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Chapter 1

Introduction

This thesis aims to develop and apply computational tools to uncover design principles

in signal transduction networks. We applied the developed tools to the mitogen-

activated protein (MAP) kinase networks, a paradigmatic example of eukaryote signal

transduction networks, however, the tools are also applicable to the study of other

networks. First, we discuss the outstanding questions in MAP kinase networks. An

overview of available computational tools to study biological networks follows. And

finally, we summarize the thesis outline.

1.1 Mitogen-Activated Protein (MAP) kinase net-

work as a paradigmatic example of signal trans-

duction networks.

A MAP kinase network is a network of interacting protein kinases activated by mi-

togen and functions to transduce signals from activated membrane surface recep-

tors to transcription factors in the nucleus. The network typically consists of three

well conserved protein kinases, each may be phosphorylated upon activation, and in

turn, acts as an enzyme for the activation of the next kinase, in essence forming a

cascade of phosphorylation reactions. Many detailed reviews about the network's

mechanism have been written elsewhere [47, 116, 54, 105, 118]. Further signal mod-



ulation is achieved through phosphatases, enzymes that dephosphorylate activated

kinases [95, 81, 127], and through scaffold proteins, proteins with multiple binding

domain sites and are thought to be important for imparting specificity across multiple

networks [53, 4, 40, 61, 134, 14, 43, 13]. Extensive studies has been done previously

on MAP kinase network to uncover many of its detailed molecular mechanism and

reaction schemes, however, to construct dynamic models of this network, some of its

reaction schemes and many of its kinetic parameters remain incomplete.

Despite the lack of a complete and correct specification, previous works have been

able to suggest design principles derived from the MAP kinase network structure,

some of which are reviewed here. First, Goldbeter and Koshland [6] suggested that a

zero-order sensitivity allows a network of enzymatic activation and deactivation, in-

spired by a MAP kinase network, to filter small amplitude noises from large amplitude

signals by producing a sigmoidal steady-state input-output curve. Huang and Fer-

rell [28] later showed that this filtering may be enhanced with existence of multiple

phosphorylation sites. Furthermore, Ferrell and Machleder [73] found that Xeno-

pus oocytes produced an all-or-none activation behavior consistent with the previous

sigmoidal input-output curve, and, because the observed data produced a sigmoidal

curve whose steepness could not be explained by multiple phosphorylation sites alone,

they proposed an additional positive feedback to enhance the sigmoidalness further.

Moreover, Gunawardena [60] extent this study to the limit of a large number of phos-

phorylation sites and demonstrated that multiple phosphorylation sites may create a

good thresholding function but produce a poor switch.

Previous computational studies of MAP kinase networks [28, 8, 103, 15] have not

considered detailed molecular mechanisms known to the networks. These mechanisms

include subtle network structural differences observed in multiple MAP kinase path-

ways highlighted by different roles of scaffold proteins (summarized in Figure 1-1),

mutual phosphorylation of MAP kinase and MAP kinase kinase [125], and sharing

of common-domain binding sites among phosphatases, kinases, and MAPK activated

protein kinases (MAPK-APKs) [123]. A recent study suggested further that the Ste5

scaffold protein in yeast mating pathway plays an active role in the mating response



modulation via allosteric interactions with its kinase partners [106]. Previous com-

putational studies partially addressed the scaffold-dependent reactions, but they did

not examine detailed differences in the roles of scaffold proteins across multiple MAP

kinase pathways. These studies include (1) Sternberg and co-workers, who suggested

biphasic activation arising from a binding model of a generic scaffold protein to multi-

ple kinases [8] and (2) Rapoport and co-workers, who suggested that prolonged signal

duration results if dephosphorylation occurs only outside of scaffold (versus when it

occurs everywhere) [103]. These two studies did not investigate the specific behavior

of scaffolds in different MAP kinase networks, thus they could not distinguish the

significance of specific scaffold roles. One limitation to study networks with scaf-

folds in details is the combinatorially large number of state variables being needed

to construct a mass-action kinetic model. For example, a yeast Ste5 scaffold protein

homodimer with three kinase partners contain up to 25,666 binding and modification

states [101]. The large number of species to be considered has made a construction

of network models with scaffold proteins difficult.

Pheromone Filamentous Hyper Mammalian Mammalian
Growth Osmolarity ERK JNK1 Mammalian JNK2 Superstructure

Ras HfPKYINPUT Ste20

MAPKKK

MAPKK

MAPK

mating filamentous osmo erK stress stress stress OUTi OUT2
response growth response response response response response

response

Figure 1-1: Models of molecular interactions of multiple MAP kinase networks: yeast
pheromone [54], yeast filamentous growth [4], yeast hyper-osmosis [116], mammalian
ERK [17], and two instances of mammalian JNK [105]. The network superstructure,
shown at the far right, includes the union of all of functional connections from the
six specific network models to its left. Any of the specific models can be recovered
by switching off proteins (nodes) and reactions (arcs) in the superstructure.

GTP

Rafl MLK

MEK MKK7

ER JNK

·· -- ~-



1.2 Modeling as a tool to study design principles

of MAP kinase networks.

Modeling serves as a tool to study signal transduction networks. Mathematical mod-

els in general may be used to organize our knowledge of a biological system com-

pactly, develop further understanding of a system's behaviors, generate predictions,

and guide intelligently decisions of effective systematic perturbations. Applied to

signal transduction networks, modeling may capture a complex systemic behavior

from separated knowledge of network pieces and allow further exploration about the

significance of some interactions in a network. Different levels of modeling, reviewed

in [119], have been introduced, each requires different type of data and may repre-

sent different kinds of behaviors. In this thesis, we focus on models that represent

dynamic behavior based on detailed mechanistic understanding of a system and its

biochemical reaction schemes.

Many models has been developed to describe dynamic behavior of networks in

mechanistically detailed systems [1, 15, 31, 55, 22, 128, 94, 69]. These models can

be viewed as consisting of two components: molecular mechanisms that portray the

qualitative role of players, and dynamic equations that convey the quantitative rela-

tionships among the players. Said another way, these models can be depicted as a

network, with state variables as nodes, and allowed transitions among the state vari-

ables as arcs.In this network representation, the qualitative molecular relationships

are expressed by the selection of nodes and arcs for a specific biochemical network,

and the quantitation resides in dynamic equations describing the transitions (arcs)

that relate changes in the state variables (nodes) and contain adjustable kinetic pa-

rameters.

The standard method to model a mechanistically detailed system is the mass-

action kinetics, where a system is represented as a network, with nodes being binding

and modification states of protein complex species, and arcs being binding and modi-

fication reactions among species. The mass-action kinetic method follows simple rules

to construct models and has been well documented and applied to study biological



networks [15, 31, 55, 22, 128, 94, 69]; however, this method suffers from two major

limitations: first, as a deterministic dynamic method, it cannot represent stochastic

behavior in the limit of small amount of reacting components, and second, when ap-

plied to a network with scaffold proteins, the method requires a number of nodes and

arcs that may be large and scales combinatorially to the number of protein domain

sites and modification states. The first limitation has been addressed by modeling

with stochastic formulation of reaction systems [35], while methods to address the

second limitation will be discussed next.

Various strategies have been proposed to address the large number of species and

reactions in mass-action kinetic models. One strategy is to provide a simpler user

interface, where modelers only specify interaction of protein domains and lumped

parameters, and species and reactions are generated automatically. Two groups have

followed this strategy: Blinov and groups [88] developed a software that generate com-

binatorial species and reactions before simulation, and Lok and groups [76] developed

a stochastic differential equation software that only generate species on-the-fly during

a simulation. Another strategy is to reduce the size of the dynamic model by applying

various model reduction methods (reviewed in [91]) while maximizing accuracy of the

reduced models. This strategy is not ideal applied to signal transduction networks for

two reasons. First, these methods require construction of the fully enumerated mass

action kinetic model (at least initially), which may be intractable for a large network

containing scaffold proteins. Second, these methods are accurate for a parameteri-

zation, however, they may potentially be inaccurate at different parameterizations.

To address the second issue, a formulation based on semi-infinite optimization may

search for reduced models that are accurate across parameter ranges, however, this

formulation is difficult to solve.

To study and simulate biological networks, it is convenient for the current discus-

sion to consider two separate, but related, classes of variables describing a biological

network models: discrete network structure and continous kinetic parameters. This

decomposition allows systematic treatment of biochemical models and appropriate

computational tools being applied to the models. Furthermore, this decomposition



follows the level of knowledge in biological systems; in many of the previous models

of MAP kinase networks described in Section 1.1, network structures have been well-

studied, however, kinetic parameters, such as rate constants and initial conditions,

are not as readily available, and thus, simplifying assumptions had to be made. For

example, most of the above models utilized Michaelis-Menten kinetics to represent

enzymatic reactions (the Michaelis-Menten kinetic requires one less kinetic parameter

for each enzymatic reaction), or Huang and Ferrell [28] assumed that dephosphory-

lation kinetics to be equal to the phosphorylation kinetics because of lack of data

to regress the dephosphorylation rate constants. These simplifying assumptions of

the parameterizations may potentially produced networks with different behaviors.

Furthermore, because the effect of parameterizations and network structures to the

overall network behaviors are hard to decouple, such simplifying parameterizations

may lead to incorrect conclusions about behaviors of the underlying network struc-

tures. Thus, to analyze network models correctly, new methods must be developed

to probe the contribution of discrete network structures separately from continuous

parameterizations.

1.3 Optimization tools to probe MAP kinase net-

work models.

Optimization is a natural tool to support the modeling process, in particular, to ad-

dress uncertainty in both network structures and parameterizations. One method to

address uncertainty in variables is to assign the variables as optimization variables

that are searched for some objectives, be either fitting to experimental data, or oth-

ers. In the most general formulation when applied to biological network models, the

problem falls into a class of problem called a mixed-integer dynamic optimization,

which consists of a mixture of two types of optimization variables: discrete (integer)

network structure and continuous kinetic parameters, and which is constrained by

underlying non-linear dynamic equations.



Previous works to optimize networks can be classified based on the treatment of

these two types of variables:

1. Fixed network structures with variable kinetic parameters [22, 128, 48]. In

these studies, a fixed network structure was manually selected before optimizing

kinetic parameters against experimental data. The choice of network structure

in these studies was based on chemical intuition and experimental data, but a

systematic study of alternative network topology was not made.

2. Fixed kinetic parameters with manually varied network structures [103]. For

example, Rapoport and co-workers [103] compared dynamic simulations of al-

ternative network structure. The work only examined pairwise comparisons

of hypothetical structure through manual derivation and simulation. A larger

set of topologies could not be studied efficiently; for this system, combinatorial

effects might have been overlooked.

Both treatments currently lack availability of global optimization techniques, which

not only allows better parameterization in a fixed network structure, but also per-

mits mathematical guarantee when comparing alternative network structures. The

guarantee would allow examination of combinatorial number of alternative networks

systematically by simultaneous optimization of both network structures and kinetic

parameters.

Global optimization techniques play a significant role in optimizing a mixed-

integer problem. Global optimization of kinetic parameters would allow us to ob-

tain mathematical guarantees that lead to correct comparisons of network structures.

This approach allows us to probe theoretical limits that a given network structure

may function and uncover its optimal operational strategy. Without a rigorous global

optimization tool, one may mistakenly dismiss a good network structure because of

its erroneous parameterizations. In a parallel example of parameter estimation of

a physical chemistry reaction scheme [11], local optimization may produce mislead-

ing conclusion and erroneous elimination of a reaction scheme, which otherwise is a

global optimal solution. Rigorous global optimization techniques to solve dynamic



optimization problem are recently available [132, 18], where both techniques relied

on a spatial branch-and-bound technique to prune the continuous search space and

derived rigorous objective bounds as a function of parameter ranges. Unfortunately,

when applied to MAP kinase network problems, these rigorous techniques have not

yet produced bounds with strong elimination power (data not shown). Improved

global optimization tools would be beneficial to correct analysis of biological network

models.

Optimization of biological networks have broad applications. A traditional appli-

cation of optimization is in estimating the dynamic parameters from models, which

has been applied widely in signal transduction networks [128, 22] although none has

rigorous global optimal guarantee of the results. Another area of application is to

use optimization to understand operational strategies utilized by a biochemical net-

work, for example, how GTPase may work at different operational regimes [113], or

how the network may implement a just-in-time principle in transcription programs

of metabolic pathways [9]. The later application demonstrates that we may uncover

design principles in biological networks despite having only limited amount of infor-

mation to regress parameters in biochemical networks.

Evolution of natural networks such as MAP kinase networks may be driven by

not only one, but multiple functions. Multiple functions are experienced by a net-

work simultaneously, and thus, may compete for the limited resources available in

a natural systems. To uncover realistic understanding design principles in biolog-

ical networks, multi-objective optimization techniques (reviewed in [98]) should be

applied. These techniques would allow probing the trade-offs behaviors experienced

by a natural system and be utilized as a framework to compare alternative network

structures. However, we are not aware of any works that have applied multi-objective

optimization techniques to study design principles of biological networks.

The application of optimization in biological networks may benefit from parallel

experience in other systems. First, the decomposition of discrete network structure

and continuous kinetic parameters are similar to the problems of side-chain optimiza-

tion in protein design, where one optimize the discrete amino-acid and continuous



rotamer configurations for either binding affinity or specificity [79, 37, 23]. The need

to optimize simultaneously both the discrete and continous variables is circumvented

in the protein design problem by discretizing the continuous space and solving only

the discrete optimization, which can be solved efficiently because of bounding heuris-

tics available specific to the problem. Optimizing simultaneously the discrete and

continuous variables in biological network models is more difficult to solve because of

the lack of efficient bounding procedure. Second, post-optimality analysis is required

to extract knowledge from optimization results. A raw optima may possess some

variables whose optimal values are insensitive locally, and thus, one would need a

method to take accounts these insensitivities. For a quadratic programming problem

with convex space, as in protein design charge optimization [80], optimal results may

be analyzed by utilizing a Singular Value Decomposition to extract only sensitive di-

mensions. Similar post-optimality analysis methods for a non-convex problem would

be beneficial for biological network models.

1.4 Thesis outline.

In Chapter 2, we developed an optimization-based approach to study design principles

in an enzymatic cycle, a sub-network of MAP kinase networks. The enzymatic cycle is

probed for a dynamic property, its responsiveness to a stimulus, and for amplification

of its output. We developed methods to probe optimal operational strategies that may

be utilized by a given network structure based on local optimization with multiple

starts to improve solutions towards global optimality. To extract knowledge from

the optimal results, we developed methods based on sensitivity analysis at optima

and demonstrated utization of the methods to obtain further insights into the design

principles of a network model. Furthermore, to uncover trade-offs experienced by the

networks, we applied a multi-objective optimization technique based on parametric

optimization with one objective constrained at a value and parameterized its value.

Using the trade-off behavior as a framework, we compared multiple network structures

to understand functional advantages of a given network construction.



In Chapter 3, we probed MAP kinase networks further for another dynamic prop-

erty: the ability to filter transient noise. This objective was examined by probing

networks for their ability to produce a Rapid but Delayed Response (RDR). We re-

lied on the methods developed in Chapter 2 to look into this other objective and we

found that these non-linear networks have tremendous advantages over linear net-

works with multiple steps. Furthermore, to promote this function, we pinpointed

the important role of the phosphatase. Moreover, we established the relationship

between this RDR property and the resulting input-output steady-state curve com-

pared to previous studies [6, 28, 73, 60]. Finally, we examined the trade-offs between

the ability to produce a sharp RDR and output amplification, another objective, and

found that networks with multiple activation steps have advantages for producing a

sharper RDR across wider ranges of amplitude.

In Chapter 4, we developed a method to represent dynamics of signal transduc-

tion networks compactly, while avoiding the combinatorial explosion in the number

of species of the mass-action kinetic modeling method. We examined alternative

implementation approaches to produce compact models that accurately represent

corresponding mass-action kinetic models. Furthermore, the performance of this ap-

proach to model reduction methods are compared when the parameters are varied in

a range. Finally, the method is applied to Mating and Filament Growth MAP kinase

pathways to uncover significance of detailed mechanisms to the pathway functions,

in particular, to reveal the role of Ste5, a scaffold protein, and of a MAPK common

domain.



Chapter 2

Biological Network Design

Principles: Discovery through

Dynamic Optimization

2.1 Abstract

An important challenge in systems biology is the inherent complexity of biological net-
work models, which complicates the task of relating network structure to function and
of understanding the conceptual design principles by which a given network operates.
Here we investigate an approach to analyze the relationship between a network struc-
ture and its functions using the framework of optimization. A common feature found
in a variety of biochemical networks involves the opposition of a pair of enzymatic cat-
alyzed chemical modification reactions such as phosphorylation/dephosphorylation
or methylation/demethylation. The modification pair frequently adjusts chemical
properties, such as activating and deactivating further enzyme function. We applied
optimization methodology to study an modification and unmodification network unit
commonly found in signal transduction systems, and we explored the use of this
methodology to discover design principles. The results demonstrate that different sets
of rate constants used to parameterize the same network topology represent different
compromises made in the resulting network operating characteristics. Moreover, the
same topology can be used to encode different strategies for achieving performance
goals. The ability to adopt multiple strategies may lead to significantly improved
performance across a range of conditions through rate modulation or evolutionary
processes. The optimization framework explored here is a feasible approach to sup-
port discovery of design principles in biological networks.
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2.2 Introduction

The development of quantitative models describing biological networks for a number

of interesting systems is being undertaken [120, 56, 1, 27, 69, 128, 22, 7, 15, 28,

94, 84, 30, 86, 121, 16, 78, 104, 41]. These models aim to capture the underlying

structure, dynamics, and detailed mechanisms of their experimental counterparts in

a manner that recapitulates known behaviors, provides a means for understanding

that behavior, and also predicts new behavior. The detail, accuracy, and number of

systems for which models are available is expected to grow for the foreseeable future.

These models may potentially be used to generate hypotheses, understand design

principles, create synthetic components, and produce effective therapeutic strategies.

An important challenge is the inherent complexity of biological network models, which

complicates the task of relating network structure to function and of understanding

the conceptual design principles by which a given network operates.

Here we investigate one class of approaches for analyzing the relationship be-

tween network structure and functional behavior. We are concerned with dynamic

properties, which may be particularly important for biological systems, although the

same framework can address questions of steady state behavior, which are generally

simpler.

The overall approach involves applying optimization techniques to identify the

best combinations of model parameters to achieve canonical functional characteris-

tics. In this manner, we study the relationship between model parameters (generally

rate constants) and function. This complements, but differs dramatically from, ap-

proaches in which systematic variation is applied to the parameters and the resultant

change to behavior is monitored [15, 107, 62, 34, 102]. Here, essentially by manipulat-



ing the desired functional behavior (generally properties of the network output) and

monitoring the resultant required parameters - i.e., the inverse of more standard

variational approaches - we can learn about the relationship between function and

parameterization and may be in a position to discover new design principles.

The approach taken here utilizes a simulation model for the biological network, a

search space, and one or more objective functions. Additionally, sets of constraints

are employed in some applications. In the current work, we used mass-action ki-

netic models with state variables corresponding to biomolecule concentrations, pa-

rameters corresponding to kinetic rate constants, and initial conditions defining total

biomolecule concentrations and their distribution at the start of the simulation. The

models used simulate fundamental steps of signal transduction cascades in biological

systems. Mass-action kinetic models have been popular and successful for simulating

biological networks, although there are certain limitations and approximations inher-

ent in their use, some of which can be avoided with other modeling methods [35, 1].

The search space corresponds to ranges of individual parameters that are considered

during optimization. Here each rate constant was varied continuously from its canon-

ical value through a range from three orders of magnitude smaller to three orders of

magnitude larger (ki =iki,0 for [Li E [10 - 3, 103]). We are also investigating variation

of network topology in addition to parameterization, but the combined optimization

of continuous and discrete variables is beyond the scope of the current report. The

objective function describes the desired functional behavior of the network. Here we

have focused on one-input-one-output networks and for illustrative purposes have

examined the objectives of response-time and signal amplification. These functional

characteristics correspond to measures of how quickly and accurately changes in out-

put follow changes to the input signal.

To examine the effect of competing objectives, we implemented a technique of

multiple-objective optimization, with one function as the objective function and an-



other enforced as a constraint. Enforcement as a constraint produces a rigorous

method to map trade-off curves for multi-objective optimization, although other tech-

niques are also available and may be more efficient [98]. In particular, by enforcing

a constraint on signal amplification, we have clarified how different strategies for

minimizing response-time are encoded in a single network topology. Interestingly,

the strategy that is more optimal depends on the desired level of signal amplifica-

tion. That is, the results suggest that a fixed topology network consisting of linked

enzyme-catalyzed reactions can adopt multiple strategies through varying only rate

parameters over a relatively modest range. The ability to adopt multiple strategies

may lead to significantly improved performance under changing conditions on evo-

lutionarily accessible time scales. Also, the use of chemical modification or binding

modulators can customize the same generic network to operate with different strate-

gies under different conditions.

2.3 Framework and Methods

Models. The fundamental network unit examined here consists of the enzyme

catalyzed chemical modification of a protein molecule and the unmodification cat-

alyzed by a different enzyme. This basic unit is found repeatedly in multiple con-

figurations throughout a wide variety of biological pathways, including methyla-

tion/demethylation reactions integral to bacterial chemotaxis [92] and phosphory-

lation/dephosphorylation reactions of MAP kinase signaling cascades [6], as just two

specific examples of a very general motif. Here the generic nature of network ar-

chitecture constructed from this basic unit will be emphasized by the use of general

nomenclature and symbols, but the examples are motivated by current models of

MAP kinase signaling cascades; model details, including canonical parameters, were

taken from that class of networks.



