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Abstract

Demand stochasticity is a major challenge for the airlines in their quest to produce
profit maximizing schedules. Even with an optimized schedule, many flights have
empty seats at departure, while others suffer a lack of seats to accommodate pas-
sengers who desire to travel. Recognizing that demand forecast quality for a par-
ticular departure date improves as the date comes close, we tackle this challenge by
developing a dynamic scheduling approach that re-optimizes elements of the flight
schedule during the passenger booking period. The goal is to match capacity to
demand, given the many operational constraints that restrict possible assignments.
We introduce flight re-timing as a dynamic scheduling mechanism and develop a re-
optimization model that combines both flight re-timing and flight re-fleeting. Our
re-optimization approach, re-designing the flight schedule at regular intervals, utilizes
information from both revealed booking data and improved forecasts available at later
re-optimizat ions. Experiments are conducted using data from a major U.S. airline.
We demonstrate that significant potential profitability improvements are achievable
using this approach.

We complement this dynamic re-optimization approach with models and algo-
rithms to de-peak existing hub-and-spoke flight schedules so as to maximize future
dynamic scheduling capabilities. In our robust de-peaking approach, we begin by
solving a basic de-peaking model to provide a basis for comparison of the robust
de-peaked schedule we later generate. We then present our robust de-peaking model
to produce a schedule that maximizes the weighted sum of potentially connecting
itineraries and attains at least the same profitability as the schedule produced by the
basic de-peaking model. We provide several reformulations of the robust de-peaking
model and analyze their properties. To address the tractability issue, we construct a
restricted model through an approximate treatment of the profitability requirement.
The restricted model is solved by a decomposition based solution approach involving
a variable reduction technique and a new form of column generation. We demon-
strate, through experiments using data from a major U.S. airline, that the schedule
generated by our robust de-peaking approach achieves improved profitability.
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Chapter 1

Introduction

1.1 Motivation

It has been a major challenge for airlines to design a flight schedule (timetable and

fleeting) to match fluctuating passenger demand. The flight schedule, that is, the

supply side of the passenger air transportation system, has to be determined well in

advance due to contractual and operational requirements in the industry. Examples

of the schedule planning process can be found in Goodstein (1997), Jarrah (2000),

Barnhart et al. (2002), and Frank et al. (2005). The steps and timelines of the schedule

planning process may differ slightly from one airline to another, yet it typically starts

12 months prior to departure and lasts approximately 9 months. To generate a

schedule that has the most revenue potential, the airline's scheduling department

compiles input data to the planning process that reflects a macro-forecast of the

economy, the airline's strategic objectives, forecasted passenger demands, average

fares, available resources (aircraft, personnel, gates), and so on. Then, the flight

schedule is constructed and published through different distribution channels. Despite

the fact that scheduling decisions are made at a time when demand is highly uncertain,

the schedule is anticipated to be carried out on the date of departure.

In the booking period, that is, the time between the schedule being published and

the departure date, airlines employ sophisticated revenue management techniques to

sell as many seats as possible in the flight schedule, while maximizing revenue. In peak
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demand situations, prices are raised, thereby reserving the scarce seats for high fare

passengers. When demands are low, prices are reduced to stimulate bookings. Hence,

revenue management systems help to shape demand to fit the fixed supply of seats

in the schedule. Nevertheless, no matter how sophisticated these systems are, the

stochastic nature of passenger demand still results in many flight legs having empty

seats upon departure, while others suffer a lack of seats to accommodate passengers

who desire to travel. Figure 1-1 shows the histogram of load factors (LFs) (the ratio

of the number of paid passenger seats on a flight to the seating capacity of the flight)

for all flights operated by a major U.S. airline in a month. The load factors range

widely, with a mean of 0.76. The quantiles of the histogram show that more than 25%

of the flights are highly demanded and are sold close to capacity (LFs are greater than

0.93), while at the same time another 25% of the flights have significant numbers of

empty seats (LFs are less than 0.66, that is, about 1 out of every 3 seats remain unsold

at the time of departure). The imbalanced load factors across flight legs indicate that

the actual demand at the departure date is far from being accurately captured by the

demand forecasts used in developing the schedule. If those empty seats appeared on

flight legs with excess demand, significant revenue gains would be possible.

Because forecast quality improves dramatically as the time of departure approaches

(see Berge and Hopperstad 1993, Feldman 2000, Bish et al. 2004, and Sherali et al.

2005), an interesting question is how an airline can utilize improved demand forecasts

to re-optimize the original schedule and move excess capacity to flight legs with a

shortage of capacity. We focus on developing mechanisms to be used in matching

supply and (fluctuating) demand, by making only small changes to the schedule so

as to minimize the complication in operations. In doing so, capacity will be shifted

from flight legs with expected excess capacity to those with expected capacity short-

falls, and hence, forecast quality will play a central role in making wise capacity shift

decisions. Of particular interest is how the re-optimized schedule performs when vary-

ing degrees of forecast quality are available. After evaluating the effects of schedule

re-optimization, we consider the question of how to design a schedule that allows

maximal flexibility for adjustment during the booking process in response to unex-
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Figure 1-1: Histogram of load factors for all flights operated by a major U.S. airline
in a 4-week period

pected levels of demand. Because this is a largely unexplored question, we begin

by recognizing the need for metrics to gauge schedule flexibility, and then the need

for new models and algorithms to determine schedules that maximize these schedule

flexibility metrics, while simultaneously increasing realized schedule profitability.

1.2 Research Summary

In this thesis we organize the questions mentioned in the previous section into two re-

search topics: one focuses on schedule re-optimization, or dynamic airline scheduling;

and the other aims at developing robust schedules, that is, flexible schedules achiev-

ing maximal profitability when the schedules are allowed to be altered dynamically as

passenger demands materialize during the booking process. We focus on the effects

of dynamic and robust scheduling in airline networks in which one or more hubs are

de-peaked, that is, the set of incoming and outgoing flights are interspersed, unlike

peaked or banked hubs in which flight leg arrivals typically occur first, followed by

period of aircraft inactivity and then flight leg departures occur. The period of inac-
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tivity between arrival and departure banks allows connecting passengers to disembark

from their aircraft, walk to their connecting gates and embark on their departing air-

craft. The recent trend of schedule de-peaking by hub-and-spoke carriers provides us

with an opportunity to develop and utilize dynamic and robust scheduling approaches

that adjust the number of seats in various markets to match passenger demands at

departure and maximize final schedule profitability.

1.2.1 Dynamic Airline Scheduling

The concept of dynamic airline scheduling, in which elements of the schedule are

re-optimized in the booking period to reflect improved knowledge of passenger de-

mands, dates back to the work by Etschmaier and Mathaisel (1984) and Peterson

(1986), where re-fleeting, or aircraft swapping, is proposed as a dynamic scheduling

mechanism. Using improved demand forecasts, the fleeting of flights in the sched-

ule are adjusted later in the booking process to match improved demand forecasts.

Berge and Hopperstad (1993) are the first to provide an in-depth presentation of this

concept, providing implementation and performance evaluation details. Bish et al.

(2004) and Sherali et al. (2005) later provide additional insights regarding dynamic

re-fleeting approaches.

We begin with a review of the recent trend of schedule de-peaking by legacy

hub-and-spoke carriers. Recognizing the high operating costs associated with peaked

schedules, many legacy carriers have adopted de-peaked schedules in an attempt to

cut costs through increased resource productivity. We observe that, in addition to

cutting costs, de-peaked schedules can lead to increased revenues if small flight re-

timings are allowed. These re-timings alter the set of connecting itineraries serving

a market, and therefore, provide a mechanism for increasing the number of seats

sold in markets with unexpectedly high demand, without utilizing more aircraft or

crew resources. We develop a schedule re-optimization model that combines both

flight leg re-fleeting and re-timing. In our dynamic airline scheduling approach, the

re-optimization model is used to re-design the flight schedule at regular intervals,

utilizing information from both revealed bookings and improved forecasts available

20



at the time of re-optimization. The re-optimization model is solved by a branch-

and-bound method, aided with branching on Special Ordered Sets. Experiments are

conducted under two forecast scenarios: one with perfect information and the other

with simple averages calculated from historical demands. Two sets of experiments

are performed. In the first set, a same-everyday schedule is assumed and experiments

are carried out for a week of operations. We determine the resulting profit improve-

ments and report the contributions of flight re-fleeting and re-timing when applied

alone or jointly. We also study the effect of forecast quality to the benefits of dy-

namic scheduling. Because schedule changes, especially flight re-timings, complicate

operations, we conduct sensitivity analyses to determine the degradation in schedule

profitability when the number of changes are limited. We also evaluate the duration

of the passenger connection times for the itineraries newly created through flight leg

re-timings. In the second set of experiments, a same-every week schedule is assumed

and experiments are carried out on the same weekday in seven consecutive weeks

to assess the potential benefit of dynamic scheduling in the absence of day-of-week

demand variations.

1.2.2 Robust Airline Schedule De-Peaking

The success of dynamic scheduling not only relies on improved demand forecasts,

but also on the amount of flexibility to adjust capacity in the original schedule. In

the second part of this thesis, we explore ways to imbed flexibility in the original

schedule and increase its robustness. Such a schedule is robust in the sense that it

has enhanced capability to handle demand variations through dynamic scheduling.

Expanding on the observations of Berge and Hopperstad (1993) that flight re-

fleeting opportunities can be abundant in hub-and-spoke networks, we expend our

efforts to identify metrics to measure the amount of flight re-timing opportunities

in a schedule. We then develop a two step approach to construct robust de-peaked

schedules. In the first step, a basic de-peaking model, ignoring the potential for altering

the schedule dynamically during the booking period, is solved to obtain a baseline

schedule and its associated profit. In the second step, a robust de-peaking model
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is developed to maximize the potential for new connecting itineraries to be created

through schedule adjustments in the booking period, while achieving similar profits as

the baseline schedule. We present and compare several reformulations of the robust

de-peaking model, each with distinct mathematical and computational properties.

We next present an approximate model to reduce the size of the problem. The model

is solved by branch-and-bound algorithms together with a decomposition approach

involving a variable reduction technique and a new form of column generation, which

result in dramatically reduced problem sizes, and greatly enhanced tractability. We

compare the robust and baseline schedules and report that greater profitability is

achieved by our robust schedules.

1.3 Thesis Contributions

In this thesis, our contributions to the knowledge base of dynamic airline scheduling

include:

* We introduce a new dynamic scheduling mechanism, that of flight re-timing, and

develop a schedule re-optimization model that integrates both flight re-fleeting

and flight re-timing. Experiments are conducted using data from a major U.S.

airline.

" We demonstrate that dynamic scheduling improves profitability by 2.5-5%, or

$18-36 million annually. We study the effects of forecast quality on these ben-

efits and show that considerable benefits remain even when simple forecasts

calculated from historical data are used. We also report that the full benefit of

re-timing is achieved even when the number of flight legs that are re-timed is

strictly restricted.

" We compare and analyze the effectiveness of flight leg re-timing and re-fleeting,

our two dynamic scheduling mechanisms, when applied alone under different

forecast scenarios. Flight re-timing demonstrates less sensitivity to the dete-

rioration of forecast quality and contributes a larger portion to the potential
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benefit of dynamic scheduling.

* We show that benefits remain significant when dynamic scheduling is applied

to weekly schedules, in which day-of-week demand variations are explicitly con-

sidered in constructing the schedules.

In this thesis, our contributions to the knowledge base of robust scheduling include

the following:

" This work represents the first research effort of its kinds in which flexibility is

built into the original schedule to facilitate later application of dynamic schedul-

ing.

" We present a mathematical model and several reformulations to achieve this

schedule robustness. By studying the mathematical and computational prop-

erties of these reformulations, we devise new solution algorithms and conduct

experiments using data from a major U.S. airline. We show that a robust

schedule further improves profitability of dynamic scheduling by an additional

1%.

1.4 Thesis Organization

We organize the remainder of this thesis as follows. In Chapters 2 and 3, we study

the topics of dynamic airline scheduling and robust schedule de-peaking, respectively.

Future research directions extending elements of this thesis are detailed in Chapter

4.
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Chapter 2

Dynamic Airline Scheduling

2.1 Introduction

It has been a major challenge for airlines to design a flight schedule, that is, the

timetable and the corresponding fleeting on each flight leg, to match fluctuating

passenger demand. The flight schedule, defining the supply side of the passenger air

transportation system, is designed well in advance, typically six months to one year

prior to its implementation, due to contractual and operational requirements in the

industry. The design process to generate a schedule that has the maximum profit

potential utilizes macro-forecasts of the economy and the airline industry, forecasts

of passenger demand, estimates of average fares, and estimates of available resources,

such as aircraft, personnel, and gates. The resulting schedule is published through

different distribution channels. Despite the fact that scheduling decisions are made

at a time when demand is highly uncertain, the flight schedule is intended to remain

unchanged once published. More often than not, the published schedule fails to

allocate the optimal number of seats, that is, capacity, to where it is needed.

During the booking period, that is, the time between the date the schedule is pub-

lished and the departure date, airlines employ different revenue management tech-

niques to maximize the schedule's revenue. By increasing fares on highly demanded

flights to decrease low fare demands and reducing fares on flights with excess capacity

to stimulate travel, revenue management techniques help to smooth demand varia-
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tions. Notwithstanding these techniques, the stochastic nature of passenger demand

still results in some revenue being lost due to non-optimal allocations of capacity.

To achieve the goal of balancing supply and demand, researchers have started to

focus their attention on the supply side and the concept of dynamic airline scheduling

was born, that is, the flight schedule is re-optimized during the booking period using

improved demand forecast. An early discussion of the concept of dynamic airline

scheduling can be found in Etschmaier and Mathaisel (1984) and Peterson (1986). In

a survey of aircraft scheduling problems, Etschmaier and Mathaisel (1984) mention

dynamic scheduling as an emerging operating philosophy, where the exact schedule

could be made as the total demand situation evolves. Peterson (1986) proposes the

idea of re-fleeting the schedule during the booking period to better match updated

forecasts. Such re-fleeting is allowed only within the same fleet family, which is a

set of crew-compatible aircraft types. Hence, any pilot qualified to operate one fleet

type within a family is, by definition, qualified to operate all fleet types in that

family. The requirement of re-fleeting within families is critical because it ensures

that the crew assignment based on the initial schedule can remain intact after re-

fleeting. This idea is developed, implemented and tested by Berge and Hopperstad

(1993) as "Demand Driven Dispatch" (D3 ). The re-fleeting problem is formulated

as a multi-commodity network flow problem and heuristics are developed to solve

it. In the simulation study, several planning points are set in the booking period.

At each planning point, the simulator gathers incremental booking information since

the last planning point. Based on cumulative bookings received before the current

planning point and historical information, an updated demand forecast is generated.

Aircraft are re-assigned to all flight legs using the new forecast and leg capacities

are updated in the reservation system. It is assumed that booking demand follows

a normal distribution truncated at zero and is specified by flight leg and fare class.

It is further assumed that there are no recapture of passengers and no cancelation

of booked passengers. Berge and Hopperstad (1993) evaluate the approach with

computational experiments performed on a network including 22 airports, 40 aircraft

representing three models from the Boeing 737 family and 244 flights per day. An
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improvement of 1-5% in operating profits using D 3 is reported.

Bish et al. (2004) further restrict re-fleeting to be aircraft swaps between two

swappable loops, each of which consists of a round-trip originating and terminating at

a common airport with similar time frames. Such a restriction ensures that the aircraft

assigned to those routes can be swapped without violating aircraft flow balance. Two

swapping strategies are analyzed, with one strategy allowing swapping only once

prior to flight departure and the other allowing multiple swaps prior to departure.

The conditions under which the different strategies are effective are studied.

Recently, Sherali et al. (2005) present a Demand Driven Re-fleeting (DDR) model

for a single fleet family. The re-fleeting model developed is essentially the Itinerary-

Based Fleet Assignment Model (see Barnhart et al., 2002) with additional constraints

to limit fleeting decisions within a specific family. While the assumption of no re-

capture in 'Berge and Hopperstad (1993) is maintained, the assumption of leg-fare

class-based passenger demand is relaxed and path-fare class-based passenger demand

is considered. Several reformulations and partial convex hull construction mechanisms

are developed, together with various classes of valid inequalities to tighten the DDR

formulation. Improvements in computational speed are reported, yet the benefit of

DDR is not quantified.

To the best of our knowledge, all past research in the area of dynamic scheduling

relied solely on flight re-fleeting. In this chapter, we introduce a new mechanism,

referred to as flight re-timing, in which the timetable of the original schedule is al-

tered slightly during the booking period to adjust the supply of seats provided in

various markets. By shifting the arrival time of a flight leg inbound to a hub, and the

departure tine of an outbound flight from the hub, the set of feasible passenger con-

nections may change, thereby increasing or decreasing the number of seats available

in the affected markets.

A dynamic scheduling approach for airlines that integrates both flight re-fleeting

(also referred to as aircraft swapping) and flight re-timing is developed. In this

approach, the two dynamic scheduling mechanisms are carried out one or more times

during the booking period. The goal is to adjust, for each day, the capacity provided
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so that it will match the particular passenger demand realizations for that day more

closely. These adjustments are made well in advance, perhaps 3-4 weeks prior to

implementation of the schedule, to allow sufficient time for maintenance and crew

planning. Another aspect that differentiates our approach from past research is that

we relax the no recapture assumption and model partial recapture in our models.

The remainder of this chapter is organized as follows. In Section 2.2, we present

the evolution of airline route networks and flight schedules in the U.S. to illustrate

industry trend. The opportunity in a de-peaked hub-and-spoke network is discussed

in Section 2.3. We detail our modeling architecture for dynamic airline scheduling in

Section 2.4 with corresponding mathematical formulations in Section 2.5. Solution

algorithm approach and computational experiences are presented in Section 2.6. In

Sections 2.7 and 2.8, we present the setup of two case studies and the results of our

computational experiments. Section 2.9 provides a review of important elements in

this research. Finally, we conclude this discussion and summarize our findings in

Section 2.10.

2.2 Airline Route Networks and Flight Schedules

In passenger air transportation, cities are connected to each other by flights. A route

network, or network in short, describes how the cities are connected. Flight schedule,

or timetable, describes the flight departure and arrival times in a route network. In

this section, we review the evolution of airline route networks and flight schedules.

2.2.1 Linear Networks

Prior to deregulation in the U.S., many airlines operated over point-to-point networks

in which passengers are transported directly from point of origin to point of destina-

tion without intermediate stops. This is because under regulation, there was pressure

on the airlines from local communities and the Civil Aeronautics Board (CAB) to

provide these direct, point-to-point services. Any airline that chose not to exercise its

franchise for nonstop service in a particular market (or origin-destination pair) took
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the risk of the CAB revoking that airline's permission to serve that market.

Many city pairs, however, did not have sufficient demand to cover the cost of

nonstop service. Therefore, cities were often added on either end of a nonstop route

to create backup markets. Demands in backup markets were used to fill seats on the

nonstop leg. Revenue from these backup markets helped to make the nonstop service

economically viable. The inclusion of these backup markets resulted in an evolved

network structure, referred to as as a linear network. In linear networks, an aircraft

begins at an origin airport and makes a number of intermediate stops along its route

to a destination airport. The intermediate stops are made either to refuel or to pickup

and discharge passengers.

2.2.2 Hub-and-Spoke Networks with Banked Flight Sched-

ules

Deregulation in the U.S. has led to significant changes in the airline route networks.

After deregulation, airlines quickly adopted hub-and-spoke networks. In hub-and-

spoke networks, airlines designate several, typically large, cities as their hubs. Non-

stop flights between smaller cities are substantially reduced; instead flight services for

smaller cities are provided by connecting two nonstop flight legs to and from a hub

airport. The major advantage of hub-and-spoke networks compared to other network

structures is the disproportionately large number of city-pairs that can be served with

a given number of aircraft miles operated (see Wells and Wensveen, 2004, chap. 12).

Besides providing non-stop services between hub and spoke cities, hub-and-spoke

networks provide significant numbers of connecting, multiple-flight leg services be-

tween spoke cities. The result is that on a flight into or out of a hub, the airline

can serve nonstop passengers between the spoke and the hub airport, and connecting

passengers between two spoke cities. The consolidation of traffic leads to higher load

factors (the portion of aircraft seating capacity that is actually sold and utilized),

and, in some cases, makes it economically viable for airlines to increase frequency of

flight legs in certain markets, or to operate larger aircraft with lower unit costs. The
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result is lower ticket costs and/or increased frequency of service for passengers.

In hub-and-spoke networks, airlines typically operate banked schedules, in which

are a set of arriving flights occurring in a relatively short period of time, followed by

a set of departing flights also occurring within a short period of time. The amount of

time separating the flight arrivals and the flight departures is defined by the amount of

time needed for passengers to transfer, that is, connect between arriving and departing

flight legs. Figure 2-1 shows the departure and arrival operations of a major U.S.

airline at a banked hub. In this operation, there are 11 easily identifiable banks. A

positive bar corresponds to the number of arrivals in a time interval, while a negative

bar corresponds to the number of departures.
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Figure 2-1: Departure and arrival activities at hub in a banked schedule

Banked schedules create departure and arrival peaks at the hub, with each peak

planned to last about 45-60 minutes. Peaking has associated negative economic im-

pacts. For example, in order to process passengers and baggage during peak opera-

tions, staffing requirements at the gate, on the apron, at the ticket counter, and in

baggage handling, as well as infrastructure requirements (that is, runway capacity,

gate capacity, baggage handling equipment, etc.) are at a maximum. Between adja-

cent banks, however, there are typically 60 to 90 minutes of quiet time. During this
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period, staffing requirements are low and hence, labor, equipment and infrastructure

are not fully utilized.

Banked operations, with their peak demands for infrastructure capacity, exacer-

bate the effects of congestion and delays. When bad weather conditions reduce airport

capacity, two pronounced effects result. First, schedule delays are incurred, thereby

increasing airline operating costs due to the extra crew and fuel costs when aircraft are

queued to arrive or depart. Second, passenger travel times are increased, sometimes

significantly if flight delays result in passengers missing their flight connections.

Yet another disadvantage of banked operations is the resulting reduction in air-

craft productivity. First, because inbound flights in a common bank arrive at the

hub at about the same time, aircraft operating flight legs with shorter flying times

must wait at spoke cities and depart later than aircraft operating flight legs with

longer flying times. This waiting time is non-productive time for aircraft, and very

expensive to the airlines. Second, aircraft (especially those arriving early in the bank)

must sit on the ground well beyond the minimum time needed to turn the aircraft,

that is, the minimum time needed to re-fuel, disembark and embark passengers, and

service the aircraft. Moreover, because the arrival times of inbound flights in a bank

are coordinated, the departure times at spoke cities might not be convenient to pas-

sengers. Similarly, because the departure times of outbound flights are coordinated,

the arrival times at spoke cities again might not be convenient to passengers.

2.2.3 Moving Toward De-Peaked Schedules

The airline industry in the U.S. has been negatively impacted since 2001 by terrorist

attacks, overcapacity, soaring fuel costs, and stiff competition. As a result, airlines

have been forced to look for new approaches and strategies to achieve profitability.

Banked operations at hubs are very expensive, requiring a surplus of labor, equip-

ment and infrastructure. De-peaked operations at hubs (also referred to as continuous

or rolling hubs) can continue to take advantage of the hub-and-spoke network struc-

ture, but with less intensive operations at the hub and therefore less cost (Donoghue,

2002; McDonald, 2002). In de-peaked schedules, arrival and departure operations
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at the hub are smoothed, shaving the peaks and filling in the valleys of demand for

resources. Flights are not coordinated in de-peaked operations to form connecting

banks. Instead, the amount of time aircraft remain on the ground at the hub is

not constrained by the need to provide passenger connections. Figure 2-2 shows the

departure and arrival activities for the same airline shown in Figure 2-1 after the

de-peaking of the same hub.
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Figure 2-2: Departure and arrival activities at hub in a de-peaked schedule

In summary, the benefits resulting from de-peaking hub operations include:

" Hub staffing can be reduced because the maximum number of arrivals and

departures occurring in a period of time for de-peaked operations is significantly

smaller than that for peaked operations.

* Demands for infrastructure capacity, that is, airport runway and groundside

capacity, gates, baggage handling equipment, etc., are similarly reduced in de-

peaked operations.

" De-peaked schedules are more robust in the sense that airport capacity reduc-

tions caused by weather will have less of an impact than in the case of peaked

operations with their high-levels of peak demand for capacity.
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e In a de-peaked schedule, aircraft need not wait on the ground for connecting

passengers. These reduced ground times for aircraft lead to increased aircraft

utilization.

