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Abstract

The ability to predict structure from sequence is particularly important for toxins,
virulence factors, allergens, cytokines, and other proteins of public heath importance.
Many such functions are represented in the parallel /-helix fold class. Structure pre-
diction for this fold is a challenging computational problem because there exists very
little sequence similarity (less than 15%) across the SCOP family. This thesis in-
troduces BetaWrapPro, a program for comparative modeling of the parallel /3-helix
fold. By estimating pairwise 3-strand interaction probabilities, a profile of the target
sequence is aligned, or "wrapped," onto an abstract supersecondary structural tem-
plate. This wrapping procedure may capture folding processes that have an initiation
stage followed by processive interaction between the unfolded region and the already-
formed substructure. This wrap is then placed on a known structure and side-chains
are modeled to produce a three-dimensional structure prediction.

We demonstrate that wrapping onto an abstract template produces accurate struc-
ture predictions for this fold (in cross-validation: average C, RMSD of 1.55 A in ac-
curately wrapped regions, with 88% of the residues accurately aligned). In addition,
BetaWrapPro outperforms other fold recognition methods, recognizing the /-helix
fold with 100% sensitivity at 99.7% specificity in cross-validation on the PDB. One
striking result has been the prediction of an unexpected parallel /-helix structure for
a pollen allergen, and its recent confirmation through solution of its structure.

Thesis Supervisor: Bonnie A. Berger
Title: Professor of Applied Mathematics
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Chapter 1

Introduction

1.1 Overview

Proteins are the organic polymers responsible for directing nearly all of the activity

within living cells. Among various other roles, proteins serve as the basic structural

components of cells and tissues, provide small molecule transport, work as antibodies

to prevent infection, and act as enzymes to catalyze nearly all of the chemical reactions

that take place within living cells. It is mainly through differentiation of their native in

vivo three-dimensional shape, or fold, that proteins specify their particular biological

function [161.

In this thesis, we present a novel computational method for the recognition and

modeling of protein folds that are comprised predominantly of 3-sheet secondary

structure. In order to motivate our discussion of the method and illustrate results,

we focus attention on the 3-helix motif, a fold represented among virulence factors,

allergens, toxins, autotransporters, and various other proteins of public health im-

portance. We then show that our method is broadly applicable to various other

mainly-beta protein folds.

The remainder of this chapter will present a cursory review of protein structure

and the computational methods that have previously been developed for its analysis.

13
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Figure 1-1: A schematic of an amino acid molecule, showing the central C, carbon
atom, the amino and carboxyl groups, the side chain group, and the hydrogen atom.

1.2 Biological Preliminaries

1.2.1 Amino Acids and Peptide Bonds

Proteins are organic macromolecules composed of multiple amino acids sequentially

bound to one another to form long, flexible chains. An amino acid can, for our

purposes, be viewed as having four relevant chemical components, each covalently

bonded to a central carbon atom called Ca. As shown in Figure 1-1 these four

chemical components are: an amino group, a hydrogen atom, a carboxyl group, and

a side chain (another organic molecule that bonds to Ca at one end of its own carbon

chain). There are 20 distinct amino acids, and these differ from one another only in

the composition of their respective side chains - the amino, hydrogen, carboxyl, C,

composition is common to all 20.

Amino acids form covalent peptide (C-N) bonds with one another as the result of a

dehydration synthesis reaction between the carboxyl group (COO-) of one amino acid

and the amino group (NH') of another (see Figure 1-2). After this reaction occurs, the

amino donor's carboxyl group remains unaltered and exposed at one end of the new

molecule (called the C-terminus), while the carboxyl donor's amino group remains

at the other end (the N-terminus). The newly-bonded molecule is therefore able to

accommodate an additional peptide bond at both its C and N termini (although,

in nature, elongation is always observed to proceed from the N-terminus toward the

14
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Figure 1-2: An Illustration of Peptide Bonding: Amino acids form linear chains by
bonding end-to-end. The formation of the N-C peptide bond between the original
amino (NH') and carboxyl (COO-) groups results is the synthesis of a water molecule

(not shown).

C-terminus), allowing the formation of extended, linear chains of amino acids.

Molecules exhibiting this repeating peptide bond structure are called polypeptides.

Proteins are composed of one or more polypeptide chains, with each chain typically

between one hundred and several thousand amino acids long. To be clear, side chain

groups need not be identical for two amino acids to bond and, in fact, any of the

20 amino acids may form peptide bonds with any other. Hence, this fairly simple

repeated peptide bonding scheme allows an immense amount of diversity amongst

proteins, as there are 20' different n-length polypeptides that may be formed from

the naturally occurring amino acids (there are other less -frequently occurring amino

acids, but they appear so infrequently that they are typically ignored by most anal-

yses).

1.2.2 Structural Properties of Polypeptide Chains

The previous section described the basic chemistry of amino acids and polypeptide

chains. We now describe the properties of a peptide bond's three-dimensional physical

15



structure, and how these properties affect the global conformation of the polypeptide

chain.

Recall that the peptide bond formed between two amino acids occurs between

the CO group of one, and the NH group of the other. This covalent bond causes

the resulting peptide unit to form an essentially rigid, planar structure. This planar

peptide molecule is, however, able to rotate around its bonds with neighboring C,

atoms. See Figure 1-3. These peptide-C, bonds represent the only torsional flexibility

within the protein's backbone.

Thus, when studying protein structure, it is most often useful to view a polypep-

tide as a series of repeating peptide units (bonded CO and NH groups) connected

by C, atoms [10], rather than as a series of amino-C,-carboxyl units bonded to one

another, as in the previous section's discussion. This series of C,-peptide-C,-peptide-

C,-peptide... units is called the backbone of the protein; the ordered (from N-terminus

to C-terminus) list of amino acids that are bonded together to form the polypeptide

is called the protein's sequence.

From this perspective, each C, atom (with the exception of the first and last in

the chain) appears interposed between two peptide units, and bonded to its respective

side chain group. Consequently, each amino acid is associated with two angles: one

describing the rotation of the peptide plane on its amino side, called the # angle, and

one describing the rotation of the peptide plane on its carboxyl side, called the V)

angle (see Figure 1-4). The global conformation of a protein's backbone can therefore

be completely described by specifying the q and 0 angles for each of the sequence's

amino acids.

16
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Figure 1-3: Two amino acids combine, forming a peptide bond and releasing a water

molecule. The resulting peptide unit is a rigid planar structure that rotates around

its bonds with neighboring Ca atoms.
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Figure 1-4: A structural view of a polypeptide chain. Each Ca atom appears between two planar peptide units - one on its
amino side, and one on its carboxyl side. The peptide-Ca bonds are flexible, and the conformational angles that they assume
are called the <$ and ? angles of a particular Ca (or, equivalently, amino acid). The side chain groups are represented in this
diagram by the letter R (residue).



1.2.3 Chemical Properties of Amino Acid Side Chains

Our discussion so far has focused on the chemical properties that are shared amongst

all of the 20 amino acids, and how those properties allow them to form elongated

polypeptide chains. The last section described the basic structural properties of

those elongated chains, and explained how the flexibility within each peptide-C, bond

can allow the macromolecule to assume various conformations. We now describe the

differences between the 20 amino acids, and how these differences in chemistry govern

the structure that proteins assume in vivo.

As noted earlier, each of the 20 amino acids, has a unique side chain group. The

chemical properties of that side chain are what differentiate one amino acid from

another. Table A.1 lists all 20 amino acids, grouped by their chemical properties.

There are two broad categories of chemical interactions involving the side chain

groups that contribute to a protein's final structure: steric effects and weak noncova-

lent bonds [1].

Steric Effects

Two atoms that are not bonded to one another behave much like solid spheres, each

of a fixed radius called a van der Waals radius. Although the the two atoms are not

in fact solid, the repulsive force between their electron clouds increases as they move

closer to each other. When they are sufficiently close in space, this repulsive force

between the two atoms becomes large enough that they are effectively prevented from

overlapping one another. However, a weak attractive force called a van der Waals

attraction will cause these same two atoms to be drawn toward each other at slightly

larger distances. Thus, there exists a distance of minimum energy between every

pair of neighboring non-bonded atoms. At this distance, the magnitude of the weak

attractive force is exactly equal to that of the repulsive force, while the directions of

the two are exactly opposite. The consequences that result from these attractive and

repulsive forces are called steric effects or steric interactions.

The fact that multiple non-bonded atoms may not occupy the same space imposes

19



a significant constraint on the conformations that a polypeptide may assume. For

example, a set of hydrophobic residues may "pack" into the internal core of a protein

only if there is sufficient space in the core to accommodate a low-energy arrangement

of the atoms constituting the side chains. Put another way, any such packing must

be energetically favorable to leaving the residues exposed, where they will be repelled

by surrounding water molecules.