Figure 2-1 illustrates the network topologies examined here. The fundamental unit

involves the modification of protein A by enzyme F (for forward modification) to give

activated protein A'; protein A' is also unmodified by enzyme R (reverse modification

= unmodification) to give protein A (Figure 2-la). For many applications it is useful

to consider the activity of F as network input and the activity of A' as network output,

although A and R activity are also important and will be treated as secondary inputs

here. The enzymatic forward and reverse modification mechanism was treated as

a single-substrate Michaelis-Menten mechanism (Figure 2-1b) with a coupled ODE

model, as is typically done in many models of biological signal transduction; this is an

approximation because it neglects the source and sink for the modification reactions

(such as binding of ATP and release of ADP, as well as any intervening chemistry), but

is thought to be reasonably accurate when concentrations of neglected species remain

constant (Figure 2-1b, c, and d). This fundamental network unit can be coupled to

copies of itself (or to other units) to create a variety of topologies such as the two-step

modification typical of an individual layer of MAP kinase pathways (Figure 2-1e), in

which the output of the first unit acts as a secondary input (substrate) to the next

unit, which then produces the final output [28]. In this example, the same input, F,

is applied in parallel to both units, as is R. Another topology studied here is the

simplified two-layer network shown in Figure 2-1f, in which the output of the first

unit serves as the input (forward modification enzyme) to the second, which is a form

of series connection. Repeating the fundamental unit six times with appropriate

interconnections reproduces common models of MAP kinase cascades that use no

scaffolding interactions (Figure 2-1g).

Canonical parameter values were obtained from the work of Huang et al. [28]

(Table A.1). Here wide ranges of rate constant parameter values were systematically

examined spanning three orders of magnitude to either side of the canonical value

(ki = piko,i for pi e [10 - 3, 103]).
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Figure 2-1: Alternative representations of the fundamental enzymatic modification
and unmodification reactions. (a) Schematic of a one-step modification and unmodi-
fication reaction network; (b) alternative representation of the network given in (a),
with emphasis on conservation of A; (c) chemical reaction network representation of
the network given in (a); (d) mass-action dynamic equations of the network given
in (a); (e) schematic of a two-step modification and unmodification network; (f)
schematic of a two-layer cascade with one-step modification and unmodification in
each layer; (g) schematic of a three-layer cascade network with two-step modification
and unmodification in each layer.

Optimization functions. Parameter values were computed to optimize functional

characteristics of the network topologies examined. Two target functions were used

individually in different optimization calculations, which are defined by the following
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equations:

fresponse = frise + fdecay = [ ] ss dt + T [ 2 dt (2.1)

[O], = [0] (t) t=T (2.2)

where [O](t) is the activity (equivalent to concentration here) of the network output

(in Figure 2-1), which is [A'] for parts a-d, [A"] for part e, [B'] for part f, and

[C"] for part g; [0],, is the steady state value of the output while a constant input

is applied. Each objective function was studied in the context of the response to a

square-wave input pulse of width T6 and amplitude Fo (see Figure 2-2). The response-

time objective, fresponse, measures how quickly and accurately step changes to network

input are reflected in the output. Tf is a time sufficiently long that the network has

returned to its unmodified state. The value of the objective evaluated for a given

network with a given input pulse is zero if the output tracks the input perfectly

(pure amplification) and accumulates an increasingly positive value for increasing

discrepancies. Normalization by the steady state output achieved with constant input

provides comparable objective for networks of varying attenuation. The response-time

objective is the sum of two parts, frise that quantifies the fidelity of the network in

replicating the on or rise portion, and fdecay that is defined similarly for the off or

decay portion.

Simulation and optimization. Simulations were performed with the DSL48S pro-

gram [131] within the ABACUSS package (version 2) [67]. The problem formulation

for the work reported here involves differential algebraic equations (DAEs) that are

both stiff and sparse. The differential equations are fundamental to the kinetic chem-

ical model of the biochemistry; the algebraic equations enter through a flux model

formulation, which is not necessary but is more efficient because it reduces the need
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Figure 2-2: The definition of the response-time (fresponse) and output-amplitude

([O]ss) objectives. (a) A square input trajectory was used to stimulate each network;
(b) an output trajectory after stimulation; rise- and decay-time objectives are related
to the early and later grey regions, respectively. (c) the rise, decay, and response-time
objective trajectories after stimulation; (d) the mathematical definition of rise, decay,
and response-time objectives.

for repeat computations and can produce a better sparsity pattern [33]. A stiff solver

is necessary for efficient computation of at least some of simulations made because

parameter ranges spanning six orders of magnitude were involved, creating the oppor-

tunity for vastly different time scales within one simulation. The system of equations

is sparse because the time derivative of each activity or concentration (state variables)
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depends on only a small number of the other state variables. The DSL48S program

uses a staggered corrector method [131] to simultaneously solve differential algebraic

equations, a large-scale sparse linear algebra package MA48 [58] to make efficient use

of sparsity, and a Backward Difference Formula (BDF) [75] to deal with stiffness.

The solution for the set of rate constant multipliers (Mi variables) that minimize the

objective function for a given differential equation model, set of initial conditions, and

constraints are solved with the sequential modular algorithm [74], where the system

dynamics (including objective function and constraints, as well as their derivatives

with respect to the optimization variables) are solved for given sets of optimization

variables, and this information is used iteratively to carry out nonlinear optimization

in the space of the optimization variables to minimize the objective function subject

to the constraints. The sequential modular algorithm may be more efficient for stiff

system than other alternative methods [66]. Ideally the optimization problem with

embedded dynamics could be solved with a deterministic and guaranteed procedure.

We are working on methodology to achieve that goal [12]. For the current work,

local optimization of variables was carried out from a large number of random start-

ing seeds. The local optimization was carried out with the nonlinear programming

(NLP) solver NPSOL, which implements a successive quadratic programming algo-

rithm [99]. NPSOL terminates each local optimization when a Karush-Kuhn-Tucker

(KKT) [57, 90] point is reached, to within a numerical tolerance of 10-6 1iM. It should

be noted that in an infinite (unbounded) space of optimization variables and with no

constraints, a local minimum is identified as a point with zero gradient. For the work

reported here, optimization was carried out in a space of optimization variables con-

sisting of the logarithms of the rate constant multipliers (bounded by -3 and +3).

Values of T6 = 10 s and Tf = 110 s were used. Simulations were initiated from an

equilibrated point in the absent of F (Table A.1) at time t = 0. Local optimization

from a large number of random starting points was used; the best optimum was taken



as the global optimum. As a check on convergence, for the six-variable problem, when

ten times as many runs were performed, no new lowest local optima were observed.

Problems with six (twelve) parameter variables were repeated from 1,000 (20,000)

sets of starting parameters using random initial seeds on the logarithmic scale, and

the lowest local optima were observed 10 (3-5) times. Typically each optimization

run in a multi-start set required 3 s (75 s) for a six-(twelve-) variable problem using

a single 2.8 GHz Intel Pentium III Xeon processor.

2.4 Results and Discussion

The fundamental network unit consisting of a pair of Michaelis-Menten enzymatic

forward and reverse modification reactions (Figure 2-la-d) was studied using opti-

mization methodology. The response-time objective function fresponse was minimized

while all six rate-constant multipliers were permitted to vary subject to a series

of constraints applied to the steady state amplitude of the network output ([O]ss;

10-6 < [O]ss _ 34; Figure 2-2). Total concentrations of [A]o and [R]o were fixed

(Table A.1) and the same input square pulse of [F] (pulse height of [F]o = 20 1 M;

pulse width of Ts = 10 s) was applied for each optimization. The results are shown

in Figure 2-3. The characteristics of the trade-off between fresponse and [O],,, along

with representative global optimal networks for each value of the [O]ss constraint

are illustrated schematically in the Figure. In each optimal network, a red (green)

reaction arrow indicates that the corresponding rate constant was driven toward its

minimum (maximum) value through optimization; a blue reaction arrow optimized

to an intermediate value; a black dashed arrow indicates that the objective was not

very sensitive to the corresponding rate constant.

Interestingly, the patterns of rate constants attained over the set clustered into

three distinct groups that can be thought of as strategies for achieving the minimum



Figure 2-3: Trade-off curve of response-time and output-amplitude objectives, along
with representative optimal networks. Legends on each optimal network: green, the
rate is maximized to upper bound; red, the rate is minimized to lower bound; blue,
the rate is optimized to a value between both bounds (the optimal value of logio(pi) is
indicated); black-dotted, the rate is insensitive in the regions explored. Asterisk, when
network is parameterized with the canonical MAP kinase values obtained from [28].
Strategy One network examples are enclosed in a red box, Strategy Two in a blue
box, and Strategy Three in a green box.

response-time objective. Strategy One, involving an intermediate value of pl and high

value of p4, was optimal at low values of the output-amplitude constraint; Strategy

Three, involving a high value of pi and an intermediate value of p4, was optimal

for high amplitude constraint values; and Strategy Two, combining aspects of the

other two optima, was optimal for intermediate amplitude constraint values. Other

characteristics were common to all three strategies, including small values of P5,

insensitivity to P2, and maximal values of other rate constants.

To determine the advantages attained by a network that always optimizes to the

one that is committed to a particular strategy, we repeated the optimization with

the network locked into each of the three observed strategies. The resulting trade-off

curves are also shown fully in Figure 2-3; they reveal that each strategy can only cover

a limited range of amplitude constraints. Furthermore, in the region where Strategy



One and Two overlap, we observed that the network produced a worse response-time

objective using Strategy One than when it was allowed to adopt the more optimal

Strategy Two, suggesting a disadvantage for a network committed to a single strategy.

The shape of the trade-off curve between fresponse and []s,, illustrates further

characteristics of the the search space confronting the optimization, which may have

commonalities with that confronting evolution. A non-linear optimization may be

classified as convex (that a local optimum is globally optimal) and non-convex (that

multiple local optima exist). Convex problems obey a continuity principle: a small

change in the value of a constraint parameter produces a new optimum near the previ-

ous solution. Moreover, when sequential perturbations are applied, the resulting para-

metric optimal solutions do not change directions (they are monotonous). Using these

criteria, we examined the trade-off curve in Figure 2-3 and found a non-monotonic be-

havior: that fresponse increases with [O], except at 6.0 < [0],, • 15.6 IWM, indicative

of a non-convex space.

To examine the search landscape encountered by the network, we systematically

varied each of the six parameter variables, Pi1-P 6, starting from an optimum corre-

sponding to Strategy One, Two, or Three and examined the effect on the response-

time and output-amplitude objectives. For completeness, we also examined a base

strategy with the four "forward" reactions (PI, 1 1 3 , 7P4, 6 ) being as fast as possi-

ble and the two "opposing" reactions (P2, P5) being as slow as possible (for which

fresponse = 0.000577 s and [0],, = 15.4 I/M). Although this one-dimensional para-

metric variation covers only a small portion of the search space, the results are infor-

mative to examine closely related strategies observed above. The results, shown in

Figure 2-4, portray a sample of the search landscape that contains both non-convex

and insensitive regions. For example, the effect of p, on the response-time reveals

two local optima (one at low and and one at high p1 values), and insensitive region at

intermediate values, near the value attained in Strategy One. As a result of this non-



convexity, we observed multiple local optima both at low (e.g., Strategies One and

Two) and high (e.g., Strategy Three and the base strategy) values of jL1. Moreover,

the insensitivity suggests we should observe some local optima with different optimal

values of an insensitive parameter. Indeed, we observed multiple local optima whose

optimal parameter values varied in the neighborhood of insensitive regions (data not

shown).

Interestingly, Figure 2-4 also illustrates a striking range of variability among the

various rate constants. The rate constants k2 and k5 have very little effect on fresponse

and [O],, for all Strategies. At the other extreme, k3 , k4 , and k6 strongly affect

fresponse, with smaller rates generally leading to worse (slower) response-time objec-

tive. Likewise, kl and k3 have strong effects on [O],s for all strategies, with slower

rates producing smaller [O]se, but k4 and k6 show strong effects on [O]ss only for

Strategies One and Two, with slower rates generally increasing [O].s. This Figure

illustrates some of the trade-offs inherent in moving between strategies. The Strategy

Two fesponse behavior for k4 indicates the ability to reach a shorter response-time

by increasing k4 to its maximum value (P4 = 103) and thus switching to Strategy

One; however, the [O]s, behavior indicates that this change also decreases [0],. This

parallels the observations of Figure 2-3 showing that Strategy Two is optimal for

intermediate amplitude and Strategy One at low amplitude, with a smaller value of

the response-time objective.

A fundamental challenge of biological network modeling is to extract conceptual

understanding of networks and the strategies that they adopt. Strategies are likely

to be selected because of their desirable functional properties across a wide range of

conditions and time scales (including evolutionary time scales), and it is unclear to

what extent snapshots of biological networks are expected to behave optimally. Nev-

ertheless, there is ample evidence to suggest that sufficient optimization has occurred

that much can be learned by studying biological systems from this perspective. With
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Figure 2-4: One-dimensional parametric perturbation of response-time and ampli-
tude objectives for four strategies, Legends: red, Strategy One (with amplitude of
10- 4 pM); blue, Strategy Two (with amplitude of 100 pM); green, Strategy Three
(with amplitude of 20 pM); and black, the base strategy, with all "forward" reac-
tions being maximized and all "opposing" reactions being minimized. The objective
values are normalized to the optimal values of each respective strategy. The symbols
represent the unperturbed parameter values.

this goal, we have undertaken to understand in more detail the conceptual basis for

the strategies adopted here.

Strategy One is particularly counterintuitive in that the first forward reaction,

which is the first step in generating the output signal, is actually slowed to minimize

response-time. An important research area involves dissecting network topology and

parameter combinations to understand underlying operating principles. No general

methodologies exist that are guaranteed to extract this type of understanding from

biological network models, which are inherently non-linear, but a number of tools

have been applied to the problem [27, 69, 126, 107, 62]. Here we have adopted

a combination of perturbation analysis and objective decomposition to study the



mechanistic basis for Strategy One.

Starting from the Strategy One optimum with [O], = 1.0 x 10-4 I . M, the value of

L1 was systematically varied across the range of [10-3,10 3] with all other parameter

variables fixed at their optimal values, as was done for the data in Figure 2-4. The

value of the response-time objective was monitored, as were the separate rise-time

and decay-time objectives that comprise the response-time. The results, shown in

Figure 2-5d and plotted with a linear rather than logarithmic ordinate scale, demon-

strate that the rise-time has two minima (one at low and the other at high ~i values),

while the decay-time increases monotonically with increasing pi; the result is an

overall response-time that also has two minima at low and high Ai, with the former

being a global minimum. Thus, in the neighborhood of this Strategy One optimum,

the observation is that choosing a smaller [l, value produces a better solution than

maximizing ~1 to its upper bound.

To understand the selection of a lower pi value further, we compared the previ-

ous Strategy One to Strategy Three, which is the the best local optimum when pt

is constrained to its upper bound (Figure 2-5g). In this Strategy, Iu4 optimized to

102.06, a value between its bounds. When we subjected Strategy Three to the same

decomposition analysis, we discovered that rise, decay, and response-time objectives

are qualitatively similar (but quantitatively of much smaller amplitude; Figure 2-5h)

to Strategy One results: rise- and response-times have minima at both low and high

I1i, while decay-time monotonically increases with increased pl. For this strategy,

choosing a smaller p[ value also produces a smaller response-time solution than max-

imizing 1i, but the difference is much smaller. Trajectories for many of the reaction

species and the response-time objective, as well as their sensitivities to p1 variation

are plotted in Figure 2-6. Each panel of the Figure is composed of two tiles, the first

covering the initial 0.05 s after the input is switched on and the second cover the

initial 0.05 s after 10-s input pulse is switched off. As these trajectories indicate, the
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system dynamics is much faster than 0.05 s, and this network is capable of very fast

responses. The traces for [A'] show an interesting difference between Strategy One

and Strategy Three - namely, for Strategy One the concentration of A' rises sharply

and levels off essentially instantly at the start of the initial 0.05-s window, but that

for Strategy Three rises more slowly (to a higher value) and thus has a longer (worse)

response-time objective. The adjacent panels in the Figure show trajectories for [A
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which indicate the first-order changes to the [A'] trajectories for increasing k1. Both

trajectories show an increase in the pulse-on steady state value of [A'], but the Strat-

egy Three trajectory shows a brief, sharp overshoot of 0[A'] There is a trade-off

inherent in increasing kl: on one hand the initial reaction velocity toward the pulse-

on steady state is faster, which has the effect of shortening the response-time, but on

the other hand pulse-on steady state is further away (occurs at higher [A']), which

has the effect of lengthening response time. For Strategy One, this trade-off resolves

itself in favor of small kl and low [A'],, because the effect of moving the intermediate

steady state dominates the effect on reaction rate. For Strategy Three, the pattern

of dominance switches and higher ki and [A'],, result.

Only one side of the same trade-off exists for the decay portion of the objective.

Increasing kl increases the drop from the pulse-on [A']., to the pulse-off steady state

zero value of [A'], but kl does not directly affect the reaction rate for the disappearance

of A'. Figure 2-5 and 2-6 confirm this behavior, in that the decay objective is worse for

increasing kl in both Strategies One and Three with an increasing [A'],. Moreover,

for Strategy One, at the time just before decay, a large pool of R ([R] = 15.98 pM) is

available and the sensitivity trajectory of the unbound reverse enzyme is non-trivial

([R] = -0.225 pM), indicating that an increase in pL decreases the pool of available

R, and thus, increases the decay-time. In contrast, we found that Strategy Three,

at the same time just before decay, both the pool of R ([R] = 0.495 pM) and its

sensitivity trajectory (1i = 6.8 x 10- 5 pM) are much smaller, indicating that a

change in pl barely affects the pool of R before decay. These sensitivities suggest

that Strategy One selects lower pl because of two reasons: first, because higher pI

produces a worse rise-time, mechanistically because the speed-up in kinetics of the

output is exceeded by the increase in its steady state; and second, because higher p~

reduces the pool of available reverse enzyme that may speed up the decay-time.

To examine mechanisms employed by both strategies further, we decomposed



Figure 2-6: State and sensitivity trajectories of two alternative strategies of a one-step
network. (a) Trajectories for Strategy One; (b) trajectories for Fast Start.
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the problem by optimizing the network separately for rise- and decay-time. The

resulting rise-time optimal networks, shown in Figure 2-5b and f, are very close to

the two response-time optima networks in Figure 2-5a and e; The optimal decay-

time networks, provided in Figure 2-5c and g, also classified to two optima: the

Strategy One chooses maximal association and minimal dissociation rates of R and

A', minimal modification rate of F : A, and insensitive other rates; the Strategy Three

chooses maximal association and minimal dissociation rates of R and A', maximal

modification rate of R : A', and insensitive other rates. The existence of the two rise-

time local optima agree with the two potential local optima observed in the sensitivity

analysis described above. To determine the contribution of both rise- and decay-

times, we merged the two rise- and decay-time optimal networks by selecting rate

constants whose qualitative optimal values are each obtained by adding the objective

sensitivities of each parameter in both networks. The resulting merged networks have

qualitatively similar behavior as the observed response-time optimal networks. These

results further support the two reasons behind the selection of lower 1u1 in the Strategy

One mentioned in previous paragraph.

We extended the optimization and analysis to a two-step and a two-layer network,

whose reaction schemes are given in Figure 2-le and f. The multi-objective optimiza-

tion results, provided in Figure 2-7, demonstrate that optimal strategies are clustered

as well, this time with a greater number of observed strategies than the one-step

network. Examination of the optimal networks showed that both of the two-step and

two-layer networks also minimize an association rate to allow a sufficient pool of R to

be available for decay; in these networks, two choices of association rates are possible

and are selected across parameter variations (data not shown).

Utilizing the trade-off behavior as a framework, we compared the two-step and

two-layer networks to the one-step network. We found that, despite having more de-

grees of freedom to optimize, both networks produced higher response-time objective
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variant networks. (a) the two-step network given in Figure 2-le; (b) the two-layer
network given in Figure 2-1f. Legends: solid lines, multiple strategies in each network;
dotted line, trade-off curve for one-step network.

values than the one-step network. This slower response-time can be rationalized be-

cause both two-step and two-layer networks contains extra intermediate entities that

increase the latency of the network.

We extended the optimization framework to analyze a network consisting of two

modification steps and a three-layer kinase cascade, whose scheme is shown in Fig-

ure 2-1g. We found that the trade-off has increased the latency than these networks

(Figure 2-8), and that the optimal networks utilized a similar mechanism of maintain-

ing a sufficient pool of reverse enzyme, although this time with many more alternative

implementation strategies that minimize the consumption of reverse enzyme during

the rise period.

