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Chapter 1

Introduction

This thesis describes the implementation of the Reliable Router as a VLSI system.

The thesis project involves digital system and MOS circuit design, VLSI layout design,

and the verification of the design using various CAD tools. The thesis summarizes

the work being done as part of the team effort of the Reliable Router team. 1

1.1 Overview

This chapter discusses previous research that leads to the development of the Reli-

able Router, and the major features of the VLSI system. Chapter 2 describes the

different functional blocks of the Reliable Router. Chapter 3 details the simultane-

ous bidirectional pad drivers employed by the router. Chapter 4 describes the IEEE

JTAG interface and the diagnostic port of the router. Chapter 5 discusses the design

methodology for implementing the router as a VLSI system, and some experience

derived from the design process. Chapter 6 provides a conclusion of the thesis and

suggestions for future work.

1William J. Dally, Larry R. Dennison, Thucydides Xanthopoulos, Kin Hong Kan and David
Harris.



1.2 Motivation

In a message-passing parallel computer, different processors communicate by sending

point to point messages. These messages allow the processors to dispatch concurrent

tasks and to synchronize with one another. The performance of the network substrate

through which the messages are passed thus affect the performance of the parallel

computer significantly.

The effects of network performance becomes more obvious as we explore the regime

of fine-grain parallelism[2]. A large message latency imposed by a network means that

we need to amortize the messaging overhead by aggregating many fine-grain tasks into

one large-grain task, which implies less concurrency.

The Reliable Router project stems from the need for an off-the-shelf high per-

formance router to facilitate parallel computing. The design of the Reliable Router

chip, either as a packaged product, or as a piece of core logic to be incorporated into

other VLSI design, aims to provide the communication substrate needed for the next

generation parallel computer.

Another goal of the Reliable Router project is to serve as an implementation

testbed for empirical routing research. In particular, the design incorporates the

Unique Token Protocol to provide a reliable routing service, virtual channels and

adaptive routing to improve the network performance, and also the simultaneous

bidirectional pad drivers to increase the per-wire bandwidth. The experience drawn

from implementing the VLSI system would help us evaluate the above-mentioned

studies in a real system.

1.3 Previous Research

The idea of partitioning a physical communication link into logical channels, namely

virtual channels, was shown to increase the physical bandwidth utilization of a mes-

saging network [3].

An adaptive routing algorithm, which determines the path of a packet dynamically



according to network traffic, also provides an opportunity for increased performance[4].

Because incremental routing decisions are made locally when a packet is routed, an

adaptive routing algorithm can easily allow fault tolerance by routing around a faulty

node.

The "Turn Model" [8] is particularly useful for analyzing adaptive routing algo-

rithms. The model determines the turns that can be made by a packet in a network,

so as to avoid deadlock.

A deadlock-free adaptive routing algorithm was developed for the Reliable Router[12]

based on the above-mentioned studies. The Reliable Router also supports link-level

retransmission with the Unique Token Protocol [6], which guarantees the delivery of

exactly one copy of every packet. The protocol does not require a source node to

store old packets for retransmission; therefore no local storage is needed, making the

network truly scalable.

Simultaneous bidirectional signalling [7] [9] increases inter-chip bandwidth by al-

lowing point-to-point digital signalling over the same package pin at the same time.

The technology reduces the packaging cost for a network router by reducing the num-

ber of pins required.

1.4 Design Features

The major design features of the Reliable Router are that:

* each VLSI chip represents a node in a 2-D mesh network, which supports effi-

cient point-to-point messaging;

* it implements the Unique Token Protocol and tolerates any single faulty node

on the network;

* it is a packet router which employs worm-hole routing;

* it implements a deadlock free adaptive routing algorithm;

* it supports 5 virtual channels;



* it implements the simultaneous bidirectional pad drivers for inter-chip commu-

nication;

* it provides an IEEE JTAG interface for setup and diagnostic purpose;

* it has a low latency of 8 clock cycles for each network hop;

* it is targeted to run at 100MHz, which amounts to a maximum throughput of

400 MBytes per network data link in each direction;

* it is designed for a 3.3v 0.8pm 3 metal layers CMOS process.



Chapter 2

Architecture

This chapter summarizes the architecture of the Reliable Router. It describes the

main functional blocks of the VLSI system, namely the Input Controller, the Output

Controller, the Arbiter and the Processor Interface.