Weak Noncovalent Bonds

Along with steric effects, there are several types of weak noncovalent bonds that are

important to protein folding. Individually, these bonds are generally between 10 - 100

times weaker than the covalent bonds that couple, among other things, the CO and

NH groups in a peptide bond. However, when many of these weak bonds are present,

the sum of their effects can be a significant determinant of protein structure. Along

with van der Waals attractions, which were described earlier, ionic bonds, hydrogen

bonds and hydrophobic forces are the most important noncovalent effects that govern

the spatial conformation of polypeptides.

Ionic bonds are the result of electrostatic attractions between oppositely-charged

atoms. In the cell, polar water molecules tend to surround the charged ions, reducing

what would otherwise be a strong attraction.

Hydrogen bonds occur when an electronegative atom attracts the electron cloud

of a nearby hydrogen atom. When this attraction occurs, the hydrogen is left with

a partial positive charge that then attracts a nearby electropositive atom. Thus,

the electronegative and electropositive atoms become bound via the hydrogen atom

shared between them. These bonds are strongest when all three atoms lie on a straight

line. Since water may induce the atoms to form interfering hydrogen bonds, these

bonds are considerably weaker in aqueous environments.

A significant contribution of this thesis is a study of the observed probability with

which the side chains of different amino acids share hydrogen bonds with one another,

both on the exposed surface and in the buried core of proteins. By learning this

information from a database of known crystalized protein structures, we are able to

20



recognize and model an important class of protein structures, given only their amino

acid sequence. This problem has heretofore proven difficult to solve computationally,

and our method derives a considerable amount of its power from the novel inclusion

of easily-computable evolutionary information about the query sequence.

Interactions with Water

Ten amino acids (glycine, alanine, valine, leucine, isoleucine, proline, cystine, me-

thionine, phenylalanine, tryptophan) have nonpolar side chains that do not interact

with water. Because these residues are hydrophobic, they are typically located on

the interior of proteins, where they are shielded from the aqueous environment of

the cell. Cystine also plays an important roll in governing protein structure, since

stabilizing disulfide bonds can form between the sulfhydryl groups of different cystine

residues [16].

Five amino acids (serine, threonine, tyrosine, asparagine, glutamine) have polar

side chains. These polar residues can form hydrogen bonds with water molecules, so

are most often located on the exterior of proteins, where they interact with water in

the surrounding environment [16].

Three amino acids (lysine, arginine, histidine) have charged basic side chain

groups. These residues are typically positively charged in the cell (although histi-

dine may also be neutral in vivo) and are therefore strongly hydrophilic. Like the

polar residues, these three amino acids are typically found on the exterior surface of

proteins where they are able to interact with water in their environment [16].

Aspartic acid and glutamic acid are the two amino acids with acidic side chains.

They are therefore negatively charged within the cell, and like the basic amino acids,

are driven to the exterior surface of a protein by their hydrophilic nature [16].

1.2.4 Free Energy Minimization

As Section 1.2.3 described, there are many competing forces acting on the atoms that

comprise both the backbone and sidechain groups of a protein. In general, the three-
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dimensional conformation assumed by a protein (in the cell) is that which minimizes

the free energy [1] determined by these forces. It must be the case, therefore, that all

of the information required to specify a protein's structure, and hence, its function,

is contained in its primary amino acid sequence. This hypothesis has been supported

by a large volume of experimental evidence (1], and has given rise to the hope that

a thorough understanding of the energetics involved in protein folding will someday

allow computer algorithms to accurately model and predict the in vivo structure

assumed by a protein, given only its amino acid sequence. Such a result would

eliminate the need for the time-consuming and costly X-ray crystallography methods

currently used to determine protein structure (see Section 1.2.5).

As described in Section 1.3.1, current methods that attempt to directly model

these energy functions have met with limited success, and are not yet capable of

accurately predicting the structure of molecules as large as those typically found

in nature. Instead, some of the most successful state-of-the-art methods rely on

guidance from statistics that capture the effect of the underlying thermodynamics

without modeling them directly (see Section 1.3.2 for details). This statistics-driven

approach is the general idea behind the methods presented in this thesis.

1.2.5 Experimental Determination of Protein Structure and

Sequence

A protein's structure is a fundamental determinant of its biological function. Thus,

in order to assemble a complete picture of how processes evolve in the cell, it is

necessary to first discover the three-dimensional structure of the proteins involved.

Unfortunately, this three dimensional structure is very difficult (and in some cases

impossible) to determine through current experimental techniques. There are two

methods that are commonly used to analyze protein structure: X-ray crystallogra-

phy and nuclear magnetic resonance spectroscopy (NMR). Both are costly and time-

intensive [52]. Because of this, there are relatively few "solved structures." There

are several publicly-accessible databases (PDB [6], SCOP [43], ASTRAL [11]) which
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store and organize experimentally-derived protein structures. At the time of writing,

the PDB, the canonical public database of protein structures, contained just under

35,000 solved structures.

Despite the challenges associated with structural analysis, it is relatively easy to

determine a protein's primary amino acid sequence [1]. Laboratory techniques have

existed since 1950 that allow researchers to do this [22], and the amount of publicly-

available data has grown steadily in recent years, far outstripping the pace at which

protein structures are being solved. At the time of writing, NCBI's non-redundant

protein database contained roughly 3.6 billion amino acid sequences, though some of

these have been inferred though the analysis of genomic data, rather than experimen-

tation [52, 241.

The large amount of sequence data available, in light of the expense associated

with structural studies, seems to justify the intense interest that has developed over

the past decade in applying computational methods to the prediction of protein struc-

ture from sequence data.

1.2.6 Classifying Protein Structures

Proteins typically assume complex, irregular native folds. In order to derive a sys-

tematic method for describing protein structure through a common vocabulary, struc-

tural characteristics of proteins are usually described in terms of five levels of detail:

primary sequence structure, secondary structure, supersecondary structure (folds),

tertiary structure, and quaternary structure.

1.2.7 Primary Sequence Structure

A protein's primary structure is defined simply as its unbroken amino acid sequence,

and is typically written down as a string of one- or three-letter amino acid codes (see

Table A.1). This is, in some sense, the simplest description possible of a protein,

and also the easiest feature to derive experimentally. As discussed earlier, for most

proteins, it is widely believed that the composition of the amino acid sequence contains
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Primary Structure

(GNGQAYWDGKG...)J

ISecondary Structure

(GNGQAYWDGKG...)

(CHHHHHCCCCC...

Supersecondary
Structure

Tertiary Structure

Figure 1-5: The hierarchy of protein structure detail. A protein's primary structure
is simply its amino acid sequence; its secondary structure consists of a classification

of each amino acid into one of a small set of commonly occuring structural subunits

(e.g., H represents a-helical structure, E represents extended sheet conformation, and
C represents coiled regions). Supersecondary structure refers to a topological arrange-

ment of those structural subunits. Tertiary structure consists of three-dimensional
coordinates for each atom in the molecule, depicted as a "ball-and-stick" diagram

overlaid on the ribbon in the bottom figu,24.



all of the information necessary to define the three-dimensional conformation of the

protein in vivo.

Tertiary Structure

A protein's tertiary structure is defined as a complete specification of the atomic

coordinates for each atom in the molecule. Experimental methods for deriving this

information are both costly and time consuming. Since proteins achieve their func-

tionality through physical interaction with molecules in the surrounding environment,

complete knowledge of a polypeptide's atomic coordinates allows a great deal of in-

ference to be made regarding its in vivo function.

Secondary Structure

From a global perspective, most proteins appear to assume a highly complex shape.

Viewed at a local level however, two commonly occurring patterns emerge: the a-

helix and the f-sheet. The a-helix is a right-handed helix, stabilized by hydrogen

bonding between the coiled rungs of the protein's backbone. The hydrogen bonding

pattern induces a 3.6 residue-per-turn periodicity in the helix (see Figure 1-6). It

is important to note that the stabilizing interactions within an a-helix happen at a

fixed and known distance from one another. This observation gives rise to an intuitive

method for searching a primary sequence for likely stretches of a-helix content in the

absence of experimentally derived structure: we can simply search for short regions

within the sequence where the amino acids are amenable to this hydrogen bonding

pattern. For the moment we will sidestep the issue of how one determines whether

or not a particular span of a polypeptide is likely to accommodate such a bonding

pattern; we just emphasize that given the proper features to examine, we know where

in the sequence we need look (i.e., 4 residues toward the N-terminal end and 4 toward

the C-terminal end) to determine whether a particular residue is likely to be part of

an a-helix.