We have studied optimization as a framework to discover design principles in bi-

ological networks. The characteristics of an optimization landscape and resulting

optimal solutions were examined for an enzymatic network commonly found in sig-

nal transduction systems. Furthermore, we developed methods to extract knowledge

out of the observed optimal solutions based on sensitivity and objective decomposi-

tion. We hope to extend the optimization framework to analyze and uncover design

principles in larger-sized networks.
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Chapter 3

Differentiating signal from

transient noise in non-linear signal

transduction networks

3.1 Abstract

Recent studies have developed preliminary wiring diagrams for a number of important
and paradigmatic biological networks, including examples involved with key decision
and control pathways in living systems. However, the design principles governing
the construction and operation of biochemical networks remain mostly unknown. To
address this research question, we investigate the application of optimization tech-
niques as a set of tools for the discovery of design principles in biological networks.
Optimization allows exploration of alternative network topology, parameterization, or
both, and evaluation of the relative fitness of their operational strategies. One clear
use of optimization is model specification and parameter estimation. Additionally,
optimization may be a useful tool for understanding relationships between network
structure and function and for exploring trade-offs among multiple goals. Here, we
studied the ability of an enzymatic cycle to distinguish signal from noise as measured
by its ability to produce a rapid but delayed response (RDR). We discovered that a
two-step non-linear enzymatic cycle network can produce a response the sharpness of
whose transition can only be matched by a cascade of about 100 linear reactions in
series. Moreover, our studies demonstrated that this RDR allows the enzymatic net-
work to filter transient noise effectively. Essentially, the novel mechanism employed
by the optimal network hinges on the reverse enzyme acting as a reservoir that serves
to delay output response; when the reverse enzyme is fully exhausted, rapid response



ensues. The operation of this mechanism in natural biological networks has some
support from published literature both in bacterial chemotaxis and in cascades in-
volving mitogen-activated protein kinase (MAPK). Finally, we examined the trade-off
between the ability to produce a sharp RDR and output amplification in a family of
related network structures and found that networks with multiple activation steps
have advantages for producing a sharper RDR across wider ranges of output ampli-
tude. Together these results show how complex functional behaviors of biochemical
networks can be revealed through dynamic optimization.

Keywords: design principle, noise filtering, bacterial chemotaxis, mitogen-
activated protein kinase, biological networks, systems biology, network
motif, network optimization

3.2 Introduction

Living cells carry out the intricate job of making proper decisions in controlling sim-

ple and complex signal transduction networks that operate successfully in spite of

stochastic inputs and network components. For example, patterning of the Drosophila

embryo is controlled precisely despite stochastic fluctuations in physico-chemical sys-

tems [64, 20]. However, stochastic variations has been observed within a cell and

among cells, in the form of different conditions of molecular machineries in a net-

work [5] and stochasticity in the networks' reactive systems due to small numbers [5,

1]. Despite these variations, cell can make decisions and control their behaviors so

accurately. The design principles governing the construction and operation of these

well-controlled signal transduction networks are not fully understood. Knowledge of

the design principles may allow us to understand the specific biological phenomena in

context better, as well as the evolutionary pressures acting on the systems. Moreover,

an understanding of biological design strategy may also guide the development of di-

agnostic and therapeutics, and could also contribute our knowledge of systems control

theory. Recent studies have mapped the preliminary wiring diagrams for important

transcriptional and regulatory networks and have developed mathematical models to



estimate the networks' observed dynamic behaviors in effort to better understand how

molecular networks are controlled in living cells [94, 30, 1, 41, 22]. Here, we examine a

substructure common to many of these network models, that of forward and reverse

enzyme catalyzed modifications, to delineate optimal operational strategies and to

understand relationships between network architecture and function.

To discover underlying design principles of signaling networks, we apply opti-

mization techniques to probe mathematical models of these networks. Optimization

techniques allow both exploration and evaluation of operational strategies inherent to

any given network topology or across a set of related topologies. Using optimization

techniques to study evolving systems could be particularly relevant in living organ-

isms, as optimization, whether local or global, is considered to be one of the major

driving forces in evolution [36, 112]. This approach may help relate network structure

to function by understanding the trade-offs among multiple objectives.

We formulated the optimization using fitness functions as objectives, dynamic

parameters (rate constants and initial concentrations) as optimization variables, and

dynamic models with fixed topologies as constraints. In principle, both topology and

parameters may be optimized simultaneously, however, in practice current numeri-

cal techniques (e.g. [18, 12]) are not efficient enough to guarantee global optimality.

Thus, we have chosen to vary the topology manually and optimize for the dynamic

parameters. The decomposition of the optimization into topology and dynamic pa-

rameters also is motivated by the large disjunction in the state of knowledge between

topology and parameters; in most systems, dynamic parameters lack sufficient data

to be regressed from while topology has been better studied. Various techniques have

been used to develop network circuitry and models from experimental data [41, 22].

Here, we use our recently developed optimization techniques [24] to probe existing

models and to uncover design principles.

The network studied here, called the enzymatic cycle [83, 32], comprises paired en-
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zymatic activation and deactivation reactions (e.g. phosphorylation/dephosphorylation,

or methylation/demethylation), and is common to many signal transduction networks

such as bacterial chemotaxis [27, 65, 68] and MAP kinase cascades [47]. Enzymatic

cycle networks are observed in MAP kinase cascades in multiple topologies, including

multiple phosphorylation steps, layers of kinases and phosphatases [47]. We limit

our scope to this enzymatic cycle and a variant topology with multiple activation

steps, shown in Figure 3-1c, where a forward enzyme F catalyzes the activation of a

substrate A to A' (and A", sequentially), and a reverse enzyme R deactivates the sub-

strates. We wish to investigate the networks' ability to produce a rapid but delayed

response and to distinguish signal from noise.

Previous studies on this network substructure demonstrated that the property

of ultra-sensitivity; the steady state output exhibits a switch-like response to input

amplitude- off for small inputs and on for larger inputs beyond some narrow transi-

tional region [6]. Varying topology through additional activation/deactivation steps

has been shown initially to produce a more sigmoidal response [28], and later, to

produce a wider threshold region but poorer switch-like behavior [60]. These im-

plicate that the ultra-sensitivity property serves to filter low-amplitude noise from

high-amplitude signal. Here we asked whether these enzymatic cycle networks could

differentiate signal from noise through their transient (as opposed to steady-state)

behaviors by subjecting the networks to a step change in input and optimizing dy-

namic parameters to produce a rapid but delayed response (RDR). An RDR is the

capability of a network to produce first a delay period with essentially no output

followed by a rapid, switch-like response to its steady state output amplitude upon

stimulation with a step increase from zero input (Figure 3-1b). While previous work

focused on the steady state amplitude of a network output as a function of input con-

centration, here the focus is on the transient output response as a function of time.

The inherent ability to generate an RDR in appropriately configured enzymatic cycle
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Figure 3-1: Transient noise filtering problem formulation. (a) Illustration of the
filtering function. (b) Objectives, which are amplitude, and Rapid but Delayed Re-
sponse (RDR). (c) The schematic of networks being studied, which are: (i) a one-
step enzymatic activation and deactivation reactions, and (ii) a two-step enzymatic
activation-deactivation with the output of the first step acting as a substrate for the
second step enzymatic reactions. All the topologies assume elementary (uni- and
bi-molecular) reactions.

topologies could endow networks with the ability to filter noises of short duration

while responding to signals of longer duration.

We report here that nonlinear enzymatic cycle networks can produce an RDR

using many fewer components than linear networks. Furthermore, we observed good

correlation between the quality of a network's RDR and its ability to filter transient

noise. Further analysis revealed that optimal enzymatic cycle networks utilize a novel

strategy where the deactivation enzyme in the cycle acts as a reservoir of limited



capacity that serves to produce the delay and filter short-lived noise. Finally, we

examined the trade-off between the RDR and output amplification and discovered

that added modification sites, cascade steps, and number of reverse enzymes provide

more handles to implement the optimal strategy to exhaust the deactivation enzyme,

which allows the generation of a sharp RDR across a wide range of output amplitudes.

3.3 Methods

Biochemical network structures.

We examined two reaction schemes depicted in Fig. 3-1c: (i) a one-step enzymatic

activation-deactivation, and (ii) a two-step enzymatic activation-deactivation with

the output of the first step acting as an input for the second step. The enzymatic ac-

tivation and deactivation reactions were modeled as elementary uni- and bi-molecular

reactions with the Michaelis-Menten enzymatic reaction scheme that consists of two

reversible binding fluxes and one irreversible modification flux. The two-step mod-

els assumed that the activation is sequential, modeled after the phosphorylation of

Tyrl85 and Thr183 in ERK1 [125]. In the perturbation study (Table 3.1), the enzy-

matic reaction steps (consisting of binding and modification reactions) were substi-

tuted by a linear (non-enzymatic) reaction.

Dynamic simulation setup.

The input to the biochemical network was the activation enzyme (F), whose temporal

trajectory was specified externally from the dynamic model and took the form of a

step change or a square pulse with varying width. The output was defined to be the

final activated states of the substrate, which were the A' for the one-step and A" for

the two-step.

The dynamic simulation was formulated as deterministic differential equations



representing the mass-action kinetics that consist of uni- and bi-molecular reaction

rate fluxes and state conservation equations. For example, the equation for A-- in the

one-step network (Fig. 3-1c(i)) is represented as:

Wl = pik A] [F] [A]

W2 = 2k[A][F : A]

W6 = /k R:A'] [R: A']
dA

dt 1 w + 6

where [A], [F], [F : A], [R : A'] are the state variables, wi are the reaction fluxes, ki

are the rate constants, and 1i are unit-less multipliers of the rate constants. The

complete differential equation model is provided in Table A.2 and A.3. The canonical

values of the rate constants are obtained from a combination of ERK1 and Xenopus

oocyte MAP kinase [28, 51, 22] and are provided in Supplementary Table A.1. For the

current work, the initial conditions were taken as all substrates (A,B) and enzymes

(F,R) unbound and inactive, unless otherwise noted. This condition corresponds to

the steady state in the absence of input. The initial condition values were obtained

from the literature [22] and provided in Supplementary Table A.1.

Dynamic optimization setup.

We examined two objective functions: the output amplitude (famplitude), which mea-

sures the output at the final time, and the RDR objective (fRDR), which measures

the sharpness of the delayed response to steady state when a network is stimulated



by a step change input.

famplitude = y(tf) (3.1)

fRDR (Y )2dt (3.2)
SS f y SS

Mathematically, the RDR objective measures the normalized square difference be-

tween the output and a target trajectory, which takes the form of a step change

shifted by td. This squared formulation is conceptually similar to minimizing the

red area in Fig. 3-1b; the height of the target trajectory was dynamically adjusted

to the final steady state value corresponding to the parameter selected during each

optimization run. We used delay times (td) of 1, 0.1, and 0.01 s, with the majority of

results using 0.1 s. The final time (tf) was selected to allow the signal to reach steady

state, which is numerically defined here as the condition with the dynamic residual

value at most 10-9; a final time of 100 s was sufficient for the work reported here.

The optimization variables were the rate constant multipliers (pi) of the canonical

values, and in some cases, the initial concentration of the reverse enzyme (Ro). The

multipliers were searched logarithmically in a space bounded by [10-3, 10+3], and the

initial concentration was searched in the space bounded by [0.1, 100] pM. For the

current work we elected to search this relatively large range of parameter values to

examine the quality of our numerical procedures; in other applications, limiting likon.

to diffusion limited rates, and other physical limits, could be useful.

Numerical tools.

Simulations were performed with the DSL48S program [131] within the ABACUSS

package version 2 [67]. The problem formulation for the work reported here involves

differential algebraic equations (DAEs) that are both stiff and sparse. The differen-

tial equations are fundamental to the kinetic chemical model of the biochemistry; the



algebraic equations enter through a flux model formulation, which is not necessary

but is more efficient because it reduces the need for repeated computations and can

produce better sparsity patterns [33]. A stiff solver is necessary for efficient computa-

tion of at least some of simulations made because parameter ranges spanning 6 orders

of magnitude were involved, creating the opportunity for vastly different timescales

within one simulation. The system of equations is sparse because the time derivative

of each activity or concentration (state variables) depends on only a small number of

other state variables. The DSL48S program uses a staggered corrector method[131]

to simultaneously solve differential algebraic equations and their sensitivities, a large-

scale sparse linear algebra package MA48 [58] to make efficient use of sparsity, and a

Backward Difference Formula (BDF)[75] to deal with stiffness.

The solution for the set of rate constant multipliers (pi variables) that minimize

the objective function for a given differential equation model, set of initial conditions,

and constraints was solved with the control parameterization algorithm [74], where

the system dynamics (including objective function and constraints as well as their

derivatives with respect to the optimization variables) were solved for given sets of

optimization variables, and this information was used iteratively to carry out nonlin-

ear optimization in the space of the optimization variables to minimize the objective

function subject to the constraints. The control parameterization algorithm may be

more efficient for a stiff system than other alternative methods [66]. Ideally the opti-

mization problem with embedded dynamics should be solved by a deterministic global

optimization. Currently we are working on methodology to achieve that goal [12]. For

the current work, local optimization was carried out from a large number of random

starting points. The local optimization was carried out with the nonlinear program-

ming (NLP) solver NPSOL, which implements the Successive Quadratic Programming

(SQP) algorithm [99]. NPSOL terminates each local optimization when a Karush-

Kuhn-Tucker (KKT) [57, 90] point is reached, to within a convergence tolerance-the



tolerance to reach zero with limited machine precision- of 10-6 (The complete def-

inition of the convergence tolerance is given in reference [99]). The best optimum

from the set of multi-start local optima was taken as the global optimum. To check

the convergence to the global optimum for the one-step network, ten times as many

runs were performed and no new lowest local optima were observed. Problems with

six (twelve) parameter variables were repeated from 1,000 (20,000) sets of starting

points using random initial points, and the lowest local optima were observed _ 10

(3-5) times. Typically each optimization run in a multi-start set required 3 (75) s

for a six- (twelve-) variable problem using a single 2.8-GHz Intel Pentium III Xeon

processor.

Because of the presence of insensitive regions near the local optima, we categorized

the optima by weighting to their sensitivities. Here, we computed one-dimensional

sensitivity on each optimization variable in some lowest local optima and categorized

the variable based on its location on the sensitivity curves. We are working on more

rigorous analysis based on multi-dimensional sensitivities. With these sensitivities,

we categorized optima with slightly different parameter values to the same group if

the different values correspond to the flatness of the search space.

Comparison to linear networks.

Rapid but delayed response (RDR) has been observed in a cascade of Continuously

Stirred Tanks (CST) in chemical engineering, or equivalently, in a cascade of linear

(non-enzymatic) reactions in series. The cascade of linear reactions followed this

scheme:

input k2  k, (output) k
- A1 A 2 ~ ... - A (output) - (3.3)



d[Al]d ] - input - ki[A1] Aj(to) = 0 Vj E {1 < j • n} (3.4)
dt

d[Aj]d[A kj[Aj-1] - kj[Aj] Vj E {2 < ji n}

where ki are uni-molecular reaction rate constants. To examine rapid delayed response

as a function of cascade length, we ran two studies:

1. We optimized for the RDR objective (fRDR) for a cascade with fixed length n

by varying the rate constants ki, and we repeated for different length n.

2. We simulated the dynamics of these linear networks by varying the cascade

length n, constraining the rate constants to be the same across all steps for a

given cascade length n, adjusting the rate constant values using the equation

kn= = and measured the values of the RDR objective (fRDR) for varying n.

The simulation study corresponds to the cascade of CSTs problem in Chemical

Engineering, and we used the study to verify the capability of the RDR objective

formulation to measure sharpness of the ensuing RDR. Ideally, we would like to opti-

mize for the RDR objective for any cascade length, however, the optimization expense

grows combinatorially with cascade length; fortunately our results for short cascades

show that the simulation heuristic above was essentially equivalent to the optimiza-

tion. The correctness of the heuristic in the simulation was verified by comparing the

RDR objective values and rate constants to the corresponding values obtained from

optimization for cascade length up to ten; we found that for a cascade of the same

length, simulation and optimization produced objective values within 0.24% and rate

constants within 1% of each other. Furthermore, with increasing cascade length and

fixed td, both simulation and optimization produced monotonically decreasing values

of the RDR objective, suggesting that the RDR objective may be used to measure the

sharpness of RDR for a fixed td. To generalize for other td values, we optimized with

a different td value (td = 0.1, previously td = 1) for cascade lengths up to ten, and ob-



tained a td-normalized RDR objective ('fRDR) within the optimization convergence

tolerance and td-normalized rate constants (tdki) within 0.01%. This is consistent

with the fact that normalization coverts the RDR objective into a unit-less measure,

and led us to use the normalized objective to compare results at different td values.

Relating the rapid but delayed response and transient noise

filtering.

To establish relationships between the rapid but delayed response (RDR) and tran-

sient noise filtering, we subjected a network optimized for the RDR objective to a

series of pulse inputs with varying width. Furthermore, we constructed the power

spectrum of the two-step enzymatic cycle network and the 100-step linear networks

by subjecting the network to pulses of inputs with width varying logarithmically in

[10- 4, 101] s range, and measured the maximum output amplitude for time less than

100 s. A more rigorous method to construct power spectrum is to take the Discrete

Fourier Transform (DFT) of the output response when the network is subjected to

a random input covering the whole spectrum, however, we did not use this method

because the DFT requires even time-spacing of the output spectrum, which is compu-

tationally expensive for the five orders of magnitude range of frequency. The two-step

enzymatic cycle network is parameterized for three cases: RDR objective optimized

(loglo0(i) =[2.46, 0.68, 1.04, 2.54, 0.80, 2.60, 3, -2.26, 2.97, 2.35, 3, 3]), response-

time optimized [24] (loglo0(/i) =[3, -1.29, 3, 3, -2.22, 3, 1.31, -2.57, 3, -3, -1.52, 3]),

and Xenopus oocyte MAPK parameterized with the same activation and deactivation

rates (loglo0(ui) =[1.70, 1.18, -0.73, 0, 0, 0]).
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3.4 Results

Nonlinear enzymatic cycle networks can produce a rapid but

delayed response (RDR) more effectively than linear networks.

We first optimized linear and non-linear enzymatic cycle networks of varying length

for the rapid but delayed response (RDR)(Figure 3-la,b).The linear networks are

shown in Equation 3.3 (Methods) and the non-linear enzymatic cycle networks in

Figure 3-1c. In the linear network, the product of each reaction was the reactant for

the next, and all reactions were first order and irreversible. The non-linear enzymatic

cycle networks also had the product of one reaction being the reactant of the next,

but each reaction was non-linear in that it was catalyzed in the forward direction

by one enzyme and in the reverse by another. The rate constants for each network

were optimized to an RDR objective, a measure of delayed response sharpness (see

Methods), with time delay of 0.1 s.

The results, shown in Figure 3-2, demonstrate that linear networks of increasing

length produce sharper output responses. Output trajectories for linear networks of

length 4, 10, and 100 are shown with increased RDR sharpness. Non-linear enzy-

matic cycle networks of one and two steps are also shown, with the longer network

also demonstrating a steeper response. Interestingly, the relatively short non-linear

enzymatic cycle networks were more capable of producing steeper RDR responses

than much longer linear networks. For example, the one-step enzymatic network was

as effective as a 10-step linear network; likewise, the two-step non-linear matched the

performance of a 100-step linear network. The non-linear enzymatic cycle network

contains far fewer components (six or nine), than the equivalently performing linear

networks (10 or 100). We next tried to establish a relationship between sharp RDRs

and transient noise filtering, the ultimate property of our interest.
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Figure 3-2: Response trajectories of RDR optimal linear and non-linear enzymatic

cycle networks with various lengths. Black, the output trajectory of linear networks

with length of 4 (dot-dashed), 10 (short-dotted), and 100 (long-dotted) steps; green,
the one of a one-step enzymatic network; red, the one of a two-step enzymatic network.
The optimal one-step and two-step enzymatic cycle networks produced a rapid but
delayed response (RDR) the sharpness of whose transition can only be matched by a
cascade of 10 and 100-step linear reactions in series.

Optimal RDR enzymatic cycle networks filter out transient

noise effectively.

To analyze the relationship between RDR and the ability to filter transient noise,

we stimulated the RDR-optimal two-step enzymatic network and the 100-step linear

network with a series of square-wave pulse inputs of varying duration and examined

the corresponding responses. Our expectation was that input pulses with duration

shorter than the delay time td of the RDR would be filtered out as noise but that

longer pulses would be delayed but transmitted intact as signal. The data are shown

in Figure 3-3a. The top panel gives the train of input pulses used in this study, and

the next two panels give the resulting trajectories for the two-step enzymatic and

the 100-step linear network, respectively. The results show filtering of short inputs



and transmission of long inputs relative to the delay time, but the two-step enzymatic

network acted as a more discriminating filter. For example, the longest duration noise

pulse of 0.05 s was filtered out almost completely (to 0.5% of maximal response) in the

two-step enzymatic network, but was barely filtered (to 99.99% of maximal response)

in the 100-step linear network.
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Figure 3-3: The relationship between RDR-optimality and transient noise filtering in

a two-step enzymatic cycle and a 100-step linear network. (a) The output trajectories

when the networks are subjected to inputs of pulse trains with varying duration. Top

panel, the input trajectory of pulse trains with varying duration; lower panels, the

output response for different network topology and parameterization. Black, input;

red, RDR-optimized two-step enzymatic cycle with td = 0.1; blue, a cascade of 100-

step linear reactions; green, RDR-optimized two-step enzymatic cycle with td = 0;

magenta, literature-parameterized two-step enzymatic cycle. (b) The power spectra

of a two-step enzymatic cycle and a 100-step linear networks with various parameter-

izations.Red, two-step RDR optimized enzymatic cycle with td = 0.1 (solid), td = 1

(short-dotted), and td = 0.01 (long-dotted); green, RDR-optimized two-step enzy-

matic cycle with td = 0; magenta, literature parameterized two-step enzymatic cycle;

black dotted, two-step enzymatic cycle with literature-parameterized activation rates

and RDR-optimized deactivation rates. blue, a cascade of 100-step linear reactions;

We then constructed the power spectrum for both networks to more rigorously

analyze transient noise filtering. A power spectrum curve plots the amplitude of



transduced output as a function of its timescales (frequencies). The power spec-

trum of a transient process typically consists of two portions: a flat region when the

stimulation timescale is longer than the process timescale such that the process is in

steady-state, and a decreasing region when the stimulation timescale is shorter such

that the process is in transient. The transitional frequency between the two portions

relates to the division between timescales treated as signal (steady portion) from that

treated as noise (transient portion). For our case, we expect this to be affected by

td value. The slope in the unsteady portion measures the relative effectiveness of

a network at rejecting transient noise; a steeper slope translates to a more effective

noise filter. The power spectrum curves, shown in Figure 3-3b, possess a log-log scale

slope of -6.7986 for the two-step enzymatic network, and one of -1.0000 for the

100-step linear network. This quantifies the superior noise filtering capability of the

RDR-optimal enzymatic network compared to the 100-step linear network.

