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Abstract

The presence of several nonlinear analog circuits and Micro-Electro-Mechanical (MEM)
components in modern mixed signal System-on-Chips (SoC) makes the fully auto-
matic synthesis and optimization of such systems an extremely challenging task. The
research presented in this thesis concerns the development of techniques for gener-
ating Parameterized Reduced Order Models (PROMs) of nonlinear dynamical sys-
tems. Such reduced order models could serve as a first step towards the automatic
and accurate characterization of geometrically complex components and subcircuits,
eventually enabling their synthesis and optimization.

This work combines elements from a non-parameterized trajectory piecewise lin-
ear method for nonlinear systems with a moment matching parameterized technique
for linear systems. Exploiting these two methods one can create four different algo-
rithms for generating PROMs of nonlinear systems. The algorithms were tested on
three different systems: a MEM switch and two nonlinear analog circuits. All three
examples contain distributed strong nonlinearities and possess dependence on several
geometric parameters.

Using the proposed algorithms, the local and global parameter-space accuracy of
the reduced order models can be adjusted as desired. Models can be created which
are extremely accurate over a narrow range of parameter values, as well as models
which are less accurate locally but still provide adequate accuracy over a much wider
range of parameter values.

Thesis Supervisor: Luca Daniel
Title: Assistant Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The presence of several nonlinear analog circuits and Micro-Electro-Mechanical (MEM)

components in modern mixed signal System-on-Chips (SoC) makes the fully auto-

matic synthesis and optimization of such systems an extremely challenging task. The

nonlinearities of such devices are both strong and distributed, hence they cannot

simply be approximated by linear components or be removed from the system and

modelled separately. The availability of techniques for generating Parameterized Re-

duced Order Models (PROMs) of nonlinear dynamical systems could serve as a first

step toward the automatic and accurate characterization of geometrically complex

components and subcircuits, eventually enabling their synthesis and optimization.

In the past few years, several techniques for Parameterized Model Order Reduction

(PMOR) of linear systems and nonparameterized MOR for nonlinear systems have

been introduced in literature (Section 2.1). However, none of these methods consid-

ered parameterized models from nonlinear systems. The key contribution of this work

is a method for automatic extraction of parameterized reduced order models from

complex nonlinear systems. The proposed approach builds upon a non-parameterized

trajectory piecewise linear method for nonlinear systems (Section 2.2.3) and a moment

matching parameterized technique for linear systems (Section 2.2). The proposed ap-

proach is derived in detail in Chapter 3, and followed by four possible algorithms

to implement the method. The method has been tested on three physical systems

which possess distributed strong nonlinearites, described in detail along with results
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in Chapter 4. By expanding upon these results in a comparative analysis, we aim at

discovering and clarifying how each algorithm affects the parameter-space accuracy

of reduced models. In addition to accuracy analysis, computational complexity and

timing results are presented in Chapter 5. To conclude, we will recap our observations

and suggest further improvements to the proposed algorithms in Chapter 6.
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Chapter 2

Background

2.1 Survey of Existing Methods

Several parameterized model order reduction techniques for linear systems have been

introduced in the literature over the past few years. Some methods are based on

statistical performance evaluation [4, 5] or optimization [6], while others use projection

based approaches such as moment matching [7, 8, 9, 10, 11, 12, 13] or Truncated

Balance Realizations (TBR) [14, 15].

One work which uses statistical performance evaluation [5] is interested in exploit-

ing non-physical mathematical models to explore the design space for synthesis. Data

mining is used to construct regressors based on some set of simulation data, and then

a committee of regressors is used to fit a function to that data. Each regressor is

accurate only in some region of the space, so a voting scheme is used to pick which

regressors should be used at each simulation step. A process called boosting is used

to build the committee of regressors. The algorithm is as follows. First, given a large

set of simulation samples, evenly weight every data point. Second, sample the points

based on their weights and fit a regressor to the sampled data. Finally, compute the

average weighted training error for the data set, and proceed back to the second step

updating the weights based on the weighted training error.

A group working on modeling interconnects for high-performance clock-net design

[4] encountered computational limitations due to the size of their interconnect models.
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As a solution, they proposed solving a reduced system instead of the large system

at each iteration. Using an algorithm to weight the effects of N wire locations on

delay and skew, they were able to consider only the the q most important wires as an

approximation to the full system.

Another work on modeling interconnect delays [7] proposed a method based on

matrix perturbation theory and dominant-pole-analysis to capture effects due to man-

ufacturing variations. For projection based methods the goal is to find a low order

subspace in which the state's evolution is well approximated. Once this space is iden-

tified, the linear system can be projected into such subspace using a projection matrix

V. Considering the linear system

[G(wi,w 2) + sC(wi, w 2 )]x = b, (2.1)

where x is the state, b is the input vector, s is the Laplace variable, and G and C are

the conductance and capacitance matrices that depend on geometrical parameters

w, and w2 , the authors in [7] were able to bound the variation in the dominant

eigenvalues and eigenvectors of G and C due to small changes in w, and w2. Using

this information they then computed an invariant Krylov subspace and projection

matrix V used to compute the reduced parameterized system with O VTGV and

= VTCV. This method was then tested on three RLC networks.

Moment matching was first considered with PMOR after [13] and [9] introduced

the idea of treating a single parameter as an additional variable in the transfer func-

tion, H(s, p), and recursively computed moments with respect to both variables to

approximate H(s, p). These moments span an important subspace for the system and

may be used to generate the columns of the projection matrix. For systems of the

form

[sG1 +s 2G2- A] x = Bu (2.2)

recursive formulae for generating the Krylov subspace moments along with state-

ments about the accuracy of the ROM at the expansion points are presented in [9].
Extensions of this technique are found in [10, 11], which use similar ideas to achieve

18



moment matching for an arbitrary number of parameters with arbitrary parameter

dependence. This is achieved by a multivariable Taylor series expansion, treating

each parameter as a variable. This technique is discussed in detail in Section 2.2.2.

Another PMOR projection based method uses Truncated Balance Realizations

(TBR) to construct the projection matrix. Several techniques which use TBR to

create reduced order models capturing the effects of manufacturing variations in in-

terconnects have been proposed [14, 15]. In TBR, the controllability Grammiam X

and observability Grammian Y are computed by solving the Lyapunov equations

AX + XAT = -BBT (2.3)

ATY + YA = CC(2.4)

where A, B, C are the system matrices and vectors in the linear system

dx
- = Ax + Bu, y = CTx. (2.5)
dt

The controllability and observability Grammians can be used to identify the most

controllable and observable states in the system respectively. The dominant eigenval-

ues of the product XY are invariant under similarity transform, so the corresponding

eigenvectors are used as the basis for the reduced space. One nice result of this method

is that provable error bounds for the PROM are available. The first work [14] consid-

ers a spectrally weighted TBR procedure to produce reduced models which are more

accurate around important frequencies. If A in (2.5) is perturbed by AA, then a

Grammian transformation matrix A-y can be computed. If X and Y were computed

from the linear system with A = A 0 , then A 1 can be used to bound the variation in

the Grammians which arise from the perturbed system with A = Ao + AA, such that

Xvar < AyXAYT (2.6)

Yvar < A1TYZ\1  (2.7)

where Xva, and Ya, are the controllability and observability variational Grammians of

19



the perturbed system. The largest eigenvectors of the product XvarYvar are now used

as a basis for the subspace which is invariant to perturbations AA to system (2.5).

It was later noted elsewhere [15] that it is possible to compute the variational

Grammians in the time domain rather than the frequency domain, thus eliminat-

ing the need to solve Lyapunov equations. Again letting X be the controllability

Grammian, it is known that

X = j eAtBBTeAT tdt (2.8)

= 1-00(jwI - A)~lBBT(jwI - A)-HdW (2.9)

where Parseval's theorem is used to proceed from the first equation to the second.

Considering the system

[sC + G] x = Bu, (2.10)

the variational Grammian is then computed by exciting the system with white noise

over some domain SA of probability density resulting from manufacturing variations

in the system. This amounts to the equation

X, j j (J wC + G)-BBT(jwC + G)-Hp(A)dwdA (2.11)

to compute the variational Grammians. Unlike moment matching schemes, the size

of the ROM created with TBR does not depend on the number of parameters.