The f-sheet is composed of multiple elongated f-strands that align with one

another to form a "sheet" (see Figure 1-7). Each strand in the sheet is fully extended
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Figure 1-6: The alpha helix consists of a coiled structure where hydrogen bonds form

between the consecutively stacked rungs of the helix. The bonds form between every

3.6 residues [1].

and, in this extended state, the backbones are able to hydrogen bond to one another,

stabilizing the structure. #-sheets typically occur in one of two orientations: parallel

or antiparallel. Parallel f-sheets consist of f-strands that are aligned with their

N-to-C terminal orientation in the same direction. Antiparallel #-sheets consist of

fl-strands that are aligned with their N-to-C terminal orientation alternating from

strand to strand (see Figure 1-7). Unlike a-helices, the f-strands that compose a

fl-sheet can occur a variable distance from one another in the primary amino acid

sequence, making the task of computationally recognizing f-sheets significantly more

challenging than in the case of a-helices, simply because we do not know "where" in

the sequence to look for the next possible bonding location.

Since the strands comprising a f-sheet are fully extended, the side chain groups

of the constituent amino acids lie outside the plane of the sheet. The side chains

alternate orientation, with each residue pointing out of the opposite face of the sheet

from its neighbors in the strand [52]. As far back as 1979, Lifson and Sander noted

that certain side chain groups appear to stack preferentially against others in #-

sheets [38]. Recent studies [18, 42, 52] have developed this idea in order to successfully
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Figure 1-7: The /-sheet consists of elongated -strands hydrogen bonded to one
another through their backbones. The strands can occur a variable distance from
each other in sequence, making them hard to predict computationally. This is an
illustration of an anti-parallel sheet, where the N-to-C terminal orientation alternates
direction between strands [1].

recognize the structure of several /-rich protein motifs from primary protein sequence

data alone. This thesis will present methods derived from these techniques, and build

upon their success to both improve the quality of classification and provide an estimate

of full three-dimensional structures for the motifs.

While there are other less-frequently occurring structural subunits, a-helices and

#-sheets are considered the most important local structure features. The less-structured

regions that occur between helices and sheets are typically referred to as "random

coil" or "turn" regions.

Supersecondary Structure

Frequently, tertiary structure information about a particular polypeptide is not nec-

essary in order for biologists to make reasonable inference about the protein's func-

tion [18]. In fact, it is often the case that when two proteins share a topological

arrangement of their secondary structure features, they also share common evolu-

tionary origin and/or functionality [43]. Such a topological arrangement of secondary

structure features is called a protein's supersecondary structure, and these arrange-
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ments are often referred to as protein "motifs." From a computational standpoint,

this is an appealing notion, since it implies that function prediction essentially re-

duces to finding a solution to the supersecondary motif problem, which appears to be

somewhat easier to solve.

1.2.8 Quaternary Structure

Many polypeptide chains bond to one another to form a protein complex. Often, the

individual chains are inactive until forming the polymer complex. The arrangement

of two or more polypeptide chains to form a complex is called quaternary structure.

Quaternary structure will not be relevant to the class of proteins studied in this thesis,

so we leave the discussion here, but suggest Branden and Tooze's text [10] for further

reference.

1.3 Computational Preliminaries

As discussed in Section 1.2.5, the technical difficulty and expense associated with pro-

tein structure studies, combined with the large volume of sequence data, has triggered

an intense interest in the development of computer algorithms that are capable of pre-

dicting important structural features of proteins given only their primary amino acid

sequence. Rather than presenting an in-depth review of the technical details associ-

ated with the wide variety of computational methods available for predicting protein

structure, we refer the reader to [52, 47], which present additional details. This section

presents an overview of the various prediction approaches, and attempts to highlight

the relative strengths of each.

1.3.1 Ab Initio Structure Prediction

In general, computational approaches to predicting protein structure from primary

sequence data fall into one of two broad categories: those which attempt to directly

simulate the folding process, and those which use statistical inference to compare
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a sequence to a knowledgebase of solved structures. Ab initio methods (literally,

"from first principles") attempt to explicitly model the thermodynamics involved in

the folding process [13]. The goal of these methods is to search the conformational

space of a polypeptide for an arrangement of its atoms that minimizes free energy. In

order to achieve a true global minimum free energy, the objective function needs to

take into account every atom in the protein. Unfortunately, solving these optimiza-

tion problems lies far beyond the capacity of modern computers. Several attempts

have been made to leverage massively parallel super computing technology [45 (also

see [55] for an overview) against molecular dynamics simulations, but rely on either

simplifying assumptions about the energy function, or attempt to model only small

fragments of a larger macromolecule.

One of the most successful molecular dynamics methods currently available is

Rosetta [12]. Unlike others, it is capable of modeling large protein sequences (they

report resolution of 1.5 Aor better for proteins as long.as 80 amino acids), but does

so by maintaining a large database of short (3 or 4 residue) sequence fragments

and their propensity to associate with one another (which have been experimentally

derived). Although Rosetta attempts to explicitly model each local interaction and

modification (at a resolution of 3-4 residues) that might be expected to occur during

the folding process, its use of empirically derived scoring statistics places it somewhere

between ab initio methods and comparative modeling, which we describe next.

1.3.2 Comparative Modeling

Alternatively, the comparative modeling approach to fold prediction sidesteps the issue

of simulating the underlying physical folding process and instead takes inspiration

from the field of statistical machine learning. A comparative modeling procedure

compares its input sequence against a library of known sequence-structure pairs and

attempts to answer the question: Is the input sequence likely to assume a similar fold

to one of the proteins stored in the library?

This technique relies on a set of observations (in this case, experimentally derived

protein structures) which are treated as a training set, or training samples. The goal,
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then, is to uncover features of the training samples that can be used to draw inference

about new, previously unseen examples (e.g., an amino acid sequence whose native

structure is unknown). With this information in hand, an appropriate algorithm can

be devised to automatically examine its input, and respond with an answer (typi-

cally accompanied by some measure of statistical confidence) regarding the input's

relationship to the training set. More broadly, the setup just described is known as a

classification problem in the machine learning community. A complete treatment of

classification paradigms is beyond the scope of this thesis, but the reader may wish

to consult [51] for a thorough introduction.

An appealing feature of these statistical methods is that they need not directly

account for the process that generates the observations. Thus, the issue of intractable

molecular dynamics simulations disappears. Unfortunately, however, the task that

we are left with is often no easier. In order to successfully design such a classification

procedure, two questions need to be addressed: Which features of the data should be

considered by the classifier? What is an appropriate statistical model for describing

the distribution of the observed feature values in the training set? Frequently, the

answers to these questions are suggested by "expert knowledge," then refined through

computational methods [51].

1.3.3 Selecting an Appropriate Method

This thesis addresses the problem of identifying a class of -rich protein motifs

through this statistics-driven framework rather than through molecular dynamics sim-

ulations. In order to make an improvement over the current state-of-the-art methods

for addressing this problem, we will draw upon recent insight regarding the proba-

bility with which each amino acid is likely to "stack" against any other in f-sheet

structures [9, 58, 42, 52]. Note that because the strands of a f-sheet lie close in space

but may be far-separated in the linear amino acid sequence of a protein, ab initio

methods are not appropriate, since they are not generally capable of modeling long

sequences.

We combine these f-sheet stacking potentials with a statistical model of evolu-

30



tionary information known as sequence profiles in order to achieve greater power (and

less frequent type I error, or "false positives") than the currently available methods

provide.

The remainder of this section will offer a brief introduction to several of the tools

currently available for protein structure analysis and prediction, since they will be

referenced in later sections. Again, a more thorough treatment is available in [52] and

the probabilistic underpinnings of these methods can be found in [47].

1.3.4 Sequence Homology

Recall that one of our fundamental assumptions about proteins is that their structure

is determined wholly by their amino acid sequence. Thus, one of the simplest and

most intuitive methods for drawing inference about a protein's structure is to search

a database consisting of sequences of proteins whose structure is known, identifying

those which are most similar to the sequence in question (which we will from hereon

in refer to as the query sequence). If the query sequence is sufficiently similar (homol-

ogous) to any of the sequences contained in the database (we will call such a similar

sequence from the database a match to the query), we can conclude that the query

sequence also assumes a fold resembling that of the match. We need now only to

define a measure of similarity between two protein sequences. We can formalize this

measure by introducing the notion of sequence alignments.

A sequence alignment between sequences S1 and S2 is simply a pairing of each

residue in S, and S2 with either a residue from the other sequence, or a gap, under

the constraint that if i < j, then si, and si, (the ith and jth characters of sequence

1) pair with s2m and s2n (the mth and n'1 characters of sequence 2) respectively

such that m < n or one of the pairings involves a gap. A gap character allows for

explicit modeling of genomic insertion or deletion events. Each alignment has an

associated score, computed as the sum of the pairwise scores for each of the paired,

or aligned residues. The pairwise residue-residue or residue-gap alignment scores are

looked up in a table containing pre-computed values which reflect the probability of

observing a substitution of one amino acid for another amongst sequences which are
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widely accepted to be ancestrally related. The similarity measure for two sequences

is therefore defined to be the score of the optimal alignment between them.