The major drawback of de-peaked operations is that the smoothed and spreaded-

out arrivals and departures typically result in increased connection times for passen-

gers. The effects of these increases on revenue are hard to quantify. Prior to the

late 1990's, air tickets were mostly sold by travel agents using Global Distribution

Systems (GDSs). Itineraries were displayed in increasing order of elapsed time, and

the majority of bookings occurring in the first screen. Hence, increasing connection

times, and thus, increasing elapsed travel time could displace an itinerary from be-

ing displayed in the first screen and result in significant reductions in the number of

bookings for that itinerary. The adverse effect of this, however, is mitigated by recent

changes in distribution: the Internet has been gaining great popularity among trav-

elers. In 2004, more than 22% of U.S. airline tickets were sold through the Internet

(Dorinson, 2004). In 2005, Alaska and its sister airline, Horizon, sold 34.6% of their

tickets via the airlines' website and an additional 11% of the airlines' sales came via

online travel sites (Gillie, 2006). Although travelers can choose to sort itineraries by

schedule (departure time or elapsed time), the majority of air travel websites display

search results by fare and researchers report that the fare display is most commonly

used (Flint, 2002). GDSs also include fare display these days and fare display be-

comes the most commonly used method by agencies (Flint, 2002). Table 2.1 shows

an example of the default displays of major U.S. airlines and leading online air ticket

retailers. 11 out of 13 websites offer fare as the default display (or fare and schedule

display simultaneously).

2.2.4 De-Peaking in Practice

This section discusses examples of schedule de-peaking in the airline industry. While

it is not intended to be a comprehensive and thorough coverage of this topic, it does

suffice the purpose of demonstrating this industry trend and its impact.
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Website Default Display Method

AirTran fare and schedule simultaneously
Alaska fare
America West fare
American schedule
Continental fare
Delta fare
Northwest fare
Southwest fare and schedule simultaneously
United fare
US Airways schedule
Expedia fare
Orbitz fare
Travelocity fare

Table 2.1: Default display on the websites of major airlines and leading Internet air

ticket retailers (obtained by visiting each website on March 6, 2006)

American Airlines de-peaked operations at its Chicago O'Hare (ORD) hub in April

2002. Flint (2002) reports that after de-peaking, the number of American Airlines

flights remained the same as before, but arrivals and departures were more evenly

spread throughout the day. In their de-peaked schedule, American Airlines restricted

the number of arriving and departing flight legs per minute to no more than one.

Mean passenger connection times increased 10 minutes from 77 minutes to 87

minutes. Average aircraft turn times, however, reduced about 5 minutes, and by

about 8 minutes at the spoke stations, resulting in less non-productive ground time

for aircraft and, hence, increased aircraft utilization.

Benefits to American Airlines of de-peaking ORD include:

1. Fewer aircraft and gates were used to operate the same set of flight legs. It is

reported that 3 mainline jets, 2 RJs, and 4 gates were saved after de-peaking

ORD (Flint, 2002). These saved aircraft can be put to use in an expanded

flight schedule, complementing the cost-saving attributes of de-peaking with

revenue-gain potential.

2. On time performance was improved despite higher aircraft utilization. After

spending years at the bottom of the Department of Transportation (DOT)

on-time performance scorecard, American rose to second place in the second
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quarter of 2002. With reductions in air traffic congestion resulting from de-

peaking, block times were reduced by more than one minute at ORD, worth

$4.5-5 million per year (Ott, 2003).

3. Labor efficiency increased. Less people were needed to handle the same amount

of work, with each individual handling more flights per shift. The intensity of

work per individual, however, does not increase because the workload is more

evenly spread out through the day, unlike the peaked schedule in which periods

of high levels of activity are followed by periods of little activity (Flint, 2002).

4. Revenues increased. American Airlines reported increased unit revenues result-

ing from a 1% improvement in the ratio of local (or, non-stop) to connecting

traffic at ORD. Because flights are no longer coordinated to form banks at

the hub, the departure and arrival times are set to convenient times for local

markets, thereby attracting more non-stop passengers. Connecting revenues,

however, declined as a result of longer connection times (Flint, 2002).

American airlines de-peaked its Dallas/Fort-Worth (DFW) hub in November,

2002. 9 mainline jets, 2 RJs, and 4 gates were saved (Flint, 2002). Because fewer

gates are needed at DFW for their de-peaked schedule, American Airlines was able

to move all mainline flights to Terminals A and C, both of which are on the same

side of the airport. Previously, mainline flights operated in Terminals A, B, and C.

In addition to the benefit to passengers of having all American Airlines flights on the

same side of the airport, the airline estimates it will save at least $4.5 million annu-

ally from this consolidation (SL, 2002). American Airlines subsequently de-peaked

its Miami (MIA) hub in May 2004.

Besides American Airlines, Continental Airlines de-peaked its schedule at Newark

(Ott, 2003); United Airlines de-peaked its hub in Chicago in 2004, its hub in Los

Angeles in 2005, and is expected to de-peak throughout the system, beginning with

San Francisco (SFO) in the first quarter of 2006 (UAL, 2006); and Delta Airlines

de-peaked their Atlanta hub in January, 2005, where about 65 airplanes an hour

arrive and depart throughout the day. Daily departures for Delta Airlines grew to
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1,051 a day under the de-peaked schedule from 970 a day prior to de-peaking, and

the number of destinations served grew to 193 from 186. After de-peaking, average

passenger connection times increased by about 3 minutes, up to 77 minutes from 74

minutes, and the amount of daily flying time per jet increased by about 8 percent,

with the number of daily aircraft turns at each of the airline's gates increasing by up

to 8.5 percent (Hirschman, 2004).

And, this de-peaking trend is not restricted to airlines the U.S.. Lufthansa Airlines

de-peaked Frankfurt (FRA) in 2004, its biggest hub, as part of the effort to cut costs

by EUR 300 million in the next two years (Flottau, 2003).

2.3 Opportunities in a De-Peaked Hub-and-Spoke

Network

In a perfectly banked schedule, all inbound and outbound flights are scheduled to

allow passengers to connect between any pair of arriving and departing flights in the

same bank. Moreover, minor adjustments to flight arrival and departure times do not

create, or eliminate, any connecting itineraries. In a de-peaked operation at a hub,

however, minor adjustments to flight leg arrival and/or departure times can affect

the set of connecting itineraries served through that hub. In fact, flight schedule re-

timings can increase or decrease the supply of available seats in markets connecting

at the hub. Figure 2-3 provides a schematic illustration of departure and arrival ac-

tivities in a de-peaked hub-and-spoke network. We denote the minimum time needed

for passengers to connect between flights at the hub as MinCT and the maximum

connection time acceptable to passengers as MaxCT. Note that inbound flight a can-

not connect to outbound flights b and c because the associated connection times are

not within the allowable limits. Re-timing flight leg b to b', however, creates a feasible

connection between flight legs a and b', as shown in Figure 2-4. This re-timing has the

effect of adding seats to the market served by flight legs a and b'. At the same time,

re-timing flight b to b', however, may cause some connecting itineraries using b as the
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outbound flight to violate the maximum connection requirement, thereby decreasing

the number of seats offered in other markets. Similarly, re-timing flight c to c' creates

a feasible connection between flight legs a and c' and may cause some connecting

itineraries using c as the outbound flight to violate the minimum connection time

requirement, thereby decreasing the number of seats offered in other markets. The

re-timing of flight legs can thus be considered a a powerful mechanism, one capable

of dynamically adjusting the supply of seats to better match demands as revealed

through the booking period.

a

MinC Mb MinCTu

6 c66cc

Figure 2-3: Original schedule Figure 2-4: Re-timing creates new
connecting itineraries

Flight re-timing has the added benefit that it can create more re-fleeting oppor-

tunities, as illustrated in the examples presented in Figures 2-5 and 2-6. Figure 2-5

depicts the original schedule, in which an Airbus A319 operates flight leg a and then

flight leg c, and an Airbus A320 operates flight leg b followed by flight leg d. Suppose

that more capacity is desired on flight leg d and less capacity is needed on flight leg

c. The original schedule does not allow the same aircraft to operate both flight legs

b and c due to insufficient turn time between the arrival of b and the departure of c.

If b arrives earlier and c departs later, however, the A320 can operate b followed by c

and the A319 can operate a followed by d, as depicted in Figure 2-6.

2.4 Modeling Architecture

In our dynamic scheduling approach, schedule re-optimization is performed for each

departure date, thereby producing potentially different flight schedules, each of which

is designed to capture the individual dynamics of passenger demand for that day. We
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Figure 2-5: Original schedule Figure 2-6: New schedule

refer to the modified schedule for each day as the new schedule and to the schedule

produced by the initial planning process as the original schedule. We assume that the

original schedule is a daily schedule, that is, the same schedule is repeated each day.

Re-optimization points are points in time during the booking period when schedule re-

optimization, that is, flight leg re-timings and re-fleetings, is performed. A portrayal

of our dynamic scheduling process is shown in Figure 2-7.

Departure Date

1 2 3 4 .

Demand Profile

Re-opt Re-opt Re-opt Re-opt
Point Point Point Point

Booking
Starts

time

Figure 2-7: Dynamic scheduling process

For each day d included in the original schedule, we specify a few re-optimization

points, with each re-optimization point earlier in the booking period of day d. Each

schedule re-optimization results in a new schedule for a particular day, and it replaces

the previous schedule, whether it is original or the result of re-optimization. At each

re-optimization point for day d, three questions are answered, namely:

1. What are the current numbers of passenger bookings for each itinerary on day

d?
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2. What are the forecasted future itinerary bookings from the re-optimization point

to day d?

3. What is the set of optimal flight leg re-timings and re-fleetings for day d given

the current and forecasted future itinerary bookings?

Any solution to the third question must satisfy the following constraints:

1. Flight legs can be re-scheduled only to a time close to that of the original

schedule. The set of allowable departure times for each flight leg defines that

flight leg's feasible time window;

2. Allowable fleeting changes for a flight leg 1 are limited to fleet types in the same

family as that of the original fleet assignment to 1;

3. Service to passenger bookings made prior to the re-optimization point must be

guaranteed in the new schedule;

4. At the start of the day, the number of aircraft of each type available at each

airport is equal to the number positioned at that airport at the end of the

preceding day. At the end of the day in the new schedule, the number of aircraft

of each fleet type at each airport location must be no less than the number in the

original schedule. Because a daily schedule re-optimization model is used, this

is equivalent to constraining the number of aircraft for each fleet overnighted at

each airport to be no more than that in the original schedule.

Constraints (1) limit the magnitude of schedule changes to minimize the impact

to passengers who booked their itineraries before the re-optimization point and the

possibility to disrupt aircraft maintenance routing and crew pairing plans if they

are developed prior the last re-optimization point. Constraints (2) ensure that crew

assignments remain feasible after re-fleeting. Constraints (3) guarantee service to all

previously booked passengers in the new schedule. The exact meaning of "service

guarantee" is explained in Section 2.4.1. Constraints (4) ensure that aircraft are

appropriately positioned at the end of the day so that the re-optimized schedule for

the next day can be implemented.
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2.4.1 Service Guarantee to Previously Booked Passengers

In order to minimize passenger inconvenience, passengers booked before the current

re-optimization point are to be accommodated on itineraries with the same flight

numbers, but potentially with a slight change in flight departure and arrival times.

Re-fleeting does not change the timetable, therefore passengers wouldn't even notice

such changes. However, re-timing affects the flight times and could potentially make

the connection times for previously booked connecting itineraries shorter than the

minimum required.

For nonstop passengers booked on flights prior to re-timing, the effect is a slight

deviation of time for their flights. For connecting passengers booked prior to re-timing,

we make sure that the re-timing decisions do not disrupt their itineraries, that is, their

new connection times after re-timing are no less than the minimum connection time.

For example, suppose a passenger booked the itinerary shown in Table 2.2. After

re-optimization, the passenger will still be traveling on flight 254 and then connecting

to flight 487 as before. The only thing that changes is the flight departure and arrival

times. An example of the new itinerary is shown in Table 2.3. For the itinerary shown

in Table 2.3, the connection time at the hub is 30 minutes, which is still greater than

the 25-minute minimum connection time. Please note that the connection times of

booked connecting itineraries are allowed to exceed the maximum connection time.

When flight re-timing is limited to a small magnitude, which we envision to be ±15

minutes from the original timetable, the maximum possible increase in connection

time is 30 minutes.

Flight Origin Departure Time Destination Arrival Time

254 BOS 9:00am HUB 12:00noon
487 HUB 12:45pm LAX 1:45pm

Table 2.2: Itinerary prior to re-timing

Flight Origin Departure Time Destination Arrival Time

254 BOS 9:10am HUB 12:10noon
487 HUB 12:40pm LAX 1:40pm

Table 2.3: Itinerary after re-timing
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2.4.2 Frequency and Timing of Re-Optimization Points

While outlining the concept of dynamic scheduling in the previous section, we include

several re-optimization points within the booking period. The question of when to re-

optimize is, itself, an optimization problem. Because the objective of our research is to

provide an estimate of the potential benefits of dynamic scheduling, we include only a

single re-optimization point in the booking period. Even with this simplification, the

question of when to perform this one-time schedule adjustment remains. The goal in

selecting the re-optimization point is to balance flexibility to modify the schedule and

forecast quality. Forecast quality improves as the re-optimization point is moved later

in the booking period. Flexibility to modify the schedule, however, decreases as the

re-optimization point is moved later in the booking period. This difficulty stems from

passenger, crew and maintenance restrictions. Later in the booking period, in order

to guarantee service to the large number of passengers who have already booked, the

set of feasible re-optimization decisions are substantially constrained. With respect to

crews and maintenance, if the re-optimization point occurs before the crew schedules

and aircraft maintenance routings are constructed, crews and maintenance require-

ments need not be considered in the re-optimization. If, however, the re-optimization

point occurs after crew and maintenance plans have been generated, the new schedule

must maintain feasibility of these plans or generate feasible alternatives.

2.4.3 Flow Charts

Using a single re-optimization point for each day d in the original schedule, for example

21 days prior to departure, the booking period is divided into two periods. We refer

to the time period beginning at the start of the booking period and ending at the re-

optimization point as Period 1; and the time period from the re-optimization point

to day d as Period 2. Empirical results show that around 50% of the passengers

have booked their itineraries 21 days prior to departure, providing valuable revealed

demand information but leaving flexibility in the system.

In Figure 2-8, we depict our modeling approach for the static case, that is, the case
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in which the original flight schedule is not re-optimized. Booking limits are set for

all flight legs in Period 1 to protect seats for Period 2 passenger demand. Passenger

demand in Period 1 is assigned to the original schedule using a Passenger Mix Model

(detailed in Section 2.5.3). Finally, Period 2 passenger demand is assigned to the

remaining capacity on each flight leg in the original schedule, again using a passenger

mix model.

BookingOriginal
LimitSchedule

PaxPa
Original Mix Seats Taken PaLSchedule Model On Each Le Model

Period 1 Period 2
Pax Deman Pax Deman

21 Days Departure
Prior Departure Day

Figure 2-8: Static case

We illustrate our modeling approach for the dynamic scheduling case, or dynamic

case, in Figure 2-9. A re-optimization module is inserted at the re-optimization point

for any departure day d. The numbers of aircraft of each fleet type at each airport

at the start and end of day d are computed from the original schedule. Additionally,

for each flight leg, the number of seats sold in Period 1 is calculated, and the set

of connecting itineraries that are booked in Period 1 are identified. These data, to-

gether with passenger demand forecasts for Period 2, are inputs to the re-optimization

module that produces a new schedule to replace the original one.

2.5 Mathematical Models

In this section, we describe the network representations and the mathematical for-

mulations of the models in our dynamic scheduling approach.
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Pax Deman Pax Deman

21 Days Departure
Prior Departure Day

Figure 2-9: Dynamic scheduling case

2.5.1 Terminology

To facilitate our discussion, we define the following terms. A flight leg is a nonstop

trip of an aircraft from an origin airport to a destination airport (one take-off and

one landing). An itinerary consists of a specific sequence of scheduled flight legs

in which the first leg originates from the origin airport at a particular time and the

final leg terminates at the final destination airport at a later time. We model a

round trip itinerary as two distinct one-way itineraries. The number of intermediate

cities traversed is called the number of stops in this itinerary. A non-stop itinerary

consists of only one flight leg, which originates from the origin and terminates at

the destination. A connecting itinerary is an itinerary that has one or more stops.

Although there do exist connecting itineraries with more than one intermediate stop,

it is very rare. In the scope of our research, we assume all connecting itineraries have

exactly one stop.

2.5.2 Network Representations

A time-space network is a mechanism designed for modeling dynamic networks. Nodes

in a time-space network are associated with both time and place, and arcs represent

scheduled movements between locations, or remaining at the same location for some
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period of time.

To achieve schedule re-optimization, we create two tailored time-space networks:

an aircraft flow network and a passenger flow network.

The aircraft flow network is used to model the flow of aircraft over a flight schedule,

with a different flow network created for each fleet type. Each node in fleet k's network

corresponds either to the departure time of a flight leg f, or its arrival time plus the

minimum amount of time needed to turn a type k aircraft at the arrival station of

leg f. Each arc in fleet k's network is classified as either a flight arc or a ground arc.

Flight arcs represent scheduled flight legs, while ground arcs represent an aircraft's

ability to remain on ground at the same place over time. A wrap-around arc is a

ground arc that connects the first and last node at an airport station. The count line

is an arbitrarily chosen point of time that is used to count the number of aircraft

needed to operate a given flight schedule.

The passenger flow network is used to model the flow of passengers over a fleeted

flight schedule. Each node in the passenger flow network corresponds either to the

departure time, or the arrival time of leg f. Each arc is classified as either a flight arc

or a connection arc. Flight arcs again represent scheduled flight legs, but connection

arcs represent a passenger's ability to connect between two flight legs. Feasible pas-

senger itineraries correspond to paths in this network; and flight arc capacities are

determined by the type of aircraft assigned to the flight leg represented by that arc.

2.5.3 Passenger Mix Model

Given the set of unconstrained passenger demand, that is, the number of passengers

wishing to travel, over its flight schedule with assigned fleet types, an airline's objec-

tive is to maximize their revenues by accommodating as many high fare passengers as

possible. For some flight legs, unconstrained demand exceeds supply and passengers

must be spilled either to another itinerary offered by the airline or a different airline,

or to another transportation mode. When passenger demand exceeds seat capacity,

the objective of the airline is to spill low fare passengers or passengers that can be

easily recaptured on alternative itineraries offered by the airline.
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Various difficulties arise in modeling and solving this problem of revenue maxi-

mization. Network effects, booking orders, itinerary cancellations by passengers, and

the stochasticity of unconstrained demands all contribute to make this a very complex

problem. In existing research, as well as the research presented here, some (but not

all) of these complicating aspects are addressed. The complexities that are captured

tend to be dictated by the methodology employed. For example, revenue management

techniques are effective in modeling booking orders and stochasticity, while mathe-

matical programming approaches are well-suited to model network interactions and

the associated trade-offs.

Soumis et al. (1981) uses a mathematical programming model to assign passengers

to itineraries. Dissatisfaction costs are assigned to unattractive itineraries and spill

costs are assigned to overloaded itineraries. Glover et al. (1982) propose a minimum

cost network flow model with side constraints to determine which passenger to spill.

They refer to this problem as the passenger mix problem, which is solved by Passen-

ger Mix Models (PMMs). Other network approaches for PMMs are detailed in Dror

et al. (1988), Phillips et al. (1991), Farkas (1995). Previous approaches assume either

no recapture, that is, a passenger that cannot be accommodated on their preferred

itinerary is not served by the airline; or perfect recapture, where each passenger is

assumed to be indifferent to all itineraries serving his/her desired origin-destination

city pair. Kniker (1998) represents one of the first efforts to model the more realistic

case of partial recapture in which only a percentage of passengers who cannot be ac-

commodated on their desired itineraries are willing to accept an alternative itinerary.

These percentages, or recapture rates, vary for each alternative itinerary depending

on its quality (that is, non-stop vs. connecting, time-of-day of departure and arrival,

etc.). Hence, in this approach, passengers spilled from their desired itinerary p are

assumed to be recaptured onto an alternative itinerary r at a recapture rate of b;.

Before we present the model by Kniker (1998), we introduce the following additional

notation:

Data

P : set of all itineraries indexed by p or r.
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L set of flight legs in the flight schedule indexed by 1.

SEAT : number of seats available on flight leg 1 E L.

Dp :unconstrained demand for itinerary p E P, that is, the number of

passengers wishing to travel on itinerary p.

J1 1, if itinerary p traverses flight leg l;

0, otherwise.

f arep : average fare for itinerary p.

A(p) set of alternative itineraries for passengers requesting itinerary p.

bp : fraction of passengers spilled from itinerary p, and recaptured by

itinerary r E A(p). b E [0, 1), Vr E A(p), p E P and _rCA(p) bp < 1.

Decision Variables

Xr :the number of passengers requesting itinerary p who are served by

itinerary r E A(p).

yp :the number of passengers requesting itinerary p who are spilled and not

recaptured by the airline.

The key-path formulation of PMM with partial recapture (Kniker (1998)) is as

follows:

maximize

farep(D, - 1 Xyp)Z + farerbpx;
pEP rEA(p) pEP rEA(p)

Subject to:

XZ + yp D, Vp E P (2.1)
rEA(p)

Zt (Dp - x; - yp)+ 6bpx; SEATi,Vl L (2.2)
pEP rEA(p) pEP rGA(p)

x, 0, Vr E A(p), p E P (2.3)

yP 0,Vp C P (2.4)
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Recognizing that Ep farepDp is a constant, the objective can be re-written as

(farerbp - farep) x' + J(-fare)yp.
pEP rEA(p) pEP

Empirically the term (farerbp - farep) is usually negative, therefore in order to

maximize the value of the objective function, x is pushed toward zero, if possible.

The same is true for y,. The result is that Constraints (2.1) are often redundant.

This fact is exploited and a constraint generation approach is employed to solve the

model.

Kniker (1998) points out that optimal PMM solutions can vary quite significantly,

depending on the recapture rates used; and moreover, recapture rates are difficult to

estimate. Due to PMM's sensitivity to recapture rate estimates, we adopt a sim-

plifying approach in which we assume perfect recapture between selected subsets of

itineraries, defined for each passenger. A passenger's subset includes all itineraries

that: 1) depart within the passenger's window of acceptable departure times; and 2)

provide a service level, measured as the number of stops in an itinerary, that is as

good as that requested by the passenger. This subset of itineraries for each passen-

ger define a market, with average fare equal to that of the itineraries in the subset.

Recapture rates are 0 between itineraries in a market and itineraries serving this

origin-destination city pair but not contained in the market. Before we present our

PMM model, we introduce additional notation:

Data

M : set of markets.

farem : average fare in market m E M.

Dm : unconstrained demand in market m E M.

R(m) : set of itineraries serving market m E M.

1, if itinerary r E R(m) in market m E M traverses flight leg 1 E L;

0, otherwise.

Decision Variables
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Xmr number of passengers assigned to any itinerary r E R(m) in market

m E M.

Our PMM model is:

maximize

Z farem E Xmr
mEM rER(m)

subject to:

X,mr DM Vm E M (2.5)
rER(m)

Z Z nrxmr SEAThVl E L (2.6)
mEM rER(m)

Xmr ;> 0, Vm E M, Vr E R(m) (2.7)

2.5.4 Re-Optimization Model

The work of Berge and Hopperstad (1993), Bish et al. (2004), and Sherali et al. (2005)

are most pertinent to our research in a dynamic scheduling context. Because the re-

optimization model applies re-fleeting and re-timing simultaneously, a brief review of

re-fleeting and re-timing in other areas of airline scheduling is presented below.

2.5.4.1 Literature Review

Research in the area of re-fleeting models and algorithms has focused largely on

recovery from irregular operations, for instance, Jarrah et al. (1993), Rosenberger

et al. (2002), Thengvall et al. (2000), and Yu and Luo (1997). Apart from these

research, Talluri (1996) and Jarrah (2000) study models and algorithms to re-fleet a

schedule that can be applied in dynamic scheduling.

Talluri (1996) addresses the problem of aircraft swapping in the context of both

schedule planning and schedule recovery. Algorithms are presented to answer the

following question: given a balanced and fleeted daily flight schedule, how do we

change the fleet type assigned to a flight leg from Type A to Type B, while requiring
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the smallest number of changes to the existing assignment. A flight network involving

only Type A and Type B aircraft is constructed. Then the flight arcs and ground

arcs corresponding to Type B are reversed. Each are is assigned unit cost and a

shortest paths algorithm is used to find the solution. The algorithm is able to find

solutions quickly for problems involving two fleet types and the required swapping of

fleet types on a single flight leg. Revenue and cost information are not considered in

the algorithm.

Jarrah (2000) uses multi-type, multi-leg, re-fleeting models to modify planned

fleet assignments incrementally. Several modules are defined, namely: 1) a popping

module that can be used to find the least costly way to remove a specified number of

aircraft from the schedule; 2) a change-of-gauge module that can be used to replace a

user-specified number of Type A equipment with Type B equipment; 3) a swapping

module that can be used to swap fleet assignments within a user-specified group of

fleet types to maximize incremental profit; 4) a utilization module that can be used to

adjust block time between two fleet types while maximizing incremental profit; and

5) a balancing module that can be used to find the most profitable set of swaps that

will balance an imbalanced schedule, that is, a schedule in which the aircraft balance

constraints are violated. A set of near-optimal solutions are determined by iteratively

solving the model, with cuts added to the model at each iteration to preclude solutions

from being re-generated. Let S represent the current solution; and x equal to 1 if

fleet type k is assigned to leg i, and equal to 0 otherwise. The added constraints are

of the form Z(i,k)Ss XS 5' ISI - 1. The flight schedule is assumed to be fixed and

passenger demands and associated fares are assumed to be flight leg specific.

