
Inductance Cancellation Techniques with Application to

EMI Filters and Components

by

Brandon J. Pierquet

B.S., University of Wisconsin-Madison (2004)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2006

@ Massachusetts Institute of Technology MMVI. All rights reserved.

A u th o r .....................................
Department of Electr

'May 2'5, 2006

C ertified by ....... ............................

Accepted by........

MASSACHUSETTS INS EOF TECHNOLOGY

NOV 0 2 2006

LIBRARIES

David J. Perreault
Associate Professor

Thesis Supervisor

m-C. ,ith
Chairman, Department Committee on Graduate Students

BARKER





Inductance Cancellation Techniques with Application to EMI Filters and

Components

by

Brandon J. Pierquet

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2006, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Inherent parasitic effects in passive circuit components, such as the equivalent parallel

capacitance of magnetic windings and the equivalent series inductance (ESL) of capacitors,
become dominant factors limiting the attenuation of high frequency signals in power filter

networks. These limitations have generated recent interest in methods for compensating or

mitigating parasitics to increase filter performance, including the use of coupled magnetic

windings to cancel the effects of capacitor parasitic inductance. The use of these inductance

cancellation windings allows for a reduction in filter volume and cost and/or an increase in

its attenuation performance.

This thesis extends the efficacy of inductance cancellation techniques by enhancing the

manufacturability and usability of self-contained integrated filter elements, and by more

effectively addressing cancellation in common- and differential-mode filter topologies, such

as those designed for reducing electromagnetic interference (EMI).

A design methodology and fabrication process is presented for packaging a capacitor and

matched inductance cancellation winding together to create a self-contained integrated fil-

ter element. Experimental results from the creation of three independent designs clearly

illustrate the high level of performance and repeatability that is achievable.

Discrete magnetic windings are used to implement inductance cancellation in filter topolo-

gies designed to attenuate both common- and differential-mode signals. The number of ca-

pacitors required for even simple designs motivate the use of a single cancellation winding for

two capacitors. An analytical model along with extensive experimental results successfully

demonstrate. This approach is demonstrated in an adaptation of a commercially-available

EMI filter.

Thesis Supervisor: David J. Perreault
Title: Associate Professor, Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

T HE size and cost of electronic equipment is often dominated by energy processing

circuits, as opposed to signal processing circuits. These energy processing circuits,

which include passive devices such as inductors and capacitors, represent a large portion of

the physical volume of electronic devices. These passive components provide intermediate

energy storage to reduce current and voltage ripple and high-frequency noise.

One place where passive components are used heavily is in filters designed to minimize

electromagnetic interference (EMI). Minimizing electromagnetic interference is an impor-

tant consideration in the design of electronic equipment as compliance with standards, such

as the Conformite Europeene (CE Mark) in the European Union or the Federal Commu-

nications Commission (FCC) Part 15 in the United States, must be obtained to allow for

product commercialization. The standards set by governing bodies limit the maximum

allowable electromagnetic emissions to prevent unintended, and undesirable, interference

between electronic devices.

Unlike integrated circuit and semiconductor technology, which has advanced at a rapid

pace, the performance of passive components has progressed relatively slowly in comparison.

Parasitic effects, such as the parallel capacitance of magnetic windings and the equivalent

series inductance (ESL) of capacitors, become dominant factors limiting the attenuation of

high frequency signals that can contribute to EMI [1-12]. These limitations have generated

recent interest in methods for compensating parasitics to increase filter performance [1, 6-

13]. For example, as shown in [1, 6, 7] and summarized in the following section, coupled

magnetic windings can be used to cancel the effects of capacitor parasitic inductance. The

use of these inductance cancellation windings allows for a reduction in filter volume and

cost and/or an increase in its attenuation performance.

- 17 -



Introduction

1.1 Inductance Cancellation

Consider the second-order low-pass LC filter in Fig. 1.1(a), shown with the first-order capac-

itor parasitics of equivalent series resistance (ESR) and equivalent series inductance (ESL).

At high frequencies the equivalent series inductance of the capacitor causes an increase in

the capacitor's impedance, greatly reducing the filtration performance in the region that

it is most desired. The first trace in Fig. 1.2 shows the effect of this increased impedance

on the attenuation performance of the simple LC filter like that in Fig 1.1(a). To compen-

sate for the parastic effects of the capacitor, additional capacitors with higher-frequency

resonant modes are normally connected in parallel with the main capacitor, increasing the

circuit size and cost.