2.1 Functional Blocks

Figure 2-1 shows the block diagram for the Reliable Router. The Reliable Router

has 6 input and output ports, which are all connected to a 6 x 6 crossbar. Out of

the six pairs of I/O ports, four are the network interface ports, one is the processor

interface port, and the remaining one is the diagnostic interface port. An arbiter

Arbiter

Iput C6X6 C erosbr

Figure 2-1: Reliable Router Block Diagram
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Figure 2-2: Input Controller Block Diagram

determines which of the input ports wins the bid to an output port, and controls the

corresponding crossbar connection.

2.2 Input Controller

Figure 2-2 shows the block diagram for the Input Controller. The Input Controller

module synchronizes an incoming flit, computes a route for the flit, and makes a bid

to the arbiter. This module contains most of the control logic of the Reliable Router.

The Front End module is responsible for retiming an incoming flit to the local clock

domain. The Reliable Router operates at 100MHz, and it is difficult to distribute a

global clock signal to the entire network with a low skew. As a result, the Reliable

Router implements a queueless plesiochronous data recovery scheme[5]. The scheme

allows adjacent router nodes to operates on their own clock signals, each of which has

approximately the same frequency.

The Front End module samples the 24 bit input data path on both edges of

the 100MHz clock signal. The module then checks its parity, extracts the control

information, and puts a flit onto a 77 bit data bus on every rising edge of a 50MHz

clock signal.

The FIFO module stores an incoming data flit before it is routed to another node.

The FIFO implements the storage for 5 virtual channels. Each channel queue can

hold 16 77-bit data flits.



A data flit coming off the data queue is passed onto the Flit Munger module,

which appends to it other control information. The module retimes the 50MHz, 77

bit FIFO data bus by doubling its bit rate, thus reducing the required crossbar bus

width to 40 bits.

The Router module contains the logic for computing a route for an incoming flit.

The piece of combinational circuit is replicated 5 times, so that each virtual channel

has a dedicated router of its own. The router implements a dead-lock free adaptive

routing algorithm[12].

The Control module records most of the state information of the VLSI system. In

particular, it keeps track of the routing problems to be solved, the computed routes for

each virtual channel, and the number of vacant slots in the flit queues of the adjacent

routers. The Control module also picks, in a round-robin fashion, a virtual channel to

bid for a crossbar connection. It then informs the FIFO module the identifier of the

channel queue to read from, upon receiving an ACK signal from the Arbiter module.

2.3 Arbiter

The Arbiter module determines which of the 6 input controllers wins a bid to a

particular output controller. The arbitration priority is again determined in a round-

robin fashion using a set of shift-registers. This guarantees that any input controller

can acquire at least one-sixth of the bandwidth of any output controller. The Arbiter

module returns the arbitration result to the 6 input controllers using the ACK signal

bus; it also sets up the crossbar connections according to the arbitration result.

In addition, the Arbiter module records the BUSY status of the 30 virtual channels'.

This information is broadcasted to the Router modules of the Input Controllers, which

require it to compute the routes.

15 for each of the 6 Output Controllers.
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Figure 2-3: Output Controller Data Retiming Logic

2.4 Output Controller

The Output Controller module retimes the 40 bit data path from the crossbar by

doubling its bit rate to 200MBits per second. The module also computes a parity

and appends it to the flit together with other flow-control information. The bus width

of the Output Controller is thus 24 bits2 , which is also the width of a link between

two adjacent routers. Figure 2-3 shows the data retiming logic for a single bit of the

data link. Its function is to maximize the interchip bandwidth for the router network.

2.5 Processor Port

The Processor Port provides the network interface to a Reliable Router node. It has

a 40 bit input data bus and an output bus of the same width. The frequency at which

the network processor communicates with the Reliable Router could be the quotient

resulting from dividing the 100MHz router clock by an integer, i.e. 100MHz, 66MHz,

50MHz, 33MHz and 25MHz.

The Processor Port is similar to an Input/Output Controller pair in most aspects;

the difference lies mainly in the flow-control logic. Flow-control is achieved using

explicit CTS signals to and from the processor, instead of the state information stored

2Includes 20 bits of data plus other control information.



at the Input Controller.