Although flight re-timing has not been employed in dynamic scheduling approaches,

it has been incorporated into schedule planning extensively. Levin (1971) is the first

to propose a scheduling and fleet routing model with time windows. Time windows

were created around the original scheduled flight departure times, with departures

allowed to occur at discrete intervals within the time window. Later, Bandet (1994)

and Desaulniers et al. (1997) present formulations for the fleet assignment and aircraft

routing problem with time windows.
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Recently, Rexing et al. (2000) present a generalized fleet assignment model to

schedule flight departures and assign aircraft types to flight legs simultaneously. Two

solution approaches are presented: one, the Direct Solution Approach (DST), is de-

signed for speed and simplicity; while the other, the iterative solution approach (IST),

is tailored to address large-scale problems in which memory management is an issue.

In every test scenario, they produce fleet assignments with significantly lower costs

than the basic fleet assignment model without time windows. Moreover, the ap-

proach is used to achieve more productive schedules for aircraft, indicating potential

reductions in the number of aircraft needed to operate the flight schedule.

Klabjan et al. (2002) apply the idea of time windows to crew scheduling and

develop a crew scheduling model that yields solutions with significantly lower planned

costs than those obtained from conventional models. Lan et al. (2006) apply flight

re-timing techniques to schedule planning models to reduce the number of occurrences

of passengers missing their flight connections.

2.5.4.2 Model Statement

Our schedule re-optimization model is a generalization of models presented in Berge

and Hopperstad (1993) and Bish et al. (2004) with enhanced modeling aspects. The

major distinction is that in our model, flight copies are created and scheduled near

the original flight departure time to allow for flight leg re-timing. In addition, we

relax the assumption of leg demand independence and consider passenger recapture.

Before introducing our schedule re-optimization model, we introduce the following

additional notation:

Data and Parameters

H : set of fleet types.

S : set of cities.

Gr :set of ground arcs in fleet 7r E H 's network.

FML(7r) : set of fleet types in the same family as 7r E H.

D :demand forecast for market m.

fare : forecasted average fare for demand in market m.
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set of flight copies for flight leg I E L.

copy k E C(l) of flight leg I E L.

cost to fly (l, k) with aircraft type 7r E I, where k E C(l), l E L.

fixed cost to have one additional aircraft of type 7r E U.

nodes in flight network of fleet type 7r E U.

number of aircraft available for fleet type 7r E H.

number of seats already booked on flight leg I G L before re-

optimization.

number of aircraft overnighted at city i E S for fleet type 7r in the

original schedule.

the fleet type used on leg I E L in the original schedule.

set of time interval at the hub, indexed by t.

maximum number of aircraft arrivals at the hub in interval t E T.

maximum number of aircraft departures from the hub in interval t E T.

1, arc g C G' is a wrap around arc at city i E S;

0, otherwise.

1, if (1, k) in fleet 7's network begins at node i E N7;

-1, if (1, k) in fleet r's network terminates at node i E N';

0, otherwise.

1, if ground arc g E G" begins at node i E N7;

-1, if ground arc g E G' terminates at node i EN;

0, otherwise.

S1, if c in fleet ir's network crosses the count line;

0, otherwise.

1, if ground arc g E GT crosses the count line;

0, otherwise.

1, if (1, k) arrives at the hub during interval t E T;

0, otherwise.{ 1, if Ki, k) departs from the hub during interval t E T;

0, otherwise.

T0

T

AXdt

AXdt

M

M

dik

/3 1kw

Bg7r
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)Ilk
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Decision Variables

1, fleet 7r E H is used to fly flight copy(l, k), where k E C(l), l E L;

0, otherwise.

number of aircraft on ground arc g E Gr.

z,. number of aircraft used for fleet type ir.

The objective of the re-optimization model is to maximize future revenue less

operating cost and fixed cost:

xmrfarei - z z
mEM rER(m) 1EL kGC(1) ,rE1

- Z: ZrCir
irEll

The set of constraints are:

z Efk = 1, Vl E
kEC(l) 7rEfl

L

Xmr : D FVm E M
rER(m)

mEM
6 xrmr E fk, (CAP, - BKD,),vl

rER(m) 7rEfl

E
1cL k

1

E Lk E C(l)

S flk~rZlikr + 5 yg^= 0, Vi c Nr, 7r E H
EC(1) gcG

S flkrlk r+ Eg/r gr ZV7r E I

EL kEC(l) EG

z7, n',V7r E H

S Sa E flkr < MAXat,Vt E T
IEL kEC() 7rEH

Sf< 5MAXdt, Vt E T
lEL kEC(1) ,rCI

fik,, = 0, Vl E L, k E C(L), wr' 0 FML(7r0)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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ygagrr < yi, Vi E S, VT E U (2.17)

flk, E {0,1},Vl E L,k E C(l),w E H (2.18)

Xmr 0,Vm E M, r E R(m) (2.19)

yg ;> 0, Vg E G7, E 1 (2.20)

z_ ;> 0,V7 E H (2.21)

Constraints (2.8) ensure that each flight leg is covered exactly once. Constraints

(2.9) are passenger flow constraints limiting the number of passengers transported in

each market to the value of that market's unconstrained demand. Constraints (2.10)

limit the number of future passenger bookings to the remaining number of available

seats. Constraints (2.11) ensure aircraft flow balance. Constraints (2.12) and (2.13)

ensure that the number of aircraft of each fleet type used to operate the schedule is

no more than that used in the original schedule. Constraints (2.14) and (2.15) limit

the number of departure and arrival activities in each time interval to the maximum

allowable. Constraints (2.16) enable re-fleeting within families. Constraints (2.17)

enforces the requirement that aircraft are positioned as in the original schedule, at the

start and end of each day. Constraints (2.18), (2.19), (2.20) and (2.21) are constraints

on possible variable values. In the next section, we describe constraints to guarantee

service to previously booked passengers.

2.5.4.3 Service Guarantee to Booked Passengers

All seats sold in Period 1 (prior to the re-optimization point) are protected during

schedule re-optimization, that is, all nonstop passengers can be served in the new

schedule on their original, although possibly re-timed, flight legs. To ensure that

connecting passengers have sufficient time to connect between re-timed flights, we

add constraints limiting the connection time for booked itineraries to be at least the

minimum allowable. Let Q denote the set of connecting itineraries that are booked

in Period 1. For the pair of flight legs (11,12) E Q, let CT((li, k1 ), (12 , k2 )) be the
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connection time between copy k1 of flight leg 11 and copy k2 of flight leg 12. For

a given (l1 ,12) E Q, let C(l1 , 12 ) = {(ki, k2 )ICT((li, ki), (12,7k2 )) > minCT, Vki E

C(l), Vk 2 E C(12)}. Assume we create 2a flight copies and index the flight copies

as shown in Figure 2-10. The connection time between copy +1 of 11 and copy 0

of l2 is greater than MinCT, therefore the flight copy pair (+1, 0) E C(li, l2 ). The

connection time between copy +a of 11 and copy -a of 12 is smaller than MinCT,

therefore the flight copy pair (+a, -a) 0 C(li, 12).

-a -1 0 +1 +a

-a -1 0 +1 - +a

Figure 2-10: Flight copy indices

We introduce new binary decision variables u 2k2 for each (1i,12) E Q, and each

(ki, k2 ) E C(11, 12), where

1, if the connection formed by (11, k1) and (12, k2) is feasible after

12k = re-optimization;

0, otherwise.

The following constraints ensure that, after schedule re-optimization, all leg pairs

in Q can still form feasible connecting itineraries:

S 2 = 1, V(11 , 12) E Q, and (2.22)
(ki,k 2 )EC(li,12)

fllki7 - - fl 2 k 2 > 2u1 ,k V(11 12) E Q, (ki, k2) E C(l, 12).(
ir~rI 7rEnu 1 ,V1, 2  )(.3

Constraints (2.22) ensure that among the feasible connections between copies of

flight legs 11 and 12, exactly one must be enabled in the new schedule. Constraints
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(2.23) guarantee that if the connection formed by (ii, k1 ) and (12, k2) is in the new

schedule, aircraft are assigned to (li, k1 ) and (12, k2).

Alternatively, instead of ensuring that at least one flight copy pair (ki, k2 ) E

C(l, 12) is enabled in the new schedule, it is also possible to forbid the selection of

copy pairs not in C(11,12). To achieve this goal, we only need the following constraints:

E f>3 j + >3 fl 2 k 2 7r 1, V(l 1 , 12) E Q, (ki, k2 ) C(I, 12). (2.24)
7r(--rI7rCHn

Constraints (2.24) are preferred to constraints (2.22) and (2.23) because: 1) they

introduce no new binary variables; and 2) they require the addition of fewer con-

straints to the schedule re-optimization model, as detailed in the following proposi-

tion.

Proposition 2.1 There are fewer constraints of the form (2.24) than of the form

(2.23).

Proof: For each flight leg, equal numbers of flight copies are created, with

departure times evenly spaced, both earlier and later around the departure time of

the original flight leg. Assume there are 2a copies, indexed as shown in Figure 2-10.

Consider two flight legs in the original schedule and let CT be the connection time

between them. Denote the time displacement between flight copies as d, and let x be

the copy index of 11 and y be the copy index of 12. We compute the connection times

CT(Z1I, x), (12, y)) = CT - (x + y)d between copies of the inbound and outbound

flight legs, as shown in Table 2.7. Rows represent the copy index of the inbound flight

leg, while columns represent the copy index of the outbound flight leg.

For all connections in the table's lower-left triangle including the diagonal, con-

nection times are greater than CT. Each of these entries, then, represent a constraint

in Constraints (2.23). Let

m = argmax{b|CT - bd > MinCT, b E N-}
b
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Index -a - -1 0 +1 - +a
-a CT ... CT-(a-1)d CT-ad CT-(a+1)d ... CT-2ad

-1 CT+(a-1)d ... CT CT-d CT-2d ... CT-(a+1)d
0 CT+ad ... CT+d CT CT-d - CT-ad

+1 CT+(a+1)d ... CT+2d CT+d CT ... CT-(a-1)d

+a CT+2ad ... CT+(a+1)d CT+ad CT+(a-1)d ... CT

Table 2.7: Connection times between flight copies

then the total number of constraints in Constraints (2.24) is

1
p = -(2a +

2
1 - m)(2a - m),

and the total number of constraints in Constraints (2.23) is

q = (2a + 1)2 - --(2a + 1 - m)(2a - m).
2

We have:

q - p =(2a + 1)2 - (2a + 1 - m)(2a - m)

>(2a + 1) 2 - (2a + 1)(2a - m)

>(2a + 1)(2a + 1 - 2a + m)

>(2a + 1)(m + 1)

>0.

We, thus, design our re-optimization model to include Constraints (2.24) and

Constraints (2.8) through (2.21).
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2.6 Solution Approach and Computational Expe-

riences

The passenger mix model and the re-optimization model are both implemented in C

using ILOG CPLEX 9.0. Computational experiments are conducted on a workstation

equipped with one Intel Pentium 4 2.8 GHz processor and 1 GB RAM.

For a typical problem in our experiments, the passenger mix model has around

3,000 rows, 9,000 columns, and 20,000 non-zeros after CPLEX preprocessing (see

ILOG, 2003., p. 322-324). The resulting formulation is solved easily, requiring only

seconds of computation time, using the dual-simplex optimization routine in the

CPLEX callable library.

The re-optimization model is solved by calling the mixed integer programming

optimization routine in the CPLEX callable library. To improve tractability of

our branch-and-bound algorithm for the schedule re-optimization model, we replace

branching based on variable dichotomy with branching based on Type I Special Or-

dered Sets for Constraints (2.8) and assign CAP, as weights to each variable flk, (see

ILOG, 2003). Consider one node in the branch-and-bound tree, and suppose that

variables in the cover constraint for flight leg 10, that is,

5flokr-1

kEC(lo) cGn

take value I':*k, (V7 E H, k E C(lo)), and some of these values are fractional. We

compute w= Ekc(lo) EE lok CAP, and partition the set of binary variables flk,

(V7r E , k E C(l 0 )) into two groups, G1 = {fflokCAP, < U,k E C(lo),7r E FI} and

G2 = {flok,1CAP, > U7, k E C(lo), 7r E H}. On one branch in our special ordered set

branching strategy, we impose the following restriction: ZfI1kEG flo k7 = 1; and on

the second branch, we require: ZflokEG2 flokx = 1. Hane et al. (1995) illustrate the

superiority of branching based on Type I special ordered sets over that of branching

on individual variables for fleet assignment problems (although Hane et al. apply a

slightly different method to create G1 and G 2 ). The sizes and solution times of the
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re-optimization model for a typical problem in our experiments are reported in Table

2.8. Instances A and B correspond to the two forecast scenarios introduced in Section

2.7.1.

Instance A Instance B
Num. of rows 16,731 21,262
Num. of columns 389,689 767,763
Num. of nonzeros 1,108,637 2,242,589
Num. of nodes searched 7,250 3,250
Solution time (hours) 10 20
Optimality gap 1.88% 2.34%

Table 2.8: Problem sizes and solution times

2.7 Case Study 1: Daily Schedules

In this section, we demonstrate the potential impact of dynamic airline scheduling,

using data obtained from a major U.S. airline. The airline operates a hub-and-spoke

network with a banked schedule, with about 1000 flights serving about 100 cities

daily.

As a first step of our case study, we transform the banked hub-and-spoke schedule

into a de-peaked daily hub-and-spoke schedule using a deterministic mathematical

model (see Section 3.3). Seven copies of each flight leg are created at -30, -20, -10,

0, +10, +20, and +30 minutes offset from the leg's departure time in the banked

schedule. Our model's objective is to maximize profit while satisfying flight cover

constraints, aircraft balance constraints, aircraft count constraints, and de-peaking

constraints (constraints that limit the number of departure and arrival activities per

minute). We use the resulting de-peaked schedule as our original schedule, over which

we carry out all experiments detailed in this section. The original schedule is a daily

de-peaked schedule with about 300 flights originating from the major hub and the

same number of flights arriving at that hub.

As shown in Table 2.9, the airline operates 7 fleets with two fleet families, namely

{JET2,JET3} and {RJ1,RJ2}. During re-optimization, seven flight copies are created

each at -15, -10, -5, 0, +5, +10, + 15 minutes offset from the original flight times.
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Fleet Type Capacity
JETI 190
JET2 150
JET3 124
JET4 132
RJ1 86
RJ2 50
RJ3 37

Table 2.9: Fleet composition and capacity

2.7.1 Assumptions on Unconstrained Demand and Forecast

Quality

Past research in this field has assumed that unconstrained passenger demands conform

to certain probabilistic distributions. Berge and Hopperstad (1993) assume that the

mean and standard deviation of unconstrained demand is specified by flight leg and

fare class in terms of independent normal distributions truncated at zero. In Bish

et al. (2004), leg demand is considered as independent normal random variables.

The assumption that leg demands are independent is doubtful as is shown in

Kniker (1998) and is inappropriate in our experiments, especially when we emphasize

capturing connecting passengers through flight re-timing. However, it is difficult if

not impossible to define the join probability distribution function of unconstrained

market demands. Instead of making assumptions on the stochastic behavior of un-

constrained market demands and drawing samples from the joint distribution for

our experiments, we obtain unconstrained market demands for each individual day

by running an unconstraining algorithm on observed bookings. Such unconstrained

market demands in each day are treated as a sample from the joint market demand

distribution function.

In our case study, we examine data detailing the airline's operations for one week

indexed as Day 1 (a Sunday) to Day 7 (a Saturday). The cumulative demand curves

for the 7 days and the average cumulative demand curve are shown in Figure 2-11,

while cumulative demand curves as a fraction of total demand are depicted in Figure

2-12. At 21 days prior to departure, about 45 ~ 50% of total passenger demand has
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been realized. The shape of the curve reflects the booking behavior of passengers

on each day: a flat curve indicates that a large portion of the passengers book well

in advance; while a steep curve indicates that a larger portion of the passengers

book close to departure. Day 1 (a Sunday) and Day 7 (a Saturday) have flatter

curves because a large fraction of passengers traveling during the weekend are leisure

travelers who tend to book early (Figure 2-12).

We study the effects of demand uncertainty on the quality of the solutions gen-

erated using our dynamic scheduling approach. We develop bounds on the potential

benefits of dynamic scheduling by conducting experiments in which demand forecasts

are achieved under one of two scenarios, namely:

1. the perfect information scenario in which future passenger demands are assumed

to be known with certainty. Profit improvements estimated under this scenario

provide an upper bound on the potential impact of our dynamic scheduling

approach; and

2. the historical average scenario in which future passenger demands are estimated

using a simple approach that averages historical demand data. Because airlines

typically utilize more sophisticated, and hence more accurate, forecasting tech-

niques, the impacts of dynamic scheduling estimated under this scenario provide

a lower bound on the true impacts.

The quality of forecasts that are generated using average historical demand is

shown in Figure 2-13. Unconstrained demand in Period 2 is depicted on the x-axis

and the corresponding Period 2 demand forecasts derived using historical demand

data are depicted on the y-axis. For perfect forecasts, all dots in these figures lie on

the diagonal.

While Figure 2-13 provides a good visualization of forecast quality, we develop

the following metrics to evaluate forecast quality. We begin by letting D' be the

true value of future demand in any market m and D be the corresponding forecast.

We define deviation for market m as Dn = Df - Dt; absolute deviation for market

m as 1DmI; relative deviation for market m as RDm = (DnD and absolute rela-
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tive deviation for market m as IRDm . Positive deviation in a market indicates that

forecasted demand is an overestimate of true passenger demand, while negative de-

viation indicates that true demand is underestimated. Absolute deviation measures

the distance between estimated and true demand.

We partition markets into 8 groups based on their true market demand. The

range of demands in each group are as follows: 0, (0,5], (5,10], (10,20], (20, 30], (30,

40], (40, 50], and above 50. In Figure 2-14, we show the average absolute deviation

within each market group. Larger average absolute deviation values are observed

as market size grows. In Figure 2-15, we show the average deviation within each

market group. Notably, the average deviation for markets where D' = 0 is always

positive. Moreover, forecasts based on historical averages consistently overestimate

demand for Day 7 (Figure 2-15). We depict the average absolute relative deviation

within each market group in Figure 2-16; and the average relative deviation within

each market group in Figure 2-17. When D' = 0, relative deviation and absolute

relative deviation are undefined and are therefore not reported.
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2.7.2 Results

In this section, we present the results of our experiments. We refer to the scenario with

perfect information regarding future demands as Forecast A, and the scenario with

forecast of future demands estimated using historical averages as Forecast B. Unless

otherwise specified, when we refer to profit increase, increase in revenue, increase

in number of passengers and similar metrics, we are measuring the change over the

static case.

2.7.2.1 Profitability

Table 2.10 shows revenues, costs, and profits for the static case and the dynamic

scheduling cases under Forecasts A and B, and reports the corresponding percentage

changes relative to the static case. Under Forecast A, revenues increase 1-2% in each

of the 7 days, while operating costs do not change significantly. The result is a 4-8%

increase in profitability, or $70-140k daily. The average profit increase is 5.26%, or

$99k daily ($36 million annually). This result, achieved with perfect demand fore-

casts, constitutes an upper bound on the profitability gains achievable with dynamic

scheduling. More modest improvements in revenue and profit are observed under

Forecast B, specifically, a 2.64%, or $50k increase in average daily profit ($18 million

annually) is observed. Arguably, the sophisticated forecasting tools employed by air-

lines result in demand forecasts that are of better quality than those used in Forecast

B. This result achieved with crude demand estimates, then, represents a lower bound

on the profitability potential of dynamic scheduling.

2.7.2.2 Comparison Between Re-Timing and Re-Fleeting

The two dynamic scheduling mechanisms, flight leg re-timing and flight leg re-fleeting,

are examined and compared in this section. Specifically, we study the profit contri-

butions of each, and compare the relative magnitude of their contributions.

Table 2.11 shows the results under Forecast A for dynamic scheduling (that is,

re-fleeting and re-timing both), re-fleeting only, and re-timing only. Let pA(s) be
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Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Average
Static

Revenue 9,058,867 8,018,606 6,870,656 7,363,064 7,946,805 8,333,631 7,176,026 7,823,951
Cost 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789

Profit 3,129,079 2,088,817 940,868 1,433,276 2,017,016 2,403,842 1,246,238 1,894,162
Dynamic scheduling under Forecast A

Revenue 9,217,867 8,136,941 6,934,930 7,446,343 8,037,549 8,457,232 7,263,078 7,927,706
1.76% 1.48% 0.94% 1.13% 1.14% 1.48% 1.21% 1.33%

Cost 5,952,668 5,941,897 5,922,260 5,919,607 5,931,148 5,937,127 5,933,309 5,934,002
0.39% 0.20% -0.13% -0.17% 0.02% 0.12% 0.06% 0.07%

Profit 3,265,199 2,195,045 1,012,670 1,526,736 2,106,401 2,520,105 1,329,769 1,993,704
4.35% 5.09% 7.63% 6.52% 4.43% 4.84% 6.70% 5.26%

Profit incr. 136,120 106,227 71,803 93,461 89,385 116,263 83,531 99,541
Dynamic scheduling under Forecast B

Revenue 9,138,582 8,053,907 6,903,108 7,399,164 7,991,578 8,403,273 7,269,020 7,879,805
0.88% 0.44% 0.47% 0.49% 0.56% 0.84% 1.30% 0.71%

Cost 5,929,631 5,923,936 5,916,015 5,936,996 5,934,338 5,935,877 5,972,766 5,935,651
0.00% -0.10% -0.23% 0.12% 0.08% 0.10% 0.72% 0.10%

Profit 3,208,952 2,129,972 987,094 1,462,168 2,057,239 2,467,397 1,296,254 1,944,154
2.55% 1.97% 4.91% 2.02% 1.99% 2.64% 4.01% 2.64%

Profit incr. 79,873 41,154 46,226 28,893 40,223 63,554 50,016 49,991

Table 2.10: Daily operating results under two forecast scenarios (in dollars)

the profit increase using mechanism s under Forecast A. The first observation is that

PA(re-timing + re-fleeting) > PA(re-timing) + PA(re-fleeting) for all days. The two

mechanisms, then, are synergistic and achieve greater profit gains than the sum of

those achieved by each mechanism individually.

Table 2.12 shows the results under Forecast B for dynamic scheduling, re-fleeting

only, and re--timing only. Let PB(s) be the profit increase using mechanism s under

Forecast B. PB(re-timing +re-fleeting) > PB(re-timing) +PB (re-fleeting) is no longer

true. In fact, in Days 2 and 4, PB(re-timing + re-fleeting) < PB(re-timing). How-

ever, the average profit improvement under dynamic scheduling is still greater than the

sum of that under re-fleeting only and that under re-timing only. Moving from Fore-

cast A to Forecast B, PB(re-time) PA(re-time)l and PB(re-fleet) 5 PA(re-fleet)

are observed. These results are as expected given the deterioration in forecast quality

in Forecast B compared with Forecast A.

Table 2.13 shows the ratio of the profit increase under Forecast B to that under

Forecast A, that is, PB(s)/PA(s) for some s. We conclude that re-fleeting is more

sensitive to forecast quality because PB(re-fleeting)/pA(re-fleeting) is significantly

smaller than PB(re-timing)/PA(re-timing). When re-fleeting is applied alone under

lpB(re-tine) > pA(re-time) by 0.05% for Day 2, which is because we set the optimality GAP in
CPLEX to 0.1%.
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Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Average
Static

Revenue 9,058,867 8,018,606 6,870,656 7,363,064 7,946,805 8,333,631 7,176,026 7,823,951
Cost 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789

Profit 3,129,079 2,088,817 940,868 1,433,276 2,017,016 2,403,842 1,246,238 1,894,162
Dynamic scheduling

9,217,867
1.76%

5,952,668
0.39%

3,265,199
4.35%

136,120

9,109,981
0.56%

5,940,955
0.19%

3,169,027
1.28%
39,948

9,116,276
0.63%

5,929,731
0.00%

3,186,545
1.84%
57,466

8,136,941
1.48%

5,941,897
0.20%

2,195,045
5.09%

106,227

8,056,714
0.48%

5,934,028
0.07%

2,122,686
1.62%

33,869

8,065,954
0.59%

5,929,673
0.00%

2,136,281
2.27%
47,464

6,934,930
0.94%

5,922,260
-0.13%

1,012,670
7.63%

71,803

6,879,294
0.13%

5,925,018
-0.08%

954,275
1.43%
13,408

6,912,824
0.61%

5,929,673
0.00%

983,151
4.49%

42,284

7,446,343 8,037,549
1.13% 1.14%

5,919,607 5,931,148
-0.17% 0.02%

1,526,736 2,106,401
6.52% 4.43%
93,461 89,385

Re-fleeting only
7,392,490 7,971,557

0.40% 0.31%
5,932,752 5,931,862

0.05% 0.03%
1,459,737 2,039,695

1.85% 1.12%
26,462 22,679
Re-timing only

7,413,155 7,973,981
0.68% 0.34%

5,929,673 5,929,789
0.00% 0.00%

1,483,483 2,044,192
3.50% 1.35%
50,207 27,176

8,457,232
1.48%

5,937,127
0.12%

2,520,105
4.84%

116,263

8,365,499
0.38%

5,927,903
-0.03%

2,437,596
1.40%

33,754

8,375,223
0.50%

5,929,673
0.00%

2,445,551
1.74%

41,709

Comparison between re-fleeting and re-timing under

7,263,078
1.21%

5,933,309
0.06%

1,329,769
6.70%
83,531

7,213,944
0.53%

5,941,608
0.20%

1,272,336
2.09%
26,098

7,219,623
0.61%

5,929,615
0.00%

1,290,008
3.51%
43,770

Forecast

7,927,706
1.33%

5,934,002
0.07%

1,993,704
5.26%

99,541

7,855,640
0.41%

5,933,447
0.06%

1,922,193
1.48%
28,031

7,868,148
0.56%

5,929,689
0.00%

1,938,459
2.34%

44,297

A (in dol-

Forecast B, there are two days (Days 2 and 3) when profits actually decline.