(a) Standard (b) With Inductance Cancellation

Figure 1.1: Low-pass filter models with first-order capacitor parasitics.

An alternative to adding additional capacitors is to try to reduce the effects of the device

parasitics. An example of the performance that can be achieved with reduced parasitic in-

ductance can be seen in the second trace of Fig. 1.2. To achieve this performance, a coupled

inductor structure can be inserted into the circuit to induce a voltage that counteracts the

voltage due to capacitor equivalent series inductance [1, 6, 7], shown in Fig. 1.1(b). The

designed cancellation effect can be achieved using the mutual coupling of magnetic flux

between the coupled inductor windings, illustrated in Fig. 1.3.

If the coupled inductors of Fig. 1.3 are treated as windings of a transformer, the circuit

model in Fig. 1.4(a) can be used. Analyzing this circuit, one can generate a two-port

equivalent 'T' model shown in Fig. 1.4(b), where the terminal relationships are given by:

- 18 -



1. 1 Inductance Cancellation
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Figure 1.2: Measured results from the low-pass filters in Fig. 1.1 showing the difference in

performance between a circuit with a standard capacitor and one with inductance cancel-

lation.

'D12

------------- 10 -------------

A B
---- -- -- -- - E

+ ------

vi 4 1 'D2 V2

+ i2

C

Figure 1.3: Flux linkage in "center-tapped" magnetically coupled windings.
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V1 L 1 1  L 1 2  d [ 1

V2 L 2 1 L 2 2 dt i 2

A L 11  N1:N 2  L 12  B

21 + _

v1 L1, V2

-1y + i2

C

(a) Transformer Model

A L11  L 22  B

21 + -
v1 -L 12  V2

+ i 20 -

C

(b) Equivalent 'T' Model

Figure 1.4: Models of center-tapped magnetically coupled windings.

From this model, it can seen that the induced voltage at the common terminal appears as a

negative branch inductance in the equivalent T-model of the coupled magnetic windings 1].

This negative inductance is used to compensate for a device's parasitic inductance, creating a

three terminal component with drastically reduced, or in some cases completely eliminated,

equivalent shunt path inductance. Fig. 1.5 shows this compensated filter with the coupled

magnetic winding represented by its equivalent T model.

L L 11  L 22
-L12:

LESL

C

(a) Unsimplifed

L+L 1 1  L 22

LEsL L 1 2

RFd

(b) Simplifed

Figure 1.5: LC Low-pass filters with inductance cancellation.

A side effect of the introduction of the magnetic winding is the additional inductance

in both branches of the series path of the filter. Conservation of energy dictates that the

mutual coupling between the windings can be no greater than the geometric mean of the

self-inductances L11 and L 22 . The relationship can be written as

LM k12 VL 11 L 22
(1.2)

- 20 -

Introduction

(1.1)



1.2 Thesis Objectives and Organization

where k12 is the coupling factor between L1 1 and L 22 , and bounded by 0 < k1 2  1.

Energy conservation also ensures that the matrix L in (1.1) is positive semidefinite.

This additional series inductance limits the applications where inductance cancellation

can be useful [14], however filtering is one application where it is often advantageous.

The attenuation of a filter is determined by the ratio of the series-path to the shunt-path

impedance, so the additional series inductance, however small, serves to improve the atten-

uation.

1.2 Thesis Objectives and Organization

The objective of this research is to extend the inductance cancellation approach outlined

here, with focus placed on enhancing the manufacturability and usability of integrated

filter elements, and on more effectively addressing common- and differential-mode filter

topologies, such as those designed for attenuating EMI.

The primary results of the work presented in this thesis can be separated into three main

areas: integrated filter element fabrication, balanced inductance cancellation, and multiple

capacitor inductance compensation.

Chapter 2 develops a method for the design and fabrication of an integrated filter ele-

ment, a three-terminal device including a capacitor and an inductance cancellation winding.

Chapter 4 extends this design to a four-terminal element by incorporating an additional can-

cellation winding. The primary development of this chapter involves exploiting the magnetic

coupling between the two windings to increase the effective mutual inductance in each.