Also possible for PMOR of linear systems are methods which try to fit the transfer

function of the linear system using optimization techniques [6, 16, 17, 18]. One such

approach [6] attempts to fit, using measured data, a parameterized transfer function

h(t, Pi, p2) with a trigonometric polynomial

h(tP1,P2) b Zkbk(p1,p2) cos(kt) + j E ck(p1,p2) sin(kt) (2.12)
Pk ak(p1, p2) cos(kt)

A rational fit is used to solve for the parameter dependent coefficients ak, bk, Ck in

the transfer function approximation. In this case the order of the reduced model is
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determined by the order of the rational fit, and the resulting ROM is guaranteed

stable for all parameter values.

Several non-parameterized Model Order Reduction (MOR) approaches are avail-

able for nonlinear systems. For instance, the reduction of weakly nonlinear systems

has been shown using Volterra series and moment matching techniques [19, 20, 21,

22, 23, 24], while the reduction of strongly nonlinear systems has been shown using

trajectory piecewise techniques [25, 26, 1, 2, 27, 28].

One of the first works in model order reduction for nonlinear systems [19] com-

bined a Volterra series expansion with an Asymptotic Waveform Evaluation (AWE)

approach. Using Volterra responses, the transient response of a nonlinear system

can be easily approximated by repetitively computing the transient response of a lin-

ear equivalent circuit with different sources. Once the linear system and sources are

found, a q-pole approximation to the linear system can be used to speed up transient

simulation of the linear system. The examples considered in this work contained large

numbers of linear lumped elements and mildly nonlinear terminations.

The simplest approximation to a nonlinear system is a single linear system. The

authors in [20] use a moment matching scheme to create ROMs for a nonlinear MEM

switch (considered in Section 4.3) by approximating the nonlinearity with a linear

function created by expanding about an equilibrium point. For the projection ma-

trix, moments are generated using the Arnoldi process on the linear system. Results

showed that for small inputs the linear model provides a decent approximation. A

second order approximation to the nonlinear system is later considered in an attempt

to approximate the system response to large inputs, but for this case even the second

order approximation fails to accurately capture the nonlinear effects.

A similar but more general approach to approximating weakly nonlinear systems

would be to use a low-order polynomial expansion of the nonlinear function [21, 22]

dx m

=t f (x) + Bu ~1 #k (W'),. ... , X(M)) (2.13)
k=1

where x(m) is the mth Kronecker product of x with itself (e.g. X(3 = x 0 x ® x). Then
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the expansion of f(x) can be written as

f(x) ~ Aix0) + - - + Amx(M), (2.14)

which leads to the state space systems

dx1
= Aix 1 + Bu (2.15)dt

= Aix2 + A 2 ([i x[) (2.16)dt

dX3 = AiX3 + A2 [X1 & X2 + X2 0 X1] + A3 [XI 0 X1 0 X1] (2.17)

for m = 3. This new set of systems is linear in the variables x1 , x2 , X3 , because

the latter cross terms are treated as additional inputs. Krylov vectors can now be

computed for each of these linear systems for each input, and the resulting moments

form the basis of an important subspace for this system. The linear systems can now

be projected into the subspace to obtain a set of low-order linear models.

A drawback of the above method is that the order of the reduced system becomes

qm for an mth order expansion where x1 is size q. One possible approach to continue

increasing accuracy without increasing the complexity of the reduced system is to

identify a more optimum subspace for projection. The authors in [24 use the above

polynomial approximation to the nonlinear function, but consider matching the mo-

ments of higher order transfer functions for the nonlinear system which arise from a

Volterra series expansion of the system. This is in contrast to the previous approach

which merely used moments from a the first order transfer function of the three linear

systems in (2.15). The authors present a recursive algorithm for computing an arbi-

trary number of moments from an arbitrary order transfer function for a nonlinear

system.

For highly nonlinear systems it is not possible to accurately approximate the

nonlinearity with a single linear system, so a collection of linear systems must be used.

This idea is used in the TPWL technique [26]. The nonlinear system is approximated
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by a weighted sum linear systems

=._ - i(X) [ki + Aix] + bu (2.18)

where the weights wi(x) are functions of the current state. The linear systems are

chosen by linearizing the nonlinear system at important points in the state space.

The important state space points are found by simulating the nonlinear system and

choosing points along the trajectory where the model behaves very nonlinearly. The

linear systems can now be projected into a low-order subspace. The projection matrix

which defines this subspace can be constructed with a moment matching scheme [26]

or with TBR [21. One extension to this method is a PieceWise Polynomial (PWP)

approach which uses a collection of second order approximations to the nonlinear

system [27, 28], yielding an ROM of the form

SZEi(x)[k+ Aix+txx] +bu. (2.19)

One major drawback of the trajectory piecewise methods is that the accuracy of the

reduced model can be highly dependent on the "richness" of the inputs chosen for

training.

2.2 Relevant Model Order Reduction

2.2.1 Moment Matching for Linear Systems

Consider a linear system

dx
= Ax(t) + bu(t), y(t) = cTx(t) (2.20)

where the state x has a very large order N. In the frequency domain, the system

becomes

sX(s) = AX(s) + bu. (2.21)
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One approach to reduce the order of the system is with an orthonormal projection

matrix V such that x ~ V., and , is order q << N. The columns of V define

the basis of the reduced space and are carefully chosen to preserve the input/output

relationship (i.e. transfer function) of the system.

To find a good basis for V, begin by rearranging (2.21) and solving for X(s), to

obtain

X = (sE - A)~1 bu. (2.22)

By defining A = A- 1 E and -A- 1 b, we obtain

X = (I - sA)-'. (2.23)

It is now easy to take a Taylor series expansion of (2.23) about s = 0, resulting in

00

X = sA k= b+sAb+ s2A2I+... (2.24)
k=O

where the vectors [b, Ab, A2 I...] are referred to as the moments of the expansion. Close

to the expansion point s = 0 the first q terms of (2.24) are a good approximation

to X(s). This approximates X(s) as a linear combination of the first q moments in

the expansion, thus those moments form a basis for a reduced space in which X(s)

can be well approximated. To obtain this important subspace, the projection matrix

should be constructed such that

colspan(V) C {I, Ab, A2b..., Aq-lI}. (2.25)

The columns of the projection matrix should be orthonormalized as they are added to

V to avoid problems which arise from computing the moments using finite precision

arithmetic. As q increases the terms 2I will converge to the largest eigenvector of

A. The result of this is that for q > 15, the columns of V begin to become linearly

dependent, and thus adding additional columns does not increase the order of the

reduced space. This orthonormalization can be done with the Arnoldi algorithm,
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which ensures VTV = I, where I is the identity matrix.

Replacing X in (2.21) with VZ results in

sEVXk = AVX + bu. (2.26)

This new system has q unknowns but is overdetermined with N equations. One

method to reduce the number of equations is to left multiply the system by VT. This

results in

sEX = AX + bu. (2.27)

where A = VT AV, b = VT b, and 6 = cV. Using this projection matrix to approximate

X ~~ VX guarantees that the transfer function of the reduced system, H(s), will

match exactly q moments of the transfer function of the large system, H(s), around

the expansion point s = 0 [29]. Using VT to reduce the number of equations preserves

stability and passivity of the model, because VTAV is a congruence transform, and

thus preserves definiteness of the matrix A.

