
Product and Program Management:
Battling the Strangler Trees of System and Social Complexity

in the Software Market Jungle

by

John A. Hempe
Submitted to the System Design and Management Program
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

at the

Massachusetts Institute of Technology

June 2006

C 2006 John A. Hempe
All rights reserved

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole or in part.

Signature of Author I - .

OARKER

John A. Hempe
System Design and Management Program

June 2006

(9 Michael A. Cusumano
Thesis Supervisor

Distinguished Professor of Management Sloa School of Management

Certified by
Patrick Hale

Director
System Design and Management Program

MSACHUSETS IN MWifE.
OF TECHNOLOGY

JUN 2 12006

LIBRARIES

Certified b

Product and Program Management:
Battling the Strangler Trees of System and Social Complexity

in the Software Market Jungle

by

John A. Hempe

Submitted to the Engineering System Division's System Design and Management
Program on June 9 th, 2006 in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

ABSTRACT

An exploration of Software Product and Program Management as recently emergent roles
in the information technology sector is presented. The exploration is presented in six
sections divided into two major parts. The first part, in four sections, explores Product
Management from a primarily anthropological and managerial perspective, while the
second part, in two sections, explores major engineering issues related to the role.

The first part gives a synopsis of the history and economics of software products,
demonstrating the rapid evolution of a field facing unprecedented problems with product
complexity and motivating the need for Product Management. The role of Product
Manager is explored in detail using both extant literature and interviews conducted with
current practitioners in industry. The related role of Program Manager is briefly
discussed. Finally, an extended historical case study is presented demonstrating the
struggles and pitfalls of Product Management in software product companies.

The second part explores two major engineering issues related to the Product
Management role: Project Management and Requirements Engineering. A survey of
major Software Project Management methods in use is given along with critiques of their
effectiveness. Finally, the emerging field of Requirements Engineering is studied, with
the conclusion that purely analytical methods such as semi-formal modeling cannot
obviate the need for social process methods. Such methods take into account the
tendency for human communication problems both to sabotage and to become embedded
within software systems.

Thesis Supervisor: Michael A. Cusumano
Title: Sloan Management Review Distinguished Professor of Management

2

Acknowledgements

This thesis would not have been possible if had I not been accepted into the MIT

community, which I have dreamed of joining ever since I watched a ping pong ball-

gathering robotic competition held here on video in a high school science class at the age

of 14. I am grateful for the experience.

In particular, I would like to thank my advisor, Professor Michael Cusumano,

who provided guidance for this thesis. "I have many sad stories about software

companies," he once said in a lecture for his Software Business class, pausing and

looking off as if into the distance, or into a dark abyss. "Sometimes I wonder why I

continue to study the subject." He paused a moment longer, as if searching that abyss of

uncertainty for a hint of the light from software's first glory days, then continued,

seeming to find it: "But I still find it fascinating. Software can change the world."

I thank Professor Daniel Jackson of CSAIL for donating his time to interview for

this thesis, and for allowing me to record the interview. I also thank the industry

interviewees who donated time providing invaluable insight into the current practice of

Software Product Management. In alphabetical order, they are: Scott Case, Product

Manager at Atlas Solutions; Philip DesAutels, former Product Manager and current

Academic Liaison at Microsoft; and Shuman Ghosemajumder, Business Product

Manager of Trust and Safety at Google. Thanks to Professor Nancy Leveson for her

excellent "Software Engineering" course which provided a lot of relevant material.

In closing, I would like to thank some personal connections. I thank my parents

Jeff and Linda, who provided hours of emotional support via telephone. Also, I thank my

long suffering fianc6e Jennifer, who put up with our 3,000 mile separation for a year and

a half. Thanks to Dr. Stephen Harrison, who helped me get into the SDM Program and

who supported me when I first came to Massachusetts, and to my California dot com

bomb buddy Karl "Wes" Chester. Lastly, I would like to thank my oldest and 24 karat

gold friend Gerald "Jerry" Richmond, whom I met in Kindergarten and have known all

my life, for our hours of off-the-wall Internet chats during the writing of this work, which

helped keep me sane.

3

Table of Contents

A bstract ... 2

Acknowledgements ... 3

Table of Contents...4

Preface: 8 Years in Silicon Valley.. 6

1. Introduction .. 9

II. The Software Product Problem Arises: History, Economics, and the
Strangler Tree... 13

Factors Motivating Product Management...13
Godlike Powers and the Strangler Tree .. 13
The Emergence of Product and Program Management.............................. 18
The Economic Landscape for Software Products in the Internet Age 22

l1l. Understanding the Roles of Product and Program Manager..............29
Approaching the Target Roles.. 29
Inbound versus Outbound: Listening versus Talking to the Market............29
Industry Perspective on Product Management..31
Deliverables of the Product Manager ... 37
Demographics: Who Are Product Managers?..................... 40
Program M anagem ent.. 42
The Program Management Grey Area ... 44
Conclusions on Product and Program Management...................................45

IV. Struggle and Failure in Software Product Management 48
An Extended Case Study: Netscape Navigator versus Internet Explorer.......48
Judo S trategy 53
U ncontested G round ... 54
B e F lexib le 5 5
Marketing Warfare in Product Management..62

V. Software Project Management ... 64
W aterfall M odel 64
S p ira l M o d e l 6 5
Agile Software Development.. 67
Capability Maturity Model for Software... 75
Process, Culture, and Project Management..79

VI. Requirements Engineering .. 82
The Product Management Frontier ... 82
The Werewolf Theory of Requirements Engineering...................................87
Capturing Requirements with Social Process Methods...............................93
Engineering Software Requirements in the Future..102

V II. C onclusion ... 104

4

B ib lio g raphy .. 108

Appendix A: The Great Windows / UNIX Platform Battle and Software
Commoditization...110

Parallel Timelines in Hardware and Software..110
The Mainframe to UNIX to Open Source Timeline .. 110
The Intel to IBM / Microsoft to Wintel Timeline .. 112
The Non-Euclidean Software Market: Do Parallel Lines Ever Meet? 114
Ubiquitous Networked Computing ... 115
Unintended Consequences and Open Source .. 115
T im eline C ollision and Fallout ... 116
The Resultant Software Product Black Hole: Commoditization....................117

Appendix B: Industry Practitioner Interviews ... 118
S cott C ase, A tlas S olutions ... 118
P hilip D esA utels, M icrosoft..122
Shuman Ghosemajumder, Google .. 126

Appendix C: Interview with Professor Daniel Jackson 132

5

Preface: 8 Years in Silicon Valley

A thesis is personal, at least in terms of motivation, and I have chosen to use this

section to speak briefly but personally about my experiences leading up to the writing of

this work. Only a sketch, of course, and a lot is left out, but then this is a preface and not

a memoir.

Once upon a time, in 1999, every company, startup, dot com idea, dynamic duo of

a programmer and an MBA, almost any organization engaged in the production of

software--especially Internet related software--was viewed as a potential gold mine, or as

an oil drilling operation near-certain to end up a gusher. Irrational exuberance ruled the

day. I lived through the days of euphoria, and struck it rich (temporarily) in the days

when Internet-based enterprise software could do no wrong. My company, BroadVision,

Inc., peaked as an S&P 500 company with a $29 billion market cap. Venture capital

money poured into anything Internet or "dot com" related.

Humanity does this sort of thing every so often. We all have a weakness for the

potential quick buck; coincidentally, the heart of the Internet gold rush was in roughly the

same place as the literal Gold Rush of 1849: in San Francisco and the surrounding Bay

Area. Yet the surface gold, easily accessible, quickly ran out, and many gold seekers

died paupers. According to one historical site, "James Marshall - the original discoverer

of gold - died on his claim in the gold fields in 1885 without even enough money to pay

for his burial." [1] Although hopefully most of the Internet gold rush participants would

have more luck rebuilding their future, many found their wealth decimated or destroyed.

After what I call the Dot Com Bomb, by late 2001, businesses were going down

left and right. January 8 th, 2001, I walked into my office on a Monday morning at a

customer relationship management (CRM) company called North Systems. I was a

consultant, charging $110 an hour as my own agent, the kind of money I never dreamed

one could get without being a lawyer. I had just taken a long holiday vacation. My

cubical had been moved, and all my equipment was unplugged. I found my manager.

"What's going on?" I asked.

"It's over. The company's dead."

6

I looked into his eyes, and saw that they were slightly wild. In a second, I noticed

he was unshaven, haggard, with a light sheen of sweat on his forehead. He clearly wasn't

joking. He had worked 50 - 60 hours a week for this wildcat startup for two years, and

would walk away with nothing. What could I say?

Amazingly, they paid my final bill. Yet it was the beginning of the end of my 8

year career in the San Francisco Bay Area. Company and product launch parties were

soon displaced by "Pink Slip parties" for laid-off IT workers, and these parties often had

lines out the door. Contracts suddenly became scarce and rates deflated drastically.

Startups were dying even faster than they once popped up just a year before. What had

gone so horribly wrong? Part of it was certainly just human nature, the Gold Rush

mentality gone wild.

Yet something deeper was wrong with the business of software, something that

plagued businesses before the Internet boom and continues to plague them today. Fred

Brooks knew part of the story by 1986, as virtually every software manager knows: there

is "No Silver Bullet" to ease the creation of software.

Software is hard.

Less pithily but more descriptively, the creation of wealth through the writing,

marketing, and selling of software as a sustainable business is incredibly difficult. This is

what I learned during my triumphs and struggles in the Silicon Valley, as I tried to keep

my head above water programming incredibly complex systems while watching the

NASDAQ slowly (then quickly) drown.

My own insight is not, "software is hard." My insight, rather, is this: In spite of

the painful lessons of history, managers at all levels in business today somehow persist in

believing, as evidenced by their actions, "software is easy." Managers consistently

underestimate the difficulty in implementing a given set of functionality. They

consistently underestimate the expense of maintaining a system. They underestimate

both the importance of and the difficulty with intra-corporate communication, especially

between Engineering and Marketing, about what a software system actually does, could

possibly do, and should do in the future. A general distrust between Engineering and

Marketing is endemic (one might say epidemic) in the software industry.

7

Communication channels between the two are often neglected, and a silo effect occurs,

devastating to a software business dependent on a well marketed product.

These are the problems which motivated this thesis. After experiencing the lofty

highs and crushing lows of the Silicon Valley software business, I've become sensitized

to the fact that commercial software is far from a MMOP or a "Mere Matter of

Programming." Human factors, business factors, can easily prevent the best engineered

software from becoming a market success. My hope is that this thesis will shed a little

light into the abyss between the engineering and the business, especially the marketing,

of software.

8

I. Introduction

Software has exploded onto the stage of virtually every aspect of public and

private life in the past half-century. With origins in publicly funded military and

aerospace systems, software quickly trickled down into universities, privately held

businesses, hospitals, homes, cars, stereos, microwave ovens, digitally encoded neo-

Walkmans such as the iPod, cell phones, and, of course, our now-ubiquitous Personal

Computers. To paraphrase MIT Professor Nancy Leveson, the advent of microprocessors

capable of running general-purpose software has given us the capability to build a single

generalized machine and create a near-infinite number of specific machines from it.

Corporate or enterprise software has also become critical to the running of

virtually all major businesses in the modem world. The 2003 Chaos Report indicates

that, unfortunately, only 34% of IT projects were considered successes, with only 52% of

originally allocated requirements appearing in finished projects.[2] One paper by

Christof Ebert of Alcatel claims that there is a "Bermuda Triangle" effect between the

marketing, strategy, and technical aspects of software development into which product

success gets lost due to the lack of agenda coordination.[3] The extremely rapid pace and

inherently complex nature of software development makes total life cycle management of

a product's business value-Product Management-uniquely challenging in the software

/ IT sector. Even a small incremental improvement in the area of software product

management could yield great dividends in a field experiencing a project success rate

well under 50% as virtually all sources agree.

The central theme of this thesis is software product management, a topic about

which surprisingly little has been written. The role is probably the most strategic and

9

cross functional non-executive level (or C-level) role in the modem software corporation.

Due to the highly cross functional nature of the Product Management role, it is necessary

to explore the "satellite themes" of Program and Development (or Project) management.

The original goal of this work was to draw a bright line around the Product Management

role, exhaustively explaining all duties, the ideal toolset, and at least a skeletal outline

tantamount to an instruction manual for the performance of the job. Exploration into the

role slowly revealed that this task is about as tractable as writing an explicit manual

entitled "How to be a Good CEO." There are few bright lines and pinpoint answers to be

found, no list of command directives to be a good Product Manager.

Thus, we explore the role as if tightening a perimeter around elusive prey. First,

we motivate the role from a historical perspective, examining the rapid rise of the new

class of highly complex software products, and the emergence of the Product and

Program Management roles in the software industry. We briefly examine the intense

hype of the Internet gold rush, and the terrible crash back to reality, as well as some of

the economic factors unique to software products. These factors demonstrate the difficult

and fast-paced environment creating the need for the Product Manager. They do not

define him exactly, but quarry, if you will, the block of marble where he exists from the

surrounding rock of a difficult market. We then chisel at that block, exploring more

directly the role of Product Manager in an attempt to sculpt a likeness. Lacking a tight,

abstract definition of the role, we turn to modem industry. Interviews with three

prominent practicing Product Managers help triangulate a definition of the role as

practiced today. We'll also look at the overlapping role of the Program Manager,

emerging as if fashioned by Microsoft from a rib of the Product Manager. (No gender

10

bias is implied-if anything the Program Management role is slightly skewed male

compared to the Product Manager role, which splits about two-thirds male to one-third

female).

After directly exploring Product and Program Management, we examine in detail

a historical case study, attempting to illuminate the roles further in a recent historical

"Clash of the Titans" in software products. The David and Goliath browser wars of

Netscape versus Microsoft demonstrate the strategic maneuvering of two powerful foes

in attempting to position their products and drive them into market dominance. These are

precisely the broad strategic issues Product Managers face in their daily lives, although

often on a somewhat smaller and less public scale. Yet Product Managers have to make

smaller scale versions of strategic maneuvers exactly like those of Gates, Barksdale, and

Andreessen, because in many companies the Product Manager is truly the CEO of the

product.

The final third of this work focuses on engineering methods relevant to Product

and Program management. Both roles are involved with the discipline of Development

or Project management. First we examine a topic at the cutting edge of practice, the

controversial and intensely studied emergent discipline of Requirements Engineering.

We take a brief look at the current practice of RE today, and then examine several

emergent methods, including a detailed examination of a semi-formal method under

research in the Computer Science and Artificial Intelligence Lab at MIT. Finally, in

consideration of the Product Manager's duty to schedule or at least monitor projects, we

delve into a survey and review of both time-tested and recently emergent Project

11

Management methods, examining how they affect company culture and the role of the

Product Manager.

We conclude with a retrospective on Product Management: what we do know,

what is still uncertain, and what aspects of the role will likely never attain the status of a

"solved problem." In the final analysis, we can learn a great deal from industry practice

and continue to improve tools and methods, but no replacement of the need for vision and

leadership in the role (and in the related roles of Program and Project management) is

foreseen.

12

II. The Software Product Problem Arises: History,
Economics, and the Strangler Tree

Factors Motivating Product Management

As outlined in the Introduction, it is difficult to draw a "bright line" around the

Product Management role. This section explores historical and environmental factors

motivating the creation of Product Management as a role in the firm. First, we delve into

a philosophical exploration of the awesomely complex nature of software systems, which

translates into complex software products. This is followed by a selective elucidation of

the frenetically paced history of software products, with winner-takes-all battles requiring

superior management for mere survival, let alone success. The timeline and historical

emergence of Software Product Management and invention of Program Management are

briefly studied.

We conclude with a pass over a detailed slice of software history, with an eye to

the associated economic forces, that being the recent Internet boom and bust. These

economic factors do not directly define the Product Management role, but are critical to

understand as they define the strategic environment in which modem Product, Program,

and Project management take place.

Godlike Powers and the Strangler Tree

Mankind has not yet wrapped its collective mind around the possibilities software

creates, which makes sense as software is possibly the most powerful single technology

invented for the extension of that mind's power. Software is pure design embodied; by

far the closest man has come to achieving the godlike power of thought made flesh. In

13

existence for less than a century, software has revolutionized mankind's pursuit of

scientific knowledge (if not wisdom), enabling him to, for instance, land a remote

controlled robot on Mars and scan, at least to a first, gross level, his own genome.

Of course, godlike powers do not generally come easily or without peril.

Intercontinental ballistic missiles capable of carrying nuclear warheads accurately across

the globe to annihilate most of humanity still sit quietly in their silos, ready to fly and

find their targets using software. Hellfire missiles launched from pilotless airborne

vehicles controlled remotely through a television screen, and many similar devices, could

not exist without software and make even conventional war and killing perhaps far too

easy and impersonal. Creation of deadly chemicals, biological weapons, and a host of

other evils can be made possible or at least radically accelerated by software. All

technologies of great power can be wielded to the great good or terrible ill of humanity,

and somewhere along the line generally end up getting used for both.

Yet perhaps the greatest difficulty mankind faces in the future of software is not

the question of how it is used so much as how it evolves. Sheer complexity is the enemy

of software. Complexity creeps into large software systems like a slowly spreading

disease. Like the strangler trees of the equatorial forests, complexity softly slithers its

way into the subroutines and interfaces of systems, seeming innocuous until one day a

major modification must be made to the system. Engineers merrily continue to develop

the "feature of the day" until that moment, like new branches and leaves growing on the

tree. Eventually, however, the day comes that the unavoidable modification must be

made: a major change to the intent and functionality of the system.

14

In nature, the strangler tree (see Figure 1) eventually kills the underlying host tree,

choking it to death while the strangler lives on, holding the same shape as the original

tree. Similarly, complexity eventually kills all software systems of sufficient size: there

is still life, the system is still somewhat functional, but it simply becomes impossible to

alter the intent or basic functionality of the system to any significant degree. The power

of software may be potentially godlike, but we human beings do not have the minds of

gods.

Figure 1: Strangler Tree in Mosman Gorge, Australia (S. MacGregor, 2002) (Source:
http://www.pbase.com/mscotnsep/image/10019085/large)

In fact, we humans have rather strict cognitive limits. The reader may be familiar

with the now-near-proverbial "7 plus or minus 2" rule stating that most people can hold

five to nine items in short term memory. Software systems these days can easily run into

millions of lines of code with thousands or tens of thousands of subroutines, methods,

function calls, interfaces, and other intangible entities to keep track of. The United States

Air Force's Theater Battle Management Core System is one example of a system having

major issues with the software strangler tree. It is a mega system trying to integrate a

15

huge diversity of "strangler tree" systems: mature military systems rife with unmanaged

complexity whose intents and functionality can no longer be significantly changed.

What forces exist to counter such complexity? To counter the problem of

strangler-tree systems? In a word: competition. In two words: Commercial

competition. Competition provides the motivation for mankind to produce software

systems that overcome the strangler tree problem. This may seem a nayve or even base

idea at first. Competition? Surely there is a more scientific answer than that! Some sort

of information theory, complexity theory, set of mathematical formulas, the calculus of

software, something?

Perhaps there would be if software was a "mere matter of discovery", but

software is a combination of discovery and invention. The key, then, is not a particular

tool to solve the problem, but a robust and continuous motivation to keep pursuing better

and better solutions. That motivation is commercial competition. Nothing motivates

men like the creation of wealth. Pure curiosity certainly plays an important, and perhaps

some might consider a nobler role, but ultimately a man has to pay his bills. Bill Gates

was perhaps the first, or possibly just the most successful, person on the planet to realize

that software is fundamentally as commercial as any other product: that people and

businesses should and would pay for software. It is notable that, for all the references to

Microsoft as "the evil empire" and complaints about its monopoly power, it is the

software of this company-which approached software as a business-that truly first

drove software into the common consciousness of the entire first world and continues to

do so today, now penetrating developing countries.

16

For software to work as a business, one thing has to exist: willing buyers. If

software does not sell, the expensive work of creating it will eventually put the

originating company out of, well, business. Software must create value for a buyer.

Whether that value is entertainment value or increased efficiency of running a business or

analysis of equities or pork bellies to facilitate better buying decisions, there must be

some perceived value in the software or it will never be purchased. Just as important, the

customer must actually realize value after the purchase lest the first purchase become the

last. In any other business, such statements would be considered tautologically obvious,

but software has an extremely strong culture of engineering over marketing, of

programmers over businessmen.

There is a pervasive and dangerous attitude in the industry: "If we build it, they

will come." The "they" in question are customers, paying customers. Unfortunately, the

world of paying customers is not like the Field of Dreams, and history has

demonstrated-rather harshly at the turn of the millennium-that "they", the paying

customers, most certainly will not come to whatever a business haphazardly decides to

build. Nonpaying customers may come in droves if something is mildly interesting or

strikes their momentary fancy, giving rise to such fluffy terms as "eyeballs" and

"mindshare" in the heady dot com days, but these people melt away like the morning dew

once the idea of paying comes into the picture. Those dot com operators would have

done well to realize that "nonpaying customers" is really an oxymoronic phrase. Anyone

who does not pay for a product is not actually a customer at all.

Thus, we arrive at a major point this thesis addresses. The software business

needs a greater respect for the discipline connecting written software with paying

17

customers: the discipline of marketing. The business must abandon the old ways of

building supposedly cool stuff and hoping someone will buy it, and must instead actually

listen to what the market wants. This is not always easy, as software is tricky and

figuring out what the market wants may turn into a delicate process of both educating and

then listening to the potential customers. Yet performing this delicate process correctly

can make or break a software business.

Now that we have set the philosophical stage, we will turn to history for an

examination of the emergence of the key Software Product Management role. (We will

see how the derived role of Program Management emerged in the next chapter.)

The Emergence of Product and Program Management

Traditional Product Management

The job and role of Product Manager is an artifact of modern business. There

were no Product Managers in any industry in the nineteenth century or before. Of course,

a business historian could come up with a wide array of examples showing that

somebody was doing Product Management for firms earlier in history, but the role of

Product Manager as a full time job simply did not exist yet. The first company that came

to mind when researching pre-computer Product Management was Proctor & Gamble.

William Proctor was a soap maker and James Gamble was a candle maker. They joined

forces in 1837, and by the time of the American Civil War, landed a deal to provide the

Union Army with soap and candles. Today, P&G is a large consumer goods concern

with many, many famous brands from Pampers to Pringles, Crest toothpaste (Figure 2) to

Charmin toilet paper.

18

Figure 2 Crest Whitening Expressions (Source: http://www.crest.com)

Most sources attribute the P&G with the pioneering of Product Manager as an

independent role worthy of a full time job in business. One Internet career source notes:

The use of product management dates back to the 1950's. Proctor &

Gamble was one of the first companies to use and develop product

management positions. Initially, Proctor & Gamble had several products

within their own company that were competing against each other.

Today, companies generally use their products to work together for the

market share and compete with products from other companies. [4]

Along Came Technology

Product Management made a lot of sense for Proctor & Gamble with its

straightforward, physical, mostly consumable products. The customer will wash his

hands or body with the bar soap, do the laundry with Tide, brush his teeth with Crest

toothpaste, and shave his face with the Gillette razor and its complement, Gillette Foamy

shaving cream. Selling these products to a maximum number of customers for maximum

profitability is certainly not a simple problem, but there is, at least, a fundamental

underlying product with essentially static functionality. Crest toothpaste, for instance,

has reached a level of extremely fine market optimization, but even the Crest Whitening

Expressions Mint toothpaste is still a tube of toothpaste used to brush the teeth. Shuman

Ghosemajumder, a Product Manager at Google, noted in his interview (Appendix B), "In

high tech products, there aren't a lot of features as in toothpaste. For instance, customers

19

might like baking soda or other whitening agents, but then it's really about market

segmentation."

High technology products, especially software, have less clear utility. Software is

innately intangible, often difficult to explain, and is perceived as extremely malleable in

functionality. These factors combine to make software highly susceptible to positioning

manipulation. Unfortunately, especially when it comes to malleability, these factors also

combine to make it difficult to position software at all, or to position software such that

customers and the software pass each other like two ships passing in the night. [5]

Compared with traditional, P&G style products, software product management requires

an extremely high level of finesse and an increased focus on inbound versus outbound

marketing issues. More on those issues in the next chapter, when we study the role and

industry perspective in detail.