Chapter 3 uses discrete windings to implement inductance cancellation in filters designed

to attenuate EMI. The number of capacitors required for common- and differential-mode

filtering motivates the use of a single coil for two capacitors, and the discrete winding

approach integrates well into the assembly procedure for many EMI filters.

Finally, Chapter 5 concludes this thesis.
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Chapter 2

Integrated Filter Element Fabrication

C HAPTER 1 illustrated the basis for inductance cancellation, and this chapter provides

an implementation of the technique. Previous work has covered two methods for

implementing the magnetic windings: incorporating the windings onto the printed circuit

board [6,14], and embedding the windings within the capacitor to form an integrated filter

[1, 14]. This chapter further develops the second method by realizing a low-cost repeatable

process for constructing and incorporating a magnetic winding with a capacitor, extending

previous work in this area [14]. Together, the winding and capacitor are referred to as

integrated filter element.

2.1 Motivation

When implementing inductance cancellation, a trade-off is made on the design of the mag-

netic windings. Repeatability is a primary concern, as deviation in the value of cancellation

can have a significant impact on the realized performance [6]. Printed circuit board wind-

ings provide a consistent, repeatable structure which results in a very small variance, but

can require a significant board footprint and must be re-designed for each circuit.

To reduce the board space required, as well as free the circuit designer from the burden of

implementing and refining winding designs, an effective method to integrate the cancellation

winding into the capacitor is sought. Integrating the capacitor and winding together would

create a self-contained filter element that could be used in existing circuit designs with little

modification, assuming that a repeatable construction method is developed.
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2.2 Design Methodology

Developing a process to construct the filter elements depends greatly on the size and shape

of the capacitor, as well as the required size of the inductance cancellation winding. This

thesis focuses primarily on applications to EMI filters, and for this reason, two capacitors

are chosen which share a number of characteristics with the capacitors used in most EMI

filters.

Vishay BCcomponents Series MKP338 capacitors in 330nF and 1.OAF, part numbers

2222-338-24334 and 2222-338-24105 respectively, are X2 rated film capacitors, indicating

they are approved for both line-to-line and line-to-ground connections. These capacitors

are formed by rolling a long sheet of metalized polyester film into an oblong cylinder,

sputtering metal on each end, attaching external leads, then encapsulating the component

inside of a flame retardant rectangular casing. The two capacitors differ primarily in their

capacitance ratings and physical package size. The size difference between the two capacitors

also indicates that their equivalent series inductance will be different; the 1.0PF capacitor

is larger and therefore has a larger average inductive loop area.

The goal is to find a method to add a separately formed winding to space near, or within,

the capacitor casing. Fig. 2.1 shows side- and end-cut views of the 330nF capacitor (the

shiny section in the center of Fig. 2.1(a) is where a section of the cylindrically wound

metalized polyester has been removed). In these photos, it can be seen that there is space

between the bottom of the metalized film and the bottom of the capacitor case, an ideal

location for the inductance cancellation winding. This area of the capacitor provides easy

connection to the capacitor leads without any modification to the case. Even though the

space is partially filled by potting compound from the factory, adequate space remains below

the potting compound to place the winding for prototyping purposes.

The construction process for the integrated filter element considered here is composed of

three primary tasks: the creation of the coupled magnetic winding, forming of the electrical

connection between the capacitor and winding, and finally the encapsulation of both devices

into a single physical package.
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m
(a) Side-cut (b) End-cut

Figure 2.1: Cutaway photos of a Vishay BCcomponents Series MKP338 2222-338-24334

330nF X2 film capacitor.

2.2.1 Coupled Magnetic Winding

A number of constraints are placed on the design and construction of the magnetic winding.

The winding must meet resistance and inductance requirements, while having its size is

limited by the cross-sectional, side, or footprint area of the capacitor. The winding resistance

must be low enough to handle the current through the series path of the filter, and not

contribute in any substantiative form to the losses in a system. As described in Chapter 1,

the mutual inductance of the winding is responsible for counteracting the equivalent series

inductance of the capacitor, and its value should be very close to the measured equivalent

series inductance of the capacitor.

While the maximum outline size may be set for the winding by the capacitor dimensions,

it can be designed to have any number of layers and be constructed from any conductor

thickness. Additional layers serve to increase the winding inductance, and the variable

conductor thickness allows integrated filter elements to be constructed with different series-

path current ratings using the same capacitor. To ensure repeatability and linearity, the

winding is formed from a conductor such as copper without a core, and properly insulated

with a non-conducting material when appropriate.