2.6 Diagnostic Port

The Diagnostic Port provides a means to send or receive data flits through a serial

port. Its design would be described in Chapter 4.



Chapter 3

Bidirectional Signalling

The 6 input and output ports shown in Figure 2-1 require a large amount of interchip

bandwidth. To allow the use of a conventional chip carrier with fewer than 300 pins,

we employ simultaneous bidirectional signalling [7]. This method allows bidirectional

point to point digital signal communication on the same chip carrier pin and at the

same time.

The design of the driver presented here is similar to a previous design[9]. The

major difference is that this design is powered at 3.3V, instead of 5V. This chap-

ter describes the performance of the driver as shown by simulation result, using an

extracted netlist from the driver's layout.

3.1 System Overview

Figure 3-1 shows the block diagram of a pair of simultaneous bidirectional transceivers.

The printed circuit board connection is modelled as a transmission line, with both

ends of the line terminated with an internal resistor. A logic 1 or a logic 0 is transmit-

ted as a positive current or a negative current respectively; the signal across the chip

boundary is thus a superposition of the two current streams. To receive the digital

signal from another transmitter, a local transmitter generates an internal copy of its

own transmitted signal as a reference. The reference voltage is then subtracted from

the superimposed signal to generate the received signal.



Figure 3-1: Simultaneous Bidirectional Signalling

Figure 3-2: Receiver Schematic

3.2 Receiver Circuit

The design of the receiver circuit is a Chappell-style differential amplifier [1]. Figure

3-2 shows the circuit diagram.

Figure 3-3 and figure 3-4 show waveforms of HSPICE simulation on an extracted

netlist from the receiver layout.

Figure 3-3 shows the difference in response for a pair of receivers. The output

waveform for an isolated pulse is compared to the corresponding rail-to-rail transition.

In the diagram, the skew for the waveforms is less than 0.2ns for both the up-going

and the down-going pulse, and at least 65% of the input pulse width is preserved.

A simple latch is thus sufficient for sampling these pulses correctly at the data rate

shown, i.e. 800MBits Per Second.

m.
inp



CHAPPELL AMPLIFIER OPERATING AT 900 MBITS PER SECOND
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Figure 3-3: Receiver Operating at 800MBits Per Second

Figure 3-4: Test of Common Mode Noise Rejection for Chappell Amplifier
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Steered Current Source

in

feed line

25ohm 1 50ohm

Vt

Figure 3-5: Staggered Transmitter Stages

Figure 3-4 shows the common mode noise rejection performance of the receiver.

The figure indicates that for an input signal of 125mV above or below the reference

voltage VT, a valid range of VT is 0.13V to 2.28V. This also means that the driver can

tolerate an AC common mode signal with a frequency of 200MHz, up to a magnitude

of 0.6V.

3.3 Transmitter Circuit

The transmitter sources or drains 5mA of current into the package inter-connect,

according to the digital input value. As shown in figure 3-5, the turn-on of the

transmitter is staggered into 5 stages, so as to reduce the L' noise induced by the

package pins.

Figure 3-6 shows the schematic for a single stage of the transmitter, together with

the biasing circuit. The transmitter has a steered current source design, which keeps

the current drawn by the drivers to be roughly constant, so as to reduce the noise on

the power planes.

The transmitter current sources are biased deep into saturation to reduce the noise

that could be induced from the power supply. Figure 3-7 shows the power supply noise

rejection performance for the transmitter. The noise induced from the power supply

into the signal line is as low as -20dB even at 5GHz.
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Figure 3-6: Steered Current Source and Biasing Circuit Schematic
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Figure 3-7: Power Supply Noise Rejection for the Transmitter
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RECTIONAL SIGNALLING AT 00MBITS PER SECOND
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Figure 3-8: Inputs and Outputs of the Driver at 400MBits Per Second

3.4 System Performance

Figure 3-8 shows the inputs and outputs of a pair of simultaneous bidirectional drivers

running at 400Bits per second. Ginl shows the input signal at chip 1, and Gout2

shows the corresponding signal recovered at chip 2. Gout2 and Ginl shows the signal

travelling in the reverse direction. 3-9 shows the corresponding signals as seen at the

inputs to the differential receivers.

