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Abstract

We investigate the local-list decodability of codes whose codewords are group homo-
morphisms. The study of such codes was intiated by Goldreich and Levin with the
seminal work on decoding the Hadamard code. Many of the recent abstractions of
their initial algorithm focus on Locally Decodable Codes (LDC's) over finite fields.
We derive our algorithmic approach from the list decoding of the Reed-Muller code
over finite fields proposed by Sudan, Trevisan and Vadhan.
Given an abelian group G and a fixed abelian group H, we give combinatorial bounds
on the number of homomorphisms that have agreement 5 with an oracle-access func-
tion f : G --+ H. Our bounds are polynomial in !, where the degree of the polynomial
depends on IHI. Also, 6 depends on the distance parameter of the code, namely we
consider 5 to be slightly greater than 1-minimum distance. Furthermore, we give a
local-list decoding algorithm for the homomorphisms that agree on a J fraction of the
domain with a function f, the running time of which is poly(!, log IGI).
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Chapter 1

Introduction

1.1 Problem statement

Let (G, +) and (H, *) be abelian groups, and let Hom(G, H) = {h : G -- H |

h(x + y) = h(x) * h(y), Vx, y E G}, be the group of homomorphisms between G

and H. Informally, an error correcting code is a collection of codewords having the

property that any two codewords differ from each other in many places. Note that

Hom(G, H) forms an error correcting code. Indeed, no two homomorphisms can agree

in more than half of the domain.

Starting with the seminal work of Blum, Luby and Rubinfeld [5], there has been

a lot of interest ( [2, 15, 1, 20]) in testing whether a given function f : G --+ H

is close to some homomorphism in the code Hom(G, H). In this work we explore a

complementary question, that of finding the list of homomorphisms that are close to

a given f. More formally, for f,g : G -+ H, let agree(f, g) = Pr~ec[f(x) = g(x)],

and AG,H = maXg,hEHom(G,H) {agree(g, h)}.

For a given query-access function f : G -- H, and for 6 > 0, our goal is to output the

list £ = {h E Hom(G, H) I agree(f, h) J 6}. The homomorphisms in C are output

implicitly, as oracle algorithms that can be queried at any position x E G, as we

will describe later. This implicit representation is associated with the notion of 'local

decoding' and LDC's.

The generic agreement parameter J that we focus on is slightly greater than AG,H,



since otherwise, the list C might have exponential size, and thus we could not decode

efficiently.

The list-size is therefore an important parameter in the list decoding context. The

code Hom(G. H) is (6, l)-list decodable if for any function f : G -+ H, IL£I < 1. We

first aim to provide combinatorial upper bounds on LI£, which will be indicative of

the possibility of list decoding. Given abelian group G and fixed abelian group H,

we obtain that the number of homomorphisms that agree in a AG,H + E fraction of

the domain with any function f : G --+ H is poly(!). Using these bounds, we adapt

the general methodology of Goldreich and Levin [10] and Sudan et al. [18] to locally

decode algorithmically the code Hom(G, H) for the agreement AG,H + e, where E > 0.

With this work we attempt a more systematic study of the role of groups in the

context of LDC's.

1.2 Literature Survey

The literature in the area of LDC's is extremely wide as well as focused. Most of

the results in this direction concentrate on list decoding of codes defined over finite

fields. In this respect, the questions that we approach are in some sense less explored,

however, with roots in many recent fundamental results on list decodability. In this

section we present some of the most directly related research to our problem.

Linearity testing in groups. The problem of correcting a function f up to a group

homomorphism is related to that of testing whether f is linear or whether it needs

to be changed in some c fraction of the inputs in order to become linear. The case of

linearity testing can be solved by picking random elements x and y from G and testing

if f(x) + f(y) = f(x + y), for a number of times that guarantees a small probability

of error. This was the first test for linearity proposed by Blum et. al. [5] and which

opened the way of a now very rich area, that of property testing. Numerous variations

of this test, as well as improved analysis have made the object of intense research in

this direction [2, 15, 1, 20, 9].

Knowing that a function f is close to a linear function, a natural question to



ask further is how can one correct it? For example, in the case when f differs from

some homomorphism h in < 1 fraction, h(x) can be computed with high probability-4

by taking the most common value of f(x - r) + f(r), for random values of r E G.

However, when f is corrupted in a number of places greater than half of the minimum

distance of the code Hom(G, H), then there might be more than one homomorphism

that f is close to. In this case we want to know how many such codewords are there

that satisfy our agreement parameter, and we wish to output all of them. This will

be our goal throughout this work.

List Decoding of the Hadamard Code. The study of list decodability in the group

setting was initiated by Goldreich and Levin in [10]. There, they give a local list

decoding procedure that finds all the homomorphisms in Hom(Zn, Z2), which agree

with a given function f : Zn -+ Z2 in a 1 + E fraction of the inputs.

More formally, the result in [10] is the following.

Theorem 1.2.1. Let Hom(Zn, Z2) be the Hadamard code, where a codeword is ha(x) =

a x , a, x e Z2. There is an algorithm A s.t., given black-box access to any function

f : Zy -+ Z2, and some parameter e > 0, A outputs w.h.p a list of all a E Z2 s.t f

and ha agree in 2> + e fraction of the inputs. The procedure runs in time poly(n/e).

In cryptography, this result was then used to construct hardcore predicates for any

one-way function. Moreover, it provided a starting point for PAC learning, including

for example learning the Fourier coefficients of boolean functions, as in [16].

From the Goldreich-Levin formulation, we derive one of our motivating goals

throughout the thesis, that of obtaining list- decoding algorithms for general abelian

groups. Our parameters (agreement, and final running time) are comparable to the

corresponding parameters in the particular case of the Hadamard code. More pre-

cisely, the minimum distance of the Hadamard code is -, leading to an agreement

parameter of 1 - 1/2 + e = 1/2 + e. In the general case, the minimum distance of

Hom(G, H) is 1 - AG,H, and the agreement parameter that we consider is AG,H + E.

When JIH is constant, the running time of our decoding algorithm is poly(., log G),

which is comparable to the poly(n/e) running time of the GL algorithm.



Learning polynomials with queries: The highly noisy case. Goldreich, Rubinfeld, and

Sudan, [11], generalized the Goldreich-Levin question to that of multivariate polyno-

mial reconstruction over a finite field F. When the degree d of the polynomials is

small, f : Fn -- F and the agreement parameter J = Q( d/IFI), they propose a

randomized algorithm that outputs all the polynomials that agree with f in a 6 frac-

tion, and runs in time (n/6)O(d). Furthermore, for E > 0 and 6 = ± + e they give an

algorithm that decodes all the linear n-variate polynomials with agreement 6 with f,

which runs in time poly(n/e). In particular, if F is a prime field, JIF = p, their results

apply to our settings, giving a randomized algorithm that list decodes Hom(Z", Zp).

Multivariate polynomial reconstruction. An even further study of multivariate poly-

nomial reconstruction led Sudan, Trevisan and Vadhan [18] into proposing a new

abstraction to the Goldreich and Levin's initial approach.

