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Abstract

We propose three new algorithms for the distributed averaging and consensus prob-
lems: two for the fixed-graph case, and one for the dynamic-topology case. The
convergence times of our fixed-graph algorithms compare favorably with other known
methods, while our algorithm for the dynamic-topology case is the first to be accom-
panied by a polynomial-time bound on the worst-case convergence time.
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Chapter 1

Introduct ion

1.1 Motivation

Given a set of autonomous agents -- which may be sensors, nodes of a communication

network, cars, or unmanned aerial vehicles - the distributed consensus problem asks

for a distributed algorithm that the agents can use to agree on an opinion (represented

by a scalar or a vector) starting from different initial opinions among the agents and

possibly severe restrictions on communication.

Algorithms that solve the distributed consensus problem provide the means by

which the networks of agents may be coordinated. Although each agent acts inde-

pendently of the others, because the agents can agree on a parameter of interest,

they may act in a coordinated fashion when decisions involving this parameter arise.

Synchronized behavior of this sort has often been observed in biological systems [19].

The distributed consensus problem has historically appeared in many diverse ar-

eas: communication networks [29, 26]. control theory [23], and parallel computation

[38. 5]. Recently, the problem has attracted significant attention [23, 26, 3, 14, 29,

10. . 30. 31]; research has been driven by advances in communication theory and by

new connections to open problems in netwvorking and networked control theory. We

briefly describe some more recent applications.

Reputation Management in Ad Hoc Networks: It is often the case that the



nodes of a wireless multi-hop network are not controlled by a single authority or do

not have a common objective. Selfish behavior among nodes (e.g., refusing to forward

traffic meant for others) is possible, and some mechanism is needed to enforce coop-

eration. One way to detect selfish behavior is reputation management: each node

forms an opinion by observing the behavior of its neighbors. One is then faced with

the problem. of combining these different opinions into a single globally available rep-

utation measure for each node. The use of distributed consensus algorithms for doing

this was explored in [26], where a variation of one of the methods we examine in this

thesis - the "agreement algorithm" - was used as a basis for empirical experiments.

Sensor Networks: A sensor network designed for detection or estimation will need

to combine various measurements into a decision or into a single estimate. Distributed

computation of this decision/estimate has the advantage of being fault-tolerant (net-

work operation is not dependent a small set of nodes) and self-organizing (network

functionality does not require constant supervision) [39, 3, 4, 14].

Control of Autonomous Agents: It is often necessary to coordinate collections of

autonomous agents (e.g., cars or UAVs). For example, one may wish for the agents

to agree on a direction or speed. Even though the data related to the decision may be

distributed through the network, it is usually desirable that the final decision depend

on all the known data, even though much of it is unavailable at many nodes. Methods

for the solution of this problem were empirically investigated in [41].

We lay special emphasis on a subcase of the distributed consensus problem, the

distributed averaging problem. While a consensus algorithm combines the measure-

nients of the individual nodes into a global value, an averaging algorithm further

guarantees that the limit will be the exact average of the individual values.

This thesis studies the convergence times of distributed algorithms for the consen-

sus and averaging problems. Our starting point is the agreement algorithm proposed

in [38] for the distributed consensus problem. which we extend to some new set-

tings involving delays (Chapter II). We also give a proof of a result that has been

ccnli)llter-verified in [23]: the nonexistence of quadratic Lyapunov functions for the

agreeclnellt algorithm (Chapter III). lNWe show how the agreement algorithm may be



modified for the distributed averaging problem, in a way that avoids the potential

slowdown of other methods (Chapter IV). We proceed to give a, variation of the agree-

ment algorithlm that has the same worst-case convergence time as optimization-based

approaches (Chapter V). We provide a new algorithm for the distributed averaging

problem in symmetric dynamic topology networks (Chapter VI). Our algorithm is

the first to be accompanied by a polynomial bound on the worst-case convergence

time in this setting. We finish with some simulation results comparing the algorithms

presented here with previous approaches (Chapter VII).

1.2 Previous work

The performance of distributed algorithms for consensus and averaging has been

analyzed by a number of authors in the past. For results proving convergence of such

algorithms, see:

* DeGroot [12] analyzed the agreement algorithm in the context of social net-

works. He proved a convergence result in the static-topology case.

* Tsitsiklis [38], and Tsitsiklis, Bertsekas, and Athans [39], formulated the agree-

ment algorithm for distributed consensus in the context of distributed comput-

ing. For a summary of this research, see the monograph [5].

* Vicsek et al [41] independently conducted some simulations with the agreement

algorithm for coordination of motion of autonomous particles. This inspired the

work of Jadbabaie, Lin, and Morse [23], where a convergence result was again

proved.

* ()lfati-Saber and Murray [32] proved the convergence of a variation of the agree-

nln 'lt algorithmn for the distributed averaging problem (previous results only

covnered( the distributed consensus problem). See also the survey [33].

Sorme recent work has focused on extending convergence results to a wider class

of algorithlimis:



* Blondel, Hendrickx, Olshevsky, and Tsitsiklis [6] prove a convergence result for

the case of positive delays during the execution of the algorithm and under an

"approximate" assumption of symmetry.

* Moreau [30] proved a convergence result for a general class of iterative algo-

rithms which includes the agreement algorithm (and others).

* Angeli and Bliman [1] extended Moreau's result to cover the case when delays

occur during the execution of the algorithm.

* Tanner, Jabdabaie, and Pappas [40] proved convergence for a variation of the

agreement algorithm which achieves coordination for a system of moving parti-

cles, along with collision avoidance.

* Cucker and Smale [9] proved convergence for a continuous averaging scheme

which does not require any assumptions on the interconnection topology.

* The survey by Fang and Antsaklis [16] contains more information on recent

research in this field.

Some recent work has focused on convergence time of consensus and averaging

algorithms, which is also our focus. In the case of static graphs:

* Xiao and Boyd [43] proposed a convex optimization approach to the design of

fast-converging algorithms in fixed networks.

* Boyd et al. [3, 4] analyze the convergence time of a randormized scheme for

averaging.

* Dimakis, Sarwate, and Wainwright propose and analyze an algorithm for aver-

aging in geometric random graphs [14].

In the case of dynamic graphs. there are some results on the convergence time of

the agreemenelt algorithlln for the conlsensus problem:



* Cao. Spielman, and Morse prove an exponential upper bound for consensus in

the case of dynamic graphs [10].

* The Ph.D. thesis of D. Hernek contains some doubly exponential bounds for the

cover time of a class of random walks on colored graphs [22]. There is a close

relationship between such random walks and the agreement algorithm, and the

bounds in [22] may be translated into the language of multi-agent coordination

literature to imply that the agreement algorithm on a certain class of graphs

will take at most doubly exponential time to converge.

Further, there has been some recent work on the extension of averaging algorithms

to the dynamic topology case:

* Mehyar et al. [29] propose an algorithm for averaging in the dynamic-topoly

case.

* Moallemi and Van Roy propose another extension to the dynamic graph case,

the "consensus propagation" algorithm [31]. In contrast to the agreement al-

gorithm, consensus propagation provides an approximation to the average for

certain classes of time-varying graphs (recall that the agreement algorithm can

compute the average exactly, as shown in section 4.1, in fixed graphs). However,

in contrast to the load balancing algorithm presented in Chapter 6 of this thesis,

the class of graphs for which consensus propagation has been shown to converge

is not large enough to include all time-varying graph sequences.

The "consensus propagation" algorithm is patterned on belief propagation:

nodes pass messages that are supposed to represent their estimates of the global

mean, and these estimates are accompanied by companion messages that repre-

sent their accuracy. Indeed. consensus propagation may be viewed as a special

case of a belief propagation algorithm on an appropriately set-up estimation

problem [31].

Finally, we make note of some related work on multi-agent systems:



* Some recent work [36], [28] has focused on characterizing graphs that arise from

interactions of autonomous agents in Rf2 or R3 . These results have potential

implications for the consensus literature. In this thesis, as in other work in this

area, we do not restrict the set of graphs that can arise as a result of nearest-

neighbour interactions between agents. However, the Euclidean nature of R 2

and R 3 provides some restrictions, which may result in sharper bounds.

* A variation of the agreement algorithm was proposed in [34] for computing

geographical coordinates of nodes in a sensor network.

* A distributed algorithm for optimal territorial coverage with mobile sensing

networks based on a gradient descent scheme was proposed in [8].

Our contribution: We add to this literature in three ways. First, we propose

a distributed algorithm for averaging in fixed graphs which has some attractive fea-

tures relative to previously known methods. Second, we give some bounds on the

performance of optimization-based approached in fixed graphs. Finally, we give a

polynomial-time averaging method for dynamic graphs.



Chapter 2

The agreement algorithm

The "agreement algorithm," due to Tsitsiklis et al [38], is an iterative procedure for

the solution of the distributed consensus problem. In this section, we describe and

analyze the agreement algorithm (see [38], [39], [23] for original literature). We begin

with a review of prior work in Section 2.1, where we give the basic background and

a summary of known results for the agreement algorithm. In Section 2.2, we explain

a connection between the convergence rate of the agreement algorithm and the joint

spectral radius. In Section 2.3, we discuss extensions of the agreement algorithm that

incorporate the presence of delays.

2.1 Introduction

We consider a, set N = {1, 2,..., n} of agents embedded, at each time t, in a directed

graph G(t) == (N, 8(t)), where t lies in some discrete set of times which we will take,

for simplicity, to be the nonnegative integers.