Winding Design

Guidelines for the design of inductance cancellation windings on printed circuit boards are

given in [6,7], and more thoroughly developed in [14]. However the windings required for
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integration can be significantly smaller than those used in the PCB designs, due to the

increased thickness of the conductor compared to the thin traces on a PCB.

For the winding designs considered here, an outer footprint is chosen allow adequate

clearance of the capacitor terminals and package edges. Both capacitors considered in this

chapter have a footprint shape similar to the one shown in Fig 2.2, where the positioning

of the winding relative to the capacitor footprint and terminals is illustrated by the dashed

outline.

Figure 2.2: Diagram showing the layout relationship of the winding footprint within the

capacitor footprint.

Analytical solutions for coupled magnetic coils exist [15,16], however using a CAD package

such as FastHenry [17] greatly simplifies the process of calculating the inductance and

resistance for arbitrary winding designs. While no rules-of-thumb have been developed to

instantiate the design process, over the course of this work it has been found that a two-

layer winding design is adequate for a wide range of capacitor package sizes from various

manufacturers. Fig. 2.3 shows a typical two-layer winding pattern that can be used as a

starting point for design.

-A
C ----

-B

Figure 2.3: Example two-layer Inductance cancellation winding design to be used as a

starting point for winding designs. The top layer is represented in solid black, and the

bottom layer in white. The two layers are mirror images of each other.

Winding Fabrication

The greatest benefit of a two-layer design comes from its relative simplicity and ease of

fabrication. The winding can be inexpensively fabricated from a single layer pattern that
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can be constructed from a sheet of conductive material with the appropriate thickness in a

number of ways: stamping, chemical etching, mechanical milling, or cut with an abrasive-jet

(water-jet). This single layer design can then be folded or joined into its final form. Fig. 2.4

shows a single-layer winding pattern that can be folded into the two layer design illustrated

in Fig. 2.3.

Additional leads must be attached to the winding at its endpoints to ensure they extend

outside of the final encapsulation. This can be done by soldering, or otherwise joining,

short wires perpendicular to the winding. Alternatively, the two external terminal leads can

be constructed as part of the original winding pattern, and bent appropriately to extend

outward.

C.

Figure 2.4: Example inductance cancellation winding design shown in a single-layer pattern

which can be of folded into the design of Fig. 2.3.

In a controlled manufacturing process, the forming and folding the windings can be auto-

mated to provide a consistent repeatable result. However, folding the windings individually

by hand for prototyping purposes does not necessarily provide this same consistency. For

this reason, an alternative process for constructing prototype windings has been developed.

To assemble one winding by hand, external leads are attached at the end-points (A,B)

of the single layer pattern in Fig. 2.4, then the winding is cut at the central fold mark (C).

The two layers are electrically insulated, then joined together using solder. This method,

while more consistent than hand folding, still produces measurable part-to-part variation.

If a number of windings are to be fabricated, the previous method can be further enhanced

to improve the consistency. By cutting a number of single-layer patterns on a metal sheet

such that they are held in by a number of cut-tabs (e.g. as done with lead frames), two of

these sheets can be overlaid to align any number of windings simultaneously. This ensures

that each winding is aligned identically to the others on the sheet, greatly reducing the part-

to-part variation. A sheet of windings, as shown in Fig. 2.5(a), produces a total of twenty
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windings. The full process can be separated into three main steps: insulation masking,

soldering and alignment, and de-tabbing to separate the windings from the sheet. This

process is shown pictorially in Fig. 2.5.

The two sheets are electrically insulated with a thin material, such as Kapton adhesive

tape, that can withstand temperatures used for joining. Mask holes are cut in the insulating

material where the joints between layers will exist, and then solder paste applied. To join

the two sheets together, the top sheet is aligned over the lower one, then placed on a hot

plate or in a solder reflow oven. The sheets should be fixed in place to avoid any movement

as the solder paste melts and solidifies. After the joining of the two sheets, the windings

can then be removed from the sheet by cutting at the tabs. The windings are then ready

to be integrated with capacitors.

