of discrete space.

B(n'): Coupling matrix due to diffusion for morphogens in a linear-reaction

reaction-diffusion system or a convolutionally-coupled M-lattice system as a

function of discrete space.

A(n,, ny): Overall coupling matrix for morphogens in a linear-reaction

reaction-diffusion system or a convolutionally-coupled M-lattice system as a

function of discrete space.

k == (kX, k~): Discrete 2-D spatial frequency, or spatial-frequency index, or spatial

wave number, etc.

T(,k, t): Vector of M morphogen concentrations as a function of discrete spatial fre-

quency and continuous time.
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R(k): Coupling matrix due to reaction for morphogens in a linear-reaction

reaction-diffusion system or a convolutionally-coupled M-lattice system as a

function of discrete spatial frequency.

B(k): Coupling matrix due to diffusion for morphogens in a linear-reaction

reaction-diffusion system or a convolutionally-coupled M-lattice system as a

function of discrete spatial frequency.

A(k): Overall coupling matrix for morphogens in a linear-reaction reaction-diffusion

system or a convolutionally-coupled M-lattice system as a function of discrete

spatial frequency.

Hks, ky, t): Transfer function of a linear-reaction reaction-diffusion system or a

convolutionally-coupled M-lattice system as a function of discrete 2-D spatial

frequency and continuous time.

When reaction-diffusion systems are generalized to M-lattice systems, we

change the notation, used for morphogen concentrations, as follows:

V.j(t): State variable at discrete index, i, and a function of continuous time, t.

'(t) = [l 1(t), ... , PN(t)]T: Vector of N state variables, ji(t).

G(.): Warping function (such as, for example, a sigmoid), used to constrain or bound

the state variables.

T: Reciprocal of the slope of G(-), also known as the "temperature".

Xi(t): Output variable, obtained by warping Oi(t) with G(.), at discrete index, i, and

a function of continuous time, t.

S'(t) := [Xl(t), ... , XN(t)]T: Vector of N output variables, xi(t).
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'(i, t): State variable at a discrete spatial position, n', and a function of continuous

time, t.

x(,n' t): Output variable, obtained by warping O(n', t) with G(.), at a discrete spatial

position, n', and a function of continuous time, t.

((k,. t): State variable at a discrete spatial-frequency position, k, and a function of

continuous time, t.

X(k,t): Output variable, obtained by warping 0(', t) with G(.), at a discrete

spatial-frequency position, k, and a function of continuous time, t.

ad(4(t)): Functional specification for the interactions among

f(,;(t)): Functional specification for the interactions among

the state variables.

the output variables.

V: Gradient with respect to the elements of 0.

V,.: Gradient with respect to the elements of X.

4( V(t)): Objective function.

gV,(x(t)): Common functional form of the interactions among the output variables.

Jz.(0): Jacobian of 6(4(t)) at 0.

A.2 Terminology

morphogenesis: Formation of distinctive animal coat patterns, colorings, and mark-

ings. Also, formation of shape in low life forms. (See Chapter 1.)
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reaction-diffusion system: Any reaction-diffusion system with possibly non-linear

reaction. (See Definition 2.1.1 and Definition 2.5.1.)

linear-reaction reaction-diffusion system: This is a reaction-diffusion system

with reaction restricted to be linear. (See Definition 3.1.1.)

Md-lattice system: Any system that supports linear interactions among its state

variables and non-linear interactions among its output variables. The state

and the output variables can be organized arbitrarily. The system's name is

inspired by its roots in reaction-diffusion, where M is the number of morphogens,

or layers in the lattice. Indeed, any and all sites of the M-layered lattice,

or the M-lattice for short, can be arbitrarily organized into M layers. (See

Definition 4.2.1.)

clipped M-lattice system: This system is an M-lattice system, in which the warp-

ing function is the clipping non-linearity. (See Definition 4.5.1.)

linear M-lattice system: This system is an M-lattice system with interactions re-

stricted to be linear. (See Chapter 2.)

convolutionally-coupled M-lattice system: This is a linear M-lattice system

with interactions restricted to convolutions with linear filters. (See Defini-

tion 3.2.1.)

evocator: Waveform of small random perturbations. (See Chapter 2.)
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Appendix B

Mathematical Background

In order to make this document self-contained, we have summarized some key

mathematical preliminaries.

B.1 Dynamical Systems And Stability

Most of the material in this section has been adapted from standard texts on

the subject [47], [48].

A general vector differential equation has the form:

do(t)
dt

(B.1)

where (t) E RN and f: R+ x N -+ RN. The present discussion is restricted to

non-linear autonomous systems, i.e., systems described by:

d(t)
dt

(B.2)

This system is called autonomous, because the right hand side of (B.2) does not

explicitly depend on the time variable, t.
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Definition B.1.1 A fixed (or critical, or equilibrium, etc.) point of the autonomous

system, (B.2), is any point, 0, which is a solution of:

f() = O. (B.3)

We assume throughout that (B.2) has at least one fixed point, 4.

Definition B.1.2 The fixed point, 4, of (B.2) is said to be stable if, for each e > 0,

there exists a 6(e) > 0 such that:

Definition B.1.3 The fixed point, 0, is unstable if it is not stable.

Note that the term "instability" does not mean that the trajectory of the

system has to "blow up" in a sense that I(t) - 00 as t -- 00. While this is one

possibility, it is not the only one. Instability simply requires that for some E > 0, no

6 :> 0 can be found such that (B.4) holds [48].

Definition B.1.4 The fixed point, 4, of (B.2) is asymptotically stable if:

1. It is stable; and

2. For any e, there exists a 6 > 0, such that:

0(to) - 1< 6 1 (t) - < e, Vt> 7(e) > to. (B.5)

Both parts of Definition B.1.4 are essential. In particular, the first condition

is crucial, because the second condition does not imply stability [48].

Associated with every asymptotically stable fixed point is its "region of attrac-

tion", defined as follows:

S( )••= ( •(to) e JN : (t) - < E, t > T(e) > to . (B.6)

All trajectories, starting at time to from an initial state within S, eventually converge

to .
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Definition B.1.5 The fixed point, 0, of (B.2) is globally asymptotically stable if:

(t) - < e, whenever t > T(E) > to, (B.7)

regardless of what (to) is.