Each agent i starts with a scalar value x,(0): the vector with the values of all

agents at time t will be denoted by x(t) = (xl(t)..... .r,, (t)). The agreement algorithm

updates x(t) according to the equation x(t + 1) = A(t)x(t). or

X(t + 1)= () ).

17



where A(t) is a nonnegative matrix with entries aij(t). The row-sums of A(t) are

equal to 1, so that A(t) is a stochastic matrix. In particular, xi(t + 1) is a weighted

average of the values xj (t) held by the agents at time t.

We next state some conditions under which the agreement algorithm is guaranteed

to converge.

Assumption 1. There exists a positive constant a such that:

(a) aii(t) > a, for all i, t.

(b) aij(t) E {0} U [a, 1], for all i, j, t.

(c) ZE'- aij(t) = 1, for all i, t.

Intuitively, whenever aij(t) > 0, agent j communicates its current value xj(t) to

agent i. Each agent i updates its own value, by forming a weighted average of its own

value and the values it has just received from other agents.

In terms of the directed graph G(t) = (N, S(t)), we introduce an arc (j, i) E S(t)

if and only if aij(t) > 0. Note that (i,i) E 9(t) for all t. A minimal assumption,

which is necessary for consensus to be reached and for each agent to have an effect

on the final value, requires that following an arbitrary time t, and for any i, j, there

is a sequence of communications through which agent i will influence (directly or

indirectly) the value held by agent j.

Assumption 2. (Connectivity) The graph (N, U>>tS(s)) is strongly connected for

all t > 0.

We note various special cases of possible interest.

Time invariant model: There is a fixed matrix A, with entries aij, such that, for

each t. we have aij(t) = aij.

Symmetric model: If (i, j) E 8(t) then (j, i) E S(t). That is, whenever i commu-

nicates to j. there is a simultaneous conununication from j to i.

Equal neighbor model: Here,

(= 1/di(t), ifJ c N,(t).

i) M 0, if j e (),

whlere S,(t) = {j I (j.i) E S(t)} is the set of agents j whose value is taken into



account by i at time t, and di(t) is its cardinality. This model is a linear version of a

model considered by Vicsek et al. [41]. Note that here the constant a of Assumption

1 can be take to be 1/n.

Assumption 3. (Bounded intercommunication times) There is some B such

that (N, &(kB) U S(kB + 1) U ... U 9((k + 1)B - 1)) is strongly connected for all

integer k.

Theorem 1. Under Assumptions 1, 2 (connectivity), and 3 (bounded intercommu-

nication times), the agreement algorithm guarantees asymptotic consensus.

Theorem 1 is presented in [39] and is proved in [38] (under a slightly different

version of Assumption 3); a simplified proof, for the special case of fixed coefficients

can be found in [5]. It subsumes several subsequent convergence results that have

been presented in the literature for special cases of the model. On the other hand,

in the presence of symmetry, the bounded intercommunication times assumption is

unnecessary. The latter result is proved in [21], [24], [7] and in full generality in [30].

Theorem 2. Under Assumptions 1 and 2, and for the symmetric model, the agree-

ment algorithm guarantees asymptotic consensus.

See [6], [39], [5] for extensions to the cases of communication delay and probabilis-

tic dropping of packets.

2.2 Products of stochastic matrices and conver-

gence rate

Theorem I and 2 can be reformulated as results on the convergence of products of

stochastic matrices.

Corollary 1. Consider an infinite sequence of stochastic matrices A(0), ,4(1), 4(2),..

that satisfies Assunptions 1 and 2. If either Assumption 3 (bounded intercominu-

iication ii tervals) is satisfied, or if we have a symnmetric model. then there exists a



nonnegative vector d such that

lim A(t)A(t - 1) ... A(1)A(O) = ld T .
t--oo

(Here, 1 is a column vector whose elements are all equal to one.)

According to Wolfowitz's Theorem ([42]) convergence occurs whenever the ma-

trices are all taken from a finite set of ergodic matrices, and the finite set is such

that any finite product of matrices in that set is again ergodic. Corollary 1 extends

Wolfowitz's theorem by not requiring the matrices A(t) to be ergodic, though it is

limited to matrices with positive diagonal entries.

The presence of long matrix products suggests that convergence to consensus in

the linear iteration

x(t + 1) = A(t)x(t),

with A(t) stochastic, might be characterized in terms of a joint spectral radius. The

joint spectral radius p(M) of a set of matrices M is a scalar that measures the

maximal asymptotic growth rate that can be obtained by forming long products of

matrices taken from the set M:

p(MA) = lim sup sup Mi Mi2 . . . k 1/k.
k--•00 M/li1 ,'Ai2,...,Mik EM

This quantity does not depend on the norm used. Moreover, for any q > p(M) there

exists a C for which

IAiM ... Mi]yll •< CqkIIYII,

for all y and AMi., G Al.

Stochastic matrices satisfy |IAzxI < |lxll| o and Al = 1. and so they have a

spectral radius equal to one. The product of two stochastic matrices is again stochastic

and so the joint spectral radius of any set of stochastic matrices is equal to one.

To analyze the con-vergence rate of products of stochastic matrices, we consider the

dynamics i(hdutced by the matrices on a space of smaller dimension.



Consider a matrix P s Y(n-1)x" defining an orthogonal projection on the space

orthogonal to span{1}. We have P1 = 0, and IIPxlI 2 = IlIx1 2 whenever xr1 = 0.

Associated to any A(t), there is a unique matrix A'(t) e R(n-l)x(n-1) that satisfies

PA(t) = A'(t)P. The spectrum of A'(t) is the spectrum of A(t) after removing one

multiplicity of the eigenvalue 1. Let M' be the set of all matrices A'(t).

Let y = 1Tx(t)/n be the mean value of the entries of x(t), then

Px(t) - P'1 = Px(t)

= PA(t)A(t - 1) ... A(O)x(O)

= A'(t)A'(t - 1) ... A'(O)Px(O).

Since (x(t) -- 71)T1 = 0, we have

lJx(t) - •4112 = llP(x(t) - YIl)1I2 < CqJllx(0)ll2,

for some C and for any q > p(M').

Assume now that limt,,o x(t) = cl for some scalar c. Because all matrices are

stochastic, c must belong to the convex hull of the entries of xi(t) for all t. We

therefore have

IIx(t) - clJoD < 21 x(t) - -ll, < 211z(t) - yll12,

and we may then conclude that

Ijx(t) - cli, _< 2Cqt ll(0)1j 2.

The joint; spectral radius p(M') therefore gives a measure of the convergence rate

of x(t) towards its limit value cl. However, for this bound to be nontrivial, all of the

matrices in M need to be ergodic; indeed, in the absence of an ergodicity condition,

the convergence of X(t) need not be geometric, and will depend in general on the

particular sequence of elements of MAl. Indeed, if A E M is not ergodic. then A'x(t)

nimay not converge to (l at all.



2.3 Convergence in the presence of delays.

The model considered so far assumes that messages from one agent to another are

immediately delivered. However, in a distributed environment, and in the presence

of communication delays, it is conceivable that an agent will end up averaging its

own value with an outdated value of another processor. A situation of this type falls

within the framework of distributed asynchronous computation developed in [5].

Communication delays are incorporated into the model as follows: when agent

i, at time t, uses the value xj from another agent, that value is not necessarily the

most recent one, xj(t), but rather an outdated one, xj(Tj(t)), where 0 < Tr(t) ( t,

and where t - T·(t)) represents communication and possibly other types of delay. In

particular, xi(t) is updated according to the following formula:

n

xi(t + 1)= aij(t)xy(TJ(t)). (2.1)
j=1

We make the following assumption on the w7j(t).

Assumption 4. (Bounded delays) (a) If aij(t) = 0, then rj(t) = t.

(b) limt,, Tf(t) = oc, for all i, j.

(c) 7iT(t) = t, for all i, t.

(d) There exists some B > 0 such that t - B + 1 _< Tj(t) • t, for all i, j, t.

Assumption 4(a) is just a convention: when aij(t) = 0, the value of Tj(t) has

no effect on the update. Assumption 4(b) is necessary for any convergence result:

it requires that newer values of x (t) get eventually incorporated in the updates of

other agents. Assumption 4(c) is quite natural, since an agent generally has access

to its own most recent value. Finally, Assumption 4(d) strenghtens Assumption 4(b)

by requiruing delays to be bounded by some constant B,

The next, result, from [38. 391, is a generalization of Theorem 1. The proof is

similar to the proof of Theorem 1: we define m.(t) = mini mins=t,t-l ..... t-1+1 X(s)

and 1\1(t) = maxi maxs=t,t_- .....-B- + 1:ri(s) and show that the difference M(t) - r.(t)

declrelases by a constant factor after aii boundled aount of time.



Theorem 3. Under Assumptions 1-4 (connectivity, bounded intercommunication

intervals, and bounded delays), the agreement algorithm with delays [cf. Eq. (2.1)]

guarantees asymptotic consensus.

Theorem 3 assumes bounded intercommunication intervals and bounded delays.

The example that follows (Example 1.2, in p. 485 of [5]) shows that Assumption 4(d)

(bounded delays) cannot be relaxed. This is the case even for a symmetric model,

or the further special case where S(t) has exactly four arcs (i, i), (j,j), (i,j), and

(j, i) at any given time t, and these satisfy aij(t) = aji(t) = 1/2, as in the pairwise

averaging model.