Their main theorem is as follows.

Theorem 1.2.2. [18] There exists a randomized algorithm B and a constant c, s.t.

given black box access to a function f : Fm F-+ , and given e > cd•/IIFI and d E N,

B reconstructs a list of Mi, M2 ... ML oracle machines s.t. for any polynomial p of

degree d agreeing with f on an e fraction, there exists 1 < i < L for which Mi (with

access to f.) computes p. Moreover, L = 0(1/e), and B, as well as Mi, i E [L] run

in time poly(m, d, log IFI, 1/e).

The fundamental idea that they employ in the proof is the fact that the problem

can be reduced to the reconstruction of univariate polynomials over F. In our work

we will try and emulate a similar approach for the case of homomorphism reconstruc-

tion. We will consider a small (constant) dimension "subspace" S of the group G,

reconstruct the homomorphisms that we are looking for on that subspace, and then

uniquely extend these reconstructions to homomorphisms on the whole space.

Other related work. More recently, Dwork et al. [8], considering the list decodability

of the code Hom(Z', Zn) in the cryptographic context of Zero-Knowledge Protocols,

show that for any function f : Z -_ Zn, there are O(fo(n)) linear functions agreeing

with f on at least e fraction of the domain. Here e > 0 is small, independent of the



parameters of the code. This combinatorial bound is quite strong, and it derives from

the somewhat surprising result that the code Hom(ZI, Z2) is (E, poly(¼))-list decod-

able. Intuitively, it says that, even when a word f : Z' -- Z2 is corrupted in most of

the places (1 - E), the number of codewords in Hom(Z', Z2) that it could have come

from is still small, namely poly(,).

1.3 Our results and techniques

We provide algorithmic and combinatorial results concerning list decodability prop-

erties of codes of the type Hom(G, H), where G and H are abelian groups and H is

fixed. Our results derive from viewing G and H as a direct product of cyclic groups

of prime power, G = r-Ik=l Z a, and H = H •1 Zqi, where pi and q, are primes for

all i. An abelian group G for which IGI = pk, for some prime p and positive integer

k is called a p-group. Starting from simple techniques for relating the combinato-

rial bounds, as well as the decoding algorithms for Hom(Gi, HI) and Hom(G 2 , H2 )

to those of Hom(G 1 x G2, H1 ) and Hom(Gi, H1 x H2), we reduce our quest to the

simpler case of p-groups. As we will see further, p-groups play a central role in our

proofs.

We will focus on the agreement parameter AG,H+E, where 1-AG,H is the minimum

distance of the code Hom(G, H), and e > 0 can be as small as -. Later, we will

deduce that AG,H = , where p is the smallest prime dividing both JGI and IHI.
One should notice that the Johnson bound, which is the usual method for proving

list decodability, does not apply in this regime, since it requires a higher agreement

parameter than the one we consider.

1.3.1 Combinatorial bounds

In the case when G and H are p-groups, the agreement parameter of interest is

AG,H = + ÷.

In this regime, we explore the list decodability of codes of the form Hom(f l 1 Z.,, ZPr),

in which case we obtain list sizes that are poly(. , pr). This will constitute our mainFE .~~U ·~I V~VU L~ L~I~II



lemma, which is more formally stated below.

Lemma 1.3.1. Let p be a fixed prime and r > 0 be a fixed integer. Then for any

abelian group G, Hom(G, Zpr) is ( + , (2p)3r1) list-decodable.

The technique we employ in the proof of the lemma is a Fourier analysis of the

large coefficients of certain powers of the initial function that we are trying to correct.

The proof is inductive, using as a base case a corollary of the Johnson bound.

The main lemma generalizes easily to all abelian groups.

Theorem 1.3.2. Let H be a fixed finite abelian group. Then for all finite abelian

groups G, Hom(G, H) is (AG,H + e, poly(!)) list decodable.

These are our main results in terms of combinatorial bounds. Along the way, we

also show some ad-hoc bounds for other cases of p-groups.

1.3.2 Algorithms for local list decoding

In terms of algorithmic local list decoding, as before, the general case of abelian

groups G and H reduces to the p-group case. For this case, we give a decoding

algorithm that w.h.p. outputs all the functions that agree with a black-box access

function f : G --* H in1 + E fraction of inputs. Our approach is a generalization of

the Goldreich-Levin [10] work on the Hadamard code. It is also in the spirit of the

STV [18] algorithm for list decoding low-degree polynomials over finite fields.

Informally, a (6, T)- local list decoder for Hom(G, H) is a probabilistic algorithm

A that outputs a list of algorithms M1,... , ML, each of which uniquely identifies

with a homomorphism h E Hom(G, H) that has the property that agree(h, f) > 3.

Moreover, A and Mi, for all i E [L] need to run in time T.

Our main lemma treats the case of Hom(G, Zp,), where G is a p-group. The main

ingredient of the proof is the fact that a random coset of G of small size poly( )

samples well. This implies that the restriction of a homomorphism h E Hom(G, Zp-)

to a coset has almost the same fractional agreement with the restriction of f to that

coset, as the fractional agreement of h and f on G. This observation suggests list



decoding on the small coset first and then extending the homomorphisms to the whole

group G.

We next state our main algorithmic lemma.

Lemma 1.3.3. Let p be a fixed prime and r > 0 be a fixed integer. Then for any

abelian p-group G, Hom(G, Zr) is + e,poly(log IGI, 1)) locally list-decodable.

Again, the lemma easily generalizes to the case of abelian groups, as described

below.

Theorem 1.3.4. Let H be a fixed finite abelian group. Then for all finite abelian

groups G there is a (Ac,H + e, poly(log GI , I))-local-list-decoder for Hom(G, H).

1.4 Organization

In Chapter 2 we introduce the notions of list-decodability, local list decoding and

we mention about our computational model. We also give a brief introduction to

Fourier analysis techniques. In Chapter 3 we present our main results in terms of

combinatorial bounds. In Chapter 4 we show our decoding algorithm for p-groups

and the main theorem that follows. Finally, we discuss some open problems in Chapter

5.





Chapter 2

Preliminaries

2.1 The general list decoding model

A [N, K, D]q error-correcting code is a collection of qN codewords, which are sequences

of length N and with elements in [q], such that two codewords disagree in at least D

places.

Let G, H be abelian groups, and let Hom(G, H) = {h: G -+ H I h is a homomorphism}.

Note that Hom(G, H) forms a code. Indeed, if f, g E Hom(G, H), then G' = {x I

f(x) = g(x)} is a subgroup of G. Since the largest subgroup of G has size at most

1, it follows that f and g differ in at least 1 fraction of the domain.

For two functions f, g: G -- H, define

agree(f, g) = PrXEG[f(x) = 9(x)],

and

AG,H = max {agree(f, g)}.
f,gEHom(G,H)

In the case when Hom(G, H) contains only the trivial homomorphism we define

AG,H = 0.