When compared to a previous design[9], the design proposed here is at least as

good with respect to the data rate (i.e. 400MBits per second). The new design is also

superior in terms of the receiver response (i.e. 800MBits per second vs 660MBits per

second), and transmitter power supply noise rejection (i.e. -28dB vs -20dB at 1GHz).

Figure 3-10 shows the layout for a bidirectional driver. The driver measures

1265x430 lambda, which is about 2.5 times the area of a normal I/O driver used for

the Reliable Router.

SIMULTANEOUS BIDI

..



INPUT TO RECEIVER AT 400OO ITS PER SECOND
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Although the bidirectional drivers are bigger in area, the packaging cost for the

Reliable Router is greatly reduced by using them. All of the 24 bidirectional signals

that connects an adjacent pair of Reliable Router employs the simultaneous bidi-

rectional signalling method, which amounts to a saving of 96 signal pins over the

conventional rail-to-rail signalling method.



Figure 3-10: Pad Driver Layout
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Chapter 4

Diagnostic Port

This chapter describes the architecture of the IEEE test standard employed by the

Reliable Router. It also explains the design of the Diagnostic Input and Output ports.

4.1 Boundary Scan Architecture - JTAG

The IEEE Standard Test Access Port and Boundary-Scan Architecture 1149.1[11],

more commonly known as JTAG, was defined in 1990 to provide a standard for testing

assembled printed circuit boards. The standard allows the testing of components and

circuit board interconnections through a serial port using a minimum number of

control signals.

Figure 4-1 shows the block diagram for the JTAG architecture. The boundary

Figure 4-1: JTAG Architecture

M1s

TMs
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Figure 4-2: A JTAG Scan Cell

register, which provides access to all the external pins, and a set of test data registers,

which provide access to selected internal registers, all share a common serial data

input. The instruction register selects the data register being serially loaded/unloaded

through the instruction decoder. The test access port control module generates the

different clock signals needed for shifting the registers.

Figure 4-2 shows the schematic for a JTAG scan cell. A boundary register or a

test data register is formed, depending on the register width, by a number of scan

cells connected in series.

Data output of the scan cell can either be a value shifted in through the JTAG

serial port, or simply be the input data. The scan cell is shifted when clockDR goes

from low to high; the register is loaded when updateDR goes from low to high.

Figure 4-3 shows the state transition diagram for the Test Access Port (TAP)

state machine. Transitions are controlled by the TMS signal and synchronized by

the TCLK signal. The state transition sequence for loading the instruction register is

very similar to that for a data register. Different clock signals for shifting the registers

are generated by decoding the state bits of the TAP state machine.



T

Figure 4-3: Test Access Port State Machine
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Figure 4-4 shows the schematic for the Diagnostic OuInput Port. The port cantakes the

store four flits of data shifted inved from the neJTAG interface and shiftends them out serially throughthe JTAG interface, sets a flag signal. The state machine resets

Th4.3 Diagnostic Output t heort t encodes

Figure 4-4 shows the schematic for the Diagnostic Output Port. The port can
store four flits of data received from the network and shift them out serially through
the JTAG interface.

The design of the output port is very similarly to that of the input port. It encodes



Figure 4-5: Diagnostic Output Port Schematic

each of its state bits in a different register, and it also makes use of a flag signal. The

flag signal can be accessed externally through the JTAG interface, which notifies the

user that four flits of data are received at the Diagnostic Port.



Chapter 5

The Design Experience

This chapter summarizes the design experience acquired from implementing the Re-

liable Router as a VLSI system. It describes the design process and some of the

problems that the Router Team encountered. The chapter is targeted towards those

who would design a chip in a similar research environment as the Router Team.

5.1 The Design Process

The design process of the Reliable Router involves iterations over different design

choices. In general, our process is divided into 5 stages; though the boundary of the

stages may be blurred, and a non-optimal design decision could possibly nullify the

work of the previous stage(s). The different design stages are:

1. Algorithm: The algorithms that satisfy a design goal are first developed, studied

and proved to be correct. For the Reliable Router, the algorithms are the Unique

Token Protocol, and a dead-lock free adaptive fault-tolerant routing algorithm.

The tools that we use at this level are some algorithmic techniques 1 for proving

the correctness, and simulators written in C/C++ for studying the performance.