To differentiate the contribution of topology from parameterization in our study

of noise filtering effectiveness, we examined power spectra of other parameterizations

in both enzymatic and linear networks. To determine the contribution of topology,

we parameterized the 100-step linear networks randomly and obtained power spectra

with slope of -1.0000 despite having different parameters (data not shown). This

slope similarity suggests that the non-linear enzymatic network topology is necessary

to observe filtering effectiveness. To determine the contribution of RDR-optimized

parameterization, we examined three sets of other parameters in the enzymatic net-

work: first, literature-obtained parameters of the Xenopus oocyte MAPK [28] where

the deactivation-step kinetics were assumed to be similar to the activation-step kinet-

ics; second, a hybrid of the literature-obtained activation-step from Xenopus oocyte

MAPK and RDR-optimized deactivation-step parameters; and third, parameters

when the network was optimized for rapid undelayed response (RDR objective with

td = 0) [24]. From these parameterizations, we obtained power spectrum curves with



slopes of -4.2414, -6.5604 and -2.3045, respectively. These data suggest a large

contribution of RDR-optimized parameterization, in particular, optimized deactiva-

tion rate constants, to filtering effectiveness. Finally, we also examined the sensitivity

to delay time (td) by re-optimizing for different td values (from 0.1 to 1 and 0.01 s)

and discovered that the power spectra slopes decrease with td (td = 1, 0.01 produced

a slope of -7.3419, -4.8188, respectively). Taken together, these results suggest that

the non-linear topology of the enzymatic cycle coupled with RDR-optimal parame-

terization can lead to efficient filtering of transient noise.

RDR response is promoted by the timed depletion of reverse

enzyme in optimal enzymatic cycles.

To understand the operational strategy that RDR-optimal two-step enzymatic net-

works use to produce a sharp delay response, we examined state trajectories and

observed a central role for unbound reverse enzyme (R). The trajectories, shown in

Figure 3-5c, reveal that when the output started to rise rapidly, the concentration

of unbound reverse enzyme (R) dropped to essentially zero.This observation suggests

that in an RDR-optimal network, one critical role of R is to delay response; exhaust-

ing the reservoir of R at an appropriate time (td) allows networks to produce a sharp

RDR.

To further characterize the role of the reverse enzyme in generating the RDR,

we perturbed topology and initial conditions for the two-step enzymatic networks to

identify the contributions of various components in producing the RDR. The network

topology is perturbed by collapsing each of the four enzymatic reaction steps (two

for activation and two for deactivation) into a linear reaction and re-optimizing for

the RDR objective. The results, summarized in Table 3.1, show that perturbation

of either or both deactivation steps, but not the activation steps, caused a failure to

produce a sharp RDR.Alternatively, we also characterized the role of reverse enzyme



by perturbing its initial condition (Ro). Here, Ro was perturbed to two cases that

qualitatively prevent the network from implementing the optimal RDR strategy, first,

when Ro is in excess, and second, when Ro is scarce. In the case of excess, depletion is

prevented by stoichiometry; in the case of scarcity, there is insufficient material to last

through the delay given the available range of rate constants. The results, the last

two rows of Table 3.1, show that networks with excess or scarce Ro could not produce

sharp RDR. These results further demonstrate the importance of maintaining and

depleting a reservoir of reverse enzyme in the optimal strategy.

Table 3.1: Perturbation of network structure and initial conditions to examine the
mechanism of optimal Rapid but Delayed Response (RDR). LLN: the Length of a
Linear reaction Network connected in series producing an equivalent fRDR/td value.
Network structure best LLN

fRDR/td
one-step enzymatic activation-deactivation 0.05 20
two-step enzymatic activation-deactivation 0.017 190
two-step enzymatic with zero deactivation 0.117 5
two-step enzymatic with first deactivation substituted by a one- 0.089 7
step linear reaction
two-step enzymatic with second deactivation substituted by a 0.056 17
one-step linear reaction
two-step enzymatic with first and second deactivations substi- 0.110 5
tuted by a two-step linear reactions
two-step enzymatic with first and second deactivations substi- 0.094 6
tuted and merged to a one-step linear reaction
two-step enzymatic with second step activation reaction substi- 0.019 150
tuted by a one-step linear reaction
one-step linear activation-deactivation reactions 0.162 3
two-step enzymatic with reverse enzyme in excess ( = 1.2) 0.080 8
two-step enzymatic with reverse enzyme scarce ( = 0.0003) 0.087 8

To understand the consequences of this strategy, we simulated the behavior of

the RDR-optimal two-step enzymatic network, where the initial concentrations of

the forward enzyme Fo or reverse enzyme Ro were varied and the output monitored.

Because the network exhausts R at a specific td, we expected that stimulating the

network with different input amplitudes (Fo) or reverse enzyme initial conditions

(Ro) would produce responses at different td. To test this, we took the parameters



optimized for td = 0.1 s, Fo = 20 pM, famplitude = 10, and perturbed the model with

first, input amplitude F E [18, 22.5] in 0.5 intervals, and second, initial conditions of

the reverse enzyme Ro E [15.6, 16.5] in 0.1 intervals. The results, shown in Figure 3-

4a and b, produced sharp RDRs at earlier td with increased Fo or reduced Ro. We

observed that the RDRs were still as sharp despite being simulated at conditions

different from the ones used in the optimization, suggesting some robustness to the

strategy for producing sharp RDRs. Moreover, for low values of Fo the reservoir of R

could not be depleted (by the relative balance of kinetic of activation and deactivation

steps), and so a very small steady-state output amplitude was produced. To further

investigate the sensitivity of the steady-state output amplitude to input amplitude

Fo, we varied Fo E [10, 100] pM in 10-5 pM intervals. We found that the output

amplitude increased rapidly once Fo exceeded a threshold, with a maximum slope of

at least 1.9 10 +08 M output and the curve shown in Figure 3-4c.
AItM input '

Structure and function relationships of enzymatic cycles mea-

sured by their ability to resolve conflicting objectives.

To analyze the trade-off behavior of the one- and two-step enzymatic cycle networks,

we looked at the manifestation of the two principles to produce sharp RDR as de-

scribed above. The two network topologies differ in that the two-step network has an

extra enzymatic cycle, and thus, an extra modified state through which the reverse

enzyme may interact with substrate to delay response. From these topological differ-

ences, we found the two-step network to produce sharper RDR at a wider range of

amplitudes than the one-step network presumably because of longer reaction steps in

cascade and more freedom for the reverse enzyme to delay response.

To examine the behavior of the networks when faced with possibly competing

objectives, we optimized both the one- and two-step enzymatic networks for the RDR

objective while constraining the output amplitude to a specified value and varied this
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Figure 3-4: The dynamic behavior of an RDR optimal two-step cycle network. (a)
Sensitivity of response trajectories to input amplitude (Fo). Red, baseline (Fo =
20 LpM); blue, increasing (solid) or decreasing (dotted) F0 in 0.5 LpM interval. (b)
Sensitivity of response trajectories to reverse enzyme initial condition (Ro). Red,
baseline (Ro = 16 LpM); blue, increasing (solid) or decreasing (dotted) Ro in 0.1 pM
interval. (c) The steady-state curve of the RDR-optimal two-step enzymatic network
shows an all-or-none behavior.

value in a parametric optimization formulation. We chose this method because other

multi-objective methods [129, 98] may be more efficient computationally, but are not

well developed for a non-linear dynamically embedded problem as formulated here.

The results of this constrained optimization, Figure 3-5a, showed the existence of a

trade-off between amplitude and RDR quality.In the absence of the constraint, each

network obtained its best RDR optimum (fRDR of 0.0488 for the one-step and 0.00148

for the two-step network); in the presence of an amplitude constraint, each network

achieved the same optimum when the appropriate constraint was applied (famplitude Of

0.502 for the one-step and 18.000 for the two-step network). Interestingly, application

of higher or lower amplitude constraints led to optima that scored worse by the RDR

objective, which illustrates the presence of a trade-off. The two-step network achieves



a better RDR objective for all values of the amplitude constraint studied, particularly

for smaller amplitudes, and has a narrower range of sensitivity. Both networks appear

relatively insensitive to the amplitude constraint at low amplitudes.
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Figure 3-5: Trade-offs in one- and two-step enzymatic cycle networks. (a) Trade-
off curves between RDR and amplitude objectives. Blue, one-step enzymatic cycle
network; red, two-step enzymatic cycle network. (b) Optimal networks at various
amplitudes. Top, low amplitude (famplitude = 10-4); middle, medium amplitude
(famplitude = 100); bottom, high amplitude (famplitude = 25). Arrow colors indicate
the location of optimal rate constant multipliers relative to bounds: red, at lower
bound; green, at upper bound; blue, in-between bounds. The number next to blue
arrows indicates the optimal value (in log-scale). Arrow thickness is proportional to
the log scale of optimal value, normalized by respective lower and upper bounds. (c)
Corresponding trajectories of output (red) and unbound reverse enzyme (blue) at
low, medium, and high amplitudes.

To delineate the operational strategies that produce these trade-off behaviors, we
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examined the optimal one- and two-step enzymatic networks with various amplitude

constraints. The optimal networks are shown in Figure 3-5b, and the corresponding

trajectories of the output response A' or A" and the unbound reverse enzyme R

are shown in Figure 3-5c. At a low amplitude value, the one-step network selected

low activation rate constants; the corresponding trajectories show that the network

failed to produce a sharp RDR, and R was barely consumed. These observations are

consistent with an interpretation that the low amplitude constraint caused the one-

step enzymatic network to fail to produce enough A' to exhaust R. In comparison,

the two-step enzymatic network chose high activation and deactivation rate constants

for the first enzyme cycle and a low modification rate constant for the second cycle;

the corresponding trajectories show that the network produced a sharp RDR, and

the R was exhausted. These results suggest that the extra cycle in the two-step

enzymatic network allows it to satisfy a low amplitude constraint and implement the

RDR optimal strategy simultaneously. At an intermediate amplitude value, both the

one- and two-step enzymatic networks produced their lowest RDR objective values,

and corresponding trajectories showed that these networks produced sharp RDRs

and exhausted R. Furthermore examination showed that both optimal networks

chose the maximal association and the minimal dissociation rate constants between

R and either A' (for one-step) or A" (for two-step), suggesting that, when at a non-

extreme amplitude value, the ideal network construction is to maximize the binding

of the activated substrate to the reverse enzyme. At a high amplitude value, both

of these networks chose optimal parameters with a low association rate constant

between A' or A" and R; the corresponding trajectories show that both networks

failed to produce sharp RDRs and to exhaust R. These results are consistent with

an interpretation that at high amplitude, substrate conservation forces insufficient

amounts of available substrate to exhaust R. These trade-off analyses provided a

new perspective on the relationship between observed network topologies and their



ability to satisfy conflicting objectives.

3.5 Discussion

We studied the transient noise filtering capability of enzymatic cycle networks by

examining the rapid delayed response (RDR) property. We discovered that the RDR

property and transient noise filtering can be enhanced through rate constant opti-

mization of enzymatic cycle networks, and that very short enzymatic cycle networks,

which are non-linear, can outperform much longer cascades of purely linear reactions.

The RDR optimal strategy depends on the parameterization of deactivation ki-

netics but not activation kinetics. We obtained a similar quality of RDR responses

when the activation kinetics are either fixed in the optimization or collapsed into a

linear reaction, but much worse RDR responses upon perturbation of the deactivation

kinetics. Furthermore, the best RDR optimal networks selected maximal association

and minimal dissociation rate constants between the activated kinase and the reverse

enzyme; interestingly, these optimal rate constants are consistent with the observed

tight binding between ERK2 and Pystl [77, 115], Hogi and Ptp2, Ptp3 [122, 26, 117],

and Fus3 and Msg5 [59], and a class of phosphatases called STYX [87].

The enzymatic cycle network implements optimal RDR mechanistically by the

timed depletion of reverse enzyme. We observed a central role of the unbound reverse

enzyme as a reservoir that filters out short duration input noise, and subsequent

depletion of unbound reverse enzyme allows rapid response. Moreover, this RDR-

parameterization is sensitive to the initial condition of the reverse enzyme; interest-

ingly, tight regulation of the abundance of reverse enzyme has been observed in the

puckered (puc) gene, a dual-specificity phosphatase [39], and elsewhere [44, 50, 21, 82].

The RDR-optimal strategy described above required some expression of phos-

phatase in unstimulated cells. Some phosphatases, such as MKP1 and MKP2, have
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been shown to be transcriptionally induced [29, 70, 114] and their degradation re-

duced [71] by activated kinases. These mechanisms of negative feedback do not

necessarily conflict with the filtering requirement for the existence of phosphatase

in unstimulated cells, as feedback may occur over a longer time scale while filtering

may function over a shorter time scale. A study by Brondello, et al. [70] indicated

the absence of MKP1 expression in unstimulated CCL39 cells, however, whether the

absence of phosphatase expression is applicable to other cell lines and phosphatases

remains unclear.

The RDR is complementary to, but different from, ultra-sensitivity [6, 28], which

is a steady-state property that measures the sigmoidalness of output as a function of

constant input. The RDR is a dynamic property that represents a step-like response to

the time duration of an input stimulus. Thus, an RDR network filters short transient

noise, and an ultra-sensitive network filters small amplitude steady-state noise. In this

study, we observed both properties simultaneously; stimulating an optimal network

with step-change input of increasing amplitude produced an RDR with varying delay

time and a strong ultra-sensitivity (all-or-none) steady-state behavior. Furthermore,

we discovered that by RDR-optimizing the deactivation step rate constants of a two-

step enzymatic cycle network originally studied by Ferrell, et al. [28, 73], we obtained

a network with an enhanced ultra-sensitive behavior, which may explain the wild type

behavior observed experimentally [73].

Additional modification sites resolve conflicting objectives better. When a one-

step and a two-step enzymatic cycle networks were compared by their ability to

resolve objectives, we found that the two-step cycle produces a good RDR objective

in a wide range of amplitudes, while a one-step cycle requires that the amplitudes be

at a narrower range. This wider range suggests that multi-site cycle networks possess

enhanced flexibility to select amplitude while maintaining good RDR.

The RDR objective itself does not correspond exactly to the problem of filter-



ing transient noise, but it served as a useful surrogate for design purposes. The

RDR-optimized enzymatic cycle networks produced good transient noise filtering; in-

terestingly, linear networks with similar RDR objective values did not. We selected

the RDR objective formulation because it is computationally easier than alternative

formulations, such as measuring the slope in the power spectrum directly. The RDR-

objective formulation produced a smooth search space and thus standard non-linear

optimization tools (conjugate gradient, SQP) may be used, while optimizing the slope

of the power spectrum directly produced a numerical problem with theoretically un-

known shape of search landscape and standard tools failed to optimize to reasonable

solutions (data not shown).

Transient behavior of signaling networks across multiple timescales has been exam-

ined experimentally in the canonical signal transduction system of bacterial chemo-

taxis [38], however, transient noise filtering properties have not been explored in

detail. Here, we looked at how transient filtering functionality affects the construc-

tion and operation of enzymatic cycles on short timescales. We looked at principles

and mechanisms affecting the observed transient filtering in enzymatic cycle networks

and how variant topologies filter out transient noise. Filtering transient noise may be

an integral function of signal transduction networks, and, as reflected by its name,

the network should transmit information with fidelity to avoid making erroneous de-

cisions, some of which have life-or-death consequences.

The non-linearity of enzymatic cycles allows production of RDR more efficiently

than a cascade of linear reactions. The cascade of linear reactions is closely related to

the problem of a series of Continuously-Stirred Tanks (CSTs) in chemical engineering,

where adding tanks in series produces a steeper RDR with the limit of infinite numbers

converging to a Plug-Flow Reactor (PFR). Here, simple non-linearity in the reaction

scheme, in the form of bilinear reactions, allows development of an optimal operational

strategy with much enhanced performance over the linear case.



We demonstrated increased utilization of existing models using optimization tech-

niques. The optimization framework allows us to decouple the reaction mechanisms,

where typically are supported by many publications, from the parameterization of

a fixed network topology, where less data are available. We hope expanded utiliza-

tion of optimization techniques will uncover further design principles in biological

applications.



Chapter 4

Compact Modeling through

Protein Domain Network

Representation Applied to Study

Signaling Specificity

Abstract

Modeling is an important tool to study complex signal transduction networks, how-
ever, the current standard approach, the Mass-Action (MA) kinetics, generates mod-
els of which number of species scales combinatorially to the number of protein domain
sites and modification states, and are difficult to build and compute when applied
to large networks. Methods to reduce model sizes have been proposed, yet, they
require generation of MA models at least initially and the resulting reduced models
may be inaccurate at different parameterizations. Here, we propose a method to
generate compact models by representing the problem as a protein domain network
(DN), with nodes defined both as unbound and bound states of each protein domain
in a modification state, and arcs defined as binding and modification reactions. This
method generates models whose number of species scales quadratically in the worst
case to the number of protein domain sites and modification states, a tremendous
saving over the combinatorial scaling in the number of species of the MA models.
We evaluated the accuracy of the DN method and its alternative implementation
approaches by applying to a suite of test systems, and discovered that: (1) in eight
orders of magnitude parameter variations, a particular approach produces trajectories



that are within 2.4% of the ones of an MA model; (2) both MA and DN models pos-
sess qualitatively similar parametric behavior; and (3) when compared to reduced MA
models obtained from species elimination, DN models are more accurate in six orders
of magnitude variation in parameters. We subsequently applied this DN method to
uncover determinants of signaling specificity in yeast Mating (M) and Filamentous
Growth (FG) pathways, where an MA model is estimated to consists of more than
107 species and is too large to simulate, and where a DN model consists of only 132
state variables. From the constructed DN model, we discovered two findings. First,
Ste5, a scaffold protein thought of as a determinant for M specificity, is a poor speci-
ficity factor when acting as a passive tethering protein. However, if Ste5 promotes
cooperative binding to its partners, it would enhance M specificity. Second, the shar-
ing of a binding domain, as observed in the common domain of Fus3 MAP kinase
that is shared between its activators, deactivators, and targets, promotes unexpected
emergent behavior. Together, these results demonstrate the utility of the proposed
DN method to construct models for the study of signal transduction networks which
otherwise require too many species to be developed with the MA approach.

Keywords: large scale systems biology, model reduction, computational
biology, signal transduction, design principles, signaling specificity

4.1 Introduction

Quantitative modeling is an important tool to study complex biological systems.

Modeling complements quantitative and systematic experimentations, captures a sub-

set of current knowledge in the field, and indicates some of the gaps in the systematic

picture of our knowledge space. Here, we focus on modeling of signal transduction

networks that typically consist of interacting proteins, some of which consists of mul-

tiple domain and modification sites. A standard method to model these networks

is the Mass-Action (MA) kinetics, where a signal transduction system is represented

as a network with nodes defined as protein complexes in each binding and modifica-

tion states, and arcs defined as binding and modification reactions. A key facet of

MA models of signal transduction networks is the large number of protein complex

species, which include multiple sites of binding domains and modification sites and

corresponding activity, as well as heterogeneous complexes composed of various and



variant binding members. This number of species grows combinatorially with the

number of proteins, binding domains, and modification sites, making modeling exer-

cise difficult to build and compute. Furthermore, such a large number of species and

reactions makes it a challenge to determine parameters experimentally. While this

significant challenge must be fully addressed to understand the biological basis for

observed biological complexity, important questions has been probed with relatively

minimalist parameter sets for the models, where the binding parameters are limited

to paired interactions or cooperativity among few paired interactions [19, 100].

Several approaches have been proposed to manage this complexity, which in-

clude automatic generation of MA models with a user interface based on interactions

of molecular domains (BIONETGEN [88]) and generation species on-the-fly during

a stochastic dynamic simulation (MOLECULIZER, [76]). These approaches produce

models with a number of species that scales combinatorially, and thus, may not be

practical for a large-sized system. To reduce the size of MA models, several model

reduction methods [46, 124, 42, 91, 89] have been developed, which include lump-

ing, sensitivity analysis to eliminate insignificant species and reactions, and time-

scale analysis. These approaches are not ideal because they require the generation

of an MA model that may be intractable in large networks (at least initially), and

furthermore, the methods evaluated the most accurate reduced model at a specific

parameterization and thus, may potentially produce inaccuracy when evaluated at

different parameterizations. In fact, a recent study have suggested that one of these

approaches, the species elimination, may produce grossly inaccurate reduced mod-

els when evaluated at different parameterizations [72]. This potential inaccuracy is

problematic because, in a typical model development process, we do not have a priori

information about model parameterization. Thus, we need a reduced sized model

that is accurate across different parameterizations.