The global asymptotic stability results if all trajectories of the system converge

to the fixed point, 4, as t -- oc. In other words, the region of attraction of a globally

asymptotically stable fixed point is the entire space, RN [48].

Stability, asymptotic stability, and instability are local concepts, dealing with

the trajectories of the system in the vicinity of a fixed point, whereas global asymp-

totic stability, as the name implies, is a global concept, having to do with the behavior

of all the trajectories of the system.

Thus, global asymptotic stability is a property of the system as a whole. On

the contrary, the notions of stability, instability, and asymptotic stability pertain to

a specific fixed point of the system, because in general a system can have more than

one fixed point, each of which has its own set of stability properties [48].

Requiring global asymptotic stability, the strongest kind of stability, is often

too restrictive and unnecessary. In fact, many practical dynamical systems are not

globally asymptotically stable, but have many asymptotically stable fixed points.

Since one system of the latter kind is the focus of the present research, we now define

one last stability category in order to be able to make a global-type statement about

an entire system in terms of some of its local fixed points, simultaneously.

Definition B.1.6 A trivial trajectory corresponds to 0(to) = 0.

Definition B.1.7 The autonomous system, (B.2), is called totally stable if its every

non-trivial trajectory approaches a finite asymptotically stable fixed point, V, for any

finite initial conditions, 0(t o).
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Note that Definition B.1.7 does not imply that every fixed point of (B.2) has to

be asymptotically stable, or even stable. The only requirement is that every solution

trajectory must approach an equilibrium.

Totally stable dynamical systems are interesting for engineering purposes. Not

only are they guaranteed to converge to some fixed point, but they also provide mech-

anisms for guiding the trajectory of the system to the desired fixed point. Typically,

this is accomplished by controlling the parameters of the system and specifying the

initial conditions.

B.1.1 Auxiliary Functions

Here, we review positive-definite and other related functions. Various literature

sources discuss these concepts, some on a more rigorous level than others [47], [48].

The goal of the following alternative treatment is to provide intuition for analyzing

the stability of, specifically, the M-lattice type of systems, using the Lyapunov theory.

Definition B.1.8 Throughout this definition, let:

SE S C (B.8)
c E R;

S is an open set.

A continuous function V : R~ -+ on S is said to be a:

* locally positive-semidefinite function if:

V ( c, V 7 3(B.9)
yV() > V, C 1•11 s;
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* locally positive-definite function if:

{ V(f = c, (B.10)
V(g) > c, V X #p IIEllS;

* globally positive-semidefinite function if:

V (pi = c,
V(V) > c, V p, =(B.11)

V(G) 00, as I|ii- 00;

* globally positive-definite function if:

V (p3 = c,
V(Y) > c, V -fIp, (B.12)

V() - 00, asl fY1 oo;

* locally negative-semidefinite function if:

V(p- = c, (B.13)
V(Y) 5 c, V Y ', 11 41E S;

* locally negative-definite function if:

V V( = c, (B.14)
V(i) < c, aV s , | l|c S;

* globally negative-semidefinite function if:

V(p- = c,
V(z) < c, V f7, (B.15)

V()- -oo, as 1141 oo;

" globally negative-definite function if:

V (pi = c,
V(4) < c, V -p. (B.16)

V(x) - -oo, as -11 00oo.
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B.1.2 Lyapunov Functions

The classical definition of a Lyapunov function is in terms of locally

positive-definite functions and locally negative-semidefinite functions, where the local

domain is S = S(O) near a fixed point, 0.

Definition B.1.9 The function V(£(t)) is called a Lyapunov function if V(£(t)) is

continuous with continuous first partial derivatives (C1), is a locally positive-definite
dV(£d((t))function, and t is a locally negative-semidefinite function with c = 0 [47], [48].

dV(*(t))Of course, if V(£(t)) is C', is a locally negative-definite function, and dtV idt

is a locally positive-semidefinite function with c = 0, then such a V(£(t)) is also a

Lyapunov function.

There are no separate definitions for cases, in which local semidefiniteness is

strengthened to local definiteness. But, naturally, locally-definite functions that fit

Definition B.1.9 are also regarded as Lyapunov functions. Numerous examples of

Lyapunov functions abound [47], [48], [22].

B.1.3 Lyapunov's Direct Method

For notational convenience, let = 0 = 0 and c = 0. There is no loss

of generality, since any function will acquire a point at the origin upon a suitable

change of coordinates and / or translation. The following theorem and proof are

adapted from [47] .
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Theorem B.1.1 Suppose that the autonomous system, (B.2), has an isolated fixed

point at the origin. If a Lyapunov function, V(b(t)), defined with respect to the

origin, can be associated with the system, then the origin is a stable fixed point. If, in

addition, dV((t)) is a locally negative-definite function with c = 0, then the origin
dt

is an asymptotically stable fixed point.

Proof: Let be a locally negative-semidefinite function. Let k > 0 be
dt

a constant and consider the curve in the xl - x2 plane given by V(4(t)) = k. For

k == 0, the curve reduces to the single point, • = 0. However, for k > 0 and sufficiently

small, it can be shown by using the continuity of V(O(t)) that the curve is a closed

curve, containing the origin, as illustrated in Figure B.1(a). We assume further that

if 0 < kl < k2 , then the curve V(O(t)) = ki lies within the curve V(?(t)) = k2 . We

show that a trajectory starting inside a closed curve V(4(t)) = k cannot cross to

the outside. Thus, given a circle of radius e about the origin, by taking k sufficiently

small we can ensure that every trajectory starting inside the closed curve V(i(t)) = k

stays within the circle of radius e; indeed, it stays within the closed curve V(O(t)) = k

itself. Thus, the origin is a stable fixed point.