The notions of (6, l)-decodability and (6, T)-local-list-decoder are standard in the

context of error correcting codes. They derive from the notion of list decoding which



was first introduced by Elias in [7] and Wozencraft in [22].

Next, we translate these notions in the setting of group homomorphisms.

Definition 2.1.1. [18] (List decodability) The code Hom(G, H) is (6, l)-list decodable

if for every function f : G --+ H, there exist at most I homomorphisms h E Hom(G, H)

such that agree(f, h) > 6.

Definition 2.1.2. [21](Local list-decoding) A probabilistic oracle algorithm A is a

(6, T) local list-decoder for Hom(G, H) if given oracle access to any function f : G --

H, (notation A'), the following hold:

1. A outputs a list of probabilistic oracle machines MI,... , ML s.t., for any homo-

morphism h E Hom(G, H) with agree(f, h) > 6, with probability 3/4 over the

random choices of Af,

3j E [L], Pr[Mf (x) = h(x)] ,

where the probability is taken over the randomness of MJ (x).

2. A runs in time T, and

3. Mf runs in time T, for all j E [L].

The group computation model of our algorithms is the following. An abelian group

G is presented by its cyclic decomposition Z•, 1 x ... x ZP k (see Chapter 3), where

pi is prime, for all i E [k]. An element of G is given by a vector e = (el, e2,... , ek),

with ej E Zp , for all i E [k].

The most often used proof technique for our combinatorial bounds is Fourier

analysis. Next we give a brief introduction to the basic facts that we employ.

2.2 Fourier Basics

Let G be a finite abelian group. A character of G is a homomorphism X : G - CX,

where CX is the multiplicative group of non-zero complex numbers.



Suppose G = 1k1 Zpri. Let wi be a primitive p th root of unity. For any a E G, we

get an explicitly defined character X, of G given by

k

i=1

where x = (x1,... ,zk) and a = (al,... ,ak) (written as elements of lk=1 p, i). In

fact, any character of G is of this form.

Some useful properties of characters are given below:

* Xo(x) = 1, for all x E G.

* Xa(x)xz(x) = Xa+P(x), hence xi(x) = Xio,(x).

" VX(x) = X-a(X).

" ExXa(x)~(x) = 0, if a • . Thus, the set of characters {Xa : a E G
1, otherwise

forms an orthonormal collection of vectors. Moreover, they span the whole

space ClGI, forming an orthonormal basis for this vector space.

Given a function f : G --- C, we therefore can write f as

f= f (a)Xa.
caEG

For f, g : G --+ C, the inner product of f, g is (f, g) = xEec f(x)g(x).

The Fourier coefficients of f are given by f : G -+ C, where

f(a) = (f, Xa) = EXEG f(X)().

Parseval's identity states
ZIf-(a)12 = 1.

acEG

Bessel's inequality follows from Parseval's identity and states that, for f : G -+ C,



and S a collection of elements of G, we have

(f, f) > E (f, x )12.
aES



Chapter 3

List decoding bounds

In this chapter we explore the list decodability property of the code Hom(G, H) for

the agreement parameter AG,H + E, where G and H are abelian groups. We start

by giving some standard properties of abelian groups and then discuss simple facts

about the maximum agreement AG,H of the code Hom(G, H).

Theorem 3.0.1 (Structure theorem for finite abelian groups). Every abelian group

G is of the form J- 1 Z~p,, where the pi's are primes and the ei 's are positive integer.

A special role in our proofs is played by certain families of groups called p-groups.

Definition 3.0.2. A group G is called a p-group for some prime p, if the order of G

is a power of p. Equivalently, G is a p-group if and only if the order of every element

of G is a power of p.

By the structure theorem, every finite abelian group G can be written as G, x G',

where Gp is a p-group and p /ý IG'I (take Gp = 1P,, ZP-i). Both this decomposi-

tion and the complete decomposition given by the structure theorem will be crucial

to our results. We begin by studying the behavior of list decodability under these

decompositions.

First, we make some remarks about AG,H, describing it more explicitly in terms

of the sizes of G and H.

1. If gcd( jGI, |HI) = 1 then Hom(G, H) contains only the trivial homomorphism,

and therefore, AG,H = 0.



2. Otherwise, let p be the smallest prime s.t. p I gcd(IGI, IHI). Then

1
AG,H -

p

Indeed, it is enough to bound agree(h, 0), for any nontrivial homomorphism

h : C -+ H. Let d = limage (h)l and note that d I jHI, since image(h) is a

subgroup of H. Since G/ker(h) • image(h), it follows that Iker(h)I/IGI =

1/d K< l/p, and thus AG,H < -

Finally, if G = Zt x G', and H = Zp~ x H', then h(a, b) = (apr- l, 0) satisfies

agree(h, 0) = , where a E Zt, and b E G'. Hence, AG,H--

3. The above observations imply

AGiX G2,H = max{AG,,H, AC2,H}

and

AG,Hz xH 2 = max{Ac,Hi, AG,H2 }.

3.1 The Johnson bound

In coding theory, the standard technique used to bound the number of codewords

that are close to a given word is the Johnson bound, [14].

In [13] Guruswami and Sudan prove the following extension of the Johnson bound.

Theorem 3.1.1 ([13]). Let C be a q-ary code of blocklength N and minimum distance

d = (1_- )(1 - 6)N for some 0 < 6 < 1. Then, ify > , the number f of codewords

at distance r = (1 - !)(1 - -y)N from any word w E [q]N is

1-6e < min{N(q - 1), 12

Let us consider the codes C1 = Hom(Z~m, Zp), and C2 = Hom(Zpm, Zpm) for inspec-

tion against the Johnson bound. Recall that in this case AG,H = 1 and we are trying
p



to count the number of homomorphisms that agree with a given function f in a 1+ E

fraction. In the above cases, the minimum distance of the codes is d = (1 - ) pmn,

and the radius of interest is r = (1 - - e) pmn, with q = p for C1, and q = pm for C2.

For C1, we obtain 6 = 0 and 7 > E, which implies e < .

For C2, we obtain 3 = 1 - -zlx P and 7 = 1 - P-1an d__ and thus y > 6. Therefore,
, p pi l -Ip p tm-- '

the Johnson bound is too weak in this setting.

There are numerous standard proofs of the Johnson bound [14, 13, 12, 19], using

combinatoric, geometric or algebraic approaches. In what follows, for the sake of

completeness, we present a standard "real-embedding" proof of the Johnson bound,

as in [12], for a specific case of p-ary codes, which include C1. This proof will consti-

tute the base case of our induction used in the main lemma, which will be proved in

section 3.4. There we will treat the list- decodability of C2.

Corollary 3.1.2 (to the Johnson bound). [121 Let G be an abelian group. Then

Hom(G, Zp) is (I + E, -)-list decodable.

Proof. If p , IGI then Hom(G, Zp) is (I +E, 1)-list decodable. Otherwise, for any func-

tion h : G -- Z,, associate a vector Vh E R (p- 1)IGI such that the following properties

hold:

* vf is unit length

* If f, g : G --+ qp then

1
(vjf, v9) = agree(f, g) - (1 - agree(f, g))p-1

where (., .) denotes the usual vector inner product.