Example 2. We have two agents who initially hold the values x1(0) = 0 and x 2 (0) =

1, respectively. Let tk be an increasing sequence of times, with to = 0 and tk+1 - tk -

o00. If tk _< t < tk+1, the agents update according to

x (t + 1) = (x(t) + Z2(tk))/2,

x 2(t 1) = (x1(tk) +2(t))/2.

We will then have xl(tl) = 1 - ei and x 2(tl) = 1, where e1 > 0 can be made

arbitrarily small, by choosing tj large enough. More generally, between time tk and

tk+l, the absolute difference Ixl(t) - x2(t)0 contracts by a factor of 1 - 2 6k, where the

corresponding contraction factors 1 - 2ek approach 1. If the Ek are chosen so that

Ck · k < oc, then ri 1l(1 - 2Ek) > 0, and the disagreement jxl(t) - x2(t)I does not

converge to zero.

According to the preceding example, the assumption of bounded delays cannot be

relaxed. On the other hand, the assumption of bounded intercommunication intervals

can be relaxed, in the presence of smnmetry. leading to the following generalization

of' Theorem 2. which is a new result.

Theorem 4. Under Assumptions 1, 2 (connectivity), and 4 (bounded delays), and for

the symmnetric model. the agreement algorithm with delays [cf. Eq. (2.1)] guarantees

asVniptotic consensus.



Proof. Let

Mi(t) = max{xi(t), x(t - 1), ... ., xi(t - B + 1)},

M(t) = max M(t),

mi(t) = min{xi(t), xi(t - 1),..., xi(t - B + 1)},

m(t) = minmi(t).

An easy inductive argument, as in p. 512 of [5], shows that the sequences m(t) and

M(t) are nondecreasing and nonincreasing, respectively. The convergence proof rests

on the following lemma.

Lemma 1: If m(t) = 0 and M(t) = 1, then there exists a time T > t such that

Given Lemma 1, the convergence proof is completed as follows. Using the linearity

of the algorithm, there exists a time ri such that M(-r) - m(Tr) < (1 - anB)(M(O) -

m(0)). By applying Lemma 1, with t replaced by Tk_1, and using induction, we see

that for every k there exists a time Tk such that M(-k) - m(Tk) < (1 - anB)k(M(O) -

m(0)), which converges to zero. This, together with the monotonicity properties of

rn(t) and M(t), implies that m(t) and M(t) converge to a common limit, which is

equivalent to asymptotic consensus. q.e.d.

Proof of Lemma 1: For k = 1,..., n, we say that "Property Pk holds at time t" if

there exist at least k indices i for which mi(t) > akB

We assume, without loss of generality, that m(0) = 0 and M(0) = 1. Then,

me(t) > 0 for all t, because of the monotonicity of rn(t). Furthermore, there exists

sonie i and some - E {-B + 1, -B + 2,...0} such that :r,('r) = 1. Using the

ineqlll itv .ir,(t + 1) > axxi(t), we obtain m1i(T + B) > (.3. This shows that there exists

a tinlie at which property P1 holds.

We continue inductively. Suppose that k < n and that Property PA. holds at some

time t. Let S' be a set of cardinality k containing indices i for which m.-(t) > a ,kB

and let .5' be the complement of S. Let 7 b)e tile first time. greater than or equal to t,



at which ai.j(r) # 0, for some j E S and i E S c (i.e.. an agent .j in S gets to influence

the value of an agent i in SC). Such a time exists by the connectivity assumption

(Assumnption 2).

Note that between times t and r, the agents f in the set S only form convex

combinations between the values of the agents in the set S (this is a consequence of

the symmetry assumption). Since all of these values are bounded below by akB, it

follows that this lower bound remains in effect, and that me(r) > akB, for all £ E S.

For times s > T, and for every f e S, we have xe(s + 1) > axe(s), which implies

that xe(s) Ž> CakBaB , for s C {T + 1,.. .,T + B}. Therefore, m(-r + B) _ a(k+l)B, for

all £ E S.

Consider now an agent i E SC for which aij () 4 0. We have

xi(r + 1) > aij(T)xj(rj(T)) > ami(r) > akB+1

Using also the fact x (s+1) > axi(s), we obtain that m(rT+ B) > Z(k+l)B. Therefore,

at time 7 + B, we have k + 1 agents with me(r + B) > a (k+l) (namely, the agents

in S, together with agent i). It follows that Property Pk+1 is satisfied at time T + B.

This inductive argument shows that there is a time T at which Property P, is

satisfied. At that time mi(7) anB for all i, which implies that rn(T) > nB. On the

other hand, M(r) < M(0) = 1, which proves that M(T) - m.(r) < 1 - a"B. q.e.d.

The symmetry condition [(i,j) C 8(t) iff (j, i) E 8(t)] used in Theorem 4 is

somewhat unnatural in the presence of communication delays, as it requires perfect

synchronization of the update times. A looser and more natural assumption is the

following.

Assumption 5. There exists some B' > 0 such that whenever (i,.j) E S(t), then

there exists some 7 that satisfies It - T7 < B' and (j, Zi) E (rT).

Assumption 5 allows for protocols such as the following. Agent i sends its value

to agent j. Agent .j responds by sending its own value to agent i. Both agents

update their values (taking into account the received messages). within a bounded

tinme from receiving the other agent's value. In a realistic setting. with unreliable



communications, even this loose symmetry condition may be impossible to enforce

with absolute certainty. One can imagine more complicated protocols based on an ex-

change of acknowledgments, but fundamental obstacles remain (see the discussion of

the "two-arimy problem" in pp. 32-34 of [2]). A more realistic model would introduce

a positive probability that some of the updates are never carried out. (A simple pos-

sibility is to assume that each aij(t), with i Z j, is changed to a zero, independently,

and with a fixed probability.) The convergence result that follows remains valid in

such a probabilistic setting (with probability 1). Since no essential new insights are

provided, we only sketch a proof for the deterministic case.

Theorem 5. Under Assumptions 1, 2 (connectivity), 4 (bounded delays), and 5, the

agreement algorithm with delays [cf. Eq. (2.1)] guarantees asymptotic consensus.

Proof. A minor change is needed in the proof of Lemma 1. In particular, we define

Pk as the event that there exist at least k indices 1 for which mi(t) > a k(B+'). It

follows that P1 holds at time t = B + B'.

By induction, let Pk hold at time t, and let S be the set of cardinality k containing

indices 1 for which mi(t) > ak(B+B'). Furthermore, let T be the first time after time

t that aij () # 0 where exactly one of i, j is in S. Along the same lines as in the

proof of Lemma 1, m,(r) > ak(B+ B') for 1 E S; since xz(t + 1) Ž axl(t), it follows that

m1(7 + B + B') > a(•+l )(B•B') for each 1 E S. By our assumptions, exactly one of i,j

is in S'. If i E Sc, then xi(T + 1) > aij(r)xj(Tj(T)) > a k(B + B ')+1 and consequently

xi(7 + B + B') > o B+B'-1ak(B+B')+1 = a(k+1)(B+B'). If j C Sc, then there must exist

a time Tj E {( + 1, T + 2, ... , T + B' - 1} with aji(rj) > 0. It follows that:

m (T + B + B') a +B+B'-(Tl)xj(7j + 1)

> aT+B+B'--rj-1 (i

> o:T+B+B'--Trj-1 T.I-T k(B+ B')

- (k+1)(B+B')

Therefore. PF•. I holds at tile T + B + B' and the induction is complete. q.e.d.



Remark: It is easy to see that Theorem 5 provides a bound on the convergence

rate of the agreement algorithm. Indeed, it has been shown that AM'(k(B + B')) -

'm(k(B + B')) < (1 - afk(B+B'))(M(0) - m(O)), showing that the sequence sampled

at integral multiples of B + B' converges geometrically with rate a'. In the case of

nearest-neighbour model, a = 1/n, so that the convergence rate is 1/n". A similar

result was proved in [10], where a rate of convergence on the order of 1/n" was also

derived.





Chapter 3

Nonexistence of Quadratic

Lyapunov Functions

Convergence results for the agreement algorithm typically show a decrease in the

"span" maxi xi(t) - minx i (t). However, bounds on the "span" typically give ex-

ponential bounds on the rate of convergence - see the previous chapter and [10]. A

natural question, therefore, is whether other Lyapunov functions might give improved

results.

In [23], this question was investigated for quadratic Lyapunov functions. A com-

puter search showed they do not exist for the agreement algorithm in the fixed nearest-

neighbour regime. The goal of this chapter is to give a proof of this fact.

Consider the iteration Xt+l = AG(t)x(t) where Ac(t) is the matrix corresponding

to an equal-neighbour iteration on the graph G (see Section II for definitions). A

quadratic Lyapunov function is a function L(x) of the form L(x) = xTQx for some

symmetric non-negative definite Q. The function L(x) must be nonincreasing after

each iteration, i.e. L(x(t + 1)) < L(x) and must achieve its minimum of 0 on the

siibspace (vl. Then, if it is possible to show that L(x) strictly decreases often enough,

a converrgence result in the spirit of Theorem 1 of Section II would follow.

The following theorem shows that such a funlction L(x) cannot exist.

Theorem: Let n > 12. There does not exist a symmetric, nonnegative definite and

nioiizer( lmatrix Q such that:



Figure 3-1: The nodes perform an iteration of the nearest-neighbor model with this
graph. Every node has a self-loop which is not shown in this picture.

1.

(AG(t)x(t))T Q(AG(t)x(t)) < x T Qx, (3.1)

for all connected graphs G on n vertices.

2.

1TQ1 = 0,

where 1 is the column vector of all ones.

Idea of proof: Before jumping into the proof, let us briefly describe the main

idea.