Examining Table 2.11 and Table 2.12, it is observed that PA(re-timing) > PA(re-fleeting)

and PB(re-timing) > PB(re-fleeting) for all days. The profit increase when only re-

timing is allowed is greater than that when only re-fleeting is allowed. This is because:

1) all flights can have the potential to be re-timed; however, not all flight legs can

be re-fleeted; 2) under re-fleeting, the set of possible connecting itineraries remain

unchanged. Re-timing can create new itineraries to increase the schedule's ability to

serve a broader set of passenger demands, thus improving the ability to capture more

high fare passengers and/or capture more passengers to fill empty seats.

In Table 2.14, we report the statistics about increases in revenue and number of

passengers when re-timing and re-fleeting are applied alone under Forecast A. Results

for Forecast A are presented because they are not complicated by the effect of forecast

quality on re-timing and re-fleeting decisions, and thus clearly demonstrating the

behavior of the two mechanisms. The first two rows show the increase in the numbers

68

Revenue

Cost

Profit

Profit incr.

Revenue

Cost

Profit

Profit incr.

Revenue

Cost

Profit

Profit incr.

Table 2.11:
lars)



Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Average
Static

Revenue 9,058,867 8,018,606 6,870,656 7,363,064 7,946,805 8,333,631 7,176,026 7,823,951
Cost 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789

Profit 3,129,079 2,088,817 940,868 1,433,276 2,017,016 2,403,842 1,246,238 1,894,162
Dynamic scheduling

Revenue 9,138,582 8,053,907 6,903,108 7,399,164 7,991,578 8,403,273 7,269,020 7,879,805
0.88% 0.44% 0.47% 0.49% 0.56% 0.84% 1.30% 0.71%

Cost 5,929,631 5,923,936 5,916,015 5,936,996 5,934,338 5,935,877 5,972,766 5,935,651
0.00% -0.10% -0.23% 0.12% 0.08% 0.10% 0.72% 0.10%

Profit 3,208,952 2,129,972 987,094 1,462,168 2,057,239 2,467,397 1,296,254 1,944,154
2.55% 1.97% 4.91% 2.02% 1.99% 2.64% 4.01% 2.64%

Profit incr. 79,873 41,154 46,226 28,893 40,223 63,554 50,016 49,991
Re-fleeting only

Revenue 9,083,826 8,014,105 6,861,061 7,361,464 7,953,547 8,356,088 7,193,072 7,831,880
0.28% -0.06% -0.14% -0.02% 0.08% 0.27% 0.24% 0.10%

Cost 5,933,199 5,931,027 5,920,451 5,920,567 5,932,015 5,930,458 5,943,515 5,930,176
0.06% 0.02% -0.16% -0.16% 0.04% 0.01% 0.23% 0.01%

Profit 3,150,627 2,083,078 940,610 1,440,897 2,021,532 2,425,629 1,249,557 1,901,704
0.69% -0.27% -0.03% 0.53% 0.22% 0.91% 0.27% 0.40%

Profit incr. 21,548 (5,739) (258) 7,622 4,516 21,787 3,319 7,542
Re-timing only

Revenue 9,113,048 8,067,139 6,909,084 7,396,036 7,972,271 8,359,889 7,214,381 7,861,693
0.60% 0.61% 0.56% 0.45% 0.32% 0.32% 0.53% 0.48%

Cost 5,929,789 5,929,789 5,929,789 5,929,673 5,929,673 5,929,731 5,929,673 5,929,731
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Profit 3,183,259 2,137,351 979,295 1,466,364 2,042,599 2,430,158 1,284,709 1,931,962
1.73% 2.32% 4.08% 2.31% 1.27% 1.09% 3.09% 2.00%

Profit incr. 54,180 48,533 38,428 33,088 25,583 26,316 38,471 37,800

Table 2.12: Comparison between re-fleeting and re-timing under Forecast B (in dol-
lars)

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Average
pA(re-fleeting) 39,948 33,869 13,408 26,462 22,679 33,754 26,098 28,031
PB(re-fleeting) 21,548 -5,739 -258 7,622 4,516 21,787 3,319 7,542

PB (re-fleetingi/PA (re-fleeting) 53.9% -16.9% -1.9% 28.8% 19.9% 64.5% 12.7% 26.9%
PA(re-timing) 57,466 47,464 42,284 50,207 27,176 41,709 43,770 44,297
PB (re-timing) 54,180 48,533 38,428 33,088 25,583 26,316 38,471 37,800

PB(re-timing)/PA(re-timing) 94.3% 102.3% 90.9% 65.9% 94.1% 63.1% 87.9% 85.3%

Table 2.13: The ratio of profit increase under Forecast B to that under Forecast A
when each mechanism is applied alone

of nonstop passengers and in nonstop revenues for each day compared to the static

case. The next two rows show the increase in the numbers of connecting passengers

and in connecting revenues in each day compared to the static case. We see that

re-timing primarily captures connecting passengers.

The rest of the rows in this table analyze connecting passengers in detail. When

re-timing is allowed, all connecting itineraries can be categorized into three groups:

* Itinerary Group A: these connecting itineraries are infeasible in the original

schedule, but become feasible after re-timing;
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" Itinerary Group B: these connecting itineraries are feasible in the original sched-

ule, but become infeasible after re-timing;

* Itinerary Group C: these connecting itineraries are feasible before and after

re-timing.

Rows 5 and 6 in this table report the numbers and associated revenues of connect-

ing passengers traveling on Itinerary Group A after re-timing in each day. Rows 7

and 8 report the numbers and associated revenues of connecting passengers traveling

on Itinerary Group B in the static case in each day. These passengers are not able

to travel on the re-timed schedule and therefore are spilled or recaptured on alter-

native itineraries. Rows 9 and 10 report the increase in the numbers and associate

revenues of connecting passengers traveling on Itinerary Group C. It is seen that be-

cause flight re-timing is able to create new itineraries to reach a larger set of passenger

demands, it is able to change the revenue composition of connecting passengers and

serve passengers with high revenue gains. On average, a larger amount of revenue

from connecting passengers traveling on Itinerary Group A are captured than are

lost through eliminating itineraries in Itinerary Group B and spilling passengers in

Itinerary Group C. Markets with high revenue potential are served by reducing or

eliminating service to markets with low revenue potential.

Another interesting result deserving attention is that pB(re-time) > PA(re-fleet)

for all days except Day 6, implying that the profit improvement when re-timing alone

is applied under Forecast B is larger than that when re-fleeting alone is applied under

Forecast A.

In summary, from our experiments, we find that re-timing is less sensitive than

re-fleeting to forecast quality; and re-timing contributes more than re-fleeting to the

potential benefits of dynamic scheduling.
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Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Average
Re-feet Re-time Re-fleet Re-time Re-fleet Re-time Re-fleet Retime Rf Re-time Re-fleet Re-time Re-fleet Re-time Re-fleet Re-time

only only only only only only only only only only only only only only only only
Incr. in num. of non- 221 98 154 18 49 22 80 27 156 -12 76 22 32 6 110 26
stop pax
Incr. in nonstop rev. 34,705 12,531 17,040 115 4,247 1,242 10,087 3,299 16,883 -766 7,639 3,879 4,857 -946 13,637 2,765
Incr. in num. of con- 55 202 146 265 61 204 120 262 36 174 146 222 190 215 108 221
necting pax
Incr. in connecting rev. 16,409 44,877 21,069 47,233 4,391 40,926 19,339 46,792 7,870 27,942 24,229 37,714 33,061 44,542 18,052 41,432
Num. of connecting pax - 775 - 957 - 714 - 866 - 861 - 897 - 640 - 816
on Itin. A
Associated rev. - 155,813 - 174,496 - 127,481 - 159,286 - 148,771 - 165,141 - 121,638 150,375
Num. of connecting pax - 334 - 358 - 403 - 383 - 376 - 391 - 244 - 355
on Itin. B
Associated rev. - 63,602 - 62,182 - 60,674 - 63,370 - 70,359 - 69,192 - 38,875 61,179
Change in num. of con- - -238 - -334 - -107 - -220 - -311 - -284 - -181 - -239
necting pax on Itin. C
Associated rev. - -47,334 - -65,081 - -25,881 - -49,124 - -50,469 - -58,236 - -38,221 - -47,764

Table 2.14: Passenger and revenue (in dollars) statistics under Forecast A when re-fleeting and re-timing are applied alone



2.7.2.3 Sensitivity to the Number of Re-Timed Flights

In our dynamic scheduling approach, schedule adjustments are made at each re-

optimization point and finalized after the last re-optimization. In our case, the last

(and the only) re-optimization point is 21-days prior to the departure day. Because

schedule changes can raise many operational concerns (as detailed in Section 2.9.1),

our goal is to determine a balance that minimizes the number of schedule changes

while maximizing the benefits of changes. We examine the sensitivity of our results

as we limit the number of allowed schedule changes, particularly the number of re-

timed flights. We do not investigate the sensitivity of the solution quality to limits on

the number of fleeting changes because re-fleeting within fleet families requires fewer

operational changes.

Experiments are conducted under Forecast A when the number of re-timed flights

is constrained. The number of re-fleeted flights is unrestricted. In Figure 2-18, we

show the profit increase as a function of the total number of re-timed flights. In

Figure 2-19, we show the profit achieved as a fraction of that achievable when all

flight legs are allowed to be re-timed. No incremental profit increase is observed

when the number of re-timed flights is allowed to exceed 300, therefore the maximum

value on the x-axis of these figures is set to be 300. All curves are concave functions

of the number of re-timed flights. The case when the number of re-timed flights is

restricted to zero is equivalent to the re-fleeting only case. We observe that marginal

profit improvements decrease as the number of re-timed flights increases; and profit

improvement is nearly fully realized when the number of re-timed flights is 100. Hence,

even re-timing a moderate number of the flight legs allows us to reap nearly all of the

potential benefits.

Table 2.15 shows the profit increase when we limit the number of re-timed flights

to 100 under Forecast B. The profit increases associated with limiting the number

of re-timed flights are comparable to those when there is no limit. Interestingly, in

Days 5, 6 and 7, larger profit improvements are achieved when limits are placed on

the number of re-timed flights. It shows that when forecast is imperfect, having less
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re-optimization flexibility does not necessarily lead to less profit increase. Had we

conducted the experiments with the number of re-timed flights restricted between 0

and 100, we do not expect to see concave functions similar to those shown in Figure

2-18 and Figure 2-19.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Average
Static case

Revenue 9,058,867 8,018,606 6,870,656 7,363,064 7,946,805 8,333,631 7,176,026 7,823,951
Cost 5.,929,789 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789 5,929,789
Profit 3.,129,079 2,088,817 940,868 1,433,276 2,017,016 2,403,842 1,246,238 1,894,162

Dynamic scheduling under Forecast B (No limit on num. of re-timed flights)
Revenue 9,138,582 8,053,907 6,903,108 7,399,164 7,991,578 8,403,273 7,269,020 7,879,805
Cost 5,929,631 5,923,936 5,916,015 5,936,996 5,934,338 5,935,877 5,972,766 5,935,651
Profit 3.,208,952 2,129,972 987,094 1,462,168 2,057,239 2,467,397 1,296,254 1,944,154
Profit incr. 2.55% 1.97% 4.91% 2.02% 1.99% 2.64% 4.01% 2.64%

Dynamic scheduling under Forecast B (Num. of re-timed flights < 100)
Revenue 9,146,525 8,052,977 6,897,193 7,400,498 7,991,952 8,408,739 7,256,829 7,879,245
Cost 5,964,639 5,933,586 5,918,713 5,948,519 5,927,238 5,929,069 5,959,104 5,940,124
Profit 3.,181,886 2,119,391 978,480 1,451,980 2,064,714 2,479,670 1,297,725 1,939,121
Profit incr. 1.69% 1.46% 4.00% 1.30% 2.36% 3.15% 4.13% 2.37%

Table 2.15: ]IProfit increase when limiting the number of re-timed flights under Forecast
B

2.7.2.4 Properties of New Connecting Itineraries

One of the benefits of flight re-timing is to create new connecting itineraries serving

markets with greater than expected demand. In Figure 2-20, we show two types

of itineraries that re-timing can create. In the figure, passengers cannot connect

between the inbound flight and outbound flights a and d because connection times

are either too short or too long. We refer to these as infeasible connections. When

flight leg a is re-timed to b and d is re-timed to c, two new connections are created.

We classify connecting itineraries enabled by schedule re-optimization as either Type I

connecting itineraries or Type II connecting itineraries. Type I connecting itineraries

are those that were infeasible prior to re-optimization because their connection times

were less than the minimum allowed. Type II connecting itineraries are those whose

connection times before re-optimization exceeded the maximum allowed. Passengers

traveling on Type I (or Type II) connecting itineraries are called Type I (or Type II)

passengers. It is more desirable to create Type I itineraries to serve Type I passengers,

because Type II itineraries have much longer connection times and their salability is

poor. In Table 2.16, we show the number of Type I and Type II passengers and the
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average connection time for each type under Forecast A and Forecast B. Although no

explicit incentive is given in our re-optimization model to create Type I itineraries and

accommodate Type I passengers, Table 2.16 shows that about 80% of the passengers

traveling on newly created itineraries are of Type I under both forecast scenarios,

with an average connecting time of 30-34 minutes. The reason why the majority of

passengers are Type I passengers is because when protecting connecting itineraries

booked by previous passengers, inbound flights are more likely to be moved earlier,

while outbound flights are more likely to be moved later. When an inbound flight

is moved earlier, it creates Type I connecting itineraries; when an outbound flight is

moved later, it also creates Type I connecting itineraries. The consequence is that

more Type I itineraries are created and therefore, we serve more Type I passengers.

Forecast A Forecast B
Num. of pax Pct. Avg. conn. time Num. of pax Pct. Avg. conn. time

Type I 544 85.5% 32.4 514 74.6% 33.5
Day 1 Type II 92 14.5% 175.2 175 25.4% 144.7

Day 2 Type I 370 92.2% 31.0 782 76.5% 34.3
Type II 31 7.8% 175.4 240 23.5% 150.9
Type I 316 84.3% 30.5 570 73.9% 34.4

Day 3 Type II 59 15.7% 175.9 201 26.1% 164.3
Type I 277 78.7% 31.0 581 83.4% 33.1
Type II 75 21.3% 174.9 116 16.6% 174.2
Type I 534 84.4% 31.9 651 84.1% 33.6
Type II 99 15.6% 176.5 123 15.9% 175.6
Type I 449 85.1% 31.3 394 76.5% 33.7

Day 6 Type II 78 14.9% 174.4 121 23.5% 170.5
Type I 237 64.6% 31.4 674 91.9% 32.8

Day 7 Type II 130 35.4% 174.5 60 8.1% 174.4

Table 2.16: Statistics on Type I and Type II passengers (MinCT = 25 minutes and
MaxCT = 180 minutes)

2.7.3 Quality of the Original Schedule

As stated in the beginning of Section 2.7, the original schedule used in our experiments

is generated by an optimization model. In this section we investigate the quality of the

original schedule and analyze whether the benefits of dynamic scheduling is resulted

from a poorly designed original schedule, particularly, a poorly designed timetable.

We examine flight re-timing decisions under perfect information for the 7 days.

Perfect information is used because re-timing decisions under perfect information

indicate there may be better flight times for those flight legs. If a flight leg is re-
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timed at least 5 out of 7 days, it is classified as frequently re-timed. If the re-timing

decisions for a flight leg occurs in the same direction (that is, earlier or later than the

original schedule) for all days, these re-timing decisions are called consistent. When

a flight leg is frequently and consistently re-timed, it is likely that this flight is poorly

scheduled in the original schedule. The benefits of employing dynamic scheduling

techniques for this flight leg could be minimal if this flight leg had been optimally

scheduled in the original schedule. In Table 2.17, we report the re-timing decisions

for the frequently re-timed flight legs in our experiments. In the first row, we report

that Flight leg 185 is postponed by 10 minutes on 6 out of the 7 days and by 15

minutes in one day. Flight leg 185 is clearly frequently and consistently re-timed, and

hence, it might be poorly positioned in the original schedule. If, however, a flight leg

is frequently, but not consistently re-timed (for example, Flight legs 50 and 216), we

do not view it as poorly placed in the original schedule. Instead, variations in daily

demand require it to be scheduled differently on a day-to-day basis.

Table 2.17 shows the 22 frequently re-timed flights, that is, re-timed at least 5

times. Of these 22 flights, 7 are moved inconsistently. In the worst case, then, the

schedule for 15 flights, or less than 2% of the flight legs, in the original schedule is not

optimal. Given that changes to one flight leg's schedule impacts the set of feasible

schedules for a set of other flight legs, it is likely that alternative original schedules will

similarly have some small percentage of flight legs that will be consistently rescheduled

under dynamic scheduling approaches. We conclude, then, that our potential is very

limited to improve the original schedule.
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Flight # Flight Detail -15 -10 -5 0 +5 +10 +15 consistent?
185 SJC 1220 - HUB 1410 6 1
470 MCI 900 - HUB 951 5 2
610 YYC 725 -+ HUB 937 1 6
68 HUB 1655 -- SJC 1844 1 6
171 HUB 1436 -+ DFW 1856 1 1 4 1
234 BUR 1525 - HUB 1650 6 1
263 HUB 1425 - ABQ 1635 1 1 5
455 STL 830 -4 HUB 951 4 1 1 1 N
512 HUB 1439 - MSP 1953 1 4 2
600 HUB 755 - BUR 918 6 1
645 SAN 2000 - HUB 2122 1 2 2 2
50 HUB 925 -- ATL 1622 1 3 2 1 N
168 DTW 755 - HUB 900 2 5
195 LAS 650 -4 HUB 804 4 2 1 N
216 SNA 1000 -4 HUB 1119 1 3 2 1 N
220 SNA 1200 - HUB 1320 2 2 3
235 HUB 1812 - ABQ 2022 1 1 2 3 N
326 LAS 1156 - BOS 2012 3 2 2 N
417 IAH 600 -+ HUB 644 5 2
559 PDX 700 -+ HUB 935 1 2 4 N
605 SNA 1715 HUB 1837 4 1 2
709 EUG 555 - HUB 825 5 2 1

Table 2.17: Re-timing decisions for frequently re-timed flights

76



8

c0

8

CL

0
50 100 150 200 250

.......... - Day 1
Day 2
Day 3

-o- - - Day 4
--- - Day 5

- Day 6
-- Day 7

300

Figure 2-18: Profit increase as a function of total number of re-timed flights (Forecast
A)

10

4)

0.

U)cc

CL
'0

8 .... -- --

-0----

Day 1
Day 2
Day 3
Day 4
Day 5
Day 6
Day 7

0 50 100 150 200 250 300

Figure 2-19: Achieved profit
(Forecast A)

increase as a function of total number of re-timed flights

77

// -

-. .. - -- ----... . .. . .=--

........ -....................' .......

g..--

0 ............................ .................. .
0 -

0

0



MaxCT

\Type I
MinCT s

Typel

Figure 2-20: Two types of new connecting itineraries

78

a b d



2.8 Case Study 2: Weekly Schedules

In the previous section, a daily repeatable schedule is assumed in which the same

flight schedule is repeated each day. The advantage of this assumption is reduced

computational requirements and ease of implementation operationally. Given this

daily schedule, dynamic scheduling can then be applied to adjust each day's schedule

in response to passenger demand variations. The question we pose in this section is

whether or not a weekly schedule, that is, one in which a different schedule is designed

for each day of the week, is adequate to capture demand variations and eradicate the

need for dynamic scheduling.

2.8.1 Schedule Generation

In Figure 2-21, we show the variations in daily flight load factors for a major U.S.

airline in a 4-week period, depicting the variability in daily passenger demands. For

each day, the mean load factor and several representative quantiles of the load factor

histogram are shown. It is seen that the variations in load factors follow a weekly

pattern. Clearly, higher revenues can be realized by flying a different schedule tailored

to each day of the week, that is, a weekly flight schedule. A weekly schedule can be

developed by expanding the daily time-lines of the time-space network to weekly time-

lines. A weekly schedule design model, however, with its extended size, is much harder

to solve than a daily schedule design model. In this thesis, we do not tackle the difficult

problem of weekly schedule design, but rather generate a schedule that incorporates

our knowledge about day-of-week demand variations and by solving the daily schedule

design model (see Section 3.3) for each day of the week, using average demands for

that day. We generate a Sunday schedule based on average Sunday demands, a

Monday schedule based on average Monday demands, - - -, and a Saturday schedule

based on average Saturday demands. These seven daily schedules do not constitute a

weekly schedule because each day's schedule is constructed independently and there

is no guarantee that aircraft balance will be preserved from one day to the next.

Notwithstanding this, the resulting daily schedules provide an approximation (albeit
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Figure 2-21: Daily mean load factor and quantiles of the load factor histogram for a
major U.S. airline in a 4-week period. Days 1, 8, 15, and 22 correspond to Saturdays

an overly optimistic one) of the ability of a weekly schedule to capture day-of-week

demand variations. If dynamic scheduling can still improve the economics of daily

schedules constructed in this manner, it should have at least as great a benefit when

applied to a weekly schedule.

In our analysis, we select a specific day of week, namely, Monday, and develop a

daily schedule based on average Monday demand. Then, we evaluate the effects of

applying dynamic scheduling to seven Mondays (indexed as W1, W2, ---, W7) in

seven consecutive weeks. Although we do not perform tests for the remaining days

of the week, we expect that the results would be similar.

2.8.2 Unconstrained Demand and Forecast Quality

We treat unconstrained demand and forecast quality in the same way as detailed in

Section 2.7.1. In Figure 2-22, we depict the average cumulative demand curve and the
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cumulative demand curves for the 7 experimental Mondays. We observe that there

are variations in total unconstrained demand, despite the fact that these seven days

are all the same day of the week. In Figure 2-23, we show cumulative demand curves

as a fraction of total demand in each day. Not surprisingly, we note that the curves

are more similar in Figure 2-23 than those for all days of one week in Figure 2-12.

Similar to our previous case study, two forecast scenarios are considered: 1) the

perfect information scenario; and 2)the historical average scenario. In Figures 2-24

through 2-2S, we show the quality of the forecasts generated from average historical

demand. It is worth noting that the shapes of the curves in Figures 2-25 through

2-28 are more uniform than their counterparts in the previous case study (Figures

2-14 through 2-17).

Examining Figures 2-26 and 2-28, all curves are below zero for market group (0,5],

(5,10], and (40,50] and above 50. It may seem odd, because there should be at least

one curve above zero, however, this is because the historical average demands are

averaged over twelve Mondays, but we only show seven of them in the figures, that is,

the we only show the seven curves corresponding to the seven Mondays we perform

experiments on.
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2.8.3 Results

In this section, we present the results of our experiments. Based on the results

presented in Section 2.7, we limit the number of re-timed flights to 100 in all of the

following experiments.

In Table 2.18, we show, for each day, the revenues, costs, and profits associated

with the static schedule, and the dynamic scheduling cases under the two forecast

scenarios. The benefit of dynamic scheduling remains significant. Under Forecast A,

revenue goes up by 1.41%, costs increase by 0.28%, and profit improves by 4.97%, or

$92k daily ($33 million annually) on average. Under Forecast B, revenue increases

by 0.77%, costs increase by 0.29%, and profit improves by 2.28%, or $42k daily

($15 million annually). We believe that it is likely that the sophisticated forecasting

engines used by airlines will result in demand forecasts of better quality than Forecast

B, and hence, the results under Forecast B should represent a lower bound on the

profitability potential of dynamic scheduling when applied to this particular day of

week under weekly schedules.