The above considered the case where X(s) was approximated by an expansion

about s = 0, however X(s) can easily be expanded about any point. For example,

first define a new variable 9 such that s = 9 + so. Expanding about s 0 is now

equivalent to expanding about s = so. The model becomes

( -so)EX = Ax+bu (2.28)

[9E + soE - A] X = bu (2.29)

- [I - s(soE - A)~ 1 E] X = bu. (2.30)

Define the new matrix A = (soE - A)- 1 E and the vector I (soE - A)-lb, and

proceed as above following (2.23).
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2.2.2 Parameterized Model Order Reduction

Consider a linear system whose dynamical descriptor matrices in Laplace domain

are functions of the Laplace frequency variable s, and of some other geometrical

parameters, pi, ..., pp,

sEX = A(pi, ...,p,1)X + bu. (2.31)

In order to preserve parameter dependence in the ROM after projection, the system

must be of the form

sEX = [g(p)Ai]X + bu (2.32)
i

where gi(p) are scalar functions of the parameters, and Ai have no parameter depen-

dence. This form can be attained, for example, by linearization or with a polynomial

fitting scheme. Introducing additional parameters 9, as shown in [10, 11], the approx-

imation becomes

sEX = [Ao + §1A 1 + ... + 9LAj,]X + bu. (2.33)

As before, a good basis for the reduced system can be found by approximating X

with a Taylor series expansion. This time treating s and i,... , §, as variables and

using a multivariable expansion yields

X = I - - ... - gpM,]-1bmu (2.34)

( + ... + gM,) bMu (2-35)
n

where Mo = A- 1 E, Mi = A01 Ai, and bM = A 1b. Keeping the first q terms in the

expansion guarantees the transfer function of the reduced system H(s, si, ... , ) will

match a total of q moments in both the s variable and the parameter variables at

expansion point (s = §1 = ... =, = 0) of the large system transfer function if V is

constructed such that

colspan(V) C {FobM, FibM, ... , Fq_1bM}, (2.36)
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where detailed recursive formulae for the calculation of F can be found in [10]. In the

same article it is noted that for a large number of parameters 9 and a modest number

of moments m matched for each parameter, this method may generate systems of

substantial order Q( m ).

The expansion in (2.34) may also be performed about different frequencies s f 0

and parameters p / 0. This can be achieved in the same manner as in the previous

section, by defining s = 9 + so and 9i = 5; + 9Oi where so and 9Oi are the desired

expansion points, and then expanding about the new variables at zero, S = 0 and

s= 0. This changes the exact formulae for Mi and F, but the procedure remains the

same.

2.2.3 Nonlinear Model Order Reduction

Consider a nonlinear system in the form

dx
dx = F(x(t)) + bu(t), y = cTX(t). (2.37)dt

Applying the usual projection scheme with projection matrix V such that x ~ Vi

results in

S VT F(V.(t))+butt). (2.38)
dt

Since F(x) is a nonlinear function, the term F(V.) ~ F(x) is still a function evalu-

ation on a vector of length N. Evaluating this term at every timestep in a reduced

order model would be too expensive. It appears projection is cheap only when the

system is linear in the state variables, so it is possible to linearize (2.37) about some

state xo to obtain the linear model

dx
= Aox + Ko + bu(t) (2.39)

where Ao is the Jacobian of F(x) at x = xo, and Ko = F(xo) - Aoxo. This linear

system can now be reduced using standard projection techniques. However, due to

the linearization, this model is only accurate in the state-space near xo, and there
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is no reason to believe the state will remain in that region during simulation. To

account for this, it will be necessary to create multiple linearized models from (2.37)

at different state-space points x 1, ...Xk. The different linear models will be accurate in

different regions of the state space. The nonlinear system can now be approximated

by a weighted combinations of the linear models,

dx k

dt Zwi(x, X) [Aix + Ki]+ bu(t) (2.40)

where wi(x, X) are some weighting functions which depend on the proximity of the

state x with respect to the linearization points X = [x 1, x 2 , ... , Xk]. To ensure the

model is accurate in all regions of the space, linearizations would need to be created

uniformly across the space. Assuming a grid of 10 linearizations per dimension in a

space of dimension N = 10, 000, a total of 1010000 models would be required. This is

computationally infeasible.

A better approach is to create models only in regions of the space where the

state is likely to travel during simulation. The trajectory piecewise linear (TPWL)

method [1] uses typical 'training' inputs to drive the state through the state-space

creating training trajectories. These training trajectories are then compared to tra-

jectories arising from the simulation of linearizations of the nonlinear system, and in

regions along the trajectory where the model behaves very nonlinear, a linearization

is made. Once a collection of linear models is amassed, each linear system can be

projected into a subspace with the standard projection technique. The projection

matrix is constructed using moments (2.25) from each linear model created during

training. The final reduced system is then

di k

d= t>v ,) k[Ai +(t)+kI +bu(t) (2.41)
i=1

where Ai = VAV V VTb, i = VTX, k = [VTX 1 , ... , VT Xk ], and k is

the number of linear models. The resulting model (2.41) is still a nonlinear system

because of the state-dependence of the weighting functions, but simulation is cheap
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because the order of the model is q << N. The relative weights, 'i(±, X), of each

linear model vary dynamically as the state evolves. One example of possible weighting

functions is
exp[ -,d]

ie(, Z) = p" (2.42)
E exp[ Mi

where 3 is some constant (typically around 25), di = || - iij, and m = min(d).

This is the weighting scheme used in [1]. Several other weighting schemes have been

introduced recently [30, 31] in an attempt to ensure smoothness of the ROM output.

As was shown in [30], only the closest linearization points have nonzero weights at

any given time, so rather than computing several hundred or thousand weights which

are zero, it is more efficient to compute only the five closest weights and set the others

to zero. This saves computation time and results in little or no loss of accuracy.
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Chapter 3

Parameterized Model Order

Reduction for Nonlinear Systems

3.1 Proposed Method

3.1.1 PROM Description Derivation

A system possessing nonlinear dependence on both the state x(t) and some parameters

pi may be of the form
dx
d- = F(x(t),Pi, P2, .. ,p, U). (3.1)

If the vector-valued function in (3.1) can be written as

F(x (t), P1, P2, ... ,, U) = jg (p)fj (x, U)
j=1

(3.2)

where gj (s) are scalar functions, then the parameters can be redefined as 9i = gj(s)

to obtain
dx

= jfj (x, u). (3.3)

To account for terms with no parameter dependence, define go = 1. If the system

cannot immediately be written as (3.2), then some polynomial fitting scheme or Taylor

series approximation must be used to capture any nonlinear parameter dependence,
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resulting in
dx
dx= f(p, x, u) Z.g,(x, u). (3.4)

Due to such approximation, this model is valid only in some parameter space region

near the linearization or fitting points.

With the system in the forms form of (3.4), the nonlinear functions fj (x, u) can

be approximated as linear functions without affecting the parameter dependence.

Consider, for example,
dx

= fi(x) + §f2(x) (3.5)

A linear approximation of fi(x) and f2(x) about some point xo gives

dx
[fi(Xo) + Ji(X - Xo)1 + § [f2 (Xo) + J2 (x - Xo)] (3.6)

where the system still has the same structure with respect to the parameters. This

allows, as in [1], approximation of the nonlinear functions f (x, u) as a collection of

local linearizations around different points xi in the state space:

dx k p

d = ZZEwi(x, X)j[A ix(t) + ki + Biu(t)] (3.7)
i=1 j=1

where wi(x, X) are weighting functions which vary dynamically with the state.

Taking advantage of the linear parameter dependence, standard projection tech-

niques can be applied to each of the linear systems in (3.7). For instance, using a

projection matrix V, the system becomes

di [Aiss(t) + ki + Bu(t)] (3.8)

y =Sst (3.9)

where Aij= VTAZJ V, kj =VK,, b= VTbj, a = cV, x(t) = V.(t), and X =

[VTx1, ... , VTXk]. This reduced system is order q but still possesses the original linear

dependence on the parameters.
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In order to complete the procedure, two algorithms remain to be specified: how

to choose linearization points xi, and how to construct projection matrix V. These

two methods will be discussed in detail in the following sections, and then combined

to create the proposed Nonlinear Parameterized Model Order Reduction (NLPMOR)

algorithms.

3.1.2 Selecting Linearization Points

In standard TPWL [25, 26, 1, 27, 28] linearization points are chosen along state

trajectories generated by typical training inputs. Using a similar idea, additional

trajectories can be created by training at a set of points in the parameter space. This

enriches the collection of linearization points so that linear models are available near

state-space regions where variations in the parameter are likely to take the model.