Next, we show an explicit construction of such an embedding. We will start by associ-

S1 if i =j,ating with each element i E Z,, a vector ui E Rp- 1 s.t. (ui, u ) = otherwise
-1 otherwise
p-l'

To construct ui, let ei be the standard basis vectors in RP,i E [p], and let c =

(, ,..., ) E RP. Then the vectors ei - c E RP, i E [p] are in fact contained in a

p - 1 dimension hyperplane as their coordinates sum to 0, and have equal norm. Let



ui be their respective normalized versions. It is easy to check that these ui's satisfy

the conditions imposed.

To complete the construction, for a function f : G -+ Zp, viewed as a vector in RIGI,

its embedding vf E R(P- 1)IGI is formed by replacing f(x) E Zp for each x E G by the

vector uf(x) E Rp- 1. Therefore, vf is the concatenation of uf(x), for all x E G. It is

easy to check that vf satisfies the two properties initially required.

Now, let g Z h E Hom(G, Z,), and notice that since p is prime, we have agree(g, h) =

-. Therefore, the set of vectors {vhl h E Hom(G, Zp)} form an orthonormal collectionp

of vectors in R(p- 1)GI.

Thus, by Bessel's inequality,

S ((v!, vh) 2 - (vf,' ) = 1.
hEHom(G,Zp)

Finally, notice that if agree(f, h) >ý + E then (vf, Vh) Ž P > E, and therefore there

are at most I possible h E Hom(G, p,) satisfying the above inequality.
4E

3.2 Some ad-hoc techniques for particular cases

In this section we build some more intuition into the combinatorial counting problem

by exhibiting list bounds on various p-groups.

Proposition 3.2.1. Hom(Zp,, Zpn) is ( + +, ) list decodable.

Proof. Let f : Zp -, Zp and let S = {a E Z•n I P a}. Then each element in

S is a generator for the cyclic group Zp4, and the relative size of S is 1 - .1 If the

homomorphism h is s.t. agree(f, h) > 1+ E, then at least 1 + e - 1 fraction

of these agreement points are in S. Since no two homomorphisms can agree on any

point in S, we conclude that there are at most _ homomorphisms with agreement at

least1 + e with f. O

We next focus on p-groups of the form G = Z" and H = Z', for which we derive



bounds that are poly(.), for fixed p and m. We mention that our main combinatorial

theorem applies to these cases as well and gives roughly the same bounds. However,

we treat this case separately here since we apply different techniques than the ones in

the main theorem. For the sake of presentation simplicity, we prove the m = 2 case

in detail, and note that an analogous proof holds for the general case as well.

Proposition 3.2.2. Hom(Zn, Z ) is ( + e, p4 ) list decodable.

Proof. First notice that if f, " : Z, --+ Z and f(x) = O(x) for x E A, then fi(x) =

4i(x) for x E A, i = 1,2, where f(x) = (fi(x), f2(x)) and ¢(x) = (41(x), 2(x)) are

the respective coordinate-wise projections of f, and ¢ onto Zp, and fi E Hom(Zn Zp).

Explicitly, a homomorphism between Zp Z2 is given by 'a,b(X) = ((a,x) , (b, x)),

where a, b E Zn and (a, x) indicates the inner product of the vectors a and x modulo

p. Call a pair (a, b) good if agree(f, ¢a,b) Ž> + E-

Let F(a,3),(a,b) = a(fi - Oa) + 3(f2 - Ob), for a, P E Z*, a, b E Zp, and consider

such functions represented as vectors in ZP". Let F(a,b) = {F(a,O),(a,b) a, / E Z},

and view F(a, b) as a table of vectors in ZPn", with rows indexed by (a, 3) and the

columns indexed by x E Zp.

Claim 1 For any good pair (a, b), s.t f(x) = ¢a,b(X) when x E A, there exists a pair

(ao, /o), s.t. agree(F(ao,#o),(a,b), 0) > p--. Call such a pair (ao, /o) special for (a, b).

Proof: We count the total fraction of zero entries of the table F(a, b). Note that if

(a, b) is a good pair, then for each x E A F(a,p),(a,b)(X) = 0 and thus, agree(v, 0) >

1 + E, Vv E F(a, b). For each x ' A and for each a E ZP there exists a unique3 E Zp

s.t. F(a,),(a,b)(X) = 0. Since the total number of vectors in F(a, b) is p2 - 1, it follows

that the total fraction of 0 entries of F(a, b) is at least + (1 - ) > --, and

the claim follows.

Claim 2 For any pair (a, /), with a, p E Zp, the number of good pairs (a, b) s.t (a, /)

is special for (a, b) is O(p2 ).

Proof: We have F(a,/#),(a,b) = (f a) + (f2 b- 1b) = afl + 3f2 - ,aa+3b. If (a,/3)

is special for some (a, b), then by Corollary 3.1.2 it follows that there are at most

O(p2) elements 7 = aa + fb s.t agree(afi + ff2, ,) > -1-. If (a, b) is good for



f = (f, f2) then a is good for fl, and again, by Corollary 3.1.2 there are O(-) such

a's. Since p is prime, for each a E Z', (a,, ) E Z 2 and 7 E Z,, there is a unique b E Z

s.t y = aa + -b. Therefore, for fixed (a, P), the number of good pairs (a, b) is O(p2-).

We can now conclude the proof of the proposition by noticing that there are at

most p - 1 pairs (a, 3), and thus at most O(p4\ ) good pairs (a, b). O

An interesting open question is whether one could eliminate the dependency on

p, and obtain a bound of I for Hom(Z", Z2), as in the case Hom(Z", Zp).

The result in Proposition 3.2.2 can be generalized by using the same argument to

give a list bound for Hom(Z", Zm) as follows.

Theorem 3.2.3. Hom(Zp, Zp) is + e,pm+2()m-1)-list decodable.

We note that, as we will see in the next section, a straightforward calculation

shows that Hom(Zp, Zp) is also (I + E, (4)m)-list decodable. Therefore, for small E,
nm+2

( = o(p- 2 )), the bound in Theorem 3.2.3 is slightly stronger.

3.3 The reduction to simpler groups

In this section we begin a more systematic approach to list decoding bounds on

abelian groups, by first showing simple techniques to reduce general abelian bounds

to bounds on the list size of p-groups.

3.3.1 The decompositions G --+ H 1 x H 2 and G1 x G2 --+ H

We will now make some observations regarding the combinatorial and algorithmic list

decoding bounds for functions from G -+ H. Of particular importance are elementary

decompositions of the form G -- H1 x H2 and G1 x G2 -- H, which we consider next.