To show this, note that since V(O(t)) = k defines a level set of V(4(t)),

• /V(O(t)) is normal to the curve V(4(t)) = k and points in the direction of in-

creasing V(O(t)). In the present case, V(O(t)) increases outward from the origin, so

V.V(O(t)) points away from the origin, as indicated in Figure B.1(b). Next, consider

the trajectory, O(t) of the system, (B.2), and note that the vector, d(t) is tangent
dt

to the trajectory at each point. Let t = T be the time at which V(t) intersects a

closed curve V(4(t)) = k. At this time, we have for (B.2):

d(t) f( (t))it = • (B.17)
dt t=
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So differentiating V(V(t)) with respect to time, t, gives:

dV(T((t)) t = v( t dt) (B.18)
dt t = V (t)) T d= t t

Since dV(<(t)) 0, it follows that the cosine of the angle between
dt t=

r 0 i and 1t t is also less than or equal to zero; hence, the

angle itself is in the range r, 3].r Thus, the direction of motion on the traiectory is
inward with respect to V(m(t)) = k or, at worst, tangent to this curve. Trajectories

starting inside a closed curve V(O(t)) = k (no matter how small k is) cannot escape,

so the origin is a stable fixed point. If dV(p(t)) < 0, then the trajectories
dt t

passing through points on the curve are actually pointed inward. As a consequence,

it can be shown that trajectories starting sufficiently close to the origin must approach

the origin; hence, the origin is an asymptotically stable fixed point [47]. 1

In order to extend Theorem B.1.1 to global asymptotic stability, a Lyapunov

function, V(m(t)), must be a globally positive-definite function, and its time derivative

must be a locally negative-definite function with 8 = ~N. The global definiteness of

V( (t)) is a key necessary condition for global asymptotic stability: it is absolutely

essential that V(:Y) -- oo as 11 1--+ 00. Otherwise, if V(O(t)) is only locally-definite,

then it is still possible for V(O(t)) to be a Lyapunov function on S, but fail to be

a Lyapunov function outside of S, thereby allowing lk (t)ll - 00 as t c00. On

the contrary, this problem cannot occur if there exists a globally-definite Lyapunov

function, V(,(t)), such that dV("(t)) is a locally negative-definite function with

S == I•N. By Theorem B.1.1, the very fact that such a Lyapunov function is associated

with the dynamical system, (B.2), means that there is no mechanism for II (t) I to

grow unbounded.

Note that for global asymptotic stability, V(O(t)) is required to be globally-
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0 <k 1 <k 2

vv

Figure B.1: Geometrical interpretation in 2-D of Lyapunov's direct method.

definite, but dV('(t)) is not required to be globally-definite. For total stability,dt

neither V(#(t)) nor d (t)) is required to be globally-definite. However, it is still
dt

necessary to have II(t) l I < 0c.

B.1.4 Gradient Systems

Finally, we discuss the issue of determining the total stability of a system. A

well-known difficulty with using Lyapunov's direct method for analyzing dynamical

systems is that there are no general guidelines for coming up with Lyapunov functions.

Yet;, in order to determine whether or not a given dynamical system is totally stable

in the sense of Lyapunov, a valid Lyapunov function must be conjured up for every

fixed point of interest. However, in most practical dynamical systems, the number of

stable fixed points is rather large, and having to treat each fixed point separately is
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undesirable. Fortunately, certain kinds of totally stable systems possess convenient

built-in collective features that allow the proof of total stability to be constructed

using a single function that has the Lyapunov properties near the stable equilibria.

"Gradient" systems, discussed next, possess such characteristics [34].

Definition B.1.10 The system, (B.2), is called a gradient system if there exists a

C1 function, V( (t)), with the property:

- V( ) dt f((t)). (B.19)

Many gradient systems originated in physics. Thus, the function, V(O(t)), is

frequently called the "potential" or the "energy", and the negative of its gradient,

-V. V( (t)), is commonly referred to as the "field".

Lemma B.1.1 Gradient systems do not contain cycles.

Proof: We compute the time derivative of V(t) df V(f(t)) by the chain rule:

d V( (T)) d (t)
dt - t))]• [ dt

[ T r 2

do(t) do(t) do(t)Sdt ]- dt < 0. (B.20)

In order for a cycle to exist, the integral of dV( ))over the cycle must vanish.
dt

However, (B.20) shows that this is impossible. I

According to Definition B.1.10, the class of gradient systems is highly restric-

tive. Nevertheless, the following relaxed form of this definition applies to a number of

practical dynamical systems, such as the analog Hopfield network and the reciprocal

cellular neural network.
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Definition B.1.11 The system, (B.2), is called an almost-gradient system if there

exists a C1 function, V(4(t)), with the property:

dt

According to Definition B.1.11, the fixed points of an almost-gradient system

must be the extrema of V(4(t)). But the right hand side of (B.2) does not have to

be the gradient of V('(t)).

Thus, if it can be shown that, regardless of initial conditions, all solution tra-

jectories are eventually confined to a closed ball in the 4-space, then providing a

decreasing and bounded-below (or an increasing and bounded-above) auxiliary func-

tion becomes sufficient in order to ascertain the system's total stability.

The following statement is a consequence of Definition B.1.8, Definition B.1.9,

and Theorem B.I.1, but it does not seem to be formulated anywhere in this form.

Corollary B.1.1 Consider an almost-gradient autonomous system, (B.2), together

with an auxiliary function, V(4(t)), associated with the system. Let an open ball, Br,

of radius r be defined as follows:

B r df {e ' r RN~ , Jr : CR, < r} (B.22)

and suppose that the following conditions are satisfied:

V((t)) E Cil
dV(4(t))V t > to: < 0,dt (B.23)

V REN ": V(5) > ;
V 4(to) 3r =RE + : lim (t) E BR,

t--+oo

where BR is the closure of B3. Then this almost-gradient system is totally stable.

Proof: Definition B.1.11 and the assumptions in (B.23) imply that there can be

three types of fixed points:
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1. The fixed point, ?, is a local maximum of V( (t)). In this case, V( (t)) is a

locally negative-definite function. Hence, 4 is unstable [47], [48].

2. The fixed point, 0, is a saddle of V( (t)). In this case, V( (t)) is not a

Lyapunov function for 4, and no conclusion regarding the stability of 0 can be

made.