There was a major redesign of the fault-tolerant routing algorithm when the

schematics of the Reliable Router was close to be finished. The reason was a

'The Turn Model by Glass and Ni[8].



change in the design goal, which allows the router to tolerate a faulty node in

the network, instead of just a faulty link. The algorithmic change was easily

accommodated because of the good abstraction of the same class of problems

by the Turn Model.

2. Architecture: The different modules of the VLSI system are defined at this stage.

The modules are specified such that the low-level implementation details are

ignored; each module is treated as a black box, with its input signals, behavior

and output signals specified.

The tools that we use at this stage are some behavioral Verilog models. The

models are particularly helpful for understanding the interactions between the

different modules.

Several designs were considered before we settled with the current one. The

major factor affecting the design choice is the amount of state information that

flows between different modules. Because of the nature of the Router, most of

the state information is needed by the module which makes the routing decision.

We, therefore, minimized the information flow by putting most of the control

and state logic in the module responsible for picking the route, i.e. the Input

Controller.

3. Schematic: The different modules are specified using logic gates at this stage.

A rough manual timing analysis, using unit gate delay, is performed to ensure

that each module have a chance of running at the desired clock speed.

The tools employed at this stage includes a schematic editor, which allows us

to enter the schematic manually, and a schematic-to-Verilog netlister, which

allows us to verify the logical functions of the different modules by simulation.

Verilog test suites are written for testing each module, as well as for testing a

3x3 router network.

4. Layout: A layout editor is used for editing some irregular cells such as a D

flip-flop, while most of the layout are drawn using a LISP-like language called



SKILL. The language allows us to perform low level operations such as drawing

rectangles; a library of higher level routines are also developed to perform stan-

dard cells place-and-route operations(Refer to Appendix A). Layout-Versus-

Schematic (LVS) is then performed to verify the layout with the schematic.

LVS can be done on a plainly extracted netlist from the layout, or on a hierar-

chically extracted netlist from the LVS view of the modules.

The layout design of the different modules depends heavily on the budgeted

total area and the floorplan. To minimize the rerouting of the data paths

between the different modules, many schematics for the Reliable Router were

redrawn to rearrange the bit definition of the data path, i.e. to pitch-match the

data path. Changes also happen to the schematics at other situations: when

common signals of different cells are factored out to reduce area consumption,

when buffers are added to accommodate the capacitive loads, or when cells are

regrouped to reduce the amount of wiring. All the modified schematics are re-

verified using Verilog simulation, either on the original test suites or on modified

ones.

Other SKILL tools are developed2 to help in the layout process. The "module

generator generator" converts a schematic netlist into SKILL code, which forms

the framework for manual place-and-route. The "logic gate generator" converts

CMOS logic gates schematics into layout.

5. Timing Verification: The amount of timing verification done by the Router

group is minimal because of the limited amount of man-hours. SPICE simula-

tions on extracted netlists from layout are performed only on critical paths as

determined from the schematics.

More sophisticated timing analysis tools, such as Veritime, could have be used

if the project time frame allowed. Such tools can read in annotated timing

information for individual logic cells, delay information for each net, and a

2 By Larry Dennison.



schematic netlist. A full timing analysis can then be performed on the whole

VLSI system.

5.2 Hurdles and Lessons

The Reliable Router Team encountered different problems during the design process.

Some were solved; others are simply facts of life. Throughout the design process, the

team has learned a lot which may benefit another VLSI design team:

1. Learning the Tools3: The CAD tool set that we use has a steep learning curve;

the Router Team perhaps spent as much time learning the tools as drawing the

schematics. A huge amount of time was spent on understanding the correct

setup for the tools, and learning the different features.

The initial tool setup period could have been reduced if more assistance from

the vendor were obtained. A MOSIS technology file and some courses about

the tools would have been helpful. The best way for a novice user to learn the

tool is to ask for a demo from another user.

2. Picking the Right Tools: The Router Team has learned that understanding

what a tool can do, and where it would do a good job is crucial.

The team once considered doing logic synthesis of schematics from Verilog. We

gave up on the idea and switched to manual schematic editing after a few trials.

It is difficult to specify the constraints so that the logic synthesis tools would

do what it is expected; the schematics generated are also not intuitive enough

to be readable. We learned that the logic synthesis tools could not be easily

configured to synthesize a large state machine in a reasonable fashion, while

schematics for a small state machine could be edited manually as quickly. The

reason, of course, has a lot to do with the fact that we did not invest a lot of

effort in learning the synthesis tools.