Proposition 3.3.1. Let G, H 1, H2 be abelian groups. Let ai = AG,Hj. Suppose for all

e > 0, Hom(G, Hi) is (ai + E, i (E))-list decodable, with (ai + E, T2(E)) local list decoders,

for i = 1, 2. Then Hom(G, H1 x H2) is (max{ai, a2} + E, e1()e 2(E)) list decodable and

has a (max{al, a2} + c, 0 ((TI(e)T 2(E))) local list decoder, for all e > 0.



Proof. Take an f = (fl, f2) :G --- HI x H2 . Consider the list of high-agreement

homomorphisms

C = {h = (hi, h2) E Hom(G, H 1 x H 2) : agree(f, h) Ž maxal, a2} + E}.

Also consider the corresponding lists for the two components:

£i = {hi E Hom(G, Hi) : agree(f i , hi) 2 max{a 1 , a2} + f}.

By assumption, I4£ I - fi(e). Now, since agree(f, h) < min{agree(fl, hi), agree(f 2 , h2 )},

we have

£ C £1 x £2, (3.1)

and so IC1 • 5 1 (e) e2(E), which proves the list decodability. The local list decoding al-

gorithm, which follows immediately from Equation (3.1), simply runs the appropriate

local list decoders for fi and f2 and takes the product of the lists. O

Proposition 3.3.2. Let G1, G2, H be abelian groups. Let ai = AGj,H. Suppose for all

e > 0, Hom(Gi, H) is (ai+e, ei(e))-list decodable, with a (ai+e, Ti(c)) local list decoder,

for i = 1, 2. Then Hom(Gi x G2, H) is (max{al, a2 } + e, O( f e1(e) E)2(e) HI2)) list

decodable, and has a (max{al, a2 } + , O(A f 1(e)e2(e) H 12)) local list decoder, for all

> 0.

Proof. We shall give the local list decoder, the existence of which implies the claimed

bound on the list decodability of Hom(G, H). Let A. be the (ai + E, TT(e))-local list

decoders for Hom(Gi, H).

Note that any h E Hom(GI x G2,H) can be written as h(x, y) = h((x,0)) +

h((0, y)) = hi(x) + h2 (y), Vx E G1,Vy E G2 where hi(x) = h(x, 0) E Hom(Gi, H),

h2(y) = h(0, y) E Hom(G 2, H).

The local list decoder B(x, y) for Hom(Gi x G2, H) that we propose next, basically

finds good candidates for hi and h2. The oracle machines output will be of the form

M 91,g9(x,y) = g2(x, 0) + gi(0, y),



where gl E Hom(G 2, H), and g2 E Hom(G 1, H).

The local list decoder B(x, y) :

Analysis: Fix a homomorphism h E Hom(Gi xG 2) with 1 = agree(f, h) 2 max(a1 , a2 )+

2E. Call xo E G1 good for h if PrYEG, [f(xo, y) = h(xo, y)] > p - e. Similarly, call

Yo E G2 good for h if PrXEGl [f(, YO) = h(x, Yo)] > Lt - E.

Claim 3.3.3.

PrXoEG1 [Xo is good ] > -.2
Proof. Let .D(xo) = Pry[f(xo, y) Z h(xo, y)]. We have that Exo,[D(xo)] = 1- A. Using

Markov's inequality, it follows that

1-j +e
Pr, [xo is not good] = Pro [D(xo) > 1 - !p + e] = Pro [D(xo) > (1 - u) +

<1- <
< =1- <1--

1-/ +e 1- •+E 2

Claim 3.3.4. (Correctness) If h E Hom(G1 x G2, H) is s.t. agree(f, h) p p then with
2

probability > - in any one iteration, one of the oracle machines M that is output is

h.

2
Proof. xo E G1 and yo E G2 are both good for h with probability > L. In this case,

for co = h(xo, 0) and /o = h(O, yo), we will find h(O, ) E £• 0 and h(-, 0) E L£0. This

ensures that Mh(o,.),h(-,O) will be output in Step 5 Algorithm with probability > .2
4

Repeat O(!) times:
Step 1: Pick xo E G1 uniformly at random.
Step 2: For each a E H, apply procedure A2 to the function f(xo,) - a,
and obtain the homomorphisms lists £•
Step 3: Pick yo E G2 uniformly at random.
Step 4: For each 3 E H, apply procedure A 1 to the function f(., yo) - 0,
and obtain the lists OL.
Step 5: If for some pair (ao, 3o) E H 2 there exist homomorphisms gi E £~o
and g2 E o s.t. o = g2 (o, 0) and /o = g1(0, yo), then output M9 1,92 '



To complete the proof, we note that over all iterations, any such h will appear in

the output; list with constant probability.

3.4 Main Lemma and Theorem

The results of the previous section suggest viewing the abelian groups G and H in the

form given by the structural theorem. Using that representation, we can then reduce

our quest for combinatorial list bounds, as well as for the decoding algorithms, to

the easier case of codes between the p-groups appearing in the decomposition. This

is in fact the main approach we will pursue further. In this section we will show the

combinatorial bounds, while in the next chapter we present an algorithm for decoding

the homomorphisms we are interested in.

First, we will show our main lemma, which basically deals with the case of

Hom(G, Zpr), where G is a group. Our proof is inductive on r and relies on Fourier

analysis techniques.

We start with some notation and a simple useful lemma. For X" a character of G

and i E Z, define

[J := X0 : (x3) = Xa}.

Notice that if YX, E [•.] then i/3 = a, where i E Z and a, ,3 G.

For S a set of characters of G and i E Z, define

[S] U [X] = x~:( )' s .XaES

For i, d E Z and p a prime, we say pill d, if pi I d and p'+l Xd.

Let pp, be the multiplicative group of the pr th roots of unity. Note that the groups

Zpr and •pr are isomorphic, and henceforth we restrict our attention to Hom(G, /pr).



By definition, any element of Hom(G, -tr) is a character of G and hence

Hom(G, pp) C {X : a E G}.

This already indicates the relevance of Fourier analysis to our problem. In particular,

for a function f, the problem of counting the characters that have high agreement

with f reduces to counting the number of large Fourier coefficients of functions of the

form fi, for some integers i.

We express the agreement between a function and a homomorphism in terms of

Fourier coefficients using the following formula.

Lemma 3.4.1. Let G be a group. For f : G -+ pLr and X, E Hom(G, -pr)

agree(f, Xa) = Eo<j<pr fj(ja)

Proof. We have that

= ExeGEo<j<pr (f(x)-•(x)) j

- EO j<prEx EfG ( )Xj (x)

- E0 <j<prf'(ja).

We are now ready to present the main technical lemma.

3.4.1 Main Combinatorial Lemma

Lemma 3.4.2. Let p be a fixed prime and r > 0 be a fixed integer.

abelian group G, Hom(G, Ipr) is ( + e, (2p)3r~) list-decodable.
(P. T2 )

Then for any

Proof. Our proof is by induction on r. The base case r = 1 was proved in Corollary

3.1.2. Assume the lemma holds for Hom(G, Aupk), for k = 1,..., r-1. Let f : G --+ pp,,

agree(f, Xa)



E > 0, and let
1

£ = {X, E Hom(G, pppr) : agree(f, Xa) > - + E}.
P

Our goal is to show that 11L <5 (2p)3 r .