Training at different points in the parameter space to collect linearization points will

be referred to in this thesis as "training at multiple parameter-space points". The

TPWL scheme training only at the nominal parameter value will be referred to in

this thesis as "training at a single parameter-space point".

It is important to note here that the training trajectories must be generated

by a system which is already linear in all of the parameters (3.2). The purpose

of training at different parameter values is not to create different linearizations in

the parameter effectively sampling the parameter dependence, but rather to drive

the state to different regions of the state space. Suppose two training trajectories are

created by training with two different nonlinear models. If both systems are linearized

at the same state x0 on the trajectories, then it is possible that the resulting two linear

models will be different. This is discussed in more detail in Section 3.1.4.

Additional training trajectories add linear models but do not affect the order of

the reduced system. Since the weighting functions in (3.8) are typically nonzero for

just a few models at any particular time, only the closest models are considered for

weighting and a larger set of models does not significantly affect simulation time.
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3.1.3 Constructing the Projection Matrix

As in PMOR for linear systems [9, 10, 11] the columns of V can be constructed from

a multivariable Taylor series expansion about each parameter 9j. The moments may

be matched at a set of points in the parameter space which lie within some typical

range of parameter values.

This is similar to the scheme used in section 2.2.2, but in this case the model is

nonlinear. Therefore, the projection vectors are taken from the Taylor expansion of

the linearized models created during training. Such vectors however are not necessar-

ily the best basis for the reduced space. It is difficult to say a priori which linearized

models will provide the best basis for the reduced space. Hence, it may be beneficial

to create Krylov vectors at every single point along the training trajectories. This

does not significantly increase the computational cost because solving the nonlinear

system with an implicit time integration scheme (e.g. Newton's method with Back-

ward Euler) requires linearizations at every time step, so the additional cost is only

a few system solves per step.

One other small difference arising in the nonlinear case is the constant vector 'K'

in (3.8)- an artifact of the state linearizations. This term can be treated as a second

input term, i.e. 'B 2 ', with constant input, i.e. u 2 = 1. To account for this term,

several Krylov vectors should also be generated from the set [K, AK, A 2K, ...] at each

linear model.

Matching moments about multiple expansion points for every linear model quickly

increases the size of the projection matrix V. If V becomes too large, simulation of

the reduced order model will become costly. To keep the order of the reduced system

small, an SVD may be performed on the projection matrix. The SVD is relatively

inexpensive because the projection matrix is very tall, but also very "skinny". After

SVD, only vectors corresponding to the largest q singular values remain, resulting in

a reduced system of order q.
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3.1.4 Linearizing in the Parameters

It was stated in Section 3.1.2 that if (3.1) is nonlinear in p, it must be linearized in

9 = gi(p) to preserve the parameter dependence in the ROM. It was also claimed

that all of the training must be done with system 3.4. This is necessary because

linearizations in the parameter may alter the state dependence of the system. This

makes it possible to obtain two different models from linearizations at the same state

x. Consider, for example, linearizing (3.1) at two different parameter space points pi

and P2 = 0 resulting in the two systems

dF(x, p1)F(x, p) F(x, pi) + d (P - pi) (3.10)
dp

F(x, p) F(x, 0) + p' (P). (3.11)

These models would then be used for training, and linearized again in the state x,

resulting in equations with a constant term, a term linear in p, a term linear in x,

and a term linear in the product xp. If the two models from the two linearization

points are the same they must be equal at all values of p and x, which means the

constant terms must be equal. This requires F(xo,pi) - pdF(x,pi) F(xo, 0), but

this is clearly not true for any arbitrary function F(x, p) (e.g F(x, p) - exP).

Suppose two different models are generated at the same state xi. The PROM now

contains two different linear models for the same state; one which is accurate when

the simulation parameter value is near pi, and another which is accurate when the

parameter value is near P2. One way to ensure the PROM uses the correct model is to

associate the linear models with the parameter linearizations from which they came.

This would require an additional sum in the final system over parameter linearizations

> 3 Wi,k(X, X)sj [Ak,ijx(t) + Kk,i] + bu(t). (3.12)
k i j

This increases the cost of simulating the PROM, and the general assumption is that

only small perturbations in the parameter will be made, so a single parameter space

linearization in sufficient in these examples.
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Training at Training at
Single Point in Multiple Points in

Parameter Space Parameter Space
MOR

Moment Matching in V TPWL Algorithm 2
PMOR

Moment Matching in V Algorithm 1 Algorithm 3

Table 3.1: The 4 options for creating a ROM using our two techniques on a nonlinear
system

Algorithm 1 Trained at Single Parameter Point with PMOR Moment Matching
1: for m = 1: Number of Inputs do
2: Linearize at initial state x0

3: while t < tfjflj do
4: if 11 xt - xi |1< J then
5: Simulate current linear model to next time t
6: else
7: Linearize at current state and set xo = xt
8: Use equations (2.34) and (2.36) to create vectors for V
9: end if

10: end while
11: end for
12: Perform SVD on projection matrix V
13: Project systems using equation (2.41)

3.2 Proposed NLPMOR Algorithms

Combining the parameterization options in sections 3.1.2 and 3.1.3 gives rise to four

different algorithms for parameterized model order reduction of a nonlinear system.

The four options are presented in Table 3.1. The first option, TPWL, is essentially

the TPWL algorithm if it were applied to a system which was already linear in some

set of parameters. For this reason this algorithm will not be discussed in detail, but

will be used for comparison purposes.

The first extension of the TPWL algorithm in Table 3.1, shown in Algorithm 1,

combines the TPWL training scheme with parameterized moment matching for the

projection matrix. The second option, described in Algorithm 2, does not match

moments for the parameters, but trains the system at multiple points in the parameter

space. The final system is now a collection of linear models created by training
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Algorithm 2 Trained at Multiple Parameter Values with MOR Moment Matching
1: for m = 1: Number of Inputs do
2: for p = 1: Number of Parameter Training Values do
3: Linearize at initial state xo
4: while t < tfijfl, do
5: if 11 xt -xi 11< 5 then
6: Simulate current linear model to next time t
7: else
8: Linearize at current state and set xO = xt
9: Use equations (2.24) and (2.25) to create vectors for V

10: end if
11: end while
12: end for
13: end for
14: Perform SVD on projection matrix V
15: Project systems using equation (2.41)

at different sets of parameter values. The final method, described in Algorithm 3,

combines the two previous methods. The system is trained at multiple points in the

parameter space, and the models projection matrix is built with moments generated

from a multivariable Taylor series expansion to account for parameter changes.

Since training trajectories are expensive, the cost may be reduced by using "ap-

proximate training trajectories". For an exact training trajectory, let xt be the state

of the original nonlinear system at time t and xi be the state at time t of the linear

system created by linearizing at aO. In this case, linear models are created when xt

strays from the exact state at that time step xi, that is, when I Ixt - xiII > 6. For the

approximate trajectory, let xt be the state at time t of the linear system created by

linearizing at xo, and let xi be the most recent linearization point xO. Linear models

are then created when the state xt strays from the region of space where linearization

xi is valid, that is, I Ixt - xiII > 6. When used with approximate trajectories the cost

of training is reduced to O(TrP), however models created at points where the state

approximately evolves may be less useful. All of the algorithms can be modified to

incorporate this training method, but only exact training trajectories are considered

in the rest of this work.
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Algorithm 3 Trained at Multiple Parameter Values with PMOR Moment Matching
1: for m = 1: Number of Inputs do
2: for p = 1: Number of Parameter Training Values do
3: Linearize at initial state xO
4: while t < tfifl, 1 do
5: if 11 xt - xi 11< 6 then
6: Simulate current linear model to next time t
7: else
8: Linearize at current state and set xO = xt
9: Use equations (2.34) and (2.36) to create vectors for V

10: end if
11: end while
12: end for
13: end for
14: Perform SVD on projection matrix V
15: Project systems using equation (2.41)
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Chapter 4

Examples

4.1 Overview

Three examples were chosen to test the NLPMOR algorithms. All three contain

distributed strong nonlinearities and possess dependence on some geometrical para-

meters. For each example a derivation of the system model is presented, followed by

some results from the algorithms for different parameters.