3 A tool set from Cadence Design Systems.



In another situation where we put into a considerable amount of effort, we did

not benefit from the tool either. We spent about 2 man-months in learning the

automatic place-and-route tool from a graphical user interface; then we spent

another man-month in writing the SKILL code to drive the place-and-route

tool. The tool did help us in shipping a small test chip in a short period of

time. However, the tool failed to optimize as required on the Reliable Router,

which is area-limited. Manually generated layout, especially for regular data

path structures, is much denser than that generated by the tool. We learned

that the automatic place-and-route tool is good at generating a "quick-and-

dirty" block of standard cells logic, but is inferior to manual place-and-route in

assembling regular structures.

3. Integrating the Tools: A considerable amount of time was spent on integrating

different tools. In particular, the generation of a HSPICE netlist from either a

schematic or an extracted layout requires special SKILL code for resizing the

transistors(Refer to Appendix B). The generation of a Verilog netlist using

gate primitives, which is much faster for simulation, also requires set-up at the

schematic level.

The team has learned that tool integration involves a lot of ad-hoc hacking.

The more abstraction a tool has, the more difficult it is to be integrated with

other tools as desired.

4. Testing: As mentioned in section 5.1, the design process involves a lot of changes

in the schematics. A typo in naming a bit of a bus, or a click of the mouse on

the wrong pin would result in a wrong design.

The team has learned that the development of a complete Verilog test suite

for each module is desirable. This ensures that a module preserves its func-

tion across the many schematic changes. The Router Team, however, fails to

maintain such a test suite because of the amount of work involved.



5. Communication: A weekly group meeting, or a design review, is highly recom-

mended. Although it is true that a lot of the design decisions happen during

informal white-board session, a group meeting allows team members to have a

better understanding of modules they are not working on. The knowledge is

important when the different modules are integrated into a single design.

A group meeting also provides a formal mechanism for progress checkpoints,

which is important for delivering the design on time.

5.3 Rules of Thumb

Different people develop different design styles of their own[10]. Some general rules

of thumbs for VLSI system design, as recommended by the author, are:

* Know Your Tools: Do not rely on your tools. Be prepared for an alternate plan

in case your tools fail you: since they often do. Ask an experienced user about

the limitations of a tool, and when it best serves its purpose. Be ready for a

steep learning curve and plan for a lot of man-hours if you are the adventurer

for a new tool. If it is not obvious that a tool could do a better job than you

do in the scheduled amount of time, trust your intuition and do it manually.

* Use Late Binding: Allow as much flexibility as possible for changes later on.

Use relative co-ordinates when you place a cell on a piece of layout; refer to the

pins of the cell with its net name, instead of its position. The same rule applies

to schematic editing. Use abstracted modules when you draw schematics; avoid

a flat hierarchy that has only MOS transistors on the top level sheet.

* Be Budget Conscious: Architect your design on the amount of chip area you

have. Start doing a floor-plan early; this helps you reduce the number of wires

between modules. In most cases, extra design features mean extra area. Plan

on what you can afford.



Chapter 6

Conclusion

This thesis describes the implementation of the Reliable Router. In particular, it

details the simultaneous bidirectional signalling method and the design of the JTAG

diagnostic port. It also discusses some of the design experience acquired by the

Reliable Router Team through the implementation process of the VLSI system.

The next step for the Reliable Router project is to build a substrate for testing the

functionality of the chip. A printed circuit board that accommodates a 3x3 network,

with both processor and serial port access to each node would be minimal for testing

most features of the Reliable Router.

Detailed performance measurement should then be done on a full scale router

network. In particular, the Reliable Router allows the comparison of dimension order

routing and an adaptive routing algorithm. Experiments on a network of workstations

could also be performed on the Reliable Router if a high-speed SBus interface is built.

The SKILL code developed by the Reliable Router Team could be documented

and packaged so that other VLSI projects could benefit from our tool base.



Appendix A

SKILL for a Typical Module

Generator

This appendix includes a piece of SKILL code that does manual standard cells

place-and-route. The framework of the code was generated automatically from the

schematic netlist, by a SKILL routine called mgg(), written by Larry Dennison.