Product and Program Management Emerge at Microsoft

Everyone knows that Microsoft is ascendant in the world of prepackaged software

products, and that the Windows operating system is dominant on Intel-based PCs. The

short story is that this happened because Microsoft took software seriously as a product,

and more seriously than hardware, early on. They were one of the first serious users of

Product Managers and they invented Program Managers. The Windows / Intel timeline

shown in Figure 3 shows the emergence of Product and Program Management at

Microsoft long before they achieved true desktop dominance with their "hit" Windows 3

operating line. The Program Manager role, as invented by Microsoft, was a technical or

engineering / development-bound version of the Product Management role and will be

examined more closely in the next chapter.

20

1993
1984 Product Mgmt. Centralized

1978 Product Management Established at MSFT to Division Level at MSFT

1968 1975 Intel 8086 1981 1990 2000
Intel Founded Microsoft Founded MS DOS Windows 3.0 1994 Intel Pentium 4: Cheap

Windws N 3.5 PC Servers Arrive
Windows NT 3.5

1968 Program Manager Role for Software 2000

Altair 8800 first personal CPU w/Intel 8080 Invented / used at MSFT Win95 (Internet enabled)
1976 1984 1995

Intel Inside & "WinTel" PCs
1991

Figure 3 Product & Program Management Emerge at Microsoft

There is a longer story here, of another and parallel timeline involving UNIX and

Sun Microsystems. That timeline seemed to be losing relevance for awhile until the

advent of Linux and the new vitality of Open Source. Not everyone, especially younger

IT professionals, understands how this came to be. Why is this relevant to software

Product Management? Both the markets for software products, and the stage of the

competitive landscape, have been set by these powerful, parallel trends in software &

hardware history. The future stage and market, furthermore, will be to some degree

determined by the trajectory of these continuing timelines. A detailed study of these

parallel timelines in hardware and software is instructive for every Product or Program

Manager, but is peripheral to studying the history, practice, and future of the roles

themselves. Deeper looks at the timelines, their collision, and its implications for the

software market, including Open Source and commoditization, especially enterprise

software commoditization, are given in Appendix A. What we will study in more detail

in the "main line" here is the recent and very difficult landscape set up for Product and

Program Managers by the hype and crash of the Internet Boom, and some important

economic factors unique to software products and, therefore, to software product strategy.

21

The Economic Landscape for Software Products in the
Internet Age

Combinatorial Innovation and Financial Speculation: the Dot Com
Boom

As in any Gold Rush phenomenon, whether the literal rush of 1849 or the

figurative Dot Com Boom of the late 1990's, a group of people or sometimes an entire

society indulges in the illusion that there is some unlimited new resource capable of

generating wealth for virtually zero or nominal effort. For a brief time, the philosophy

seemed to be, simply program anything Internet or Web enabled and make tons of

money. A prominent Silicon Valley venture capitalist described the dramatic run-up in

technology stocks as the greatest legal creation of wealth in human history. However, not

all of it was legal and not all of it was wealth. Virtually everyone involved in high tech,

or stock market investment of any kind, has seen some version of the chart in Figure 4

showing the NASDAQ bubble and crash:

100

4 00

100

2 00

Figure 4 Internet Stock Bubble & Crash (Source: http://www.ehsco.com/niisc/economv/nsdg-
decade.if)

22

The NASDAQ Composite lost 78% of its value as it fell from 5046.86 to 1114.11

(www.investopedia.com). How did software products drive this bubble to appear?

Economist and information technology specialist Hal R. Varian, a professor at the Haas

School of Business, believes it is an instance of what he calls combinatorial innovation.

Every now and then a technology, or set of technologies, emerges whose

rich set of components can be combined and recombined to make new

products. The arrival of these components then sets off a technology

boom as innovators work through the possibilities.. .The attempts to

develop interchangeable parts during the early nineteenth century is a

good example of a technology revolution driven by combinatorial

innovation. [6]

Such combinatorial innovation occurs in waves or clusters, including the wave of

weapons manufacture in New England which led into a wave of domestic appliance

innovation in the early 19th century. Professor Ed Crawley at MIT has pointed out that

the entire field of Mechanical Engineering arose from the wave of innovation

surrounding the invention of the steam engine, which spawned the Industrial Revolution

and eventually became a dominant technology in the shipping industry. The internal

combustion (gasoline) engine represents another such wave.

Each of these waves is accompanied by a speculative investment boom. The

difference, for the Internet revolution, lies in its magnitude and compressed nature.

Though the intense stock market spike was completely out of proportion to business

reality, the fact is that an amazing amount of real innovation was going on at an

extremely rapid pace. Varian believes this phenomenon occurred because, "the

component parts of the Internet revolution were quite different from the mechanical or

electrical devices that drove previous periods of combinatorial growth...they were 'just

23

bits.' They were ideas, standards, specifications, protocols, programming languages, and

software." He notes, "Unlike gears and pulleys, you can never run out of HTML!" [6]

The combinatorial innovation of the Internet boom was driven by a fluidity of

ideas that has never been seen in the realm of physical product creation. For instance,

open source software is like what Varian calls, "primordial soup for combinatorial

innovation. All the components are floating around in the broth, bumping up against

each other and creating new molecular structures, which themselves become components

for future development." Before the Internet, one cannot imagine similar phenomena:

Open shipbuilding? Open lightbulb design?

Real value was being created in the wave of Internet software related

combinatorial innovation, but speculative investment can always outstrip the creation of

real value as the market responds to the forces of fear and greed: in this case, greed ruled

for a short but intense time. Investors tried to rationalize the mad pace of investment and

price multiples being paid for fledgling companies by claiming that a New Economy had

emerged. Though it is doubtful that many actual economists believed in the New

Economy, investors and technologists alike clung to the idea in droves.

The "Old" New Economy for IT

On the topic of the bubble's magnitude, Varian says little, simply noting that a lot

of "dumb money" comes into the stock market when the public gets excited about a new

technology. He also does not believe in the New Economy, a notion most investors

probably became disillusioned with as they were brought down with the crashing

NASDAQ. His notion on this topic is that the so-called old economic principles work,

but some become more emphasized in the information economy: "Effects that were

24

uncommon in the industrial economy-network effects, switching costs, and the like-

are the norm in the information economy." Thus the economy is not new per se, but

certain principles do apply differently:

" Second-order effects for industrial goods are often first-order effects for

information goods.

* High fixed costs and virtually zero marginal costs are a hallmark of the software

product industry. (Varian notes that this is an idealization for most physical

production processes, but is the baseline case for software products.)

* First-degree price discrimination: IT allows, in the extreme case, for a "market of

one" or mass customization / personalization

" Switching costs are generally high in the realm of software. Switching from

Windows to Linux, for instance, can be very costly.

* Competition for new customers is intense due to the high level of customer lock-

in.

* Cost of search for consumers can be dramatically lowered on the Internet.

As of this writing, with the company Google having recently gone public, search

is the number one force driving the post-crash Internet business. Search in this context

goes beyond economic search, though it is notable that the search-based business model

thus far depends entirely on advertising-essentially a form of providing customers

search information via a push model. For retailers, attempting to achieve opaque pricing

becomes challenging in the Web world: Ellison & Ellison have found that online

retailers often engage in "bait and switch" tactics online: advertising an inferior product

at a low price to attract users to their site, attempting to confound such new technologies

as shopbots and agents that compare prices from multiple vendors. [7]

Certainly we have not examined all of the counterintuitive economic effects in the

software industry, but this survey of some of the major effects gives an indication of the

25

tricky strategies related to economics which Product Managers face. We will examine

one more economic aspect of software products before moving on, that being product

interdependency for economic viability.

Economics of Systems Effects in Software

Software products have a high degree of systems effects: products are often

useless unless they are combined into a system with other products. This phenomenon is

so prevalent in software that many companies targeting the business to business market

sell software "systems" rather than "products". Even shrink-wrapped software products,

the most self-contained software available, have many systems effects, especially now

that network capabilities are expected nowadays. Take a retail PC video game: the

consumer needs a PC to play the game, a CD-ROM to read it, the Windows OS installed,

most likely a 3D accelerator graphics card, and for an increasing number of games,

Internet connectivity. TurboTax from Intuit, once a completely self-contained program

subject only to the most basic hardware system effects, now requires Internet

connectivity to download a State return as well as to file returns (if low-hassle online

filing is desired).

Software as part of systems, Varian points out, causes companies to Integrate,

Collaborate, Negotiate, Nurture, and Commoditize. [6]

* Integrate: One complementor acquires the other, a common Microsoft practice

to the point of raising Department of Justice resistance.

" Collaborate: Revenue sharing, such as the famous case of Blockbuster's

software-enabled revenue sharing between studios and video stores (rentals were

provided to stores for $0 to $8, with rental revenue split roughly in half with the

studios, allowing Blockbuster to stock many more copies and reduce rental stock

26

outs). This arrangement would have run into unenforceable contract problems if

not for computerized record keeping.

" Negotiate: One firm commits to cutting its price if the other firm also cuts its

price.

" Nurture: One firm works with the others to reduce their costs. Adobe, for

instance, works with printer manufacturers to ensure that they can effectively use

its technology.

* Commoditize: One firm attempts to stimulate competition in the other's market,

thereby pushing down prices. Microsoft has established the Windows

Compatibility Lab to ensure that hardware manufacturers all produce to a

common standard. This helps facilitate competition, pushing down the price of

hardware. (Microsoft wants cheap hardware on which to run their complement,

software.)

All of these forces derived from systems effects help reduce prices, partially

counteracting the tendency in the software industry toward "high industry concentration

ratios and monopoly power." Complementors, according to Varian, "may sometimes

play a similar role" to competitors in monopolistic situations for price discipline. [6]

Still, a high degree of industry concentration exists, most notably Microsoft's domination

of the PC operating system and applications environment, but also visible in other areas,

such as Oracle's domination of the RDBMS market. The trend of a few unique and

highly consolidated winners, however, is not new to the software industry. A similar

phenomenon occurred in auto manufacture, for example, as hundreds of competing

manufacturers concentrated into the few large players today, now competing mostly

against foreign imports.

27

Completing the Historical and Economic Picture

Subject to extremes of hype, overinvestment, standards battles, and systems

effects, we can see that the world of software products is fraught with peril. The need for

expert strategy to navigate such a difficult, highly competitive environment in which

forecasts are almost universally uncertain should now be obvious. Though no one can

keep all factors in mind all the time for every business decision, the management

professional with a good concept of the software industry's historical and economic

gestalt has great advantages in navigating the unstable landscape. With the historical and

economic environment clearly, though far from exhaustively established, we are ready to

move on to a direct examination of Product Management and the derived role of Program

Management.

28

III. Understanding the Roles of Product and Program
Manager

Approaching the Target Roles

With our discussion of the unique historical and economic environment

surrounding software products complete, it is time to examine directly the role of the

Product Manager and its derived cousin, the Program Manager. We have seen how the

role emerged, migrating and morphing across industries. Now, we'll first take a look at

the unique new need for a focus on inbound versus outbound marketing as a job

responsibility in this role as redefined for high technology. Second, we delve into

industry perspectives researched for this work via interviews to further explore and define

the role as practiced in the new millennium. Third, we look at some concrete

responsibilities of the Product Manager, especially with respect to documentation

deliverables, as defined in the literature. Fourth and lastly for Product Managers, we take

a quick statistical overview of who Product Managers are from a demographic

perspective in modem technology companies. Finally, we look at the more technical,

Development-bound role of Program Management. Actual Project (or Development)

Management will be discussed later, in its own section, focused more on methodology

than the job and role itself.

Inbound versus Outbound: Listening versus Talking to the
Market

A primary distinction between the activities of a Product Manager became

apparent early in research for this work. The distinction is between marketing activities

considered "inbound" and those considered "outbound" by marketing professionals.

29

Inbound issues involve listening to the market and designing product feature sets that can

deliver value based on what the market is telling a company. This does not necessarily

equate to what end users say they want, but to what market data actually supports. Many

customers, for instance, potential end users in a corporation, are "mouth hungry" for

features, but this does not necessarily mean the decision makers in their company will

support actual purchases based on those features. Interacting with engineering is

generally considered part of the inbound side of the product manager's job, and may be

quite dominant for some product managers, especially at more mature organizations.

The outbound side of the PM's job is the more pure marketing-oriented function,

involving talking to the market in various ways. One book on the subject defines the

outbound / inbound split this way:

Product Marketing: Writing collateral and white papers, dealing with sales

issues, providing support, talking to analysts (often called outbound

product management).

Product Management: Defining product requirements, interfacing with

engineering (often called inbound product management).

One person does both tasks in many startups.. .The combination provides

a manager with broad perspective; additionally, having one person lead

both areas is efficient and reduces the chances of misunderstanding or

miscommunication of the priorities required to shepherd the product. [8]

One set of related companies researched for this thesis, the aQuantive group,

including Atlas Solutions and Avenue A, had very specific division of labor. This

included a specific Product Management role, for inbound marketing, and a Product

Marketing management role for outbound responsibilities. Of course, these companies

are specifically Internet marketing companies and thus very focused on the marketing

30

aspect of business. One would expect to find the highest level of role differentiation in

marketing for a business that has this as its core competency.

Industry Perspective on Product Management

Ambiguity in the Software Product Management Role

At Microsoft, a stagnant company in terms of stock growth recently (relative to

2006) but still essentially the Proctor & Gamble of software products, the inbound /

outbound division is not necessarily as decisive. Bill Shelton, a Product Manager at

Microsoft who submitted a brief "email interview" for this case, had the following to say

about his role at Microsoft (Appendix B):

My job involves the following activities: market opportunity analysis,

revenue forecasting, product planning, technology roadmapping and

outbound marketing messaging and positioning definition and execution.

Product Management is a very broad job title at MS that spans everything

from very internally focused business management activities to

exclusively focused marketing and communications activities. It varies by

team and specific position.

Philip DesAutels, former Product Manager at Microsoft, concurred, saying, "Bill

Shelton's is a superb definition of Product Management. He also notes of his own former

role, "I was talking to the press and being quoted in six or seven articles a week." That

much press contact seems to indicate a largely outbound focus. Yet he also claimed to be

"making sure [a series of technologies] were in sync with industry and customer's

demands," an inbound responsibility. So Microsoft, at first glance, might seem relatively

"sloppy" about dividing inbound and outbound responsibilities with regard to the

31

marketing functions of Product Management. Cusumano and Selby draw a clearer

distinction in Microsoft Secrets:

Product Managers are marketing specialists; some work in product

planning as part of the product units, although since late 1993 Microsoft

has centralized most of them in division marketing groups. [9]

This distinction is consistent with Philip DesAutels' role as a cross-product

champion of Web Services. This role makes sense to perform from a central marketing

group. Still, neither DesAutels nor Shelton gave an impression of a tightly bounded role.

The best apparent explanation is that Microsoft seems to have decided to create various

strategically "sliced" Product Manager roles: some PMs bound to individual product

groups, but most in divisional marketing groups. Of the latter category, some have been

cross functionally bound in two dimensions, those being teams and technologies. All

PMs deal, to some degree, cross functionally across teams, but DesAutels' former role

indicates that at some PMs are now being bound cross functionally across technologies,

rather than singly bound to, say, Excel or Office.

Even in a company with more evolved Product Management strategy than

probably any other company in the world, the role definition still came across as

somewhat "slushy", or at least self-determined, for both Microsoft interviewees.

Literature on the topic often points toward some ambiguity in the role. One specialty

book, Software Product Management Essentials, asserts quite a large level of ambiguity

in the role:

Many professional job titles are vague, but few are as variable as that of

the "Product Manager". Even within the software industry, the definition

and role of the Product Manager varies widely. In some companies

Product Managers are responsible for managing the brand of the product

32

or the entire marketing mix including lead generation and sales

support...Some companies view Product Managers as the liaison

between Sales and Engineering.. .In yet other companies the Product

Manager is the business manager for a product or a product group. As a

result, it is difficult to pinpoint a definitive role across the board for the

Product Manager. [10]

In the following section, we will take a look at the difficulty in pinpointing a

definitive role, and attempt to "triangulate" the definition of the role through the lens of

three Product Manager interviewees from three very different companies.

The Blind Men and the Elephant

The ancient Indian fable and poem by John Godfrey Saxe, The Blind Men and the

Elephant, will be familiar to most readers and has become a popular way to describe any

phenomenon understood differently by different observers. In the fable, each blind man

feels a different part of the elephant and describes the entire elephant in those terms: the

one who feels its side says the elephant is like a wall, the one who feels its tusk says the

elephant is like a spear, the one who feels its trunk says the elephant is like a snake, and

so on. Philip DesAutels, a former Product Manager at Microsoft and current Academic

Liaison, mentioned this fable about Project Management, saying, "Everyone tells you it's

something different."

Product Management is like this in that a universal, objective definition does not

exist. Front line jobs in a corporation that are not highly cross-functional and do not

involve corporate strategy usually have crystal clear responsibilities. The jobs of contract

janitor, receptionist, and telephone customer service representative are well defined. The

job of software engineer has a lot more latitude but is still a fairly well understood,

33

mostly tactical role. Product Management, on the other hand, is closer to a C-level role

in having a significant element of corporate strategy involved.

If one cannot directly observe the elephant, it is necessary to speak with several

different "blind men" to try to come up with an aggregate picture of what an elephant

might be like. The PM's interviewed for this thesis were all asked, "What do you think is

the most important Product Management challenge in the particular case of software

products?" The answers varied significantly (Appendix B):

Scott Case, Atlas Solutions: People want 300 features and you can

only do 10. There are difficult tradeoffs in implementing new features.

"Who are you going to piss off who are you going to serve?" Tradeoffs

involve "keeping the lights on" versus innovation. We serve 110,000 ads

per second. 6 billion ads a day.

Philip DesAutels, Microsoft: Alignment. Alignment of people, of

stakeholders, business stakeholders, strategic stakeholders. Different

parts of the companies depending on you or pushing you. Aligning those

people together, getting those people to come together. Even if a group

is outside of the company, you have to get them to align with your

interests. It's difficult to distribute the job and has to come onto one

person.

Shuman Ghosemajumder, Google: Usability. There is so much

complexity associated with computer applications. Software is like

traditional engineering but zero marginal distribution costs. In software

you can create a "million mile long bridge." (Possible, but impractical and

useless.) Creating something that is actually usable becomes very tricky.

IPod, for instance, has 80% market share with a small, elegant feature set

as opposed to the everything-but-the-kitchen-sink approach. It's about

organization, not just limiting a feature set. There will be a market for

very advanced tools, but make the day to day tasks as fast as possible

and allow novices to pick it up right away.

34

The "elephant" of Product Management's most important mission thus felt like

three completely different things to our interviewees: feature tradeoffs, stakeholder

alignment, and usability. The commonality between these aspects of Product

Management is the high degree of strategic, cross functional execution required to

accomplish the stated mission. Stakeholder alignment speaks directly to cross functional

team coordination, and the other two stated missions require alignment. Feature tradeoffs

require alignment between development, marketing, and the customer.

The same is true of usability. Ghosemajumder said of this cross functional

challenge (Appendix B),

As a PM, I try to bring the perspective of the common user back to the

teams. I draw comparisons to analogous products, conduct usability

testing-bring the product in front of actual users... .Let's create features,

technology, and then worry about usability? That doesn't work. The

biggest trap technical teams fall into is creating products that are

internally consistent and make sense to technical people, more and more

specific, worst case, that make sense only to people who work at a

specific company. Or products that make sense to technical people but

not to non-technical people. This affects everything.

Perhaps our "elephant" metaphorically is like an intelligent connecting cell in a

central nervous system, routing and transmitting signals between stakeholders, between

departments, from the external market into development, and from marketing back into

the external world. With the role as a strategic router and conduit established, let us look

closer at the nature of this strategic role, as well as at some of the concrete

responsibilities and deliverables.

35

Core Responsibilities

Bringing Software Product Management Into Focus

Product Management is a high level, strategic role. Many sources refer to the role

of Product Manager as the "CEO of the Product." Mark Chapman in The Product

Marketing Handbookfor Software defines the role of Software Product Management as

follows:

The product manager's primary role is to serve as the "voice of the

customer." In this role, a product manager is responsible for positioning,

pricing, and promoting the product, as well as managing the market

adoption and product life cycle. As such, the product manager "owns" the

product and is ultimately responsible for its release into the market and

long-term success. [11]

This definition seems to jibe with the industry interviews conducted. Philip

DesAutels, academic liaison for Microsoft, said this about his former PM role with the

company (Appendix B):

My role involved product that shipped internally. I was in charge of Web

Services technologies which would go into a variety of product lines. I

had to manage a series of these technologies, making sure they were in

sync with industry and customer's demands. I had to make sure the

developers were developing what the customers were asking for. Web

Services was an interoperability platform. Really a very technical

marketing role.

Scott Case of Atlas Solutions said this about his Product Management role there:

I own what happens to software in one of our four major product areas.

It's called the Atlas Media Console. This is a tool that allows traffickers

and planners at advertising agencies to set up, deliver, and track

performance of online advertising.. .as Product Manager, I decide what

features should be added to the product.... Here are customer needs,

36

and I see that development can do maybe 10 of 300 desired features. I

go out and meet with the top 25 clients, I have met with 15-20 of the top

25 clients.

The Microsoft PM is dealing with internal customers and the Atlas PM is dealing

with external customers, but there is certainly a common thread in terms of the "voice of

the customer" role defined by Chapman. Chapman further delineates the roles of the

Product Manager as executing four main tasks:

" Developing the marketing requirements document (MRD) and related plans

and papers that document and validate your marketing and sales efforts.

* Managing the product feature list.

" Coordinating the activities of the different functional groups involved in

creating a new or updated software product.

" Participating in and/or running the launch and post-launch marketing activities

for a product. [11]

Deliverables of the Product Manager

Strategy

As we found in the section on the Blind Men and the Elephant, the main

deliverables of the PM are not physical, but strategic: making good tradeoffs, aligning

stakeholders, and promoting software usability to make it more consumable by the

market. As previously noted, the PM is like the CEO of the product. Other strategic

deliverables include management of product requirements (discussed thoroughly later in

the section on Requirements Engineering), schedule, release process, and beta

management. Some might claim the release process is an engineering task, but "product

management ultimately needs to work closely with engineering on this, and in some

cases, drives the meetings to discuss the bugs... .Eventually you are like a field doctor

37

trying to perform triage." [12, p. 157] Only the PM fully understands which software

issues are critical to fix for a release.

The Marketing Requirements Document (MRD)

Certain physical documents help to achieve strategic goals, and can be

considered more concrete deliverables. These documents are by no means standardized

across companies. The main document sources agree on as a deliverable for the PM is

the Marketing Requirements Document, almost universally referred to as the MRD. This

document is like a strategic blueprint for the entire product: background, positioning,

target customer, competition, potential customers, high level functional requirements, and

key product value propositions. The MRD may also include information about supported

hardware and operating systems, cost constraints, sales and revenue projections, and a

high-level outline of product marketing activities. [12, p. 153]

MRD-Related Documents

Some companies include details of a planned marketing campaign, where others

document this separately. Documents related to the MRD include product contracts

(defined by Chapman as "[agreements] between marketing and development to reach a

series of product goals"), product roadmaps (discussed later in the Requirements

Engineering section), product requirements documents (PRD, specifying the product and

user experience in detail) and marketing message plans. Chapman also notes some

companies "don't believe in the MRD concept or believe the MRD should be nothing

more than a brief outline, though in our experience companies are eventually forced to

implement an MRD system out of sheer necessity." [11, p. 570]

38

The Functional Requirements Document (FRD)

Usually, development writes the Functional Requirements Document or FRD.