1. Suppose we want to show that the sample variance, defined by, U2(t) = -• in(Xi(t)

x(t))2, where (t) = (1/n) EZI xi(t), is not a Lyapunov function. Consider

an initial vector x(O) defined by xi(O) = 1, z,,(0) = -1, Zk(0) = 0 for k =

2 .. . .,- 1. For simplicity, let us assume that ni is even. Consider the outcome
of the equal neighbour iteration on the graph of Figure 3-1 (note that the graph

d(oes not show self-loops, which are actually present at each vertex). After the

iteration, we will have xl(1) = 1 (1 + (-1) + 0 + . .. ·- 0) = 0 and simi-

larlY .r,,(1) = 0. However, x.(1) = (1/2)(1 + 0) = 1/2 for k = 2....., n/2 and,

sitnilarly, :r.(1) = -1/2 for i = n/2 + 1.....n - 1.



We now see that the sample variance increased from time 0 to time 1: a 2(0) = 2

while a 2(1) = (1/4)(n - 2) so that for n > 10, a 2 (O) < a 2 (1). This shows that

the sample variance cannot be a Lyapunov function.

2. Let us now show that no diagonal Lyapunov function is possible. A diagonal

Lyapunov function is of the form L(x) = xTDx, where D = diag(d11 , d22 , ... , dn).

It must be that L(x(O)) > L(x(1)) for the x(0) and x(1) we have computed in

item 1. Writing this out explicitly,

1
dll + dnn > - Z dkk--4

kE{1,2,...,n}-{1,n}

We next derive a similar equation for the sum di, + djj where I now is any

index in {1,.. ., n/2} and J is any index in {n/2 + 1,..., n}. Recall that our

choice of x(0) and the starting graph of Figure 3-1 is completely arbitrary. For

any I E {1,...,n/2} and J C {n/2 + 1,...,n}, we pick an x(0) defined by

xz(0) := 1, xj(0) = -1, and Zk(0) = 0 for k ý {I, J}. We pick a corresponding

graph by switching vertices 1 with I and n with J in the graph of Figure 3-1.

Then, the analog of the above equation is,

dik + dj { 1 4 dkk. (3.2)
kE{1,2,...,n}-{I,J}

In other words, dl1 + d± j must be large relative to Eke{l,2,...,n}-(I,J} dkk. But

this must hold for all d 1, and d .j! We will derive a contradiction from this fact.

Indeed, let us sum Eq. (3.2) over the (n/2)2 ways to pick I C {1, . .., n/2} and

J C {rn/2 + 1,...,n}.

(a) Let i E {1,..., n}, and let us count how many times dii appears when we

sum the left hand side of Eq. (3.2) over all possible choices I E { 1 .... rt/2}

and J E {n/2 + 1,..., n}. We claim that dii appears exactly n/2 times.

Indeed, if i < n./2. then dii will appear when I = i: there are precisely n/2

such choices - exactly one choice of I and any of the rn/2 possibilities for



J. Similarly, i > n/2 + 1, then dii will appear when J = i; there are n/2

such choices as well, exactly one for J and any of the n/2 possibilities for

I.

(b) Similarly, each dii will appear (n/2)(n/2 - 1) times on the right. Indeed, if

i < n/2, then dii will appear on the right if I -i; there are (n/2)(n./2 - 1)

suich choices. Similarly, if i > n/2, then dii will appear on the right if

J : i, which happens (n/2)(n/2 - 1) times.

Thus, performing the summation, we have,

(n/2)tr(D) > -(n/2)(n/2 - 1)tr(D).4

Because D is nonnegative definite, we have that dii 2 0 for all i. Therefore,

because D is nonzero, we have that tr(D) > 0. Canceling (n/2)tr(D) from both

sides,

11 > -(n/2 - 1),
-4

which is a contradiction when n > 10.

We next generalize this proof to the case of arbitrary quadratic Lyapunov func-

tions.

Proof:

1. Using the notation Q = [qijij=] ,...,n, we can rewrite the requirement 1 TQ 1 = 0

as,

jij -=0.
i=1 j=1

2. Once again, we begin with the vector x(0) defined by Xi (0) = 1. x,,(0) = -1,

i(()) =:: 0 for i = 2..... r - 1. After an equal-neighbor model iteration on the



graph G of Figure 3-1 ', the result is xz(1) = 0, , (1) = 0, x 2(1). - /2(1)

1/2, x,,/ 2+1(1) ,....x.,,_(1) = -1/2. By Eq. 3.1, we obtain

f Qxo e xf Qx a.

Writing this out in terms of the elements of the matrix Q,

E2, qij +
jE 2,...,n/2} i,j{n/2+1,...,n-1}

qij].
n/2+1,...,nj}-{n}

3. However, our choice to assign initial values of xi(0) = 1 to nodes 1 and n was

completely arbitrary. Let us say we pick nodes I, J instead with x1 (0) = 1 and

xj(0) := -1 and disjoint sets A I, Aj each containing n/2 elements with I E A,

and J E Aj. We assign Xk = 0 for k < {I, J}. Then, the analog of the above

inequality is:

1qii + qjj - 2 qj > 4( qij +
Si,jEAI-{I} i,jEAj-{J}

qij - 2
iEAr-{ I},jEAj-{ J}

4. Let us sum this equation over the (n2 ways to select the two sets A, and Aj

and the (n/2)2 ways to select I and J once A I , Aj are given.

(a) To perform this sunmation, we note some basic combinatorial identities.

Given nodes i.j the number of partitions {A!, A. } of {1,.... n} where

i, j are in the same set (A, or Aj.) is 2 ,(,2 2 . The lumber of partitions

{A, AI } where one of i. j is in A1 and another is in Aj is 2(_"2 1).

1Formally, this is the undirected graph on n vertices made of the edges (1, i) I i= 2.....n!2}.
{(n, i) 72 = n/2 + 1. . . . - 1}. and {(1. n)}. and self-loops { (i. i) i = 1 .. n}

1
q11 + qnn - 2qln > - [4

-2
i

qij). (3.3)

\ \2--1



(b) Let us sum the left hand side, which is qli + qJJ - 2qlj, over all possible

ways to choose AI, A , I, J.

i. Each choice of A&, Aj may be followed by (n/2) (n/2) possible choices

of I E A, J E Aj. This means each term qii appears n/2 times for

each choice of AI, Aj (indeed, i will be in one of the sets - say it is set

AI - and every choice of j E Aj will contribute a qii to the sum).

ii. Let us now count how many times the term qij appears in the sum when

i =ý j. Note that the symmetry of the matrix Q implies 2qrj = qij+qJi

so that we can write q11 + qjj - 2qij = qui + qjj - qiJ - qji. Using the

latter representation, we can see that the term qij with i = j appears

exactly once with a negative sign in every choice of A&, Aj where i, j
are not in the same set.

iii. Therefore, the left hand side sums to

n n-2

n (n/2)tr(Q) - 2 ( 2 1) E qj.n/2) (n/2 - 1 si

(c) Similarly, let us consider how often each entry of the matrix Q appears

when we sum the right hand side of Eq. (3.3). The right hand side of Eq.

(3.3) is

1

i,jEAI-{I}

qij -+
i,jEAj -{J}

qij - 2
iEAI-{I},jEAj-{J}

Now each qij is included with a sign of +1 for every distinct choice of

A[, Aj, I, J when i i I and i # J. There are ( 2) (n/2 - 1)(n/2) such

choices. On the other hand, qij appears with a coefficient of +1 for every

choice of I, J, A&, Aj where i, j are in the same set and {i, j} n{I, J} = (0,

and --1 for every choice where i, j are in a different set and {i, } l{ I, .} =

0. Thus, the number of times qij appears with a coefficient of +1 is

2 ( n- 2 ) ('n/2 - 2) (n/2), while the number of times it appears with a coef-

ficiet of -1 is 2 /2 1)2

qij)



Therefore. the right hand side sums to

1 nr n-2
1 [n (n/2 - 1)(n/2)tr(Q) + (2(n/2 - 2)(n/2)4 n/2 (n/2 -
-2(n/2 - 1)2

n/2 - 1 i ) :Aj q

Putting this all together, we have the inequality:

n/2 (n/2)tr(Q) -
(n-2
n/2 - Z qij

izJ

1Žn> 4 n/ (n/2
4 n/2) - 1)(n/2)tr(Q) +

+(2(n/2 - 2)(n/2) 2(n/2 -2
-2(n/2 - 1)2 (n2-2(n/2 - 1)2 E qij.

ifj

5. But since Ei,j qij = 0, it follows that for real numbers a, 3 it holds that atr(Q) -

3 E~j qij = (a + P)tr(Q). Therefore, we can rewrite the above inequality as:

+ 2 n2 tr(Q)
(n/2 - 1))

1
> -

4 2)(n/2 - 1)(n/2)n/2

-(2(n/2 - 2)(n/2)(n/2 2)

2/a I (n/2 - 2

If tr(Q) = 0 then Q = 0 since Q is nonnegative definite. Else, canceling tr(Q)

from loth sides and plugging in nr = 12. we get 6048 >

(olltradlict ion.

7560, which is a

n2 (n/2),./2)





Chapter 4

Averaging with the agreement

algorithm in fixed networks

The agreement algorithm is not guaranteed to converge to the average. However, a

variation of the agreement algorithm which does converge to the average has been

proposed in [32]. In this chapter, we design another variation of the agreement al-

gorithm for the solution of the averaging problem. Our algorithm avoids a small

step-size, which is required in [32] for convergence.