W1 W2 W3 W4 W5 W6 W7 Average
Static

Revenue 7,825,855 7,758,300 8,006,721 8,079,302 7,778,746 7,178,135 7,729,064 7,765,160
Cost 5,905,362 5,905,362 5,905,362 5,905,362 5,905,362 5,905,362 5,905,362 5,905,362

Profit 1,920,493 1,852,938 2,101,359 2,173,940 1,873,385 1,272,774 1,823,702 1,859,799
Dynamic scheduling under Forecast A

Revenue 7,939,360 7,863,389 8,122,944 8,203,797 7,878,834 7,272,242 7,839,553 7,874,303
1.45% 1.35% 1.45% 1.54% 1.29% 1.31% 1.43% 1.41%

Cost 5,918,295 5,924,856 5,925,398 5,932,377 5,912,754 5,917,284 5,923,882 5,922,121
0.22% 0.33% 0.34% 0.46% 0.13% 0.20% 0.31% 0.28%

Profit 2,021,065 1,938,532 2,197,547 2,271,420 1,966,081 1,354,958 1,915,672 1,952,182
5.24% 4.62% 4.58% 4.48% 4.95% 6.46% 5.04% 4.97%

Profit incr. 100,572 85,594 96,188 97,480 92,697 82,185 91,970 92,384
Dynamic scheduling under Forecast B

Revenue 7,879,739 7,820,891 8,049,311 8,114,287 7,848,838 7,249,730 7,809,586 7,824,626
0.69% 0.81% 0.53% 0.43% 0.90% 1.00% 1.04% 0.77%

Cost 5,915,842 5,918,301 5,915,032 5,915,032 5,922,767 5,920,097 5,949,482 5,922,364
0.18% 0.22% 0.16% 0.16% 0.29% 0.25% 0.75% 0.29%

Profit 1,963,897 1,902,590 2,134,279 2,199,255 1,926,072 1,329,634 1,860,104 1,902,262
2.26% 2.68% 1.57% 1.16% 2.81% 4.47% 2.00% 2.28%

Profit incr. 43,405 49,652 32,920 25,315 52,687 56,860 36,402 42,463

Table 2.18: Daily operating results under two forecast scenarios (in dollars)

86



2.8.4 Quality of the Original Schedule

We present the re-timing decisions of frequently re-timed flight legs in Table 2.19.

27 flight legs are frequently re-timed, among which 3 are not consistently re-timed.

Compared to Table 2.17, we have slightly more flight legs frequently re-timed in this

experiment, but the number still represents only about 2% of the total number of

flight legs. For reasons stated in the previous section, we believe that our estimated

profit improvements result principally from enhancements possible through dynamic

scheduling rather than from an inadequate original schedule.

Flight # Flight detail -15 -10 -5 0 5 10 15 Consistent?
271 LAS 1210 - HUB 1324 7
276 HUB 1738 - DEN 2025 2 2 3
512 HUB 1439 - MSP 1953 3 4
167 LAS 2232 -- DTW 2927 1 1 3 2
174 ONT 720 -+ HUB 834 1 3 3
185 SJC 1220 -+ HUB 1410 1 3 3
339 HUB 1346 - ONT 1453 1 6

606 HUB 1955 - TUS 2037 4 2 1
719 HUB 1258 - FAT 1432 2 1 1 1 2 N
748 SBA 1220 -> HUB 1353 6 1
50 HUB 925 - ATL 1622 2 3 2
111 PHL 1335 HUB 1525 5 2
215 HUB 805 SNA 924 4 1 2
216 SNA 1000 -* HUB 1119 4 2 1 N
231 HUB 1804 - ORD 2327 2 3 2
270 HUB 1002 -- LAS 1115 1 4 2
293 LAS 1146 -> SMF 1317 2 3 2
355 HUB 830 - MCO 1543 2 5
378 ONT 710 -> HUB 822 2 3 2
455 STL 810 -* HUB 931 5 2
479 PDX 1906 -- LAS 2113 5 2
571 LAS 0 - GEG 222 2 1 2 2
604 HUB 1431 -> SNA 1546 2 2 3
627 SLC 1850 - HUB 1928 5 2
637 HUB 1940 -> FAT 2115 2 3 2
783 HUB 1625 BIL 1955 2 5
814 YUM 710 -* HUB 810 2 1 2 1 1 N

Table 2.19: Re-timing decisions for frequently re-timed flights

2.9 Other Issues

In this section, we review two important issues with dynamic scheduling. One is the

impact dynamic scheduling would have on aircraft maintenance routing, crew schedul-

ing, and passenger itineraries; the other is the applicability of dynamic scheduling to

other airlines..
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2.9.1 Effects of Dynamic Scheduling on Aircraft Maintenance

Routing, Crew Scheduling, and Passenger Itineraries

Changes to a published schedule impact several elements of the airline's operations,

including aircraft maintenance routing, crew schedules, and passenger itineraries. The

objective of aircraft maintenance routing is to develop a maintenance feasible route

for each aircraft, that is, a sequence of flight legs visiting maintenance stations at

regular intervals to ensure adequate opportunities for maintenance checks. Similarly,

the goal of crew scheduling is to develop for each crew member, a sequence of flight

legs to be operated by that crew. This sequence must satisfy numerous work rules

defined by government agencies and collective bargaining agreements between labor

and the airline. If maintenance routes and crew schedules are developed prior to

the re-optimization point, changes in flight departure and arrival times can alter

aircraft turn times and crew connection times, rendering the aircraft routes and crew

schedules infeasible. Moreover, changes in aircraft fleeting, while having no impact

on crew schedules, can require changes in the routes of the swapped aircraft to ensure

that all affected aircraft have sufficient opportunities for maintenance. Although we

do not conduct experiments to quantify the effects of dynamic scheduling on crews and

maintenance routing, Berge and Hopperstad (1993) report that determining revised,

feasible aircraft maintenance routing solutions after schedule changes is typically not

difficult. If altering aircraft routing and crew scheduling is too onerous or expensive,

the re-optimization point can be moved earlier to precede the release of the aircraft

and crew plans. It is worth noting that airlines, who desire the ability to alter plans

closer to the date of departure, are now moving toward delaying the release of aircraft

routing and crew pairing plans.

Notification of schedule changes is necessary for nonstop passengers whose flights

are moved earlier and for connecting passengers whose flights departing the origin

city are moved earlier. This can be accomplished in several different ways, for ex-

ample, automated emails, automated text messages, and automated phone calls over

conventional telephone networks or using voice-over-internet protocol (VoIP).
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2.9.2 Applicability of Dynamic Scheduling to Other Airlines

In this chapter, we conduct experiments for a major U.S. hub-and-spoke carrier and

demonstrate that dynamic airline scheduling effectively improves profitability. In this

section, we explore the question of whether or not dynamic scheduling can achieve

similar improvements when applied to other airlines. We begin by identifying several

conditions that are critical to the success of dynamic airline scheduling, and then

show that these conditions are easily satisfied by major airlines in the U.S.. Hence,

we conclude that that similar results are obtainable for other major airlines.

The underlying driver of the need for dynamic scheduling is the existence of im-

balances in load factors across flight legs. If load factors are high on some flight legs

and low on others, dynamic airline scheduling is an effective tool for making schedule

adjustments that move excess capacity in some markets to markets where there is a

shortage of capacity. If most of the flight legs have low load factors, there is no need

to carry out dynamic scheduling. Similarly, if all flight legs are highly capacitated,

dynamic airline scheduling provides little if any benefit. Recall that in Figure 1-1, we

show the histogram of load factors for one major U.S. airline to illustrate imbalanced

load factors over an airline's flight schedule. In Figure 2-29 we provide load factor

histograms for two other major U.S. airlines, further demonstrating the load factor

imbalance phenomenon. The bars in the figures correspond to the percentage of flight

legs with associated load factors falling in the selected interval (y-axis on the left),

and the lines correspond to the cumulative percentages (y-axis on the right). In the

figure on the top, we observe that about 40% of the flight legs have toad factors below

0.60, while at the same time about 20% of the flight legs have load factors of at least

0.90. In the figure on the bottom, the load factors on more than 20% of the flights

are below 0.60, while the load factors of 30% of the flights are above 0.90. From these

examples, we conclude that dynamic airline scheduling has the potential to make a

difference in other airlines.

Next, we discuss factors that can affect the applicability of the two dynamic

scheduling mechanisms. The prerequisite for performing flight leg re-fleeting is to
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have several fleet families containing aircraft with different seating capacity, and at

least two of these aircraft on the ground at the same time. This condition is easily

satisfied by most airlines in the U.S. because they typically operate at least one fleet

family at their hub airports.

Although flight leg re-timing can have the added benefit of creating more re-

fleeting opportunities, its primary contribution is to adjust the number of seats to

match demand. In order to apply flight leg re-timing effectively, it is necessary to

have:

A de-peaked busy hub For maximal effectiveness, flight leg re-timing requires a

relatively dense flight schedule with a de-peaked hub. A hub with a perfectly

banked schedule will not have flight leg re-timing opportunities that lead to

new connecting itineraries. Moreover, flight leg re-timing is ineffective in de-

peaked hubs at which the number of arriving and departing flight legs is small.

In our experiments, the number of departures and arrivals at hub airports is

limited to five per 10-minute interval. Flint (2002) reports that when American

Airlines de-peaked its hub in Chicago (ORD), the number of departures and

arrivals at hubs were limited to one per minute, that is ten per 10-minute

interval. In general, major U.S. airlines have 300 to 1000 flights inbound and

outbound at their busiest hub. These hubs remain busy after de-peaking and

provide sufficient opportunity for flight leg re-timing to create new connecting

itineraries.

A large percentage of connecting passengers at the hub Having a large num-

ber of passengers connecting at the hub is vital to the success of flight leg re-

timing. In Table 2.20, we report statistics related to connecting passengers on

domestic itineraries at the 30 largest airports in the U.S.. For a given airport,

we let x be the number of passengers with itineraries originating from or ter-

minating at this airport and y be the number of connecting passengers at this

airport. In the second column, we report the percentage of connecting passen-

gers at the airport, that is, y/(x + y); and in the third column, we report the
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percentage of seats sold to connecting passengers for all flight legs to and from

the airport, that is, 2y/(x + 2y). Connecting passengers account for a large

percentage of passengers at many of these airports: 15 airports have more than

50% of all passengers connecting at the airport, and 27 airports have more than

50% of all sold seats on flight legs to and from the airport occupied by connect-

ing passengers. In Table 2.21, we report the same information for each major

U.S. airline at its hubs or major airports. All airlines except Alaska Airlines

and Southwest Airlines have at least one or more airports at which a substantial

percentage of the passengers are connecting.

Airport Pct. of connecting Pct. of seats sold to Rank
code passengers connecting passengers by Size
MEM 73.7% 84.9% 27
CLT 66.1% 79.6% 15
CVG 64.7% 78.6% 22
ORD 63.0% 77.3% 1
IAD 62.1% 76.6% 16
DEN 59.4% 74.6% 5
LAS 58.1% 73.5% 14
P HX 57.8% 73.3% 7
ATL 56.8% 72.5% 2
MCIO 56.2% 71.9% 19
DFW 55.9% 71.7% 4
DTW 54.9% 70.9% 10
IA H 54.8% 70.8% 6
MS-P 53.9% 70.0% 8
SL C 51.2% 67.8% 20
DCA 44.8% 61.9% 21
P[HL 44.0% 61.1% 17
LAX 43.3% 60.4% 3
JFK 41.4% 58.6% 23
TPA 40.6% 57.7% 29
EWR 40.5% 57.7% 9
SEA 38.3% 55.4% 11
SNA 38.3% 55.4% 30
HNL 36.9% 53.9% 18
FLL 35.2% 52.0% 25
LGA 33.4% 50.0% 13
P DX 33.3% 50.0% 28
SAN 32.4% 48.9% 24
SF() 26.8% 42.3% 12
130S 16.7% 28.6% 26
Source: U.S. D.O.T. DB1BMarket database, fourth quarter, 2005.

Table 2.20: Connecting passenger statistics on domestic itineraries at the 30 largest
U.S. airport based on number of domestic passengers enplaned

91



2.10 Summary

Dynamic airline scheduling provides a way to manage capacity dynamically to match

fluctuating passenger demand. In this research, we introduce a new mechanism for

dynamic scheduling, namely, flight re-timing. We develop an optimization model that

combines both flight re-fleeting and flight re-timing. We conduct experiments that

demonstrate the significant benefit of dynamic scheduling and the synergy between

flight re-fleeting and re-timing. The estimated profit increase is $36 million annually

when perfect forecast is used in re-optimization. When imperfect forecast is used,

the estimated profit increase remains significant at $18 million annually. Sensitivity

analysis is conducted on the number of re-timed flights per day. It shows that the

full benefit is achieved when a moderate number of flights (10% of the total number

of flights) are re-timed.

The performance of flight re-timing and flight re-fleeting are compared when ap-

plied alone. It is shown that flight re-timing constitutes a larger portion of the total

benefit than flight re-fleeting. We also find that flight re-timing is less sensitive to

forecast quality. When forecasts are imperfect, flight re-timing realizes 85% of the

benefit achieved when forecasts are perfect.

A side study is performed assuming a weekly schedule is in place to account for

day-of-week demand variations. Dynamic scheduling continues to improve schedule

profitability when a weekly schedule is applied. On average, the estimated profit

increase is $32 million when forecasts are perfect and $15 million when forecasts are

imperfect.
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Figure 2-29: Histograms and cumulative percentages of flight load factors for two
major US hub-and-spoke carriers. The figure on the top is based on 2004 data and
the one on the bottom is based on 2003 data. Source: PODS Consortium, ICAT,
MIT (2006)
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Airport Pct. of passengers Pct. of seats sold to
Carrier code changing Planes connecting passengers

DFW 47.5% 64.4%
LAX 12.7% 22.6%

American MIA 11.9% 21.3%
ORD 33.0% 49.6%
SJU 8.6% 15.9%
STL 23.3% 37.8%
ANC 16.4% 28.1%

Alaska PDX 13.9% 24.4%
SEA 19.7% 32.9%
CLE 21.7% 35.6%

Continental EWR 9.0% 16.5%
IAH 40.3% 57.5%
ATL 52.3% 68.7%

Delta CVG 61.9% 76.5%
SLC 46.6% 63.6%

AirTran ATL 40.1% 57.2%
DTW 44.0% 61.1%

Northwest MEM 65.3% 79.0%
MSP 44.8% 61.9%
DEN 41.2% 58.4%
IAD 25.7% 40.9%

United LAX 21.5% 35.4%
ORD 39.4% 56.5%
SFO 22.2% 36.3%

US Airways CLT 65.3% 79.0%

(America West) PHL 30.7% 47.0%
PHX 41.4% 58.5%
BWI 16.6% 28.5%
HOU 18.4% 31.1%

Southwest LAS 12.8% 22.7%
MDW 17.4% 29.6%
PHX 15.7% 27.2%

Source: U.S. D.O.T. DBlBMarket database, fourth quarter, 2005.

Table 2.21: Connecting passenger statistics on domestic itineraries

airlines at hub or major airports
for major U.S.
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Chapter 3

Robust Airline Schedule

De-Peaking

3.1 Introduction

In the previous chapter, we demonstrate the benefits of dynamic airline scheduling,

in which the set of possible dynamic scheduling decisions (re-timing and re-fleeting)

are largely defined by the original schedule. Because some schedules provide limited

opportunities to re-time or re-fleet, an important and challenging research question is

how to design the flight schedule to maximize future dynamic scheduling capabilities.

In this chapter, we address this question in the context of de-peaking an existing

peaked hub-and-spoke schedule. We design robust de-peaking models to produce

schedules that are more responsive, that is, more robust, to variations in demand

when dynamic scheduling is applied.

Robust schedule planning has been increasingly applied in the airline industry.

The objectives are typically either to lessen the impact of disruptions on the sched-

ule; or facilitate repair of the schedule when disruptions occur. Examples of re-

cent research to produce robust plans for the airline industry include: robust crew

scheduling (Shebalov and Klabjan, 2004; Schaefer et al., 2005; Yen and Birge, 2006),

robust fleet assignment (Rosenberger et al., 2004; Smith, 2004), robust aircraft rout-

ing (Ageeva, 2000), robust aircraft routing and flight schedule re-timing to reduce
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passenger disruptions (Lan et al., 2006), robust passenger re-routing during disrup-

tion management (Karow, 2003), and a methodology to design a layered schedule

that isolates the effects of disruptions (Kang and Clarke, 2003).

Research aimed at improving schedule robustness in light of demand variability

is limited. Focusing on models and solution approaches for the dynamic re-fleeting

problem, Sherali et al. (2005) propose to study the interaction between an origi-

nal schedule and subsequent dynamic re-fleeting decisions. To our knowledge, the

results of this study have not been reported to date. In a loosely related paper,

Listes and Dekker (2005) argue that suitably distributed aircraft capacity is critical

to the successful implementation of dynamic re-fleeting procedures, and propose a

scenario aggregation-based approach to determine an optimal fleet composition that

facilitates dynamic re-fleeting. They formulate the problem as a mixed-integer pro-

gramming problem. To solve the linear programming relaxation, individual scenario

problems are solved and aggregated to form a solution to the overall problem. Integer

fleet composition solutions are then generated by applying rounding heuristics to the

solution of the linear programming relaxation. Listes and Dekker conduct case stud-

ies to compare the effects of complete fleet re-assignment and re-fleeting only within

families. They showed that by having a robust fleet composition, the load factors

potentially increase up to 2.6% in the case of complete fleet re-assignment and up to

1.7% in the case of re-fleeting only within families.

In the robust de-peaking approach we propose, we begin by solving a basic de-

peaking model in which a profit-maximizing flight schedule is obtained. Then, we

solve our robust de-peaking model to generate a modified flight schedule in which the

number of new itineraries that can be created through slight flight leg re-timings is

maximized, while the resulting reduction in schedule profitability is limited to a pre-

scribed amount. We present several alternate formulations of the robust de-peaking

model, each with different mathematical and computational properties. Because the

size of our robust de-peaking models grow substantially compared to a basic de-

peaking model, approximate models are introduced aimed at improving computa-

tional tractability. We further explore the property of optimal solutions to identify
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variables that can be excluded from the model without compromising solution quality.

Our dynamic scheduling approach is applied to the solutions generated by the robust

de-peaking model and the basic de-peaking model, and the results are reported.

We organize the remainder of this chapter as follows. In Section 3.2, we define

the schedule de-peaking problem and briefly review related literature. In Section 3.3,

we present a basic de-peaking model. We introduce the robust de-peaking model, the

restricted robust de-peaking model and the associated solution algorithms in Sections

3.4, 3.5, and 3.6, respectively. Sections 3.7 reports our computational experiences

and Section 3.8 provides an evaluation of our robust solutions. Finally, we provide

concluding remarks in Section 3.9.

3.2 The Schedule De-Peaking Problem and Re-

lated Literature

Given an existing peaked schedule in a hub-and-spoke network, the schedule de-

peaking problem is to determine when to schedule each of the flight legs in the peaked

schedule and what fleet type to assign to each of these flight legs so as to maximize

profits while satisfying flight cover constraints, aircraft balance constraints, aircraft

count constraints, and de-peaking constraints (constraints that limit the number of

departures and arrivals per unit of time at hubs). Singh (2006) develops an automated

de-peaking tool in which three copies of each flight leg are considered; one at 15

minutes prior to the originally scheduled departure time in the peaked schedule, one

at the scheduled departure time, and one at 15 minutes after the scheduled departure

time. Incremental connection variables are introduced to evaluate changes in revenue.

When a valid connection in the peaked schedule becomes invalid, it has negative

revenue impact; when an invalid connection in the peaked schedule becomes valid, it

has positive revenue impact. The model maximizes the revenue impact of incremental

connection variables while satisfying cover constraints, balance constraints, count

constraints, de-peaking constraints, and so on. A separate model is used repeatedly
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to determine the revenue impact of incremental connection variables.

While not specifically addressing the problem of designing flight schedules for

de-peaked hub operations, existing literature on airline schedule design nonetheless

provides valuable insights to the modeling of the schedule design problem involving

hub de-peaking. A sampling of schedule design research includes Simpson (1966),

Simpson (1969), Chan (1972), Soumis et al. (1980), Nikulainen and Oy (1992), Dobson

and Lederer (1993), Berge (1994), Marsten et al. (1996), Rexing et al. (2000), Yan

and Tseng (2002), and Lohatepanont and Barnhart (2004).

Marsten et al. (1996) present a framework for incremental schedule design. Given

a schedule, demands are estimated using a schedule evaluation model. Then, the fleet

assignment problem is solved over the given schedule with the estimated demands.

Potential combinations of flight leg additions and deletions to the current schedule

are enumerated and evaluated to identify the best set of modifications to the flight

schedule.

Rexing et al. (2000) recognize that adjusting scheduled flight departure times

can result in a modified schedule providing improved flight connection opportunities

and allowing a more cost-effective fleet assignment. Rexing et al. develop a model

(referred to as FAM with time windows) and solution approach to assign aircraft types

to flight legs and, simultaneously, schedule flight departure times. They report that

the resulting schedule and fleet assignment translates to savings on the order of 30 to

50 million dollars annually.

Yan and Tseng (2002) develop a model and a solution algorithm to help carriers

simultaneously solve for fleet assignment and appropriate timetable. The model is

formulated as an integer multi-commodity network flow problem. They develop a

solution algorithm based on Lagrangian relaxation and a sub-gradient method .

Lohatepanont and Barnhart (2004) build an integrated schedule design model

based on the Itinerary-Based Fleet Assignment Model of Barnhart et al. (2002). A

master flight list is generated containing all mandatory and optional flight legs, and

demand correction terms are introduced to model demand and supply interactions.

The integrated model is solved by an algorithm based on row and column generation,
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and they estimate potential savings associated with the advanced approach of up to

$350 million annually.

3.3 Basic De-Peaking Model

The terminologies and underlying networks used in this chapter are drawn from those

described in the previous chapter. Readers should refer to Section 2.5.1, Section 2.5.2,

and Section 2.5.3 of Chapter 2 for a detailed description.

The basic de-peaking model is built upon two models, namely: FAM with time

windows (Rexing et al., 2000) and Itinerary-Based FAM (Barnhart et al., 2002). Input

to the model includes the set of flight legs in the peaked schedule, each of which must

be assigned to exactly one aircraft type. The departure time of the flight leg in the de-

peaked schedule can differ from that of the peaked schedule, and these sets of decisions

are modeled by creating a copy of each flight leg for every allowable departure time,

and a set of constraints ensuring that exactly one copy is assignedone aircraft type.

We introduce the following notation before detailing our basic de-peaking model.

Data and Parameters

L : set of flight legs in the flight schedule indexed by 1.

C(l) : set of flight copies for flight leg I E L.

(1, k) copy k E C(l) of flight leg I E L.

I set of fleet types indexed by -r.

S set of cities.

GK : set of ground arcs in fleet 7r E 1 's network.

Al set of markets.

Dm : demand in market m E M.

f are : average fare for demand in market m c M.

R(m) set of itineraries serving market m G M.

61k { 1, if itinerary r C R(m) in market m C M traverses (1, k);
rr

0, otherwise.

Clk : cost to fly (1, k) with aircraft type 7 E 11.
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C, : fixed cost of one aircraft of type r E 1.

N'r :set of nodes in flight network of fleet type 7r E 1.

n' : number of aircraft available of fleet type 7r E H.

T : set of time intervals at the hub, indexed by t.

MAX" : maximum number of aircraft arrivals at the hub in interval t E T.

MAXd : maximum number of aircraft departures from the hub in interval t E T.

1, if (1, k) in fleet 7r's network originates at node i E N';

WIk7 -1, if (1, k) in fleet ir's network terminates at node i E Nr;

0, otherwise.

1, if ground arc g E G' originates at node i E N';

gir -1, if ground arc g C Gr terminates at node i E N';

0, otherwise.

1, if (1, k) in fleet r's network crosses the count line;
/3 lkir -

0, otherwise.

S 1, if ground arc g E Gr crosses the count line;

0, otherwise.

1, if (1, k) arrives at the hub during interval t E T;
Sk

0, otherwise.

dt = 1, if (1, k) departs from the hub during interval t E T;
Tk

0, otherwise.

Decision Variables

.mr number of passengers assigned to itinerary r E R(m) in market m E M.

fkr 1, fleet 7r E H is used to fly flight copy (l, k);

0, otherwise.

Ygir number of aircraft of fleet type 7r traversing ground arc g E G'.

Z, : number of aircraft used of fleet type 7r E H.

The basic de-peaking model is presented as follows:
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maximize

P= Z xmrfarem Z - Clkrflk - Z Z~C,

mEM rER(m) IEL kEC(1) 7rEfl ,rEUI

subject to

flk= 1,Vl E L (3.1)
kEC(1) 7rEfl

fikrMkr+ E Yg,7rar =0,Vi E Nr,7r E H (3.2)
lEL kEC(l) gEGr

flekltAkr + E Yg,/ 3 gr = Zr, V7r E H (3.3)
leL kEC(l) gEGr

zr n', Vir E H (3.4)

Z Z y ~fjk, MAXatVt E T (3.5)
lEL kEC(l) 7rEfl

Z Z ' fik, < MAX'tVt E T (3.6)
lEL kEC(l) ,rEH

Z xmr Dm,Vm E M (3.7)
rER(m)

6, kr Xmr 5 flkCAP,,V1 C L,k E C(I) (3.8)
mEM rER(m) ,rEH

flkir E {0, 1}, V1 C L, k E C(l), 7r E H (3.9)

yg, i 0, V9 E G', 7r E H (3.10)

Xmr 0, Vm E M, r c R(m) (3.11)

z~, 0, V7r E l (3.12)

The objective function is to maximize revenue less operating cost and fixed costs.