With an eye toward using abstraction for selective model simplification, which may



lead more directly to intuitive understanding, we have developed and implemented a

modeling method based on a reaction network of protein domains that lead to compact

models. Our goals were to develop a method that, first, is easily extended to any larger

sized networks while avoiding the generation of an MA model, second, is accurate even

when parameters are varied, and third, can represent observed interactions in natural

systems such as cooperative binding. The applicability of alternative approaches to

implement the method are examined and, where appropriate, applied to understand

signaling specificity in yeast Mating and Filamentous Growth pathways.

The method is applied to study the signaling specificity in yeast Mating (M) and

Filamentous Growth (FG) pathways [52, 59, 109]. In particular, we would like to un-

derstand the roles of Ste5, a scaffold protein, and the MAPK common domain [123]

in relation to signaling specificity. The Ste5 is accepted to be one of the determi-

nants of M response specificity [85], yet, both pathways are known to be stimulated

by Pheromone [109] and both to produce MAP kinase activation via Ste5 [52, 59],

suggesting that Ste5 may promote both M and FG responses and thus, may be a

poor specificity determinant. These apparent conflicting observations encourage us

to study further the role of Ste5 to the specificity of M over FG signals. Moreover,

previous studies have uncovered a common domain in MAPK that is shared between

MAPK activator, phosphatase, and downstream kinase target(s) [123]. This unusual

architecture of the network encourages us to study how the sharing of this common

domain may affect network functions.

4.2 Methods

Overview of the protein domain network (DN) representation

We proposed a model reduction method to simulate dynamics of protein complexes

based on protein binding domain network (DN) representation. The method can be
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expressed mathematically as:

dTk= + S vW d Vp E P,k K, i Ipk, i' E Pi (4.1)

dD un b

D _ on off
dt (-[i, i ] + , ) Vi e I, i' e Pi (4.2)

i'EPi

dDbnd[i,i'] = (+Won, _ off]) m mod (4.3)
dt E L (+Ww i,ji+ VsWs E Pi (4.3)

i'EPi sES[i,i/]

C = gs(Dbo Tpk) Vs E S, [i, i'] E S, 1  (4.4)

oWi']= n (k,, D nb, Dunb)  Vi E I, i' P (4.5)

off off olff d bndViE Ii i (4.6)
w [i,i'] = J [i,i'] [i,i'] )

mod frmod (kmod, Cs) Vs E S (4.7)

where p indexes proteins; j indexes domain sites; k indexes modification states; s

indexes modification reactions; i indexes a domain variable for a particular protein

p domain j and modification state k; Tpk is the the total protein p concentration in

a modification k state; Du nb is an unbound form domain variable; Dbnd is a bound
[i,i']

form domain variable; C, is a modification specie; W[I,], W[ ,] are binding fluxes; wmod

is a modification flux; P is the set of all proteins; K/ is the set of all modification

states of protein p; I is the set of all protein p domain j in modification state k; Ipk

is the set of all domain j for a protein p in modification state k; S is the set of all

modification reactions; Pi is the set of binding partners of domain variable i; S[i,i/] is

the set of modification reactions whose modification specie Cs depends on the binding

of domain variable i to its partner i'; S,-1 is the set of [i, i'] interactions influencing

the modification reaction s.



Counting the numbers of species and reactions and their scal-

ing

To count the numbers of species and reactions for MA and DN models listed in

Table 4.1, we examined the implemented models when models are available and

estimated the numbers otherwise. To estimate the number of species and reac-

tions, in particular for MA method applied to yeast mating and filamentous growth

pathways, we used the following formula: for an MA model of a network contain-

ing N P proteins with each protein p possessing ND number of binding domains,

and N' number of modification states, the number of species of an MA model is

O (:,NP E• (N) k~Kp NM ), where Kp is the set of proteins in a complex to

protein p and occupy j out of possible NB binding sites; the number of reactions of

a network with Nspecies number of species are bounded by o(Nspecies) for a sparsely

connected network, and by O(Nspecies2) for a fully-connected network.

Relationship between Domain Network (DN) and Mass-Action

(MA) kinetic models

We started from an MA model given by:

on off mod (4.8)

i i i

W
n 
= kynilli2

Wioff kOffx"

wmod = kmodXi

where zx are MA species; wpn Woff Wmod are bimolecular association, uni-molecular

dissociation, and uni-molecular modification fluxes, respectively; k are rate constants;

and vi,x are reaction coefficients. We lumped MA species (xx) possessing the same

domain state to DN species id, which are given by dd = Ed MdxXx, to Equation 4.8,
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to obtain:

Z Mdx = I M ~ Evi,xw n + E Md E vi,xW v+ E Mdx E vixwTd (4.9)
p d i d i d i

which simplifies to:

Xd = Vi',d + i'd + M di,ZWmod (4.10)
i' i' d i

w
9 J = ki i2

WiOff = koff i,

mod = kmodx .

In Equation 4.10, both MA association and dissociation fluxes (wvn, wff) reduced to

DN binding fluxes (wi, wp,) that are functions of DN variables only. No simplifica-

tion is observed for the modification fluxes (Wmnod). Thus, to obtain an exact lumped

DN model, we also mapped, one-to-one, the modification species from MA to DN.

Alternative approaches to compute modification species

To compute modification species as a function of domain variables, we examined four

alternative approaches that differ on the level of assumptions. Each approach is a

special case of Equations 4.1-4.7, and summarized as follow:

1. Approach 1: Differential relationship of modification species and domain vari-

ables. The modification species are computed using differential equations with

association fluxes that are derived from the differential form of g,em devel-

oped in Approach 3. No domain variables are assumed at steady-state. The

approach can be expressed mathematically with this equation being a realiza-

tion of Equation 4.4:

dCt Z i,( \ss Dbnd
d [i,i']Es [i2 ,i2]ES",[i2 ,i']#[i,i'] [; S

1 [E



Applied to System I, the expression is:

Dbnd Dbnd
d[S(1, 1)] on [S11,E11] on [S21,K11 ]

dt W[s21,K11] Tt + W[11,E11] t

-(koff 1,E 11] + koff _ mod
-(k[s,E] + k[S21,K11])[S(1, 1)] - w ,1)

2. Approach 2: Algebraic relationship of modification species and domain vari-

ables. The modification species are computed from algebraic functions of do-

main variables using g,,eqm developed in Approach 3. No domain variables are

assumed at steady-state. Applied to System I, the expression of g,eqm([S(1, 1)])

below is a realization of Equation 4.4:

Dbnd Dbnd
[S(1, 1)] _ [Sl ,E11] [S21,Kll]

Ttot Ttot TtotS1 S1 S1

3. Approach 3: Equilibrium binding. Both the unbound and bound domain vari-

ables are assumed to be at equilibrium with negligible modification fluxes. The

resulting algebraic equations are used to compute the modification species. The

approach can be expressed mathematically with these equations replacing Equa-

tions 4.2, 4.3, 4.4:

0=on +off
i'EPi

Cs= s /bndC-- g,eqm (D[i,i']E S" I Tjk)

The modification species function g ,eqm is derived by constructing an MA

model, assuming equilibrium binding, and analytically solving a modification

specie as a function of the domain variables in MATHEMATICA(R) (Wolfram

Research, Inc.). Applied to System I, the function g,,eqm([S(1, 1)]) takes a sim-

ple form of products of molar fraction of bound domains to a scaffold protein,

given by:

Dbnd Dbnd
[S(1, 1)] DI[S1,Ell] [S21,Kll]

Ttot r tot atot
S1 S1 S1

and solved together with these domain variable equations after equilibrium as-



dD bnd
[S11,E11] n

dt = W[S11,E11]

dDbnd[S21,K11]

dt
dDbnd

[S21,K21]

dt

off
- W[S11,E11] -

on off
= [S21,K11 ] - W[S21,K1] =

on off
= W[S21,K12] - W[S21,K12] =

4. Approach 4: Pseudo steady-state on the bound domains. The bound domain

variables are assumed at pseudo steady-state, and the resulting algebraic equa-

tions are used to compute modification species. The approach is expressed

mathematically with these equations replacing Equations 4.2, 4.3, 4.4:

dDbnd
[i, 0 =

dt S(+ni] - W(ii,)) +
i'ePi

E mwod

SES[i,i']

s ps bnd Tjk)
gm,pssa ,[i,i'] S•, Tj

k )

Applied to System I, the approach is given by:

dDbnd[S11,E11]

dt
dDbnd[S21,Kll]

dt
dDbnd[S21,K21]

dt

[S(1, 1)] =

nEl] offS11,E11] W[S11,E11] =

on off mod
W[S21,K11 ] S- W[S21,K11 ] - W[S( 1 ,1 )]

on off mod
W[S21,K2 ] - W[S21,K12 ]  (1,1)]

f pS(1, 1) (Dbnd Dbnd K totpssa t \J[S11,E11], [S11,K11], TS1c

The fssa) is evaluated numerically from the MA model of System I because

we could not find any simple analytical algebraic expression.

The detail dynamic models of each approach applied to System I is given in Supple-

mentary Materials.

sumption:

dDunb
[S11]

dt
dD unb[S21]

dt



Accuracy measurements of alternative approaches to imple-

ment DN representation

The accuracy of four alternative approaches are examined by comparing the trajecto-

ries of state variables and their sensitivities generated by Approaches 1-4 to Approach

0 in System I. We utilized the same underlying parameters to simulate all approaches.

We measured accuracy of approaches by comparing trajectories of a downstream state

K, and its sensitivities to rate constants and initial conditions. We compared tra-

jectories generated by Approaches 1-4 to the ones by Approach 0 using the following

faccuracy _ 1 ftf (xij(t)-Xio(t))2dtaccuracy measure: f tf malxti__o(t)2  , where xij are the i-th state tra-

jectory of Approach j. The integral function is chosen to compare across the whole

trajectories instead of at a specific time point. We examined faccuracy in both the

canonical parameter and one-dimensional parametric perturbation to all of the rate

constants and initial conditions bounded by [10 - 3 , 105 ] fold of the canonical values.

The parametric behavior of Approach 1 is compared to the one of Approach 0 by

comparing the shape of a function in parametric space in System II and III. We chose

to measure a responsiveness function, given by fresponse = fj 2 dt, with i

being a state variable, chosen to be Ktot and j being the approach number.

Comparing the accuracy of DN and species elimination re-

duced models at parameter variations

To compare the accuracy of DN method to species elimination model reduction meth-

ods, we applied both methods to System III. The accuracy is measured using f•curacy

defined above, with the state variable being compared being the total amount of

activated form of C. The fully enumerate MA model is constructed with BIONET-

GEN [88]. The reduced MA models are constructed by eliminating species whose

trajectories have the smallest norm when the MA model is evaluated at a canonical



parameter value, and the reactions into and out of eliminated species being set to

zero. We varied the number of eliminated species to be 25, 50, 100, and 164 species

eliminated, the last number is chosen to construct a reduced model containing the

same number of species as the DN model.

Model systems

The following four systems are utilized to develop and apply the method and are

described as follows:

1. System I consists of three proteins, S, E, K, with S containing two binding

sites, each binds E and K. Protein complexes are represented by S(i, j), i E

{0, 1}, j E {0, , 2}, where 0 represents unbound state of a domain, and {i, j} >

0 represents a bound state of a domain. Protein K may be modified to K,

via the complex S(1, 1). We assumed independent binding in the systems by

assigning the same rate constants between paired domain interactions.

2. System II consists of the same components as System I, however, we introduced

cooperative binding by assigning different values of dissociation rate constants

when both E and K binds simultaneously to S. The values are assigned as

koff = /3koff and k"f = koffk[Sl,E11]for [S(1,1)] = Pk[Sll,E11)for [S(1,0)] and [S21,K11]for [S(1,1)] = [SkS21,K11]for [S(O,1)]j

with p being a cooperativity factor. Applied to this system, Approach 1 is given

by the specific realization of Equation 4.4, 4.6 to be:
d[S(1,-1)] Dbnd Dbnd

d_[S(1, 1)]on Db[S11,E11] [S21,K11]
dt W[S2 1 ,K11] tot +[Sn11,EI

S1 TS1

-0(k[S11,E11 ] + k s21,K11]) [S(1 , 1)]- ws(,1)

off I.off / TbndW[S11,E11] = k[S11,E11] (D[S11,E11] + (W - 1)[S(1, 1)])
off bnoff /nbndW[S21,K11 ] = k[S21,Kll](D[S21,K11] + (3 - 1)[S(1, 1)])

Approach 2 and 3 are given by the following specific realization of Equation 4.4:

Dbnd - [S(1, 1)](D bnd -[1 )bnd 7-nbnd

[S11,E11] , 1)])(DS21,K] - [S(1, 1)]) = P[S(1, 1)] (T t - 1,E11] S21,K] + [S(1, 1)])
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Approach 4 is not applied to this system.

3. System III consists of a dimerizing scaffold protein S with three binding part-

ners A, B, C, with A being defined as an input with one modification state and

each of B, C possessing two modification states (unphosphorylated, phosphory-

lated). Each of B, C can be modified only when it binds to a dimerized scaffolds

together with at least one other phosphorylated binding partner of S serving as

a kinase cascade.

4. System IV consists of multiple proteins of the yeast Mating (M) and Filamentous

Growth (FG) pathways. The scope is defined as the signal transduction unit,

from Ste4, a receptor, to Stel2 and Tecl, transcription factors of M and FG.

The input is defined as the Ste4 concentration, and outputs are defined as time

integral of active Stel2 homo-dimers binding to Mating genes for M, and as

time integral of active Ste12 and Tecl hetero-dimers binding to FG genes for

FG.

The DN method applied to yeast Mating and Filamentous

Growth pathways

Model scope. The scope of the network is from Ste4 to Stel2 and Tecl binding to

mating and filamentous growth genes. Each of the kinases in the cascade (Stell, Ste7,

Fus3, Kssl) are modeled with three modification states, unmodified, singly phospho-

rylated, and doubly phosphorylated forms. The rest of the kinases are modeled with

two modification states. The input is Ste4, the outputs are time integral of activated

Stel2 homo-dimer bound to mating gene, and time integral of activated Stel2 and

Tecl bound to filamentous growth gene. The integral function is selected to evalu-

ate over the whole trajectory instead of just at a specific time point. Each protein

interaction is represented by a separate domain in each protein, with the exception



of Fus3 and Kssl MAPKs that are known to share domain between their activator,

phosphatase, and downstream kinases [123]. In the dissection part, we also created a

version of the model with Fus 3 binding separate domains to Ste7 and to Stel2, Tecl,

and Msg5. Only Fus3 has a known phosphatase (Msg5), for the other kinases, we

assumed uni-molecular dephosphorylation reactions. We included the Fus3 promoted

degradation of Teel that were found [93, 108] to be a major determinant of specificity

in these pathways. To balance the degradation, we added a small constant synthesis

term for Tecl. For other proteins, we assumed no synthesis and degradation terms.

The binding cooperativity of Ste5 to activated Ste7 and Fus3 is implemented by as-

signing a multiplier / in front of the dissociation rate constants of Ste5 to activated

Ste7, and Ste5 to Fus3.

Parameterization. The model parameters consist of rate constants and initial con-

ditions. The initial conditions are obtained from a global yeast expression experi-

ment [110], and being converted from abundance to concentration using the typical

yeast cell volume [97] of 37.5 fL. The rate constants are manually adjusted to pro-

duce model satisfying the experimentally observed phenotypic behavior, summarized

in Table 4.3.

To evaluate quality of a parameterization, we developed both unperturbed and

perturbed cases of the model with the same underlying parameterization (except for

the specific perturbation in a case) and compared the observed states using formu-

lation developed in Table 4.4. The quality of a parameterization is evaluated by

simultaneously simulating the whole set of model cases. All the set of case models

consist of 18:278 state variables. The simulation is implemented in ABACUSSII [67]

and each run takes 800 s in a 2.8-GHz Intel Pentium III Xeon processor.

We chose the following five general rules to select parameter values. First, as-

sociation rate constants are selected at a typical value for two proteins. Second,



dissociation, phosphorylation, and dephosphorylation rate constants of Ste4, Ste5,

Ste20, Stell, Ste7, Stel2, Tecl are selected to produce sufficient activation for a

given input range. Third, dissociation rate constants of Ste5 to Fus3 are smaller than

the one of Ste5 to Kssl. Forth, interactions of Fus3 and Msg5 are parameterized with

an all-or-none dephosphorylation rate constants developed recently [25]. This param-

eterization is chosen to allow added differentiability of low and high input responses

that are lost with added cascade length. Msg5 initial condition is adjusted to provide

an appropriate threshold value. Fifth, interactions of Fus3 to Stel2 and Fus3 to Tecl

are chosen as a fraction of the ones of Fus3 to Msg5 to reduce interference of the

all-or-none behavior. We adjusted a total of 63 rate constants.

To obtain a set of parameterization satisfying the phenotypic constraints formu-

lated above, we adjusted some rate constants by 10 or 100 fold and re-evaluate the

constraints. We chose the rate constants being adjusted based on our understanding

of the network operation. A more rigorous method to parameterize using constrained

optimization may be possible but its development is beyond this paper.

4.3 Results

The protein Domain Network (DN) representation is a method

to produce compact and accurate dynamic models of signal

transduction networks.

To model signal transduction networks while avoiding the combinatorial explosion

in the number of species of the Mass-Action (MA) kinetics method, we studied an

alternative problem representation to construct dynamic models, called the protein

Domain Network (DN). In this method, signal transduction is represented as a net-

work, with nodes defined as both an unbound form of each protein domain in each



Table 4.1: Test systems being used to validate and apply protein-domain network
representation of dynamic models. Numbers in parentheses indicate the number of
fluxes and additional variables implemented for numerical stability. An asterisk in
the number indicates an estimate.

Sys. Descriptions Number of state variables (fluxes)
MA models DN models

I A scaffold protein with two partners 9 (15) 10 (7)
II A scaffold protein with two partners 9 (15) 10 (7)

and binding cooperativity
III A dimerizing scaffold protein with 194 (1686) 30 (14)

three binding partners, each with two
modification states

IV Mating and Filamentous Growth 3 103(103 - 107)* 131 (764)
pathway, with non-dimerizing Ste5

V Mating and Filamentous Growth 2 107(107 - 1014)* 132 (770)
pathway, with dimerizing Ste5

modification state and multiple bound forms to a partner, and arcs defined as binding

and modification fluxes. With this definition, we produced DN models whose number

of state variables scales quadratically to the number of protein domains and modifi-

cation states in the worst case, a tremendous saving over the combinatorial scaling of

the MA method. Applied to test systems summarized in Table 4.1, the DN method

produces much less species than the MA method; for example, when applied to yeast

Mating and Filamentous Growth pathways, a DN model consists of 132 species while

an MA model requires more than 107 species and is too large to develop.

To develop the DN method, we examined the relationship between MA and DN

models by applying both methods to a test system (System I), with reaction schemes

illustrated in Figures 4-1a and b, and models provided in Figure 4.2. Our goal is

to develop a DN method that produces models that most accurately representing

corresponding MA models while avoiding any construction of MA models. In the DN

method, the above node and arc definitions qualify the method as a lumping approach,

where MA model species are lumped into DN model species, with a lumping procedure

being guided by biological insights. This linear lumping is given by X = Mx, where x



are MA species, 2 are DN variables, and M is a linear lumping matrix. In a general

lumping approach [63, 46], an application of M may produce reduced models that

are either exact or approximate. When the DN's M was applied to the System I

MA model, we discovered that the resulting DN model may be exact: the DN model

consists of binding fluxes which reduced to a function of only DN variables, and

a modification flux that remains a function of an MA specie (xs); and this latter

flux may be computed exactly when x, is also mapped one-to-one from MA to DN

(Methods, Supplementary Materials). Because we required that any DN models to

be functions of DN variables only to avoid any construction of MA models that may

be infeasible, we must compute x, from DN variables.

To compute x,, we considered a reverse lumping function that computes any

x from X, given by x = g,(^). If the reverse lumping function ga is exact, we

may compute x, exactly, and we would obtain an exact DN model. Thus, we may

rank alternative g. functions based on how close they are to exact functions and

how extend-able they are when applied to large networks. The previous lumping

method [46] has developed a linear function g (2x) = MX/ based on a generalized

inverse of M (MM = I); when applied here, we could not obtain a rule from the

resulting M that is extend-able to large networks (Supplementary Materials). To

obtain ga functions extend-able to large networks, we used some intuition about the

systems which produced non-linear approximate functions, described below; however,

first, we must extend the necessary and sufficient condition for the existence of an

exact lumping dynamics when gi, is non-linear. We were able to extend the proof of

the exact lumping method for any non-linear ge(I) satisfying Mgj,(A)M = M, with

details given in the Supplementary Materials.