The MRD describes the "what" and the FRD describes the "how" of a product. This

document specifies core functionality and may get into specific technologies planned to

implement the product. At some companies, this will be the lowest level documentation

produced before engineers actually begin writing code. At others, the lowest level will be

the Functional Specification describing technologies in detail and getting into some

architectural detail of implementation such as class diagrams. In this case, both the MRD

and FRD are considered "what" documents, the former from the marketing and the latter

from the engineering perspective. The Functional Specification then describes the

engineering "how" in detail.

Very technical PMs may be involved with the Functional Specification.

However, due to lack of term standardization, some companies that either do not produce

a Functional Specification or that combine the two documents refer to the FRD as the

Functional Specification. The PM's job is to make sure that the FRD (and / or Functional

Specification) correctly maps the requirements document in the MRD into software

functionality. [11, p. 570]

Product Management and Documentation

Software Product Management is about owning the strategy for a product, not

about producing documentation. The document set that should be produced varies

depending on the product, and even more so, on the size and culture of the organization

producing it. Various and sundry documents the PM may either produce or manage

include (but are not limited to) the product development schedule, legal documents for

39

beta release, software documentation for beta and release, release notes, marketing

communications collateral, requests for proposals (RFPs), and feature wish lists. The PM

should gauge the amount of time and energy put into each document, and into

documentation overall, based on its potential impact into driving the product's market

success. Expending incredible amounts of energy on a meticulously maintained

documentation system is useless if the PM becomes too internally focused and loses track

of customer and market needs.

Demographics: Who Are Product Managers?

Before moving on to our exploration of Program Management, let us close this

section with a brief examination of the Product Manager's demographic profile both as a

person and in his corporate role. This section is drawn from a survey by Pragmatic

Marketing, which bills itself as the "Standard in Technology Product Management and

Marketing Education." [13]

According to the survey:

0 The average Product Manager is 36 years old

0 87% claim to be "somewhat" or "very" technical

* 33% are female, 67% are male

* 90% have completed college, 46% have completed a Master's program

In terms of reporting structure, the typical PM reports to a director in the product

management department, although many companies do not have a separate department

for this function. Reporting structure varies. The following percentages do not add up to

100% because more than one reporting relationship can be true of a single PM (for

instance, a PM can be in Marketing and report to a VP):

* 46% report to a director

40

* 28% to a VP

* 5% report directly to the CEO

0 21% are in the Product Management department

0 15% are in the Marketing department

0 12% are in Development or Engineering

* 5% are in a sales department

Many PMs have a sales support role as part of their job, with 51% training sales

people and 44% going on sales calls. Only 16% report working with the press and

analysts, while 79% report monitoring development projects. 77% of PMs write

requirements. Technical demands of the role have increased since the dot com crash.

52% of PMs report writing detailed specifications, up from 29% in 2001. Average ratios

of Product Managers hired to products and other relevant employee headcount within the

firm are given in Figure 5.

Possibly the most interesting indication from these ratios is the one-to-one ratio

between Product Managers and Sales Engineers, quite telling from a corporate hiring

strategy perspective. Technical and inbound marketing responsibilities may be on the

increase, but Product Management comes from the Sales and Marketing side of the

corporation. 44% of Product Managers go out on sales calls. This raises a problem in

software product engineering: Software products are highly complex, technical, and

require much greater "inbound marketing" response-altering the product based on

customer needs-compared with traditional products such as soap, candles, and

toothpaste. This need sparked the creation of a role less bound to Sales and Marketing,

and more to Development or Engineering: the role of Program Manager, discussed next.

41

Developers

Sales Persons 3.2

Products 3

Sales Engineers 1

Development Leads 0.8

Architects & Designers 0.6

Marketing Comm. 0.6

Marketing Managers 0.4

0 1 2 3 4 5 6 7

Number Per Product Manager Employed

Figure 5 Product Manager Employee Ratios (Data from Pragmatic Marketing) 1131

Program Management

Microsoft realized in the 1980's that the job of Product Manager in high

technology products, including all pure software products, did not have a one-to-one

correspondence with the Proctor & Gamble role. They realized that in high technology,

Product Management spills over from a marketing function into being partly an

engineering function as well. As Proctor & Gamble pioneered the role and job of Product

Manager, so Microsoft pioneered the role and job of Program Manager. As Cusumano

& Selby note in Microsoft Secrets,

The first turning point was a decision in 1984 to set up testing groups

separate from development...The second, occurring about the same time,

42

was when program management began to emerge as a function distinct

from product management and software development.[9, p. 36]

Later, a Microsoft program manager, Bruce Ryan, is quoted giving the key

responsibilities for program managers:

" the product's vision

" the written product specification

* the product schedule

" the product development process

" all implementation trade-offs

" coordination of the product development groups [9, p. 77]

Contrast this with Microsoft's description of Product Managers as "'MBAs' and

'snappy dressers [who] own their own homes" and have five areas of responsibility:

* oversee a "business"

* recognize and pursue market opportunities

* aggressively represent the customer in the product development process

* take responsibility for the trade-off between functionality and ship date

* take responsibility for the marketing and sales process [9, p. 89]

As of this writing, the Microsoft site describes the role of Technical Program

Manager as follows:

Driven to Succeed

Program Managers are customer focused, working to ensure that the

products Microsoft produces will delight users and enable them to do their

best. Program management is also an opportunity to flex technical

muscles: your technical decisions and direction are what drive products

and features through to completion.

Working across multiple groups with marketing and sales personnel on
the customer end, program managers translate customer requirements

into product features and create functional specifications. On the

43

implementation end, they prioritize and deliver on those features, working

closely with key technical resources, such as software development,

testing, documentation, localization, tech support, and more.

Program Managers typically have a software development background.

This technical expertise is blended with evangelism, empathy, conflict

negotiation skills, and a passion for driving projects through to

completion. [14]

According to Microsoft academic liaison and former Product Manager Philip

DesAutels, Program Managers can be quite influential within Microsoft and become

more managerial and less technical at senior levels if they are involved with a large, vital

product suite such as Office. The title Program Manager is also somewhat overloaded to

some degree and can apply to a variety of different specialties. For instance, the Senior

Standards Program Manager of Corporate Standards is categorized as a "Legal and

Corporate Affairs" position.

The Program Management Grey Area

Earlier, we noted that Product Management is a somewhat difficult role to pin

down and define precisely. Program Management suffers from some of the same

ambiguities. This difficulty percolates up to recruiting issues:

There is no particular university degree that qualifies someone for a

program manager's job... .Gates himself observed: "Program

management is weird, because where do you recruit program managers?

What is the background for a program manager?" [9, p. 96]

Microsoft Secrets defines Program Managers as follows:

Program Managers have the broadest and most ill-defined set of

responsibilities... [they] tend to have backgrounds that combine a strong

44

interest in design issues with some knowledge of or familiarity with

computer programming. [9, p. 97]

Yet a very different version of the role comes up in his newer book, The Business

of Software:

If managers of new projects wanted to move really fast... developers

usually took the lead in proposing features and writing up specification

outlines. In these cases, Microsoft program managers came on board

later and worked mainly on managing project schedules, writing up test

cases with testers in parallel with development, working with interface or

Web page designers, and building relationships with outside partners and

customers.[15, p. 160, italics mine]

This last-building outside relationships-sounds a lot like the role of a Product

Manager in serving as the customer's voice. Thus, the roles can overlap in some cases.

The fact is that both roles lay under the general umbrella of middle management and both

act as glue between what software engineers are actually implementing and what the

business is trying to accomplish. Most large software product companies today have both

Product and Program Managers, although startup- and medium-sized companies often do

not have Program Managers. In this case, the job of Program Management is split

between Development and Product Management. Virtually all software product

companies of any reasonable size do have Product Managers.

Conclusions on Product and Program Management

In general, the Program Manager position is a technical and feature-specific

permutation of the Product Management role. Created by Microsoft, the role has been

adopted by many other software companies. The overlap between the Product and

Program Management roles is as shown in Figure 6: both roles involve some two-way

45

interaction between Engineering and Marketing, but Program Management is more

deeply embedded in and tightly bound to Engineering and product feature details, while

Product Management is more deeply embedded in Marketing. A Product Manager would

be more likely to prioritize features based on the potential added sales and market value

of the product, whereas a Program Manager would be thinking a lot more about how to

integrate specific features into the interface, and how to prioritize them based on ease or

difficulty of implementation.

Product Management

Engineering / R & D Marketing I Sales

Program Managernent

Figure 6 Relative Engineering / Marketing Overlap of Product / Program Management

This relationship seems to hold for Program Management positions in non-

Microsoft companies. For instance, Scott Case noted in his interview:

The Product Manager decides what features to add to the product. He or

she will work with one or two Program Managers to prioritize the features,

and will write a Business Requirements Document to give an idea what

should generally be in the release. The Program Managers work with

developers and Project Managers to kick back schedule estimates. As

needed, of course, there is a feedback loop to clarify and change course

during a project.

46

The role of Product Manager is perhaps somewhat more strategic where as

Program Manager is more tactical, although flipping of this relationship is possible in a

company as large as Microsoft, in which the job of Program Manager has considerable

prestige. Bill Shelton claimed some coworkers were surprised when he moved to change

his role from Program to Product Manager, viewing it as a lateral move or even a slight

slip in prestige. There is a certain intangible prestige to being technical at Microsoft, and

Cusumano has noted that developers "walk taller" than other employees in the company,

which has formal and quite well-paying technical career tracks. Both roles share the

defining responsibility of cross functional team coordination to achieve technical and

market success of the product.

47

IV. Struggle and Failure in Software Product
Management

An Extended Case Study: Netscape Navigator versus Internet
Explorer

In the military, one strategy to train both troops and their strategic commanders is

to play war-games. Past battles are also studied in detail by military strategists. The

purpose of this section is to view Product Management from a commercial war-games or

combat retrospective viewpoint. The moves, in some cases, were made by CEOs and not

directly by Product Managers, but PMs face precisely analogous strategic decisions,

although usually on a smaller and less public scale. One aspect of Product Management

this section illuminates, which we have not previously explored, is the importance of

company culture in the treatment of partners and customer-partners. PMs are often on

the front lines of these relationships and have a lot of influence over the tone of a

company's relationship with its partners.

One major motivation for this thesis was the collective works of business

historian Michael Cusumano, author of several books on software product innovation as

it relates to actual business value. The particular commercial combat retrospective we

use is derived from his book, Competing on Internet Time, co-authored by David B.

Yoffie. We attempt to extract the most poignant nuggets of wisdom from its over 300

pages with the advantage of writing with historical perspective in 2006, the Browser

Wars long past.

A lot of luck was involved in the creation of Netscape, and highly touted genius

Mark Andreessen stood, like most inventors, on the shoulders of giants. One giant in

48

particular being Tim Berners-Lee who, for all intents and purposes, created the Web at

CERN. Andreessen created NCSA mosaic on top of the Berners-Lee-designed

infrastructure, and eventually became a founder of Netscape and its Netscape Navigator

browser. Navigator would eventually evolve into a suite of bundled applications and be

rechristened Communicator, but more on that later. Cusumano and Yoffie cover the

creation of the Netscape company in detail, and we will not discuss it in detail here. Pure

product management does not exist as an independent role until a company has reached a

certain critical mass and level of business infrastructure. Certainly Andreessen and co-

founder Jim Clark thought about aspects of the business we would consider product

management, but we are interested in businesses that have evolved to the level of being

able to support product management as an independent role.

Of course, Netscape evolved to this level very quickly. It is impossible to track in

any detail what the particular Product Managers within the company were doing, but we

can look at the entire company's product management policies based on the results of

their technology and partner initiatives. Competing on Internet Time also provides a few

peeks at what was going on with Netscape's product management internals. A high level

look follows at the lessons and ideas learned from Netscape's actions in Product

Management, both in capturing an open market and, later, in reaction to Microsoft's entry

into the browser market.

Company Culture Matters: Attitude is Part of the Product

Over the long haul, people problems tend to dominate technology problems in any

product with a mass market. In fact, most professors in MIT's Engineering Systems

Division seem to feel that human cultural problems dominate technology problems,

49

period. Everything seems to point to NASA's cultural problems in the space shuttle

accidents, for instance. Netscape's company culture certainly had its issues, especially as

a business partner. Netscape was young, Netscape was hot, Netscape was a Wall Street

darling, and Netscape was arrogant.

Cusumano and Yoffie note, "The perception of arrogance was widespread. This

perception emerged fairly early in the company's history." An extended quotation from

Michael Dell, chairman of the now-dominant Dell Computer, is also given on this

subject:

Netscape was surprisingly arrogant for a company of their size and age

and didn't seem to aggressively pursue our business. It was just a

number of little things that sent the wrong signal to us. They didn't

appear to engage us very heavily in pursuing our business.

And...Netscape started to align itself with Oracle, IBM, and Sun to

support the network computer phenomenon, even though their bread and

butter counted on the PC. [16, p. 85]

Karen Richardson, who came on board Netscape as VP of strategic accounts, was

also quoted on the arrogance topic:

A lot of the arrogance had to do with the way partners, customers, and

potential partners were treated. Everything from do you show up to a

meeting on time to attitude. [16, p. 83]

Everyone knows the old adage, quoted to the point of cliche, that "power corrupts,

and absolute power corrupts absolutely." Microsoft is certainly not known as a humble

company and has oft been reviled for its perceived arrogance. Microsoft has been market

dominant to the point of monopoly and Netscape in the mid-1990's had quickly achieved

(what would turn out to be shockingly temporary) market dominance. Perhaps it is true

50

that "market power corrupts, and absolute market power corrupts absolutely" when it

comes to a company's attitude and culture. Success breeds arrogance.

The problem with arrogance is that it causes incredible resentment in those on the

receiving end. In business, a company always needs its partners and customers to behave

in an economically rational fashion, or, through marketing, branding, image, and strategy,

to cause partners and customers to behave irrationally in the company's favor. Arrogance

can easily cause strategic partners and customers to behave in an economically irrational

way against the company: purchasing products or partnering with someone else even if

the arrogant company genuinely has a superior economic value proposition. Obviously,

this can have catastrophic long term impact on profitability. To make matters worse,

extreme arrogance, such as that exhibited by Microsoft, can radicalize a company's

enemies and galvanize them.

Arrogance at Microsoft

For instance, there is a large contingency of "disaffected software developers,"

users, businessmen, and competitors, which Cusumano and Yoffie refer to as the ABM

crowd: "Anybody But Microsoft." There is strong anecdotal evidence that Microsoft's

corporate arrogance along several dimensions has created this crowd, or at least made it

much larger and more cohesive than it would have been had Microsoft shown a touch of

humility or taken a more nurturing role. One might even speculate that the rapid spread

and adoption of Linux may have been significantly accelerated by deep resentment of

Gates & Company's domineering arrogance. Of course, with such a strong monopoly,

Microsoft has withstood a lot of arrogance. On the other hand, its growth on the stock

market and influence in the world have reached a plateau in recent years. How much of

51

this can be attributed to the company's arrogance creating a vast horde of Microsoft

haters, all feeling like a part of La Resistance and often willing to go against their own

economic interests if they may bring down the arrogant giant over the long haul?

Arrogance at Netscape & "Mooning the Giant"

Netscape lacked Microsoft's monopolistic position and its arrogance may have

hurt the company much more deeply in the short term. Imagine the egregious magnitude

of the strategic error in coming across as arrogant to Michael Dell and failing to form a

partnership. Conversely, think of what might have happened if Netscape had

aggressively pursued Dell, played on Michael's fears of Microsoft's OS dominance

controlling his PC platform, and convinced him to bundle Netscape with every Dell PC

by the late 1990's? The market proved Dell did not need Netscape, but the outcome of

the Browser Wars might have been quite different had Netscape become tightly aligned

with Dell.

According to Christian mythology, "Pride goeth before destruction, and a haughty

spirit before a fall."[17] Pride, or arrogance, may not destroy your business in the short

term, but it will surely make your competitors and perhaps even what could have been

your potential partners stick their feet out to trip you and see your business fall!

Company culture, it has been said, comes down from the top. A culture of

arrogance can certainly come down that way. In a case of arrogance versus arrogance,

Clark & Andreessen took a very poorly advised stance of arrogant defiance of Microsoft,

which Competing on Internet Time refers to as "mooning the giant." Clark repeatedly

referred to Microsoft as the "Death Star" and asked for trouble by claiming that

"Netscape was developing a full-fledged networked operating system that would make

52

Windows unnecessary and outdated." Meanwhile, Andreessen was quoted as saying that

Netscape technology would relegate Microsoft's OS to being "a mundane collection of

not entirely debugged device drivers."[16, p. 105] David may have taken down Goliath

with a well-aimed slingshot bullet, but Andreessen's PR strategy was akin to simply

hurling insults at the giant. The giant was more than capable of crushing David in this

scenario, and, of course, Microsoft went on to make mincemeat of Netscape's market

share.

Regardless, Clark and Andreessen's arrogant attitude toward Microsoft may have

encouraged company arrogance in general. Netscape lacked what might be called

strategic humility. In managing even a very successful software product, it makes sense

to always be respectful and reasonably humble in dealing with partners, potential

partners, and customers-even those who may not seem important in the short term.

Judo Strategy

Cusumano and Yoffie discuss Netscape's competitive strategy in the chapter of

the same name, focusing on Judo as a driving metaphor. Much of the book references

this metaphor, and it is worth repeating the four fundamental tenants of struggle, which

applies both to company and product management:

* Move rapidly to uncontested ground in order to avoid head-to-head combat.

* Be flexible and give way when attacked directly by superior force.

* Exploit leverage that uses the weight and strategy of opponents against them.

* Avoid sumo competitions, unless you have the strength to overpower your

opponent. [16, p. 90]

We will touch on each one of these concepts. For coverage in depth, the book is

an excellent case study for any software Product Manager to read, especially in the brave

53

new world in which nearly all new enterprise and consumer software products are either

Internet-centric or at least Internet-enabled.

Uncontested Ground

"Shoot, Move, and Communicate"

This quote from former Netscape CEO Jim Barksdale, taken from the marine

infantry's standing orders, reflects his philosophy of having Netscape be a nimble

business combatant against the larger but less flexible Microsoft. The idea is to avoid

getting pinned down by a competitor in a rough head-on battle, such as a direct firefight

against Microsoft. Of course, as seen above with the "mooning the giant" tendency

Netscape had, they were not always consistent with this philosophy. However, they did

outflank and outmaneuver the competition in browser space, and beat out several smaller

competitors. If the first volley of rounds was creating and releasing the browser itself,

the Netscape platoon quickly moved to fire at the competition from a different angle:

they took greater advantage of the online ability to download the browser than did the

competition.

"Free, but not free"

Netscape continuously altered the rules of the market for competitive advantage.

Product pricing is an important part of PM, and Netscape fired at competitors from the

pricing position with an innovative pricing strategy: "Netscape browsers were free for

anyone to download on a 90-day trial basis, free for students and educational institutions,

and $39 (later raised to $49) for everyone else."[16, p. 99] By contrast, one competitor

named Spry, kept "firing" from their position on retail shelves, convinced that the old

54

retail model and dial up Internet was a solid position from which to fight a war of

attrition. Spry had an early entrant position over Netscape, but their lack of

maneuverability and continued focus on shrink-wrap proved a tragic mistake in Product

Management for them.

Limits of Movement

Moving too much in search of uncontested territory "can confuse customers and

undermine a company's strategic credibility." It can "look like inconsistency.. .lack of

focus and a lack of commitment." Andy Grove, Intel's chairman, said,

The battle between Microsoft and Netscape can be described as a

guerilla war against an occupying army. Netscape originally was going

after browsers, then going after consumers, and then they changed their

strategy to corporations.. .the problem is, they're running out of space,

munitions, and food.

The idea was that the constant strategy changes were raising serious questions

about Netscape's ability to commit to a strategy and execute. This further jeopardized a

company already shaky in the area of partner relationships. To close this discussion, we

will quote former Netscape employee Alex Edelstein, who told Cusumano and Yoffie,

I'm going to strangle the next person who tells me, "We have to change

the rules, Alex, that's the only way we are going to beat these guys."

Because that is a very valuable tool, but you cannot use it as a crutch, as

a replacement, as a surrogate for execution.[16, p. 104]

Be Flexible

Aesop's "Fable of the Oak and the Reeds" epitomizes the Judo strategy of being

flexible, elucidated to members of Generation X in the pop culture by the character of

55

Paul Atreides (played by Kyle MacLachlan) in Frank Herbert's "Dune", who thinks

(aloud via voiceover), "I will bend like a reed in the wind!"

For better or for worse, the best and most shocking example of flexibility in the

Browser Wars came not from Netscape but from Microsoft. Everyone in the Silicon

Valley eventually heard about Gates' famous memo from 1995, "The Internet Tidal

Wave." In a major break from previous strategy, Gates proclaimed, "Now I assign the

Internet the highest level of importance. The Internet is the most important single

development to come along since the IBM PC was introduced in 1981." [16, p. 108]

Microsoft's Master Stroke of Framing and Flexibility

Flexibility

It is easy to say, in retrospect, that any fool could see that the Internet as a non-

proprietary platform would rule the world by 1995, but this is not necessarily true.

Microsoft had massive resources and power, and an economic interest in the proprietary

Microsoft Network, which Gates essentially threw over a cliff when he decided to use an

embrace and extend strategy for the Net. At a very high level, this may have been one of

the single most brilliant, or at least economically most important, Product Management

decisions in the history of software. In terms of visionary accuracy, the insight behind

this decision was perhaps only superseded by Gates' original notion in the 1970's that the

software, not the hardware, was the key product. Within a week after Gates said, "We're

hard-core about the Internet," Netscape's valuation had fallen by 28 percent.

Framing

Beyond flexibility, Gates' speech was brilliant from a public relations standpoint.

They chose December 7th, the anniversary of the bombing of Pearl Harbor, as the date to

56

speak with the press. In the Harvard Business School experimental course, Strategic

Reasoning Laboratory, Professor Giovanni Gavetti teaches about the importance of

framing a problem in terms an audience will understand, and in terms that the audience

will not resist. Often viewed as the "Evil Empire" or a big corporate bully, Microsoft has

not been a master of good PR. However, on that day in 1995, Bill Gates gave a masterful

analogy:

I realized this morning that December 7th is kind of a famous day.. .And I

was trying to think if there were any parallels to what was going on

here.. .the most intelligent comment that was made on that day wasn't

made on Wall Street, or even by any...analyst; it was actually Admiral

Yamamoto, who observed that he feared they had awakened a sleeping

giant. [16, p. 109]

This analogy triggers the "frame", in the Gavetti sense, of Microsoft not as a

bully, but as a powerful yet heroic and patriotic giant being hurt unawares by an angry

and aggressive, but weaker upstart. All but Microsoft's most adamant enemies could not

help feeling a vague sense of patriotic sympathy with Microsoft on hearing the Netscape /

Microsoft battle framed in this way. Even dyed-in-the-wool Microsoft haters could not

avoid having the frame triggered and a momentary confusion of feelings about the Evil

Empire: that is just how the human brain works.

Gavetti noted in his class that all of HBS, driven by the case method, is based on

analogy. Framing is critical in Product Management as elsewhere in business. The most

important reading for the class, in terms of framing, was a book by George Lakoff, Don't

Think of an Elephant. (This is unrelated to the Blind Men and the Elephant parable

discussed earlier.) Every PM who faces framing product and company issues for the

press should read the first 35 pages of this book. As an example of the power of framing,

57

Lakoff notes how important it is to have a good frame and how even attacking an

opponent's frame can work against you:

When we negate a frame, we evoke the frame. Richard Nixon found that

out the hard way. While under pressure to resign during the Watergate

scandal, Nixon.. .stood before the nation and said, "I am not a crook."

And everybody thought about him as a crook. [18]

Most Product Managers must communicate with the press: never underestimate

the power of framing!