Constraints (3.1) ensure that each flight leg is covered exactly once, while Constraints

(3.2) enforce conservation of flow for each type of aircraft. Constraints (3.3) and (3.4)

count the number of aircraft of each fleet used and limit that number to the number

available. Constraints (3.5) and (3.6), the de-peaking constraints, limit the number of

flight departures and arrivals per unit time at the hub. Constraints (3.7) are passenger
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flow constraints restricting the number of passengers transported in each market to

the value of that market's unconstrained demand. Constraints (3.8) are the capacity

constraints, and Constraints (3.9) through (3.12) define the range of possible values

for variables in this model.

3.4 Robust De-Peaking Model

Dynamic airline scheduling includes two elements, namely, flight leg re-fleeting and

flight leg re-timing. While de-peaking the schedule does reschedule flight leg departure

and arrival times, the set of flight legs in the network before and after de-peaking re-

mains unchanged. Hence, the hub-and-spoke network structure is maintained, thereby

allowing numerous aircraft swapping opportunities at the hub (Berge and Hopper-

stad, 1993). Given this, we focus our efforts on de-peaking to create flight re-timing

opportunities that potentially can be executed during the dynamic scheduling stage.

In a hub-and-spoke network, an inbound flight leg f arriving at the hub at time t

can connect to any outbound flight leg departing between t + MinCT and t + MaxCT

to form a feasible connecting itinerary, where MinCT represents the minimum con-

nection time and MaxCT denotes the maximum connection time at the hub. Any

outbound flight departing earlier than t + MinCT or later than t + MaxCT forms

an infeasible connecting itinerary with inbound flight leg f and contributes nothing

toward revenue. The basic de-peaking model presented in Section 3.3 and virtually

all schedule planning models in the literature maximize revenue less cost: the ob-

jective is to determine the optimal set of nonstop and feasible connecting itineraries

to be included in the schedule. For infeasible connecting itineraries, these models

are indifferent to the extent of their infeasibility, that is, the amount of time these

infeasible connecting itineraries violate the connection time requirement. We define

slightly infeasible connecting itineraries as those connecting itineraries whose connec-

tion times violate the minimum or maximum allowable connection times by a small

margin, such as by 15 or fewer minutes. Slightly infeasible connecting itineraries have

the property that they can be transformed into feasible connecting itineraries when
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flights are re-timed by the dynamic scheduling process. Motivated by such an obser-

vation, our robust de-peaking model works to maximize both the number of feasible

and slightly infeasible connecting itineraries in the de-peaked schedule. In doing so,

we enhance the potential for dynamic scheduling procedures to increase capacity in

markets experiencing greater than expected demand.

We begin by enumerating all potentially connecting itineraries, that is, all itineraries

whose connection times are feasible if allowable flight leg re-timings can be applied.

Note that this set includes the set of connecting itineraries that are feasible without

any re-timings. The set of potentially connecting itineraries can thus be defined as

all itineraries with connection times between T and T2, where Ti < MinCT and

T2 > MaxCT, and the precise values of T and T2 are a function of the maximum

allowable amount of time that flight legs can be shifted. Let PC be the set of all

potentially connecting itineraries. We assign a binary connection variable hp with

weight w, to each potentially connecting itinerary p E PC, where wp measures the

revenue that can be attained by p. Binary variable hp takes value one if both flight

leg copies forming potentially connecting itinerary p are selected in the solution;

otherwise, h, = 0. The objective, then, is to maximize the weighted sum of these

connection variables values, that is,

maximize E wphp.
pEPC

We now introduce the following additional notation used in our robust de-peaking

model.

(11,12) ordered pair of inbound flight leg 11 E L and outbound flight leg l2 E L

at the hub.

m(:1 ,12 ) the market servable by the potentially connecting itinerary formed by

flight leg 11 and 12.

((li, k1 ), (12. k2)) : a potentially connecting itinerary formed by (li, k1) and (l2, k2),

also referred to as p.

CT((li, k1), (12, k2 )) : the connection time between (li, k1) and (12, k2 ).
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C set of flight leg pairs (11,12) such that T1  CT((l1 , k1 ), (l2 , k2 )) : T2

for some k1 C C(l1), k2 E C(12).

C(li, 12) : {((l, k1), (12 , k 2))jT 1  CT((li, k1), (12, k2)) T2 }, where (li, 12) E C.

By definition, we have PC = {plp E C(11, l2 ), V(l1 , l2 ) E C}.

S(p) : binary set {(li, k), (12, k2)}, where p E C(l1, 12) and p corresponds to

((li, kip), (l2 , kg)).

WP : revenue associated with connection variable p E C(11, 12). Its value is

computed as follows:

WP = WM( 11 12 )

loge(D( 1 ,12)fare (11 12)) + 1, if Dm (11 2)f arem (11 > 1;

Dm(l,12 )farem(l 1 ,2)' otherwise.

(1k 1, if connection p traverses (l, k);

0, otherwise.

For a potentially connecting itinerary p E C(11, 12), its weight w, is derived from

Dm(11 12 )farem, 12 )1 the potential revenue in market m(11,12). A natural logarithm is

taken to decrease the difference between weights for hp variables in order to create as

many potentially connecting itineraries as possible in the schedule. If some potentially

connecting itineraries have unusually large weights, the optimization model will then

try to create those itineraries at the expense of eliminating many other potentially

connecting itineraries.

Lemma 3.1 By the definitions of hp variables and fIk, variables, we have the follow-

ing results:

1. iErenfr f Ck, {0,1},Vl E Lk E C (1). Exactly one ,Ern f1k, (k E C(l)) takes

value one in any feasible solution and the rest take value zero.

2. EpEc(,12) h, C {0, 1},V(11,12 ) C C.

Proof: Because fk, E C {0, 11 (Vk E C(l), 1 C L, 7r E H) and Ekec(1) ZreH flkr 1

(Vl E L), we have EErI fk, E {0, 1}. We also know for 1 E L, there exists exactly
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one k, E C(l), such that, EZrEn flkr = 1 and E fEl f1kr = 0 (Vk E C(l), k / kj). As a

result, for all p E C(11 , 12), at most one of hP takes value one and the rest take value

zero. U

3.4.1 Formulation 1

Now we develop the constraints for the robust de-peaking model. In Figure 3-1 we

show an inbound flight leg l1 and an outbound flight leg 12 each with three copies.

Three connection variables are illustrated, that is, ((l1 , a), (12, d)), ((li, a), (12 , e)),

((li, a), (12, f)) and are indexed as hi, h2, and h3 . For each flight leg copy (1, k), if the

term Ern fik, equals one, this flight leg copy is selected in the solution; otherwise,

it is not.

~EI fla EI1~b wE l,

a\bc

d e f

Figure 3-1: Illustration of connection variables

If h, takes value one in a feasible integer solution, EZr7n fiiar and Exr fI~d, must

both take value one. Moreover, if either EZCrj fliar or ErI fl 2 d, take value zero,

h, can only take value zero. Such a relationship can be modeled by the following

constraint:

2h, ; flar + f2dr.

WCHf 7r~flI

Following similar logic, we can formulate the constraints for the robust de-peaking

model as follows:

flker = 1,V1 E L (3.13)
kEC(l) irEH

fk Zk,+E ygr 's,=0,Vi E N",r E l (3.14)
leL keC(l) geG7
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S E flklr!lek, + E ygir = zr, V7r E H (3.15)
IEL kEC(l) gEGT

z,. < n , V7r E H (3.16)

- S (fik, < MAXat ,Vt E T (3.17)
lEL kEC(1) 7rEfl

Sd ' E fSIk, < MAXdtVt E T (3.18)
IEL kEC(I) ,rEn

S xmr Dm,Vm c M (3.19)
rER(m)

j ,.xmr &< flk,CAP, ,V1 E L, k E C(l) (3.20)
mEM rER(m) ,rETf

S xmr f aremr - 5 5 5 Ci,,rfij, - 5 ZirC, P* (3.21)
mEM rER(m) IEL kEC(1) ,rErH 7rET

2hp 5 E flkrVpEPC (3.22)
(l,k)ES(p) ,rEfl

fIkr E {0, 1}, Vl E L, k E C(l), 7r E H (3.23)

yg,, r 0, Vg E G, 7r c 1 (3.24)

Xmr 0, Vm E M, r E R(m) (3.25)

zr > 0, V7r E H (3.26)

hp C {0, 1},Vp E PC (3.27)

Constraints (3.13) through (3.20) are the same as those used in the basic de-

peaking model. Constraint (3.21) sets the lower bound on the profit attainable by

the robust de-peaking solution to the profit achieved in the basic de-peaking solution.

This constraint allows a trade-off between robustness and planned profitability. In

this case, the model selects among the set of profit maximizing solutions the one that

is most robust. Constraints (3.22) guarantee that if connection variable hp equals

one in the solution, the two flight leg copies that form p are selected in the solution.

Constraints (3.23) through (3.27) specify the possible values of decision variables.
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We refer to this formulation as Formulation 1. Next, we show a proposition on the

optimal objective value of the Linear Programming (LP) relaxation of Formulation

1.

Proposition 3.1 In the LP relaxation of Formulation 1, if variable fk, takes value

fIk, (Vl E L, k E C(l), 7r E H), the optimal objective function of the LP relaxation is

Z1= 2 z ( Zflk).

pEPC ( 1,k)ES(p) irEnI

Proof: An upper bound on the objective value can be obtained by multiplying each

constraint in Constraints (3.22) by its corresponding w, value, and then summing

over all p E PC. This maximal value is attained when

hp = Z Zfk riVp E PC.

(1,k)ES(p) ,rEnl

3.4.2 Formulation 2

Constraints (3.22) in Formulation 1 are used to model the relationship between hp

variables and fIkg, variables. In Sections 3.4.2 through 3.4.4, we present alternative

representations of this relationship. These various representations can be used to

create different robust de-peaking formulations, all with the same set of optimal

integer solutions but with different mathematical and computational properties.

Constraints (3.22) can be replaced by Constraints (3.28) to obtain Formulation 2.

hp _< E fki,,V(l, k) E S(p),Vp E PC. (3.28)
irEi

Proposition 3.2 Formulation 2 is equivalent to Formulation 1.
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Proof: Because hp variables and Z~EH flk, are binary (Lemma 3.1), we have the

following results for any p c PC:

2h mm flkA
(l,k)ES(p) I EnI

<=>hp s: minl 1 flk,7
(IMkES(p) x7r

<-> hp E fik, V(l Ik) E S(p).7rErl

Therefore, Constraints (3.22) and Constraints (3.28) are equivalent. Because all other

constraints and the objective function are the same in both formulations, Formulation

2 is equivalent to Formulation 1. U

An advantage of Constraints (3.28) is that the integrality constraints on hp vari-

ables (Constraints 3.27) can be relaxed as is shown in the following proposition. For a

mixed integer programming problem, even a relatively small reduction in the number

of integer variables can significantly improve the tractability of the problem.

Proposition 3.3 The integrality constraints on hp variables can be relaxed in For-

mulation 2.

Proof: In the objective function, all coefficients for hp variables are positive and

the formulation maximizes the objective function value. Therefore, in the optimal

solution, hp variables take values as large as possible. From Constraints (3.28), we

know that the largest value hp variables can take is:

hp min E flk,7 .
(1,k)ES(p) flk

By Lemma 3.1, ZrEnr flkr E {0, 1}. Hence, h E {, 1}.

The LP relaxation of a mixed integer programming (MIP) model relaxes all inte-

grality constraints on variables. A key property of a formulation for a MIP problem

is its strength. Consider two equivalent formulations of the same MIP model. One

formulation is strictly stronger than the other if the feasible region of its LP relaxation
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is strictly smaller than the other. A stronger formulation is more likely to produce

objective function values closer to the value of the mixed integer program. In the fol-

lowing proposition, we show that Formulation 2 is strictly stronger than Formulation

1.

Proposition 3.4 Formulation 2 is strictly stronger than Formulation 1.

Proof: A feasible solution to the LP relaxation of Formulation 2 satisfies Constraints

(3.28), hence the following constraints are satisfied:

Z hp < fk,,Vp E PC. (3.29)
(l,k)ES(p) (1,k)ES(p) nE I

Because each connection variable is formed by two flight legs, we can substitute

Z(l,k)ES(P) h, = 2hp into Equation (3.29) to create Constraints (3.22). Because all

other constraints are the same in both formulations, any feasible solution to the LP

relaxation of Formulation 2 is a feasible solution to the LP relaxation of Formulation

1.

Next, we show that the feasible region of the LP relaxation of Formulation 2 is

strictly smaller than that of the LP relaxation of Formulation 1. Take the example

shown in Figure 3-2. Three copies of the inbound flight leg l are created and in-

7rEn rET 7rEII

Connection variables (12, d) (l2 , e) (12, f)
(li, a) hi h2 h3
(11 ,b) h4 h5 h6
(li, c) h7  h8  h9

Figure 3-2: Example to illustrate formulation strength
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dexed as a, b, and c, and three copies of the outbound flight leg 12 are created and

indexed as d, e, and f. These flight copies form nine connection variables, that is,

h = {hi, h2 , h3, h4, h5 , A h7, h8, h9}. The flight leg copies corresponding to each con-

nection variable are shown in the table. The following values are feasible in the LP

relaxation of Formulation 1, but infeasible in the LP relaxation of Formulation 2:

1 11 11flasr, flibnr E llC77, Al E Aeri E l2fxr -I-7- 7-

and
h 1 73 73 3 1 1 17 3 1 1 1

It is infeasible in the LP relaxation of Formulation 2 because Constraints (3.28)

require that h2 5 {EZ n fiair, ien fl2 er} 5 min{, 1} = .

3.4.3 Formulation 3

Take the example shown in Figure 3-1, Formulation 3 generates three constraints for

the three connection variables involving (li, a), specifically,

hi :5 E fjaar,
irEfl

h2 E Ziar I

irCnht3 : Zfiar,

7rErI

Recognizing the fact that at most one of hi, h2, and h3 can be non-zero in any

feasible integer solution, the following constraint must hold:

h1 + h2 + h3  f 1ar
7rEI

Hence, for all p = ((11, k1), (12 , k2)) E C(11,12) ((11,12) E C), the following con-

straints must be satisfied:
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E

and

E
PEIpI (12 ,k2)ES(p) ,PEC(Ii ,12)}

hp flkj,,Vk E C(li),V(11 , 12 ) E C
7rErI

hp E fl2 k2 r, Vk2 E C(12), V(11 ,1 2) G C.
irc

Constraints (3.30) and (3.31) can replace Constraints (3.22) to produce Formula-

tion 3.

Proposition 3.5 Formulation 3 is equivalent to Formulation 1.

Proof: For a potentially connecting itinerary p' formed by (li, k1) and (12, k2), Con-

straints (3.30) and (3.31) in Formulation 3 correspond to:

hPI + zhp I: fliki ,,
pElpl(li,kl)ES(p),PEC(li,12)}\{P'} WrEI

h P fl 2 k 2 ,r
pE{pI(l2,k2)ES(p),pEC(1l,12)}\{p'} irErI

Summing the above equations, we get:

2hp, + E
pE{pI(li ,ki) ES(p),pEC(li, 1

2)}\{P'}

E hp rE
PEJPI(12,k2)ES(p),PEC(11,12)}\{P'} ii-Efl

f 1 ,k1  + I: fl 2k 2,r
7rEfl

== 2hp, < fjiks7r + Z fl 2 k27r-

wrEl -7rEr

This is true for all p' E PC, hence, Constraints (3.30) and (3.31) in Formulation

3 imply Constraints (3.22) in Formulation 1.

When hp variables and f1k, variables are binary, Constraints (3.22) are equivalent
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to

hp min f,.
(I,k ) ES(p) r I

Take any (li, 12) E C with inbound flight leg (li, k1 ) forming potentially connecting

itineraries with outbound flight legs (12, k2 ) (k2 E C(12) 9 C(12)). Let ErEn fl 2 k 2 r = 1

(kl2 E C(12)) and EZre flk2r = 0 (k2 # k12 , k2 E C(12)). We have:

pE{pI(Li,ki)ES(p),pEC(Li,12)}

< E min fikr
PEJP|(lI,k1)ES(P),pEC(11,12)J (IMkES(P) 7rEU I

= min { f 1k1 r, , fl2k2r
k2ES1(12) 7rEII 7rEU I

<min E flikr k12 7

.
7rEI

Therefore Constraints (3.30) are implied by Constraints (3.22). Similarly, we can

prove that Constraints (3.31) are implied by Constraints (3.22). Hence, Constraints

(3.30) and (3.31) are equivalent to Constraints (3.22). Because all other constraints

and the objective function are the same in both formulations, Formulation 3 is equiv-

alent to Formulation 1. U

Proposition 3.6 The integrality constraints on hp variables can be relaxed in For-

mulation 3.

Proof: By Lemma 3.1, among all copies of flight leg 1 E L, let flk 7 r take value one;

and the rest take value zero, that is, fikn, = 0 (k E C(l), k / k1). For all connection

variables p E C(11, 12), the corresponding constraints in Constraints (3.30) and (3.31)

are:

hp zflik,,=
pEJPJ(1I,kI1)ES(P),PEC(1il2)} 7rErI
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E hp 5
pE{pI (12 ,k12 )ES(p),pEC(11 ,12)}

E hp 5
PEfPJ (1i,ki) ES(p),PEC(11,12)}

E hp 5
PE{PJ (1,k2)ES(P),PEC(1i,12)}

fki = 1,
irErl

Z fl i k1 , =0,
7rEfl

E fk27= 0,
7rEUI

Vki E C(11) \ {k 1},

Vk2 E C(12) \ {k 12}.

hp 1, when p = ((l1 , kl,), (12, k12)),

hp =0, when p $ ((li, kil), (l2 , k12)), p E C(l, 12).

Because the objective coefficients for hp variables are positive and we are maximizing

the objective function value, hp variables take values as large as possible in the optimal

solution. Hence in the optimal solution, we have:

hP = 1, when p = ((l1, k1l), (12, k12)),

hp = 0, when p $ ((li, k1l), (12, k12)), p E C(l, 12).

The above is true for all p E C(l, 12), (11, 12) E C, therefore all hp variables take zero

or one in the optimal solution even with the absence of the integrality constraints.E

Proposition 3.7 Formulation 3 is strictly stronger than Formulation 2.

Proof: For a potentially connecting itinerary p' formed by

straints (3.30) and (3.31) in Formulation 3 correspond to:

hp, + z
pE{pI(li,ki)ES(p),pEC(i, 1

2)}\{P'}

hp,+ E
pE{pI( 2 ,k2 )ES(p),PEC(h ,12)}\{P'}

(11 , k1 ) and (l2 , k2 ), Con-

hp 1: fliklr,
nEfl

hp E fhk2x-
irETI
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Therefore, we have:

hP' E flikir,
7rEfl

hp, < Z fl2k21-

7rEHI

The above is the same as Constraints (3.28). Because all other constraints are the

same, any feasible solution to the LP relaxation of Formulation 3 is a feasible solution

to the LP relaxation of Formulation 2.

Next we show that there exists some feasible solution to the LP relaxation of

Formulation 2, which is infeasible to the LP relaxation of Formulation 3. Referring to

the example shown in Figure 3-2, the following values are feasible in the LP relaxation

of Formulation 2, but infeasible in the LP relaxation of Formulation 3:

{ fIlawr, fl1br EZfllc7,Z fIdWr EZf2e E fl2frJ 1
7ri rErI 7rErI irjrI 7rEl -7 irfl4 4

and

It is infeasible in the LP relaxation of Formulation 3, because Constraints (3.30)

require that h, + h2 + h3  Z7 rEn fliar = 1.

3.4.4 Formulation 4

In this section, we present a formulation that is weaker than Formulation 3, but

exhibits better computational performance when exploring the branch-and-bound

tree in our solution approach.

The connection variable hP can take value zero or one, thus we can think of sending

one unit of flow on potentially connecting itinerary p and have a pseudo-capacity

(Mik) for each flight copy (1, k). Take the example in Figure 3-3. Depicted are one

inbound flight leg 11, two outbound flight legs 12 and 13, each with three copies, and

six connection variables hl, h2 , - -- and h6 . The six connection variables all traverse
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d e 2 a d f >2 Eifiic

Figure 3-3: Illustration of Formulation 4

(li, a). If any of the six connection variables take value one in a feasible integer

solution, Z, f'iair must take value one. On the other hand, if Z, fiiar takes value

zero, none of the six connection variables can take value one. Such a relationship can

be captured by the following constraint:

hi + h 2 +---+h 6  MIia fia. (3.32)
EErE

Mi1a represents a sufficiently large number (the pseudo capacity of (li, a)), which

guarantees that if Ehe fiao = 1, Constraint (3.32) is not bndindg. Following similar

logic, we replace Constraints (3.22) in Formulation 1 with Constraints (3.33) to model

the relationship between h variables and fik variables in Formulation 4:

( h, h2 x + hi,6 L,- k : Cfl . (3.32)

pePC irEn

Clearly smaller values of Mik lead to a smaller feasible region and potentially

tighter bounds on the optimal objective function value. We introduce a new binary

parameter for each (li, 12) E C:

= {1, if ]p 6 C(lk , 12), s.t. (1, k) E S(p);

0, otherwise.
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We know that:

E(PCih,
PE PC

=z Zc(lkhp

- P( 1,i2) pah

< ( P1,2) x
(ti,12 )EC pEC(1l,12)

P(1 ,12).
( ) k

Hence, we set Mik to E(li, 2 )EC P(11,12 ) to tighten

following constraints in Formulation 4:

(by Lemma 3.1)

Constraints (3.33) and include the

(3.34)

Proposition 3.8 Formulation 4 is equivalent to Formulation 1.

Proof: We first prove that Constraints (3.34) in Formulation 4 imply Constraints

(3.22) in Formulation 1. The constraints corresponding to a particular p' E PC in

Constraints (3.34) are:

' Ckh k pins kV(1, k) E S(p')

PEPC (11,12)EC 7rEr

~= hP + P 1"kh ( P(i 12)Z fk,V(l, k) E S(p').
pEPC\{p'} (11,12)EC 7rErf

If ](l, k) E S(p'), such that EEH fIk, = 0, we have h, = 0. Therefore, 2h, <

Z(1,k)ES(p') EZEr flk,, the constraint corresponding to p' in Constraints (3.22) holds.

If EZEr flkr = 1 (V(l, k) E S(p')), regardless of the value of h,,, the constraint

corresponding to p' in Constraints (3.22) holds.

Now we prove that Constraints (3.22) in Formulation 1 imply Constraints (3.34)

in Formulation 4. When h, variables and flek variables are binary, Constraints (3.22)
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are equivalent to:

hp I (,,min {Zfk} ,Vp E PC.
(k)ES(p 7 r

For any inbound flight leg (li, k1), we have:

pEPC pEPC (rEHl

1: 1: '1in (fik,
(1,2)EC (1,k)ES(p) {C12)rEl

=k 1 Ck1 min E( fik~r

(L1,1 2 )EC PEC(li,2) 7rErI

K P1) E fl1 kir. (3.35)
(11,12)EC 7rErI

We prove the last inequality in the above equation as follows. For any inbound flight

leg (li, k1 ), assume it forms potentially connecting itineraries with outbound flight legs

(12, k2 ) (k 2 E C(12) C C(12)). Let EEI fl 2 k12 r = 1 (k12 E C(12)) and ErG fl 2 k2 'X 0

(k2 # k12 , k2 E C(12)). We have:

Z (1*1ki min f1k,
pEC(li,12) (1,k)ES(p) }rErI

= min fikrZ, fl 2k2 r

k 2 EC(1 2 ) 7rEH 7rEI )

<min Eflikr, fl2k2r

7r~fl

Following similar logic, Inequality (3.35) is true for any outbound flight leg. There-

fore Constraints (3.34) in Formulation 4 are equivalent to Constraints (3.22) in For-

mulation 1. Because all other constraints and the objective function are the same in

both formulations, Formulation 4 is equivalent to Formulation 1. E

Proposition 3.9 The integrality constraints on hp variables can be relaxed in For-
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mulation 4.

Proof: In the objective function, the coefficients, or weights, for hp variables are

positive and we are maximizing the weighted sum of hp variables. Therefore, in

the optimal solution, hp (p E PC) variables take values as large as possible. For a

particular p' E PC, Constraints (3.34) are:

P + 1 E f Pl(l lZflp,1,V(lk) E S(p').
PEPC (l11 2 )EC 7rEfl

When ErEr fik = 1 (V(l, k) E S(p')), the above constraints are not binding (this

is satisfied when we estimate M1k). Therefore h' takes value one to maximize the

objective function value. If 3(l, k) E S(p') such that EEr f1k, takes value zero in

the feasible integer solution, hp, is forced to zero. Hence, integrality of hp variables is

guaranteed.

Proposition 3.10 Formulation 3 is strictly stronger than Formulation 4.