4.2 Diode Transmission Line

4.2.1 System Description

The first example considered is a nonlinear transmission line with diodes. This ex-

ample was chosen because it was used in the original TPWL papers [1, 2]. This

provides some relative accuracy comparisons for the new method. The transmission

line, shown in Figure 4-1, is a nonlinear analog circuit containing a chain of strongly

nonlinear diodes, resistors and capacitors. Choosing the system state to be the nodal

voltages, the system equations are easily derived using Kirchoff's current law and

nodal analysis. An equation for interior node j then has the form

C dxj _ x1 -_ - 2xj + x,+l + I[ea-j'x) - axja+d] (4.1)
dt R
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Figure 4-1: A nonlinear transmission line circuit containing diodes [1, 2].

leading to a state space system of the form

dx
E- = Gx + D(x) + bu(t). (4.2)

dt

Here G is the conductance matrix, E is the capacitance matrix, D(x) is a vector valued

function containing the constitutive relations for the diodes, and b is the input vector,

and the input is an ideal current source u(t) = i(t). All resistors have value 1Q and all

capacitors are 10pF. The constitutive relation for the diodes is I(V) = Id(ev - 1),

where a is defined as 1 , and VT is the threshold voltage. Values of Id 0.1nA and
Vt

a = 40, which corresponds to vt = 25mV, were used.

4.2.2 Results

Parameters of interest in this system are the capacitor values, the resistor values, and

some diode parameters such as "turn-on" voltage VT and saturation current Id. These

parameters can affect the characteristics of travelling waves on this transmission line.

All models in this section were trained with a sinusoidal input, u(t) = (cos(wt) + 1)/2

with w = 27rGHz. For PMOR moment matching, the projection matrix was built

with moments from a Taylor series expansion (equation (2.34)) about the frequency

so = j27rGHz and any parameter values used for training. The frequency expansion

point so = j27rGHz was also used for MOR moment matching.

The first parameter considered is the diode threshold voltage VT. To simplify the
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equations, the parameter is defined as a = ---. The original system (4.1) is nonlinear
VT

in a, so (4.2) is linearized about some nominal value ao to obtain the state space

model
- = Gx + D(x, ao) + a [D(x, a)] (a - ao) + bu(t). (4.3)
dt a

Note that the system is still nonlinear in the state. A model was created using

sinusoids as training inputs and a nominal parameter value of a = 40 for linearization

and training. As mentioned before, linearizing at ao introduces some initial error as

the parameter changes from ao. Figure 4-2 compares the simulation output of the

0.6

0.5-
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0)
0.3

0.2

0.1

0

-0.11
0 0 .5 1 1.5

Time (sec) x 10-
9

Figure 4-2: A model created using TPWL for the diode transmission line parameter-

ized in p = 1 using po = ' is simulated at p = 0.9 8 po (circles) and at p = 1.02po
(plusses), and then compared to output of the full nonlinear system (solid lines). The

model was reduced from large order N = 200 to reduced order q = 20.

full nonlinear systems with that of a PROM at two different parameter values.

The second set of parameters considered are the resistor values and the diode

saturation current Id. To keep linearity in parameters, define pi = I as the parameter

value instead of R, and let P2 = Id. In this case no linearizations in the parameter

are required, resulting in the model

ax
ax p1  + p2D(x) + bu(t), (4.4)
at

where C and D(x) are defined similarly to the terms in (4.2), except the parameters
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are removed. A PROM was created by training with sinusoidal inputs at parameter

points near Id = 0.1nA and R = 1Q. Figure 4-3 examines the error of the PROM as

2

0.9 1 2

0 9 1 1 1 1 .2 1 .3 1 .4 1 .5 0 .5 1 p 2

p1

Figure 4-3: The error resulting from simulations of a PROM created for the diode
transmission line parameterized in pi = and P2 = Id. The mode was reduced from
large order N = 100 to reduced order q = 20.

the two parameters are varied. The error plotted is the norm of e(t), where

e(t) = Iy(t) - V0) (4.5)

with y(t) the full nonlinear system output and (t) the PROM output.

4.3 Micromachined Switch

4.3.1 System Description

The second example is a micromachined switch [1, 2]. The switch consists of a

polysilicon fixed-fixed beam suspended over a polysilicon pad on a silicon substrate

as shown in Fig. 4-4. When a voltage is applied between the beam and the substrate,

the electrostatic force generated pulls the beam down towards the pad. If the force

is large enough, the beam will come into contact with the pad closing the circuit. In

addition to being a switch, this device can also be used as a pressure sensor due to

its extreme sensitivity to surrounding atmospheric conditions.
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The unknowns of interest in this system are the deflection of the beam, u(x, t), and

the air pressure between the beam and substrate, p(x, y, t). The system of equations

2 um of poly Si y(t) - center point

Z 
. uno 

defkection

0.5 urn SiN 2.3 um gap
filled with air

Figure 4-4: The MEM switch is a polysilicon beam fixed at both ends and suspended

over a semiconducting pad and substrate [1, 2].

is assembled by discretizing the coupled ID Euler's Beam Equation (4.6) and the 2D

Reynold's squeeze film damping equation (4.7), taken from [1]. A finite difference

scheme was used for the discretization, and since the length of the beam is much

greater than the width, the vertical deflection is assumed to be uniform across the

width and only pressure was discretized in the width.

3 4U2U p 2U
Ioh & _ Sohway Feiec + ( p - pa)dy - pohw (4.6)

V . ((1 + 6K)u 3pVp) = 1 2 (pu) (4.7)at
Here, Feiec = Epwv 2 is the electrostatic force across the plates resulting from the

applied voltage v, while v 2 is the input to the system. The beam is 2.2pm above

the substrate (zo = 2.2pm), 610pm in length, and has a width of 4Optm. The other

constants are permittivity of free space Eo = 8.854 * 10-6y, permeability M = 1.82 *

10-5L, moment of inertia 1o = 1/12, Young's modulus = 149GPa, Knudsen

number K = -, A = 0.064, stress coefficient So = -3.7, and density po = 230023.

By setting the state-space variables to x1 = u, x 2 = -U, and x3 = p, the following

43

M



dynamical system results.

x1 _ X2

at 3xi
Ox 2  2x2 3x2 W ' 2x 1- =1- (X3- pady +Soh,-
at 3x pohw Id+x 2

1 4x1 
3  o

-EIh3 w X - 2oha 2poh

X3  X2X3 + 1 V((1+6-)xx 3Vx 3)at 3x3 12px1  X1

The beam is fixed at both ends and initially in equilibrium, so the applied boundary

conditions are

u(x, 0) = o, p(x, y, 0) = pa, U(0, t) = u(l, t) = uo. (4.8)

Other constraints enforced are

Op(0, y, t) _ p(l, y, t)
x - 0, p(x,0, t) = X, W, t) = Pa, (4.9)

where the initial height and pressure are uo = 2.3pm and Pa = 1.103 * 105Pa.

4.3.2 Results

For this example a designer may be interested in changing some geometrical properties

of the device, such as the height and width, or possibly some material properties, such

as Young's modulus E and stress coefficient S. For this system, PROMs were created

by training using either a sinusoidal input with u(t) = (v cos(wt)) 2, and W = 7 MHz,

or a step input u(t) = v 2 for t > 0 with v = 7. The system output is the height of

the beam center point. For both MOR and PMOR moment matching the projection

matrix V was built with moments from a Taylor series expansion about DC so = 0.

PMOR moment matching used parameter expansion points equal to the parameter

values used in training.
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The first parameter considered is E, Young's modulus of the beam. This yields a

state space system of the form

ax- = Ao(x) + EA1 (x) + bu(t). (4.10)
0t

A model was created by training at parameter values near E0 = 149, 000 with step

inputs. The model was then simulated over a range of parameter values and compared

to the output of the full nonlinear system. Shown in Figure 4-5 is the maximum

percent error over time for each parameter value, i.e.

max (ly(t) - Q(t)j * 100 (4.11)
t jy(t)

where y(t) is the output of the full model and y(t) is the output of the PROM.
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Figure 4-5: A PROM created with TPWL algorithm for the micromachined switch
parameterized in E and simulated over a range of parameter values. For each value,
the maximum percent error (4.11)is plotted for output resulting from a step input.
This model was reduced from original order N = 150 to q = 40.