The justification for introducing gaps into an alignment derives from biologists'

beliefs about the evolution of orthologous proteins. Orthologous proteins are those

which share common functionality (usually between species), though are not neces-

sarily sequence identical. It is widely believed that in the course of evolution, proteins

that need to perform similar function undergo small, subtle changes, and that these

changes very infrequently result in significant conformational change. Stated simply,

evolutionary variation amongst orthologous proteins is thought mostly to occur at

catalytic sites on a protein's surface, rather than at locations in the sequence respon-

sible for ensuring fold stability. Thus, insertions and deletions, modeled as gaps in

sequence alignments, allow for slight variation between the two sequences under the

assumption that when strong similarity exists between the remaining portions of the

sequences, those portions represent evolutionary conservation of structure.

There are several pairwise score matrices in common use, and we refer the reader

to Durbin et al. [47] for a detailed review. The default choice for many publicly-

available software packages is the symmetric BLOSUM62 matrix, derived by Henikoff

and Henikoff [27]. This matrix contains log-odds values for the frequency with which

each residue is paired with each other residue amongst a set of hand-aligned related

sequences. The PAM matrices [20] are also frequently used and represent estimated

substitution rates under the assumption that a fixed percentage of the amino acids

in the sequence changed during evolutionary divergence.

Global Alignments

The problem of finding an optimal global alignment (one in which all residues must

either be paired with a residue from the other sequence, or a gap) between two

sequences, given such a scoring matrix, can be efficiently solved using a dynamic

programming algorithm developed by Needleman and Wunsch [44]. This algorithm

is simple both to understand and program, and can be easily modified to change the

way that gaps are scored in order to asses a "penalty" for opening a gap if such is
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warranted by the context of the search.

Local Alignments

It is often times more relevant to search for short spans of highly-similar amino

acid content between two sequences, since such a comparison makes no assumption

of global conformational similarity. These local alignments are a direct extension

of global alignments, but our objective is now to identify the highest-scoring align-

ment between any two subsequences of the original sequences. The result of such an

alignment can shed light on whether two sequences share small fragments of com-

mon ancestral, and hence, structural similarity. Smith and Waterman [54] derived

a straightforward extension of Needleman and Wunsch's algorithm intended to deal

with local sequence alignments and like Needleman and Wunsch's procedure, it uses

dynamic programming to find optimal alignments.

Heuristic Methods

The most common use of sequence alignment tools is to search a large database of

protein sequences for matches to a query sequence. Given the large volume of se-

quence data currently available, the 0(n2 ) running time of Needleman and Wunsch's

procedure has become somewhat impractical for performing frequent queries. This

has lead to the development of several heuristic-based search procedures which sig-

nificantly improve performance at the cost of guaranteeing an optimal answer (i.e.,

identification of the optimal alignment). The most popular of these heuristic methods

is the Basic Local Alignment Search tool, or BLAST [2]. In practice, BLAST and its suc-

cessor PSI-BLAST achieve performance improvements that make large-scale database

searching feasible while rarely failing to find optimal alignments.

Measuring Sequence Similarity and Identity

Once two sequences have been aligned, we can define two useful measures of how alike

the two are:
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Identity -Number of identical aligned residues
Length of shorter sequence

Similarity - Number of similar aligned residues (1.2)
Length of shorter sequence

where residues having a positive alignment score in the BLOSUM62 matrix are con-

sidered similar. Proteins having greater than 25% Identity or greater than 40%

Similarity values are usually assumed to have the same three-dimensional struc-

ture [48]. There are, however, many protein fold families (see [43] for an overview of

hierarchical protein fold classification) that have low sequence similarity amongst their

members, but share common tertiary structure. Identifying members of these families

by sequence homology searches is therefore not possible. This thesis addresses the

problem of identifying one such fold family, the single-stranded right-handed 0-helix.

1.3.5 Profile Methods

Sequence profiles provide a method for compactly representing the amino acid content

of a family of proteins. Whereas a single sequence describes the amino acid content of

a single protein at each residue position, a sequence profile captures the distribution

over all of the 20 possible amino acids at each position in a multiple sequence align-

ment. Intuitively, at the positions most responsible for maintaining fold stability, we

would expect to see a good deal of sequence conservation. Consequently, the amino

acid distributions at these positions in a profile end up strongly biased toward those

amino acids that preserve the physical characteristics necessary to maintain stabil-

ity. Gribskov et al. [26] provide a detailed overview of the motivation for employing

profiles in comparative structural studies, such as this thesis. The most popular tool

for creating sequence profiles is PSI-BLAST [2]. Profile-based algorithms have been

successfully used to predict secondary structure in Jones' PSI-PRED software [31]. We

will make use of PSI-BLAST to create sequence profiles, and PSI-PRED to help filter

type I error.

34



1.3.6 Hidden Markov Models

Hidden Markov Models (HMMs) and their more general counterparts, Dynamic Bayesian

Networks (DBNs), (see [51] for a review of probabilistic models) have become increas-

ingly popular tools for modeling biological information. Amongst other applications,

HMMs have been successfully used to perform pairwise sequence alignment [47], rec-

ognize distantly-related families of proteins [5, 21], and perform multiple sequence

alignments [47]. Pf am [5] is a publicly-available database of HMMs, built from hand-

curated protein sequence profiles. Each HMM corresponds to a unique family of

proteins. Researchers may freely use these models to search databases for sequences

that are likely to be members of the model's family. We will use an HMM-based

search as a pre-processing step for the methods developed in this thesis. Durbin et

al. [47] provide a thorough overview of the theory and practice of modeling biological

sequence data with HMMs.

1.3.7 Threading

Threading methods operate by aligning, or "threading" a query sequence onto a

library of tertiary structure templates. Frequently, these libraries simply consist of a

large collection of solved protein structures. The quality of any particular threading is

computed by evaluating an energy function that accounts for the local environment

of each amino acid, as prescribed by the alignment onto the structural template.

The optimization problem that results (identifying the minimum energy threading

for a given sequence onto a particular template) is NP-complete [35], so threading

schemes often estimate an initial sequence-template alignment using homology-based

alignments. GenThreader [32] is one of the most commonly-used threading tools.

RAPTOR [59] is a threader that was among the best-performing entrants in recent

CASP competitions.

35



36



Chapter 2

BetaWrapPro

This chapter introduces a novel method, BetaWrapPro, for identifying protein se-

quences compatible with the pectin lyase-like superfamily of the single-stranded right-

handed f-helix fold class, a family under the mainly-# branch of the SCOP hierar-

chy [43] with low sequence identity amongst its members. In addition to providing

better recognition of the fold than the currently available methods, BetaWrapPro

accurately aligns compatible sequences onto an abstract super-secondary structural

template. This accurate sequence-structure alignment facilitates use of sidechain

packing methods, enabling us to report estimated three-dimensional atomic coordi-

nates for compatible sequences. We conclude with an overview of recently published

results that indicate the methods presented here can be applied to other mainly-fl

fold classes as well.

2.1 Motivation

The structural motif recognition problem is: given only the target amino acid se-

quence for a protein, and a template for a superfamily or fold class, predict whether

the protein folds into a 3-D structure which is a member of that superfamily, or fold

class, or not[43]. The output of a program that performs structural motif recogni-

tion is a yes/no answer, usually accompanied by a measure of statistical confidence.

The comparative modeling problem refers to the next step in structure prediction:
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given only the target amino acid sequence for a protein, and a superfamily or fold

class, predict whether the protein folds into a 3-D structure which is a member of

that superfamily, or fold class; if so, give an accurate residue-by-residue alignment

of the portions of the target sequence onto a super-secondary structural template,

and finally, produce a prediction of the structure's atomic coordinates based on this

alignment. This thesis studies the comparative modeling of a motif in a case where

producing the correct sequence-target alignment was considered to be an extremely

difficult problem.

Both the structural motif and the comparative modeling problems are more easily

solved when there is sufficient sequence similarity between protein sequences in the

superfamily, because proteins whose sequences are sufficiently similar fold into similar

structures. For such a superfamily, membership queries and template alignments can

be solved by simply running standard sequence matching tools such as BLAST and its

variants[3, 2]. Even the more elaborate prediction methods, including Threader[32],

GenThreader[30], and those based on hidden Markov models, rely upon structural

conservation correlating to sequence conservation within the superfamily. However,

there exist many protein superfamilies where, while the 3-D structures of the proteins

are very close, there is insufficient sequence identity to determine from homology alone

if an unsolved protein sequence is a member of the superfamily in question. We call

such superfamilies sequence heterogeneous.