Proof: For an inbound flight leg l E L, by Constraints (3.30) in Formulation 3, we

get:

h, fl,, Vk1 E C(11), V(1 1, 12 ) E C
pE{p|(li,ki)ES(p),pEC(Ii,1 2 )} 7rER

=-> pi hp 1 lnxVk ~iV.. V 1 uki 1 V's 7VE (1

(Li,1 2)EC pE{pI(Ii,ki)ES(p),pEC(li,1 2 )} (Ii,12 )EC 7rEfl

==' 1 hp P(1,2 E f iiVki E C(1i).
pEPC (11,12)EC 7rEH

Similarly, we can prove that for an outbound flight leg 12 C L, by Constraints (3.31)

in Formulation 3, we get:

( tl2 k 2 hp p 1 2  f2 k2 ,Vk2 E C(12)

pEPC (1,12)EC 7rErl
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Therefore,

Z Gkhp Z pl, 2) Zfk7r,Vl E L,k E C(l).
pEPC (11,12) irEn

The above are the same as Constraints (3.34). Hence, any feasible solution to the

LP relaxation of Formulation 3 is feasible to the LP relaxation of Formulation 4 and

Formulation 3 is at least as strong as Formulation 4.

Now we show that the feasible region of the LP relaxation of Formulation 3 is

strictly smaller than that of the LP relaxation of Formulation 4. Take the example

shown in Figure 3-3, and the following values are feasible in the LP relaxation of

Formulation 4, but infeasible in the LP relaxation of Formulation 3:

E rji fi 1ar E7ri flibr EarE fl 1 c7r 2 2

E'7ren fl2d~r ErIn fl2exr J:Erjn fl2f'7 2 2:E: fr n fl:E er Zrfl fz7r 1 0 0

and

{h1, h2, h3, h4, h5,h6} = {1, 0, 0, 0, 0, 0}.

In the LP relaxation of Formulation 3, the following constraint is violated:

hi + h2 + h3+ h4 + h5 + h6  E Z fi1a.

In Table 3.3, we show the number of constraints needed to model the relationship

between flek variables and hP variables in each formulation. For (li, 12) E C, denote

L(ji 12)(11) = {kj(l 1 , k) E S(p), 3p E C(11 , 12)} and L(,12)(12) = {k (12, k) E S(p), 3p E

C(l, 12)}. Note that a is the number of flight copies created before and after the

original flight leg. A sample value for the number of constraints needed in each

formulation is provided based on the case study conducted in Section 3.8.

For a typical problem, Formulations 1 and 2 have the largest number of constraints
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Formulation Num. of constraints Sample values

1 E(li,l 2)EC |C(11 , 12)1 879,505

2 2 E(l1,12)EC IC(li, 12)1 1,759,010

3 Z(li,l 2 )EC (IL( 1,12)(1 1) + IL(11,12)(12 )1) 317,785

4 ILI(2a + 1) 5,824

Table 3.3: Number of constraints needed to model the relationship between flk,
variables and hP variables in each formulation.

and do not provide a bound as tight as that in Formulation 3. They are not good can-

didates for implementation. Formulation 4 requires the least number of constraints,

but provides a weaker bound than Formulation 3. We thus consider the question of

whether or not we can achieve a bound similar to that provided by Formulation 3,

but with fewer constraints than the number needed in Constraints (3.30) and (3.31)

in Formulation 3. Because Constraints (3.30) require that:

E hp 5
pE{pI(1i,ki)ES(p),pEC(li,1 2 )} 7

ki EC(1i) pE~lpl(1i,ki) ES(p),PEC(li,l2)}

= hp 5 1, V(1i, l2 ) E C.
pEC(1i,12)}

S flikjrVki E C(11 ), V(11 , 12 ) E C
En

hp 5 fl k,,V(l,1 2) E C
kiEC(1i) 7rErI

(3.36)

The same results can be obtained from Constraints (3.31). We add Constraints (3.36)

to Formulation 4 to tighten its bound. The number of constraints in Constraints (3.36)

is 30,058 in our experiments, or 10% of the number of constraints in Constraints (3.30)

and (3.31). As is demonstrated in Section 3.7, Constraints (3.36) tighten the bounds

of Formulation 4 significantly, and also improve the bounds of Formulations 1 and 2

dramatically.
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3.4.5 Additional Insights

In this section, we show two propositions related to the formulations presented in this

chapter. They provide additional insights toward these formulations.

Lemma 3.2

p( 1 ,12 ) - ( V(l 1 12) E C.
(11 ,12 )EC pEPC

Proof: We have:

P( 1,I2) < 3 k V(1 1 , 12) e C
Pp11,12), (2 I

PEC(li,12)

P( 1,12) >3 I
(1i,12)EC (1i,1 2 )EC pEC(Ii,12)

~P==1 >3 P 12) (P3 i

(11 ,12 )EC pEPC

Although it is hard to determine the relative strengths of Formulations 1 and 2,

if the objective is to increase the number of potentially connecting itineraries in the

solution, that is, if the weights for all connection variables are the same, we have the

following result.

Proposition 3.11 If wp = UT > 0 (Vp E PC), the LP relaxation of Formulation 4 is

at least as strong as that of Formulation 1.

Proof: Summing up all constraints in Constraints (3.34), we get:

>3Il >3>k~p 3> > ~, 2 >fk (3.37)

lGL kEC()pEPC lEL kEC(l) (I1,12 )EC 7rEn

We have:

IEL kEC(1) pEPC pePC
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We also have:

P(1,12) flk7r Z Z Z fk
ZEL kEC(l) (i1,12)EC 7rEI lL kGC(l) pEPC 7rEfl

PPC EL kEC() rE f)

E E Z : Zflk~
pEPC (,k)ES(p) 7rEH

Therefore, Equation (3.37) can be re-written as:

2 Z hp E E fkn.

pGPC pEPC (l,k)ES(p) 7rErI

by Lemma 3.2

(3.38)

Assume that in the optimal solution to the LP relaxation of Formulation 1, variables

f1k, take values f71,, and that in the optimal solution to the LP relaxation of For-

mulation 4, variables flk, take values flkr and variables hp take values hp. Then the

optimal value of the LP relaxation of Formulation 4 satisfies the following inequality:

Z= E =p~ E i 7h = S7 1:
pEPC pEPC pEPC

1

pEPC (l,k)ES(p) 7r r

pEPC (l,k)ES(p) 7rEH

by Eq. (3.38)

=Z1 .

We now demonstrate why the last inequality holds. It is not difficult to show

that flk, is a partial feasible solution to the LP relaxation of Formulation 1, that is,

if variables fk,r are fixed to values fkr, the LP relaxation of Formulation 1 is still

feasible. By Proposition 3.1, the corresponding optimal objective value of the LP

relaxation of Formulation 1 when flk, variables take values fk, is:
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1 ~ 1~
2 E Wp fikr=g 2 fikn
pEPC (l,k)ES(p) IrGH pEPC (1,k)ES(p) rEfl

pEPC (l,k)ES(p) 7rEfl

Proposition 3.12 Assume that 2a flight copies are created and indexed as shown in

Figure 3-4. Copy 0 corresponds to the flight time in the original peaked schedule. Let

-1 0 +1 +a

-a --- -1 0 +1 +a

Figure 3-4: Flight copy indices

d be the time displacement between flight copies. Constraints (3.36) can always reject

the optimal solution to the LP relaxation of Formulation 1, if:

1. there exists some (l1, 12) E C, such that T1  CT((11, 0), (12,0)) T2;

2. 4ad T2 - T1 ;

3. at least one of the following sums are fractional in the optimal LP relaxation

solution: ECn flik 1,7, (k1 E { -a, - -- , 0,.-. , +a} and EEH fl 2 ,k2 ,, (k2 e

{-a,... ,0,-- ,+a}); orm > 1, where m = argmaxb{bICT((li, 0), (l2 ,0)) -

bd > T',b E N }.

Proof: Without loss of generality, assume that CT((11 , 0), (12, 0)) < !(T + T2 ).

Figure 3-5 shows the flight copies of l and 12 and each intersection in the grid corre-

sponds to a possible connection variable these flight copies can form. If the connection
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time for a connection variable is between T and T2, it corresponds to a potentially

connecting itinerary and is called a valid connection variable. For example, intersec-

tion A corresponds to the connection variable formed by (li, 0) and (12,0). By the

definition of m, intersection B in the grid is the furthest point we can move if we

leave A vertically and ensure that the corresponding connection variable is valid.

We have CT((11 , -a), (l2 +a)) = CT((11, 0), (12, 0))+2ad < !(T 1 +T2)+!(T2-T 1 )

T2, therefore any intersection above the dashed line in the grid corresponds to a valid

connection variable. Let h((qi,ki),(12 ,k2 )) denote the valid connection variable formed by

(l1 , k1 ) and (l2 , k2 )-

flight copies of outbound flight 12

-a ... -1 0 +1 ... +a
-a

-1

+1

+M.

I 1
+(a - n)

Figure 3-5: Connection variables formed by flight copies of 11 and 12

Let flk, = flka in the optimal solution to the LP relaxation of Formulation 1. From

Proposition 3.1, we can compute the values of connection variables in the optimal

solution to the LP relaxation. Take any intersection above the dashed line, say

intersection C, the value of this connection variable in the optimal LP solution is

( 2 1) Z1li,+1,7r + I 2,-1,-
7rEfl 1r24
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If we sum the optimal values of all valid connection variables formed by copies of

11 and 12, we get

hp = (m+ 1) Zf1 +a,,r+ (m + 2) fl1,+(a-1),j
PE C(1i ,12) 2 rEr 7 rEr

+ . + 2aZ E i,-(a-m-1),r± (2a + 1) Zlik7r
irErI k=-(a-m) 7rE /

+ ((M + 1) Zfl 2 ,-a,7r + (n + 2) Zf 2 ,-(a-1),r
rE 7rG

+a

+ - + 2aE f 1 2,+(a-m-1),7r + (2a + 1) Z Z fl 2 k 7r

irErI k=+(a-m) 7rEf )
Z i ,+a,7r l ,+(a-1),7r

7rErl 7rEn

+ . + EI7i,-(a-m-1),7r + Z Zl1k7r
7rEfl k=-(a-m) 7r E 1

+ 7 2 , -a,7r 2,-(a-1),7r

7rEn 7rErl

+a

+ .. + Z f12,+(a-m--1),7r Z2kr
7rEr+ 

k=+(a-m) 7rEfl

2Z1kr Z7 2 kgr

k=+a irEfl k=-a irErI

=1.

The strict inequality is due to Condition 3. Therefore adding Constraints (3.36)

renders the current optimal LP relaxation solution infeasible. N

Condition 1 is easily satisfied, simply requiring the flight copies corresponding

to the original flight times form a potentially connecting itinerary. Because we set

a = 3, d = 10 min, T, = 10 min, and T2 = 190 min in our experiments, Condition

2 is satisfied. In the LP relaxation, it is fairly easy to have ErEr flikir (k, E

{-a, ... ,0, ..- , +a}) and ErI fl 2 ,k 2 ,7r (k2 E {-a, ... ,0, - - - , +a}) take on fractional
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values and/or m > 1.

3.5 Restricted Robust De-Peaking Model

The robust de-peaking model (Formulations 1 through 4) presented in Section 3.4

suffers from issues of computational tractability due to the large number of variables

- for a typical problem in our experiments, there are approximately 350,000 xmr

variables, 870,000 hp variables and another 90,000 flk,, yg, and z, variables. Even the

LP relaxations of these formulations cannot be solved in 20 hours on the workstation

used in the research.

To address this tractability issue, we observe that the sole purpose for including

variables xmr in the model is to compute the revenue in Constraint (3.21), that is,

the term EmEM ErER(m) xmrfar6mr. Instead of measuring the exact profit of the

model and requiring it to be no less than p*, we propose the following technique

to approximate the profitability requirement. We can eliminate all xmr variables by

ensuring that the revenue associated with our robust de-peaking solution is at least as

great as that in our basic de-peaking solution and the cost associated with our robust

de-peaking solution is no more than that in our basic de-peaking model. To achieve

this, we impose the following constraints to ensure that the revenue associated with

our robust de-peaking solution is at least as great as that of the basic de-peaking

solution:

1. We let Q denote the set of flight leg pairs forming connecting itineraries used

in the basic de-peaking solution. Then, for each (li, 12) E Q, we let Q(li, 12) =

{(ki, k2 )|MinCT < CT((11 , k1 ), (12, k2 )) MaxCT}. We require any flight leg

pair in Q to form a feasible connection in the robust de-peaking solution as

follows:

f f + E l2k2 1, IV(11, 12) c Q, (ki, k2 ) Q(l1, 12).
7Cn wFn

2. We let PAX, represent the number of passengers assigned to flight leg 1 in the
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basic de-peaking solution. We require the capacity of the fleet type assigned to

flight leg 1 in the robust solution to be no less than PAX, that is:

Z Z fikCAP, > P AX, Vl E L.
kGC(1) 7rEfl

On the cost side, we limit the cost of our robust solution to c*, the cost of the basic

de-peaking solution. This treatment of revenue and cost guarantees that the profit of

the robust de-peaking solution is no less than that of the basic de-peaking solution.

With this guarantee, we can eliminate all xm,. variables from the robust de-peaking

model, thereby significantly reducing the size of the model. Unlike the robust de-

peaking model in which the objective is to select the most robust solution from the

entire set of profit maximizing de-peaking solutions, the objective of this restricted

model is to select the most robust solution from the subset of profit maximizing de-

peaking solutions whose costs are no more than and revenues are no less than those

in the basic de-peaking solution.

To summarize, we present our restricted versions of Formulations 1 through 4,

first providing the set of constraints common to all formulations, and then presenting

the additional constraints specific to each restricted formulation.

maximize EPEPC pph

subject to:

Sfik7, =1, VlE L (3.39)
kEC(l) rEfl

fik1r1k1r+ E yg7a, = 0,Vi E Nr,ir E H (3.40)
lEL kEC(l) gEGr

Z Z fikAki+ E Yglr 7 = ZrIVr E H (3.41)
lCL keC(1) gGr

z, <; n , V7r E rf (3.42)

127



Z Z , 1 flZfk MAXat,Vt E T (3.43)
ICL kEC(1) 7rEH

Z (d, fflk, < MAXd,Vt E T (3.44)
lcL kEC(l) 7rEr

flkr E {0,1},Vl E Lk E C(l),7r H (3.45)

yg, : 0, Vg E G,7r E H (3.46)

z, > 0, V7r E H (3.47)

E Clk~rflk + E ZrClT < C (3.48)
lEL kEC(1) 7rEfl 7rEfl

i f1jk 1is + E fl2 k 27r 1, V(11i, 12) E Q, (ki, k2) ( Q(l1,12) (3.49)
irE[I 7rEfl

E S fikrCAP, PAX,V1 E L (3.50)
kEC(l) 7rEfl

Constraints (3.39) through (3.47) are the same as those in the basic de-peaking

model presented in Section 3.3. Constraint (3.48) limits the cost of the model to

that of the basic de-peaking solution. Constraints (3.49) and (3.50), respectively,

guarantee that connecting itineraries in the basic de-peaking solution remain feasible

in the robust de-peaking solution, and ensure that the capacity of the aircraft assigned

to 1 E L is no less than PAX,. This ensures that the profit associated with the robust

solution is not less than that of the basic de-peaking model. Additional constraints

specific to each formulation are summarized as follows:

Formulation 1-R:

2hp 5 5fIk,, Vp E PC (3.51)
<l,k>ES(p) 7rEH

E hp 1,V(11,12) E C (3.52)
pEC(11,12)

hpE {0, l}, Vp E PC (3.53)
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Formulation 2-R:

hp E flkr, V(l, k) E S(p), Vp E PC (3.54)
7r EH

E3 hp , 1, V(11 ,1 2 ) E C (3.55)
PEC(li,12)

0 hp 5 1,Vp E PC (3.56)

Formulation 3-R:

hp Zflk,, Vk1 E C(11), V(11 , 12 ) E C (3.57)
pE{p|1li,kj)ES(p),pEPC(i,12)} 7rEn

hP 1 f' 2k2lVk2 E C(12), V(11,12) E C (3.58)
PE{p|(1 2 ,k2 )ES(p),PEPC(i,12)} IEI

0 < hp! 1,Vp E PC (3.59)

Formulation 4-R:

Z ~khP & pl1 , 2 ) fk,,Vl C L,k E C(l) (3.60)
pEPC (11 ,12 )EC 7rEfl

E hp ! 1,1 V(1i, 1 2) E C (3.61)
pEC(11 ,12)

0 < hp ! 1,Vp E PC (3.62)

3.6 Solution Approach

The solution approach to the robust de-peaking model is outlined in Figure 3-6.

The basic de-peaking model is solved to provide c* and Q, inputs to the robust de-

peaking problem. While solving the restricted robust de-peaking model, for reasons

stated in Section 3.7, Formulation 4-R is used to find good integer solutions, while

the LP relaxation of Formulation 3-R is solved to obtain a bound (ZL) on the optimal

integer solution value and to gauge the optimality of the integer solutions obtained

from Formulation 4-R.
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To solve Formulation 4-R, an iterative approach is taken in which a Restricted

Master Problem (RMP), containing only a subset of all possible hp variables, is solved

repeatedly until a near-optimal solution to the model is obtained. The rationale

underlying the selection of the variables included in the RMP is as follows. Let

Cb = {(l 1 ,l 2 ) I IC(lil,2 )| = b, (11,1 2 ) E C}, where 0 < b < (2a + 1)2, b E N, and a

is the number of flight leg copies created before and after the original flight leg copy,

respectively. By definition, C = Ci U C2 U ... U C(2 a+1)2. Let X be a subset of C, and

P(X) be the set {plp c C(li, 12), (11, 12) E X}. For any flight leg pair (li, 12) E C(2a+1)2,

any pair of copies of flight leg 11 and 12 selected in an integer solution form a valid

connection with the same contribution w, = W(l1,12) The removal of all columns

corresponding to hp, p E P(C(2a+1)2) thus have the effect of reducing the objective

function value for any solution by a constant amount. The result is that an optimal

solution to the RMP is also optimal to the original model containing all decision

variables.

Extending this approach, we can remove all columns corresponding to hp with p E

P(C(2a+1)2-1), however, we can no longer guarantee that an optimal solution to RMP

is optimal for the original problem because the solution to the RMP might select,

from all (2a+ 1)2 potential connections, the only pair of flight leg copies that does not

create a potentially connecting itinerary. The risk of doing so is minimal but increases

as the subscript b of Cb decreases. We let Cb = C(2a+1)2 U C(2a+1)2-1U - U Cb and

eliminate all hp variables with p E P(Cb) in Formulation 4-R to create RMP. The

branch-and-bound algorithm is used to find integer solutions to RMP. Once an integer

solution is found, we denote the objective function value of RMP as ZR and let its

solution be denoted by fl',. If connection p E P(C) is enabled in this current integer

solution, we set hp to 1; otherwise, we set hp to 0, for each p E P(C). The objective

function value of the current feasible solution for Formulation 4-R, denoted ZI is then

equal to ZR + EZEP(1) wh,. We compute the optimality gap as gap = (ZL - ZI)/ZI.

If the optimality gap is acceptable, that is, within our defined threshold value, the

algorithm terminates; otherwise, we compute the value of h(11,12 ) = EpEC(1i, 2 ) hp, for

each (li, 12) E C. For each (li, 12) E C for which h(11 ,12) / 1, all columns corresponding
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Solve the basic
de-peaking

model

c* and Q

Formulation 4-R
Formulation 4-3

START

Bt RMP ad is Update RMP and 
InitializeC

Run Branch & Bound Continue Branch F uBound
until the next integer r

solution is found

fi's, and ZR

For current fi cn e t c
Solve LP ZL Compute hp, p E P(C) h~j. 1

relaxation of Z for - Za + soluph hol s or all
Formulation 3-11 PEP(1 )

the ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ (1 equlit hE1, 2 = osnthodfrsm (11)e

gap <-(ZL - Z)Z13

Add hp
Is ga No variables?

acceptable

Yes

Formulation4-
STOP

Figure 3-6: Solution algorithm for the robust de-peaking model

to hp, p E C(11, 12) are added to RMP and Us is updated as follows: Qb +- C \ (1, 12).

Next, RMP is re-solved. If h(j, 1) =I1 holds true for all (11,1l2) E= i , we continue

the branch-and-bound algorithm to identify another feasible solution for Formulation

4-R. Adding columns to the current RMP requires that we re-start the branch-and-

bound algorithm from scratch (see ILOG, 2003, p. 523). This can be computationally

time consuming, hence it can sometimes be beneficial to continue the current branch-

and-bound search for additional integer solutions without interruption, even when

the equality h(j, 1) = 1 does not hold for some (11, 12) E5
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To improve tractability of the branch-and-bound algorithm, we replace branching

based on variable dichotomy with branching based on Type I Special Ordered Sets

for Constraints (3.39) and assign CAP, as weights to each variable frk, (see ILOG,

2003, p. 329). Suppose that at one node in the branch-and-bound tree, variables in

the cover constraint for flight leg 10, that is,

5f: =ok=1,
kEC(lo) 7rErl

take values f*ogk (Vir E H, k E C(lo)) and some of these values are fractional. We

compute Ui = EkEcQlo) ErEI f1*0krCAP, and partition the set of binary variables floro

(Vr E H, k E C(lo)) into two groups, G1 = {f okl,|CAP, <; U, k E C(lo), 7r E I} and

G2 = {fIok 7 jCAP > W, k E C(lo), 7r E H}. On one branch of our branching strategy,

we impose the following restriction: ZflkG1 flosk = 1; and on the second branch,

we require: EfikEG2 flokr = 1. Hane et al. (1995) show that branching based on

Type I special ordered sets is a more effective branching strategy than branching on

individual variables (although Hane et al. apply a slightly different method to create

G, and G2).

3.7 Computational Experiences

The basic de-peaking model and the restricted robust de-peaking model are both im-

plemented in C using ILOG CPLEX 9.0. Computational experiments are conducted

on a workstation equipped with one Intel Pentium 4 2.8 GHz processor and 1 GB

RAM.

In both the basic de-peaking model and the robust de-peaking model, seven copies

of each flight leg l are created (that is, a = 3), placing one each at -30, -20, -10, 0,

+10, +20, and +30 minutes offset from leg l's scheduled departure time in the peaked

schedule. The number of departures and the number of arrivals are each limited to

5 per 10-minute interval, respectively. MinCT = 25 minutes and MaxCT = 180

minutes.
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The basic de-peaking model is solved using the MIP solution routine from CPLEX

callable library. In our experiments with the robust de-peaking model, T = MinCT-

20 minutes and T2 = MaxCT + 10 minutes. We consider as potentially connecting

itineraries those that violate the minimum connection time requirement by 20 min-

utes, while we consider a maximum 10-minute violation of the maximum connection

time. Our rationale in doing so is that new connections with short durations (just

slightly longer than MinCT) are more salable (although more likely to be disrupted)

than connections with long durations (just shorter than MaxCT).

3.7.1 Comparison of the LP relaxations

In Table 3.4, we report, for Formulations 1-R through 4-R, the sizes of the models

after CPLEX preprocessing (see ILOG, 2003, p. 322-324), and the optimal objective

function values of the corresponding LP relaxations. In the first five rows in the table,

we provide results when Constraints (3.36) (that is, Constraints (3.52), (3.61), and

(3.55)) are excluded from Formulations 1-R through 3-R. In the second block, we

report results when these constraints are included. Note that Constraints (3.36) are

redundant in Formulation 3-R.

Our first observation is that Constraints (3.36) are effective in decreasing dramat-

ically the values of ZL and tightening the LP bounds of Formulations 1-R, 2-R and

3-R. Our second observation is that ZL values increase as we move from Formula-

tion 3-R to Formulation 2-R to Formulation 1-R. Formulation 3 provides the tightest

bound regardless of whether Constraints (3.36) are included in Formulations 1, 2,

and 3, or not. These results are consistent with the proofs presented in Section 3.4,

where we compare the relative strengths of the LP relaxations of these Formulations.

The number of columns for all formulations are similar, however, the number of rows

differ widely. Formulation 3-R provides the tightest bound, and hence, we use it to

generate bounds with which to measure the optimality gap of integer solutions.
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Formulation 1-R Formulation 2-R Formulation 3-R Formulation 4-R
Num. of Rows 623,117 1,004,302 221,858 13,782
Num. of Cols. 654,480 509,454 514,834 514,748
Num. of NZ. 1,731,336 1,968,925 1,200,925 995,759
ZL 694,690 333,865 129,142 180,331
(ZL - ZI)/Zi 450.39% 164.52% 2.32% 42.87%

With Constraints (3.36)
Num. of Rows 652,690 1,032,284 36,408
Num. of Cols. 659,877 514,806 514,921
Num. of NZ. 2,359,001 2,451,719 1,469,236
ZL 154,200.8 133,690.4 142,739
(ZL - Zi)/Z 22.17% 5.92% 13.09%

Table 3.4: Comparison of LP relaxations of the full problem across formulations
(Z = 126,217)

3.7.2 Searching for Integer Solutions

In solving the RMP of Formulation 4-R, we must identify the value of b that allows

near-optimal solutions to be generated within reasonable runtimes. In Table 3.5, we

provide statistics of the values for hP variables in the restricted robust de-peaking

model when the values of fIk, variables are set to corresponding values in the basic

de-peaking solution. In the first column, we report the values of each b with ICbj ;> 0.