3. The fixed point, 4, is a local minimum of V(O(t)). In this case, V( (t)) is a

Lyapunov function for 0. Hence, 4 is asymptotically stable by Theorem B.1.1.

The conditions in (B.23) guarantee that V( (t)) has at least one minimum.

On one hand, all solution trajectories are eventually confined to a closed ball, BR, in

the 'o-space. On the other hand, V( (t)) is decreasing and bounded-below. Hence,

V(O(t)) has a minimum on BR.

Finally, the fact that V(O(t)) is strictly decreasing implies that the solution

trajectories do not contain cycles. Since V(O(t)) is a continuous function of the

state variables, the curves of constant V( (t)) (level sets) are closed curves [30]. The

system's trajectory starts at the contour, corresponding to 0(t0 ) and always moves

away from the starting contour, without the possibility of return.

Note that one can choose V(O(t)) to be increasing and bounded-above by

reversing the direction of the corresponding inequalities in (B.23). Then the local

minima of V(4(t)) become the unstable fixed points of the system, the local maxima

of V(O(t)) become the stable fixed points of the system, and the rest of proof remains

valid.

Thus, the given almost-gradient system has at least one stable fixed point and

does not exhibit cycles. Therefore, it is totally stable. I
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B.2 Linear Algebra

The material of this section has been adapted from standard texts on the

subject [49], [31], [50], [23].

B.2.1 Gerschgorin's Theorems

Certain aspects of our work with non-linear dynamical systems rely on two

theorems, which are due to Gerschgorin (1931). The following theorem and proof are

adapted from [49] and [31].

Theorem B.2.1 Every eigenvalue, A, of the matrix, A, lies in at least one of the

circular discs with centers, aii, and radii, ri = J aij .

Proof- Since A is an eigenvalue of A, there is certainly at least one non-zero x, such

that:

A' = AX, or (B.24)

(A -AI) X = U. (B.25)

Suppose that the i-th component of F has the largest modulus. Then expanding

(B.25) at the index, i, and using the triangle inequality gives:
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Saijxj - Axi

j~iaix ( + Z - aiixiisi

(A - ajX

= 0,

= 0,

- aijxj,
joi

I(A -aii)xi I aijxj
isi

j74iA - aiiji - ixil < laijxj I,j~i

lA - ai. I,-< E ja~jj" I xjl,

xjl I

JA - ailI

1;

7laijl
j~i

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)= ri.

Since xi (the component that has the largest modulus) can be found for every eigen-

vector, I, every corresponding eigenvalue, A, lies in at least one of the circular

discs [49], [31], [50], [23]. 1

Note that Theorem B.2.1 does not guarantee the existence of a separate Ger-

schgorin disc for each eigenvalue. The second theorem gives more detailed information

concerning the distribution of the eigenvalues among the discs.

Theorem B.2.2 If s of the circular discs of Theorem B.2.1 form a connected do-

main, which is isolated from the other discs, then there are precisely s eigenvalues of

A within this connected domain.

Proof: The proof is dependent on the notion of continuity. Express A as follows:

A = Diag {all, ... , aNNI} +C = D+C,
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where C is the matrix of off-diagonal elements. Let ri = laijl as in Theorem B.2.1
isi

and note that ri = C |cij[.

Consider now the range of matrices:

B(e) = D + C, (B.36)

where 0 < E < 1. (B.37)

From (B.36), we have B(0) = D and B(1) = A. The coefficients of the characteristic

polynomial of B(e) are polynomials in e, and by the theory of algebraic functions, the

roots of the characteristic equation are continuous functions of E. By Theorem B.2.1,

for any value of e, the eigenvalues all lie in the circular discs with centers, aii, and

radii, eri, and if we let E vary steadily from 0 to 1, then the eigenvalues all traverse

continuous paths.

Without loss of generality, we may assume that it is the first s discs that form

the connected domain. Then, since (N - s) discs with radii r,+l, rs+2, ... , rN are

isolated from those with radii rl, r2, ... , r., the same is true for the corresponding

discs with radii eri for all e in the range given by (B.37). Now, when e = 0, the

eigenvalues are a11, a22 , ... , aNN, and of these, the first s lie in the domain corre-

sponding to the first s discs, and the remaining (N - s) lie outside this domain. It

follows that this is true for all e up to and including E = 1.

In particular, if any of the Gerschgorin discs is isolated, then it contains pre-

cisely one eigenvalue. Note that corresponding results may be obtained by working

with AT instead of with A [49], [50]. 1
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B.3 Discretization Of Differential Equations

The material of this section has been adapted from standard texts on the

subject, such as Strang [23].

B.3.1 D in 2-D

Here, we show how to discretize D on a 2-D spatial grid anisotropically and

with an arbitrary choice of principal axes. First, we derive the continuous-space

expression and then its discrete-space representation.

Continuous form

Diffusion can follow an uneven profile and an

use of the full Hessian matrix:

H h

Lh21 h22 J

S02
dx 2

S 02
0 yax

arbitrary orientation. We make

02

axOy
02

0 y2

(B.38)

of which the Laplacian,

is a special case. Let

8 2

V2 =
iOX2

92

(y2 '
(B.39)

A = ax 01 (B.40)
0 ay

be the diagonal matrix of the square roots of the diffusion constants for the case

where the principal directions of the process lie along the x and the y axes. For the
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isotropic case, a, = ay = a. Then the isotropic Laplacian diffusion is recovered from

D = trace [ATHA] = a2 2.

Equation (B.41) still holds for ax : ay, producing

D = trace [ATHA]
22  022 2

= a hll + ah 22 .