The second set of parameters considered are E and S. For this example a model

was created by training with sine inputs at E0 and So = -3.7, and then it was

simulated at three different sets of parameter values. The outputs of this simulation

along with the output of the full nonlinear system are shown in Figure 4-6.
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Figure 4-6: Output of a micromachined switch model parameterized in E and S
simulated at three different sets of parameter values. The circles correspond to the

nominal parameter values [E, S] = [Eo, So] = [149,000, -3.7], the plusses correspond

to [E, S] = [1.05Eo, 0.98So], the triangles represent [E, S] = [0.98Eo, 1.05So], and the

solid linear are from the full nonlinear system. The model was reduced from large

order N = 70 to reduced order q = 20.

4.4 Pulse Narrowing Transmission Line

4.4.1 System Description

The final example considered is a nonlinear transmission line used for signal shap-

ing. One example of such a line, shown in Figure 4-7, contains distributed nonlinear

capacitors. The resulting wave equation for this transmission line contains a nonlin-

ear term which sharpens the peaks in a wave travelling down the line. Hence these

devices may be useful in pulse narrowing applications. A thorough analysis of this

line can be found in [3]. The nonlinearity arises from the voltage dependence of the

capacitors, C, = C(V) ~ Co(I - bcVn). Setting the system state to the node voltages

and branch currents, system equations can be derived using Kirchoff's current law

and nodal analysis. The input is an ideal voltage source u(t) = V(t), and the output

is the voltage at some node m along the line, y(t) = Vm(t). Using this formulation,
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Figure 4-7:
tors [3].

A pulse narrowing transmission line circuit containing nonlinear capaci-

the system equations for an interior node n would be of the form

dV
Cn(V) d = In_1 - In

dI
Ln d" = V - Vn+1dt

leading to the state space model

V th ean f 1 a I re0

I f, (V, I ) B

where the n'h equations of fv and f, are

fvn 'n-i - In
Co - bcC 0 V

fin =
Vn - Vn+ 1

L

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

Here B 2 is the vector of voltage source inputs and typical capacitor and inductor

values are 100 picoFarads and 100 picoHenries respectively.

4.4.2 Results

Quantities of interest for the pulse narrowing transmission line are the inductor val-

ues, the capacitor values, and be, a parameter which adjusts the nonlinearity of the
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line. These three parameters all help shape the wave as it travels down the line, so

all may need to be adjusted to design the optimum pulse narrowing line for some

application. For this example PROMs were created by training with a sinusoidal

input with u(t) = v sin(wt) with w = 107rGHz. The system output is the voltage at

a node somewhere along the line, typically the 2 5 th node was used. For both MOR

and PMOR moment matching the projection matrix V was built with moments from

a Taylor series expansion about DC, and so 10GHz. PMOR moment matching

generated moments about parameter expansion points equal to the parameter values

used in training.

For this line, the first parameter considered is the inductor values. To keep things

linear, the parameter is actually defined as p = , resulting in the model

[i J~ ~ )fv(V,I) iF 01 gv(V,I) (.7.~ = + U(t) +.(4.17)
I f1 (VI) B1  gi (V,I)

This example also tests parameterization of the input vector B.

The model was created using sinusoidal training inputs and parameter values

around L = 10pH. Three parameter values were then chosen for simulation, and

the output of the PROM and full nonlinear system at those parameter values are

compared in Figure 4-8.
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Figure 4-8: Error from a model of the pulse narrowing transmission line parameterized
in p = -L compared to the full nonlinear system. The model was simulated at a range
of parameter values around po = 10". The model was built using TPWL trained at
po and was reduced from large order N = 200 to order q = 50.
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The second set of parameters for this example are the capacitor values together

with the inductor values. To preserve parameter linearity, the parameters are defined

aspi = andP2= -

.I =Pi (]+ [ ] u(t)) +P2 [V(I]. (4.18)
I, f(V I ) B1 gi , I )

The model was created from training with sinusoidal inputs at parameter values near

C = 10pF and L = 10pH. Figure 4-9 compares two outputs from this two-parameter

0 1 2 3
Time (sec)

4 5 6

Figure 4-9: Output from a model of the pulse narrowing transmission line simulated

at two different sets of parameter values. The model was trained at [1/L, 1/C] =

[pio, p20] = [1011, 1011] and was simulated at [P1, P2] = [0. 9pio, 0.9p20] (circles), and

[P1, P2] = [1. Pio, 1. IP20] (crosses). The solid lines represents the full nonlinear system
of order N = 100, while the reduced model has order q = 50.

model to the outputs of the full nonlinear system at those same parameter values.

49

1.5

1

0.5

0
0

-1

0 -

* ~

I --0.5-



50



Chapter 5

Algorithm Analysis

5.1 Overview

In this chapter we examine and compare in detail the accuracy of the models generated

by the four algorithms in Table 3.1. First we will take a careful look at the effects of

approximating the nonlinear system with a collection of linear systems. This includes

the limitations on the parameter-space accuracy imposed by linearizing the original

system in the parameters. Second, we examine the choice of projection basis for the

reduced system by comparing the methods for generating projection matrix columns.

The two moment generating techniques considered are a single variable Taylor series

expansion and a multivariable Taylor series expansion. Finally, we wish to determine

whether or not the set of linear models from which the projection matrix vectors are

generated has a significant affect on accuracy of the PROM.

Following the accuracy analysis, computational costs are considered for the differ-

ent model construction methods. The order of complexity expressed as a function of

the number of system solves is presented for each of the four algorithms in Table 3.1.

Lastly, timing results are presented for transient simulations of the PROMs and are

compared to simulations of the full nonlinear system. For these PROMs, the effects

on simulation time produced by varying the reduced model order q and the number

of linear models k are examined.
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5.2 Parameter Space Accuracy

5.2.1 Benefits of 'Training in Parameter Space

To examine the benefit of training at different points in the parameter space (as

in section 3.1.2), models created by TPWL and Algorithm 1 (shown in Table 3.1)

are compared with models created by Algorithms 2 and 3. The benefit of training

at multiple points in the parameter space is a vaster collection of linear models to

choose from. Training with different parameter values will drive the state into different

regions of the space and create different trajectories. This will explore regions of the

space where a changing parameter takes the state during simulation. The PROM may

need these models to accurately represent parameter changes. This method does not

add any additional parameterization to the models. The models are still linearized

at the same parameter value.

ALG 1 vs ALG 3, MEM Switch Parameterized in E

0.16- - - ALG3 .

0.14 - ALG1 -

0.12-

CD 0.1 -

0.08
E

0.06-

0.04-

0.02 -

0
1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7

E X10 5

Figure 5-1: Models created for micromachined switch parameterized in E using Al-
gorithms 1 and 3 were created and simulated over a range of parameter values. Each
model was reduced from large order N = 150 to reduced order q = 30.

The first comparison examines reduced order models of the Micromachined Switch

created using Algorithms 1 and 3. Treating E as the parameter, two models were

created by training at E = EO = 149, 000 and E = 0.95EO, 1.05EO for Algorithms 1

and 3 respectively. The projection matrix for both models were created by matching

parameter moments at EO and frequency moments at the input frequency f = 1GHz.
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The models were simulated at a set of parameter values in [0.9Eo, 1.1EO] and their

outputs compared to the output of the full nonlinear system. Figure 5-1 compares

the maximum percent error for each model (defined in (4.11)).

A similar comparison is made in Figure 5-2 using models of the Diode transmission

line created with TPWL and Algorithm 2. In this figure the error considered is the

norm of the error vector, error = Ily(t) - P(t)II. These models were constructed by

training at at Ido = 10-10 and Ido 0.5Ido, 1.3 1do for Algorithm 2.