We will show that in the case of fixed networks, a single extra parallel pass of the

agreement algorithm is sufficient for the agreement algorithm to compute averages.

Moreover, this pass need not be repeated if opinions change but the network remains

the same. We describe the details below.

4.1 Using two parallel passes of the agreement al-

gorithm

Given a fixed graph G, define the matrix A by ag. = 1/d(i) for all j e Ni. where di

is the cardinality of Ni = {j (j, i) E E}. Consider the iteration p -> pA where p is

sonme row vector with elements summing to one. Since A is the transition matrix of

the ra•ndom walk oni the graph, and since the presence of self-loops lnakes the period



of the chain equal to one, we conclude that the iteration converges to the row vector 7

defined by 7r = dilE, where E = Ei di is the total number number of edges, including

self-loops. Thus, At converges to a matrix whose rows are all equal to 7r.

Consider next the iteration x -- Ax, which is just the averaging algorithm un-

der the equal neighbor model on G. It follows from the discussion in the previous

paragraph that,
n n

lim xi(t) = M rizx = dixi/E. (4.1)
t

i=1 i=l

The algorithm for computing the average is as follows. The nodes perform two

parallel iterations of the equal-neighbor averaging algorithm. At the first iteration

the initial value at the ith node is 1/di. The result, which we will denote by z = n/E

will at the end be available at every node. The second iteration (performed in parallel

with the first) sets the initial value at the ith node to xi(O)/di. The result of this

iteration is then divided by z. The final result is

E n di xi(O0) 1
n i= E di n i=1

which is the desired average. Note that the value of n need not be known by the

nodes in order to execute this iteration.

4.2 Comparison with other results

The following averaging method was proposed in [32]. The nodes first agree on some

value c C (0, mini 1/di). This can be done by, for example, computing the largest

degree dmiax and agreeing on 1/(2d,,ax). The largest degree could be computed by a

simple iterative algorithm: at each step, each node takes the maximum of its own

degree and that of each of its neighbors. After at most n steps, each node knows the

highest degree.

Next, the nodes run the iteration xi(t+l1) = (1-Edi)xi(t)+E C 'e N()-i xj(t). This

iteration converges to consensus (using either a Markov chain argument. as above,

or as a special case of Theorem 1). In addition,. the sum i Xi (t) renlains co(nstant,



which implies that we have convergence to the exact average.

Compared with the algorithm proposed in this chapter, the algorithm of [32] has

the disadvantage of uniformly small step sizes. If many of the nodes have degrees of

the order of n, there is no significant theoretical difference between the two algorithms,

as both have effective step sizes of 1/n. On the other hand, if only a small number

of nodes have O(n) degrees, then the algorithm in [32] will force all the nodes to

take small steps, in contrast to the algorithm proposed here. The advantages of the

algorithm presented here will be illustrated through simulation experiments in Section

7.1 of Chapter 7.





Chapter 5

Estimates of the Convergence Time

In this chapter, we analyze the convergence time of certain time-invariant variants of

the agreement algorithm. We also propose a simple heuristic with a favorable worst

case convergence time.

Let X be the set of vectors whose components are all equal. The measure of

convergence that we consider in this chapter is the convergence rate defined as

p = sup lim ( t - 12 1/  (51)
x(O)ýX t-10 Jx(O) - x*f12 (

where we denote x* = limt_+• x(t).

The following proposition is well-known.

Proposition 1: Consider the agreement algorithm with a fixed-coefficient matrix A

satisfying Assumptions 1 and 2 (so that A has an cigenvalue at 1. with multiplicity

equal to 1). Then, p = max J\I, where the maxinunm is taken over all eigenvalues A

of A different than 1. If the matrix A is symmnetric. then p = max{ IA21 IA, }, where

the A a~iec thl: (real) eigenvalues of A. sorted in decreasilng order.



5.1 Convergence time for the equal neighbor time

invariant model

For the equal neighbor time invariant model, a bound on the convergence rate was

computed in [27].

Theorem 3. ([27]) The convergence rate for the equal-neighbor time invariant model,

for any graph on n vertices, satisfies

p < 1 - n -

Moreover, there exists some y > 0 such that for every n E Z + there exists an n-node

graph for which

p> 1 - yn-

Let us define the convergence time Tn(E) as the first time such that IIx(tx)-X*Il < eI!x(O)-X*Il• -

for t > T,(E). Although in principle one could use any norm to define convergence

time, the infinity norm is particularly suited for the consensus problem. Indeed, the

final goal of all of the algorithms described in this thesis is to get a set of agents to

agree on a value. Thus, the proper measure of performance is how far the agents are

from agreement, i.e. maxi xi(t) - mini x (t). Since this is most naturally bounded in

terms of the infinity norm, maxi xi(t) - mini xi(t) 211 x(t) - x(oo)l |, we focus our

analysis on the infinity norm. We note that bounds for other norms may be easily

obtained from the results presented here by the equivalence of norms.

Then. the above theorem has the following corollary:

Corollary 2. The convergence time for the equal-neighbor time invariant model, for

any graph on n vertices, satisfies

T,(c) < (3/4)n3:log n + (1/2)n' log -.

Proof: Let A be the coefficient matrix of an equal-neighbor time invariant model on

sonic fixed graph. Consider a randomn walk on this graphI whichl starts at node i and



moves to each of its neighbors with probability ' (note that the random walk may

remain at i because of self-loops). Note that the one-step transition probability of

this random walk is A. It is known that for any random walk on a graph (Theorem

5.1 of [25]),

(t) - 7 -pj I < r (5.2)

where Pj (t) is the probability of being at node j after t steps, 7rj is the stationary prob-

ability of node j, and p is as defined in the previous section, i.e. max{A2 (A), AX(A)}.

Since 1 <_ di and n > dj, we can further write

IP(t) - 7rjl • jp t .

and using the result of Theorem 3,

1jP(t) - 7rj I• Vni(1 - n-3)t.

This implies that for t > (3/4)n3 log n + (1/2)n 3 log 2, we have IPj(t) - 7rjl < for

all j.

Now A" = limt,, At = 7rT1 (see Chapter 4.1 for a proof of this). Thus for

t > (3/4)n3 log n + (1/2)n 3 log 2 we have that

At = A0 + E(E),

where I E •. for all i, j. Thus,

.r(t) - x(oo) = Atx(O) - A'x(O) = E('):r(O).

so that

IIx(t) -- .r(Oc)O • -< x(0)|112n



< -IIx (0)11-2
< Ecx(O) - Z(00)IKoc

where the last inequality follows because the entries of x(oo) lie in the convex hull of

the entries of x(0). q.e.d.

5.2 Symmetric eigenvalue minimization via con-

vex optimization

5.2.1 Problem description

Xiao and Boyd [43] considered the following problem. Given a connected, undirected

graph G = (V, 8), minimize p over all symmetric, stochastic matrices A that satisfy

aij - 0 whenever (j, i) V E and 1TA = 1T . This problem arises when a network

designer wishes to choose the weights aij to maximize the convergence rate, subject

to the constraints induced by a certain communication topology defined by the graph.

For example. the nodes may correspond to sensors which are located somewhere in R2

or R3 . A communication constraint may be imposed by the requirement that sensors

can communicate only provided they are within a certain distance of each other.

The requirement 1TA = 1 T enforces the conservation law

ITx(t + 1) = 1TAx(t) = 1Tx(t),

thus ensuring that the average (1/n) E•I xi(t) is preserved throughout the execution

of the algorithnn. For any matrix A satisfying these constraints.

lini :(t) = limn At x(O) = 1 1 T x(0) = •Z (0) 1,
t t n i=1

so that the final consensus is the average of the initial values. The symmetry require-

menrt is introdu(ced in [43] in order to obtain a tractable optimization problenm.



5.2.2 Relaxing the constraints

The averaging problem may still be solved even if the constraint 1TA 5 17" is not

satisfied and the matrix A is not symmetric. We now describe the details of a two-step

procedure for averaging in these conditions.

Provided that the graph (V, {(i, j) aji > 0}) is connected, the Markov chain with

probability transition matrix A will have a stationary distribution 7r (Chapter 6.6 of

[18]) and

limnAt = 7T1 = -nrT1.
t n

Because 7r is a left-eigenvector of the matrix A, it can be efficiently computed by

the network designer. Moreover, it is easy to see that the connectivity of the graph

implies 7ri > 0 for all i.

The two-step procedure for averaging is then as follows. As before, the designer

communicates to the nodes the coefficients {aij}; now, however, the designer also

communicates niri to node i. In the first step, the nodes of the network scale their

initial value as

x(0)
Xnew(0) = X() (5.3)

n7ri

and execute the algorithm with the vector Xnew. The final outcome is

limx(t) lim Axnew(0) ( =( E-n<0) 1 = - E i(o) 1 (5.4)i=.1 n i ni.1

which is the vector of initial averages.

5.2.3 Our contribution

In this section, we seek to obtain bounds on p for connected Markov chains on finite

graphs. As we have just seen. such Markov chains may be used to solve the distributed

averaging problem. By obtaining bounds on p for such chains, we obtain bounds on

the speed of a class of distributed averaging algorithms.

We derive bounds which do not assume synmmetry or double stochasticityv of t he



matrix A. We show that p may approach zero for arbitrary chains of this type. We

use this to motivate a constraint which will result in a class of numerically good

algorithms, and bound p for the class of chains which satisfy this constraint. We

then provide an extended discussion of the convergence time bounds that result from

this approach. Finally, we show that a much simpler way of choosing the coefficients

results in the same worst-case convergence time.