Exploit Leverage

Cross Platform versus Planned Obsolescence

Netscape found weaknesses in Microsoft's strategy in that the larger company had

a large installed base of legacy products. Microsoft relied partially on a regimen of

"planned obsolescence" and its new Internet Explorer product would not immediately run

on PCs with older Windows versions in many corporations. IT managers in companies

tend to upgrade much less often than home users for reasons of cost and operations

headaches. Barksdale exploited this by speaking of the "UNIXification of Windows" and

Netscape took the strategy of supporting the whole installed PC base.

This was, temporarily, an effective strategy and slowed down Netscape's browser

share loss. However, as Cusumano and Yoffie point out, "The weakness of Netscape's

strategy is that the half-life of DOS and Windows 3.1 is finite: Over time more and more

companies will migrate.. .points of leverage do not last forever, especially when

competing on Internet time."

Netscape also attempted to use cross-platform technology as leverage for their

products, especially Java technologies. Product Managers beware, though: Going cross-

58

platform always sounds good when going up against a highly proprietary competitor, but

has extremely high hidden technical cost. "Cross-platform products pose technical

challenges that can lead to lower programming productivity and weak product

performance compared to platform-specific products." Netscape never did do a

successful complete rewrite in Java. Bob Lisbonne, Netscape's V.P. of the Client

Product Division, said,

The 6.0 project, which was code-named Xena and was basically a new

Communicator [Netscape's 2 nd generation browser] all written in Java,

has been shelved. And that's been shelved primarily for technical

reasons. The reality was that Java.. .was just not yet up to the task of

implementing a product of that complexity. [16, p. 193]

Mark Andreessen himself said, "I just didn't kill it soon enough....And 6.0 turned

into rocket science, and it was driving me nuts." An in depth study is beyond our scope

here, but in the author's experience, planned (or fortuitous) obsolescence strategies have

dominated over pure cross platform and backward compatible approaches in software and

hardware product histories, at least in terms of profitability.

"Open, But Not Open"

In terms of open interfaces and Internet protocols, Netscape did a fairly good job

of exploiting leverage and framing to paint Microsoft as the evil proprietary alternative

and themselves as the "guardian of greater 'openness"'. This strategy was intended to

appeal to what was known in the Silicon Valley as the ABM crowd, who wanted

Anybody But Microsoft to win any technology war and wanted to use products from,

well, Anybody But Microsoft. This was good positioning, or framing as Professor

Gavetti would say, but behind the PR framing lay the truth that Netscape would offer

59

"very subtle features that are proprietary or difficult to copy." In one of the more

important insights of Competing on Internet Time, the following "open secret" is

revealed:

In fact, the dirty secret of the computer industry is that everyone is "open,

but not open"; they differ only in degree. Every computer company has

proprietary pieces in its solutions, while every company in the industry

claims to be "open," including Microsoft and IBM. [16, p. 133]

There are two kinds of frames: Frames that match the underlying facts, but

creatively, and frames that don't. The latter kind can be powerful and manipulative

toward a desired end, but are also subject to backfiring. The reality of Netscape's "open,

but not open" strategy became apparent and slowly shifted customer perception to blur

the distinction between their "champion of openness" stance and the perception of

Microsoft as highly proprietary. Product Managers should beware of risking their

integrity with customers by using frames which do not match the facts! Fact-matching

frames are like white magic: powerful, positive, and rarely troublesome. Disinformation

frames are like black magic, even more powerful for manipulation, but prone to turning

negative and, depending on the level of the mismatch, extremely dangerous to a product's

(or suite of products', or a company's) long term reputation.

Overpowering with Sumo Competition

Cusumano and Yoffie give Microsoft credit for one more judo move, in giving

away Internet Explorer. This goes too far in giving Microsoft kudos for its judo. The

ultimate market-crushing hammer of the incumbent heavy in any industry is to drop

prices to squeeze out a new competitor. One of a myriad of possible examples is the

Harvard Business case dealing with Braniff versus Southwest Airlines: essentially,

60

Braniff tried to crush Southwest Airlines through pure price wars, and Southwest

responded with a truly brilliant judo move. Southwest framed Braniff as the big price

war bully, appealing to the public's sense of fairness. The exact move will not be

revealed here lest the HBS case mafia comes after the author, but the move was true

business judo, and it worked.

The point is, Competing on Internet Time unfairly claims, "Microsoft was using

Netscape's weight against it. Netscape became caught in a classic judo move." The

move was classic, all right, but it was a classic bullying tactic by a heavyweight opponent

with superior capital and an operating system monopoly. From later in the book:

"Netscape management seemed immobilized by Microsoft's 'free IE' judo move."

Again, Netscape may have been immobilized, but clearly by a sumo move, not by a judo

move. Judo has nothing to do with Microsoft's brute force attack on Netscape's market

share by using Internet Explorer as the ultimate Internet loss-leader product: a browser

given away free. The Silicon Valley watched in horrified fascination as Microsoft

assaulted Netscape with this ultimate sumo attack, pushing against the boundaries of

business ethics: was Microsoft leveraging one monopoly to gain another?

History seems to support our dissenting view. Cusumano and Yoffie themselves

quote one Microsoft representative as saying in public, "Our intent is to flood the market

with free Internet software and squeeze Netscape until they run out of cash." They do

acknowledge at the end of Competing on Internet Time,

But Gates and company were too greedy and too tough when it came to

winning market share in the browser wars. In winner-take-all

environments, firms can gain so much market power and market share

that they have special obligations under antitrust laws.. .you cannot use

your monopoly power to hurt a competitor in another market. [16, p. 319]

61

Why Microsoft is given credit for a judo move here, when giving away Internet

Explorer was clearly a sumo move at best, and an illegal monopoly-leveraging sumo

move at worst, remains puzzling. Perhaps it is an example of being seduced by one's

own frame: the driving frame of the book is the judo contest. In an effort to remain

balanced, trying not to paint Microsoft as a sumo-centric bully, Cusumano and Yoffie

perhaps tried to fit more of Microsoft's strategy into the judo frame than actually merited

by the business colossus of Redmond.

Marketing Warfare in Product Management

It is evident from the Netscape / Microsoft browser wars that all "four P's" of

marketing-Product, Price, Positioning, and Promotion (they had to come up somewhere

in a work involving marketing)-come strongly into play for modem Software Product

Management, particularly in a contentious space. Netscape waltzed into an open market

with an excellent new product, startling Microsoft, which had left open a market power

vacuum. Microsoft spent egregious sums creating their own product, using an essentially

unlimited budget and quickly coding up what turned out to be a solid, modular, decent

alternative. Both companies had compelling products. Without a compelling product, no

amount of Product Management can make a company a market winner beyond a very

short "hype window".

Netscape competed on price with a unique new "free but not free" model also

involving positioning, but their market was eventually destroyed when Microsoft

detonated the thermonuclear pricing war device of giving away their version of an

equivalent product. Positioning Netscape Communicator as a downloadable solution

helped Netscape win over Spry in the short term, and they later used positioning judo

62

through a cross platform strategy, compatible with more versions of Windows than

Microsoft's own Internet Explorer. Judo moves only are effective for a few seconds of

market time, and eventually Microsoft's brand name and possibly illegal arm-twisting of

PC clone makers effectively steamrollered over Netscape for positioning dominance.

Of course, both companies madly promoted their product, with Netscape

benefiting from first mover advantage, a much-hyped IPO, and the executive celebrity

duo of Andreessen and Clark. Bill Gates has worldwide, long lasting celebrity, also, and

Microsoft's market dominance of the operating system allowed them to win the key

promotion battle for icons on the Windows desktop. The battle was truly an epic one

crossing business and legal boundaries, with Microsoft ultimately the victor, but also

ending up in court for antitrust violations. Product Managers, especially those with

similar outbound responsibilities, can expect to fight similar battles in their careers.

There is no formula for winning these battles, but shrewd PMs will focus first on having

excellent product, strategize on all "four P's", and keep an eye out for leverage

opportunities using marketing judo.

63

V. Software Project Management

Product and Program Management are distinct roles from Project (or

Development) management in most software companies, but neither is completely

insulated from the details of project management. Program Managers are intimately

involved in the tactical details of developing new features, including working with

Development Managers on project schedules to decide what feature set can be developed

for new product versions. As for Product Managers, 79% surveyed in 2005 reported the

responsibility of "monitoring development projects" as part of their jobs. [13] Thus, a

study of project management methodology is necessary to understand fully the role of the

Product and Program Manager in relation to the software development team. Since

plenty of literature exists on project management, we will only survey the major methods

in use today, briefly critiquing how each might affect software architecture and company

culture.

Waterfall Model

The first traditional software development methodology, the Waterfall Model, is

linear and inflexible. In the unlikely event a Product Manager is dealing with a pure

Waterfall Model shop, it will be extremely important to define all requirements with

absolute precision and an ironclad contract of execution. The Waterfall Model (Figure 7)

can be described as "Big Bang" project management: the system and software

requirements are the seed of the software product universe, and six months to two years

later explode into a perfectly completed software product. This generally does not

happen, as inevitably upstream changes are required. It is extremely expensive to make

64

"upstream changes" in this model. Probably the U.S. Department of Defense is one of

the only organizations left using this model in its purest form, and even they are

beginning to use more iterative methods in new projects.

System
requiremet

Figure 7 Waterfall Model (Source: http://www.serverpeak.com/images/waterfal.gi)

Spiral Model

The Spiral Model (Figure 8) is perhaps the most important technological

innovation for modeling the software process after the Waterfall Model, which is simply

not sufficient to capture the need for the many iterations necessary to produce most

software products. Most modem software project management methodologies derive

from the Spiral Model. One of the main differences between modem methods is how

"tight" the turns of the spiral are. A sync-and-stabilize company like Microsoft might

have spirals that revolve in a matter of weeks, whereas some of the more avant-garde

methods can undergo an entire turn in a day or possibly even a fraction of a day.

65

=NUIATM
Ca=

I-alM.
MnnoA~mm.l

munu'r

rn-N
En

Figure 8 Spiral Model (Source:

=MIR L LOgo 0 F M

90 P TOTPL NeOT

M a . ft MORAMMS 1
CO- iGT of o" t muuuvum
OFINAMN W0FM "a ft Ofm
inuwran IM i

mOm

hOtsnvIM i 6

imig LAMNTNE

http://sunnydav.mit.edu/I 6.355/spiral-model.gi)

Some of these newer methods are sort of "spiral waterfalls", and it is possible to

combine the two methodologies by creating bite-sized linear project sub-plans and then

spiraling them together to allow for iterations. Extreme Programming is a good

approximation of this combination (see below), with little two week waterfalls, but the

collection of waterfall model processes is more iterative and spiral in nature.

Not all phases shown in the figure are used in all versions of the Spiral Model in

industrial use. The common feature is an iterative approach. The important note for the

Software Product Manager is that this model involves creating successive prototypes, or

66

MPLAN

A N

nm
M

incremental releases, of the product. Thus it is much easier to inject requirements

changes into this process as customer requirements evolve or are better understood,

because the spiral will swing around to a new level of requirements input and validation.

This is no excuse for not carefully formulating requirements at the beginning of a project,

however, and repeatedly injecting serious requirements changes at all angles of the spiral

is probably the most efficient way to drastically reduce or even eliminate a project's

chances of success.

Agile Software Development

Agile Software Development sounds like a consulting company but, according to

one article in Computer by IEEE, it is actually a collective term for multiple new project

management methods for software including Extreme Programming, Crystal Methods,

Lean Development, Scrum, and Adaptive Software Development. All of them are

modifications of the Spiral Model. These methods, called agile methods, are good news

for a Product Manager with changing requirements from customers. In today's business

world, eliminating change early in the development process causes unresponsiveness to

business concerns and therefore causes PM difficulties. Reducing the cost of reactive

change throughout the software project is the goal of agile methods. Working code is

emphasized over documentation, and there are several other preferred methods

emphasizing individuals, interactions, customer collaboration, and change

responsiveness. Agile methods don't involve inclusive rules but generative rules, a

"minimum set" of behaviors to devise appropriate practices for special situations. Intense

interactions between team members are emphasized. The goal is to produce software that

67

actually meets customer requirements and workplaces that "aren't described in Dilbert

cartoons." [19]

Extreme Programming (or XP)

Extreme Programming is perhaps the most well known and fashionable of the

new wave of agile methods as of this writing in 2006. One introductory article by Robert

C. Martin elucidates the basic tenet of Extreme Programming: frequent feedback. [20]

The "Two Week Plan" is at the core of this model. Instead of a six month software

product plan which forms one large waterfall model of development, XP is more spiral-

like in having "mini-waterfall" plans of two weeks in duration. Then all these mini-

waterfalls are spiraled together: the approach is to incorporate the feedback from the past

two weeks into the next two weeks, and iterate.

Some tenants of XP, such as the requirement to have all code literally written with

two people at a desk, seem impractical. This policy goes completely against the solitary

nature of programmers, who like to go off on their own to do the "real work". Since very

few programmers have exactly the same skill level, speed, and style of hacking, this two-

to-a-desk model-if forced-would most often degenerate into a tutorial / training

session for one programmer and a drain / annoyance on the more advanced programmer.

The two-to-a-desk model may sound good in a Project Management book, but rarely

happens in industry due to cost and personality issues. However, the basic idea of

reducing the trust (or risk) horizon to two weeks instead of six months is a good one. The

spirit of Extreme Programming is to try to increase communication and build trust by

delivering features in smaller time increments. A Product or Program Manager operating

in a corporation using some variant of XP has the advantage of being able to inject

68

requirements modifications quite often. This is helpful, but there is a dark side: this

method lends itself to drifting away from the original requirements as programmers and

Project Managers continually revisit requirements and may have a tendency to dumb

down those requirements which are hard to implement, while expanding on features that

are easier to implement. Thus, in this model, the Product Manager will incur more

communication effort in keeping the development teams on target with original

requirements, but will also find teams to be highly responsive to needed changes.

Scrum

Scrum is perhaps right behind XP in popularity. According to the home page for

Scrum---http://www.controlledchaos.com-Scrum is "A variation on Sashimi, an 'all at

once' approach to software engineering. Both Scrum and Sashimi are suited best to new

product development rather than extended software development." Figure 9 gives a

rough depiction of the development cycle. Interestingly, some companies do use Scrum

for continued development.

69

e,/efy 24

Scrm 15 minute dak meeting,
Teams meabe repond to basits,
1) Wat 6W you do since 13at Strum

-- Meeting?
2) Oo you bove any obs.c.s?

SSphrn BackAg- Bac14og 3) What wil you do befor next
Feature(s) items 30 Eays meeting?
assigned e-xV3nde
to $print t~ e.a

Now ftctonaty
Is domonstrAed
at end of sprint

Produc Backbg
Pnnfze product f eoures desired by the cuslamer

Figure 9 Scrum development cycle (Source: http://www.controlchaos.com/)

Scott Case, a Product Manager interviewed for this thesis, works for Atlas

Solutions in the Internet advertising industry. The core software system serves ad

banners. "Development leads use Scrum methodology, and work together," he said.

"Scrum meetings are internal, but then there is a once-a-day 15 minute meeting of team

leads."

The People Factor

One article by Cockburn & Highsmith advocating agile methods emphasizes the

importance of people in agile software development. Placing people physically closer,

replacing documents with whiteboard discussions, and improving the team's

"amicability" are all encouraged. Important summary slogans include "people trump

process" and "politics trump people"-people of talent can work their way through any

process, but process will not make incompetent people perform; and corporate politics,

70

including inadequate executive support, can kill any project regardless of the talent of the

front line people involved. [21]

The issue with these so-called agile development methods is that they seem to

have been created in a psychological vacuum. Programmers are private people. They are

willing to be a little closer, spend a bit more time in meetings, but they view it as

punishment to be forced to sit in a group all day long. Some ideas from agile methods

make sense, but others will be proven by history to be the outcome of a 5-7 year "manic

episode" in the history of software development. For instance, the Highsmith &

Cockburn article (published in 2001 and probably written before the true catastrophic

nature of the crash was fully apparent) states, "replace documents with talking in person

and at whiteboards." This is ridiculous. People are going to talk and use whiteboards

anyway in a functional organization, and it might make sense to reduce documentation,

but it is ludicrous to ditch all documentation. Organizational memory vanishes in this

scenario. This kind of attitude was indicative of the times: "We don't have time for

documentation!" was the prevailing attitude, as over-funded startups snorted the free

flowing metaphorical cocaine of excessive Venture Capital and made sloppy rushes to

market.

Fashionable Agile Methods: Programmers as Cattle?

Agile methods have a catch: some of the ideas are repugnant to talented

programmers. For instance, the very idea of forcing software engineers, who tend to be

thoughtful, highly intelligent individualists, into "barrier-free collocated teams" might

sound good on paper but totally ignores the psychology of what it means to decide to

become a software engineer. Many startup companies got ahold of these agile methods

71

and used the "barrier free" idea to take away any privacy a given programmer might have

at work. Programmers were forced, like pigs in a pen, to sit within smelling distance of

each other at long tables-sometimes no bigger than card tables, and in the worst of the

dot coms, actually card tables-all in the name of some project management fad. To

many who experienced this methodology as software engineers, including the author, the

open area "bullpen" concept came across as a lame excuse by management to deprive

workers of personal space and privacy. The policy created a Dilbert-esque, oppressive

office atmosphere. Abusive aspects of these project management fads ran rampant in

many companies which failed. Even Morgan Stanley Dean Witter Online, which used a

bastardized version of XP, no longer exists today. It is ironic that the Cockburn &

Highsmith article subtitled The People Factor, shows a complete neglect and ignorance

of the psychology of the workers performing the projects. [21]

Many if not most software engineers are uncomfortable in large groups for long

periods of time: denying them personal space at work is tantamount to punishment.

Promoting greater levels of interaction is important, but Product Managers should be

prepared to find a very stressful, touchy atmosphere if working in companies that go so

far as to advocate the bullpen approach. By contrast, it is quite telling that many of the

best (or at least most profitable) software companies, including Microsoft, provide

developers with individual offices or at least cubicles.

Companies that truly need to use bullpens usually have systems that either have,

or are heading toward "catastrophic coupling." Atlas Solutions, for instance, has a high

availability ad serving system. On maintaining and developing this system, Scott Case

said,

72

Tradeoffs involve "keeping the lights on" versus innovation. We're

dealing with 110,000 ads per second. 6 billion ads a day. Our SLA

(software license agreement) says we must respond within 2

milliseconds... New features have a deeply cascading effect into the

system, which is tricky considering you have to keep the thing up

24x7... Most of the five teams are in Seattle. We use a Bullpen style area

and XP-style pair programming.

There are two possibilities here. Managers at Atlas Solutions would certainly

argue that the bullpen approach is simply necessary for such a system. Speaking

hypothetically, the system may actually seem to need the bullpen approach because of its

tightly coupled, relatively inflexible architecture innately difficult to modify. Atlas's

product architecture was not evaluated, but certainly there are many organically grown

and tightly coupled commercial software architectures in the field.

Such systems could be said to have "tar-baby architectures." The more tightly

coupled the architecture, the more developers have to be in one place to modify anything

or to add features. Ironically, the more people are in one place, the greater the ability to

modify the tar-baby architecture with even more esoteric, tightly coupled hacks: the tar

baby grows even bigger and more developers become "stuck" to it (need to be in the

same place to modify it effectively). Thus system size and complexity slowly increases.

The bullpen grows. Individual developers have an increasingly more difficult time

adding changes. The interview with Scott Case lends anecdotal evidence to this theory:

There is one outsourced development team in India, but the software

modules must be very well defined.. .the outsourcing hasn't worked out

well. We seem to have difficulties making outsourcing work; it is very

hard to carve off modular tasks.

73

Subjectively, software shops using bullpens are not particularly pleasant places to

work, at least as a software engineer. Objectively, there is clear anecdotal evidence here

(and there are many other examples) that bullpens may function as substitute-cheap in

the short term and prodigiously expensive in the long term-for modular, well designed

software architecture lending itself to clean division of labor. Bullpens may even

facilitate an increase in architectural coupling and complexity over time: a detailed study

worthy of its own thesis may be in order. Meanwhile, Product Managers should consider

use of a pure bullpen development strategy to be a yellow flag: the ability to inject new

features into systems developed this way may be quite high in the short term, but over the

long haul, such shops expose themselves to high employee turnover and brittle, tightly

coupled software which becomes increasingly difficult to modify or even outsource

functionality enhancements. Here, there be strangler trees!

Skepticism on Agile Methods and Software Architecture

Agile methods are quite fashionable and popular in the software industry at the

moment, and are certainly here to stay for the foreseeable future. Some important

thinkers are adamantly opposed to this approach to software. MIT CSAIL professor

Daniel Jackson had this to say on the subject (entire interview transcript in Appendix C):

PROFESSOR JACKSON: You have to remember that the software

industry, by and large, is extraordinarily conservative. Which is very

surprising for a bunch of people who consider themselves radicals.

JOHN HEMPE: Define conservative in this context.

PROFESSOR JACKSON: They don't want to change the way they do

things. They want to rely on, sort of, lift your finger and feel the wind.

They don't want to consider the possibility that computers could help you

74

design software. You look, for example, at the astonishing vehemence

with which Extreme Programming has attacked the idea of design.

JOHN HEMPE: Yes.

PROFESSOR JACKSON: It is not the method. It's the idea that you

could design a system. It's deeply unfashionable to suggest the idea that

a system could be designed.

JOHN HEMPE: True. These methods like Agile, Scrum, XP, these tight

iterative methods--

PROFESSOR JACKSON: What they're confusing is the principle of risk

management in which you don't want to make decisions for which you

don't have information, versus the idea that even when you're capable of

making predictions and good decisions you should just blunder ahead

anyway and pay whatever price it costs to fix it.

What they essentially do is all the design in the code, which is an

extraordinarily expensive way to do things. In the face of all their

criticisms of formal methods, it's amazing how much work these people

are prepared to do.

Nonetheless, legions of programmers work using these methods, perhaps because

agile methods leverage their core skill: to write code. Myriad managers trying to keep

some control over chaotic software projects love the methods because they at least allow

quick response to ever-changing requirements. We will delve deeper into this topic in the

section on Requirements Engineering.

Capability Maturity Model for Software

At the opposite end of the spectrum from Agile Methods is Capability Maturity

Model-style project management. CMM is perhaps the most famous example of an

attempt to organize all software management.

75

In November 1986, the Software Engineering Institute (SEI), with

assistance from the MITRE Corporation, began developing a process

maturity framework that would help organizations improve their software

process.. .The CMM presents sets of recommended practices in a

number of key process areas that have been shown to enhance software

process capability. The CMM is based on knowledge acquired from

software process assessments and extensive feedback from both

industry and government. The Capability Maturity Model for Software

provides software organizations with guidance on how to gain control of

their processes for developing and maintaining software and how to

evolve toward a culture of software engineering and management

excellence.[22]

Continuousiy Optimizing
improving (5)
process

Predictable Managed
process

Standard, Defined
consistent (3)
process

Disciplined R
process (2)

Inial

Figure 10 Levels of the Capability Maturity Model [221

76

CMM focuses on the immaturity / maturity of a software organization's software

development management. Five major levels of maturity are defined. Level 1 is total

immaturity and Level 5 can take up to a decade to achieve. The defined levels include

Initial, Repeatable, Defined, Managed, and Optimizing, as shown in Figure 10. The

model asserts that these levels must be achieved in sequential order because each level of

maturity uses the previous one as its foundation. Key features include commitment to

performance, ability to perform, activities performed, measurement and analysis, and

implementation verification.

The CMM model is noble enough in intention and certainly cannot be condemned

as a method unilaterally. Many Indian IT outsourcing outfits, including Infosys, are

certified CMM Level 5. A Product or Program Manager looking into outsourcing

features of a product might want to take note of whether the company under

consideration has CMM certification. Detractors of the model would note that an

organization can take a shallow "test passing" approach to becoming certified at

successive CMM levels, achieving high levels without becoming top quality software

producers or service providers.