Some commonly used SKILL routines by the Router Team: instAlignPins() places

two standard cells next to one another; instFindPinOnSide() returns the list of named

pins on a side of a cell instance; wireChannel() connects a list of poly and metal2

rectangles by searching for the first available wire track in a given channel.

(defun mg ()
(let ( cv 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

bb_lx bb_ux bbly bbuy

channelO channell channel2 channel3
uy ly)

(setq cv (dbOpenCellView "frontend" "latch_andmux" "layout" nil "w"))
(instantiate)
(placement)

(setq bb_lx -2.0)
(setq bb_ux 66.0)
(setq bbly -2.0)
(setq bbuy 341.0)



(setq

(setq

(setq
(setq
(setq

(setq
(setq
(setq

(setq
(setq

(instFindPinOnSide cv I100

bblx bb_ly bb_ux uy))
uy (rectly (first

channelO (rectMake

ly (rect_uy (first

uy (rect_ly (first
channell (rectMake

uy (rect_ly (first
ly (rect_uy (first

channel2 (rectMake

ly (rect_uy (first
channel3 (rectMake

"gnd! " "east"))))

1103 "vdd!" "east"))))
1106 "gnd!" "east"))))

1107 "gnd!" "east"))))
1105 "vdd!" "east"))))

1107 "vdd!" "east"))))

(wire_clk50bar) (wire_clk50) (wire_pp2) (wire_pnO)

(wire_pn2) (wirepp0) (wire_rsel) (wire_qsel)

(wire_i) (wire_flit) (wire_net26) (wire_net24)
(wire_net25) (wire_net450)
(wire_net473) (wire_net22)

(wire_net460) (wire_netll)
(wire_q) (wire_power)

(dbCreateRect cv (list "prBoundary" "drawing")

(rectMake bb_lx+2 bb_ly+2 bb_ux-2 bbuy))
(dbSave cv) ))

(defun instantiate ()
(let (cmos2 dl_2c inv in3x)

(setq cmos2 (dbOpenCellView "ghost" "cmos2" "layout" nil "r"))

(setq dl_2c (dbOpenCellView "ghost" "dl_2c" "layout" nil "r"))
(setq inv (dbOpenCellView "ghost" "inv" "layout" nil "r"))
(setq inv3x (dbOpenCellView "ghost" "inv3x" "layout" nil "r"))

(dbCreateInst
(dbCreateInst
(dbCreateInst
(dbCreateInst
(dbCreateInst
(dbCreateInst
(dbCreateInst
(dbCreateInst
(dbCreateInst
(dbCreateInst

dl_2c "1100" (list 0.0 0.0) "RO")
inv "1101" (list 0.0 0.0) "RO")
inv "1102" (list 0.0 0.0) "MY")
dl_2c "1103" (list 0.0 0.0) "MY")
inv "1104" (list 0.0 0.0) "RO")
cmos2 "1105" (list 0.0 0.0) "RO")
inv "1106" (list 0.0 0.0) "RO")
dl_2c "1107" (list 0.0 0.0) "RO")
dl_2c "1108" (list 0.0 0.0) "MY")
inv3x "1109" (list 0.0 0.0) "RO")

(instFindPinOnSide cv
(instFindPinOnSide cv
bb_lx ly bb_ux uy))

(instFindPinOnSide cv
(instFindPinOnSide cv

bb_1x ly bb_ux uy))

(instFindPinOnSide cv

bb_lx ly bb_ux bb_uy))

1100
I101
1102
1103
1104
1105
1106
1107
1108
1109
))



(defun placement ()
I100~>xy = (list 0.0 16.0)
(instAlignPins 1101 "gnd!" "west" 1100 "gnd!" "east")
(instAlignPins 1102 "gnd!" "west" 1101 "gnd!" "east")
(instAlignPins 1103 "gnd!" "west" 1102 "gnd!" "east")
(instDX 1103 -8)

I105~>xy = (list 0.0 134.0)

(instAlignPins 1104 "gnd!" "west"

(instDX 1104 5)

(instAlignPins 1106 "gnd!" "west"

I109~>xy = (list 0.0 252.0)
(instAlignPins 1108 "gnd!" "west"

(instAlignPins 1107 "gnd!" "west"