In the second column, we provide the corresponding number of (li, 12) pairs in Cb. In

the third column, we record the value of IP(Cb)|, that is, the number of hp variables

for all (11, 12) pairs in Cb. We provide in the fourth column, the number of h, columns

corresponding to p E P(Cb) as a fraction of the total number of hp columns in the

model. We show in the fifth column the number of (11, 12) pairs that satisfy h(11 ,12 ) = 1

in the basic de-peaking solution. Finally, we report in the last column, the fraction of

leg pairs in Cb that satisfy h(1 ,12 ) = 1, that is, P = (Z(1,12 )ecb h(, 12)) /C|. 1 - P

is a proxy that measures the likelihood of generating non-optimal solutions when

variables hp (p E P(Cb)) are excluded from the model. The larger the value of P, the

smaller the magnitude of the error associated with the exclusion. We observe that

hp variables corresponding to p E P(C49 U C48 U C47 U C46) account for more than

60% of the total number of hp variables. In the basic de-peaking solution, nearly

all leg pairs in the set C49 U C48 U C47 U C46 satisfy h(j, 12 ) = 1. Hence, it is likely

that h(j, 12) = 1 for most of the (li, 12) E C49 U C48 U C47 U C46 in an optimal integer
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solution to Formulation 4-R. We therefore set b equal to 46 in constructing our initial

RMP. This eliminates 569,300 hP variables or 65% of total hP variables.

b ACl |PC) 49 P (bI E ho, ) Pbb~~~~ bb PC) 2b1 P(CbtI (11 ,12 )ECb _____

1 2,317 2,317 0.27% 56 2.4%
2 47 94 0.01% 12 25.5%
3 2,926 8,778 1.01% 223 7.6%
4 33 132 0.02% . 8 24.2%
5 99 495 0.06% 30 30.3%
6 2,281 13,686 1.57% 378 16.6%
7 328 2,296 0.26% 149 45.4%
9 80 720 0.08% 21 26.3%

10 1,744 17,440 2.00% 415 23.8%
11 67 737 0.08% 25 37.3%
12 47 564 0.06% 7 14.9%
13 69 897 0.10% 35 50.7%
14 293 4,102 0.47% 165 56.3%
15 1,065 15,975 1.83% 292 27.4%
18 64 1,152 0.13% 32 50.0%
20 57 1,140 0.13% 33 57.9%
21 623 13,083 1.50% 298 47.8%
22 35 770 0.09% 23 65.7%
25 96 2,400 0.28% 58 60.4%
27 104 2,808 0.32% 59 56.7%
28 493 13,804 1.58% 312 63.3%
29 44 1,276 0.15% 24 54.5%
32 134 4,288 0.49% 86 64.2%
34 459 15,606 1.79% 300 65.4%
35 386 13,510 1.55% 267 69.2%
36 67 2,412 0.28% 46 68.7%
39 1,347 52,533 6.02% 1,034 76.8%
41 146 5,986 0.69% 125 85.6%
42 254 10,668 1.22% 236 92.9%
43 2,168 93,224 10.69% 1,848 85.2%
46 3,671 168,866 19.36% 3,378 92.0%
48 3,571 171,408 19.65% 3,471 97.2%
49 4,674 229,026 26.26% 4,674 100.0%

sum 872,193 100.00% 18,120 -

Table 3.5: Summary statistics of hp variables in the restricted de-peaking model when
frka variables are fixed to corresponding values in the basic de-peaking solution

Table 3.6 summarizes the computational performance of Formulations 1-R through

4-R on RMP. We can see that the number of rows, columns, and non-zeros of the

RMP are significantly reduced when compared to those reported in Table 3.4 with

Constraints (3.36). Not surprisingly, Formulation 1-R has a huge number of fractional

integer variables at the root node of the branch-and-bound tree. The fourth row
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Fm. 1-R Fm. 2-R Fm. 3-R Fm. 4-R
Num. of rows 224,871 344,551 98,363 24,431
Num. of columns 243,898 193,691 193,741 193,803
Num. of non-zeros 797,734 819,479 436,733 504,118
Num. of fractionI var. at root node 42,523 4,060 3,225 3,572
Num. of node searched until first inte- Not found Not found Not found 760
ger solution
Total num. of nodes searched in 10 hrs. 2,700 - 50 ~ 100 ~ 9,000

Table 3.6: Branch-and-bound results for Formulations 1-R through 4-R on the initial
Restricted Master Problem

reports the number of nodes searched in the branch-and-bound tree until the first

integer solution is found. Formulations 1-R, 3-R, and 4-R fail to find integer solutions

in 10 hours, the maximum allowable solution time. The last row reports the total

number of nodes searched in 10 hours. Clearly, Formulation 4-R exhibits the best

performance during branch-and-bound and, hence, it is used in our solution algorithm

to search for integer solutions.
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3.8 Case Study

In this section, using data obtained from a major U.S. airline, we demonstrate the

potential impact of applying dynamic scheduling to the robust de-peaked schedule,

and compare our results with those obtained when we apply dynamic scheduling to

the basic de-peaked schedule. The airline providing us data operates a hub-and-spoke

network with a banked schedule. There are approximately 1000 flight legs serving

about 100 cities daily, and about 300 flight legs departing from and 300 flight legs

arriving at the major hub each day. For ease of exposition, we let Schedule A denote

the original banked schedule, Schedule B the de-peaked schedule obtained with the

basic de-peaking model, and Schedule C the de-peaked schedule obtained with the

robust de-peaking model.

3.8.1 Resulting Schedule Characteristics

In Table 3.7, we summarize the results of schedule de-peaking, simply comparing

Schedules B and C to Schedule A, with percentage changes measured against Schedule

A. Revenues, costs, profits, and average connection times are obtained by running our

Passenger Mix Model (PMM, see Section 2.5.3) on the corresponding schedules. In

both Schedules B and C total revenues are reduced as a result of de-peaking; however,

total costs are also reduced. The result is that schedule profitability after de-peaking

improves slightly. Additionally, de-peaking allowing one fewer aircraft to be used in

Schedules B and C than in Schedule A. We also observe that the profit for Schedule

C is greater than that in Schedule B, which results from the technique we employ in

the robust de-peaking model to satisfy the profit requirement. In the next row, we

report average connection times for each schedule. We observe that average passenger

connecting time increases by about 9 minutes after de-peaking. This is similar to the

10.7-minute increase in average connection time reported by American Airlines after

the de-peaking of its Chicago (ORD) hub (Flint, 2002). In the last two rows, we

report the objective values for Formulation 3-R for Schedules B (the basic de-peaking

solution) and C (the robust de-peaking solution). The basic de-peaking solution
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has an objective function value of 117,174, with an optimality gap of 10.10%, while

the robust de-peaking solution has an objective function value of 126,218, with an

optimality gap of 2.28%. Our solution approach improves upon the basic de-peaking

solution and finds an integer solution with a satisfactory optimality gap.

Schedule A Schedule B Schedule C
Revenue 8,170,245 8,146,066 8,165,746

- -0.30% -0.06%
Cost 6,001,400 5,929,789 5,929,789

- -1.19% -1.19%
Profit 2,168,845 2,216,277 2,235,957

- 2.19% 3.09%
No. of aircraft used 171 170 170
Avg. conn. Time 72.7 81.6 81.1
Zi - 117,174 126,218

(ZL - ZI)/ZL - 10.21% 2.32%

Table 3.7: Resulting schedule characteristics (ZL = 129, 142)

In Figure 3-7, we depict the departure and arrival operations at the hub under

Schedule A, clearly demonstrating peaked departures and arrivals. In Figure 3-8,

we show the departure and arrival operations at the hub under Schedule B, this

time exhibiting a smoothing of arrival and departure activities. We do not provide

the departure and arrival operations at the hub under Schedule C because they are

similar to those under Schedule B.

In Figure 3-9, we present connection time distributions. The dotted line corre-

sponds to planned connection times for passenger itineraries in Schedule A based on

actual booking records from the major U.S. airline. The average connecting time is

68.3 minutes. The spike between 25 minutes and 95 minutes corresponds to passenger

itineraries with the outbound flight leg in the same bank as the inbound flight leg.

The tail between 95 minutes to 180 minutes corresponds to passenger itineraries in

which the outbound flight leg is in the next bank after that of the inbound flight leg.

The other three lines in Figure 3-9 correspond to connection times for Schedules A,

B, and C when a PMM is used to assign passengers to itineraries. Although some of

the underlying assumptions of PMM are quite strong, the shape of the distribution

obtained from PMM for Schedule A closely matches that obtained from actual pas-

senger data. The distributions of connection times for Schedules B and C are much
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smoother than those for Schedule A due to schedule de-peaking.

3.8.2 Comparison of Dynamic Scheduling Results

For Schedules B and C, we conduct the same dynamic scheduling experiments detailed

in Chapter 2 for operations spanning one week. A one-time re-optimization point is

set 21-days prior to departure; the number of re-timed flight legs is limited to 100 per

day; and the number of re-fleeted flight legs is unconstrained. Forecast A assumes

perfect forecasts are used in re-optimizing the schedule, and Forecast B uses historical

demand averages as future demand forecasts. In Table 3.8, we let Profit incr. (DS)

denote the profit increase achieved when dynamic scheduling (DS) is applied to each

schedule, and the Percent value represents the percent improvement in profit. The

average daily profit improvements for Schedule B is $98,857, or 5.22% for Forecast

A and $44,959, or 2.37% for Forecast B. The average daily profit improvement for

Schedule C is $78,625, or 4.09% for Forecast A and $35,228, or 1.83% for Forecast B.

Dynamic scheduling helps to increase schedule profitability in both Schedules B and

C.

In the next block in this table, we compare Schedules B and C and report changes

in revenue, cost and profit that result solely from robust planning (RP). Although

the average profit improvement over the static case in Schedule C is less than that

in Schedule B, the overall profitability of Schedule C is greater than that of Schedule

B. We observe average daily schedule profitability improvements of $7,089, or 0.36%

under Forecast A and $17,592, or 0.91% under Forecast B. When perfect forecasts

(Forecast A) are available, dynamic scheduling produces re-optimized schedules of suf-

ficient quality that incorporating robustness has little impact. When perfect forecasts

are not available (Forecast B), however, designing robustness into the original sched-

ules (Schedule C) provides added flexibility and leads to larger profit improvements.

Hence, by incorporating robustness considerations into schedule design, we produce

a more profitable schedule. The increase of profit in the static case is attributable to

improved network connectivity due to our robust planning approach. For example,

$32,929 more connecting revenue is achieved in Schedule C than in Schedule B. Ta-
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ble 3.9 shows the dynamic scheduling results of Schedule B and Schedule C for each

individual day of the experimental week.

Schedule B Schedule C
. Dynamic scheduling . Dynamic scheduling

Static Forecast A Forecast B Static Forecast A Forecast B
Nonstop rev. 3,998,124 4,030,383 4,010,964 3,992,517 4,029,400 4,013,353
Conn. Rev. 3,825,827 3,896,564 3,868,281 3,858,756 3,908,750 3,877,992
Revenue 7,823,951 7,926,947 7,879,245 7,851,273 7,938,150 7,891,345
Cost 5,929,789 5,933,928 5,940,124 5,929,789 5,938,041 5,934,632
Profit 1,894,162 1,993,020 1,939,121 1,921,484 2,000,109 1,956,713
Profit incr. (DS) 98,857 44,959 78,625 35,228
Pct. profit incr. (DS) 5.22% 2.37% 4.09% 1.83%
Incr. in nonstop rev. (RP) -5,607 -983 2,388
Incr. in conn. rev. (RP) 32,929 12,186 9,712
Incr. in rev. (RP) 27,322 11,203 12,100
Incr. in cost (RP) 0 4,113 -5,492
Incr. in profit (RP) 27,322 7,089 17,592
Pct. profit incr. (RP) 1.44% 0.36% 0.91%

Table 3.8: Comparisons between Schedule B and Schedule C when averaged over a
week's operation (in dollars). The number of re-timed flights is limited to 100 and
the number of re-fleeted flights is unconstrained

3.8.3 Quality of the Robust Schedule

In this section, we examine if the benefits of applying dynamic scheduling to the robust

Schedule C result from a poorly designed original schedule. We study the quality of

Schedule C by analyzing the re-timing decisions made by the re-optimization model.

To prevent re-timing decisions from being affected by noise due to inexact forecasts,

we conduct our analysis using perfect information (Forecast A). If a flight leg is

frequently and consistently re-timed, it might indicate that this flight leg is poorly

positioned in the schedule. We classify a flight leg as being frequently re-timed if

it is re-timed at least 5 out of 7 days. Similarly, we classify a flight leg as being

consistently re-timed if the re-timing decisions for this flight leg occur in the same

direction (that is, earlier or later than the original schedule) for each day it is re-

timed. We summarize the re-timing decisions for Schedule C in Table 3.10. There

are 29 frequently re-timed flight legs, among which 21 (or 2% of the total number of

flight legs) are consistently re-timed. In Section 2.7, we similarly report that about

2% of the flight legs are frequently and consistently re-timed from their Schedule B

departure and arrival times. After comparing the sets of flight legs in Tables 2.17 and
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3.10, however, we find that the majority of the flights in the two lists differ. Because

only 4 flight legs, or 0.4% of all flight legs, are consistently and frequently re-timed in

both Schedules B and C (Table 3.11), we conclude that our ability to improve upon

Schedule C through a priori flight leg re-timings is very limited.

3.9 Summary

In this chapter, we develop a robust de-peaking model to allow maximal flexibility in

making future schedule changes dynamically. To the best of our knowledge, it is the

first approach of this type. To evaluate our robust de-peaking model, we first develop

a basic de-peaking model to provide a basis for comparison, and to calibrate schedule

profitability when there are no uncertainties, and no need to embed robustness into

the schedule. We then design the robust de-peaking model to maximize the weighted

sum of potentially connecting itineraries, while achieving the same profitability as

the solution to the basic model. Four formulations of this model are presented and

studied. We develop a restricted robust de-peaking model to reduce problem size by

an approximate treatment of the profitability requirement. We solve the restricted

robust de-peaking model with a decomposition based approach involving a variable

reduction technique and a new form of column generation. In our computational

experiments, we demonstrate significant computational improvements as a result of

our new approach. We show through experiments using data from a major U.S.

airline, that that the schedule generated by the robust de-peaking model can poten-

tially improve profit by 0.4-0.9% in addition to the improvement achieved by dynamic

scheduling. In these same experiments, we also demonstrate, as expected, that robust

schedules with built-in flexibility achieve greater improvements in profitability when

forecasts are imperfect.
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Schedule B Schedule C

Static Dynamic scheduling S Dynamic scheduling
Forecast A Forecast B Static Forecast A Forecast B

Day 1
Revenue 9,058,867 9,213,541 9,146,525 9,104,822 9,236,500 9,179,631
Cost 5,929,789 5,952,147 5,964,639 5,929,789 5,944,574 5,939,501
Profit 3,129,079 3,261,394 3,181,886 3,175,033 3,291,926 3,240,129
Profit incr. (DS) 132,315 52,807 116,893 65,096

4.23% 1.69% 3.68% 2.05%
Profit incr. (RP) 45,954 30,532 58,243

1.47% 0.94% 1.83%
Day 2

Revenue 8,018,606 8,136,941 8,052,977 8,031,747 8,131,864 8,067,222
Cost 5,929,789 5,941,897 5,933,586 5,929,789 5,948,798 5,934,447
Profit 2,088,817 2,195,045 2,119,391 2,101,958 2,183,065 2,132,775
Profit incr. (DS) 106,227 30,574 81,107 30,817

5.09% 1.46% 3.86% 1.47%
Profit incr. (RP) 13,141 -11,979 13,383

0.63% -0.55% 0.63%
Day 3

Revenue 6,870,656 6,934,930 6,897,193 6,902,123 6,941,957 6,914,351
Cost 5,929,789 5,922,260 5,918,713 5,929,789 5,923,931 5,924,523
Profit 940,868 1,012,670 978,480 972,334 1,018,026 989,828
Profit incr. (DS) 71,803 37,612 45,692 17,494

7.63% 4.00% 4.70% 1.80%
Profit incr. (RP) 31,467 5,356 11,348

3.34% 0.53% 1.16%
Day 4

Revenue 7,363,064 7,446,343 7,400,498 7,404,744 7,469,634 7,421,413
Cost 5,929,789 5,919,607 5,948,519 5,929,789 5,928,067 5,926,856
Profit 1,433,276 1,526,736 1,451,980 1,474,955 1,541,567 1,494,557
Profit incr. (DS) 93,461 18,704 66,612 19,602

6.52% 1.30% 4.52% 1.33%
Profit incr. (RP) 41,680 14,831 42,577

2.91% 0.97% 2.93%
Day 5

Revenue 7,946,805 8,036,567 7,991,952 7,965,054 8,053,850 7,996,434
Cost 5,929,789 5,931,148 5,927,238 5,929,789 5,940,358 5,932,868
Profit 2,017,016 2,105,419 2,064,714 2,035,266 2,113,493 2,063,566
Profit incr. (DS) 88,403 47,698 78,227 28,301

4.38% 2.36% 3.84% 1.39%
Profit incr. (RP) 18,250 8,074 -1,148

0.90% 0.38% -0.06%
Day 6

Revenue 8,333,631 8,457,232 8,408,739 8,344,732 8,455,586 8,418,011
Cost 5,929,789 5,937,127 5,929,069 5,929,789 5,939,380 5,932,256
Profit 2,403,842 2,520,105 2,479,670 2,414,943 2,516,206 2,485,756
Profit incr. (DS) 116,263 75,828 101,263 70,813

4.84% 3.15% 4.19% 2.93%
Profit incr. (RP) 11,101 -3,899 6,085

0.46% -0.15% 0.25%
Day 7

Revenue 7,176,026 7,263,078 7,256,829 7,205,689 7,277,659 7,242,353
Cost 5,929,789 5,933,309 5,959,104 5,929,789 5,941,180 5,951,974
Profit 1,246,238 1,329,769 1,297,725 1,275,901 1,336,479 1,290,379
Profit incr. (DS) 83,531 51,487 60,578 14,478

6.70% 4.13% 4.75% 1.13%
Profit incr. (RP) 29,663 6,709 -7,346

2.38% 0.50% -0.57%

Table 3.9: Comparisons between Schedule B and Schedule C for each individual day
in a week's operation (in dollars). The number of re-timed flights is limited to 100
and the number of re-fleeted flights is unconstrained
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Flight # Flight detail -15 -10 -5 0 +5 +10 +15 Consistent?
109 LAS 1900 - LAX 2000 1 5
645 SAN 2000 - HUB 2122 3 1 2
719 HUB 1348 - FAT 1522 1 3 2 N
720 FAT 1545 - HUB 1725 4 2 N
771 HUB 1730 -* SLC 2008 1 5
50 HUB 925 - ATL 1622 1 3 1 1 N
62 GEG 1430 - HUB 1707 3 1 1 1 N
78 HUB 1743 - LAS 1849 5 1

238 ORD 1905 HUB 2036 2 3 1
798 FLG 1907 - HUB 2000 3 1 1 1
194 LAS 1557 ORD 2133 2 2 2
216 SNA 1010 HUB 1129 4 2
220 SNA 1200 -+ HUB 1320 2 1 1 2
254 LAS 2023 SFO 2150 2 1 3
263 HUB 1435 ABQ 1645 2 2 2
278 TPA 820 HUB 944 3 1 2
286 HUB 1507 BOS 2305 2 4
378 ONT 610 - HUB 722 4 2
459 SMF 625 - HUB 811 2 2 2

563 DFW 1900 LAS 1946 2 2 2
600 HUB 745 BUR 908 4 2
642 HUB 1357 LGB 1515 1 2 3 N
682 HUB 1017 MRY 1205 3 2 1 N
746 DSM 745 HUB 852 4 2
774 HUB 1012 -* SBP 1149 1 2 1 1 1 N
779 HUB 724 -- FAT 905 2 2 2
780 FAT 925 - HUB 1107 2 2 2

782 SAN 1410 - HUB 1530 2 1 2 1 N
822 CLD 1250 -- HUB 1422 1 3 2

Table 3.10: Re-timing decisions for frequently re-timed flights in Schedule C

Schedule Flight # Flight detail -15 -10 -5 0 -+5 +10 +15
B 220 SNA 1200 -+ HUB 1320 2 2 3
C 220 SNA 1200 -- HUB 1320 2 1 1 2
B 263 HUB 1425 -> ABQ 1635 1 1 5
C 263 HUB 1435 -+ ABQ 1645 2 2 2
B 600 HUB 755 - BUR 918 6 1
C 600 HUB 745 -> BUR 908 4 2
B 645 SAN 2000 -+ HUB 2122 1 2 2 2
C 645 SAN 2000 HUB 2122 3 1 2

Table 3.11: Flights frequently and consistently re-timed in both Schedule B and
Schedule C
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Chapter 4

Future Research Directions

Thirteen years ago, the pioneering work by Berge and Hopperstad (1993) brought us

to the new era of dynamic scheduling. In subsequent years, researchers have further

studied this topic, and some airlines have deployed dynamic scheduling approaches.

Thirteen years later, with this thesis, we enrich the dynamic scheduling literature

by introducing a new mechanism, that of flight re-timing. In view of the recent

trend among airlines to de-peak hub operations, we combine flight re-fleeting and re-

timing into an integrated schedule re-optimization approach and conduct experiments

to evaluate its potential impact. In addition, we construct flight schedules with

embedded flexibility to facilitate subsequent applications of dynamic scheduling in

the booking period.

Even with these advances, there are still many topics left to be explored. We

suggest the following future research directions to enhance knowledge in this area:

* Evaluate the impact of dynamic scheduling on aircraft maintenance

routing and crew planning. An aircraft maintenance routing plan specifies

the sequence of flight legs each aircraft operates and the resulting opportunities

for routine maintenance. Similarly, crew pairing plans provide the sequence of

flight legs each crew operates while satisfying the myriad crew work rules. If

aircraft maintenance routing and crew pairings are planned before the last re-

optimization point, the final re-optimized schedule might produce infeasibilities
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in the maintenance or crew plans. An interesting future exercise is to evaluate

the extent of the impact of dynamic scheduling to maintenance and crew plans;

or to assess the potential to restore these plans when infeasibilities result. Typ-

ically, we expect that a feasible aircraft maintenance routing is not hard to find

for a re-optimized schedule in a hub-and-spoke network. Crew duties, however,

have to obey numerous work rules and can be hard to repair. Should it be

too costly to repair disrupted crew duties, it might be desirable to develop re-

optimization models incorporating additional constraints to ensure crew pairing

feasibility.

* Evaluate the case of multiple re-optimization points during the book-

ing process. For reasons of simplicity, we employ a one-time re-optimization

point 21 days prior to departure. An interesting and challenging research ques-

tion is to determine the optimal times and frequency with which to re-optimize

the schedule.

* Integrate dynamic scheduling with flexible passenger booking. Talluri

(2001) recognizes the fact that a large number of passengers are indifferent to

the route they take to get from their origins to their destinations, as long as

the different routes offer similar levels of service, that is, the departure and

arrival times are approximately the same, and costs are the same. Talluri de-

fines such a collection of routes as a Route Set and proposes a flexible booking

approach in which passengers book route sets instead of specific routes, with

the exact routing immediately determined if the booking request is accepted by

the airline. Gallego and Phillips (2004) extend this flexible booking approach

by delaying the determination of the exact routing until a later time. By de-

laying the exact route assignment of passengers, airlines can wait to see how

future demands materialize and route previously booked passengers on flight

legs with lower utilizations, thereby saving seats on congested flight legs for

late-booking, high-fare passengers. This approach, which takes advantage of

passenger routing flexibility and provides airlines with another mechanism for
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handling mismatches between capacities and demands, can be integrated with

dynamic airline scheduling to create an approach that is highly responsive to

demand variations.

9 Evaluate and enhance the Passenger Mix Model. In this research, we

adopt a simplified treatment of passenger recapture in the passenger mix model.

Specifically, we assume perfect recapture between selected subset of itineraries,

and these subsets are specified empirically, not using more sophisticated con-

sumer choice models. An interesting future research question is to evaluate the

implications of such a simplification.

o Define additional metrics to measure embedded schedule flexibility.

In this research, we use the weighted sum of potentially connecting itineraries

as the metric defining schedule robustness, or flexibility to re-time flight legs

and create additional itineraries where needed. An important research topic is

to specify other metrics, especially those that integrate re-timing and re-fleeting

impacts, and measure their effectiveness in creating robust schedules from which

realized profits can be maximized.

o Build a feedback loop between robust planning models and dynamic

scheduling models. The original schedule largely defines the set of feasible

dynamic scheduling decisions; but dynamic scheduling decisions provide valu-

able information about the quality of the original schedule. If profits improve

by frequently and consistently re-timing or re-fleeting particular flight legs, it

might be possible to modify the original schedule to reduce the need to re-

time and re-fleet these flight legs. A challenging research question is to assess

the potential for improving the original schedule, using a feedback loop and

simulations with our dynamic and robust scheduling approaches.
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