5.2.4 Convergence rate on a class of spanning trees

We first describe an elementary way to pick a Markov chain on any graph with p

arbitrarily close to zero.

Given an undirected graph G = (V, 9), let T = (V, ST) be a spanning tree of G.

Pick any vertex of this tree, and designate it to be the root; we will call this vertex

r. We will use NT(i) to refer to the neighbors of node i in T.

Consider a Markov chain on the nodes of G with the following transition proba-

bilities: P(i,j) = 1 if j is the parent of i in T (i.e. j is on the path from i to the

root), and P(r, r) = 1. All other transition probabilities are set to zero. This chain

takes at most n steps to converge to its stationary distribution; it follows from the

definition of p (see Eq. (5.1)) that p(P) = 0.

Next, we will approximate this (reducible) chain with a sequence of irreducible

Markov chains. Consider the following probability assignment: for any nonroot vertex

i, P(i,j) = 1 - E|NT(i)l if j is the parent of i in T, P(i, j) = c if j is the child of

i on the tree, and P(i, i) = E. For the root r, we define P(r, r) = 1 - eINT(r)I and

P(r,j) = E where j E NT(r). Since eigenvalues are continuous functions of matrix

elements, in the limit as E --- 0 we have that

p-- 0

Thus, picking e small, we can get a Markov chain with p arbitrarily small. This

Markov chain can be used to solve the distributed averaging problem as described in

Section 5.2.2.



Remark: Picking the above Markov chain possesses some serious drawbacks.

As f -+ 0, we will have that 7ri -+ 0 where i is any nonroot vertex. Consequently,

nrri also approaches 0. It follows that in Eq. (5.3) and Eq. (5.4) the algorithm

divides and multiplies by an arbitrarily small number. Such operations may lead to

numerical inaccuracy [20]. In the next section, we investigate the convergence times

of algorithms for which maxi,j ' < C for some constant C > 1. For such a class of
7rj -

Markov chains,

1
- < n7ri < C, for all i,
C -

and thus such a class of algorithms allows us to avoid the numerical inaccuracy that

arises when some components of n7r approach 0.

5.2.5 Bounding the second eigenvalue

Our goal is to bound p for all Markov chains with n states satisfying max,j -i < C

for some constant C > 1. To this end, we first introduce a simple way to bound the

second eigenvalue of a reversible Markov chain with transition probability matrix

A. The method outlined here is a variation on the results in [27].

Let 7Ti be the stationary probability of state i, and let D, = diag(rl,..., 7r).

The reversibility of the Markov chain can now be stated as

DA = A T D7 . (5.5)

Moreover, if we define the inner product < x, y >,= xTD,y, then A is a self-

adjoint opera•tor:

< x, Ay >,= xTD,Ay = r'TA'DDy =< Ax. y >,.

Define S, = {< x, 1 >,= 0, < x, x >,= 1}. Since the largest eigenvalue is 1 with

an eigenvector of 1 (the vector with all components equal to 1), we use the variational

clIarýacterization of the eigenvalues of a self-adjoint, matrix (Clhapter 7, Theorem 4.3



of [37]):

A2 = Inax < x, Ax >,
xES

= max aij~rixixj
i j

c') c)

- max L L__ aij 7i(xi( + xi2 XES
i j

For x E S, we have Ei Ej aij ri(x? + x ) = 2 E 7rixx = 2 < x, x >,= 2, which yields

A2 = 1 -- min aij 7ri(xi - xj).
2 xes,

(5.6)

In particular,
1

A2  1 - aji(y - y j)
2 j

Vy E S,. (5.7)

Moreover, note that we can multiply both sides of Eq. (5.5) by some number K

to obtain that A is self-adjoint with respect to the inner product

< X, x >Kr= xT KD-x

and thus we may analogously conclude

1
A >2 1 - aijKi(yi - yj)",

i j
Vy E SK, (5.8)

5.2.6 Eigenvalue optimization on the line

First, we develop some notation we will use to refer to line graphs. Let La,b with

a < 0 < b b)e the graph with nodes {a, a + 1, ... , b} and edges (i. ) for every pair i, j
that satisfies li - ji = 1 (see Figure 5-1 for a picture).

Lemma 2. Let A be the transition matrix of a reversible Markov chain on L-,,n

whose stationarIy dist.ribution satisfies

- (xi Xj)2).

21



Figure 5-1: The line La,b.

max
ij

SC,
< C

Then
3C2

p>1- (n - 2)2

Proof: Let us choose K = n so that

1n
- E•W = 1

i=1

We will use the notation iri = Kiri. Define 7ra to be maxi w7,. By Eq. (5.9), we

will have that ra' < C.

To bound p using Eq. (5.7), we will use the vector Yk = krmax an/7r'n 5 , where an

is a positive number chosen so that < y, y >,= n=_-, 2y = 1 (computing the sum

explicitly, we see that a < 3/2, for any n). Further, < y, 1 >,,= Ei=-n .... ,, i = 0.

Therefore,

1 (ONIax )2
1 --- A2 aijri m (Yi

i j t2
y ) 2 < 2-2 i E

, J

3C2

4n
2

Adjusting the coefficient in front of the 1/n 2 for graph size, we obtain

3C2
p>1-

(n- 1)2

Note that the line Ln.,, has an odd number of vertices. If the number of vertices

is even. we cani simply duplicate the zero vertex and repeat the above arguiment. We

get:

3C 2

(n - 2)2'

49

(5.9)- I



q.e.d.

Theorem 4. For every in, there exists a symmetric graph with n nodes, such that

every irreducible Markov chain on the graph which satisfies

7"imax- < C
,J 7rj

also satisfies
3C 2

(nl - 2)2
(5.10)

Proof: Let P by the probability transition matrix

By irreducibility, we must have P(i, i + 1) > 0 and

a Markov chain is reversible, because at all times,

of the Markov chain on the line.

P(i, i- 1) > 0 for all i. But such

number of transitions from i to i + 1 - number of transitions from i + 1 to i I< 1

and thus,

riP(i:. i + 1) number of transitions from i to i + 1 up to time t
= lim

t t

im number of transitions from i + 1 to i up to time t
= lir

t t
=7ri+lIP(i + 1, i)

so that the chain is reversible. Thus the bound from Lemma 2 applies. q.e.d..

Corollary 3. For all integer n, there exists a graph with n nodes such that when

the two-step scheme of Section 5.2.2 is applied with an irreducible. stochastic matrix

A with stationary probability satisfying,

max - < C

Then. for n 4large( (nllough. the convergence time can be bounded as.



1 1
TY,(W) > 1(n - 2)2 log-.- 6C2

Proof: First, we note that we need to take n large so that the bound oil p from Eq.

(5.10) is less than 1. For simplicity, we will actually take n to be large enough so that

this bound is less than 1/2, i.e.

3C2 1
1-<-
(n -2)2 - 2

Let the graph be the line on n vertices constructed in Theorem 4. Let vp be an

eigenvector corresponding to the eigenvalue p (recall that p = max{ IA2 1, A,, }). Take

x(0) to be xi(0) = nrrivp. Because Atxnew(0) = AtvP = ptvp which approaches zero as

t --+ 00, we have that x,ne(oo) = 0. Moreover,

IIXnew(t) - Xnew(00)11 2  t

IIXnew(0) - Xnew(00) 112

So that,

Tn () = logp

> log,_ 3C2 6
(n -2)2

log I

2 3C
2

(n -2)2
1 1
(n - 2)2 log -.

q.e.d.



5.3 Convergence time for spanning trees

Theorem 5. The convergence rate of the equal neighbor time invariant model con-

sensus algorithm on a bidirectional spanning tree with n nodes satisfies

1
p 1 - 3n 2 '

Proof: In [27], it was proved that if each node i in a symmetric graph has degree di,

then the second eigenvalue is real and satisfies

1
A2 = 1-- min (Xi - j)2 . (5.11)2 E d•xi=0, dEx=2 -1

We use the methods of [27] to show that for trees, A2 can be upper bounded by

1 - 1/n 2. Indeed, suppose that x satisfies Ei dixi = 0 and Ei dix? = 1, and let Xmax

be such that Xmaxl = maxi Ixx . For a tree, we have >E di = 2(n - 1) + n < 3n, where

the extra factor of n is due to the self-loops. Thus,

1 = dx2 < 3nX2,

and it follows that Xmaxl > 1/ 3n. Without loss of generality, assume Xmax > 0

(else, replace each xi by -xi). Since CE dixi = 0, there exists some i for which xi < 0;

let us denote such a negative xi by ,,,eg. Then,

1
3n- < Xmax - Xneg= (Xinax - Xk) + (Xk 2 - Xk 3 ) + ' ' '

+(Xk,.l - Xneg),

where k1, k2,..., k -i are the nodes on the path from m,,ax to Xneg. Then, by Cauchy's

inequality,
1 II.

- <- (: - .X3). (5.12)3'n - 2

where E is the set of directed edges in the tree. (The factor of 1/2 in the right-hand

side arises because the sum includes both terins (:c., - :c.+) and (XAi+ - .) )



Thus.

S(x.i -xj) 2 >  2
3n2(ij)EE 3

which proves the bound for the second largest eigenvalue.