0.25 1

FO -TPWL

0 ALG2

0.2-

0.15-

L 0
0.1 -

0

0 0
0.05 0 0

0.e . g**0 8.0

**.0 0 00

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

1, (Amps) X 10"

Figure 5-2: Norm of the error (defined in (4.5)) over time for models created with
TPWL trained at Ido = 10-10 and with Algorithm 2 trained at 1. 31 do, 0.5Sdo. The
system was reduced from original order N = 100 to reduced order q = 50.

Both Figures 5-2 and 5-1 show the best accuracy near the training parameter value

for the model created by training at a single point. However both figures also show

that the model created by training at multiple parameter space points has much

better accuracy in the larger region around the training values. This is intuitive

because TPWL and Algorithm 1 have all of their linear models created by training at

the nominal parameter value, whereas Algorithms 1 and 3 have some linear models

created from training at different parameter values. The meaning of this is that

TPWL and Algorithm 2 do an excellent jo approximating (3.1) around the nominal

parameter value, while Algorithms 1 and 3 do a good job approximating (3.1) over a

range of parameter values.

To examine this trend one step further and see some real outputs, Figures 5-
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3 and 5-4 consider pulse sharpening transmission line models created with TPWL

trained at I = Po = 10" and Algorithm 2 trained at p = po, 2 po. Figure 5-3 showsL

the error (Iy(t) - (t) 1) in the output of the two models simulated far from the nominal

parameter value, L = 1.8po, while Figure 5-4 compares the error over time for the

models simulated at at a parameter value near the nominal value, p = 1. 0 5po. Both

figures reinforce with the previous conjecture that TPWL is more accurate near the

nominal value while Algorithm 2 is more accurate far from the nominal value.

0.8

0.7-

0.6 - -

0.5 -

II f

0.3 -l-

0.2 - I I

0.1 - i

0
0 0.2 0.4 0.6 0.8 1

Time (sec) x 10-
9

Figure 5-3: The error in the output of two models created with TPWL (dashed line)
and Algorithm 2 (solid line) for the pulse narrowing transmission line parameterized
in p = and simulated at p = 1. 8po. The models were reduced from order N 100L
to q = 50.

5.2.2 Benefits of Parameterizing the Projection Matrix

The benefits of parameterizing the projection matrix via PMOR moment matching,

as in section 3.1.3, can be examined by comparing models created with TPWL and

Algorithm 2 with models created by Algorithm 1 and Algorithm 3.

Using the multivariable Taylor series expansion for creating V decouples the pa-

rameters. It creates vectors needed for the system response to capture changes in

the parameters. This is especially important for systems with multiple parameters

which may all be changing independently of one another. Figure 5-5 compares the
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Figure 5-4: The error in the output of two models created with TPWL (dashed line)
and Algorithm 2 (solid line) for the pulse narrowing transmission line parameterized

in p = and simulated at p 1 .05po. The models was reduced from order N = 100
to q = 50.

total simulation error at different parameter values for models created with TPWL

and Algorithm 1 for the diode transmission line parameterized in Id.

For the circuit example parameterized in Id, Figure 5-6 compares the error of

models with differing reduced orders created by TPWL and Algorithm 1. All reduced

order models were trained at Id = Io, and Algorithm 1 was expanded about Id = Io

for V. The figure shows that as the model order is increased, the error from models

created with Algorithm 1 decreases much faster than the error from the models created

with TPWL.

Again, the results match up with what is intuitively expected. Algorithms 1

and 3 match moments in the parameter space, creating a subspace which has the

ability to capture changes in the parameter. This is essentially equivalent to taking

a higher order approximation to X(s,p) around p. On the other hand TPWL and

Algorithm 2 do not match any moments around p, but instead match more moments

in the expansion of X(s, p) around s. This causes TPWL and Algorithm 2 to be very

accurate at the nominal value po, but have very little ability to capture changes in

the parameter.
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Figure 5-5: Two reduced order models of the diode transmission line parameterized

in Id and simulated at a range of parameter values using sinusoidal inputs. The
models were created using TPWL and Algorithm 1 and were reduced from large
order N = 100 to reduced order q = 40.

5.2.3 Benefits of using extra models for Krylov vectors

For a linear system, the first few Krylov vectors form a good basis for accurately

approximating the system response. Similarly for the nonlinear system, the first few

Krylov vectors from some set of linearized models span a low-dimensional subspace

in which the state evolution can be well approximated. However, it is not known

beforehand which linear models will provide vectors for the most important subspace.

Thus, a possibly better approach would be to use Krylov vectors from the linear

models at every time step along training trajectories. Recall from Section 3.1.3 that

the trajectories are computed by solving a nonlinear system using an explicit time

integration scheme, thus a linearized model is created at every timestep. Therefore,

the additional cost of using more Krylov vectors is only the cost of performing system

solves to obtain the vectors - there are no additional linearizations which need to be

performed. The resulting projection matrix may be quite large, so an SVD must be

taken to retain only the q most important singular vectors.

To examine the benefits of this method, two models were created using the TPWL

Algorithm: one uses only Krylov vectors generated at linear models, while the other

uses Krylov vectors generated at every point along the trajectory. Both PROMs used
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Circuit Example -- TPWL vs Algorithm 1
4
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Figure 5-6: Comparison of reduced order models created with TPWL and Algorithm
1 for the diode transmission line parameterized in Id. The percent error between the
model output and real output are compared for different order models, created from
a large model of order N = 100. Both models were trained at Id = Ido.

the same number of linear models and had the same reduced order q. Figure 5-7

compares the error of the output from these two models.

To see if this is always the case, another example is considered; this time, the

diode transmission line parameterized in 1/R. Figure 5-8 compares the error of the

two models, and in this case there is little difference. For the most part the two

models with q = 6 have the same output, but as p strays far from the nominal value,

the model created from extra vectors beings to fair slightly better. The error from

the model with extra vectors is never worse than the error from the model with fewer

vectors.

It is not surprising that the model with more Krylov vectors to choose from is

more accurate. Let V be the projection matrix before reduction from SVD created

by taking moments at every trajectory step, and let V2 be the projection matrix

before SVD created by taking moments only from the linear models. Clearly V1 D V

since the linear models are created at points on the trajectory. Therefore SVD(V 1 )

will do no worse than SVD(V2 ) since every vector in V2 is also in V1. In many cases

SVD(V1 ) will find a better subspace, resulting in a more accurate PROM, which is

what happened in Figure 5-7.
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Figure 5-7: Two models of the pulse narrowing transmission line parameterized in }
The circles correspond to the model which was projected with V built from moments
at every point of the trajectories, the crosses correspond to the model projected with
V built using only moments from the k = 181 linear models. Both models were
projected from large order N=200 down to reduced order q = 50.

It is important to note here that using the projection matrix created from moments

taken along every step of the projection matrix can no longer be considered "moment

matching". The vectors in V may not all be from the linear models used in the PROM,

so it cannot be said for sure that the transfer function of those reduced models will

match exactly any number of moments of the transfer function of some linearization

of the original model, as was the case in Section 2.2.1.

5.2.4 Analysis of Linearizing in Parameters

The final factor considered in parameter space accuracy is the linearization of the

nonlinear system in the parameters, seen in (3.4). The first parameter considered is

the diode turn on voltage VT. To simplify the equations, the parameter is defined as

a = -. The original system (4.1) is nonlinear in a, so (4.2) is linearized about some
VT

nominal value ao to obtain the state space model

= Gx + D(x, ao) + [D(x, a)] (a - ao) + bu(t). (5.1)
dt (a
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Figure 5-8: Two different PROMs of the diode transmission linear parameterized in

p = -. Both models were projected from large order N = 200 down to reduced order
q = 6. The circles correspond to the model using moments only from the k = 166
linear models, while the crosses correspond to the models created using moments from
every point along the trajectory.

Note that the system is still nonlinear in the state. A model was created using

sinusoids as training inputs and a nominal parameter value of a = 40 for linearization

and training. As mentioned previously, linearizing at ao introduces some initial error

as the parameter varies away from ao. An important question to ask is whether the

limiting factor in parameter-space accuracy of the PROM is a result of projecting

the system into a low-order subspace, or a result of this original linearization in the

parameters. Figure 5-9 compares the error of the PROM with the error of the large

piecewise-linear non-reduced system (3.7) at several different parameter values. The

figure shows that in this case the error from the PROM is no worse than the error

from the piecewise linear large model. This indicates the majority of the error in

these simulations may be a result of the original linearization in the parameter.