By Lemma, 3.4.1, for any X, E L,

Eo.<j<prfi(jcl) Ž pr

pr - 1

1 1
p r+p pr

1
>pp

1
prP r

This implies that for all X, E £, 3j, 0 < j < pr such that If (ja)I > - + E, and

leads us to consider the set

Si = {Xf E Hom(G,~pr) : I 'fi(3 ) >
1

-- -+ E}.
pr

The above discussion implies that

i= 1

We should remark that bounding IL£1 by Ej [~]J is too loose for our purposes.

Indeed, if G = Zpml x ... x Zpmk and, say p = i, and Xo E Si, there are Ij=lpmj-1

possible #'s s.t. ip = 0.

Instead we perform the following manipulation:

pr1~-1 pr-1l

pCU /ril n r) = UU ([] n L)
i=1 i=1 XaESi

(3.2)

We will next show the following bounds, which will be enough to complete the

inductive proof.

1. For each 1 < i < pr, ISIl <4p2 , and

2. If p'lli, then for any a E G, II[ 4 ]nLI < (2p)31 1



1. By Parseval's identity, we have that

PE f()1 2 = ,
PeG

and so

1 pr
P pr

which shows ISi!I 41

1 > E I(3)12l > IS I
XpESi

•2 (recall that r > 1).

2. We will first prove the statement for a = 0, and then show how the general

case for a reduces to this case. Let a = 0 and we wish to bound I[ xo ]n£j. For

XP E [f], and any x E G, we have that Xp(x) i = XO(x) = xo(x) = 1. Since,

XP(x) E Clp and pll'i, we conclude that Xp(x) E ppi, and therefore X~ E Hom(G, pCp).

Consider the function g : G --+ /p,

g(x) = {f (),
1,

if f(x) e Ap,
otherwise

Since for any x~ E [.o ] n L we have that agree(g, XO) -Ž agree(f, X) Ž

follows that I[ xo ]nl is at most as large as I {x E ppi : agree(g, Xp) X

which is < (2p)31t by the induction hypothesis.

S 1 +E, it

p · ~i

If a - 0, let Xo E [e ] and let S = {X#- : XP E [] n l}. Then ISI = J] n

and if X3-,3, E S then (,3- 1o)i = 0. Moreover, agree(f, Xp) 5 agree(fXp-o, X•Xo) =

agree(f-,XPO _o0 ). Therefore, IS11 I [] n {X,: agree(fy,,X,) 2> + E}l, which

is at most < (2p)31l by the argument for the case a = 0 above.

Now, together with Equation 3.2, the two facts above enable us to bound ILl as



follows:

i xaESi
r-1

SZ ISi S(2p)31
2

1=0 O<i<pr

r-1

• Zp 1 _ Pr-L-l)(4p)( (2p)31'
1=0

1
< ,(2p)3

r

which proves the induction.

3.4.2 Proof of Main Theorem

Theorem 3.4.3. Let H be a fixed finite abelian group. Then for all finite abelian

groups G, Hom(G, H) is (AG,H + e, poly(')) list decodable.

Proof. If IGI, IHI are relatively prime then there are no homomorphisms in Hom(G, H)

other than the trivial one. Otherwise, let p(= ') be the smallest prime s.t. p

gcd(IGI, |HI).

Let H = =, l Z •.

Let i E {1,...,k}. If p, A IGI, then Hom(G, Zpi) is (E, 1) list decodable. Oth-

erwise, by Lemma 3.4.2, we have that Hom(G, Z p) is (- + e,O(-(2pi) 31 ')-list de-

codable, and hence it is also ( + e, 1 (2p )3 ,i))-list decodable, since p < pi, for all

i E [k]. By Proposition 3.3.1, we obtain that Hom(G, H) is (1 + e, Tp2llGj (2p,) 3 j).

This gives us a QO( 2logIHI H16) bound on the list size, and concludes the proof.

Observation: We believe that, for any abelian groups G and H, the list bounds

above should not dependent on IHI either, and even more, to be a small degree

polynomial in .. However, we could not circumvent the obstacle of viewing H as



a composition of cyclic groups, and splitting the function f on the coordinates. It

remains an open problem to show better bounds, or prove some notion of tightness

on the ones we give.



Chapter 4

The local list decoding algorithm

So far, we have been concerned with the combinatorial question of whether it is

possible to efficiently list decode the code Hom(G, H), where G and H are abelian

groups. The polynomial bound in i, that we obtain for the case when H is fixed,

suggests the further quest for possibly finding the homomorphisms close to a given

function f. This will be our main goal in this chapter.

First, we try and clarify the notion of local-list decoding as opposed to list-

decoding only. The generic list decoding formulation states that, given a received

word w E E, possibly corrupted in a large fraction of the entries, we want to output

a list of codewords cl,..., ct which agree with w in at least a places. Moreover, we

would like to do this task in time poly(n). One of the main features of an error

correcting code is that in order to be able to recover the codewords from a corrupted

version, the encoding must be redundant to begin with. Informally, this implies that

only a small fraction of the entries of a codeword contains most of the 'information'

transmitted, which brings up the notion of list decoding in sub-linear time and of

locally decodable codes (LDCs). In the case of LDCs, the input and the output are

represented implicitly by oracles. The input oracle can be queried for any entry wi

of w. The output is a list of oracle algorithms, that may or not be randomized and

which have access to the input oracle w, such that each oracle uniquely identifies with

one of the codewords that agree with w in a places.

Locally decodable codes are well studied in theoretical computer science, in many



different contexts, such as private information retrieval [6], constructions of PRGs

using the reduction between worst-case to average-case hardness [4], as well as PCPs

[3].
In our case, the input is a function f : G --+ H to which we have access through

queries at points x E G. The representation of a homomorphism h that has the

necessary agreement a with f is given by a machine, Mh, which may or may not be

probabilistic, and which, on input x E G, will output consistently h(x) with high

probability.

Our algorithm is a generalization of the Goldreich-Levin algorithm for list decoding

of the Hadamard code. It is also similar to the STV algorithm [18] for list decoding

of low degree polynomials over a finite field.

To get an intuition about our approach, for two abelian groups G and H, as be-

fore, we consider their structural decomposition into products of cyclic groups. Then,

we use the algorithmic results of Propositions 3.3.2 and 3.3.1 in order to reduce the

problem to the case when G is an abelian p-group and H is of the form Zpr.

In this case, we will need to list decode on a small dimension ( O(logp, )) "hyper-

plane" (coset) of G. This will be only relevant when the fractional agreement of f

and h on G, where agree(f, h) > 1 + E, is close to the fractional agreement of their

restrictions to that coset. This will be in fact our main technical difficulty, which we

overcome using the second moment method.