In order to change the orientation of the principal axes, we rotate the columns

of A through an angle 0 using the standard rotation matrix,

(B.43)C -]
S C

where c = cos(0') and s = sin(0). Using QA in (B.42) together with the fact that

h21 := h12 yields:

D = trace [(QA)TH(QA)]

= hic 2 + 2h12sc+ h 22s 2) + a 1(hS2 - 2hl2SC+ h22C2)

hi 2 (a 2  S2) + h22 a2 2 + aC 2 ) + 2h 12(a2 - a2scC.
X / X Y X Y (B.44)

Discrete form

Now we derive the discrete form of (B.44). We adopt the following notation:

* k is the time step;

* h is the space step ;

'There should be no confusion here between the space step and the elements of the Hessian

because the former is devoid of a subscript.
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* Z is the temporal operator defined as follows:

ZVm(nx, ny, nt) = Om(nx, ny, int

Z-?)m(nx, ny, nt) = Om(nf,xny, nt

* Kx and K, are the spatial operators defined as follows:

Kx .(nx, ny, nt)

Kx1Om (nz, ny, nt)

Kylm(n,, ny, nt)

Kyl- Om(nx, ny , nt)

= Om(nx + 1, ny, nt)

= Om(nx- 1, ny, nt)

= Om(nx, ny + 1, nt)

= im(nx, ny - 1, nt);

* I is the identity operator, which does not affect the function:

I'm(nx, ny, nt) = Om(nx, ny, nt). (B.51)

Using these operators, the elements of the Hessian are discretized as follows:

K, - 21 + K l
B(52

K - 21 + K-1

h2

K o - K -1) K y - K ; 1

_ KyK, - K'-1K, - KxK,-l + Kx-1K,-

4h2

(B.53)

(B.54)

(B.55)

This derivation explains the corresponding formulas stated in [14].
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B.3.2 Finite Difference Methods

Z -I
Using as the discrete-time version of the time derivative, the forward

k
Euler (FE) method for numerically solving the partial differential equation (2.2) is:

Om (nx, nf, nf + 1) = m(nx, n,, nt) + kD'bm(nx, ny, nt) + kRm(n•, ny, nt),

where D is given by (B.44). The FE method is explicit and thus simple to implement;

however, it is only conditionally stable, depending on the values of k and h.

On the other hand, the backward Euler (BE) method is unconditionally stable,
regardless of the values of k and h:

Cm(nx,ny, nt + 1) = Om(nx, ny, nt) + kD)m(nx, ny, nt + 1) + kRm(nx, ny, nt + 1). (B.57)

Since the BE method is implicit, its implementation is more involved. In fact, if a

system of M morphogens is simulated on a discrete lattice Sm of size |SmI = N, then

M x N non-linear equations must be solved simultaneously for each nt [23].

B.4 Multilinear Polynomials

The material of this section has been adapted from Vidyasagar [35].

B.4.1 Basic Definitions

Definition B.4.1 The function 0(0) on RN is called a multilinear polynomial if

a2E = 0 Vi. The name, "multilinear polynomial", reflects the fact

nent of every 4 can only be either 0 or 1.

that the expo-
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Suppose that 0(o) is a multilinear polynomial. For each 4 E }N and each

index i E {1, ... , N}, let i denote the (N - 1)-dimensional vector obtained by

omitting the i-th component of 0; that is:

X = [1, ... , i-, -1) i+1, , N] . (B.58)

Then there exist functions E : RN-1 R R and V : RN-1 R• ~ such that:

0(0) = OiE(x-) + V(X). (B.59)

Definition B.4.2 A vector E {-1, 1 }N is said to be a local maximum of the ob-

jective function 0 if 4(X') Ž> ((W), V ' E A('), where A(X') denotes the set of all

vectors in {-1, 1 } lying at a Hamming distance of one from '. The vector X is said

to be a strict local maximum of ( if 4(D) > #((), V E ( '(f).

B.4.2 Parity Condition For Optimality

Proposition B.4.1 Suppose that ' E {-1, 1 }N and 4(') is a multilinear polyno-

mial. Then the following two statements are equivalent:

1. ' is a local maximum of P.

2. ' satisfies the parity condition:

[I(D)]l <• 0 if Xi = -1, [D(X4)], > 0 if Xi = 1. (B.60)

Proof: ':(2) =# (1)" Suppose Statement 2 is true. Select an arbitrary index

i {1, ... , N}, and define yE {-1,1}N by:

Yi = -Xi, Y = Xj, Vj i. (B.61)
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Then ' e V(;), and y- = X', where x- is defined in (B.58), except here we have

X• E {-1, 1}N (as opposed to 4 E RN). Hence, E(Q) = E(X) and V(0) = V(4),

and it follows from (B.59) that:

4(Y) = yiE(iX) + V(i) = -XiE( i) + V(4). (B.62)

Therefore:

I(X) - 4(y) = 2XiE(X4). (B.63)

Now, observe from (B.59) that:

-= _(_) = [E(X)] i . (B.64)
i aXi

Hence, if ' satisfies the parity condition, (B.60), then the right hand side of (B.63) is

always non-negative, and it follows that V(I:) D((g). Since the index, i, is arbitrary,

the conclusion is that ' is a local maximum.

"(1) ==- (2)" We show instead that if Statement 2 is false, then so is

Statement 1. Suppose accordingly that the parity condition, (B.60), is violated for

some index, i. Define ' as in (B.61). Then the right hand side of (B.63) is negative

for that i, which shows that (DI) < ((y), meaning that ' is not a local maximum. I

Proposition B.4.2 Suppose that ' E {-1, 1}N and J(() is a multilinear polyno-

mial. Then the following two statements are equivalent:

1. ' is a strict local maximum of (D.

2. ' satisfies the strict parity condition, that is, no component of ((;) is zero,

and:

[(k)]i < 0 if Xi = -1, [i(;)]i > 0 if Xi = 1. (B.65)

Proof- The proof is a routine modification of that of Proposition B.4.1. I
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Appendix C

The Two-Morphogen

Linear-Reaction

Reaction-Diffusion Case Revisited

As promised in Section 3.2.3, we now solve the two-morphogen linear-reaction

reaction-diffusion system exactly. For M = 2, we have:

B(k)

ril r12

r21 r22

B1(k() 0 , ]
0 B2(k)

(C.1)

(C.2)

and, consequently: Sr11 + B1(k)

r21

T12

r22 + B2(k)

Note that B 1(k) and B 2((k), the trigonometric polynomials in k, have a finite number

of terms, and thus correspond to FIR filters. When these filters represent diffusion,
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(C.3) reduces to the second equation in (3.6).