For the smallest eigenvalue, we have that if G is not bipartite, the following is

true [27]

An = -1 + min E (xi + xj) 2

(i,j) E

Analogously to Eq. (5.12), we can write

1
.v/ xmax - Xneg = (Imax + XZk) - (Xk1 + Xk2) +

(Xk2 + Xk3) -..- (zk,-l + Zneg),

where we make sure that the last sign is negative by making sure that the length

of the path from Xmax to Xneg is even by utilizing self-loops if necessary. We can use

this to obtain a bound similar to Eq. (5.12):

(5.13)
1 n_< E (X, + xj)2,

3n- 2 (i,j)EE

which proves that

A, 2 -1 + 3 2

thus proving the theorem. q.e.d.

Corollary 4. The convergence time of the equal-neighbor model on trees satisfies

T,(E) < (9/4)n7 log nr + (3/2)'12 log 2

Proof: Repeat the proof of Corollary 2 with the above-derived bound on p. The new

bound oii the quantity Pt (see proof of Corollary 2 for (lefinitions) is

. A



IPt(j) - <r(j)| < v (1 - -2

which implies that we need t > (9/4)n2 log n+(3/2)n2 log I to have Pt(j) - r(j)l< < .

The rest of the proof proceeds without alteration. q.e.d.

Example 1: We give an example to demonstrate that the bounds of Theorem 5 and

Corollary 4 are essentially tight. Consider the line on n vertices. i.e. the graph with

vertex set {1,...,n} and edges (i,j) if Ji - jA = 1. Then, letting d(i) denote the

degree of node i, we have that [25]

7 _ d(i)
S <2

7rj d(j)

In Theorem 4, we showed that if one is free to choose the edge weights aij, subject

to the constraint maxi,j w7/7rj 5_ C, then p > 1 - (3C 2)/(n - 2) 2 . Since here C = 2,

it follows that

12
P (n - 2)2

Then, analogously to the proof of Corollary 3, we have that the convergence time of

the equal-neighbour model on the line (for n large enough) satisfies

(n - 2)2 1
Tn() > (n - 2) 2 log -

24

which shows the essential tightness of the bounds in Theorem 5 and Corollary 4.



Chapter 6

Averaging with Dynamic

Topologies

We consider the problem of guaranteeing convergence to the average for the symmetric

model in the presence of a dynamic topology. This question has previously been

considered in the papers [29] and [31]. We present a new algorithm for averaging

in this setting; our algorithm is the first to be accompanied by a polynomial-time

convergence bound.

We first show in section 6.1 that in the absence of symmetry, the agreement

algorithm may take exponentially long to converge. Note that the performance of

the agreement algorithm in the symmetric model with dynamic topology is an open

question. Motivated by this we introduce of an algorithm, in section 6.2, for averaging

in symmetric. dynamic environments; a polynomial-time convergence bound for this

algorithm is proved in section 6.3.

6.1 Exponential Convergence Time for the Agree-

ment Algorithm

We begin by formally defining the notion of "convergence tiime for dynamic graph

sequelc(es. G(iven a sequence of graphs G(t) on n vertices such that Assumiptionl 3



2 3 n/2

n/2+1 n/2+2

Figure 6-1: The iteration graph at time 0. Self-loops which are omitted in the figure
are present at every node.

of Chapter 2 is satisfied for some B > 0, and an initial condition x(0), we define

the convergence time TG(t)(x(O), e) as the first time when each agent is within e of

the final consensus. In other words, t = TG(t)(x(O), e) is the smallest t such that

IIx(t) - limt x(t) 1 < <.

In this subsection, we will show that there exists a sequence G(t) of directed graphs

with B = n + 1, and a corresponding set of initial values -(0), such that T,(t) ((0), E)

is at least (n/ 2)(n+ 2)(n+1l) log 1. This shows that the bounds on convergence time of

the equal-neighbour model derived in Section 2.3 are essentially tight if the graphs

G(t) may be directed.

In the following subsection, we give the details of the construction of G(t) and

g(0).

6.1.1 Construction

The initial condition x^(0) is defined as xi.i(0) = 1 for i = 1,... ,n/2 and .i(0) = -1

for i = t/2 1- 1.... n, r (here n is assmned to be even). Let the graph at time 0 be the

graph shown at Figure 6-1 (note that the figure omits self-loops, which are present

at every node))

1Formally. this is the graph composed of the edges {(j, 1)jj E {1....n/2}}. {(j. n)lj E {n/2 +
1..... } }. {(1. ii). (n. 1)}, and self-loops {(i. i) i-- 1...,n).



2 3 n/2

1

n/2+1 n/2+2 n-1

Figure 6-2: Iteration graph at times 1,..., B - 2. Self-loops which are omitted in the
figure are present at every node.

The result of the equal-neighbour iteration will be:

= -1.1+(n/2) 1 n-2

n/2 + 1 n+2'

and by symmetry in(1) = -(n - 2)/(n + 2); all other ij remain the same at time

1 as they were at time 0, i.e. ;2(1) = x3(1) ... = in/2(1) = 1 and in/2+1(1) =

5.n/2+2(1) = -• = n_1(1) = -1.

Next, for t = 2,..., B - 2, we perform an equal-neighbor iteration on the graph

in Figure 6-2 2

Clearly this iteration does not alter the values of ij for i Z 1, n. Thus, after all

these iterations are completed at time B - 1, we will still have 12(1) = 13(1) = ... =

in/ 2 (1) = 1 and XIn/ 2+1 (1) ýn/2+2(1) ... = _n-1(1) = -1.

We now consider what happens to i1 between times t = 2 and t = B - 1. If at

some time t the value of 1j is 1 - a, then at time t + 1,

(1 - (1 - n) + (n/2 - 1). 1
+1(t + 1) = = 1 - (2/n)a.

n/2

Thus, the gap between the value of .rl and 1 shrinks by (2/n) after such an iteration.

Since initially the gap is 4/(,i + 2), we have that .rx(B- 1) = 1- (4/(1n + 2))(2/,,)I - 2

2 Formially, this is the graph composed the edges {(j, 1)j E {1,...,n/2}}. { (j.n)j1 E {/2 +
1....,n}}, and. self-loops {(i. i) i - 1 ..... }.



By symmetry, x.(B - 1) = -1 + (4/(n + 2))(2/n))B- 2

Finally, at time B - 1, we iterate on the complete graph over vertices {1,..., n/2}

and the complete graph over vertices {n/2 + 1, ... , n}. The result is that nodes

{1, . . , n/2} will have value 1 - (4/(n + 2))(2/n)B- 1 and nodes {n/2 + 1,... , n} will

have value -- (1 - (4/(n + 2))(2/n)B-1).

6.1.2 Analysis

Using the above expressions we have just derived for the components of x(B), we can

infer that,

Imaxi is(B) - mini -i(B)I 2 - 2(4/(n + 2))(2/n)B-1 - (4/ + 2))(2/
= 1 - (4/(n + 2))(2/n)B -1

maxi ýi(0) - mini si(0) 2

Moreover, because 2(B) is simply a scaled 2(0), it is clear that applying this

scheme repeatedly we have I maxi i(tB)-mini :i(tB)lI (1- (4/(n+ 2))(2/n)B - 1)t. TakingI maxi li~i(t)--mini •i(t)l

B = n + 1, we have that the time to until I maxi 1i (tB)-mini ii(tB)I is less than e will takeI maxi li(t)-mini li(t)l

1 (log 1) > (n/ 2 )n (n + 2)(n + 1) 1
t = B _ 42n - 0g - 0g -,- log[1 - (+2)n.-] 4

which is exponentially large in n.

On the other hand, it is easy to see that this graph sequence satisfies Assumption

3 of Chapter 2. Indeed, letting 8(t) denote the edge set of the graph G(t), we have

that the graph ({ 1,... , n, U1l 1 E(t)) - which Assumption 3 requires to be strongly

connected - is simply two copies of the bidirectional complete graph K,//2 joined by

a bidirectional edge. Clearly, this graph is strongly connected.

Since B is a linear function of n, and we have lower bounded the convergence time

by an exponential in n, it follows that no polynomial upper bound on convergence

tilne in terms of n and B is possible.



6.2 Description of the Algorithm

Our algorithm is a variation of an old load balancing algorithm (see [11] and chapter

7.3 of [5]). Intuitively, a collection of processors with different loads try to equalize

their respective loads. In particular, processors with higher loads send some of their

load to neighbors with smaller loads. As load propagates through the network in this

manner, the disparate loads at the nodes approach equality.

Similarly, at each step of our algorithm, each node offers some of its value to its

neighbors, and accepts or rejects such offers from its neighbors. Once an offer from

i to j to send 6 has been accepted, the updates xi ý- xi - 5 and xj <-- xj + 6 are

executed.

As before, we assume a time-varying graph sequence G(t). We only make two

assumptions on G(t): symmetry and bounded intercommunication times (see Chapter

II for definitions).

We next describe the formal steps the nodes execute at each time t. For defi-

niteness, we refer to the node executing the steps below as node A. Moreover, the

instructions below sometimes refer to the neighbors of node A; this always means cur-

rent neighbors at time t, when the step is being executed (since G(t) is not assumed

to be constant with t, the set of neighbors of A may be time-varying).

1. Node A broadcasts its current value XA to all its neighbors.

2. Going through the values it just received from its neighbors, Node A finds the

smallest value less than itself. Let B be a neighbor with this value. Node A

makes an offer of (XA - XB) to node B.

If no node has a value smaller than XA, node A does nothing at this stage.

3. Node A goes through the incoming offers. It sends an acceptance to the sender

of the largest offer and a rejection to all the other senders. It updates the value

of .r, by adding the value of the accepted offer.

If' no offers were received. node A does nothing at this stage.



4. If an acceptance arrives from the offer made by node A, node A updates XA by

subtracting the value of the offer.