4.1 Cosets of subgroups generated by enough ele-

ments sample well

Let f : G -- H and h E Hom(G, H) with f(x) = h(x) forx E A C G. For the

purpose of list decoding, we will need a way of obtaining sets G' C G that have the

following properties:

* They sample well, namely, w.h.p And is in within a small additive constant

fro'm
from 1A1- ,



* We can list decode on G' in order to obtain the restriction of h on G'.

In [17], Moshkovitz and Raz consider a similar question but for functions f : F" -n

F, where F is a finite field, and they show that linear subspaces of Fn of a certain

type sample well. We note that their solution does not directly apply to our group

settings, but using a similar approach, we prove that random cosets of G sample well.

Definition 4.1.1. Let G be an abelian group, and let zl,...,zk E G. Define Sz1 ,...,zk

to be the subgroup of G generated by zl,..., zk.

Proposition 4.1.2. Let G be an abelian p-group, let z,...,zk E G and let T = pd

be the largest order of any element in G. Then for any zE S.l,...,Zk there are exactly

ISzl . kl -zdistinct (al,..., a) E [T] k for which z = EiE[k] aizi. In particular, any two

elements of Szl,...,zk have the same number of such representations.

Proof. Since G is a p group, T is a power of p and the order of any element divides

T. The result now follows from the structure theorem for abelian groups. O

Next we show the main result of this section, namely, for uniformly random

x, Z1 ,. .. , Zk E G, the coset G' = x + Sz,ý...,zk intersects a set A E G in an almost

IAI fraction of JG'I. The result follows from the "almost pairwise independence" ofICl

the points in the coset G', together with Chebyshev's inequality.

Lemma 4.1.3. Let G be an abelian p-group, let A C G, with p = 1A and let

x, Zl,... zk E G be picked uniformly at random. Then

Prx,zl,...,zk [ i I ,...> zk < - 2p---k*

Proof. We shall use the second moment method. The key is to find the right under-

lying random variables to study. Note that this could potentially be tricky since the

size of Sl,...-zk can vary drastically. Proposition 4.1.2 will play a crucial role in dealing

with this.

Let T be the largest order of any element of G. For U = (al,..., k) E [T]k,

consider the random variable Ya = Z + i=1 a•i. It is clear that for any a E [T]k,



Yd is uniformly distributed on G. In what follows we give a sufficient condition for

two random variables Ya and Y, to be pairwise independent.

Claim: Let a, E [T]k such that 3i E [k] s.t. p kai - 3i. Then Ya and Y, are

pairwise independent.

Proof. Let a, b E G. W.l.o.g. suppose p jal - 01. Recall that this implies that for

any z' E G, there is exactly one z" E G such that (al - 01)z" = z'. Now,

PrXz,...,zk [Ya= aA Y• = b] = Prx,,..., zk (aZ - 3i)zi = b - a A (Yý = b
k

= P ,z),(Z2,...,Zk)[((ao - 01)z 1 = (b - a) - Z(D a - ,O)zi)
i=2

k

A (x = b- Aiz)]
i=1

1

1G12'

where the last step follows from the independence of x and zl and the above men-

tioned fact.

Returning to the proof of the lemma, define random variable Ii = 1 if Yd E A

and Ia = 0 otherwise. Note that E[Ia] = ~. Let

X= 1 Ic.
aE(T]k

By Proposition 4.1.2, we have that

IAn (x + Szl,...,zk)I X
ISZ1...•Z = (4.1)



Let us estimate the variance of X.

E[X2] = EI[(E I)2]
EV

= E[ IIlp]

a,4Bi,pVkj-/3  Vi,pla= E[Is]E[I,] +
Bi,p[&i- 3i Vi,p

1 1 2k
< (1 - i)T2kti2 + T2k

pk pk

ai-

z

The last step follows from Claim 4.1 and the fact that for each fixed a E G there are

exactly _1Tk /'s s.t. p I(ai - /i) for all i E [k]. Therefore,

Var[X] = E[X 2] - E[X]2 < (1 - )T2kZ2 + T2k 2_ 2k
_ p -) pk

= T2k (1 - 2) < 1T2k

By Chebyshev's inequality, Pr{,, [IX - IpTk > eT k]  -- , and thus by Equation

(4.1), the Lemma follows. O

Lemma 4.1.3 was the main technical difficulty of our algorithmic result.

4.2 The algorithm for p-groups

In this section we will show our main algorithmic lemma.

Lemma 4.2.1 (Lemma 1.3.3). Let p be a fixed prime and r > 0 be a fixed integer.

Then for any abelian p-group G, Hom(G, Zpr) is (+ e, poly(log IGI, 1)) locally list-

decodable.

Recall that, given black-box access to a function f : G -+ H, where G is an abelian

p-group and H = Zp, is fixed, our goal is to produce a list of oracles Mi(x),..., ML (x),

E[I~sl]

·di



s.t. for any homomorphism h : G -- H, with agree(f, h)> 1 + e, w.h.p there exists

1 < i < L s.t., for all x E G we have h(x) = Mi(x) w.h.p..

Due to the existence of the following simple self correctors for homomorphisms,

it is enough to compute oracles that agree with the respective homomorphisms on a

3/4 fraction of the inputs, as described next.

Theorem 4.2.2 (Self-corrector). Given oracle access to a function g : G -- H that

agree in a - fraction of the domain with some homomorphism h : G --+ H, there exists

a randomized procedure Corrg that computes h on every x E G with probability 1 - 6,

in time O(log ½).

Proof. The theorem follows by standard arguments, by considering

Corrg(x) = Pluralityr {g(x + r) - g(x)}.

Our homomorphism reconstruction technique is a generalization of the Goldreich-

Levin algorithm [10].

Let h be a homomorphism that agrees with f on a . + e fraction of G. To compute

the value at point x E G, we pick k = O(logP, ) random points zl,..., zk E G which

are elements of a coset that passes through x, zl,..., zk.

Let fsl-X_ ......k-X : Szl-,...,zk-x -+ H be the restriction of f on the coset x +

Szx-x,...,zk- defined as follows:

f. -.... zk -X(t)=f(X+

Suppose that we have a way of obtaining al = h(zi),..., ak = h(zk). To get the

value of h(x), our oracle machine that computes h, say Mh, simply tries each value

b E H. For b = h(x) we have h(zi - x) = h(zi) - h(x) = as - b, for all zi E H,

and thus the restriction of h on the subgroup SZ,_x,...,Zk-x and further, on the coset

x + SZ1•,...,,zk-x is fully specified. By Lemma 4.1.3, hx+sz ,-,....,zk-x agrees with f on

at least a + e/2 fraction of the points, with high probability. We test whether a



function is the correct restriction of h on the coset x + S,_z,-...,zk--x by checking if its

relative agreement with f is at least1 + e/2.

The oracle Mz,.....•,zk, ...,ak computes the homomorphism h at x E G if h(zi) = ai

for all i E [k]. In order to "guess" the correct ai's for h, the reconstruction algorithm

tries all the values of H.