The eigenvalues of the linear-reaction reaction-diffusion system are:

trace[A(k)] trace[A(k)]
A1,2(A(k)) trace - , (C.4)

T def trace[A(Q)] = trace[R] + trace[B(k)], (C.5)
def -

def det[A(k)] = det[R] + B 1 ()r 22 + B 2(k)rll + B 1(k)B 2(k). (C.6)

From (3.7), we conclude that for stability to homogeneous perturbations, (C.4) is

subjected to the following constraints:

trace[R] < 0, (C.7)
(trace[R]

0 < det[R] < (ta2 R] (C.8)

(trace[A()]) (C.9)
fi (C.9)

Assume that Bi(k) and B 2(k) are real, i.e., represent zero-phase FIR filters.

Then all the relevant quantities (including the ones under the square root) are real.

We are interested in determining the conditions, under which at least one of the

eigenvalues becomes positive, while satisfying the constraints.

From (3.8), a positive eigenvalue can result in either or both of the following

cases:

1. The trace of A(k) is positive, meaning that the trace of the matrix of the DFTs

of the spatial filters is positive and has a greater magnitude than the trace of

the reaction matrix:

Te > 0. (C.10)

2. The determinant of A(k) is negative:

0 < 0. (C.11)
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C.1 Exact Linear Behavior

In this section, we continue exploring the properties of the two-morphogen

linear-reaction reaction-diffusion system by finding its equivalent transfer function.

We go back to (C.3) and write:

all(k) a12(k)A(k) = )a ) (C.12)
L21(k) a22(k)

We now expand the solution (3.14) for the two-morphogen case. Using the fact that:

A(k) = S(k)A(k)S-(), (C.13)

where S(k) E R2x 2 is the matrix of the eigenvectors of A(k), and A(k) E R2 x 2 is the

diagonal matrix of its eigenvalues:

A(k) = [- A2(k)]
0 A2(k)

we obtain [31]:

exp [A(k)t] = S(k) exp [A() t] s-l(). (C.14)

Define the determinant, the even trace, the odd trace, and the square root of the

discriminant, respectively, as follows:

aia22a - a12a 21, (C.15)
def
lTe f all + a22.16)

def
To = a1 1 - a22, (C.17)

'def V-4 +T" (C.18)7 -= /+T 2
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Then expanding (C.14) gives 1:

1,2  2 ' (C.19)

-7+ To 7 + To

S(k) - 2 a21 2a21 (C.20)

a21  1

S(k) = 2+ o) (C.21)

7 27

exp [At]t) (C.22)
0 exp(A2t) (C

(' + TO)eAlt + (-T)e2t (•y•o) TO) (- )( ) (e1i eA)

exp [A()t] = 2 4a217 (C.23)a21 (eCAt - eA2t) (y +o)eAt + (' +
7 27

The input signal to the two-morphogen linear-reaction reaction-diffusion sys-

tem is restricted in its functional form, because it has the meaning of the evocator

(see Section 2.6.2). Hence, exp [A(k)t] contains redundant information, which we

now judiciously conceal. The evocator signal, q(k), can be introduced to the system

as one of three possible perturbations:

* Only the activator is perturbed: ((kr, t= 0) = [q(/) 0]T

* Only the inhibitor is perturbed: 0(k, t = 0) = [0 q( )1]T

* Both morphogens are perturbed by the same signal: /b(k, t = 0) = [q(k) q(k)]T

For all of these types of the initial condition, the transfer function is a 2-variable

vector, but is constructed and used differently.

'In order to fit large equations onto the page, we use the notation exp (x) and ex interchangeably.
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C.1.1 Transfer Function With Both Morphogens Perturbed

We will begin by studying this particular case, because it requires a more

detailed treatment than the other two cases and covers all the essential points of the

analysis. The other cases, in which only one morphogen is perturbed by the evocator,

are much simpler and will be analyzed subsequently.

In order to compute the transfer function (or the impulse response) of the

linear-reaction reaction-diffusion system for this initial condition, we set the input to

the unit sample so that T(kE, t = 0) = 1. Hence, the transfer function is:

H(k, t) = exp [A(f)t[

S(y + To + 2a12) exp(Alt) + (y - To - 2a12) exp(A2t)

2-y (C 24)(7 - To + 2a 21) exp(Alt) + (-y + To - 2a 21) exp(A2t) (C.24)
27

Now since for Turing's two-morphogen linear-reaction reaction-diffusion sys-

tem Te < 0 V k), .2 < 0; therefore, the term, corresponding to A2, becomes negligible

after a certain period of time. Hence:

(7 + T, + 2a12) exp(Alt)

lim H(k, t) = 27(C.25)
t--oo ( - To + 2a 21) exp(Alt)

27
The quantities A1,2 , 7, /, iT, and To in (C.25) depend on the spatial frequency k.

Therefore, (C.25) specifies a time-dependent filter. Figure C.1 shows the impulse

response of the linear-reaction reaction-diffusion system.

It is interesting to note that the impulse response of the equivalent

linear-reaction reaction-diffusion system is similar to that of the original non-linear

Turing reaction-diffusion system, shown in Figure C.2. Moreover, if the range of mor-

phogen concentrations is restricted to be small, then both systems respond similarly

185



when the morphogen concentrations are initialized to random noise. We attribute this

to the fact that Turing's reaction-diffusion system does not exhibit pronounced non-

linear effects, unless the range of morphogen concentrations is large. See Figure C.3

and Figure C.4, respectively.

C.1.2 Transfer Function With Only Activator Perturbed

If the evocator is applied only to the activator morphogen, then for this initial

condition we set the input to T(f, t = 0) = [1 0]T. Hence, the transfer function is:

lim H(k, t)
t-*oo

= lim exp [A(k)t] [ jt--m 0

lim
t--+oo

(7 + TO) exp(Alt) + (9y - TO) exp(A2t)
27

a 21 (exp(Alt) - exp(A2t))

([ + r) exp(At)
S2y

a2 1 exp(Alt)

7

C.1.3 Transfer Function With Only Inhibitor Perturbed

If the evocator is applied only to the inhibitor morphogen, then for this initial

condition we set the input to '(k, t = 0) = [0 1]T . Hence, the transfer function is:

lim I(ý, t)
t--oo

= lim exp [A(Q)t]
0
1

(7 + To)(y - To) (exp(Alt) - exp(A 2 t))
= lim 4a 21  +

t- (7 - To) exp(Alt) + (' + )exp(A 2t)
227

186

(C.26)

(C.27)

(C.28)



Figure C.1: Impulse response of the linear-reaction reaction-diffusion system that
was derived from Turing's reaction-diffusion system (Nx = Ny = 32, D1 = 6.25).