It has proven to be a difficult challenge to devise even structural motif recog-

nizers for mainly-beta structures that are sequence heterogeneous. In fact, simply

predicting the correct annotation of just the secondary structure of these folds can

be problematic: Even the best secondary structure predictors such as PHD[49] and

PSIPRED[31] more accurately predict a-helices than f-strands[36]. Insofar as general

secondary structure predictors are concerned, it has been our experience that current

methods do not suffice even to correctly determine the number of /-strands in a se-

quence's putative fold, much less accurately define the ends of such strands. Rather,

we have found that to recognize such motifs, we must search for secondary structure

and super-secondary structure at the same time. This was the approach taken in
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previous studies by Cowen et al.[18, 9] and Menke et al.[42J. Specifically, these efforts

produced the BetaWrap program for predicting the motifs characteristic of the pectin

lyase-like superfamily of the single-stranded right-handed /-helix SCOP[43] fold class,

and Wrap-and-Pack, designed for predicting the #-trefoil motif.

The heart of both of these recognition methods is a "wrapping" algorithm[42, 18]

which searches an input target sequence for aligning /-strands (parallel in the case

of the 3-helix, antiparallel in the case of the /-trefoil) at structurally conserved re-

gions within the template. Whereas threading and hidden Markov model methods

generally require training on representatives for each family in the superfamily (see

the discussion of the performance of these methods in [18, 42]), our method is ca-

pable of accurately capturing the structural similarity across an entire superfamily

with a single super-secondary structural template. Evaluation of the quality of a pro-

posed alignment is perfomed by computing the likelihood of the alignment, given the

pairwise inter-strand residue-residue correlations learned from databases of general

/-strand interactions. (Both studies make a point of excluding known instances of

the fold from the database used to learn their respective pairwise correlations, thus

avoiding potential preferential bias for interactions that might be specific to the fold

or superfamily under consideration.)

Steward and Thornton[58] take an information theory-based approach to the prob-

lem of determining the correct alignment between interacting /-strands in parallel

and anti-parallel /-sheets, and their results suggest that when it is possible to limit

the search to a narrow window of sequence around suspected interacting strands,

consideration of inter-strand residue-residue pairings can be of significant value in

determining the correct alignment between /-strands.

The purpose of this thesis is to present a program, BetaWrapPro, that solves the

comparative modeling problem for the pectin lyase-like superfamily of the single-

stranded right-handed 3-helix SCOP[43] fold class (henceforth to be referred to as

the /-helix motif; see Figure 2-1).

The fold is characterized by a repeating pattern of parallel /-strands in a tri-

angular prism shape[61]. The cross-section, or rung, of a /-helix consists of three
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Figure 2-1: Side view of X-ray crystal structure of Pectate lyase C from Erwinia

chrysanthemi[50]; f-sheet B1 is shown in light gray, B2 in medium gray, and B3 in

black.
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Figure 2-2: Top view of a single rung of a f-helix, parsed into 0-strands BI, B2, B3

and the intervening turns T1, T2, and T3. The alternating pattern of the strands

before and after T2 is conserved across the superfamily.

f-strands connected by variable-length turn regions; the backbone folds up in a he-

lical fashion with f-strands from adjacent rungs stacking on top of each other in a

parallel orientation (Figure 2-2).

2.2 Algorithm

2.2.1 Overview

BetaWrapPro "wraps" a profile of a target sequence onto a super-secondary struc-

tural template for a f-helix (Fig. 2-2) by searching for high-quality residue-residue

interactions between aligning f-strands. A profile for a target sequence composed

of n residues is simply a 20 x n matrix that encodes the distribution of amino acid

composition (over all 20 possible amino acids) in the columns of a multiple sequence
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alignment1 performed using the target as a probe[2]. Each row of the matrix cor-

responds to one of the 20 amino acids, and each column corresponds to a location

in the original target sequence. Thus, each entry in the matrix presents information

concerning the chance of observing each amino acid aligned against a given loca-

tion in the probe. Taken as a whole, this matrix presents information about residue

conservation (which locations are conserved, which are variable) and what types of

substitutions are allowed at each location[26].

Moreover, even if undetectable by straightforward homology searches across a

superfamily, selective pressure on residues that stabilize a fold ought to constrain

evolutionary substitution at these locations and evidence of the amino acid substitu-

tions compatible with the fold should be present within the profile. Our method takes

advantage of the fact that #-strand interactions act as a stabilizing mechanism for

the 3-helix by considering the potential mutations suggested by the target's profile

when evaluating pairwise #-strand alignments.

We use this wrapping procedure to identify the highest scoring alignments of the

target sequence onto the -helix motif. If any of the scores derived from the wrapping

procedure are sufficiently high, we then use these alignments along with a represen-

tative set of known #-helix backbone structures to perform sidechain packing. The

result is a set of estimated atomic coordinates for the sequence's three-dimensional

structure.

2.2.2 Details

The BetaWrapPro method can be divided into three distinct phases: coarse motif-

compatability filtering, profile generation, and finally, alignment of the sequence/profile

pair onto the motif.

. As an initial step, BetaWrapPro uses BetaWrap[18] as a subroutine to test an

input target sequence for compatability with the single-stranded right-handed /-helix

fold. Any sequence assigned a BetaWrap score below a pre-specified threshold is

automatically rejected. For this study, a fairly liberal threshold of -25 (this is the

1Columns involving a gap in the probe are ignored.
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raw score assigned by BetaWrap, which corresponds to a p-value of 0.0696, at which

sensitivity is 100% and specificity is 91.1%) was chosen to ensure not only that all of

the known /3-helices passed the initial filtering, but also to test our method's ability

to improve upon BetaWrap's specificity.

For a sequence that passes this score threshold, a profile is then created using

PSI-BLAST[2] (see Sections 2.2.1, 1.3.5, and 1.3.4). A generalized version of the

BetaWrap algorithm, modified to handle multiple aligned sequences and cater-corner

#-sheet stacking potentials, is then used to score this profile for compatability with

the #-helix fold. We describe these modifications next.

2.2.3 Generalizing the BetaWrap Algorithm

The original BetaWrap method evaluates the propensity for a polypeptide single chain

to form a /-helix by computing the likelihood of inter-strand residue stacking. First,

it identifies likely locations for the well-conserved B2-T2-B3 rung segment by search-

ing for a simple hydrophobic residue sequence pattern. From each such segment, it

searches forward and backward in the sequence for potential neighboring rungs that

align well. The quality of any proposed rung alignment is estimated as a function of

the inter-strand residue pairings that would occur from the hypothesized alignment,

based on previously-derived /-sheet pairwise correlation statistics. Intuitively, the

probability of a given rung alignment is the product of the probabilities (as estimated

by the correlation statistics) of the individual residue-residue pairings occurring be-

tween adjacently stacked strands.

We extend this method to operate on a sequence and its accompanying profile

in a natural way. Recall that the sequence's profile encodes the weight assigned to

each possible residue substitution (derived from a PSI-BLAST alignment) for each

position in the target sequence. Rather than compute the score for a hypothesized

strand alignment to be the probability of the single chain aligning against itself, we

now compute an alignment score as the product of the probability of the single-

chain alignment multiplied by the weighted probability of aligning the single chain
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against all possible residue substitutions 2. The weight associated with each residue

substitution is simply the weight defined for that residue in the target's profile in

the column corresponding to the position currently being considered in the target

sequence.

The correlations used in the above computation are derived from similar f-sheets

taken from the PDB, excluding the template fold class (f-helix) members. The

probability that a residue of type X will align with a residue of type Y is determined

by the pairwise frequency of X and Y aligning, over the frequency of X appearing,

conditional on whether X is exposed or buried. Conditional probabilities are defined

for stacking residues in adjacent f-strands and for cater-corner residue pairs, that is,

those residues one off from a vertical alignment in either direction.

The exact formula for computing the interaction probability between positions i

and j in a sequence is given in Equation 2.1, where d varies over each of the 20 amino

acids, P(ri, d) is the log probability of the residue in position i interacting with d,

and f(d, j) is the frequency with which residue d appears in position j of the profile.

The weight w assigned to the interaction is based on the relative locations of i and j:

inward-pointing adjacent residues have a weight of 1, outward receive a weight of 0.5.

Outward pointing adjacent residues receive a lower weight based on the assumption

that structural conservation is less likely to occur on the exposed surface of a protein

than in the buried core. One-off residues receive a weight of 0.25, reflecting the fact

that there are twice as many one-off residues as adjacent ones.

There are several score adjustments that reflect fold-specific knowledge. A penalty

of -1 is assessed to an alignment for each standard deviation from the mean number

of residues between rungs. A penalty of -1 is also assessed for each large hydrophobic

residue at a position that bounds one of the predicted f-strands. A bonus of +1 is

granted for each pair of stacked aliphatic, aromatic, and polar residues.