2.2.2 Integration and Encapsulation

The process of integration involves electrically joining the cancellation winding with the

capacitor, and exposing the external terminals. One electrode of the capacitor remains

as an external lead for the filter element, whereas the other is connected to the magnetic

winding; the two endpoints of the winding become external leads of the filter element,

forming a three-terminal filter component.

Attaching the winding to the capacitor electrode should be done in a manner that can

be precisely repeated, as the attachment location on the capacitor electrode impacts the

effective shunt inductance of the filter element, influencing the inductance cancellation per-

formance. If the inductance cancellation winding is to be integrated as part of the initial

capacitor fabrication process, the winding can be attached to the capacitor lead a specific

distance from the metalized film roll before encapsulation. If the capacitor is already potted,

the winding is positioned a fixed distance from the bottom of the capacitor case instead, as

the winding cannot be positioned directly against the potting compound at the bottom of

the capacitor due to the inconsistent potting height, varying measurably between capaci-

tors. To position the winding relative to the bottom of the case, a small alignment fixture,

shown in Fig 2.6, is used to hold the winding allowing it to be repeatably positioned on the

capacitor for it to be soldered.
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(a) Original Single-Layer Sheet

(b) Electrical Insulation / Solder Mask

(c) Two Sheets Aligned

(d) De-tabbed and Separated

Figure 2.5: Steps to create a batch of windings from two sheets of single layer patters.
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Figure 2.6: Example illustration of fixture used to position the winding flush with the

bottom of the capacitor casing for repeatable alignment and joining with the capacitor.

With the capacitor and winding electrically connected, and external leads brought out, the

final step is to encapsulate the filter element. The encapsulation provides both mechanical

stability as well as electrical isolation, and can be used to tune the final filter element

performance by setting the spacing to the external interconnect point. The mechanical and

electrical characteristics can be controlled by using different size enclosures, adjusting the

positioning of capacitor and winding, or using special potting compounds.

To provide adequate clearance between the winding and the bottom of the filter element

in prototype designs, the height of the capacitor may need to be extended. The height is

increased by wrapping adhesive tape around the capacitor leaving a small overhang at the

bottom of the casing, extending past the cancellation winding. This cavity is then filled

with a potting compound, such as 3M Scotch-Weld Epoxy Potting Compound Adhesive

(Part DP-270), and left to cure.

When setting the final filter element height height using encapsulant, as shown in Fig. 2.7,

the residual shunt inductance of the filter can be controlled: increasing the height to add

additional inductance or decreasing the height to reduce the inductance. For prototyping

work, this allows a fine tuning of the filter element performance at the encapsulation stage

without the need to change the winding design or alignment fixture.

2.2.3 Validation and Testing

Two measurement methods are used to validate the proper tuning and operation of the

inductance cancellation for the integrated filter element: a multiple two-terminal impedance

measurement, and a two-port insertion loss measurement. The impedance measurements
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Figure 2.7: Illustration of how the potting process can be used to control the filter element

residual shunt inductance by modifying the height of the filter element, using the method

shown in Fig. 2.11.

L 11  L 2 2
A B

-L' 2

00

C'

Figure 2.8: Equivalent inductive 'T' model of an integrated filter element, additionally

showing shunt capacitance and resistance.

are used to calculate the residual shunt inductance of the integrated filter, and insertion

loss allows the frequency response of the filter element to be directly measured.

Single-Port Impedance Measurements

Measuring the residual shunt inductance of the filter element provides a single value that

can be used to compare devices to verify the fabrication method is providing consistent

results. The measured parameters can also be used to determine the parameter values of

the filter T-model for use in circuit simulation packages such as Spice.

Three measurements are required to determine the inductance parameters in the T-model

of Fig. 2.8: measurements of the inductance between terminals AB, BC, and AC. These

three measurements can be written as
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LAB = L 11 + L22  (2.1)

LBC' = L 2 2 - L12  (2.2)

LAC' = L11 - L 2  (2.3)

where LI2 is the residual shunt inductance, representing the sum of the cancellation

winding mutual inductance, the capacitor equivalent series inductance, and any secondary

effects due to inductive coupling between the winding and capacitor. The value of LI 2, L 11 ,

and L 22 can be found from the three measurements, using

LAB + LAC' - LBC' (2.4)
2

, LAB - LBC' - LAC' (2.5)
L12 = 2252

LAB + LBC' - LAC' (2.6)
2

Ideally, the residual shunt inductance LI2 is zero; if the residual is less than zero, there is

too much cancellation, if the residual is greater than zero, too little. The measured residual

is most useful to evaluate the relative variance between filter elements in the fabrication

process, and not as a measure of general filter performance.