Software development is such an immature discipline that there is a great danger

in "official" certifications of such models as CMM, which can still very much be

considered developmental, if not experimental. A company can spend hundreds of

thousands or millions of dollars being certified at a high level of CMM for marketing

reasons, but ending up with a checkbox-filling, letter-of-the-law mentality that adds

process for the sake of process, unnecessary layers of bureaucracy, and a net slowdown

of software development. An advocate of CMM might argue that the model is so good

77

that a software organization is forced to be better if it's certified at a high CMM level

even if it is just following the letter of the law.

The Immaturity of CMM

An article by Bach points out that CMM is funded by the US Department of

Defense, and makes the assertion that CMM cannot "legitimately claim to be a natural or

essential representation of software processes." He is concerned that CMM could be

dangerous if too much focus is put on certification via CMM as a marketing tool, or as he

puts it, "a whitewash that obscures the true dynamics of software engineering,

suppress[ing] alternative models." [23] CMM is notably unpopular amongst highly

nimble software companies such as those producing shrink-wrap software, and is unheard

of in Silicon Valley Internet startups, unless perhaps they are outsourcing some feature

development to a CMM-certified shop in India.

CMM itself claims not to be a "silver bullet" a la Fred Brooks, but with such

heavy government funding its proponents tend to behave contrary to this humble posture.

Process trumps people in CMM, according to Bach, but Cockburn and Highsmith assert

in their Agile article that people actually trump process, and Bach is in their camp. [21]

Software problems are simply too complicated to be codified as process: you can't make

a human being a good chess player simply by giving him a good process, asserts Bach,

and neither can you make him a good software developer.

The much tiered structure of CMM itself is problematic, according to Bach: the

driving force is just to get to the next level. Defect prevention is primarily a Level 5

issue. This could possibly cause an organization obsessed with CMM certification for

government contracts or general marketing to become blind to the need for careful defect

78

prevention regardless of the level of CMM maturity. Perhaps the most damning assertion

of all Bach makes is that CMM stifles innovation through its slavish devotion to tiered

process, through its ignoring of innovation or personal mastery as factors in the software

organization. CMM is seductive to managers because it gives an easy formula to make

some sort of process to the incredibly messy act of team software development. Blind

management via CMM could steamroller blindly over personal creativity.

Michael Cusumano points out in his book, Business of Software, that Japanese

companies have taken a zero-defect approach to software, but that this limits their

commercial viability-although the approach makes for great embedded systems

software in certain hardware devices.[15] CMM could degrade a software shop to the

Japanese "software factory" level: it might work to slowly produce high quality

embedded systems software, but could slow an organization down far too much to be

viable in the commercial software market. At worst, a slavish devotion to CMM as a

heavily funded, well known measuring stick useful as a marketing claim could gut out the

innovative soul of a development organization and send the passionate and master coders

running for new opportunities in less stifled shops. However, it at least advocates

discipline and continuous improvement and is less likely to produce the "tar-baby

architectures" and unpleasant working conditions (such as bullpen programming) of

supposedly agile methods taken to extremes.

Process, Culture, and Project Management

Now that we've looked at both ends of the spectrum, extreme Agile methods and

ultra-conservative CMM, let us pop up to a philosophical level. People, not project

methods, ultimately do the work. In his article, Enough About Process: What We Need

79

are Heroes, Bach talks about the "three P's" for software managers: People, Problem,

and Process. His basic argument is that process is peripheral rather than central to the

development of excellent software. He concludes that the "heroic efforts of a dedicated

team" are central to the success of a software project, which is certainly true. He believes

that people accept roles more readily than tasks, and that people need to see that their

tasks have meaning in terms of creating solutions that solve problems. [24]

People do accept roles more readily than tasks. The amount of structure placed

on top of these roles in the form of formal software product management methodology is

a key strategic decision based on individual company culture, as well as the product type

under development. Department of Defense contractors may actually be forced to use

CMM, while many Silicon Valley startups use no formal software project management

process or "wing it" using a few Gantt charts generated using Microsoft Project. A lack

of project management structure can lead to poor requirements organization and brittle

product architecture, while heavy processes at large companies can degrade into slavish

bureaucracy, slowing software project progress to the pace of molasses in November.

Product, Program, and Project Managers must realize that "software engineering"

has a long way to go before it is truly reduced to an engineering discipline. Completely

defined processes, such as those used in hardware manufacturing, simply do not work to

create software products. Bill Gates has been quoted as saying, "A great lathe operator

commands several times the wage of an average lathe operator, but a great writer of

software code is worth 10,000 times the price of an average software writer." With such

wide variability in individual productivity and the difficulty of predicting progress in the

experimental and creative act of writing code, no single prepackaged process can meet a

80

company's project management needs. Processes must be tailored to company culture

and to the product being developed. Continuous monitoring, as well as continual

openness to process adaptation, are also vital keys to achieving project management

success.

81

VI. Requirements Engineering

The Product Management Frontier

Now that we have explored Product and Program Management from the

perspectives of history, economic environment, directly in terms of the jobs and roles, an

extended case study, and the tightly intertwined cross functional role of project

management, let us look to the future before we conclude. Where is Product and

Program Management going from 2006 into the future? Requirements Engineering is a

hot and controversial topic as of this writing. We will take a brief look at the current and

most common methodology of requirements gathering, and then quickly advance to

explore the frontier of Requirements Engineering. An advanced and controversial semi-

formal methods technique from MIT's CSAIL department is reviewed, though such a

method has limited commercial application in the short term. More commercially

palatable methods taking into account socially complex business processes are then

reviewed, including intent specifications, Quality Function Deployment as borrowed

from automotive engineering, and finally, Product Roadmapping.

Why is Requirements Engineering such a hot topic today? Perhaps because

Project Management has been studied intensely for many years in software engineering,

yet still software projects are incredibly problematic:

An astonishing 84 percent of all software projects do not finish on time, on

budget, and with all features installed, according to a survey by the

Standish Group, which studied about 8,000 software projects in the

United States in 1995. Furthermore, more than 30 percent of all projects

were cancelled before completion. The rest ran significantly over

deadline and were 189 percent (on average) over budget. [25]

82

Obviously, Project or Development Management techniques alone are either not

working very well or are not the core of the current problem. Traditionally, software

requirements analysis was considered a relatively easy part of the development process.

More recently, it has become increasingly recognized as being the most vital part of the

process; given that the failure to identify requirements properly makes it virtually

impossible for the finished piece of software to meet the needs of the client or to be

finished on time. The term Requirements Engineering emerged in the early 1990's to

stress the importance of treating requirements gathering as an analytical and not just a

managerial process. The topic is gaining momentum and increasing interest in today's

market, with companies becoming more aware of the magnitude of costly ripple effects

from poor Requirements Engineering processes.

Current Requirements Engineering Practice

In most commercial companies, requirements are not so much "engineered" as

gathered and tracked. At the simplest level, requested features must be tracked and

prioritized to help capture requirements in an evolving system. Chapman notes,

One of the chief tasks of a Product Manager is managing what is often

called the wish or "tick" list-that very long list of features and capabilities

requested/conceived of by your developers, customers, user groups,

sales force, the CEO's spouse, etc. [11, p. 571]

Some companies try to over-prioritize bugs and feature requests. Do

organizations really respond to five different levels of bug- and feature request tracking?

Three is sufficient, is likely to cause less confusion and fewer items falling into grey

areas of long term inaction. Chapman suggests the three categories for feature requests

as must haves, should haves, and nice to haves. Given that many feature requests will

83

quickly pile up even for a medium-sized product once it hits the market, a company will

need to establish a system of managing feature requests and their state in the development

schedule. Chapman suggests minimum functionality for such a system should include

the following abilities:

* Add feature requests to a central database or list

* Track when a request was made and total up multiple requests

* Map those requests back to a person or group of people

* Categorize feature requests

* Prioritize feature requests

* Keep track of when and whether a feature has been updated

* Tie a feature request to an external document such as a use case [11, p. 573]

Many companies, in the author's experience, maintain feature requests within a

defect database or bug tracking system, with the designation "enhancement" to separate

them out from bug fix requests. In an IT department not releasing software as a product,

sometimes an entire release can be based on prioritized versions of these "enhancement

bugs". It is to be hoped that an actual software product company would use more

sophisticated mechanisms to stay in touch with the market, but this does not always

happen. The author has certainly experienced, in startup companies, features being

implemented on an instant, emergency mode basis because a single customer or the CEO

wants a new feature. This is not universally a bad thing, but such crisis management as a

habit does not make for stable software products providing added market value.

As an example of how rampant poor requirements engineering is in software

companies, the number one answer Product Managers gave in response to complete the

statement, "If I could say one thing to our company president without fear of reprisal, it

would be..." was as follows: "get a long-term strategy that doesn't change with each

84

sales contract." [13] The author's experience correlates positively with this survey quote:

the amount of Requirements Engineering executed based on sales contract crisis is

astonishing.

Software Requirements: Never Understood from the Start?

Professor Daniel Jackson, one of the keynote speakers at the 13th International

Conference for Requirements Engineering, interviewed for this thesis. His idea is that

companies simply are not understanding software requirements from the start, and do not

appreciate the technical nature of the problem. The following quotation has company-

specific comments suppressed at his request (the whole interview transcript is in

Appendix C):

PROFESSOR JACKSON: Why think about requirements, because they

change? Right? Now, I don't believe this. And the reason I don't believe

this is the following.. .[although] requirements shifts are a huge source of

complexity in system development, the XP people are working, by and

large, for very conservative companies.... My guess is that the reason the

requirements changed is because they never bothered to really

understand. I'm being very polemical now. But I think what often

happens is, from the software engineer's perspective the requirements

have changed. But the [business layman] on the other side says, "How

did you ever not understand that? What did you think we were doing?"

And they're amazed at the idea. [They're thinking], "We didn't change our

requirements; we always wanted to do it like this." So, there's just a

reluctance to spend time with the customer and truly understand what

their problem is.

JOHN HEMPE: Right, right. And that's definitely part of what I'm

exploring. A typical quote from an average coder I know is, "I've never

met a competent marketing person." It just seems like somewhere the

pipeline of actual requirements to engineers who write code gets broken

85

down, and then the engineers get blamed for everything, or [perhaps I

should say], the programmers get blamed for everything.

PROFESSOR JACKSON: Right, exactly. That's exactly what happens.

And one of the reasons is that the initial attempt to characterize the

problem is not sufficiently appreciated as a technical problem. It's

thought to be something that needs less technical expertise. But it needs

more technical expertise. It's the essence of the whole enterprise:

figuring out what you're trying to do. So, that, I think, is a large part of the

problem.

Another part of the problem is, Product Managers and other Marketing personnel

with the business and "people skills" to connect with customers simply do not have the

same level of technical expertise as the average programmer, let alone more expertise

such as a software architect might have. There is an intangible, long, "lossy" pipeline

between what software functionality "the market" actually will pay for and executable

software code. Requirements flow into this pipeline from external sources such as

customers, sales, prospective customers, competitive analysis, industry analysts, and

consultants. Engineering, technical support, partners, and other employees can also serve

as internal sources of requirements. Generally, the pipeline in a full scale company

would be filtered and would flow through Product Managers, to Program Managers, to

Software Architects and Developers. At this last stage, the Developers are, in an ideal

world, presented with the highest priority features with maximum profit generating

potential. They write the code to create these features, and the software sells like

hotcakes to lumberjacks in an Alaska January.

Unfortunately, this pipeline has major flaws. Many of the most profitable

requirements are never pushed into the pipeline as companies do a poor job of listening to

the market. Requirements "leak out" and are lost due to poor communication between

86

stages. Requirements become distorted and mistranslated due to miscommunication

between stages, much of this due to the generally increasing level of technical and

decreasing level of business knowledge as the pipeline approaches the coding stage.

Some unprofitable requirements may sneak into the pipeline at the last stage as

Developers sneak pet features in with required features. Another version of this occurs

when Developers expend excessive energy making a feature far more general-purpose

than it needs to be out of the often justified fear that if they do not over-engineer the

feature, Marketing will come back after seeing Feature X working and immediately ask

for Feature X to do X + 1.

The Werewolf Theory of Requirements Engineering

So what do we do about this broken requirements pipeline? Let us look at the

problem philosophically, and at one solution posed at MIT CSAIL, the Computer Science

and Artificial Intelligence Laboratory. It is an accepted law of software development

"physics," revealed to the community by Fred Brooks in his famous No Silver Bullet

article, that "there is no single development, in either technology or in management

technique, that by itself promises even one order-of-magnitude improvement in

productivity, in reliability, in simplicity."[26] Requirements engineering is an intractable

problem, a problem impossible to solve at all, let alone at a stroke with one management

technique or well-defined process. Jackson is certainly correct that technical expertise

helps, and perhaps the technical needs of RE are underestimated in today's companies.

What Jackson may underestimate, though, is the sheer humanity and breadth of the

pipeline involved. The MIT community tends to believe in heroic intellectual efforts as

the norm, and the number of stakeholders is limited in a research context, but this is not

87

business reality. Numerous stakeholders with radically different self interests all act as

lossy conduits of software requirements between the market and software

implementation. Jackson admits it is difficult to stop and focus on requirements in the

business world:

PROFESSOR JACKSON: "We're going to lose a week's productivity by

drinking coffee and chatting?" You've got to be a gutsy manager to do

that, right? And I can understand that. From a research perspective, we

do that all the time, because we don't have anyone breathing down our

necks. We have much more flexibility in terms of when we deliver value,

and so on.

The Silver Alloy Bullet

Jackson is an advocate of formal methods, and has a fascinating attempt to

advance the science of the Requirements Engineering problem embodied in the invented

language Alloy, product of research funded by the National Science Foundation, and by

the High Dependability Computing Program from NASA Ames Research Center.

Jackson claims Alloy is simpler than a programming language and is an excellent way of

specifying the "schema" of a program.

PROFESSOR JACKSON: Alloy, to a novice, might seem complicated,

but semantically it is enormously simpler than any programming

language. I mean, basically, all you've got is sets and relations, that's it.

It's like a database schema but.. .actually; it's basically the same as a

relational database schema.

Alloy was thus evaluated for suitability as a tool for Requirements Engineering by

a technical Product Manager. (Important note: it was the thought of the author-not an

assertion by Jackson-that Alloy might turn out to be a "silver bullet" for Requirements

Engineering.) A seemingly well-written tutorial on Alloy did not quite correspond with

88

the functionality actually available on Windows XP. After spending several hours

learning the initial semantics, such as the "3 levels of abstraction to understanding

Alloy"-object oriented, set theoretic, and atomic/relational-the author spent several

more hours attempting to understand and run the examples. The interface seemed

friendly at first, but beyond the most trivial examples there were gross mismatches

between the results pictured in the tutorial and the results shown in the actual program.

After a full working day on the problem, attempting to understand the complex set

theoretic logic and to manipulate the graphical interface of the Alloy simulator to match

the results in the tutorial, a level of frustration was reached as it was impossible to

compare the results graphically. The author was never able to reproduce the graphical

output, shown in Figure 11, for a simple file system. External help would be required,

and the author followed an Alloy home page link to join a Yahoo group on the Alloy

language. In the Yahoo group, the only activity within the past week had been a posting

for a summer internship at the Jet Propulsion Laboratory, containing a link leading to a

picture of a rocket scientist. Although hardly a quod erat demonstratum, this line of

inquiry seemed to lend strong credibility to the author's suspicions, formed after many

hours of mind-bending attempts to understand Alloy that formal modeling methods such

as Alloy have not penetrated much below the level of the programmatic equivalent of

rocket science in ease of use and accessibility.

89

contents contents contents

Figure 11 Graphical output of Alloy Modeling Language (Source:
http://alloy.mit.edu/tutorial3/alloy-tutorial.html)

In fairness to the Alloy developers, they did respond to an email inquiry about the

problems with the tutorial with a correction file for user interface representation. At this

point, however, it had become clear that modeling in Alloy was a highly complex

endeavor. Clearly, the language and methodology is not only far out of reach of the

average Product Manager, but also not likely to be easily grasped by the average software

professional in its present incarnation. Performing Requirements Engineering or system

modeling in Alloy could easily become its own thesis topic, and may be an area for

further work when the interface has been evolved.

Professor Jackson had claimed Alloy was "quite simple" as it was composed only

of "sets and relations", but complexity is like broccoli that must be eaten: one can push it

around on one's plate, but the total mass to be consumed will remain constant. The

simplicity of only two fundamental concepts of "sets and relations" is unfortunately

belied by the mind-bending and myriad ways one must manipulate them using pseudo-

object oriented syntax that may seem simple on the surface, but is extremely difficult to

master. Set theoretic thinking is far different from the object oriented procedural

programming models in the minds of most programmers today.

The comparison to an RDBMS schema breaks down in that an RDBMS schema is

based on tables, easily visualized as rows and columns, enforcing mentally clearer

90

limitations on the solution space than a set-theoretic modeling tool that can model any

system. With advancements in ease of use, Alloy may one day prove a useful tool for

technical personnel such as Software Architects, but it is unlikely to develop into

something a Product Manager would use directly.

Bulletproof Social Processes

Formal methods of so-called "program proving" have been around a long time,

but never gained much traction in industry. Alloy is part of the "lightweight formal

methods" movement, but "lightweight" is perhaps a misnomer here. An adult blue whale

on earth is lightweight compared to an ice cream scoop of matter from a black dwarf star.

Analogously, "lightweight" formal methods are only light in comparison to true formal

program verification, accepted by the computing community as virtually impossible for

even modestly sized computer programs. Formal methods were falling out of favor as

early as 1979, when a paper entitled Social Processes and Proofs of Theorems and

Programs argued,

Formal verifications of programs, no matter how obtained, will not play the

same key role in the development of computer science and software

engineering as proofs do in mathematics. Furthermore the absence of

continuity, the inevitability of change, and the complexity of specification

of significantly many real programs make the formal verification process

difficult to justify and manage. [27]

Lightweight formal verification advocates believe that programming can be more

like mathematics, and tools like Alloy exist in an attempt to show that, if programs

themselves cannot be proven, at least system specifications can. Perhaps this is so, but

such proofs do not get rid of the social issue:

91

We believe that, in the end, it is a social process that determines whether

mathematicians feel confident about a theorem-and we believe that,

because no comparable social process can take place among program

verifiers, program verification is bound to fail. We can't see how it's going

to be able to affect anyone's confidence about programs. [27]

Jackson would surely argue vehemently against this argument applying to

lightweight formal methods the same way it applies to formal verification and his

research seeks to prove the contrary. It seems there is still a long way to go in making

lightweight formal methods straightforward to use, and the fact is that industry has thus

far largely eschewed lightweight formal methods as intractable. Jackson discussed the

difficulties of getting industry to buy into formal methods in his interview:

JOHN HEMPE: I think part of it is getting something well known and

[professionally] leverageable enough.... It's a matter of showing the

power, and showing that an average professional can think on that level.

And I sometimes wonder if we sometimes just run into cognitive limits

where it's really hard to think in these advanced ways.

PROFESSOR JACKSON: But it's just abstraction, right?

JOHN HEMPE: Absolutely. Abstraction is the most noble, but also the

most difficult form of thinking.

PROFESSOR JACKSON: I agree, I think you're right, but why should

you think the average professional would need to do that? Why isn't it

just like the schema designer?

JOHN HEMPE: The Architect.

PROFESSOR JACKSON: Yes, the architect. It's going to be a smaller

group of people who do that kind of work.

JOHN HEMPE: Right, right.

PROFESSOR JACKSON: And the rest of the people will do much more

concrete work, dealing with the details of the code.

92

JOHN HEMPE: So the important thing is to have a few key experts who

are able to specify the system in this formal language.

PROFESSOR JACKSON: I think that is essential.

JOHN HEMPE: I agree, in principle.

In practice, however, each and every programmer at most software companies

acts as a mini-architect when coding individual features. This is certainly true at

Microsoft. They might stay within generally framed architectural boundaries, but

certainly not within anything as specific as a program schema like Alloy or any other

lightweight formal method tool would produce.

A small group of architects can specify a skyscraper or a bridge and then farm out

the work to construction crews and engineers, but software development is quirky, more

creative and artistic than a "mere matter of engineering" in most cases. The side effect is

that software development simply does not have such clean division of labor between

architects and engineers. Perhaps the division of labor problem, the difficulty in having a

bright, clear line between the few architects and the many engineers, partially explains

industry resistance to the kind of hierarchical engineering organization lightweight formal

methods imply.

Capturing Requirements with Social Process Methods

Formal and semi-formal methods do not seem to solve the software requirements

pipeline problem, at least for average commercial projects. Sheer complexity and a lack

of advanced tools make them inaccessible to average professionals. They do not take

into account the "dirty" problem of social and business complexity, although advocates

might argue this is not their job. Regardless, methods are needed that do help with the

93

social process, rather than focusing completely on verification and modeling. We will

look at three such advance methods, roughly in order of increasing practicality and

current usage. The methods are Intent Specifications, Quality Function Deployment, and

Roadmapping. The first method is currently in use mostly in the military/aerospace

industry; the second is in limited use in the software industry, although several automated

software packages have been written to facilitate its use for the purpose; and the third is

in fairly widespread use by software companies both as a Requirements Engineering tool

and as a preemptive marketing tool.

Intent Specifications

Intent Specifications is a method proposed by MIT Professor Nancy Leveson to

facilitate "grounding specification design on psychological principles of how humans use

specifications to solve problems as well as on basic system engineering principles."[28]

Taking a cognitive psychological approach, she notes that interface design must address

the aspects of content, structure, andform to serve as an effective medium. A Product

Manager would not necessarily be involved in all levels of creating this kind of

specification, but the interesting thing about the method is that it is "rooted in

abstractions based on intent." Intent abstraction is shown on the vertical axis in Figure

12.

94

Decomposition

Refinement
System Verification

Environment Operator Components Validation

Intent

Figure 12 Intent specification structure for software systems [28]

A detailed study of the method is beyond our scope, but the advantages of

capturing and systemizing intent rather than onlyfunctionality should be clear to the

Product Manager. Ideally, the PM discovers and specifies the market's intent, or goals,

for a system (or an upgrade) it will purchase, while it is in the realm of engineering how

the system realizes the goals with specific functionality. Leveson's driving example is

TCAS II, the Traffic Collision Avoidance System for aircraft. As an example of top level

system intent, the System Purpose (goal), with GI being the high level goal and RI as a

refined subgoal, would appear as follows:

Gi: Provide affordable and compatible collision avoidance system

options for a broad spectrum of National Airspace System users.

RI: Provide collision avoidance protection for any two aircraft closing

horizontally at any rate up to 1200 knots and vertically up to 10,000 feet

per minute. [28, p. 10]

The PM would be primarily responsible for the first two levels including the

System Design Principles. At this level, engineering consultations begin as this level

95

System
Purpose

System Design

Principles

Blackbox
Behavior

Design

Representation

Physical
Representation

specifies the principles needed to realize the top level purpose behavior. In the TCAS II

example, one example of a principle is this:

PRI: Each TCAS-equipped aircraft is surrounded by a protected volume

of airspace. The boundaries of this volume are shaped by the tau and

DMOD criteria. [28, p. 14]

The method of Intent specifications works by deriving the system through

successive layers of human intent-based abstraction, thus simplifying requirements from

the often huge laundry list of functional specifics. Noted computer scientist and software

reliability specialist Martyn Thomas, founder of Praxis software (and a believer in

lightweight formal methods) recently wrote,

Requirements are often complex because they contain unnecessary

implementation detail, or elaboration of many special cases that could be

better expressed as a general principle. [29]

Simplification of requirements expression is thus one major advantage of Intent

Specifications. Another advantage is that system intent is often lost in large laundry lists

of desired functionality; this method makes intent explicit by centering the specification

process on the cognitive psychology of human intent. This seems like a good idea, given

that people, not functionality list processing machines, will write and use the resultant

software.

QFD: Quality Function Deployment

The QFD design tool originally had nothing to do with software. According to

Hauser and Clausing in their much-cited Harvard Business Review article, The House of

Quality, QFD "originated in 1972 at Mitsubishi's Kobe shipyard site. Toyota and its

suppliers (such as Bridgestone Tire) then developed it in numerous ways." [30]

96

Eventually, American auto manufacturers and other manufacturing companies began

adopting the methodology, which Hauser and Clausing call "a kind of conceptual map

that provides the means for interfunctional planning and communications."