20

P(i, j) = w E P(ri, d)f (d, j) (2.1)
d=1

2For efficiency and accuracy, all probabilities are actually log-transformed.
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The procedure outlined above is implemented as a pruned search over all possible

strand alignments, resulting in a parse of the target into high-scoring rung alignments

(or wraps). Initial structural alignments of known 3-helices suggested a conserved

wrap size of five rungs. This rung parse induces a secondary-structure annotation

(of -strand and turn regions) on the target. Once these wraps have been generated,

an a-helical secondary structure filter is applied to remove those which overlap with

regions of high a-helical content (as reported by PSIPRED[31]), and the 10 top-scoring

wraps are reported.

Finally, a consensus secondary structure annotation for the target is generated

by breaking each of the ten best wraps into pairs of adjacent rungs and finding the

four overlapping rung pairs that occur most frequently. This alignment of the target

sequence to the supersecondary structural template can then be passed to standard

packing methods to estimate atomic coordinates for the structurally conserved re-

gions.

To obtain these coordinates, BetaWrapPro uses SCWRL[8] to place sidechains onto

several representative backbones, and the structure with the lowest SCWRL energy score

is presented in PDB format. The energy score is a measure of how well the sequence

fits the backbone template: a high-energy score implies that many atoms are too close

to one another, and the sequence is unlikely to form the target fold (either because it

forms another fold, or it is poorly aligned to the structural template). Similar to other

fold recognition programs (e.g., PROSPECT[60]), only a partial structure is output,

corresponding to those portions of the template that do not include unstructured

loop regions.

A publicly-available web server implementing this method is available at:

http://betawrappro.csail.mit.edu/
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2.3 Methods

2.3.1 The Databases

The f-structure database was constructed from the PDB-select[29, 28] 25% list of

June 2000, (with membrane proteins and the f-helices removed) as described in

Cowen et al., 2002[18].

The fl-helix database was constructed from the sequences associated with the

pectin lyase-like superfamily of the single-stranded right-handed#-helix SCOP[43]

fold class. This superfamily is comprised of eight individual families, represented

by 12 unique sequences. Although there are four other superfamilies under this fold

class, they each contain only one or two representative sequences. For this reason, and

because several of the structures (e.g. 1hf2[17] and 1k4z, by visual inspection and PDB

coordinates) do not map directly onto the generalized single-stranded right-handed-

helix template that we consider in this study, these superfamilies were omitted from

the main portion of this study.

The PDB-minus database was constructed from the amino acid sequences in

RCSB's pdb-seqres database (23 June, 2004 revision), with all of those sequences

represented in the f-helix database removed. This database was filtered to a 40%

sequence identity non-redundant set of representatives. Low-complexity, coiled-coil,

and transmembrane regions were then filtered out of this representative set. Protein

sequences belonging to the leucine-rich repeat and single-stranded left-handedf-helix

SCOP fold classes were also excluded from the PDB-minus database. Members of

these two classes (which correspond to the Pfam families LRR and Hexapep, resp.)

conform to well-characterized sequence motifs that contain short (20-29, and 6 residue,

resp.) repeats[5]. Sequences containing short repeat motifs have been experimentally

observed to be a common source of false-positives generated by the BetaWrap[18] al-

gorithm, and were thus excluded on the grounds of being easily filtered. Since the

last revision of SCOP, four newly solved structures (PDB ids lnhc, logm, lrwr, and

lru4) have been identified as f-helices. These were also excluded from PDB-minus.

As they have not yet been classified into a SCOP superfamily, they were also excluded
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from the 3-helix database.

All PSI-BLAST queries were performed against the nr90 database, which was con-

structed from NCBI's non-redundant protein sequence database (24 June, 2004 re-

lease). This database was filtered to a 90% sequence identity non-redundant set

of representatives and low-complexity, coiled-coil, and transmembrane regions were

again removed.

New #-helices were identified from the SWISS-PROT[7] sequence database (Re-

lease 44.0 of 05 July, 2004), which was filtered to a 40% sequence identity non-

redundant set of representatives, containing 48,269 sequences.

Redundancy filtering was accomplished using the CD-HIT[37] program which,

given an identity threshold, produces a set of representative sequences from an input

database such that no two sequences in the output have greater sequence identity

than the threshold value. Decreasing the amount of redundant sequence informa-

tion in the PSI-BLAST search database (nr90) effectively reduced the amount of time

required to build sequence profiles, while maintaining an adequate number of re-

lated sequences to construct useful alignments. The PDB-minus and SWISS-PROT

databases were redundancy-filtered in order to get an accurate representation of our

method's performance on the diverse sequence information present in these databases,

and to avoid biasing sensitivity and specificity scores in any particular direction due

to over-represented homologs.

Where appropriate, several of the databases were also filtered for low-complexity,

coiled-coil, and transmembrane regions using the pfilt[31] program. Methods for

identifying these regions are well-understood, and their inclusion in our databases is

of little use to the present study.

2.3.2 Building Profiles

The profiles used in this study were constructed by running PSI-BLAST[2] for two it-

erations, and extracting the matrix of weighted observed residue frequencies reported

by PSI-BLAST. All PSI-BLAST queries were performed against the nr90 database,

described above, and all other parameters for PSI-BLAST were left at their default
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values.

2.3.3 Secondary Structure Prediction

An important part of the /-helix recognition method is screening a sequence for alpha-

helical content. Whereas previously this had been achieved, primarily for simplicity's

sake, by using the information-theoretic GORIV[25] method, our new algorithm uses

the secondary structure predictions generated by PSIPRED[31]. Having already gen-

erated the PSI-BLAST profile for a target sequence, running PSIPRED presents a neg-

ligible increase in computational overhead, and allows us to leverage the information

contained within the multiple sequence alignment, yielding more accurate secondary

structure prediction[31]. Thus, to generate secondary structure predictions for a

given sequence, we ran PSIPRED on the checkpoint file generated by the two iteration

PSI-BLAST search described above, using the default number of filter iterations, with

an a bias setting of 1.0 and / bias set to 1.3, as recommended by the program's

authors.

2.3.4 Training

A leave-family-out cross-validation was performed on the eight /-helix families rep-

resented in the /-helix database. PDB-minus was randomly partitioned into a 60%

training set and 40% testing set. For each cross, proteins in one /-helix family were

placed in the testing set, while the remainder of the /-helices were placed in the train-

ing set. Parameters in BetaWrap are tuned according to the training set. A score

threshold was then learned as the minimum score of any known /-helix contained in

the training set, and this threshold was then used to classify sequences contained in

the testing set.
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2.4 Results

2.4.1 Recognition and Alignment of Known -helices

On the 3-helix database described in Section 2.3.1, BetaWrapPro recognizes the #-

helix fold with 100% sensitivity at 99.7% specificity in cross validation. This is an

improvement over the results for BetaWrap (100% sensitivity at 95.0% specificity) on

the same database. This improvement in specificity resulted in over 300 sequences

from the PDB-minus database that were falsely identified by BetaWrap as -helices

being correctly rejected by BetaWrapPro.

BetaWrapPro also produces accurate alignments of the target sequence onto the

structural template. In sequence-heterogenous motifs such as those BetaWrapPro has

been designed to predict, this is difficult to accomplish by the common homology-

based sequence similarity methods. However, our profile wrapping technique proves

to be successful at predicting alignment to a supersecondary structure template across

diverse sequence families. All results stated in this section are from the leave-family-

out cross-validation described in Section 2.3.4. In particular, we always perform

sidechain packing onto a backbone taken from a family different from that of the

target sequence.

On the 12 0-helices in our database, the sequence-structure alignment is accurate

(within four position shifts of the exact position, as in Zemla et al. [62]) for 88%

of predicted residues. To verify that the additional information provided by the

introduction of sequence profiles assists in wrapping, BetaWrap was also modified

to produce a sequence-structure alignment using the same method introduced in

BetaWrapPro. The improvement was significant: BetaWrap's alignments were only

67% accurate.

2.4.2 3D Structure Prediction for the Known 0-helices

The high-quality sequence-structure alignments produced by BetaWrapPro enable

us to use SCWRL to generate accurate tertiary structure predictions for the conserved

48



template motif regions. The accurately aligned regions of the f-helix template average

less than 2.0 ARMSD (see Table A.2). The sidechain predictions placed onto the

backbone by SCWRL are consistent with SCRWL's reported performance on near-native

backbones [8], with 61% of X, and 42% of X1+2 angles correct. (Dihedral angles are

counted as correct if they are within 400 of the angle in the solved structure.) Table

A.2 indicates that even when there is very low sequence identity between members of

a fold class, the method employed by BetaWrapPro can be used to produce accurate

3D models of the proteins conforming to the fold.