The oracle M• l,...,zkal.ak (X):

For each b E H, do the following:
Step 1: Brute-force list-decode to find all homomorphisms gl,..., gL : SZ, -X,...,zk- - H,
such that agree(gi(.) + b, f ... k-)) > + /2
Step 2: If there is a unique i s.t. gi(zj - x) + b = aj, Vj E [k] then output b.

The reconstruction algorithm:

Repeat O(log 1) times:
Step 1: Pick zl,...,z k E G uniformly and independently at random, where k = cl logp 1
Step 2: For each (al,..., ak) E Hk, output CorrMzi ...-zk,,al...,ak.

Machine M~1, ...,zk,,a1l,...-k believes that al,..., ak are the correct guesses for h(zl),..., h(zk).

It then focuses on the coset x + Sz,....,zk, where by brute-force it finds all the affine

shifts of homomorphisms that have a large agreement with fs . More specifi-

cally, each such homomorphism is fully specified at the points zi - x, for i E [k], where

our algorithm tries all possible IHIk - (pk)r (1)cir guesses. To check the agreement

of each such affine homomorphism we now might be inclined to check the agreement

of f with h pointwise on x + $,1-_x.... zk-. However, notice that Szx,...,zk-xI might

be as large as linear in (G[, which makes such an evaluation unfeasible. Instead, we

estimate the fractional agreement of fx,-" ......k- with b + hs~,1 ,, ..._ k- by random

sampling. For O(log IG I) k-tuples & E [T]k we check the agreement of fzl..... k-x

with each affine shift found, at the point EC~ 1 aiz - x. By our combinatorial bounds

of the last chapter, the number of affine shifts b + gj that will pass the agreement test

is at most O(pr(2p)3r 1). If there is a unique gj, j E [L] for which gj(zi - x) + b = a,

then we output h(x) = gj(x - x) + b = b.



Observation: We remark that the brute force decoding above is not really neces-

sary, since we are only interested in the homomorphism g : Szl-'....,zk-x -- H with

g(zi - x) = a2 - b, for which we need to check the agreement. However, we presented

the algorithm in the given form since in this way it unifies our combinatorial bounds

of the previous chapter with the algorithmic perspective of Sudan et. al. in [18].

4.2.1 Analysis of the reconstruction

We will closely follow the proof in [18].

Lemma 4.2.3. If h is a homomorphism s.t. agree(h, f) > 1 + e then

PrZ[MZ1,...,Zk,h(zl),...,h(k)(x) = h(x)] > 15/16,

with probability . over the choice of z,. . . , zk E G.

Proof. There are two bad events that can prevent h to appear in the final list, namely

h and f have small agreement on the coset x + Sz_-,...,zk_-x or the values of h at the

random points zi, i = 1, k, do not uniquely specify h. Both these cases are treated in

the following claims.

Claim 4.2.4. For k > logp we have

1
Pr,z,...,zk [fi E [L], b s.t. gi + b = hlx+sz-Zx ..., zk-x 64

Proof. Lemma 4.1.3 implies that the probability that the random coset x + Szl-X,...,zk-X

does not contain at least +1 /2 of the points where f and h agree is at most - <

for k > log 25. O

Claim 4.2.5. For some constant c2 and k > c2 logp we have

1
Pr,z,...,zk[ 3i E [L],b s.t. gj+b # hI +s-,_....k- and hlI+s,(_..... z(,z) = gj(zr) Vr e [L]] <



Proof. For fixed t, Pr,,c[h(a) = gt(a)] • 1, since two homomorphisms cannot agree

on a larger than 1 fraction. Thus,

1
PrTz,... ,zk[h(z.) = gt(z.) Va E [k]] < -

p

and therefore, by the union bound

L
Prz1 ,...Zk[3j E [L] s.t. h(z,) = gj(z,) Va E [k]] < -

p

Using the Lemma 3.4.2, we have that L < O(pr(2p)3r1). Therefore, there exists a

constant c2 s.t. for k > c2 logp,() we have L < I.

By the above claims, we conclude that with probability 1 the restriction, say gj

of h to S 1,zý,...,Zk appears in the final list. Thus,

Pr,z,,...,k [Mz1,...,zk,h(zi),...,h(zk)(X) = h(x)] > 31/32.

Using Markov's inequality, we conclude that

Prz1,...,Zk[ Pr [Mz1,...,zk,h(l),...,h(zk)(X) = h(x)] 2 15/16] >
2'

Proof of Lemma 1.3.3

Let h be a homomorphism that agrees with f on a I + E. Consider the oracle

M where the ai are "consistent" with h. By Lemma 4.2.3, Mzl,...,zk,h(zl),...,h(zk)(x) is

correct on at least L > of the domain, and by Theorem 4.2.2, CorrMz .,... Zk,h(zl),...,h(zk)16 4

computes h on the whole domain with high probability. Since by the Lemma 3.4.2

there are (2p)3r log I possible 1 + e- agreement homomorphisms h, and since p and r

are fixed, it follows that each of these homomorphisms will appear w.h.p in the final

list if the execution of the algorithm is repeated O(log .) times. Again, we remove



the homomorphisms with less than 1 + e/2 fractional agreement with f, by sampling.

This completes the proof of the lemma.

4.3 Proof of the theorem

We only need to put everything we have done so far together, and complete the case

when G, H are general abelian groups, not only p-groups. We will show the following

result.

Theorem 4.3.1. Let H be a fixed finite abelian group. Then for all finite abelian

groups G there is a (AG,H + e, poly(log IGI, 1))-local-list-decoder for Hom(G, H).

Proof. As in the proof of our main combinatorial result, we view G and H as products

of cyclic groups, G = - 1 Z•pi and H = ix Z•q• i with pi, qi primes. For f =

(fi ,... Ifm ), with f1 E Zq for all i E [m], we decode each coordinate fA separately,

and then apply Proposition 3.3.1 to obtain a local decoder for f. As before, for each

qi, i E [m] for which qi I JGj, let G = Gq, x G', where Gqi is a qi-group and qi /•G'|.

Using the local list decoder of Lemma 4.2.1 we can decode for the homomorphisms

E Hom(Gq, Z i) and then use the decoder given in Proposition 3.3.2 to decode

Hom(Gq, x G', Z qi) and finish the local list decoding of fi. This completes the proof

of the theorem.

El



Chapter 5

Open Problems

As mentioned along the way, we believe that there is a lot of room for improvements

in terms of the combinatorial bounds that we obtain. In particular, we conjecture

that Hom(Z', Z') is (I + c, 1)-list decodable. Recall that the best result so far

regarding Hom(Zn, Zn) is due to Dwork et. al. [8] and states that Hom(Z', Z4') is

(e, - )-list decodable, for small e > 0. In general, we believe that Hom(G, H) is

(AG,H + E, poly(!))- list decodable, for any abelian groups G and H, thus independent

of the size of H. Our results only refer to the case when H is fixed, and the degree

of the polynomial we obtain depends on IHI.

Further, we have not explored at all the case when G and H are not abelian

groups. This brings up questions regarding the behavior of other group operations,

such as semidirect product, in terms of list sizes.
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