With roots deeply in manufacturing, the House of Quality was first academically

applied to software applications in a 1990 MIT thesis by Laura Donohue entitled

Software Product Development: An Application of the Integration of R&D and

Marketing via Quality Function Deployment, exploring "the integration of corporate

functions to provide the cross-fertilization of functional technologies and ideas, as well as

the communication of independent functional needs during the process of product

delivery."[31] Today, while QFD hardly dominates the software world, it has become an

important part of the "Six Sigma for Software" movement. Several QFD / House of

Quality software products intended for software design exist on the market today, and an

extensive Web community exists in support of the topic, including such sites as the

following: http://software.isixsigna.com/, a site supporting QFD and other Six Sigma

techniques adapted for software.

97

The positive side of the QFD technique for software is the integration of

marketing (customer) and R&D perspectives. A schematic version of the House of

Quality is shown in Figure 13. Customer needs are listed along the vertical axis (rows)

Customer Requirements, and software features are listed along the horizontal axis

(columns), labeled Supplier Measurable Responses.

Figure 13 Basic QFD House of Quality (Source: http://software.isixsigma.com)

Although a useful tool, the QFD technique has some weaknesses when applied to

software. An article on the Six Sigma for Software Web site notes the translation issues

in applying a manufacturing model to software:

98

Requiremena Characterization and Vonfpcation
(Weight and Kano Classifcation Typically)

5

Software design presents interesting challenges for several reasons.

Software is an intangible product that is not always conducive to explicit

acceptance measures. Design elements are coupled and interdependent,

which is different from physical designs that can be deconstructed into

independent but functional sub-assemblies, parts, and components.

Software is not so easily divisible, creating additional design challenges.

[32]

The article goes on to suggest methods of modifying QFD for software, beginning

with a definition of "relevant and tangible customer needs." The article references the

ISO 9126 standard, structuring customer needs into six product characteristics:

Functionality, Reliability, Usability, Efficiency, Maintainability, and Portability. A long

matrix attempting to build a taxonomy of customer needs based on these six attributes is

given.

Software, being design embodied, tends to resist such general purpose

taxonomies. QFD will not provide us with an easy, cookie-cutter approach to solve the

Requirements Engineering problem, with or without laborious taxonomies and other

attempts at adaptation from the manufacturing sector. It does, however, provide a good

starting point for organizing and visualizing the interrelationships between perceived

needs of customers and marketers versus developed and developing software features.

Roadmapping

Roadmapping is a forward-looking Requirements Engineering process. Whereas

the other methods discussed involve capturing needs mostly for the version of a product

immediately in the development pipeline, roadmapping often involves projections up to

several versions or even years into the future. Richard Albright of the Product

Development and Management Association defines roadmapping as follows: "Product-

99

Technology Roadmaps link market and competitive strategy to product plans to

technology strategy - with quantitative targets and plans for achieving objectives."[33]

Visual Example of a Roadmap

Element types within a roadmap are usually Anything within a business can be uisually represented
grouped with common elements using categories on a roadmap using a variety of shapes, colors and images

Figure 14 Visual Roadmap Example 1341

Although many consulting firms and software packages exist to support

roadmapping, the process is neither standardized, nor has it been reduced to "mere

engineering." Some companies use roadmapping for internal planning, while others use

it more as a marketing tool. Alcatel performed a detailed study covering 246 projects on

Requirements Engineering focused on reducing downstream requirements changes,

noting, "A common denominator of requirements changes is that they practically always

correlate with project delays." Changes occur for several reasons, the most important

among them being, "stakeholders often do not agree on content and later demand

changes," and also, "requirements are not uniformly visible and thus not agreed by

different teams." Alcatel claims they were able to reduce delays over 20% per year using

a variety of techniques, primarily by an increased "integration of upstream processes with

the product life-cycle related RE processes," a form of technology roadmapping. Non-

100

roadmapping techniques were also used, such as, "install an effective core team for each

product release," so the benefits cannot be conclusively or entirely attributed to

roadmapping. [3]

Roadmapping as a Marketing Tool

Some professionals are more skeptical about roadmapping as a purely technical

exercise. Chapman claims that product roadmaps are more marketing instruments than

pure technical planning tools. He introduces roadmapping as follows:

First developed in the 60s and 70s primarily as weapons in technology

companies' FUD [Fear, Uncertainty, and Doubt] arsenals, product

roadmaps are ostensibly sneak peeks into the future that also function as

obstacles to competition. [11]

Microsoft, for instance, always seems to have a roadmapped solution to any

software problem if they are not selling something in the space presently. Some of the

few books on Software Product Management do not mention roadmapping at all, but

books and Internet sources that do mention it place it in the realm of the Product Manager

to create and maintain as a tool for coordinating stakeholders as well as for visualizing

future strategy. Chapman gives a brief three-element list of the product roadmap

components:

" Projected release dates for future versions of a product or product line

" A very high-level overview of new functionality

" A discussion of what new hardware and software platforms your software will

be running on

He cautions, however, about revealing competitive information in a product

roadmap, as roadmaps given to customers, or certainly to the press, will invariably fall

into the hands of the competition. "If a roadmap is too feature-specific," he notes,

101

"you've just given your competition valuable information about future versions of your

product well in advance of your product's release." On the plus side, roadmaps can be

powerful instruments for maintaining current customers:

One advantage of showing your customer a broad roadmap is that it can

increase their confidence that the product they purchase will be supported

and available in the future. In addition, showing customers a carefully

crafted roadmap can support your sales of maintenance and service

agreements. [11]

Benefits and Challenges of Roadmapping as an Evolving Method

Back on the technical side, one paper from the 13th International Conference on

Requirements Engineering (2005) describes a University of Helsinki study of

roadmapping as a way to "link the business view to requirements engineering." We will

conclude our discussion of roadmapping with a list summarizing some of their most

important findings:

" Roadmapping strengthened the link between business decisions and

Requirements Engineering

" Product Managers saw roadmaps as tools for communicating their ideas to

other stakeholders

* Developer viewpoint was less emphasized compared to that of other

stakeholders (management, sales, channel partners, and customers)

" Practitioners complained roadmaps got immediately out-of-date

" Practitioners were missing ways to tie product development resources to

roadmaps [35]

Engineering Software Requirements in the Future

All parts of software creation are rife with difficulty, as we are reminded by

Brooks. Writing correct code is still more art than science and maintaining code is

102

extremely costly. Yet executing a process of Requirements Engineering to meet market

needs-addressing individual customer needs as well as collective market needs without

evolving a software system into a brittle and unprofitable corner-may be the most

challenging problem in software product creation. Certainly, it is the most expensive

problem if done poorly, as all phases of the product life cycle are affected by mistakes,

omissions, and unnecessary additions at this early but critical phase. Semi-formal

methods may not be the Requirements Engineering solution for commercial software, but

Jackson was correct in saying, "It's the essence of the whole enterprise: figuring out

what you're trying to do."

We have seen that today, many companies still succumb to a crisis-management

approach to Requirements Engineering, or at best, keep a fairly informal prioritized list.

With excellent Product and Program Managers, the prioritized list or database approach

can and does work for companies. Methods do exist, however, to help managers and

businesses to engineer their requirements rather than only to gather and best-guess

prioritize them. At the very least, methods such as the matrix-based Quality Function

Deployment may help managers to organize their thoughts and avoid blind spots in

connecting product and technology requirements to profit generating market needs.

Injecting a crisis-motivated feature now and then will not necessarily kill a product line,

but is a bad habit into which companies can, and do, easily fall. A disciplined

Requirements Engineering process can help a company avoid this habit by forcing a

coherent vision for its product lines and their evolving feature sets.

103

VII. Conclusion

Product Managers face a challenging world in which emergent technologies and

economics change perhaps faster than in any other product market in history. The

original premise of the author going into this thesis considered Product Management to

be primarily an engineering function. Research showed, however, that the function

emerged from Proctor & Gamble's marketing role and bridges across to development

from marketing rather than the other way around. The truly successful PM bridges the

gaps in the corporation, connecting the points of Ebert's "Bermuda Triangle" between

marketing, strategy, and engineering to prevent product value in the marketplace from

mysteriously vanishing.

We have seen that Microsoft worked to bridge the marketing / engineering gap

from both ends, hoping to meet in the middle, by creating an engineering-oriented

version of the Product Manager in the form of the Program Manager. Microsoft's market

success is undisputed, and this structure has been imitated by many successful software

companies, but not all. Google, for instance, does not use the Program management role

and instead splits the PM role into Business and Technical versions of the job. Half of all

PMs are now involved in the writing of detailed specifications, and the technical demands

of the job have recently been trending upwards.

On that front, the emerging field of Requirements Engineering was explored, but

obvious, simple, or one-size-fits-all technical or managerial solutions to the problem

prove elusive. As with many aspects of software product creation, the "ancient" wisdom

of Fred Brooks' No Silver Bullet applies in this area. RE fails to yield to any single

technical solution. Semi-formal models were explored, most notably the set theoretic

104

modeling language Alloy, but this method quickly proved worthy of a Computer Science

thesis in and of itself. Further work in this area may involve exploration of ways to make

Alloy usable for technical PMs. Also, domain-specific Alloy with pre-designed patterns

for certain domains might make it more practically useful. The success of analogous

specification languages such as SQL for RDBMS schema creation may be partially

attributed to domain specificity.

Regardless of advances in Alloy or similar approaches, RE will prove intractable

to solution by any "killer application" or tool. Enterprise software provides a perfect

illustration as to why this is the case: such software models how people and

organizations do business with each other. In such systems, all the intractable

complexities of personal and organizational interaction are innately embedded. Problems

arise from straightforward communication difficulties and issues such as the tribal nature

of human beings. Chapman notes there is a "natural tension that exists between

functional groups. Each group has its own perception of the value it brings to the group

and stereotypical perceptions about the other groups... .These tensions and issues are

natural and cannot be reversed." [11, p. 567]

The PM's job will thus never be radically simplified by automated requirements

capture tools. Inter-group tensions will always have to be managed, and as interviewee

Philip DesAutels noted, alignment of stakeholders is a core competency of the successful

PM. Marketers want to create collateral and buzz, salesmen want to sell, developers want

to code, but it is up to the PM to hold up a hand and ensure that what Professor Jackson

recommends takes place: "At the beginning, you should figure out what problem you're

trying to solve, and you should have some fairly precise characterization of that

105

problem." Whether this is performed using semi-formal models for a high availability or

high security product, or QFD, or simply keeping a well managed database of features, is

beside the point. The PM and the systems architects must synthesize the vision for and

maintain the conceptual integrity of the product.

Leadership, an easy word to use but a difficult one to define precisely, is

ultimately the critical skill of the PM. Advancements in project management methods

and Requirements Engineering tools may make the job incrementally more tractable, but

no technical solution will obviate the need for PMs to be business leaders of cross

functional teams. No single piece of advice can make a great leader. Interviewee

Shuman Ghosemajumder, a top PM practitioner at industry leader Google, made this

unintentionally sage comment about leadership:

One thing I heard about Product Management is to remember as a

Product Manager that you are the one person on the team that is

completely disposable. If you always remember that, keep your eye on

the ball of adding value to the team, then you will be successful.

Of course, the apparent paradox is that only through such humility does one have

a chance to emerge as the successful CEO of the product, the "completely critical" person

on the team. Ghosemajumder's comment dovetails nicely with Professor Giovanni

Gavetti's closing comments on leadership in Harvard Business School's Strategic

Reasoning Laboratory course: "The right combination of humility and thinking big is, I

think, the key to being a great leader."

Excellent PMs are extremely valuable in the marketplace, because the ideal PM

has a rare combination of people and technical skills. Good PMs are competent systems

architects, but the process of gaining these skills is solitary and often limits the architect's

106

finesse with people. Those from a pure marketing background may have the finesse with

people but lack systems architecture skills, damaging the conceptual integrity of the

product vision. The best PMs have both of these opposing skills and are rare. As

software product systems continue to increase in functionality and complexity, the value

of this rare skill set will continue to increase, as will the need for better education in cross

functional skill sets such as MIT's System Design and Management program is designed

to provide.

Ultimately, it is impossible to create an instruction manual or otherwise easily

capture all the elements of successful Product Management, just as there has never been a

successful manual on how to be the CEO of a corporation. At the same time, no amount

of process management can circumvent the need for the Product Manager. Philip

DesAutels of Microsoft said in his interview,

No matter what the process is, there's a little box where it says, "a bit of

magic happens here." At the end of a car assembly line, there's a group

of people called the "fixers" who do a lot of ad hock fixes. They might

have hammers, two by fours, even strange things like pillows. A big part

of Product Management is the "fixer" job, where the magic happens.

Attempting to subdivide the job further to avoid the need for interdisciplinary

skills simply does not work, as this complex confluence of skills is precisely what is

needed to perform the magic in that little box at the nexus between marketing,

engineering, and strategic management.

107

Bibliography

[1] Eyewitness to History, California Gold Rush,
http://www.eyewitnesstohistorY.com

[2] Standish Group International Inc., CHAOS Chronicles v3.0,
http://www.standishgroup.com/chaos/toc.php

[3] C. Ebert, Requirements BEFORE the Requirements: Understanding the Upstream
Impact, Requirements Engineering, 2005. Proceedings. 13th IEEE International
Conference on, 2005, pp. 117-24.

[4] CareerOverview.com, Product Management Careers, Jobs, and Training
Information, http://www.careeroverview.com/product-management-careers.htnl

[5] Steve Johnson, Role ofProduct Management,
http://www.softwareceo.con/white papers/ProdMgrRole.pdf

[6] Hal R. Varian, Joseph Farrell and Carl Shapiro, The economics of information
technology: an introduction, Cambridge University Press, Cambridge ; New
York, 2004.

[7] Glenn Ellison, Sara Fisher Ellison and National Bureau of Economic Research.,
Search, obfuscation, and price elasticities on the Internet, National Bureau of
Economic Research, Cambridge, Mass., 2004.

[8] Wikipedia, Proctor & Gamble, http://en.wikipedia.org/wiki/Procter & Gamble
[9] Michael A. Cusumano and Richard W. Selby, Microsoft secrets : how the world's

most powerful software company creates technology, shapes markets, and
manages people, Free Press, New York, 1995.

[10] Alyssa S. Dver, Software product management essentials : a practical guide for
small and mid-sized companies, Anclote Press, Tampa, Fla., 2003.

[11] Merrill R. Chapman, The Product Marketing Handbookfor Software, 4th Edition,
Aegis, [S.l.], 2003.

[12] Daniel Condon, Software Product Management: Managing Software
Development From Idea to Product to Marketing to Sales, Aspatore Books,
Boston, 2002.

[13] Steve Johnson, Annual Product Management Salary Survey for 2005,
http://www.pragmaticmarketing.com/productmarketing/survey/2005/index..asp

[14] Microsoft, Technical Program Manager,
http://members.microsoft.com/careers/careerpathi/technical/programmanagement.
mspx

[15] Michael A. Cusumano, The business of software : what every manager,
programmer, and entrepreneur must know to thrive and survive in good times and
bad, Free Press, New York, 2004.

[16] Michael A. Cusumano and David B. Yoffie, Competing on Internet time: lessons
from Netscape and its battle with Microsoft, Simon & Schuster, New York, NY,
2000.

[17] Robert P. Carroll and Stephen Prickett, The Bible : Authorized King James
Version, Oxford University Press, Oxford ; New York, 1998, pp. Proverbs 16:18.

108

[18] George Lakoff, Don't think of an elephant! : know your values and frame the
debate: the essential guidefor progressives, Chelsea Green Pub. Co., White
River Junction, Vt., 2004.

[19] Jim Highsmith and Alistair Cockburn, Agile Software Development: The Business
ofInnovation, Computer, 34 (2001), pp. 120-22.

[20] Robert C. Martin, Extreme Programming Development through Dialog, IEEE
Software (2000), pp. 12,13.

[21] Jim Highsmith and Alistair Cockburn, Agile Software Development: The People
Factor, Computer, 34 (2001), pp. 131-33.

[22] Curtis Paulk M, B., Chrissis, M.-B., Weber C. , The Capability Maturity Model
for Software, Software Engineering Institute, 1993, pp. 26.

[23] James Bach, The Immaturity of CMM, American Programmer (1994).
[24] James Bach, Enough About Process: What We Need are Heroes, IEEE Software,

12 (1995), pp. 96-98.
[25] Detlev J. Hoch, Secrets of software success : management insights from 100

softwarefirms around the world, Harvard Business School Press, Boston, Mass.,
2000.

[26] Frederick P. Brooks, No Silver Bullet: Essence and Accidents of Software
Engineering, Computer, 20 (1987), pp. 10-19.

[27] A. DeMillo Richard, J. Lipton Richard and J. Perlis Alan, Socialprocesses and
proofs of theorems and programs, Proceedings of the 4th ACMSGACT-
SIGPLAN symposium on Principles ofprogramming languages, ACM Press, Los
Angeles, California, 1977.

[28] Nancy G. Leveson, Intent Specifications: An Approach to Building Human-
Centered Specifications, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, 26 (2000), pp. 21.

[29] Martyn Thomas, A Viewfrom the Stern, Safety Critical Systems Club newsletter;
The Centre for Software Reliability at Newcastle University (2005).

[30] John R. and Clausing Hauser, D. , The House of Quality, Harvard Business
Review, 3 (1988), pp. 63-73.

[31] Laura E. Donohue, Software Product Development--an Application of the
Integration of R&D and Marketing via Quality Function Deployment Sloan
School of Management, Massachusetts Institute of Technology, Cambridge, 1990,
pp. 154.

[32] Dan Zrymiak, Software Quality Function Deployment: Modifying the "House Of
Quality"for Software, http://software.isixsigma.com/library/content/c030709a.asp

[33] Richard E. Albright, Roadmaps and Roadmapping,
http://www.a lbrightstrategy.com/roadmap.htmi

[34] Alignent Software, What is Roadmapping?,
http://www.alignent.coim/resources/articles/whatisroadmapping.htm

[35] L. Lehtola, M. Kauppinen and S. Kujala, Linking the Business View to
Requirements Engineering: Long-Term Product Planning by Roadmapping,
Requirements Engineering, 2005. Proceedings. 13th IEEE International
Conference on, 2005, pp. 439-46.

109

Appendix A: The Great Windows / UNIX Platform
Battle and Software Commoditization

Parallel Timelines in Hardware and Software

Everyone knows that Microsoft is ascendant in the world of prepackaged software

products, and the Windows operating system dominant on Intel-based PCs. Most people

know at least of the existence of UNIX, which seemed to be losing relevance for awhile

until the advent of Linux and the new vitality of Open Source. Not everyone, especially

younger IT professionals, understands how this came to be. The fact that there are

specific parallel timelines in the development of the software product market may not be

so obvious.

Why is this relevant to software Product Management? Both the markets for

software products, and the stage of the competitive landscape, have been set by these

powerful, parallel trends in software & hardware history. The future stage and market,

furthermore, will be to some degree determined by the trajectory of these continuing

timelines. The timelines we consider begin at the end of the Punch Card era and the

beginning of the timeshared "green screen" terminal era.

The Mainframe to UNIX to Open Source Timeline

A picture is worth a thousand words, so we will begin the discussion with a graphical

timeline covering the Mainframe hardware and Unix OS path. Of course, many, many

things happened in computing during this period, only a few highlights are given for the

purposes of illuminating this discussion.

110

1976 - 1982
Motorola 68000 CPU dominant

1973 1979 1991 1998
TCP/IP Berkeley BSD I DARPA funding Linux: Unix on PCs Open Source Initiative

1965-1970
Mainframes Dominate

1965 2000

DEC PDP-1 1 GNU Project / CopyLeft Sun Microsystems' Java (for Web)
1970 Z1984

1994 IBM Embraces Open Source
1 st Berkeley Unix on PDP-1 1 1999

1974

Figure 15 Timeline I: The Mainframe / UNIX Path

Early in "post-Punch Card" software history, mainframes (mostly IBM but also

others, such as Burroughs, Sperry-Univac, and NCR) dominated business use. As 1970

approached, minicomputers arose, famously the PDP-11. The PDP-11 and VAX-li

machines, the latter being more business-oriented, became the reference systems for a

new operating system called UNIX, which came out of AT&T Bell Labs. UNIX was not

very important until the mid-1970's, when UC Berkeley's Computer Systems Research

Group got ahold of it, the project being underwritten by the Defense Advanced Projects

Agency (DARPA).

This project caused some landmark additions to UNIX and made it truly an

industrial strength operating system: these additions included virtual memory, a robust

and faster file system, and the vital TCP/IP network protocol in 1973-74. With the help

of continued DARPA support, Berkeley continued to work on UNIX into the late 1970's,

releasing the landmark 3BSD (Berkeley Source Distribution) in 1979. A lot of

proprietary work was going on as well-this is nowhere near a full recounting of the

history of Unix, as we are interested in the trend leading to open source-but the BSDs

were instrumental in getting an entire culture of computer programmers used to the idea

of sharing source code, mostly through creating and releasing utilities for the operating

system along with source code.

Unix, especially the BSDs, along with the advent of fast CPU's, specifically the

Motorola 68000 series during the mid-1970's to early 1980's, ushered in an era of

ubiquitous and collaborative computing. Email and USENET groups (this was before

they became drowned with Spam) helped advance this trend. The hardware was a

111

necessary backdrop, but it was UNIX that created a common, standard platform to allow

the code sharing trend to achieve a critical mass. [12]

One early culmination of this trend toward ubiquitous and collaborative

computing was the GNU project, started in 1984 by a group centered on Richard

Stallman, who quit his job at MIT and created the immensely popular EMACS editor,

further fomenting the subculture of shared code and eventually drafting the GNU General

Public License or "copyleft". This constituted the first legally binding construct

supporting the open computing philosophy. At this point, the foundations for open

source had been laid. The term "open source" did not exist yet and would not be coined

until about in 1998, but let us jump the track here in about 1984-85 and ride the parallel

track of highly proprietary computing.

The Intel to IBM / Microsoft to Wintel Timeline

Many works exist to describe this parallel timeline, which created a business

monster of proprietary computing, the richest man in the world, and such a powerful

hardware/software duopoly as to incite numerous antitrust actions by the Department of

Justice. Microsoft Secrets by Cusumano and Selby gives a detailed account of the

Microsoft side and Inside Intel: Andrew Grove and the Rise of the World's Most

Powerful Chip Company by Jackson covers the other. The reader is most likely familiar

with this famous business story, so a sparse timeline and recounting should suffice.

1982
1978 Intel 80286/ IBM PC 1994 2000

1968 1975 Intel 8086 1981 1990 Windows NT 3.5 Intel Pentium 4: Cheap
Intel Founded Microsoft Founded MS DOS Windows 3.0 PC Servers Have Arrived

1968 2000

Altair 8800 first personal CPU w/Intel 8080 Win95 (Internet enabled)
1976 Intel Inside: "WinTel" PCs Ascendant 1995

1991

Figure 16 Timeline II: The Wintel / Proprietary Computing Timeline

112

This timeline starts about three years later than the previous one, in 1968 with the

founding of Intel, and is essentially "asleep" until 1975-76, when Microsoft was founded

and the Altair 8800 personal computer was released. Bill Gates, acting as an early "anti-

Stallman", takes a passionately proprietary view of his programming work. The

timelines nearly converged early on as Microsoft licensed UNIX and began working on

XENIX, a PC version. However, this effort was eclipsed by the release of what became

the prodigiously popular MS-DOS (Microsoft Disk Operating System) for IBM in 1981.

Microsoft retained ownership of virtually all rights to the software, and in 1982, the ball

was rolling with IBM PCs (or simply PCs) rolling out with the new Intel 80286

microprocessor running MS-DOS.

For our purposes, we can skip ahead to 1990 when the "Wintel" (Windows

operating system running on Intel-based IBM clones) architecture computer truly began

with Microsoft's release of Windows 3.0. Intel launched the historically successful

branding maneuver represented by the "Intel Inside" marketing campaign in 1991.