(/ + T0)(y - TO) exp(A•lt)
4a217 (C.29)

(y - T) exp(Alt)
27

C.2 Visual Appearance Of Morphogens

It has been mentioned in the literature that the plots of the activator and the

inhibitor appear as the negatives of one another [4], [24]. This is demonstrated in

Figure C.5. We now present an explanation of this phenomenon.

C.2.1 Activator And Inhibitor Out Of Phase

Consider a, Turing linear-reaction reaction-diffusion system, i.e., the system de-

fined by (3.6) (3.8). For M = 2, the relevant equations are (C.1)
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Figure C.2: Impulse response of Turing's reaction-diffusion system (Nx = Ny = 32,
DI = 6.25).

Figure C.3: The response of the linear-reaction reaction-diffusion system to random
noise (Nx = N, := 32, D1 = 6.25).
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(a)

(c)

Figure C.4: The response of Turing's reaction-diffusion system to random noise
(Nx = Ny = 32, DI = 6.25): (a) the range of morphogen concentrations is 2; (b) the
range of morphogen concentrations is 20; (c) the range of morphogen concentrations
is 200.
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(a) (b)

Figure C.5: The visual appearance of the plots of the activator and the inhibitor
concentrations of Turing's reaction-diffusion model. The two morphogens appear
to be the negatives of one another (Nx = Ny = 32, D1 = 6.25): (a) the activator
morphogen; (b) the inhibitor morphogen.

to these equations, in Turing's two-morphogen linear-reaction reaction-diffusion sys-

tem at least one of the diagonal elements of R must be negative; otherwise, the trace

of R, will not be negative. Assume also that B1 (k) and B 2 (k) represent the standard

diffusion, in which case both B 1(k) and B 2(k) are non-positive. Then at least one of

the diagonal elements of R must be positive; otherwise, the determinant of A(k) will

never be negative, thereby precluding the diffusional instability. Therefore, a neces-

sary condition for a Turing two-morphogen linear-reaction reaction-diffusion system

is that the diagonal elements of R have the opposite signs.
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Both Morphogens Perturbed

Assume that rll > 0 and r 22 < 0. Then r 11 - r22 > 0. Noting that in the two-

morphogen linear-reaction reaction-diffusion system the diffusion rates of the inhibitor

are typically much larger than those of the activator (D 2,x > D1 ,x, D 2,y > Dl,y), we

use the definition of -T to realize that To > 0. Then, using the definition of Te, we

realize that Te << 0. Assume for the moment that r 12 > 0 and r21 << 0. Then,

because r11 - r22 :> 0, T, becomes sufficiently large to offset the effect of Te and / < 0

in (C.25). Together with our assumption on the mutual reaction rates, rl12 and r2 1 ,

this dictates that the spatial frequencies with a positive eigenvalue will grow in the

positive direction for the activator and in the negative direction for the inhibitor. In

other words, the signs of the amounts of these spatial frequencies are opposite for the

activator and the inhibitor. In the spatial domain, this is equivalent to the fact that

the corresponding sinusoidals for the activator and the inhibitor are 180' out of phase

and have different amplitudes.

Note that the dependence on the spatial frequency of the quantity under the

square root in (C.25) does not allow the activator and the inhibitor to be exactly 1800

out of phase (i.e., to have the amplitudes that are equal in magnitude and opposite

in sign). To see this, consider the following equation:

a12  a2 1  - -4 3 + T2 ,  (C.30)

which is derived from (C.25) by setting H 1 (k, t) = -H 2(k, t). Clearly, it cannot be

satisfied with constant reaction rates.

See Section 2.4.4 of Chapter 2) for the actual marginal reaction rates of Turing's

two-Morphogen reaction-diffusion system.
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Only Activator Perturbed

The preceding discussion establishes that 7 > 0 and To > 0. Also note that

a2 1 = r2 1 < 0. Then according to (C.27), the two components of 1(k, t) have opposite

signs. This can be seen more clearly by realizing that the first component of H(k, t)

differs from the second by the factor of 7 + T, which is a negative quantity. Hence,
2a21

the two morphogen concentrations evolve in the opposite directions.

Only Inhibitor Perturbed

According to (C.29), the first component of i!(k, t) is a + " times the second,
2a 21

as in the previous section. Therefore, the two morphogen concentrations evolve in

the opposite directions under this set of initial conditions also.

C.2.2 Activator And Inhibitor In Phase

Alternatively, assume that r12 <K 0 and r 21 > 0. Then it is possible to

have a Turing linear-reaction reaction-diffusion system, in which both the activator

and the inhibitor are in phase, but with different amplitudes. This can be seen by

examining (C.25), (C.27), and (C.29) again. One can make Hl(k, t) positive if the

positive quantities, p and To, outweigh the negative quantity, r12. Similarly, one can

make H 2(k, t) also positive if the positive quantities, / and r 21, outweigh the negative

quantity, -To. Again, H 1(k, t) and H2(k, t) cannot have equal magnitude.
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Appendix D

General Noise-Shaping System

This appendix reviews the theory of noise shaping. For many years, researchers

in the oversampled E-A modulators for high-fidelity audio [79] and researchers in the

error-diffusion algorithms for high-quality printing [80] had been working on the same

general noise-shaping concepts without realizing it [73]. Even though the (1-D) audio

and the (2-D) image domains cause the actual implementations to differ substantially

in practice, both types of the system essentially aim to binarize the input signal in a

way that places the useful information and the quantization error into the separate

portions of the frequency spectrum. In particular, the goal is to make the quantization

noise perceptually unnoticeable. We now develop this theory for the use in Chapter 5.