2.4.3 Comparison to Other Methods

We compare BetaWrapPro to several popluar methods for fold recognition and sequence-

structure alignment. Given that BetaWrapPro is specifically tailored to f-structural

folds, we expect it to perform better, and this indeed turns out to be the case. As re-

ported previously [18, 9], neither PSI-BLAST nor HMMER succeed in recognizing these

folds across families. PSI-BLAST failed to recognize L-helices in a leave-family-out

cross-validation (with the exceptions of the pectate lyase and pectin lyase families,

and some examples across these families and the galacturonase family), and HMMER

performed slightly worse.

For alignment accuracy, we compared the output of PSI-BLAST, PROSPECT Version

2 [60] and RAPTOR [59]. In all cases, we recreated the leave-family-out testing method

used throughout this work, excluding from the PSI-BLAST database or the PROSPECT

and RAPTOR template libraries all proteins in the same SCOP family as the target

sequence. PSI-BLAST was run on the PDB database described in Section 2.3.1, filtered

to 90% sequence identity. The default E-score cutoff for inclusion of 0.01 was used,

and all searches converged within three rounds. PROSPECT was run using secondary

structure prediction and evolutionary information from the same PDB data set just

described, and z-scores were calculated with the -reliab option. RAPTOR was run

with all default values.

As Table A.3 shows, BetaWrapPro produces more accurate sequence-structure

alignments to the template across the entire range of the fold than more general
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methods. Our method finds an alignment with at least some residues correct for all

but one tested sequence while the other tested programs often fail to align anything.

In fact PSI-BLAST fails to produce any alignment at all on 67% of the tested struc-

tures. While PROSPECT and RAPTOR do find alignments for most of the /3-helices, their

alignment quality is substantially worse than BetaWrapPro's. BetaWrapPro align-

ments are for a 65-residue motif, while the alignments of other programs may be

longer or shorter.

Finally, we mention that Liu et al. [39] have recently produced a fold recognizer

tailored, like BetaWrapPro, specifically for the f-helix fold, and achieve 100% sensi-

tivity. They report 100% specificity on an unspecified version of PDB25 and have not

made their program available, so it is not possible to perform a direct comparison to

BetaWrapPro.

2.4.4 Recognition of Unknown Sequences

BetaWrapPro identifies a number of putative 0-helices in the SWISS-PROT data set

(see Section 2.3.1). These include a number of bacterial autotransporters, includ-

ing probable outer membrane proteins in Chlamydia pneumoniae (SWISS-PROT ID

Q9Z813), Chlamydia muridarum (Q9PL47), and Bordetella parapertusis (P24328);

AcfD from Vibrio cholerae (Q9KTQ4); adhesion and penetration protein precursor

(P44596) and a putative surface exposed virulence protein from Haemophilus influen-

zae (P25927); and C5 epimerase from Pseudomonas aeruginosa (Q51371). We further

note that while 44% of the sequences in SWISS-PROT are derived from mammals,

mammalian sequences make up only 12% of the f-helix sequences that BetaWrapPro

identifies from the same database, supporting earlier species distribution claims [9, 18].

BetaWrapPro also successfully identifies the newly-solved f-helical protein Jun a

1 [19] (PDB ID lpxz), an allergen from Juniperus ashei,with a P-score of 0.0000, and

filamentous hemagglutinin [14] (1rwr) from Bordetella pertussis (P-score # 0.0014),

despite a lack of significant sequence identity to previously solved f-helix structures.

These proteins were not included in the training set, as the structures were not

available at the time.
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Complete lists of high-scoring sequences detected and their BetaWrapPro scores

can be found at the same location as our web server.

In addition to these novel predictions, Junker et al. [33] used BetaWrapPro to

bootstrap a database of protein sequences that were used to identify an important

class of autotransporter proteins believed to contain a f-helical passenger domain.

2.5 Discussion

Our results indicate that evolutionary information in the form of profiles generated by

sequence alignments, when used in conjunction with statistics about pairwise residue-

residue interactions occurring between adjacent f-strands on an abstract structural

template can allow accurate fold recognition and sequence-structure alignment for the

f-helix fold. Even when undetectable by straightforward sequence similarity searches

across a SCOP superfamily or fold, selective pressure on residues that stabilize a

fold ought to constrain evolutionary substitution at these locations and evidence of

the amino acid substitutions compatible with the fold should be present within the

profile. We take advantage of the fact that f-strand interactions act as a stabilizing

mechanism for the #-helices by considering the potential mutations suggested by the

target's profile when evaluating pairwise f-strand alignments.

We thus obtain a novel recognition and alignment method devised specifically for

mainly-f supersecondary structure motifs representing sequence-heterogeneous fami-

lies. The improved specificity of the BetaWrapPro method gives us greater confidence

in the prediction of f-helices and other mainly-fl folds (see Section 2.5.2). Moreover,

our programs ability to produce 3D structures of newly predicted f-helices is useful in

identifying novel structures, predicting functional residues, and designing mutational

studies that could in turn lend support to the prediction.

We have found that sequences with a fl-helix P-score of less than 0.002 have a

strong likelihood of forming the fold, and those with a P-score of less than 0.01 may.

We are pursuing a number of methods to further improve the structures produced

by BetaWrapPro, such as extending the number of rungs and attempting to pinpoint
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active sites. Based on X-ray scattering results [34] we also note that 0-helices are

a possible structure for many prions and amyloids. We hope to apply methods de-

veloped for BetaWrapPro to combine sequence information with CD spectral, X-ray

scattering, and electron microscopy data to model and investigate the observed prop-

erties of prion tendrils.

2.5.1 Biological Implications

The majority of the #-helical protein structures deposited in the Protein Data Bank

(PDB) are carbohydrate binding proteins involved in host cell recognition, infec-

tion, or penetration. One large -helix family is the pectate lyase family, required

for virulence in soft rot plant disease. Initial sequence homology studies have sug-

gested that these proteins are representatives of a large class of virulence factors not

limited to plant disease: homologous sequences are found, for example, in Yersinia

pseudotuberculosis. Right-handed #-helix domains have also been found among the

virulence factors and adhesins of microorganisms, including Salmonella typhimurium

phage P22 [57], the plant pathogen Aspergillus niger [40], and the whooping cough

pathogen Bordetella pertussis [23]. Thus the accurate prediction of 3-helices in mi-

crobial or viral sequences is likely to be a useful early warning method for identifying

proteins playing a role in cell attachment and penetration.

In addition, #-helices may be novel targets of anti-bacterial agents. It is known

that 0- helices use the lateral surface of the helix to bind polysaccharides and re-

lated molecules. We suspect that this function is particularly important for bacteria

and viruses that bind to cell surfaces. Insights into the details of the mechanism

of glycolysis and the specific amino acid residues involved for both lyases and hy-

drolases are aided by crystallographic structures of these proteins complexed with

their carbohydrate substrates. The active site is located in a groove on the elongated

lateral surface in the B3-T3-B1 region of the domain [56]. This general use of an

elongated surface rather than a crevice is quite different from the active site clefts

in conventional enzymes and may underlie the selection for this elongated fold. By

locating this region in an unsolved sequence, researchers can focus their efforts on a
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much smaller section of the protein. Since parallel 3-helices appear to be relatively

rare in mammals and humans, such inhibitors may be very specific for their protein

substrates. In addition, since they will be sugar analogues, solubility and transport

problems should be relatively easy to overcome.

The prediction and subsequent confirmation of the /-helical conformation of a

pollen allergen is of particular interest. Given the role of /-helices as microbial vir-

ulence factors and toxins, it is not surprising that the immune system mounts an

efficient response to these proteins. It may be that where a plant pollen surface

protein has evolved a /-helical fold for dealing with polysaccharide metabolism, the

immune system responds as if to a microbial pathogen.

2.5.2 Application to Other Structures

In recently published work [41], we show that the method of wrapping profiles onto

supersecondary structural templates developed in this thesis can be successfully ap-

plied to other mainly- fold classes. In particular, we show that for the /-trefoil fold,

another sequence-heterogeneous SCOP family, our method recognizes fold instances

with 100% sensitivity at 92.5% specificity. Additionally, BetaWrapPro was able to

correctly align 89% of the residues in conserved structural positions (see Table A.4).

Again, as in the case of the /-helix, previously existing methods do not perform as

well as BetaWrapPro on either the recognition or 3D modeling tasks for this fold (see

Table A.5).