Embarrassing bugs and instability were largely corrected by the Windows 3.1 upgrade in

1992, and from that point on the Wintel architecture dominated the personal computer

world, marginalizing all other players, most notably Apple computer.

Microsoft was fantastically successful on this timeline and became, perhaps, the

most profitable business in history because they had the best of all possible worlds: they

benefited from, on the one hand, an open hardware platform which created great

economies of scale and choice in hardware. With a binary-compatible architecture and

standardized hardware platform, thanks to reference designs created by the tight

Intel/Microsoft relationship, the two achieved their own version of ubiquitous computing.

Although Intel profited greatly, Microsoft was the truly historical winner because, as

hardware became commoditized, they kept a fiercely proprietary hold on the software:

the Windows operating system. This monopolistic stranglehold on the operating system

acted as a gateway to allow them to become easily the number one seller of applications,

most notably the set which became the Microsoft Office suite. The company was, is, and

for the near future will remain the number one success story in Software Product

Management, marketing, and sales.

113

Some attribute this to Bill Gates' brilliance and vision, others to his avarice and a

lucky spot in hardware / software history. Perhaps, to some degree, both are true.

Regardless, the Wintel architecture was ascendant by the mid-1990's, and slowly moved

up-market as hardware advanced and the Windows NT operating system came into play.

As 2000 approached, Intel Pentium processors arrived on the scene, cranking up toward

the Pentium IV and encroaching upon the performance capabilities of industrial strength

UNIX servers. At the same time, an ex-Digital Equipment engineer named Dave Cutler

created an industrial strength version of the Windows operating system, the

aforementioned Windows NT, with a Unix-like kernel.

The Non-Euclidean Software Market: Do Parallel Lines Ever

Meet?

The parallel timelines were beginning to converge as the millennium approached,

or perhaps "collide" would be a more appropriate term. The up-market migration of PCs

with better operating systems and faster hardware began to threaten the idea of the

"industrial strength" workstation and server, since PCs equipped with Windows NT 3.5

began to be good enough to act as servers.

We left the Mainframe - UNIX timeline in 1984-85. Another trend crossing over

to threaten the workstation and server market on that timeline was the creation of Linux

by a Finnish university student, Linus Torvalds. The most important thing Linux

provided was the ability to run UNIX on the increasingly powerful Intel-architecture PCs.

This further threatened the dominance of old school "industrial strength" workstations

and servers such as those provided by Sun Microsystems. The UNIX world is thus being

badly threatened by the PC world's economies of scale. Our timeline ends in 2000, but

as of this writing in 2006, Sun Microsystems has never recovered at least in terms of

stock price, and some believe they are languishing as a marginalized player due largely to

the ascendance of Linux and server-powerful PCs.

So far, the threats discussed are all against the Mainframe / UNIX / high end

server and workstation market, but the collision goes both ways. Intel architecture

computers running Linux are notably not running Microsoft Windows. The Wintel

114

architecture started ubiquitous computing, but it was the UNIX line and TCP/IP that

spawned ubiquitous networked computing, and Wintel was late to that game.

Ubiquitous Networked Computing

TCP/IP came from the UNIX timeline in 1973, but a disruptive event warping

both timelines and certainly a major force setting them on a collision course was the

advent of the World Wide Web, which became a major force in 1993 with the release of

the NCSA Mosaic Web browser. The World Wide Web and associated browsers

undoubtedly brought the Internet to the masses and made networked computing truly

ubiquitous.

With PCs encroaching on the server market, Sun Microsystems made its great

play, a play that was wildly successful as a technology, but not as great a play in terms of

business. The play was centered on the Java programming language. Java began as an

effort to create a hardware platform for interactive television, with Thompson-Sun and

BroadVision (an effort with which the author was involved) but the trend toward

interactive TV turned out to be a false trend as far as the mid-1990's were concerned.

What Sun Microsystems did do was some amazing jujitsu with Java: they flipped

it from an interactive TV idea to a proposed foundation for a platform designed to

counter the Wintel world. Java was essentially given away which helped its deep

adoption in industry, with Sun emulating to some degree the Berkeley Software

Distribution philosophy of the early UNIX days. Java was originally targeted toward

interactive applications and Web browsers, with a "write once, run everywhere" motto.

However, it ended up becoming most important for back end server systems and a top

server technology through its J2EE platform.

Unintended Consequences and Open Source

Java and its evolution into J2EE created a standardized network computing

platform which, at first, made enterprise software companies a lot of money. However,

the Open Source community, whose philosophy was set in the UNIX timeline at the

origin of GNU and its General Public License, was able to embrace this free and open

115

platform. The culture set up by GNU migrated into the Java world, and a new threat-at

least from a business standpoint-emerged: the commoditization of enterprise software

and software utilities. JBoss, a free J2EE server implementation, began encroaching on

IBM's profitable Websphere and BEA System's profitable WebLogic.

Sun Microsystems wanted to defend against Wintel; it certainly did not intend to

set off a wave of commoditization. However, this is exactly what happened: they

essentially subsidized the open source community by giving away their software

technology. One could argue that they made a grievous mistake of the kind Bill Gates

would never make: treating the software as "free" to sell a hardware platform instead of

the other way around. Of course, what brilliant strategy it would have taken to get Java

adopted as a more proprietary platform is difficult to say, especially in a market where

Wintel was already ascendant.

Timeline Collision and Fallout

Moore's Law, that transistor density will double essentially every 24 months,

guaranteed that the cost of computing hardware platforms would decrease drastically.

What no one predicted is that the software has also dropped shockingly in value, both in

terms of operating system (Linux is free) and newly commoditized enterprise software.

The central element of the collision: Java and the UNIX / Open Source world inspired

the inexpensive software, but the software runs on inexpensive PCs.

Meanwhile, the hardware was created by the Wintel architecture, but the

ascension of Linux may encroach on Microsoft Windows' dominance of that software.

Because of the aggressive Open Source community, able to use Linux and the open

networked computing platform of Java/J2EE, development tools and platforms are

becoming free or very inexpensive. Once-profitable middleware, including application

servers and Web servers, is losing its value as Open Source projects offer fairly robust

and free alternative versions.

116

The Resultant Software Product Black Hole: Commoditization

Unfortunately, in the short term at least, the collision of the two timelines has

created what is hard not to see as an "everybody loses" scenario-at least, everyone with

a profit motive loses. Cheap or free platforms, cheap or free software tools, and even

cheap or free enterprise software creates a drastic downward pressure on the price of

what were once highly profitable software product segments.

It can be aggravating for a business person to see: Why are all these people

giving away their labor? Why are they ruining the profit motive, do they not have to feed

their families, do they not want to save for their future, buy a better car? Yet this is the

reality and a difficult one for software product managers to deal with.

The truth is that some Open Source advocates truly are odd ducks with ascetic

tendencies, such as Richard Stallman, of whom MIT Professor Michael Cusumano once

said, "was content to live in essentially a closet." A more general truth is that the

economic value of these software product profit-destroyers' efforts does not simply

vanish, but is converted into reputation, community esteem, and eventually back into

dollars as many of the elite developers accept high paying contracts and corporate jobs

with companies smart enough to appropriate their talent. Profits in an open source world

revolve more around network effects of massive and free distribution, followed by the

selling of supporting services and perhaps proprietary "add-on" software.

A much deeper examination of the effects of Open Source on the software market,

considered a source of new service opportunities by some and catastrophic for the

software market by others, is a worthy topic but beyond the scope of this work.

Understanding the key fact that Open Source is here to stay, and puts downward pressure

on especially enterprise software prices, are the key concepts for the Product Manager to

understand and accept. Industry titan IBM, powerful bellwether for the direction of the

market due to sheer size if nothing else, has embraced Open Source and the viability of

the Linux movement.

117

Appendix B: Industry Practitioner Interviews

Scott Case, Atlas Solutions

DATE: 02/03/2006
SUBJECT: Scott Case, Product Manager
COMPANY: Atlas Solutions, a subsidiary of the aQuantive Group

* How do you describe the role of Product manager in your present position?

Chameleon Technologies - wireless, Seattle "Product Marketing Strategy" Jeff-

6 months, been working as a generalist on competitive positioning, market analysis, not

product specific.

I own what happens to software in one of our four major product areas. It's called

the Atlas Media Console. This is a tool that allows traffickers and planners at advertising

agencies to set up, deliver, and track performance of online advertising. "Adjacent

space" WebTrends, more of a reporting / analysis tool-how do they navigate the site.

"Uneasy neighbors." Potentially complementary players.

Atlas is the technology provider, behind the media console, Atlas has 6 data

centers around the world that do the image store / ad delivery. Does data processing to

prepare results for campaign. They pay for ad serving on a volume basis.

The Product manager decides what features to add to the product. He or she will

work with one or two Program managers to prioritize the features, and will write a

Business Requirements Document to give an idea what should generally be in the release.

The Program managers work with developers and Project managers to kick back schedule

estimates. As needed, of course, there is a feedback loop to clarify and change course

during a project.

o How does the actual position differ from your imagined perceptions before you

started?

More or less what he expected. Bit more on the business development. Here are

customer needs, and I see that development can do maybe 10 of 300 desired features. I

go out and meet with the top 25 clients; I have met with 15-20 of the top 25 clients,

118

phone calls with others. So direct discussion. Feedback from a high level to a low level.

Account Directors are responsible for managing the strategic relationship with large

clients. Atlas has 2 specific documents, 1 is a strategic development priorities document.

10 large projects on that list. 9 - 12 months per project. "If we do them [set of

interrelated, strong features as opposed to fragmentary, incremental improvements] we

can come out with a big press release." Second document with a bunch of feature

enhancement level requests, 1 - 30 day mini-projects usually single developer. Plan to

the 1st list, such as redesign work flow. Smaller list, does the large project require feature

enhancements on the smaller list? Hard to productize / advertise small "feature creep"

enhancements. Completing a coherent set of feature upgrades composes a major project

that can be advertised.

* Do you think PM is really one role or multiple roles which have not been

thoroughly differentiated in the software industry?

Position not cohesive. Wear many hats. Once you've proved you can handle the basis,

and then you can do lots of things. BASICS: Translate customer needs, 300 to 10, which

ones to do and why? Pick next ones, detailed business requirements. Work with

Program M's to drill down to the details. Then work with the outbound marketers, how

to price, market and sells.

When told about one MSFT PM's definition of the role (Bill Shelton): Scott feels that

each PM at Microsoft has a subset of activities, the title is just broad there. You're very

focused at MSFT, with one small sliver of the world. MSFT is transitioning to more of

the traditional corporate PM versus software product management. Virtually

monopolistic control enables them to "slow the clock speed" [of the market].

* How do you think PM in software differs from PM in traditional companies, for

example, product management of Gillette Foamy or Crest Toothpaste?

119

No experience with non-software project management. "Clock speed is faster", industry

moves very quickly. "Web Side Story" acquired Visual Sciences, changed the road map

for what's going on in the industry. Google is a huge competitor, started giving away a

site analytics tool called Urchin. Productizing a feature set so that you can market

changes as an actual coherent product upgrade is another challenge. In software, cannot

be a perfectionist with incredibly tight 3 month project cycles. Product management is

"inbound" whereas Product Marketing is "outbound". Product Marketing manager or

Marketing Communications - outbound.

* What do you think is the most important PM challenge in the particular case of

software products?

People want 300 features and you can only do 10. There are difficult tradeoffs in

implementing new features. "Who are you going to piss off who are you going to

serve?" Tradeoffs involve "keeping the lights on" versus innovation. We serve 110,000

ads per second. 6 billion ads a day. SLA (software license agreement) says you must

respond within 2 milliseconds. 99.9999% uptime. Never goes down. Must dedicate

enough resources to keep the lights on 24 x 7. Some of the innovations they do alter the

way the infrastructure does what it is doing. So new features have a deeply cascading

effect into the system which is tricky considering you have to keep the thing up 24x7.

Finishing up a project next months which had 5 separate development teams, some front-

end, some more focused on database engineering, some focused on impact to ad-serving

infrastructure, some focus on post-service data processing procedures. Last focused on

changes to reporting tools. All 1 project. Roll out one data center at a time. Try not to

impact the ad serving. Development leads use SCRUM methodology, and work together.

SCRUM meetings are internal, but then lnce a day 15 minute meeting of leads. Most of

the 5 teams are in Seattle. Bullpen area in XP pairs. There is 1 outsourced development

team in India, but the software modules must be very well defined. Shipping software

CD's. But the outsourcing hasn't worked out well. We seem to have difficulties making

outsourcing work. It is very hard to carve off modular tasks.

120

* Do you feel Atlas is a software product company? Or is it a hybrid of products &

services? If so, what percentage do you feel is products and what percent are

services?

Atlas is probably an even hybrid play. A ton of client services / trafficking work. 50 / 50

is Atlas Solution. A client must buy a big service component when they buy product. In

the U.K. it's probably 60 / 40 services / software. Within aQuantive, it's probably 80 /

20. Drive Performance Media's case, sell online advertising space. AvenueA does the

whole ad agency thing. "Drive PM" is an ad network.

121

Philip DesAutels, Microsoft

DATE: 04/28/2006
SUBJECT: Philip DesAutels, Academic Liaison

Formerly Product Manager, Web Services
COMPANY: Microsoft

* How do you describe the role of Product manager in your present position?

Former position: Web Services, a product that shipped internally. Managed a

series of technologies, making sure they were in sync with industry and customer's

demands. Made sure the developers were developing what the customers were asking

for. Web Services was an interoperability platform. Really a very technical marketing

role.

* How did you interact with the developers? Program managers?

There is one General manager & several Program managers. There's a ship date,

more-or-less set in stone. Series of multiple product life cycles. I was driving "indigo", a

code word for Web Services technologies, standards called WS-*. Post-SOAP

technologies, involving authentication, workflow, and security. Bill Shelton's is a superb

definition of Product management. Depending on the product, might be talking to the

press. I was talking to the press and being quoted in 6-7 articles a week.

A reporter talks to PR firm, PR firm sends them to Product manager, the PM

brings in a developer. Set up a set of messages you want to go out. Work with developer

to make sure they're shooting for the image you want to go out. For instance, Web

Services are an interoperability play. As a role it's a very hard role. Real developers

tend to write you off as irrelevant if you're a pure Marketing / Finance person. Having

some empathy, understanding, and credentials in software is helpful.

Once you have credibility with developers, try to show something off, demo

something that might be a year away, then maybe someone stays up all night to make it

happen. Helps make things happen.

9 How does the actual position differ from your imagined perceptions before you

started?

122

You tell somebody you're hiring to be a PM. It's like the elephant and the blind

man. Everyone tells you it's something different. 3 or 4 different PM's had their role

very focused on their particular product. The role sucks you in, a bunch of type A people

all trying to be more type A than the next one. I'm hardcore type A, about 25% of the

people were just totally insane type A. I am a good connections person, connections

between people, facilitating connections. Connecting up various groups was important

for Web Services. Fluid job. My wife is of German descent, she's a Project manager:

Product management is much more fluid and adaptable as opposed to Project

management, which requires total organization of detail above all else.

e Do you think PM is really one role or multiple roles which have not been

thoroughly differentiated in the software industry?

At some point, no matter what the process is, there's a little box where it says, "a

bit of magic happens here". At the end of a car assembly line, there's a group of people

called the "fixers" who do a lot of ad hock fixes. They might have hammers, 2x4's,

pillows. A big part of Product management is the "fixer" job, where the magic happens.

PM could be further divided, but you might lose the magic that keeps it going.

You might cut the magic in the box in making 2 smaller boxes.

* How do you think PM in software differs from PM in traditional companies, for

example, product management of Gillette Foamy or Crest Toothpaste?

At P&G I would guess they have an operations research, or industrial engineering

programs. In manufacturing, you have engineering. Development in software is art.

"I've built transmissions for 20 years; it will take me 4 months to design a new one."

Design is more incremental in traditional electro-mechanical manufacturing.

I was once sitting next to a polymer guy at a multi-cultural engineering event. He

says, I kick six products out a year. He knows it takes 2 months from chemical to

product. Biotech will much more like software in terms of being non-deterministic.

e What do you think is the most important PM challenge in the particular case of

software products?

123

Alignment. Alignment of people, of stakeholders, business stakeholders, strategic

stakeholders. Different parts of the companies depending on you or pushing you.

Aligning those people together, getting those people to come together. Even if a group is

outside of the company, you have to get them to align with your interests. It's difficult to

distribute the job and has to come onto one person.

Before Microsoft, I was CTO at Erio, content based image retrieval. Used

Extreme Programming to manage multiple different requirements. I would write a

scenario, developers would give what features could be done this month.

9 Do you feel Microsoft is a software product company? Or is it a hybrid of

products & services? If so, what percentage do you feel is products and what

percent are services?

Hybrid of products and services. 10% hosted services, 10% products that cross

the boundary completely-Microsoft Word, shift F7 is Thesaurus. Allows you to go to a

series of reference books not on the machine. Groove.net is a peer-to-peer collaboration

tool. Use it to work on multiple documents with versioning, for instance. 80% products

like OS and shrink-wrap. Microsoft consulting (MCS) is a single digit percentage.

Technical support is close to 10%, but that's not really professional services in the IT

sense. "Services aren't innovation. They're a way to make money."

9 I have explained the strangler tree problem of system complexity, and of having no

underlying conceptual model in some software, including some Microsoft software.

How does Microsoft address this?

5 years ago I would have completely agreed (that Microsoft had problems with

complexity and underlying conceptual models). I used to work at the W3C. The early

Web was a beautiful thing around the time of HTML 4.0. It had sufficiency but not

complexity. No cascading style sheets yet. We really had a base model. The next tier

got really complicated. The second generation you had CSS, a bunch of XML, dynamic

HTML, all of the scripting languages living on Web pages, a very different place from

1st generation.

124

We're heading toward 3rd generation now. One generation is embodied in things

like Flicker and Delicious. These are sort of back to basic building blocks. Facebook is

another one. "I'm not going to be the everything site." Specialized. Delicious: I'm

nothing more than a bookmark site. You can tie some Flicker and some Delicious

together with RSS. You can build a third product or a portal from those components.

Similar to the way people used Web sites five years ago.

Another fork it's yet again even more complex. Interactive Television. Super

complicated Web sites, being able to drag-and-drop stuff. Deliver a full desktop

application in the browser. Even richer UI through the Web.

I am being driven toward that complexity, but the complexity comes at a big cost.

Working on Web Services made me lucky. One of the fundamental problems Web

Services addresses is the very problem we're talking about. Flicker and Delicious create

components of a loosely coupled system. So Web Services are a way to address the

complexity of the Web. It can be impossible to measure the complexity cost. Loosely

coupled systems with well described interfaces are the key. Flicker & Delicious are

greatly componentized systems, and are heavily used.

If you look at mail, MSN mail, gmail, etc. This is a fundamental component that

has been effectively standardized. Services components in general are a very good way

to reduce complexity, Web services or otherwise.

125

Shuman Ghosemajumder, Google

DATE: 05/11/2006
SUBJECT: Shuman Ghosemajumder (Sloan MBA)

Business Product Manager, Trust & Safety
(Formerly worked on AdSense)

COMPANY: Google

9 How do you describe the role of (Business) Product manager in your present

position?

Any Product manager is the focal point of the product line. In a matrix

organization, you don't have people directly reporting to you. You are the CEO of the

product without the direct-line authority. You lead a cross-functional team.

* How does the lack of direct line authority affect your job?

Theoretically the lack of authority is a difficulty, but practically it works pretty

well. Of course it is a drawback that you don't have direct-line authority. On the other

hand, you are the leader of that team, and depending on how much respect and practical

authority you have, this makes a large difference. When you have a diverse cross

functional team, you can leverage the strengths of the various organizations to achieve

your goals. At Google, there is a general sense of cooperation and leadership; people

tend to acquiesce to your requests (as the Product manager) because you have established

credibility and trust.

* How does being a non-technical, or at least a non-coder, affect your job?

As a non-coder, you need to work very hard and show the value that you add to

the team, and make the team better in tangible ways. One way you can do this is to

provide the team with greater visibility and access to upper management and the rest of

the corporation. Make the product successful with customers. Groups can kind of "go

rogue" and get accidentally isolated, although this can also happen deliberately in

experimental groups that need to have time to develop something in semi-isolation. At a

company as large as IBM, you can end up with such isolation that you have fairly serious

126

duplication of efforts. Google tries to be apolitical and focus on the good of the project.

There's always a challenge dealing with something new and entrepreneurial. Each group

working on a similar product, when you merge these groups, it brings forth new ideas.

9 Does Google split up the role of Product manager somehow? How does this split

between Business and Technical Product management work?

Yes, the role is split. Google has Product Managers and Product Marketing

Managers. Business Product Manager is sort of in the middle. Can lean toward one or

the other (business versus technical). Business Product Management-more of a

traditional business background. PM's used to be extremely technically oriented (early in

Google's growth), used to be all former developers, or people with Ph.D.'s in Computer

Science. Business Product managers came from more of a business background, such as

management consulting. Product Marketing Managers are closer to the traditional

Proctor & Gamble role. PM's / BPM's generally focus on inbound marketing, but have

some outbound responsibilities as well.

* How does the actual position differ from your imagined perceptions before you

started?

When I started, I was not sure what PM was. In my career, I have come full

circle. Much earlier in my career, I was a Software Engineer and PM for a smaller

product at Groupware in Canada, a real-time cooperative desktop publishing

environment. Later worked with McKinsey & IBM. In my startup days, I didn't think of

PM as a specific job. As a new PM at Google, I scrambled to do a bunch of research to

find out what PM really was/is. What I found out is that it isn't a well understood area,
and means different things in different organizations. Now I understand it most clearly as

being the leader of a specific product team at Google. So leadership is the key to the role.

* Do you think PM is really one role or multiple roles which have not been

thoroughly differentiated in the software industry?

Google has differentiated the roles to some degree. Business Product Managers,

Product Marketing Managers, and simply Product Managers are all separate titles. These

127

career tracks are on parallel paths, although there is a tremendous amount of overlap.

Product Marketing Managers are probably the most well-defined in terms being focused

on outbound marketing. Associate versions of each exist, for new college grads.

9 How do you think PM in software differs from PM in traditional companies, for

example, product management of Gillette Foamy or Crest Toothpaste?

First, what's the distinction between that kind of consumer packaged goods

management and high-tech? In software, it is a lot more important to focus on customer

feature requests. In high tech products, there aren't a lot of features as in toothpaste. For

instance, customers might like baking soda or other whitening agents, but then it's really

about market segmentation. In the software industry, it is much more important to

maintain feature parity with competitors. However, Google's strategy actually

deemphasizes feature parity relative to other software product companies. We think in

terms of "what can we do that is new and different?"

The difference between general PM vs. PM at Google has to do with creating

brand new technologies. At Google, there's a lot of working with engineering and

figuring out what is the brand new great technology they've managed to invent, and

figuring out how to productize it. For instance, someone has invented a way to

efficiently store 2 Gigabytes per user online, how do we turn that into a product? Google

is a very technology driven, engineering-out kind of company.

e What do you think is the most important PM challenge in the particular case of

software products?

Usability. There is so much complexity associated with computer applications.

Software is like traditional engineering but zero marginal distribution costs. In software

you can create a "million mile long bridge." (Possible, but impractical and useless.)

Creating something that is actually usable becomes very tricky. IPod, for instance, has

80% market share with a small, elegant feature set as opposed to the everything-but-the-

kitchen-sink approach. It's about organization, not just limiting a feature set. There will

be a market for very advanced tools, but make the day to day tasks as fast as possible and

allow novices to pick it up right away.