1105 "gnd!" "east")

1104 "gnd!" "east")

1109 "gnd!" "east")
1108 "gnd!" "east"))

(defun wire_clk50 ()
(let ( ri r2)

(setq ri (first (instFindPinOnSide cv 1108 "g" "south")))

(setq rc (wireChannel cv nil (list rl) channel2

?gravity "top"
?westExtend t

?eastExtend t))

(pinMake cv "clk50" "metall" (rectSet_ux rc bb_lx+4.0) ?direction "input")
(pinMake cv "clk50" "metall" (rectSet_lx rc bb_ux-4.0) ?direction "input")

(setq r2 (first (instFindPinOnSide cv 1107 "gn" "north")))

(setq rc (wireChannel cv nil (list r2) channel3
?gravity "bottom"
?westExtend t
?eastExtend t))

(pinMake cv "clk50" "metall" (rectSet_ux rc bb_lx+4.0) ?direction "input")
(pinMake cv "clk50" "metall" (rectSet_lx rc bb_ux-4.0) ?direction "input")

(defun wire_pnO ()
(let ( ri)

(setq rl (first (instFindPinOnSide cv 1103 "gn" "north")))

(setq rc (wireChannel cv nil (list rl) channell

(pinMake
(pinMake

?gravity "bottom"
?westExtend t
?eastExtend t))

cv "pnO" "metall" (rectSetux rc bb_lx+4.0) ?direction "input")
cv "pnO" "metall" (rectSet_lx rc bb_ux-4.0) ?direction "input")))



(defun wirenet26 ()
(let ( ri r2 r3)

(setq ri (first (instFindPinOnSide cv I101 "A" "north")))
(setq r2 (first (instFindPinOnSide cv 1102 "A" "north")))
(setq r3 (first (instFindPinOnSide cv I100 "qn" "north")))
(wireChannel cv (list r3) (list rl r2) channell

?gravity "bottom")))

(defun wire_net460 ()
(let ( ri r2)

(setq rl (first (instFindPinOnSide cv 1107 "d" "south")))
(setq r2 (first (instFindPinOnSide cv 1106 "Y" "north")))
(wireChannel cv (list r2) (list rl) channel2

?gravity "south"
?polyContDX -2)))

... <other nets deleted>



Appendix B

SKILL for the HSPICE Netlister

This appendix includes a piece of SKILL code which directs the netlister to generate

a line for a HSPICE MOS instance. A considerable amount of SKILL code similar to

the following was written to customize the Cadence set of tools.

procedure( hnlHspicePrintScaledMOSfetElement(scale)
prog( ( s m i w 1 src gate drn off scaled_l scaled_w substrate area para)
m = hnlHspiceUniqueBlockName( hnlCurrentMaster )
i = hnlMapInstName( hnlCurrentInstName )
1 = hnlHspiceInstPropVal( "1" )
w = hnlHspiceInstPropVal( "w" )
src = hnlHspiceNetOnTerm( "S" 0 )
gate = hnlHspiceNetOnTerm( "G" 0 )
drn = hnlHspiceNetOnTerm( "D" 0 )
off = hnlHspiceInstPropVal( "off" )

if( ( w == nil ) then
warn( "nil width in master '%s', instance 'Ys'\n" m i )
w = "4.0"

if( ( 1 == nil ) then
warn( "nil length in master '1.s', instance '%s'\n" m i )
1 = "2.0"

scaled_l1 = evalstring(l) * scale
scaled_w = evalstring(w) * scale
area = scaled_w * (5 * scale) ;; assumes w * 5 lambda s/d region
para = scaled_w + (2* 5 * scale) ;; only counts three sides



if( ( off == nil ) then
off = ""

substrate = "UNKNOWN"
if( (strcmp(m "pmos") == 0) then

substrate = "vdd" )
if( (strcmp(m "nmos") == 0) then

substrate = "gnd" )
if( (strcmp(substrate "UNKNOWN") == 0) then

printf ("unknown device - hnlHspicePrintScaledMOSfetElement\n") )

sprintf(s "m%s %s %s %s %s %s w=%g l=%g as=%g ad=%g ps=%g pd=%g m%%s\n"
drn gate src substrate m scaledw scaled_1 area area para para off)

hnlPrintString(s)
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