5.3 Cost And Timing

Each algorithm presented in Section 3.2 follows a slightly different path to create

theirs model, resulting in four different computational costs for the four algorithms.
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Figure 5-9: Comparison of an order q = 20 PROM for the diode transmission line
parameterized in p = - created using TPWL algorithm (plusses) with a large piece-
wise linear model with order q = 200 (circles). The two models were simulated over
a range of parameter values using sinusoidal inputs. The error plotted is le(t)l as
defined in (4.5).

This is mainly based on how the projection matrix V is constructed and how many

training trajectories are created. Table 5.1 compares the cost of these two parts of

the four algorithms.

The cost of constructing the projection matrix is measured in system solves be-

cause each Krylov vector requires one system solve to compute. Compared to TPWL,

the new cost of Algorithm 1 results from creating additional vectors for V. The pro-

jection matrix will require O(kpm) vectors to match m moments with respect to each

of the p parameters for k linear models.

The training trajectories are created by solving the large nonlinear system at

each time step. If there are T total time steps for the trajectory and each nonlinear

solve requires w Newton iterations, each trajectory will cost O(wT) system solves on

average. Note that if Krylov vectors are to be taken from every trajectory step instead

of just the points where linear models are created, the cost of building V increases

from O(km) to O(Tm) with T being the number of time steps in the trajectory.

This is where the majority of the cost in Algorithm 2 lies. Training the system for p

different parameters at r values requires rP trajectories. The projection matrix now
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Building Projection Training trajectories
Matrix V

(in system solves)
TPWL O(km) 1
Alg 1 O(kpm ) 1
Alg 2 O(krPm) rp
Alg 3 O(krPpm) rP

Table 5.1: Cost of training, measured in number of training trajectories requires, and
cost of constructing projection matrix V, measured in system solves, for the four
algorithms. In this table k represents the number of linear models in the PROM,
m is the number of moments matched for each parameter, p is the total number of
parameters, and r is the number of expansion points in the parameter space.

requires just O(krPm) system solves.

The final algorithm, Algorithm 3, creates the most expensive models. As in Al-

gorithm 2, the cost of training is O(hTrP), but the projection matrix now requires

O(kpmrP) system solves.

In the end, apart from accuracy, the most important model trait for the user is

the time required to run a simulation with that model. The obvious things that may

affect simulation time are the reduced order q and the number of linear models present

k. It is difficult to precict accurately the effect of k and q because the simulation time

depends on each piece in multiple ways. For example, when k and q are small there

are fewer weights to compute and fewer nonlinear equations to solve, which should

speed up simulation. But, if k or q is too small, the model may not have the proper

pieces needed to approximate the nonlinear function for some input, or the state may

want to leave the subspace chosen, both of which could cause trouble for the nonlinear

solver resulting in many more Newton steps at each iteration, which would slow down

the simulation. However the latter adverse effects are probably only significant for

extremely small k and q.

To see the effects of k and q on simulation time, Table 5.2 examines the speedup of

the PROM by comparing the simulation time of the reduced model to the simulation

time of the full nonlinear model as these two factors are varied.

The data was collected by creating a PROM with some k and some q, simulating
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k q = N/4 q = N/10 q = N/40
42 9.0 X 17.1 X 20.7 X
95 7.5 X 9.82 X 8.7 X
96 6.52 X 11.0 X 11.52 X

252 3.5 X 4.6 X 5.1 X

Table 5.2: Examination of the speed-up factor for simulation time for a PROM
compared to the full nonlinear system based on the reduction from large order N to
reduced order q, and the number of linear models k in the PROM.

the PROM at ten different parameter values, and then simulating the full system at

those same ten parameter values. If the time required for the full system simulation

is Tfull and the time required for the reduced system simulation is Ted, the speed up

factor is defined as the ratio of these two times, Tfull/Tred. Letting N be the order

of the original system and q the order of the reduced system, the reduction factor is

simply N/q.

From the table, it appears there is a relationship between the simulation speed and

the order of the reduced model. It also appears they may be a relationship between

simulation speed and k. It is certainly true that a larger k will increase the time

required and cost of constructing the model.
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Chapter 6

Conclusion

6.1 Conclusion

This work has shown that it is possible to create reduced order nonlinear models

which accurately approximate large nonlinear systems over a practical range of geo-

metrical parameter variations. Several approaches were tested on three examples:

a diode transmission line, a MEM switch, and a pulse narrowing transmission line.

Furthermore, based on the needs of the user, it is possible to construct models which

are more or less accurate in different regions of the parameter space.

The PROMs were constructed as follows. Using the trajectory piecewise linear

method, a collection of linear models was created by linearizing the nonlinear sys-

tem at important regions of the state-space. Transfer function moments were then

computed for each linear system to find a basis for a subspace in which the nonlinear

system can be well approximated. These moments, which can be computed from an

expansion of the transfer function in all of the parameters (Section 2.2.2) or from

an expansion in only the Laplace variable (Section 2.2.1), can be used to assemble

a projection matrix. This projection matrix was then used to project each linear

system into the reduced space. A model of order q constructed in this manner is able

to match a total of q moments of the large linearized system transfer functions. In

the case where only Laplace variable moments are matched (TPWL and Algorithm

2 in Table 3.1), the resulting model will have extremely high accuracy very close to
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the nominal parameter value, but it will sacrifice accuracy at other parameter val-

ues. On the other hand, when parameter moments are matched (Algorithms 1 and 3

in Table 3.1), the resulting model will be accurate over a larger range of parameter

values, but it will sacrifice some accuracy at the nominal parameter value.

For a model with k linear models, there are k linearization points to be distributed

across the state space. If the points are concentrated in regions where a single para-

meter value takes the trajectory (TPWL and Algorithm 1), then the resulting model

will be more accurate for inputs very close to the nominal parameter value. If the

k linearization points are spread out over regions of the space visited by trajectories

at different parameter values (Algorithms 2 and 3), then the resulting model will be

accurate for inputs over a wider range of parameter values, but may sacrifice some

accuracy near the nominal parameter value.

It was also shown that using extra Krylov vectors for the projection matrix com-

bined with an SVD (Section 5.2.3) to find the optimum subspace can produce more

accurate PROMs in some cases. Since this method will always produce a PROM at

least as accurate as the method considering fewer Krylov vectors, such an approach

should always be considered if the additional cost is manageable.

Finally, Section 5.2.4 showed that in some cases the majority of the PROM error

arises not from projecting the system into a low order space, but rather from the

parameter linearization arising in the transition from (3.1) to (3.4). If this is the

case, a more accurate approximation scheme of the parameter dependence should be

employed (e.g. third order approximation instead of first order) to ensure optimum

results from the reduction process.

6.2 Future Work

There are three main areas for improvement in this method: The piecewise linear

approximation of a nonlinear function, the approximation of the function to obtain

linear parameter dependence, and the choice of reduced order subspace for projection.

The first issue is related to picking linearization points. If there were a better

64



method to find important linear models, the piecewise linear approximation could bet-

ter approximate the original nonlinear function, resulting in a more accurate PROM.

This is also the most expensive part of the algorithm because it requires simulation

of the full nonlinear system. An alternative method which creates fewer models and

does not require solving the full nonlinear system would drastically reduce the cost of

creating PROMs. This could be done by examining the nonlinearities in the original

system to predict regions of the space where the model will behave very nonlinearly.

The second concern can be addressed by using higher order parameter dependence

approximations or by using linearizations at multiple parameter values. This could

possibly be achieved by building parameter dependence into the weighting functions

to avoid the problem of different linear models at the same state.

The final area for improvement is related to the construction of the projection

matrix. If there was a way to determine which models produce the most important

Krylov vectors without linearizing and creating the vectors, it would be much cheaper

computationally to construct the projection matrix.
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