128

As a PM, I try to bring the perspective of the common user back to the teams. I

draw comparisons to analogous products, conduct usability testing-bring the product in

front of actual users. Constantly repeating that usability is the most important thing to

do, and why. Making that a core value. Let's create features, technology, and then worry

about usability? That doesn't work. The biggest trap technical teams fall into is creating

products that are internally consistent and make sense to technical people, more and more

specific, worst case, that make sense only to people who work at a specific company. Or

products that make sense to technical people but not to non-technical people. This affects

everything. Sometimes very technical terms become part of the general language. We

make people understand words like MP3 or "RSS feed". With the term "RSS feed", you

have to explain for 5 minutes, if you're talking to someone who works for the legal

profession, what this means. Why can't we just say, "Subscribe to a Web site?"

What language you use is important, how you organize things. How many

buttons do you have on a mouse? How do people interact with an application? How

about consistency, such as menus?

e Do you feel Google is a software product company? Or is it a hybrid of products

& services? If so, what percentage do you feel is products and what percent are

services?

Google is pretty much 100% software product company. But about 90% of the

product is delivered as Web-based services. We don't do any significant consulting or

selling of programming services.

1. I have explained the strangler tree problem of system complexity, and of

having no underlying conceptual model in some software. How does Google address

this?

The way Google prevents having a negative consequence like this is by putting

the responsibility for having a clean, scalable model be a responsibility of the Technical

Lead. A senior engineer would work with the Product manager to maintain this clean,
scalable model; this underlying conceptual model. A Tech Lead would always be more

technically qualified than the other engineers on the team.

129

Google does not generally have Program managers (this title does exist but is not

part of the regular organization the way it is at companies like Microsoft). Product

managers fulfill the role Program managers fill at Microsoft. This makes the role of PM

more of an overloaded role. Rather than segmenting out the specific functions, hire more

Product managers for a specific product and give autonomy to specific features and

subsections of the product. Keep the role as nexus of cross functionality but have an

increased number of "nexi".

In terms of work life balance, some people work all the time, I am on email

basically all the time, sometimes responding to emails at 2 a.m. I spend time at home

working from there, spending time with the family. People don't work too much on

weekends. Travel is proportional to your interest in doing it. There is a lot of flexibility

to find a mode of work that works well for you. There isn't a "policeman on the corner"

mentality, as long as you're achieving your goals on a quarterly basis. It is about

achieving goals, not face time for the sake of face time.

2. How did the huge public IPO and all the recent publicity affect your job, or

the culture at Google?

Not a lot of change after IPO. Google behaved like a public company before IPO,

driven by quarterly results. Were always driven by a need to deliver value to users.

Never thought of it in terms of competing with feature sets. No pressure to create

strategies around competitors. Whenever Google does something, they do something to

deliver great value to users and hopefully it is different from competitors. It is very

important at Google not to simply one-up competitors. The opposite of the fast-follower

philosophy. Still, it is important to be responsive to the needs of customers.

3. Any final comments you'd like to share about Product management?

I've learned PM is all about your individual character. One thing I heard about

PM was to always remember as a PM that you are the one person on the team that is

130

completely disposable. If you always remember that, keep your eye on the ball of adding

maximum value to team, then you will be successful.

131

Appendix C: Interview with Professor Daniel Jackson

DATE: 04/06/2006
SUBJECT: Daniel Jackson

Professor, Department of Electrical Engineering and Computer
Science

SCHOOL: The Massachusetts Institute of Technology

Biographical Note

Daniel Jackson leads the Software Design Group in the Computer Science and

Artificial Intelligence Laboratory at M.I.T. He received an MA from Oxford

University (1984) in Physics, and his SM (1988) and PhD (1992) from M.I.T. in

Computer Science.

Note on Interview Transcript Censorship

Professor Jackson spoke freely, informally, and allowed this researcher to use a

recording device. Certain quotes involving commercial concerns and military

agencies have been censored or "anonymized." Significant affected quotes are

noted. Words and phrases replacing anonymized content appear [italicized in

brackets]. Words and phrases not actually spoken but added for clarity appear in

[brackets] but are not italicized.

TRANSCRIPT FOLLOWS:

[Informal introductory chatting]

PROFESSOR JACKSON: [Alloy modeling language] allows you to analyze

models in isolation. You never have to actually analyze the code. It helps you to

debug your thinking about the system.

JOHN HEMPE: Right, I understand.

132

PROFESSOR JACKSON: The second respect in which it is not verification is

that all existing verification systems would make you actually prove theorems.

And the sort of fundamental premise of Alloy was that what the modeler needed

was a sort of push-button automation that you'd build your model and say OK, is

that right?

JOHN HEMPE: I took the [Nancy] Leveson course on Software Engineering,

and the essence I got from her class was that formal verification doesn't work.

And there's still some argument about lightweight formal methods, but I've never

seen it in industry, at least not in the enterprise software industry. Maybe in

some fly-by-wire jet fighter software or something, but it just seems like the

methods themselves are too complex for average professionals.

PROFESSOR JACKSON: You have to remember that the software industry, by

and large, is extraordinarily conservative. Which is very surprising for a bunch of

people who consider themselves radicals.

JOHN HEMPE: Define conservative in this context.

PROFESSOR JACKSON: They don't want to change the way they do things.

They want to rely on, sort of, lift your finger and feel the wind. They don't want to

consider the possibility that computers could help you design software. You look,

for example, at the astonishing vehemence with which Extreme Programming

has attacked the idea of design.

JOHN HEMPE: Yes.

PROFESSOR JACKSON: It is not the method. It's the idea that you could

design a system. It's deeply unfashionable to suggest the idea that a system

could be designed.

JOHN HEMPE: True. These methods like Agile, Scrum, XP, these tight iterative

methods--

133

PROFESSOR JACKSON: What they're confusing is the principle of risk

management in which you don't want to make decisions for which you don't have

information, versus the idea that even when you're capable of making predictions

and good decisions you should just blunder ahead anyway and pay whatever

price it costs to fix it.

What they essentially do is all the design in the code, which is an extraordinarily

expensive way to do things. In the face of all their criticisms of formal methods,

it's amazing how much work these people are prepared to do

The other thing that is, perhaps not conservative but part of the same

stubbornness, is this idea that, well, why think about requirements, because they

change? Right? Now, I don't believe this. And the reason I don't believe this is

the following.. .[although] requirements shifts are a huge source of complexity in

system development, the XP people are working, by and large, for very

conservative companies..

JOHN HEMPE: Ah, I did not know that.

PROFESSOR JACKSON: My guess is that the reason the requirements

changed is because they never bothered to really understand. I'm being very

polemical now. But I think what often happens is, from the software engineer's

perspective the requirements have changed. But the [business laymen] on the

other side says, "How did you ever not understand that? What did you think we

were doing?" And they're amazed at the idea. [They're thinking], "We didn't

change our requirements, we always wanted to do it like this." So, there's just a

reluctance to spend time with the customer and truly understand what their

problem is.

JOHN HEMPE: Right, right. And that's definitely part of what I'm exploring. A

typical quote from an average coder I know is, "I've never met a competent

marketing person." It just seems like somewhere the pipeline of actual

requirements to engineers who write code gets broken down, and then the

134

engineers get blamed for everything, or [perhaps I should say], the programmers

get blamed for everything.

PROFESSOR JACKSON: Right, exactly. That's exactly what happens. And

one of the reasons is that the initial attempt to characterize the problem is not

sufficiently appreciated as a technical problem. It's thought to be something that

needs less technical expertise. But it needs more technical expertise. It's the

essence of the whole enterprise: figuring out what you're trying to do. So, that, I

think, is a large part of the problem.

If you look at something like alloy, or formal methods, in its purest form, the

actual proposal is a very simple one: at the beginning, you should figure out

what problem you're trying to solve, and you should have some fairly precise

characterization of that problem. Now, you can characterize that on a very wide

spectrum. At the most economical end, in a form which I think is economical for

almost every software development [effort], you simply document the state of the

system. You simply say, in formal terms, this is exactly the set of states I expect

the system to be in.

Now, people are shocked at this idea, and if you said to them, well, here's a

formal language for doing this, they'll throw up their hands and say, "I cannot

possibly do this. This is absurd. I'm not going to use Alloy, or VDM, or Zed, or

whatever, to specify the states of my system."

But, on the other hand, if you show them SQL and asked them if they'd write a

database schema, they'd say, "Oh, I'll write a database schema, that's no

problem at all."

JOHN HEMPE: Which is essentially a formal method of specifying-

PROFESSOR JACKSON: The identical thing. It is a formal description of the

defined states of the system. And in fact, many people write integrity constraints

over their database, which are invariants!

135

JOHN HEMPE: I'm trying to think of this from a purely professional, pedestrian

point of view. [The writing of database schemas] is known as a highly

leverageable skill. That particular tight skill of doing SQL schemas and

verification, you can get hired at hundreds of companies, from Oracle on down.

PROFESSOR JACKSON: Perhaps what this means is the people who build

database systems, they know they need the schema because their application

generator, their transaction processor, or whatever, is going to have to take that

schema as input. No schema, no system! It's as simple as that, right?

JOHN HEMPE: True.

PROFESSOR JACKSON: The people who are building applications that don't

require SQL schemas perhaps don't realize that they need a schema too. And

the people building the database know that, if they don't have a schema, it's not

just that they can't construct a database. They also won't have a basis to think

about transactions they're going to run, or how the system's going to evolve over

time. They don't have a way of saying, well, our business model is truly reflective

of the software we're constructing. So, for them, the schema is like the first

concrete representation that there's actually some understanding of what's going

on in the problem domain.

My contention is that it's really not so radical to say, whatever kind of system

you're building, even if it doesn't have a database in it, you really need a schema

of some sort.

JOHN HEMPE: Or you'll create one implicitly as you code.

PROFESSOR JACKSON: And the kind you'll create will be one full of strangler

trees. That's the problem, right? And, so, what happens in my mind when you

create such a schema is, it's extremely difficult and painful, because you're doing

real work, right? And what you should be forced to do is.. .one of the things a

formal language makes you do, whether the language is Alloy, or SQL, or even

UML is, it doesn't give you any corner to hide. (Actually, UML gives you some.)

136

But, a real formal language gives you no corner to hide. You've got to write it

down, right?

JOHN HEMPE: Right.

PROFESSOR JACKSON: What that means is, you can't punt, you can't say, "I'll

figure it out later." You've got to actually commit to something. The reason that's

good is, when you actually write down what you think the situation is, it is a

horrible mess. Then you take a step back and say, "Now this is a real mess. It

can't be like this." In the worst case, you have to go back to the problem domain

and say, you know, our organization is so complicated that we've got to simplify

things before we try to support it with automation, right?

But in the more common case, you say, "There must be a simpler way of viewing

this." And you come up with some kind of abstraction or some way of thinking

about it that generalizes appropriately or simplifies. Or you say, "You know what,
I thought of the system structures being like this because I had in mind all these

complicated functions, but you know what? We don't need to support those

functions in our first release. We should have a simpler model, and with this

dramatic simplification we can support 90% of the functions we want to support

at 10% of the cost in the schema. So I think that's a tremendously valuable

activity...

One other thing. There's a very positive part of Extreme Programming. It's this

sort of nose-to-the-grindstone aspect. It's that, if you're not going to write

schema but if you write code, you're writing Java classes, you're writing a

schema in Java. What they're really saying, in a way, and I say this in the

introduction to my book, it's very similar to the Alloy approach. From Day One,
start dealing with the details.

My gripe with Extreme Programming is that the only way they know of to deal

with the details is by writing code, but there are much simpler languages than

code.

137

JOHN HEMPE: I see.

PROFESSOR JACKSON: Alloy, to a novice, might seem complicated, but

semantically it is enormously simpler than any programming language. I mean,

basically, all you've got is sets and relations, that's it. It's like a database schema

but... actually, it's basically the same as a relational database schema.

JOHN HEMPE: I still feel like you'd need an "Alloy for Dummies," <chuckles>.

"Here's the set theory you need, here's what SAT [the Boolean Satisfiability

Problem] is...."

PROFESSOR JACKSON: You shouldn't need to know SAT. SAT is just a

background thing, part of the engine.

JOHN HEMPE: I think part of it is getting something well known and

[professionally] leverageable enough. Back in 2001, I knew that, if I became a

Sun Certified Java Programmer, then N number of companies would hire me,

and any sort of formal language or true design discipline beyond knowing just

basic UML nomenclature, it wouldn't get you hired as a professional.

It's a matter of showing the power, and showing that an average professional can

think on that level. And I sometimes wonder if we sometimes just run into

cognitive limits where, it's really hard to think in these advanced ways.

PROFESSOR JACKSON: But it's just abstraction, right?

JOHN HEMPE: Absolutely. Abstraction is the most noble, but also the most

difficult form of thinking.

PROFESSOR JACKSON: I agree, I think you're right, but why should you think

the average professional would need to do that? Why isn't it just like the schema

designer?

JOHN HEMPE: The Architect.

138

PROFESSOR JACKSON: Yes, the architect. It's going to be a smaller group of

people who do that kind of work.

JOHN HEMPE: Right, right.

PROFESSOR JACKSON: And the rest of the people will do much more

concrete work, dealing with the details of the code.

JOHN HEMPE: So the important thing is to have a few key experts who are able

to specify the system in this formal language.

PROFESSOR JACKSON: I think that is essential.

JOHN HEMPE: I agree, in principle.

[Significant quote censored at Jackson's request]

PROFESSOR JACKSON: I think that what you find is that, in the really

successful systems, in the most successful systems, at some point, someone

has to come in and really understand what's going on. There's this sort of very

modern belief that you can have fully decentralized, organic systems in which no

individual person really understands what's going on and the whole thing can

work. I don't know how far that can honestly go. I think, in the end, that the

edifice crumbles. Or you just get fed up with all the rough edges between the

parts.

JOHN HEMPE: So you did it, to some degree, though, in trying to rewrite the

80,000 line CM of the Air Traffic Controller engine. OK, well we'll just understand

this part, and rewrite all that, and then everything will be better.

PROFESSOR JACKSON: We did that [as a research project], but it would never

have been any use in context of the system as a whole to do that. The real

lesson was that if we had really understood that system we could have

dramatically simplified it, the whole thing. We did dramatically simplify the piece

we were looking at, but the whole system could probably have been simplified.

139

I think one of the things that you need is a very simple notion of what problem

you're trying to solve. As I get older, I become more and more narrow minded

about the importance of simplicity. You always hear people say, in industry, "You

academics don't understand. It's not that simple."

JOHN HEMPE: Right.

PROFESSOR JACKSON: And I'm becoming more and more unrepentant about

this.

JOHN HEMPE: "You business people don't understand that it can be that

simple if you do the work."

PROFESSOR JACKSON: Yes. I won't say that it can be that simple in that you

can obtain the same level of functionality, maybe you can't! It might take a lot of

work to do it. Yet when you look at the most successful things, often it was really

simplicity.

JOHN HEMPE: Yes. My personal theory of why the Web works has to do with

the fact that we're basically intelligent apes and the Web uses ostensive

definition and pictures, and we're really good at processing visual information

and ostensive definition-point at things.

PROFESSOR JACKSON: It's not just that, it's that having a human in the loop

of every Web transaction means that you can tolerate programs that are

incredibly unreliable. The system can tolerate all kinds of unpredictable things.

[The following is anonymized at Jackson's request]

I've head that [one company's] attitude is that basically, the Web site can do

anything wrong so long as the actual transaction of buying the merchandise is

OK. So you ... get the wrong [nonessential things], how much does it matter? So

long as most of the time you're getting it right. And when people say, "I want

that," it works. As long as they get that right and bill the right amount on their

140

credit card, which is probably only a tiny bit of the system. And they've got this

huge edifice of stuff all around it.

The advantage of it is, most of the system doesn't have to work that well. Now,

probably hospital databases are not like that. They can't afford to have a lot of

stuff that isn't working exactly right.

JOHN HEMPE: Right, and similar safety critical systems.

PROFESSOR JACKSON: Right.

JOHN HEMPE: Microsoft, their Program managers are more technical than

most. They invented that role. There were no Program managers before

Microsoft. So they have the formal roles. They have Product Marketing

managers, Product managers, Program managers, and then Developers. Well,

and Project managers. But it really is kind of a pipeline in from the market

inwards, as much as they could possibly do.

PROFESSOR JACKSON: But there doesn't seem to be any role for a

Conceptual Designer there.

JOHN HEMPE: When you say "Conceptual Designer", I think "Architect." Let's

say, "Conceptual Architect."

PROFESSOR JACKSON: The kind of thing I'm thinking of is, you're building a

Word Processor, right? And someone says, "We'd like to have Sections with all

these things." Where's the guy who says, "Wait a minute, this is a paragraph

based Word Processor. We don't have sections."

JOHN HEMPE: But Microsoft has some of the smartest people in the world.

Surely there's someone in there who is smart enough to do that. It must happen

at least at a small scale on some teams.

141

PROFESSOR JACKSON: It does. It certainly does. But I think the question is

also one of, simply, tradeoffs in terms of where you want to pay the price.

[Remainder of quote censored at Jackson's request.]

JOHN HEMPE: And, they're known as a fast-follower.

PROFESSOR JACKSON: Exactly.

[Remainder of quote censored at Jackson's request.].

JOHN HEMPE: Right.

[The following quote is anonymized]

PROFESSOR JACKSON: My conclusion from that book was that one of the

things that allowed them to kill [a competitor] is the fact that they had the guts to

hack down the strangler trees and clear the forest and start again.

JOHN HEMPE: They did do that. Although I thought it was being a little

generous to call it "judo" giving it [the browser] away, I thought that was definitely

a "sumo" crushing technique, the ultimate price war, give it away. In that, I

thought he was a little generous to Microsoft, but you're right, they certainly came

up with what turned out to be a superior architecture, at least in the short term.

Netscape eventually gave their source away, starting the Mozilla project.

PROFESSOR JACKSON: I'm unfortunately going to have to go to a meeting in

a few minutes. We can carry on another time, though. Where have we got to?

JOHN HEMPE: Are there any, thinking in terms of the requirements

engineering, the product management, the conceptual architect ideas, are there

any proceedings from the IEEE conference, or any sources you want to give me?

PROFESSOR JACKSON: Well, it sounds a little self-serving, but I've done

some collaboration with my father. He's written some papers I'd recommend.

Some are rather technical, but some are more overview ones. He had this idea

142

that, when you think about requirements, you want to think about multiple

problems being solved, and to think about those problems independently. I think

that's quite a powerful idea.

I would say that my biggest complaint about the way people do requirements is

that there's a deeper rationality. A requirements document is often a very long

list of very detailed functions. This is not a rational way to say what you require.

If you're going to buy a car.. .you would never say, "Here are my 58

requirements." You would say, "First and foremost, I want something that looks

cool and has a top that comes down. Then, I suppose I should have high fuel

efficiency, and so on."

Our fundamental approach, in life, to make all decisions is that we prioritize. To

me, the biggest failure of requirements engineering is that I almost never see

requirements documents that are prioritized. That say, "There's an awful lot of

stuff in the list we're about to give you, but here's the essence. Here's what

we're really trying to achieve."

Now, people, like with simplicity, have all kinds of reasons why in practice, this

won't work. In practice, there are never few enough for this to be well articulated

and separated. I'm sure the Extreme Programming people would tell us that you

will never [before implementation] be able to assess the different risks and put

values on these things. But, so what? You've got to do that. You do that in life

all the time, when you do risk management and make decisions. You assign

values to things, and you assign risks, using imperfect information. Sometimes

you get it wrong, but that doesn't stop you from doing it.

JOHN HEMPE: And sometimes, in business, it seems like there's this

temptation to jump straight to the nuts and bolts, and just have this huge bucket

of nuts and bolts dumped out in a document.

PROFESSOR JACKSON: Exactly. It's not a smart way to go. I think that it's a

really, really serious problem in software requirements, that people think it's all

143

the technical problems. Now we know that yeah, programming costs you a lot of

money, but that's not the real problem. The real problem is, you know, what

was-when IBM and TRW and those companies failed in this huge FAA

development-what was wrong with it was they had completely unrealistic

requirements. No one had a requirements review. Which they had later with all

kinds of august panels, where, some experts listened to basically what the

government, the FAA, had told IBM and said, "Why did you agree with this? This

is crazy! Three seconds of downtime a year?"

JOHN HEMPE: Right. I read that paper.

PROFESSOR JACKSON: And I think this applies for all kinds of systems,

whether information systems, safety critical systems, business systems, startup

companies, everyone seems to think, "I don't need to do that work." And I don't

buy it.

Startup companies ask themselves, "Well, we need to get something out in time

for the VC's." But, what's the priority? What's really going to impress them?

Now, some people will do that explicitly, but they won't think of that, they'll think

of working around the requirements process. "I don't have time to do a proper

requirements thing here. So, I'd like all these engineering people off my back,

get rid of all these formal methods people. I'm a tactical guy, I'd like to figure out

how to please the VC's."

That's a perfectly rational thing, if that's what you need to do. If you've decided

that the first thing you need is funding, and then it's going to be a prototype you

can throw away, go for it! Then you need to think about your requirements really

carefully. You need to say, "What does it mean to produce something that will

impress the VC's?"

JOHN HEMPE: The problem is that the prototype usually doesn't get thrown

away, and it becomes the seed of the strangler tree following very soon behind it.

144

PROFESSOR JACKSON: That's exactly right! Then you've got to be really

honest about whether you're going to throw it away or not, that's exactly right.

But I think that what's causing a lot of problems in requirements engineering is a

failure to apply these very basic common sense things. It's not clear to me why

people aren't doing it, to be honest.

JOHN HEMPE: Right, right. I think I have some idea. I think there's a strong

temptation to just get down and code, because that's what people know. That's

the leverageable, widespread skill people have. Frankly, it requires a lower level

of thinking. I remember reading about how Samuel Coleridge wrote about

generalizing being the highest form of thought. Well, it is, but it's also more

difficult.

PROFESSOR JACKSON: There's another phenomenon, I think, it's the,

"Nobody got fired for buying IBM."

It's that, if you're going to change this stuff, you're going to have to be the

manager who says, "Now, wait a minute. We're not going to produce any code

or documentation for a week. We're going to sit in front of the whiteboard and

we're going to brainstorm."

JOHN HEMPE: Which scares the hell out of those used to the usual mundane

methods--

PROFESSOR JACKSON: "We're going to lose a week's productivity by drinking

coffee and chatting?" You've got to be a gutsy manager to do that, right? And I

can understand that. From a research perspective, we do that all the time,
because we don't have anyone breathing down our necks. We have much more

flexibility in terms of when we deliver value, and so on. I think that, somehow,

one of the advantages, paradoxically, of formal methods and that kind of stuff, is

that if you do modeling, you can demonstrate [the models] and you can produce

stuff in the early phase, that is indicative of real value.

145

JOHN HEMPE: Something people can get their hands [minds] around and look

at visually.

PROFESSOR JACKSON: This phenomenon--I should really go, and I'm

enjoying this conversation.

[An extended exchange involving DARPA defense contracting was censored at

Jackson's request for security and industrial relations reasons.]

JOHN HEMPE: I don't want to suck up the rest of your afternoon. You talked

about your father's papers....

PROFESSOR JACKSON: I'll need to send you the ones I mentioned because it

will be hard for you to find one.

JOHN HEMPE: Sure, ok. Maybe you could email me.. .some of your most

relevant papers.

PROFESSOR JACKSON: I think, actually, although I'm somewhat skeptical

about the whole Extreme Programming world. I think some of the people who

write on that stuff are pretty smart. I think some of the lessons of The Mythical

Man-Month are still relevant.

JOHN HEMPE: Yes, I've read that.

PROFESSOR JACKSON: Of course, you've obviously read that... I should send

you some stuff by Martin Thomas. There's a guy who started a formal methods

company called Praxis in Britain which has been very successful.

JOHN HEMPE: I've read a paper on that.

PROFESSOR JACKSON: He's a very interesting guy. Let me see... I'll look

those two things up for you.

JOHN HEMPE: O.K.. .Well, thanks a lot for taking some time with me.

146

PROFESSOR JACKSON: Oh, fun to talk to you.

JOHN HEMPE: Thanks! We should talk again.

PROFESSOR JACKSON: Yes, let's talk again.

JOHN HEMPE: Absolutely.

*****TAPE TERMINATES*****

147