Consider the discrete system, shown in Figure D.1(a). Its operation can be

analyzed quantitatively by modeling the quantization process by an additive noise

source, Q(Y), as illustrated in Figure D.1(b). For images, Z E C2. The noise source,

Q(z), is assumed to be white and statistically uncorrelated, which has been shown to

be a reasonable assumption for non-DC signals [84], [83], [81]. With this linearized

model of the system, it can be shown that:

Y(2) = Hs(z)S(E) + HQ()Q((). (D.1)
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This equation states that the spectrum of the output (binary) image consists of two

components: the input signal filtered by the input transfer function and the noise

signal filtered by the noise transfer function. This illustrates the noise-shaping at-

tribute of the system in Figure D.1. The generality of this system can be illustrated by

deriving from it the error diffusion and the oversampled E-A modulator architectures.

D.1 Deriving Error Diffusion

For error diffusion, we want to pass the input signal unaltered and give the

quantization noise the desired "blue" character [69], [93]. This means that in (D.1)

Ts(zl = 1, and HQ(z~ is a high-pass filter, such as the one shown in Figure D.2. Note

that the magnitude of the filter must never exceed unity for the reasons of stability.

Observing that

Q(z) = Y(zz - A(z), (D.2)

we substitute (D.2) into (D.1) and obtain:

Y (z = S(z') + HQ(z- (Y(j - A(z) ,

(Y ( -- A (z) + A (-) = S (j + HQ(i(Y(j - A(z) ,

A(z) = S(zj + (HQ(zj - 1)(Y(Y) - A(z)), or (D.3)

A (z) = S(j - (1 - HQ(zj)(Y(z (' - A(zj). (D.4)

Clearly, in either case of (D.3) or (D.4) the magnitude of the error filter,

F_(z-) = HQ(z- 1 or (D.5)

F+(z- = 1 - HQ(z, (D.6)

exhibits the low-pass behavior. Since the magnitude of the noise shaping filter, HQ(z),
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S(z)

(a)

S(z)

(b)

Figure D.1: Block diagram of the general noise-shaping system: (a) the actual
(non-linear) system; (b) the linearized model of the system in (a).
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Figure D.2: A high-pass noise-shaping filter.

obeys

0o HQ(< <_ 1, (D.7)

we obtain the following restrictions on the error diffusion filter:

-1 < F_( < 0, or (D.8)

0o F+(< _ 1, (D.9)

depending on the choice of representation format. These restrictions stem from the

requirement that the effective noise-shaping filter, HQ(zj, must remain stable.
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D.2 Deriving Oversampled E-A Modulator

For oversampled E-A modulators, in addition to (D.1) it is required that the

signal and the noise filters complement one another in the frequency domain [84]:

Hs(zi + HQ (z = 1. (D.10)

Again, we want the quantization noise to be blue. This means HQ(z2 is a high-pass

filter, and Hs(z) is its low-pass complement. The system acts as a low-pass filter on

the signal and as a high-pass filter on the noise. Substituting (D.10) into (D.1) and

denoting the low-pass signal filter by F(z), gives:

Y(z) = F(z)S(jz + (1 - F(zl)Q(zz

= F(z)S(z-) + (1 - F(z-))(Y(lz - A(z)

= (Y(z) - A(2z) + A(z-),

A(z-j = F (z)S( z) - F(z- (Y(z-) - A(z) ),

A(z) = 1 - F(z( ) (S(z) - Y(z)). (D.11)

Typically, block diagrams of oversampled E-A modulators are constructed using

(D.11).
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Appendix E

Least-Squares Halftoning

This appendix reviews two popular methods for the digital halftoning of im-

ages. Both of these methods are employed in Chapter 5.

Suppose i E Z 2 ; s(n') E [-1, 1] is the continuous-tone (or finely-quantized)

original input image signal; y(it) E {-1, 1} is the output halftone image; and h(i)

is a 2-D low-pass filter, such as, for example, the one suggested by Mannos and

Sakrison [71]. Then the problem of halftoning can be stated as a non-linear program.

E.1 Filtered-Squared-Error Method

The approach of minimizing the unfiltered squared error between the original

and the halftoned images leads to the fixed-thresholding technique, which produces

halftoned images that are visually unsatisfactory [75], [78]. An alternative is to use

a frequency-weighted (or filtered) squared error, which has better visual properties
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than the unfiltered squared error [73], [94]. Minimize:

E(y(1, 1), ... , y(Nx, Ny))

subject to constraints:

y2(n) - 1

S [h(n') * (s(n') - y(n))]2

n 0.
> 0.

In a matrix-vector form, this can be restated as:

min D(', y~)
9

= min [H(s'- #)]T [H(S - y-]
1

= min (s- s) T (H TH)(S'-- )

= min S(s- B B(`-- y)

1SI
= min 2 yBY7 - (Bs

(E.3)

(E.4)

(E.5)

(E.6)

subject to constraints:

yi2 _ 1 > 0, (E.7)

where the vectors are the lexicographical concatenations of the corresponding se-

quences, H is the matrix representation of h(n'), and B = HTH 1. The particular

form of constraints, (E.7), forces each pixel to assume binary values.

"Note that b(n') == h(-n') * h(n'), the auto-correlation of h(n').
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E.2 Least-Squares Intensity-Approximation

Method

This approach aims to calculate a bi-level image, whose average intensity mim-

ics the intensity of the original continuous-tone image [95]:

1
min D(. = min [ - H- H Hy1 [8- Hy (E.8)

min -(HTs--)T Y 'B} (E.9)

subject to constraints:

y2 -1 > 0, (E.10)

where the averaging is performed by h(n') (represented by H), and B = HTH.

The "energy" function in (E.9) can be interpreted in the following way. The

first term indicates that the original continuous-tone image acts as an external field.

The total energy is reduced if the binary pixels align with the external field (i.e.,

acquire the same polarity as the corresponding pixels in the original image). In other

words, the field term gives the binary image the tendency to resemble the original

continuous-tone image. On the other hand, the second (neighborhood) term reduces

the total energy if the polarity of every pixel is opposite from that of its neighbors.

This tendency facilitates high-frequency rendition and noise shaping.
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