The /-trefoil SCOP superfamilies that BetaWrapPro was tested on include the

interleukin-1 cytokines, promoters of mammalian immune system response, appetite

regulation [46], and insulin secretion [15], among other functions. The same super-

family contains the fibroblast growth factors, important for cell growth and differen-

tiation. The STI-like superfamily includes neurotoxins produced by both Clostrid-

ium tetani and Clostridium botulinum,and homologues of Salmonella typhimurium-

derived T-cell inhibitor, which acts to subvert the hosts immune response to invaders

[4]. Rather than acting as enzymes like the /-helices, the /-trefoils interact with

receptor proteins to induce specific behaviors in a cell.
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As in Section 2.4.4, we used BetaWrapPro to search the SWISS-PROT database

for novel predictions of the #-trefoil fold. Among putative /3-trefoils identified are

the Kunitz-type proteinase inhibitor BbCI (P83051) from Bauhinia bauhinioides,

agglutinin-like protein 3 (P46590) from Candida albicans, and protein B17 (P33878),

a proposed virulence factor in the smallpox virus [53].

As with the /3-helices, the ability to recognize and model the /3-trefoils has various

uses for the scientific community, including working towards a better understanding of

the structure- function relationship of new trefoils. This may be useful for structural

studies, identifying new trefoils, and drug discovery and design.

In addition, our results suggest that the methods presented in this thesis may be

broadly applicable to predicting the structure of a wide variety of mainly- folds from

amino acid sequence alone. In order to realize this goal, it will first be necessary to

automate the process of constructing the supersecondary structural templates onto

which the wrapping algorithm aligns an input sequence (the templates used in this

thesis were hand-curated). With such a tool in hand, the methods presented in this

thesis should provide a sound framework for a wide variety of comparative modeling-

based protein structural studies.

2.6 Conclusion

Our results indicate that the profile wrapping method developed in this thesis can be

successfully applied to recognize and model the /-helical fold and make novel structure

predictions for sequences whose fold is unknown. We have shown that evolutionary

information, compactly represented by multiple sequence alignment-derived profiles,

can be integrated with pairwise /-sheet residue stacking potentials in order to pro-

duce high-quality alignments of amino acid sequences onto supersecondary structural

templates. As our ability to automatically generate abstract templates improves,

these methods may eventually be used to predict structure for many more families

of mainly-/ proteins, one of the most difficult protein structure prediction problems

that remains.
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Appendix A

Tables
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Amino Acid Three-Letter Code One-Letter Code Chemical Property
Glycine Gly G Nonpolar
Alanine Ala A Nonpolar
Valine Val V Nonpolar
Leucine Leu L Nonpolar
Isoleucine Ile I Nonpolar
Proline Pro P Nonpolar
Cystine Cys S Nonpolar
Methionine Met M Nonpolar
Phenylalanine Phe F Nonpolar
Tryptophan Trp W Nonpolar
Serine Ser S Polar
Threonin Thr T Polar
Tyrosine Tyr Y Polar
Asparagine Asn N Polar
Glutamine Gln Q Polar
Lysine Lys K Basic
Arganine Arg R Basic
Histidine His H Basic
Aspartic acid Asp D Acidic
Glutamic acid Glu E Acidic

Table A.1: The 20 amino acids and
properties of their side chain groups.

their abbreviations, grouped by the chemical
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Structure
(PDB code)
lair
lbn8
lee6
ljta
lbhe
lczf
lrmg
Idab
ldbg
lqjv
lidk
1h80
Average:

P-score Alignment
accuracy

0.0000 1.00
0.0009 1.00
0.0032 1.00
0.0000 1.00
0.0000 0.80
0.0005 1.00
0.0002 0.94
0.0000 1.00
0.0000 1.00
0.0012 0.66
0.0014 1.00
0.0015 0.14
0.0023 0.88

CaRMSD
(A)
1.21
1.31
1.70
1.45
0.97
1.43
1.29
1.39
2.83
2.13
1.47
1.40
1.55

X1
correct

0.63
0.62
0.55
0.71
0.67
0.72
0.54
0.60
0.66
0.45
0.55
0.67
0.61

X1+2
correct

0.23
0.43
0.24
0.32
0.34
0.46
0.36
0.41
0.45
0.29
0.35
0.50
0.42

Aligned sequence
identity (%)

18
22
14
12
19
11
17
18
14
11
16
11
16

Table A.2: Cross-Validation Score and Modeling Accuracy for the 3-helix Structures, as Packed onto the Minimum-Energy
Template Structure from Outside its Own SCOP Family. Families are separated by a single line. The P-Score is the BetaWrapPro
score for the sequence. RMSD, dihedral angle correctness, and aligned sequence identity are only calculated on the accurately
aligned residues of the structure. Aligned sequence identity is the identity between the query sequence and the template
structure it was aligned to by BetaWrapPro. BLAST E-Score is the expectation score bl2seq [2] gives to its best alignment
between the query and template sequences.

BLAST
E-score

0.06
0.06
0.04
0.02
0.03
0.18
0.07

1.0
0.02
0.82
2.8

0.23
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BetaWrapPro
Aligned Aligned
exactly within 4

0.88 1.00
0.94 1.00
1.00 1.00
0.94
0.94
0.80
1.00
0.94
1.00
0.94
none

0.66
0.91

1.00
1.00
0.80
1.00
0.94
1.00
1.00
0.14
0.66
0.88

PSI-BLAST PROSPECTAligned
exactly

0.76
0.78
none
0.74
0.77
none
none
none
none
none
none
none
0.76

Aligned
within 4

0.95
0.78
none
0.75
0.81
none
none
none
none
none
none
none
0.81

Aligned
exactly

0.78
0.88
0.29
0.74
0.74
none
0.24
0.38
0.35
0.22
0.20
0.20
0.41

Aligned
within 4

0.90
0.95
0.32
0.80
0.83
0.08
0.34
0.59
0.37
0.37
0.43
0.27
0.49

RAPTOR
Aligned
exactly

0.87
0.88
0.35
0.87
0.88
0.50
0.54
0.50
none
0.59
none
none
0.72

Aligned
within 4

0.95
0.95
0.43
0.81
0.94
0.58
0.58
0.58
none
0.67
0.25
0.17
0.62

Table A.3: Percent of Sequence-Structure Alignment
that no residues were correctly aligned.

Correct for Several Programs on the -helices. An entry of "none" indicates

Structure

lair
lbn8
lee6
ljta
lidk
lbhe
lczf
lrmg
idab
ldbg
1h80
lqjv
total:

PSI-BLAST PROSPECT



(PDB code) accuracy (A) correct correct identity (%) E-score
1bff 0.111 1.00 3.79 0.52 0.39 10 0.011
1g82 0.041 1.00 6.23 0.56 0.50 7 2.6
2ilb 0.012 1.00 5.59 0.47 0.22 13 1.1
lirp 0.011 1.00 4.12 0.36 0.34 12 0.077
2ila 0.010 1.00 5.65 - - 7 no hits
1wba 0.038 1.00 3.58 0.51 0.55 7 0.99
Itie 0.041 1.00 2.51 0.46 0.35 15 1.7
3bta 0.013 0.08 - - - 13 3.2
la8d 0.009 none - - - 5 0.23
Average: 0.038 0.89 4.50 0.48 0.39 10 -

Table A.4: Cross-Validation Score and Modeling Accuracy for the /-trefoil Structures, as Packed onto the Minimum-Energy
Template Structure from Outside its Own SCOP Family. Superfamilies are separated by a single line. The P-Score is the
BetaWrapPro score for the sequence. RMSD, dihedral angle correctness, and aligned sequence identity are only calculated on
the accurately aligned residues of the structure. Aligned sequence identity is the identity between the query sequence and the
template structure it was aligned to by BetaWrapPro. BLAST E-Score is the expectation score bl2seq [2] gives to its best
alignment between the query and template sequences. Note that the structure 2ila in the PDB does not include sidechain
coordinates. We do not report structure prediction results for 3bta because only four residues are accurately aligned.

Structure P-score Alignment CRMSD X1 X1+2 Aligned sequence BLAST



Structure

lbfg
1g82
21bi
lirp
2ila
1wba
Itie
3bta
la8d
total: 0.30 0.89 0.15 0.45 0.30 0.77 0.45 0.78

BetaWrapPro
Aligned Aligned
exactly within 4

0.33 1.00
0.17 1.00
0.33 1.00
0.33 1.00
0.33 1.00
0.50 1.00
058 1.00

none 0.08
none none

PSI-BLAST
Aligned
exactly

0.15
none
0.15
none
none
none
none
none
none

Aligned
within 4

0.45
none
0.45
none
none
none
none
none
none

PROSPECT
Aligned
exactly

0.22
0.35
0.48
none
0.47
0.08
0.23
none
none

Aligned
within 4

0.87
0.57
0.57
none
0.73
0.42
0.68
none
0.03

RAPTOR
Aligned Aligned
exactly within 4

0.38 1.00
none none
none 0.40
0.75 1.00
0.40 0.62
none 1.00
0.25 0.58
none none
none none

Table A.5: Percent of Sequence-Structure Alignment Correct for
indicates that no residues were correctly aligned.

Several Programs on the #-trefoils. An entry of "none"
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