Within this DN method, we examined four alternative reverse lumping functions

gi, by evaluating their accuracy and extendability as applied to test systems. The

best of these functions was used to model signaling specificity of the yeast Mating
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Figure 4-1: Reaction schemes for System I. (a) The mass-action kinetics represen-
tation. The network consists of a scaffold protein S with two binding partners E
and K; Protein K may be modified to K, when both E and K binds to S. Protein
complexes are represented as S(i,j), where i indicates states of the first domain of
S (0, unbound; 1, bound to E) and j indicates states of the second domain of S (0,
unbound; 1, bound to K; 2, bound to Kp). Solid lines, binding fluxes; short dotted
lines, modification fluxes. (b) The protein-domain network representation. D!u nb, an
unbound form domain variable i; D1bi , a bound form domain variable of i to its part-
ner i'; Solid lines, binding fluxes; short dotted lines, modification fluxes; dash-dotted
lines, dependencies of a modification specie to bound-state protein domains.

and Filamentous Growth pathways. The MA (Approach 0) includes the most detailed

treatment used throughout this study. Approaches 1-4 simplify Approach 0 in ways

that are described in depth in the Methods section and Supplementary Materials,

briefly indicated here:

1. Approach 1: The x, are computed differentially from bound domains with

expressions of association fluxes derived from Approach 3; however, domains

are not in steady-state.
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2. Approach 2: The x, are computed algebraically from bound domains with ex-

pressions of x, obtained from Approach 3; however, domains are not in steady-

state.

3. Approach 3: The x, are computed algebraically from bound domains, with ex-

pressions obtained by assuming that domains are in binding equilibrium (steady-

state) with negligible modification fluxes.

4. Approach 4: The x, are numerically computed from bound domains, and the

bound domains are in steady-state without neglecting modification fluxes.

Numerical studies uncover the accuracy and limitations of the

DN method.

To evaluate the accuracy of Approaches 1-4, we applied them to System I, com-

paring trajectories of a state variable and its parametric sensitivities to the ones of

Approach 0 under equal underlying parameters. The accuracy was measured by a

normalized integrated squared difference of the trajectories (faccuracy, Methods). We

examined the accuracy for canonical parameter values derived from the yeast Mating

pathways (Supplementary Table 4.5) as well as one-dimensional parametric pertur-

bations in the range of [10 - 3 , 105] fold of their canonical values. The results, shown

in Figures 4-2a-c for a state trajectory and Figures 4-2f-h for a parametric sensitiv-

ity trajectory, demonstrate that Approach 1 is the most accurate (lower faccuracy),

followed by Approaches 2, 4, and 3. We observed consistent ranking in other param-

eter perturbations being studied (data not shown). This ranking is also consistent

with the ranking of weaker approximations being applied; for example, Approach 2

should be more accurate than 3 because the earlier does not neglect modification

fluxes while the latter does, and Approach 1 should be more accurate than 2 because

the earlier assumes molar fractional expression in the association fluxes only while



the latter assumes molar fractional expression throughout. At the canonical param-

eterization, Approaches 1-4 produced faccuracy of 10-3.24, 10-2.85, 10 - 1.35, and 10- 2.53,

respectively, which translates to integrated differences of 2.40%, 3.76%, 21.1%, and

5.43%. Furthermore, Approach 1 produced a worst case accuracy across examined

parameterizations (faccuracy = 10-2.94, when ksK is 10- fold) that is better than that

of other approaches (faccuracy = 102.3 when Eo is 10- 3 fold for Approaches 2-4). To

provide further intuition to the values of faccuracy, we examined trajectories for two

parameterizations: first, at the canonical values, and second, at the values where the

accuracy of Approach 1 is the worst. The results, shown in Figures 4-2d,e,i,j, indicate

that the trajectories of Approach 1 reproduce the trajectories of Approach 0 with a

maximal trajectory differences at all times of 6.82% (for canonical value parameteri-

zation) and 20.0% (for worst case parameterization). We concluded that Approach 1

is superior to the other approaches, and we are interested to characterize more about

parametric dependence of its accuracy.

10 10 510 0.03 0.03
-3 -30SE -3 0 3 150 300 0 .02 150 300

(a oU) (b) lUg0(kmod (C '°g(E0) (d) t mEoY) (e) tirs(s)100 10 10 00.01 0.01
10 10-5 10-5 0-3 O SK3 (-3 0 SE (h -3 0 3 0 150 300 0 150 300(a) log ( lo(k (bmod ) (c 1og1 0(E ) (d) time (s) (e) time (s)

is 10- 3 times its canonical value; (ij), trajectories 10 -3 at10 105 - 10 1 0  1 0

10 10- 10 55

-05 10 10-5
(-3 (-3 0 S -3 0 3 150 300 0 50 300

1f) ogkff tg) log1 0(k mod (h) log, 0(E0) (i) time (s) (j) time (s)

Figure 4-2: Accuracy quantification of four approaches (Approaches 1-4) to im-
plement DN representation applied to System I. Accuracy is measured by integrated
squared difference of a trajectory of an approach to the one of Approach 0 (faccuracY);

(a-c), accuracy of a state (1,) as a function of a network parameter; (f-h), accuracy of

a parametric sensitivity (O) as a function of a network parameter; (d), trajectories
of state Kp at the canonical parameter values; (e), trajectories of state 1, when k SK

is 10' times its canonical value; (i,j), trajectories of parametric sensitivity &&' at
parameters defined in (d) and (e). Legends: dotted black, Approach 0; red, Approach
1; blue, Approach 2; black, Approach 3; green, Approach 4.



To explore the limitations of Approaches 1-4, we examined the trends indicating

how accuracy changes with parameters. Theoretically, because Approach 1 is derived

from Approach 3, which assumes negligible modification fluxes, we expect less accu-

racy as the ratio of modification fluxes to binding fluxes becomes more significant.

The resulting accuracy trends, shown in Figures 4-2a-h, agree with the expected be-

havior; less accuracy is observed at slower dissociation (Figures 4-2a,f) and faster

modification rate constants (Figures 4-2b,g).

To examine how Approaches 1-4 may be extended to larger networks, we looked

into the resulting equations when applied to System I (Methods and Supplemen-

tary Materials). When Approach 3 is applied to System I, the resulting algebraic

equation shows that one may compute any combinatorial binding complex from a

multiplication of molar fractional domain variables to the scaffold protein (Methods,

Supplementary Materials). To examine whether this molar fractional expression can

be extended to larger networks with independent bindings, we analyzed systems with

more domains of a scaffold protein, more modification states of a partner, and a case

when scaffold protein is also modified. We proved that the molar fractional expres-

sion can be extended to these larger systems (Supplementary Materials) and thus

Approach 1-3 may be extended to any larger networks with independent bindings.

In contrast, Approach 4 computed xz numerically, so we were unable to extend it to

larger networks.

The extension of Approaches 1-4 to networks with cooperative binding was simi-

larly analyzed. For Approach 1, a cooperative binding may be expressed by modifying

the dissociation fluxes of x, differential equation and the binding fluxes of domains

that bind cooperatively (equations are in Methods and Supplementary Materials).

For Approaches 2 and 3, the presence of cooperative binding requires re-derivation

of the algebraic expression to compute x, from domain variables (equations are in

Methods andl Supplementary Materials). This re-derivation makes extension of Ap-
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proaches 2 and 3 to large networks with cooperative binding difficult. We were unable

to extend Approach 4 to networks with cooperative bindings.

To explore the accuracy of Approach 1 to represent networks with cooperative

binding, we applied Approach 1 to model a system with a similar reaction scheme

to System I and cooperative binding when both E and K bind to S (System II).

The cooperative binding was implemented by reducing dissociation rate constants of

[S(1, 1)] by a factor f when compared to the constants of [S(1, 0)] and [S(0, 1)]. This

cooperative binding is represented in Approach 1 by multiplying 0 to the dissocia-

tion fluxes in the differential equation of S(1, 1) and modifying the binding fluxes of

domains that bind cooperatively (the DN model is provided in the Supplementary

Materials). We examined two properties of the Approach 1 model, its accuracy, and

parametric dependence of its dynamic behavior compared to Approach 0 model. The

accuracy is examined for Approach 1 as well as Approach 2 by randomly varying

all parameters simultaneously and recording the resulting trajectory when compared

to Approach 0 using fresponse measure. The results, whose histograms are shown in

Figure 4-3, demonstrate that both Approach 1 and 2 produced an average faccuracy

of 10-16.6, 10- 16.1, and worst case runs (faccuracy > 10-5, the cut-off value is chosen

arbitrarily) were observed 225/5000 and 548/5000 times, respectively, suggesting that

Approach 1 is more accurate than Approach 2. The dynamic behavior is represented

as an arbitrarily chosen responsiveness function (fresponse, Methods), whose behavior

is examined in two-dimensional parametric variations bounded by [10-3, 105] fold of

the canonical values. The results, given in Figures 4-4a and b, show that the two

models produce similarly shaped contour plots. When both models are compared,

the resulting fresponse values are within 28.12% on average, with a maximal difference

of 127.19%.

To examine the utilization of Approach 1, we compared the parametric behavior

of dynamic models of Approaches 0 and 1. We applied both approaches to a larger
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Figure 4-3: The histogram of facuray of Approach 1 and 2 applied to System II, for
randomized parameter variations in six-orders of magnitude ranges. Legends: white,
Approach 1; black, approach 2.

network consisting of a dimerizing scaffold protein Ste5 with three binding partners,

the first partner as an input with one modification state, and the next two partners

as a kinase cascade with two modification states in each partner (System III). In

this system, the Approach 0 model contains 194 species and 1686 fluxes, while the

Approach 1 model contains 30 species and 14 fluxes (models are provided in Supple-

mentary Materials). To examine the parametric behavior of both models, we varied

two arbitrarily chosen parameters and measured an arbitrarily chosen responsiveness

function (fresponse, Methods). The resulting parametric behavior, two of which are

given in Figures 4-4c and d, show that both models also generate similar shaped con-

tour plots. Furthermore, the resulting fresponse values differ by a mean of 8.29% and

a maximum of 34.3%.

To compare the accuracy of Approach 1 to the species elimination method when

parameters are varied, we simulated, with parameterizations randomly and simulta-

neously varied in six orders of magnitude, both System III's Approach 1 model and

reduced MA models with varying numbers of eliminated species. We examined the

reduced MA models with 25, 100, and 164 eliminated species, with the eliminated
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Figure 4-4: Comparing parametric behavior of Approach 1 to the ones of Approach
0. Both approaches are applied to a system similar to System I with added binding
cooperativity (System II) and to a system of dimerizing scaffold proteins with four
kinase partners (System III). (a) Contour plot of a responsiveness function (fresponse)

as a function of a cooperative factor (0) and a dissociation rate constant (kg) ap-
plied to System II. Top, Approach 1; middle, Approach 0; bottom, both; Legends:
blue, Approach 1; red, Approach 0; (b) Contour plot similar to (a) as a function of
cooperative factor (0) and an initial condition (So). (c) Contour plot for System III
as a function of an initial condition (So) and a modification rate constant (kg 2). (d)
Contour plot similar to (d) as a function of an initial condition (So) and a dissociation
rate constant (k SK3P).

species chosen to be MA species with the smallest trajectory norm at the canonical

parameterization. The results, given in Figure 4-5, show that the reduced MA models

with an increased number of eliminated species produce higher frequency of inaccu-

rate simulations; and the peak frequencies are observed at the worst case faccuracy

possible (f accuracy = 100) for 100 and 164 eliminated species models. In comparison,

the Approach 1 model simulations are most frequently observed at faccuracy = 10-4, a
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much lower value than the the one of the reduced models. When both approaches are

compared near the worst case accuracy (100 > faccuracy > 10-0.25), the Approach 1

model is observed 120 times out of 5 104 runs, while the reduced MA models with 25,

100, and 164 eliminated species are observed 149,806, and 1553 times, respectively.

This suggests that the Approach 1 model is less likely to produce grossly inaccuracy

solutions than the species eliminated reduced MA models.

,rr r
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log off"""".

Figure 4-5: Accuracy of Approach 1 compared to species elimination method
applied to System III. Black, Approach 1 (with 31 state variables); red, reduced
MA model with 25/194 species eliminated; yellow, reduced MA model with 100/194
species eliminated; white, reduced MA model with 163/194 species eliminated.

Application of domain-network representation to study sig-

naling specificity in yeast Mating and Filamentous Growth

pathways.

We subsequently applied Approach 1 to study signaling specificity in the yeast Mating

(M) and Filamentous Growth (FG) network. The network scope, whose overview is

given in Figure 4-6 and its DN method scheme is given in Figure 4-7, is limited to

be the signal transduction unit from Ste4, a membrane receptor acting as an input,
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kinase cascades that may be activated with and without Ste5 scaffold protein, and

Stel2 and Tecl transcription factors acting as outputs for M and FG responses. Each

interaction in this network is assigned a separate domain in the participating proteins,

except Fus3 and Kssl that each shares a common domain for its interactions with

activators, phosphatases, and target kinases [123]. We initially assumed independent

binding in the model. To examine the significance of Ste5 dimerization, we developed

two model versions, with (System IV) and without Ste5 scaffold protein dimerizing

(System V). The resulting Approach 1 model consists of up to 132 state variables and

902 fluxes, while an Approach 0 model may consist of more than 2 107 state variables

and 2 107 - 7 1014 fluxes.

The Approach 1 model is parameterized to reproduce experimentally observed

phenotypic behavior [52, 59, 93, 108] summarized in Table 4.3.The parameters con-

sist of initial conditions and rate constants, with the conditions obtained from global

expression measurement [110] and the rate constants manually adjusted guided by lit-

erature [54] and given in the Supplementary Material. To evaluate the quality of the

parameterizations, we developed perturbation cases from the model that correspond

to mutational and over-expression studies performed experimentally. We evaluated

the behavior of these perturbed models to determine if they can reproduce experi-

mentally observed behavior; these behaviors are expressed as constraints summarized

in Table 4.4. We found a set of 11 parameterizations, with some rate constants differ

by at least 10 fold, that satisfy all the constraints.

To determine the role of Ste5 scaffold protein, we varied its expression simultane-

ously with the network input. The results, Figure 4-8a, showed that the M response

forms a single peak at high input, intermediate Ste5 expression, while the FG re-

sponse forms a ring to the lower input, both at lower and higher Ste5 expression to M

response. When we examined both responses at the canonical value of Ste5 expres-

sion, the network produced FG response at low input, and M response at high input.
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Figure 4-6: The scope of yeast Mating (M) and Filamentous Growth (FG) pathways
studied in this paper. The network consists of a G-protein receptor (Ste4), a cascade
of kinases that can be activated in the presence and absence of a scaffold protein
(Ste5), two MAP kinases (Fus3 and Kssl) for each pathway, and two transcription
factors for each (Stel2 and Tecl). The input to the network is the amount of activated
Ste4 and it is shared between both pathways, and the outputs are defined as time-
integrated of activated Stel2 homo-dimers binding to Mating gene for M pathway,
and hetero-dimer Stel2-Tecl binding to Filamentous Growth gene for FG pathway.

The FG response contour plot suggests that FG are activated at some over-expressed

Ste5, contrary to the assigned function of Ste5 as the determinant for M response

specificity. We repeated the analysis to a model with dimerizing Ste5 (System V,

Figure 4-8b), and to 10 other feasible parameterization of the network (Supplemen-

tary Materials), and we consistently observed the high FG response at high Ste5

expression. We hypothesized that the trend is a consequence of non-cooperativity in

the model, however, we do not have a rigorous computational tool to rule out other

parameterizations in this model that may produce similar FG response behavior.

To determine if Approach 1 may represent cooperative binding in this system, we
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Figure 4-7: The reaction scheme in domain network representation of the yeast
Mating (M) and Filamentous Growth (FG) pathways. Legends: triangle, a protein
domain; open circle, an inactive modification state; solid circle, an active modification
state; blue line, a binding interaction; red line, a modification reaction; black dotted
line, a dependency interaction between bound domains and modification species; &,
combination of multiple dependency interactions to compute a modification specie.

modified the network to include cooperative binding between Ste5, activated Ste7, and

Fus3. We expected that increased cooperativity would reduce FG response because
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Figure 4-8: Yeast Mating (M) and Filamentous Growth (FG) signal specificity as a
function of selected protein expressions and pathways input. (a) M and FG responses
as a function of Ste5 for a parameterization on a non-dimerizing Ste5 model (System
IV); (b) similar as (a) on a dimerizing Ste5 model (System V); (c) similar as (a) but
with added cooperative binding between activated Ste7, Ste5, and Fus3, implemented
by multiplying relevant dissociation constants by 0.3 fold of values in (a); (d) M and
FG responses as a function of Ste7 in System IV. Legends: blue, M response; red,
FG response. a*, normalized input; Ste50o, normalized Ste5 initial condition. Top,
M response only; middle, FG response only; bottom, an overlay of both M and FG
responses.
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increased cooperativity would increase Fus3 activation, which consequently increase

Fus3-promoted Tecl degradation and decrease FG response. The results, Figures 4-

8c, showed reduced FG response at high Ste5 with increased cooperativity, consistent

with our expected behavior.

To determine the role of MAPK common domain, we varied the expression of the

domain's activator, Ste7 MEK, and the network input in the Approach 1 model and

examined the responses. The results, Figure 4-8d for System IV and a similar figure

for System V (data not shown), showed that M response produced two activation

peaks at high input, both low and high Ste7 expression, and FG response forming

activation peaks at the lower input surrounding the lower peak of M response. Our

hypothesis is that the two M response peaks are a consequence of the Fus3 common

domain; increased Ste7 will occupy Fus3 domain more and out-compete both Msg5,

a phosphatase and negative regulator of M, and Stel2, an MAPK-APK and positive

regulator of M, with an overall results producing emergent behavior.

To examine this hypothesis, we perturbed the Approach 1 model with two cases,

first, vary the affinity between Ste7 and the Fus3 common domain, and second, ex-

amine an alternative network where Ste7 binds to a separate domain in Fus3. The

results, Figure 4-9, showed that increased Ste7-Fus3 affinity produced more activated

Fus3, less unbound Fus3 common domain, and reduced Msg5-Fus3 complexes, all of

which are consistent with Ste7 out-competes Msg5 to bind to Fus3 common domain,

resulting to reduced Fus3 dephosphorylation. We also observed that activated Stel2

and M response have bifurcating behavior at the lower Ste7-Fus3 affinity, consistent

with the interpretation that the effect of Ste7-Fus3 affinity to Stel2 activation is both

positive that more Fus3 is activated, and negative that Stel2 is also out-competed

by Ste7 to bind to Fus3. These emergent behaviors disappeared in a network with

separate domain in Fus3 to bind Ste7 (Figures 4-9f-j).
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Figure 4-9: Perturbation studies to examine the emergent behavior of the Fus3
common domain. (a) Mating response for System IV; (b) activated Fus3; (c) unbound
Fus3 common domain; (d) activated Stel2; (e) a complex of Msg5 and Fus3; (f-j)
similar to (a-e) for a network with separate binding domain between Ste7 and Fus3.

4.4 Discussion

We proposed protein Domain Network (DN) representation to model signal trans-

duction networks compactly. When compared to the standard Mass-Action (MA)

kinetics, the DN representation utilized an alternative network definition, with pro-

tein domains in each modification state as nodes, and binding and modification fluxes

as arcs. This definition produced compact dynamic models that may be applied to

large signal transduction networks where MA approach may be infeasible because

it requires too large number of species. During the preparation of this manuscript,

several groups have also proposed a protein domain representation to reduce com-

plexity [96, 49]. Compared to [96], we formulated a generalized representation of

the domain network and its extension to networks with cooperative binding while

Borisov and groups [96] only considered independent bindings and their representa-

tion requires classification of proteins. Compared to [49], our approach considered

the presence of modification fluxes in these networks and alternative approaches to

compute them, while Conzelmann and groups only considered binding fluxes in the

networks. In essence, their results confirmed that the binding fluxes in our DN models
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reduced to functions of DN variables only, and they provided an alternative systematic

method to compute these fluxes.

To develop DN approach, we looked into its relationship to MA models in test

systems. In the framework of model reduction methods (reviewed in [91]), the DN

approach can be categorized into lumping approach, where MA species are lumped

into DN species with a linear mapping guided by biological insights. The lumping of

species may produce exact reduced model when, in addition to the domain lumping,

we mapped the modification species one-to-one from MA to DN models. Because

we require that DN method to avoid construction of any MA models, we explored

alternative approaches to compute the modification species only as a function of DN

variables and discovered an approach that produce accurate and compact models.

When compare to other model reduction methods, the DN method produced

superior performance. Three alternative methods are available to reduce a reaction

system (reviewed in [91]): lumping, sensitivity analysis, and time-scale analysis. First,

automatic methods to lump a non-linear ODE system [45, 46] search for the mapping

function M from an MA to a reduced model by maximizing accuracy. However,

these approaches require construction of MA models, and is currently limited for

a linear inverse mapping from reduced to MA models. Furthermore, the resulting

M mapping does not possess a structure that can be extended to larger networks.

Second, sensitivity analysis [91, 124, 111, 72] chooses a subset of MA species and MA

reaction fluxes that may be eliminated based on their lack of contribution to measured

outputs. Here, we found that reduced models with less than 144 (out of the original

194) species produce worst case accuracy much more frequently than the proposed DN

model containing only 30 species. Third, a Krylov-based model reduction method [42]

may compute the mapping M systematically to minimize deviation to data, however,

this approach is currently limited to linear systems only, and when applied to the

bilinear MA models, it produced a reduced model that lose its sparsity structure, and
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did not obtain overall reduction in the computational time (data not shown). Finally,

all the fore-mentioned model reduction methods require a construction of MA models

at least initially, which may be intractable for a large network.