Theorem 6. Let x(t) be the vector of values at the beginning end of stage t. Then,

in the symmetric model with Assumption 3, limt,, xi(t) = 1 ~=Ll Xk(0), for all i.

While Theorem 6 admits an independent proof, it is omitted here as the result

follows from. the bounds in the next section.

6.3 Convergence Time

No bounds on the convergence time can be obtained without the assumption of

bounded intercommunication times. (Indeed, by inserting arbitrarily many empty

edge sets S(t) into the sequence, convergence can be made arbitrarily slow). How-

ever, given an upper bound B on the length of the intercommunication times, it is

possible to obtain a bound on the performance of the algorithm, which we describe

below.

Define T,- to be the first time such that Ilx(t) - (1/n) Zk k(0)1112 < E for all

t > T,, where 1 is the vector with all entries equal to 1.

Theorem 7. Suppose that Ek xk(0) = 1. Then, there exists a constant C > 0 such

that for every n and B (this is the constant in Assumption 3), and every sequence of

symmetric edge sets 8(t) that satisfy Assumption 3,

1
T, < CBn" log-, (6.1)

for all -> 0.

Proof:

1. Define V(t) = Ix(t) - 1 En xzi(0)l1I . We will show that V(t) is nonincreasing

in t and that

V((k + l)B) < (1 - )V (A B).

where A is any positive integer.



These two claims readily imply the theorem. To see this, note that the

condition IIx(t) - (1/n) E kxk(0)1 1 2 1< is equivalent to V(t) _ e2. Moreover, if

V(t) decreases by a factor of 1 - - every B steps, then the amount of time we

have to wait until V(t) < 62 is B log(1 _- 1) E2. This latter quantity can be upper

bounded by CBn" log 1 for a constant C. Finally, since V(t) is nonincreasing,

V(t) stays below 62 henceforth.

2. We first show that the "variance" V(t) is nonincreasing. We argue that while

rejected offers clearly do not change V(t), each accepted offer at time t results

in a decrease of V(t + 1). We will view the changes at time t as a result of a

series of sequentially accepted offers, each of which must reduce the "variance"

TV.

To make this formal, let us break time t into n separate time periods as follows.

Order the nodes from smallest to largest so that xl(t) _< x2(t) : ... • x,(t),
breaking ties in any way. Let Ai(t) denote the amount of the offer accepted by

node i at time t (if any). If the node accepted no offers at time t, set Ai(t) = 0.

Further, if Ai(t) is strictly positive, let Ai(t) be the the index of the node whose

offer node i accepted.

* During the first time period, we will have node 1 execute x1(t) +- xz (t) +
Al(t) and we will have node Al(t) execute XA,(t)(t) +-- xA1 (t)(t) - Al(t).

In other words, both 1 and the node whose offer it accepted execute their

update at time 1. On the other hand, if Al(t) = 0, nothing happens at

this period.

* Similarly, during the kth time period, we will have node k execute Xk(t) -

.X,.(t) + AA.(t) and we will have node Ak(t) execute :XA(t)(t) '- 1 A -(t)-

A4.(t). In other words, both k and the node whose offer it accepted execute

their update in period k. On the other hand, if Ak(t) = 0, nothing happens

at. this period.

\'e i0ote that every offer accepted at time t atppears at some stage in the



above sequence. We next argue that each offer decreases V. This will complete

the proof that V(t) is nonincreasing in t.

Let us suppose that after breaking down time t into n time periods as de-

scribed above, an offer occurs at the ith period. Then the offer from some node

must be accepted by node i; let us refer to the sender of the offer as node j.

Now because nodes only send offers to lower valued nodes, xj(t) > xi(t) at the

beginning of time t. After we break down time t into n periods as described

above, we claim that this relationship remains the same by the time the ith

time period is reached. Indeed, xj is unchanged from the beginning of time t

(it can only send one offer, which was to xi; and if it has received any other

offers, this must be counted later at period j > i); moreover, xi could not have

increased (since it is only allowed to accept one offer). Therefore, xj is still

strictly greater than xi by the time the ith period arrives.

Without loss of generality, assume that >E xi(0) = 0 (translation does not

change the argument presented here). The contribution of these two nodes to

V(t) is xo + xj. It is easy to see that this expression is bigger than 2 (x xi)2,

which is the contribution of these two nodes to V after the update.

Summarizing, we can sequentialize the offers accepted at time t in such a way

that each accepted offer will decrease V. Thus, V(t) is nonincreasing.

3. We argue that that the quantity V(t) decreases by a factor of at least 1- 1/(2n 3 )

during one update between times tinitial = kB + 1 and tfinal = (k + 1)B.

Without loss generality, we (i) take 0 to be the initial time; (ii) assume that

Ei xi(0) = 0 (translation does not change the argument presented here): (iii)

Let maxI xi (0)| = 1 so that all the values lie in the interval [-1. +1]. It follows

that V(t) < ii.

Let us order the nodes in increasing order of values at time 0 so that J' (0) <

:c2(0) < z:j(0) < ... ',,(0). The largest gap between any two consecutive ci(0)

must be at least 1/'n. Let i. j be two consecutive nodes whose difference achieves

or exceeds this bound. We argue that over the time interval t = 1.....B



some node must accept an offer whose value is at least 1/2n. Indeed. since

Us=L ..... J(t) is connected, there will be a first time at which a node A with

index at least j communicates with a node whose index is at most i. Because

node A is required to make an offer to the smallest neighbor with value less

than x1A, it will make an offer to some node with index at most i. Let C be this

node. The gap between XA and xc is at least 1/n. Thus, the value of the offer

is at least 1/2n. Since C accepts the largest offer, either this offer or a larger

offer is accepted.

Let D be the node whose offer node C accepts (it may be that D = A, or

D may be different from A). Since the offer accepted by C is at least 1/2n, a

simple computation shows that z2 + X2 is reduced by at least by 1/(2rn2) due

to the communication of D and C. It follows that the percentage decrease in

the variance V2(t) is at least 1/(2n')] by time B.





Chapter 7

Simulations

This thesis proposes three new algorithms for the distributed consensus problem. For

one of these, namely the tree heuristic of Chapter 5.3, the theoretical performance

has been characterized completely - indeed Corollary 4 provides an upper bound on

the convergence time, while Example 1 provides a lower bound. Moreover, as E -+ 0,

the two bounds differ only by a multiplicative constant.

In this chapter, we provide simulations for the remaining two algorithms.

7.1 Averaging in fixed networks with two passes

of the agreement algorithm

In Chapter 4.1, we proposed a method based on the agreement algorithm for averaging

in fixed graphs. We speculated that the presence of a small number of vertices of

high degree would make the performance of our algorithm attractive relative to the

algorithm of [32], which uses a step size proportional to the inverse of the largest

degree (we used step size of e = ~1 in our implementation). Figures 7-1 and 7-3

reflect simulations of the two algorithms. In each simulation, we generate an Erdos-

Renyi randomi graph G(c, n), i.e., each edge is independently present in the graph with

probability c/n. Thus c is the expected degree of each node; in our simulations, we

keep) c fixed while letting n get large. Mhoreover, it is known that c = 1 is a transition
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Graph size, c = 3, number of vertices of high degree = 10

Figure 7-1: Comparing averaging algorithms when c = 3. The top line corresponds
to the algorithm of [32], and the bottom line corresponds to two parallel passes of the
agreement algorithm.

occurs in random graphs for c = 1 [15]; for this reason we provide simulations for

both cases with c < 1 and c > 1.

We next change the random graph G(c, n) by picking nd vertices at random and

adding edges randomly making the degree of these vertices linear in n (nd = 10 in

)both figures). and making each edge incident to these edges is present with probability

1/3. If the resulting graph is disconnected, we reject it and do not run the algorithm.

Else. we run the algorithm until the largest deviation from the mean was at most

1 -- . .

The outcomes, shown in Figures 7-1 and 7-3, are the average of three runs. We

conclude that the algorithm of [32] grows at a considerably faster pace on these graphs

tiian tlie algoritlhnn we propose here.
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Graph size, c = 3, number of vertices of high degree = 10

Figure 7-2: A blow up

0

of the performance of the agreement algorithm when c = 3.

50 100 150 200 250 300
Graph size, c = 3/4, number of vertices of high degree = 10

Figure 7-3: C:omIpriing averaging algorithms when c = 3/4.The top line corresponds
to the algoritlhm of j[32], and the bottom line corresponds to two parallel passes of the
agreementnl algorithiii.
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Figure 7-4: A blow up of the performance of the agreement algorithm when c = 3/4.

7.2 Averaging in time-varying Erdos-Renyi ran-

dom graphs

We report on simulations involving the load-balancing algorithm on time-varying

random graphs. At each time t, we independently generate an Erdos-Renyi random

graph G(t) = G(c, n) - see the previous section for basic background on random

graphs. As before, we simulate both the c < 1 case and the c > 1 case. If the largest

deviation from the mean is at most e = 10- 3 , we stop; else, we perform another

iteration of the load-balancing algorithm.

The results are summarized in Figures 7-5 and 7-6, which again show averages of

three runs. Figure 7-5 shows that the procedure takes only a sublinear number of

iterations in dense random graphs (c > 1). Figure 7-6 shows a slow, approximately

linear growth wheni the random graph is sparse (c < 1).



Number of iterations for the load balancing algorithm

20 40 60 80 100 120 140 160 180
Graph size

Figure 7-5: Averaging in time-varying Erdos-Renyi random
balancing algorithm. Here c = 3 at each time t.
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