The DN method has several key limitations. First, the method's number of nodes

scales quadratically is to the number of modification states, which may scale combi-

natorially to the number of modification sites. Recent experiments studied that the

number of modification sites in EGFRs to be around 20 [133], which translates to

220(106) states, however, it is not clear whether all the combination are being utilized

biologically. The current knowledge in ERK system suggests that the phosphory-

lation are sequential [125] If all combinations of modification sites are found to be

important, a similar change of representation may be utilized to produce compact

models. Second, the DN method is not appropriate to represent stochastic dynamic

system. The DN reverse mapping functions rely on average concentration and do not

contain distribution information. The importance of stochastic dynamic systems may

depend on specific systems, for example, the stochasticity of reactions are found to

be unimportant in yeast mating system [5], but are crucial to model bacteriophage

lambda behavior [1].

The DN method is applied to study signaling specificity in yeast Mating (M) and

Filamentous Growth (FG) pathways. We discovered two interesting behaviors of the

DN models: first, that the Ste5 scaffold protein that is thought to be determinant of

Mating response also contribute to significant amount of FG response, and thus, Ste5

does not promote specificity when Ste5 is a passive tethering protein with independent

binding, however, when Ste5 also promote cooperative binding to its kinase partners,

then the signaling specificity is enhanced; second, that the Fus3 common domain

that is shared between Ste7 (an MEK), Msg5 (a phosphatase) and Stel2 (an MAPK-

APK) contributes to an emergent behavior of high M response at both canonical

and high Ste7 initial conditions. Interestingly, a recent study on Ste5 [106] suggested
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that allosteric binding is observed in Ste5, and that the actual picture of the network

architecture is more complex that what we considered here. This result demonstrated

how the DN model produced behaviors consistent to our expected understanding of

the system, and may be applied to study other large signal transduction networks.
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Table 4.2: Equations applied to System I. Equation 4.11, Mass Action (MA) kinetics
models; Equation 4.12, Domain Network (DN) models; Equation 4.13, definition of
the DN lumping; Equation 4.14-4.17, four approaches to implement gm within the
DN approach.
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Dbnd - V + 7
[S21,KI 1] E-V3 -

V 4 
-

V 7

[S21,K21] -V5 -
V 6 + 7

[S(1, 1)] = g9(D, T)

1SED unb D unb
on [Ell] D[S11]

SE bnd
off [Sll,Ell]

=kSK Dunb D unb
v3 = on [Kli] [S21]

SK D bnd
off [S21,Kll]

kon Dunb D unb
v5 = SKp J[K21] D[S21]

off bnd
f6  K DSKp [S21,K21]

SEKV7 = kmod [S(1, 1)A



Table 4.3: Experimental phenotypic behaviors being used to parameterize models
of yeast mating and filamentous growth pathways.

No IExperimental results Ref.
0 Wt produced FG response at low pheromone and M response at high [109]

pheromone
1 Ste4 and Ste5 has major contribution to the activation of Kssl and FG. [59]
2 AFus3 greatly elevated levels of active Kssl. [59],[52]
3 Kssl dependence on Ste5 is bypassed by increasing levels of Stell and [59]

Ste7.
4 To be activated, Kssl does not need to bind to Ste5, but Fus3 must bind [59]

to Ste5.
5 Over-expression of Stell inhibits Fus3 unless Ste5 is over-expressed. [59]
6 Over-expression of Stell and Ste7 in ASte5 increases Kssl activation (to [59]

the base case).
7 Msg5 phosphatase inhibits constitutive activation of Fus3. AMsg5 consti- [59]

tutively activated Mating based on increased Fus3pp. FG was inhibited.
8 Kssl inhibits Mating by interacting with Stel2. [52]
9 Kinase defective Fus3-K42R suppress FG response of AFus3. [52]

10 Kssl also has inhibitory function to FG that does not require Ste7, and [52]
arises from binding of inactive Kssl to Tecl.

11 AFus3 can still activate mating via Kssl that is 0.1 of wt. AFus3,Fus3- [52]
K42R reduces down the mating frequency to 0.0001 from wt.

Table 4.4: Nonlinear constraint formulation to represent the phenotypic behaviors
listed in Table 4.3. M, mating response; FG, filamentous growth response; over,
overexpression; A, deletion mutation; Fus3-K42R, mutational to Fus3 with reduced
activity; Ksslnobind, mutation to non-binding Kssl.

Cases Facts Variables Constraint expressions
Low/high alpha 0 M, FG high.M > low.M, high.FG < low.FG
factor
Ste5A 1 Ksslpp Ste5A.Kssl1, < 0.5*baseline.Ksslpp

4 Fus3pp Ste5A.Fus3pp < 10- 6

Fus3A 2 Ksslpp Fus3A.Ksslp, > baseline.KsslPP
9 FG Fus3-K42R.FG < Fus3A.FG

11 M Fus3A.M < 0.1 * baseline.M
Fus3-K42R 9 FG Fus3-K42R.FG < Fus3A.FG

11 M Fus3-K42R.M < 10- 4 * baseline.M
Stellover, 3 Ksslp, StellSte7overSte5A.Kssp1 2 Ste5A.Ksslpp
Ste7over, Ste5A
Stel lover 5 Fus3pp Stellover.Fus3p p, baseline.Fus3pp
Stellover, Ste5over 5 Fus3pp Ste11Ste5over.Fus3pp > Stellover.Fus3pp
Msg5A 7 Fus3pp, M Msg5A.(Fus3pp,M) > baseline.(Fus3pp,M)
Ksslnobind  8 M Ksslnobind.M > baseline.M
Ksslover 10 FG Ksslover.FG < baseline.FG
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4.5 Supplementary Materials

4.5.1 Models for System I

Approach 0: A Mass-Action (MA) kinetic model

The Mass-Action (MA) kinetic of System I (Figure 4-la) is given as follows:

[E] = - wl +w2 - w3 +w4 - W5 +w6 (4.18)

[K] = - w0 +s8 - W9 +w10

[kp] = - wi1 +W12 - W13 +w14
[S(0, 0)] = - wi +W2 -- W 7 +W 8  - wll +w12

[S(1, 0)] = + wl -w2 - w9 +wo10 - w13 +w14

[S(0, 1)] = -- w3 +w4 + w7 -W8

[S(O, 2)] = - W5 +W6 + w11 -w12

[S(1, 1)] = + W3 -w4 + W9 -Wl0 - w15 (4.19)

[S(1, 2)] = + w5 -w6 + w13 -w14 + w15

SEW1= knE [S(O,0)][E]

W2 = kff [S(1, 0)]
SE

W3 = knE [S(0, 1)] [E]

W4 = kffSE[S(1, 1)]

SEW5 = ko (S(O,2)][E]
W' = koff [S(1, 2)]

w7 = kS [S(0, 0)][K]

W8 = koff [S(O, 1)]
SKw9 = k [S(1, 0)][K]

wl0 = koffSK [S(1, 1)]

wil = knKp [S(0, 0)] [Kp]

off
W12 = kSK p [S(0, 2)]

s13 = kSnKp S(1,0)][Kp]

off
w14 = kSK p [S(1, 2)]

w15 = kmodK [S(1, 1)]

Where the w represents binding and modification fluxes, S(i,j) represents various
protein complexes with E, K, Kp as partners. The indices in S are defined such that
i E {0, 1} represents unbound and bound state to E, and j e {0, 1, 2} represents
unbound and bound states to K, Kp, respectively

Lumping to reduce the number of states

To reduce the number of states, we represents the network as a protein-domain net-
work (DN). The DN models consist of domain variables D, and total variables T,
both are constructed by lumping species in MA models using the following linear
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[S(o, 0)] + [S(o, 1)] +[ S(0, 2)] + [S(1, 0)] + [S(1, 1)] + [S(1, 2)]

[E]
[K]

[Kp]

[S(0, 0)] + [S(0, 1)] + [S(O, 2)]

[S(1, 0)] + [S(1, 1)] + [S(1, 2)]

[S(0, 0)] + [S(1, 0)]

[S(0, 1)] + IS(1, 1)]

[S(0, 2)] + [S(1, 2)]

where Dpub represents the unbound state of protein p domain i modification j, D id
represents the bound state of protein p domain i modification j with protein domain
modification d', and Ttl t represents the total amount of protein p in modification j.

Applied to the System I MA model (Equation 4.18), this mapping produced the
following DN dynamic equations:

TS
i

= 0 (4.21)

-Wl + w2 - w3 + w4 - w5 + W6

- w7 + W8 - w9 + w10

-W•11 + 12 - W13 + w14

-Wl + W2 - W3 + w4 - W5 + W6

+W1 - W2 + W3 - W4 + W5 - W6

- W7 + W8 - W9 + W10

± W7 - W8 + W9 - W10

-Wll + W12 - W13 + W14

- W115

+W11 - W12 + W13 - W14 + W15

We noticed that the binding fluxes w1 - wl14 can be lumped to be a function of D
only, for example:

Dbnd (4.22)
[Sl1,Ell] = 1 - W

2 +  3 
- 4 + 5 - 6 (4.22)

kS [S0 0 SE SE S E= E[S(0,0)][E[ - koff [S(1, 0)] + kSn[S(0, 1)][E] - kff [S(1, 1)] + (0,2)E - k [S(1, 2)]
SE SE

kon [E]([S(0, 0)] + [S(0, 1)] + [S(0, 2)]) - koff ([S(1, 0)] + [S(1, 1)] + [S(1, 2)])

__ uSE unb runb SE bnd \
k S D I1 D I1 - k (DndE]

V1 - V2

Dbnd[S21,Kll] = W7 - W8 + w9 - W10 - w15
os 8sK SES

K  
SK SEE

S[ - k(1, O)][K] - kf [3(1, 1)] + k K [S(0, 0)][K] - k Kf [S(0, 1)] - km d [S(1, 1)]

kS[K([S(1, 0)] + S--) - kff ([(1, 1) + [S(, 1)) - [S(1, 1)]

1SKDunb D snb k SK Dbnd SEK
k n [Kbl]D uSb]- off [S21,Kll] - kmo d [S(1, 1)]

V3 - V4 - V7

DunIb - Dunb -[S [El] -l] -Vl + V2

[Sn2b1] -v3 + v4 - v5 + v6

Dunb
[Ki] --v3 + V4
[521

[K21] - -V5 + V6

DbSn2d] = - v + 1)[$21,K21] V5 - V6 + V7
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relationship:

Tsto
t

y 1 =

D unb
D[Ell] =

Dunb
[Kll] =

unb
D[K2l] =

unb

D[5Sn1,11] =bnd
[SlI,EII] =

unb
[S2 1 ] =

bnd
[S21,Kll] =

bnd
[S21,K21] -

(4.20)

Dunb[Ell]
Dunb[K11]
Dunb

D[Sn1l
]

Dbnd[S1 ,E1 ] -

Dumb[S21]

Dbnd
[S21,Kl11]

Dbnd[S21,K21]



where:
VSE unb Dunb

vl1='on D [Ell] D[Sll] (4.23)

2SE bnd
off [Sll,Ell]

S= k SK Dunb 1unb
v3 = ( Kl] D[S2 1 ]

4SK Dbnd
v4 = koff D[S21,Kll]

v = kon Dunb unb
SKp [K21] [S2 1]

off bnd
SKp-[S21,K21 ]

SEK
V7 = kmod [S(1, 1)]

The structure of the MA model allows the binding fluxes (wI - W14 ) to be computed as
a function of the DN variables, however, the modification flux w15 cannot be reduced
to be a function of DN variables, and left as a function of the MA species [S(1, 1)].
We will estimate [S(1, 1)] from DN variables using alternative functions described
later.

Similarly, the dynamic of the total modification states are obtained by lumping,
to be a function of modification fluxes only:

TS ot = 0 (4.24)

T 0°lt = 0
Ttot

TK1
t
U
t 
= -V

7

TKtot
TK2tt v

7

Thus, the overall DN model representation of System I is given by:

JElb] [Sl] -Vl 
+ 

V2 (4.25)

Dunb
[Kll] = -v3 + v 4

Dunb
[K21]= -v + 6

Dunb 03 ±4 -5 +06[S21]

Dbnd01 - 02
[Sll,Ell] Vl 

V 2

Dbnd
[S21,Kll] - + 3 - 4 - 7

Dbnd
(S21,K21] - 5 -

v 6  
7

Ttot 0S1

[S(1, 1)1 = gm(D, T) (4.26)

where v are defined in Equation 4.23, and alternative g~ functions to be explored
next.

Alternative functions to compute modification species

Approach 3: Binding equilibrium approximation. One way to compute modi-
fication species is to assume binding equilibrium, and neglect modification fluxes. In
System I, this approach can be expressed as:

[S(1, 0)] = 0 + -w -W2 - W9 W10 - W13 +-14 (4.27)

[S(, )] = 0 = - W3 +4 + 7 -w8

[s(O, 2)] = o = - wg +W6 + ll -W12

[S(1, 1)] = 0= + w3 -w4 + w9 -10

[S(1, 2)] = 0= + wg -06 + wl3 -W14
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which simplifies to:

w1 = W2 (4.28)

W3 = W4

W5 = W6

w7 = W8

W9 = W 1 0

wll = W12

w13 = w14

These equations can be manipulated to compute the unbound and bound domains:
SE SE

bnd kSE unb on unb unbD[S1,E11] [S(1, 0)] + [S(1, 1)] + [S(1, 2)] = E DunbEll] ([S(, 0)] + [S(0, 1)] + [S(0, 2)]) = Dk [El]D Slnl] (4.29)
off off

bnd SK Sn unb kunb
[S21,Kll] [S(0, 1)] + [S(1, 1)1 = kS K  [Kl] ([S(0, 0)] + [S(1, 0)]) = kSK D[Kll]D[S21]

off off

bnd on unb ong unb unbDS21,K21] = [S(0, 2)] + [S(1, 2)] = DSK bK ] ([S(0, 0)] + [S(1, 0)]) = SK D[Kl] DS
21 ] 

u
off koff

TstOt = Dunb bnd
o D[[Sll] + D[Sll,E11]

Tstot = ,unb rbnd bnd
T 1  = D[ S 2 1 ] + D[S21,Kll] + D[S21,K21]

Using the approximation given in Eqn 4.27, we can express the modification specie
S(1, 1) from DndEll ] and D•[S21,Kll ] by solving the following equations:

Wl W3 W7 w9- := W or - = - or [S(0, 0)][S(1, 1) = [S(1, O)][S(O
, 1)] (4.30)

w2 w4 W8 W1 0

Wl W5 W9 W13- =- or - = - or [S(0, 0)][S(1, 2)] = [S(1, 0)][S(0, 2)]
W2 W6 W1 0  W14

bnd
D[S11,E11] - [S(1, 0)] + [S(1, 1)] + [S(1, 2)]

bnd
D[S21,K1] = [S(0, 1)] + [S(1, 1)]

bnd
D[S21,K21] [S(0, 2)] + [S(1, 2)]

TSt = [S(0, 0)] + [S(1, 0)] + [S(0, 1)] + [S(0, 2)] + [S(1, 1)] + [S(1, 2)]

These six equations above contain 10 variables, and if we specify the Dbnd
[S11,E11]

Dbnd1,K Dbnd1,K21] bnd and T't, we have a fully determined set of equations which

can be solved for [S(1, 1)] to produce a molar fractional products of bound domains
to the scaffold protein concentration:

S1)] Dbd Dbnd
TS( 1][SlEll] [S21,Kll] (43t - (4.31)

Ts Ot TOt TstOt

We notice that this equation is derived from a weaker approximation than made by
the binding equilibrium, that it only needs the ratio of the fluxes to be equal, and
that only one of the two ratios of the fluxes being needed.
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In summary, this approach solve the following system of equations:

TS1tot = O (4.32)

Dbnd = 0 
1 - v2[S11,Ell]

Dbnd" = V - V4
[S21, Kll]

Dbnd 0= 0 - V6[S21,K21] 0

Dunb Duunb - V
[Ell] [S ] = 0 = -l + 2

ll] = 0 = -v3 + v 4

DuN = 0 -v 5 + 06[K21]

D 2b] = 0 = -v3 + v4 - v5 + v6[S21]

Dbnd Dbnd
[_S(1,1)] [S11,Ell] [S21,Kll] (433)(4.33)TstOt Ttot Ttot

S1 S1 S1

where the definition of fluxes v are given in Equation 4.23. Compared to Equa-
tion 4.25, this approach assumes steady-state and neglects modification fluxes to
compute D.
Approach 1: Differential modification function based on molar fractional
association fluxes.

The modification specie [S(1, 1)] is computed by assuming molar fractional asso-
ciation rate. This approach solves Equation 4.25, with a specific realization of gr in
Equation 4.26 to be a differential expression given by:

[S(i, )] = +w 3 + w 9 - w4 - 0 - 15 (4.34)

[i SE SK SK SEK
[S(i, 1)1 = +kSnE[S(0, 1)][E] + kS [S(1, O)][K] - (k

S E 
+ kSff K kmod )[S(1, 1)]

[S(, 1)] [S(1, 0)] SE SK SEK
[S(, 1) = + v - (koff + koff + kmod )[S(1,1)

$11 S 21
Dunb Dbnd \ Dunb Dbnd

SlTl S2
1
,K

l 
1S21 Sl1,E1

[S(1, 1)] = +Vl + v3 u - (kof + kSKff + kmod )[S(1, 1)]
Dunb Dunb

Sll S21

Sb21 •Sll SE SK SEK

S1 S1

Approach 2: Algebraic modification function based on molar fractional ex-
pression The modification specie [S(1, 1)] is computed by assuming molar fractional
algebraic expression derived in Equation 4.31. This approach solves Equation 4.25,
with a specific realization of g, in Equation 4.26 to be an algebraic expression given
by:

Dbnd nbnd

IS(1, 1)] [Sli,Ell] [S21,Kll] (435)
STtot to(4.35)

Approach 4: Pseudo steady-state approximation. The pseudo steady-state
approximation(PSSA) is derived by taking a steady-state approximation of these
intermediate states:

[S(1, 0)] = 0 = +w1 - w2 -w9 + 10 -W13 + w 1 4 (4.36)

[S(O, 1)] = 0 = -W 3 + W 4  +W7 - W 8

[S(O, 2)] = 0 = -wg + w 6  +w11 - W12

[S(1, 1)] = 0 = +w3 - w4 +9 - W 1 0 -- w15

[S(1, 2)] = 0 = + W 5 -W 6  + Wl 3 1-W4 + W15

These equations may be lumped into the DN variable D with a similar pseudo steady-
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Dbnd -
[S1,Ell] 0

Dbnd -0
[S21,Kl]

Dbnd =O=
[S21,K21] 0

V 1 - v2 (4.37)

V3 - v4 - v7

v5 - v 6 + v 7

The difference between these equations and the exact dynamics of the combined
system (Eqn 4.25) is that we assume that the domain variables D are time invariant.

In summary, this approach solves the following system of equations:

TS1ot 0 (4.38)

TE tot 0
TE1 O

TK1
t 

t

TK2tot] =

Dbnd =0=
[S11,Ell]

Dbnd =
[S21,Kll]

Dbnd =
[S21,K21]

unb bnd
D[Sll] + D[Sll,Ell] =

unb Dbnd bnd
[S21] 

- 
D[S21,K11] + D[S21,K21] =

unb bnd
D[Ell] + D[S1l,Ell]

unb bnd
[Kll] + D[S21,Kll]

unb bndD[K21] + D[S21,K21]

[S(1, 1)1

S1

v
1 - v

2

v3 - v4 - V7

V5 - v 6 + v7

tot
Tsi

tot
TS1

tot
TEl

tot
K1

totK2
Dbnd Dbnd

[ShlEll] [S21,Kll]

Ttot Ttot
si Si

where v are defined in Eqn 4.23.

4.5.2 Models for System II

To extend the approaches to model networks with cooperative binding, we examined
the following modification to the four approaches applied to System I. Applied to
System II, Approach 1 generates the following system of equations:

Dunb = Dortb
[Ell] [S 11]

Dbnd

Dunb
[KS1 ] -

Dunb

[K121]

Dunb

Ti;ot

STK1] =-

g2
t t 

_-

Is(1, 1)] =

-v1 + v2

+01 - 02

(4.39)

-(P - 1)ksf
f [S(1, 1)1

V3 + v4

- V3 V04

0 V 3 - 04

Dbnd Dbnd
S- 21,Kll] + [Sll,Ell
Ttot Ttot'S1 "I

-V5 + V6

-v5 ± v6

7 -(/3 - 1)kSff[S(1, 1)]

+V5 - V 6 + V 7

SE SK
-o(koff + koff )[S(1, 1)] - v 7
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Approach 2 and 3 requires a new derivation of the algebraic expression to represent
cooperative binding. This can be from the following system of equations:

W1 W3 W7 W9
- = - or - = - or

w2 OW 4  w8 OW10

W1 w5 w9 w 1 3
- = - or - = - or
W2 W6 W10 W14

bnd
D[Sll,Ell] -

bnd
D[S21,Kll] =

bnd
D[S21,K21] -

Ttot =1S -

O[S(o, o)][S(1, 1)] = [S(1, 0)][S(O, 1)1

[S(O, 0)][S(1, 2)1 = [S(1, 0)] [S(, 2)]

[S(1, 0)] + [S(1, 1)] + [S(1, 2)]

[S(0, 1)] + [S(1, 1)]

[S(0, 2)] + [S(1, 2)]

[S(O, 0)] + [S(1, 0)] + [S(O, 1)] + [S(O, 2)] + [S(1, 1)] + [S(1, 2)]

bnd
D[S21,KKill+ I-S(', 1A))

Thus, the system of equations for Approach 2 applied to System II is similar to
Equation 4.39, with the g, equation modified to

bnd bnd bnd 1bnd
(Dj[Sll,E11] - [S(1, 1)])(D[s21,Kll ] - [S(1, 1)]) = [S(1, 1)](S

t
o

t 
- D[SlEll] - D[S21,Kll] + [S(1, 1)]) (4.42)

Approach 4 is not applied to System II because of difficulty to generalize the approach
to larger networks.

4.5.3 Lumping approach with linear inverse lumping applied
to System I

The DN method is a lumping approach given by X = Mx, where x are MA species,
± are DN species, and M is the lumping matrix.

Applied to System I, we defined:

([E] [K] [Kp] [S(o, 0)] [S(1, 0)] [S(0, 1)] [S(0, 2)] [S(1, 1)] [S(1, 2)]) (4.43)

r= D n D D Du.nb bgbnd Duu d Du 1 ] Dbnd1 K1 1b D 1 K2bnd] TS
t 

S(1, I))[Ell] [Kil] [K21] [sil] [Sn1,Ell] [S21) [S21,KKi] l [S21,K21]

M =

The generalized inverse
produced:

1.00
0
0
0

M = 00
0
0
0

0
1.00

01.00
0
0
0
0
0
0

can be found by definition to be MMM = M, which

0
0
0

0.27
-0.18
0.09
0.27
0.00

-0.18

0
0
0

-0.23
0.32
0.09

-0.23
-0.00
0.32

0
0
0

0.43
0.30

-0.27
-0.07
-0.00
-0.20

0
0
0

-0.32
0.05
0.73

-0.32
0.00
0.04

0
0
0

-0.07
-0.20
-0.27
0.43
0.00
0.30

0
0
0

0.05
0.14
0.18
0.05

-0.00
0.14

0
0

0.50
-0.50
-1.00
0.50
1.00

-0.5000/

(4.46)

We were unable to extract a rule from these generalized inverse strategy that may
be extended to larger networks.
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(4.40)

which simplified to

(4.41)

(4.44)

(4.45)

D 1bn d, 1 - IS , 1) $ D n21,K 1]- [S(1, 1)]) = [S(1, 1)] (T r 
t  

b- D nd
[S Ell] [S21 Kill- !J[S11,Ell]



4.5.4 Proof for molar fractional expression to compute pro-
tein complexes in a network of larger sizes with inde-
pendent binding

We will use induction to prove that a protein complex may be computed from its
participating bound domains using a molar fractional expression. The proof outlines
as follows:

1. Prove for a network with a scaffold protein and two partners, each with one
modification state.

2. To extend 1 to more modification states of partners ,prove for a network with a
scaffold protein and two partners, one partner with an additional modification
state, and utilize the proof of 1.

3. To extend 1 to more partners of a scaffold protein, prove for a network with a
scaffold protein binding three partners.

4. To extend 1 to a network with scaffold proteins in more modification states,
prove for a network with an added modification state to the scaffold protein.

5. To extend 1 to a network with more scaffold proteins, prove for a network with
an added scaffold protein.

Problem 1. For a network consisting of a scaffold protein S with two partners, A and
B, each with one modification state, the binding equilibrium produced the following
equations:

SA [S(1, 0)] [S(1, 1)]
K (4.47)a [S(0, 0)] [A] [S(0, 1)][A]

K SB [S(0, 1)] [S(1, 1)
[S(O, 0)][B] [S(1, 0)][B]

Using the following lumped definition,

S(O, *) = S(O, 0) + S(0, 1) (4.48)

S(1, *) = S(1, O0) + S(1, 1)

S(*, 0) = S(o, 0) + S(1, 0)
S(*, 1) = S(O, 1) + S(1, 1)

S(*, *) = S(0, 0) + S(0, 1) + S(1, 0) + S(1, 1)

one may derive that:

KSA _ [SS1, 0)] [S(1, 1)] [S(1, *)]
[S(0, 0)] [A] [S(0, 1)][A] [S(0, *)][A]

KSB S(0, 1)] [S(1, 1)] [S(*, 1)]
a [S(O, 0)][B] [S(1, 0)][B] [S(*, 0)] [B]

these two equations can be simplified to produce a molar fractional expression, given
by:

[(1, 1)] IS(*, 1)] [S(1, *)]S] (*,*) [ (4.50)[S(*, *)] [S(*, .)] [S(*, .)]
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Problem 2. For a network consisting of a scaffold protein S with two partners, A
and B, with A consists of a modification state and B consists of two modification
states, the binding equilibrium produced the following equations:

KSAa

K SB

KSBpKa

[S(1, 0)]
[S(O, 0)] [A]

[S(0, 1)]
[S(o, 0)][B]
[S(0, 2)]

[S(0, 0)] [Bp]

[S(1, 1)]

[S(0, 1)][A]
[s(1, 1)]

[S(1, 0)][B]
[S(1, 2)]

[S(1, 0)] [Bp]

[S(1, 2)]
[S(0, 2)][A]

(4.51)

Using the DN following lumped definition,

s(1, .) =
S(*, 1) =
S(*, 2) =
s(*, .) = s(o, 0) + S(o, 1) +

[s(1,o0)]
IS(0, 0)][A]

[S(0, 1)]

[s(o, 0)][B]

[S(O, 2)]

[S(0,0)][Bp]

[S(1,1)]
[S(o, 1)][A]
[s(1,1)]

[S(1, 0)][B]

[S(1, 2)]

[S(1, 0)] [BP]

s(1, 0)+ s(1, 1) + S(1, 2)
s(o, 1) + s(1, 1)
S(0, 2) + S(1, 2)

S(o, 2) + S(1, 0)+ S(1, 1) + S(1, 2)

[S(1, 2)]
[S(0, 2)][A]

IS(*, 1)]
[S(*, o)][B]

[S(*, 2)]

[S(*, 0)][Bp]

[S(1, *)]

[S(o, *)][A]

(4.52)

(4.53)

(4.54)

(4.55)

Because the forms of Equations 4.53- 4.54 are similar to Problem 1, then the combi-
natorial binding complex follows the molar fractional expression similar to Problem

[S(1, 1)]

[s(*, *)]
[s(*, 1)] [S(1, *)]
[S(*, .)1 [s(*, *)]

(4.56)

Similarly, the forms of Equations 4.53, 4.55 are similar to Problem 1, and we also
obtained molar fractional expression of the combinatorial binding complex:

[s(1, 2)]
[S(*, *)]

[S(*, 2)] [S(1, *)]
[S(*, *)] [s(., *)] (4.57)

Using induction, we can extend this proof to any network containing scaffold protein
partners with more modification states.

Problem 3. For a network consisting of a scaffold protein S with three partners, A,
B, and C, the binding equilibrium produced the following equations:

KSA

SB
a

KSC -a

[S(1, 0, 0)]
[S(0, 0, 0)][A]
]S(0, 1, 0)]

[S(o, o, 0)] [B]
[S(0, 0, 1)]

[s(o, o, 0)][c]

[S(1, 1,0)]
]S(0, 1, 0)][A]

[S(1, 1, 0)]

(s(1, o, o)][B]
[S(1, 0, 1)]

[s(1, o, o)[c]C

[S(i, 1, 1)]

[S(0, 1, 1)][A]

[S(1, 1, 1)]

[S(1, 0, 1)][B]

[S(1, 1, 1)]

[S(1, 1, 0)] [c]

(4.58)

First, using the following lumping definition,

S(1, 0, 0) + S(1, 1, 0) + S(1, 0, 1) + S(1, 1, 1)

S(o, 1, 0) + S(1, 1, 0) + S(o, 1, 1) + S(1, 1, 1)

S(1, 1, 0) + S(1, 1, 1)

S(0, 0, ) + S(o, 1, 0) + S(1, 0, 0) + S(1, 1, 0)

+S(o, 0, 1) + S(o, 1, 1) + S(1, 0, 1) + S(1, 1, 1)
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one may obtain the following relationship:

KSA =a

Ka

KSBp

S(1, *, *) =
S(*, 1, *)=

S(1, 1, *) =

(*,*, *) =

(4.59)



we obtained expressions similar to Equation 4.49, and thus, molar fractional expres-
sion also holds:

[S(1, 1*) [S(*, 1, *)] [S(1, *, *)]
(4.60)

[S(., , *) [S(*, *, *)] [S(*, *, ()]

Second, when we defined this lumping definition:

S(*, *, 1) = S(0, 0, 1) + S(0, 1, 1) + S(1, 0, 1) + S(1, 1, 1) (4.61)

we obtained this simplified dynamic equation:

([S(*, *,)] - [S(*, *, 1)])[C] ([S(1, 1, *)] - [S(1, 1, 1)])[C]
[S(*, *, 1)] [S(1, 1, 1)]

[S(1, 1, 1)] [S(1, 1, *)]

IS(*, , 1)] [S( , , )]
[S(1, 1, 1)] [S(1, 1, *)1 [S(*, *, 1)]
[S(*, *, *)] [S(*, *, *)] [S(*, *, *)]
[S(1, 1, 1)] [S(1, *, *)] [S(*, 1, *)1 [S(*, *, 1)]

Is(., *, )] [S(*, *, *)] [S(*, *, ) [S(*, *, )]

Using induction, we can extend the proof for a network containing scaffold proteins
with more domain sites.

Problem 4. For a network containing a scaffold protein that consists of more modifi-
cation states, the different modification states of the scaffold protein are connected by
modification fluxes. Because the binding equilibrium approximation assumes negligi-
ble modification fluxes, then the network reduces to separate networks with multiple
protein scaffolds (Problem 5).

Problem 5. For a network containing two scaffold proteins, R and S, each with two
domains, with interaction networks defined as the first domain of R interacting with
the first domain of S, and the second domain of R interacting with protein A, and
the second domain of S interacting with protein B, we defined the following mass-
action kinetics variables: A, B, R(i, j), S(i, j), RS(i, j), where R(i),i E {0, 1} is for
the complex between R and A when R does not bind S, S(i),i C {0, 1} is for the
complex between S and B when R does not bind S, RS(i,j), i,j E {0, 1} is for the
complex between R and S bound to A (i) and/or B (j). In this network,the binding
equilibrium applied to the MA model produces:

RA RA
k AR(O) = kof f A R ( 1 )  (4.63)

RA RAkon ARS(0, 0) = koff RS(1, 0)
RA RA

kon ARS(O, 1) = koff RS(1, 1)
SB SB

k BS(0) = kff S(1)
SB SB

SBRS(0, 0) = kff RS(O, 1)

SB SB
kn BRS(1, 0)= ko RS(1, 1)

RS RSkon R(0)S(0) = koff RS(O, 0)
koS R(O)S(1) = kf RS(0, 1)

RS RSkn R(1)S(0) = kffRS(1, 0)

SR(1)S Rskn R(1)S(1) = koff RS(1, 1)
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R(O) + R(1)
R(O) + RS(O, 0) + RS(O, 1)
R(1) + RS(1, 0) + RS(1, 1)

R(O) + R(1) + RS(O, 0) + RS(O, 1) + RS(1, 0) + RS(1, 1)
S(O) + S(1)

S(o) + RS(O, 0) + RS(1, 0)
S(1) + RS(O, 1) + RS(1, 1)

S(O) + S(1) + RS(O, 0) + RS(1, 0) + RS(O, 1) + RS(1, 1)

RS(0, 0) + RS(O, 1) + RS(1, 0) + RS(1, 1)

A

[RS(1, 0)]
[RS(0, 0)] [A]

[RS(0, 1)]
[RS(O, 0)][B]

[RS(o, 1)]
[R(O)][S(1)]

[RS(1, 1)]
[RS(0, 1)][A]

[RS(1, 1)]

[RS(1, 0)] [B]

[RS(1, 0)]

[R(1)][S(O)]

(4.64)

(4.65)

(4.66)

(4.67)

[R(*, 1)]

[R(*, 0)][A]

[S(*, 1)]

[S(*, 0)][B]

[RS(1, 1)]

[R(1)][S(1)1

which can be simplified to produce molar fractional expression:

RS(1, 1) RS(*, *) R(*, 1) S(*, 1)

R(*, *) R(*, *) R(*, *) S(*, *) (4.68)

By induction, we can prove that the molar fractional expression can be held for
independent binding equilibrium of a network with more scaffold proteins.

4.5.5 Proof for the nonlinear reverse lumping

For a mass-action kinetic model given by:

j: = f (x, k) (4.69)

(x(t) C Rn), we proposed a lumping approach, given by:

S= Mx (4.70)

where & E Rm, m < n and M E R m x n . The form of M is motivated by biological
arguments. Assume further that M has full rank. Let M e Rnx ' be any {1}-inverse
of M [2] so that by definition:

MMM = M. (4.71)

If, in addition, M has full rank, then:

Mm t= I. (4.72)

Assumes that we know by an independent physical argument that all solution x(t)

126

When we applied the following lumping:

R(O, *) =
R(*,O) =
R(*, 1) =
R(*, *) =
S(o, ) =
S(, o) =
S(*,1) =

S(*, *) =
RS(*, ) =

B =

we obtained the following relationship:

RA
K

a

K SB
a

K 
R S

a

[R(1)]
[R(0)][A]

[s(1)]

[S(O)][B]

[RS(O, 0)]
[R(o)l[S(O)]



of Eq 4.69 satisfy:

x(t) = M(Mx(t) (4.73)

or equivalently

(I - MM)x(t) = 0 (4.74)

i.e., x(t) E .Af(I - AMM)(i.e., the solutions of Equation 4.69 lie in a subspace of TRW).
The construction is such that under these assumptions M provides an invertible linear
mapping from this subspace to Rm and M provides the inverse mapping.

Suppose that x(t) is a solution of Equation 4.69 and define:

MX = Mx = (t) = Msi (t). (4.75)

From x(t) a solution of ODE and this definition, it follows that:

x = M = Mf(x, k) = Mf(, k). (4.76)

This shows that for every x(t) satisfying x(t) = AMMx(t) and ODE, there is a corre-
sponding ± that satisfies Eq 4.76 and X(t) = Mx(t).

On the other hand, suppose that 2(t) is a solution of Eq 4.76 and define

x(t) - MA j "i(t) = M!:(t). (4.77)

From -(t) a solution of Eq 4.76 and this definition, it follows that:

^Mf(,k) (4.78)

S= MMMf(x, k) (4.79)

S= f(x, k). (4.80)

Assume that we know by an independent physical argument that all solutions x(t)
of ODE satisfy:

x(t) = gs*(Mx(t))Mx(t) (4.81)

where gk : Rm -+ R~Xm and

Mg gM = M, V E Rcm .  (4.82)

If M has full rank then it can be shown that a similar equivalence exists between full
and reduced systems.
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Table 4.5: Canonical parameter values for System I, II and III
Parameter Values Unit Note

System I and II
kSE  1.el lM-s- 1  Typical value for proteins

kof 0.085 s - 1  obtained from half time measurement in Ste4-Ste5
from [130]

ko•g  1 pM-s -1  Typical value for proteins

ffg  0.1 s - 1  computed based on Kd of Ste5-Fus3 obtained
from [10]

kK p 1 btM-ls - 1 Typical value for proteins
koKP 0.1 s- 1  assumed equal to kofg
kct 3 s- 1  based loosely on kcat of raf and MEK
Eo 0.0332 ,pM [110]
So 0.0358 ,uM [110]
Ko 0.0358 IuM [110]

System III

iM-is-
s-1

pM-1s
- 1

s-1

1uM
s-1

s-1

s-1

JUM-1s-
1

s-1

s-1

s-1
tLM

pAM
AM
/pM

made up
made up
Typical value for proteins
obtained from half time measurement in Ste4-Ste5
from [130]
Typical value for proteins
computed based on Kd of Ste5-Fus3 obtained
from [10]
Typical value for proteins
computed based on Kd of Ste5-Fus3 obtained
from [10]
based loosely on kcat of raf and MEK
Typical value for proteins
computed based on Kd of Ste5-Fus3 obtained
from [10]
Typical value for proteins
computed based on Kd of Ste5-Fus3 obtained
from [10]
based loosely on kcat of raf and MEK
[110]
[110]
[110]
[110]
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le2
0.5
10
0.085

1
0.1

1
0.1

3
1
0.1

1
0.1

3
0.0358
0.0332
0.0358
0.0217

koS
k SB"off

kcCat
So
Ao
Bo
Co



Chapter 5

Conclusion and Future Directions

In Chapter 2, we have developed a set of computational tools to study design prin-

ciples of biological networks. The study utilized dynamic optimization to obtain

theoretically optimal networks, a multi-objective optimization to examine trade-offs,

and finally, applied the framework of "trade-offs" to compare the function of different

network structures. This approach allowed us to utilize further biological network

models to examine theoretical limits of operational strategies that a network may use

when subjected to a specified objective.

Three major areas may improve further the tools that have been developed. First,

the development of rigorous global optimization technique that have stronger elim-

ination power than what is currently available. A rigorous global optimization tool

with stronger bounding will include guarantees of the results, and open the door to-

ward systematically varying network structure in the context of a mixed integer dy-

namic optimization formulation. Second, an improved post-optimality analysis that

accounts for multi-dimensions. While the one-dimensional-sensitivity-based method

that we constructed may allow us to extract knowledge from optimal results, a more

rigorous multi-dimensional system may extend the analysis for more complex systems.

And finally, a more efficient parametric optimization method. In our approach, the
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parametric optimization is performed by adding a constraint for one of the objectives

and re-optimizing; however, many optimizations may benefit from runs of adjacent

objective values, and thus, a more efficient approach may be fruitful for application

to larger systems.

In Chapters 2 and 3, we applied tools developed here to study design principles

in MAP kinase networks, in particular, how dynamical properties such as responsive-

ness, transient noise filtering, and amplification are affected by the construction of the

networks. Results indicate that networks with multiple activation sites may have ad-

vantages in filtering transient noise better while modulating output amplitude across

wider ranges. The methods may be readily extended to investigate design principles

of other network motifs [104].

In Chapter 4, we proposed a general compact modeling methodology applicable

to problems with a combinatorial set of components that can be numercaill unman-

ageable, and we applied it to model signal transduction networks by representing the

problem as a network of protein domains. This change of representation produced a

compact model whose number of species scaled quadratically to the number of pro-

tein binding sites and modification states and produced a tremendous saving over

the combinaltorial scaling in the more standard mass-action kinetic approach. When

compared to the more established model reduction methods, this method avoids con-

struction of a fully enumerated mass-action kinetic model yet is relatively accurate

across a wider range of parameterizations.

We expect further applications of the proposed method to networks with scaffold

proteins and to other large, combinatorial networks. Recent work [106] indicates

that Ste5, a scaffold protein in yeast mating pathway, plays a significant role in

modulation of mating response through allosteric interactions, instead of being only

a passive tethering molecule. The scaffold protein, although difficult to detect because

of low sequence conservation, has also been found in other MAP kinase pathways of

130



different organisms [3]. Thus, incorporation of scaffold proteins into the network of

signal transduction pathways should have increasing importance as more becomes

known about scaffold proteins. In other but related applications, many of the surface

receptors in signal transduction networks consist of multiple splice variants and cross-

dimerization species; these systems typically consist of too large number of species

when modeled with mass-action kinetics. A complete network that consists all of these

proteins may be interesting to study in detail and compared to simplified models.

Application of the domain network modeling method to these systems may allow

incorporation of many known molecular details and hopefully will provide greater

utilization of models in the study of design principles in biological networks.
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Appendix A

Tables

Table A.1: Canonical parameter values in a unit network of one-step activation-
deactivation reactions.

Parameter Canonical value References
Rate constants

k 1Aj 0.1 pM- - 1  [51, 22]
kof A] 0.033 s- I  [51, 22]
kcA] 16 s- 1  [51, 22]
k [R:A '] 5 pM-ls - 1  [28]

offA'] 0.5 s - 1 [28]

kcA'] 0.3 s - 1 [28]
Initial conditions
[F]o 20 pM [22]
[A]o 34 pM [22]
[R]o 16 pM [22]
[F : A]o 0 M problem definition
[A']o 0 pM problem definition
[R: A']o 0 pM problem definition
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Differential equations governing a one-step enzymatic
deactivation reaction network

134

Table A.2: activation-



Table A.3: Differential equation governing a two-step enzymatic activation-
deactivation reaction network

Two-step enzymatic activation-deactivation reactions

[A]
= -wl + W2 - W12dt

[F : A]
S W1 - W2 - W3

[A']A']-- + W3 -W4 + W5 + -W 10 + Wll
dt

[F : A'][F +W4 - W5 - W6
dt
[A"]

=+ w6 -w7 + W8dt
[R]
t= -W7 + W8 + W9 --W10 + Wl • W12dt

[R : A"]
= +W7 W- W - W9dt

[R : A']
S- -W10 W11 - W12dt

i= 1I kIF :A] [F] [A]

w2 PI'2 [F:A] [F: A]

W 3 = /3 k [F: A]

4 = 4 kF:A'] [A'] [F]

=[F:A'] [F A']
W5 = A-L5 Coff

S[F:A] [F" A']
W6 = P6 kmod [F A]

W7 = P17 kR:A"] [A"] [R]

S= ~s kkR:A"] [R : A"]W8 P8 off A"]

9 [R:A"] k [R: A"]W9 -- ]•9 'mod

lo = o k) :A'] [A'] [R]

w = 1 [R:A'] [R : A']
wl2 = 12ll k R•:off

W[R:AI] [R: A/]
W /12 1 12 'mod
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