Two-Port Insertion Loss Measurement

Insertion loss is a measurement of the attenuation of a filter, and is a common method

for evaluating the performance of EMI filters [18]. In the most simplistic arrangement,

the measurement is made with a sinusoidal input source with a series impedance driving

the input port of the filter, while a load impedance is placed across the output port. The

ratio between the magnitude of the source voltage and output terminal voltage measured

across the load impedance, is the filter insertion loss, and reported in dB. The insertion loss

measurements are most easily taken using a network analyzer which provides 50Q source and
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load impedances. Fig. 2.9 illustrates the measurement setup. Measurements in this thesis

are made in accordance with those used to evaluate inductance cancellation performance

in [1, 14] to allow for direct performance comparison (the filter responses presented in [6]

unfortunately are not those of insertion loss, and are not directly comparable, however

insertion-loss measurements for these filters appear in [14]). The use of a printed circuit

board measurement fixture, as shown in Fig 2.10, ensures the measurement mimics, as

closely as possible, realistic filter element usage.

. B..................

IFE
* Z, Vj

VS /V C/

Figure 2.9: Measurement setup for two-port insertion loss measurements. Impedances z,

and zj are 50Q.

Figure 2.10: Photograph of printed circuit board measurement fixture used in the two-port

network measurement shown in Fig 2.9. The mounted capacitor is used as a reference.

With the PCB measurement fixture, and a three terminal filter element, the filter per-

formance can be interactively modified by raising and lowering the element with respect to

the circuit board, then observing the change in frequency response. By raising the filter

element, the length of terminal C' is increased, increasing the effective shunt inductance of

the filter element, shown in Fig 2.11. The change in inductance can be approximated [4] by
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AL = POA (2.7)
w

where A and w are illustrated in Fig 2.11. This approximate relationship is valid for

h < A, which may not hold for common sizes of integrated filter elements, however it is

still a useful mental tool for approximating the change in inductance.

A

Figure 2.11: Illustration of how to increase effective shunt inductance by lifting. the capacitor
off the testing fixture to increase loop area.

This method of adjusting the filter element shunt inductance can be used to determine

how close the filter element is to having "optimal" inductance cancellation. While intuitively

it seems that the optimal output response would occur when the residual shunt inductance is

zero, it is often advantageous for a small positive inductance to remain. The proper residual

allows the reactive cancellation due to the resonance of the shunt path to be positioned

slightly above the highest frequency of interest (instead of being completely eliminated),

increasing the insertion loss in this region.

2.3 Implementation

Using the design, fabrication, and measurement methods developed in Section 2.2, two

separate integrated filter element designs are presented here. The two selected capacitors

are representative of capacitors used in many EMI filters. Vishay BCcomponents Series

MKP338 capacitors in 330nF and 1.0pF, part numbers 2222-338-24334 and 2222-338-24105

respectively, are X2 rated polyester-film capacitors, indicating they are approved for both

line-to-line and line-to-ground configurations. The two capacitors differ primarily in their
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capacitance ratings and physical package size, Fig. 2.12 shows a photograph of the two

capacitors side by side. The size difference between the two capacitors is indicative of their

relative equivalent series inductances; the 1.0pF capacitor is larger, has a larger average

inductive loop area, and a higher equivalent series inductance. The capacitance ratings of

the capacitors are illustrative of their use: the 1.OpF capacitor is more likely to be used in

filters with a higher current rating than the 330nF capacitor.

Figure 2.12: Photograph of the Vishay BCcomponents Series MKP338 capacitors in 330nF

and 1.0LF values. Figs. 2.13 and 2.17 contain the outer dimensions of each respective

capacitor.

For both capacitors selected, twenty integrated elements were fabricated to determine the

repeatability of the fabrication method. The windings were constructed using the methods

described in Section 2.2.1 for fabricating multiple windings simultaneously.

In this section, all simulated inductance values are generated using the FastHenry [17]

three-dimensional inductance extraction program. Measured inductance values are taken

using an Agilent 4395A Network/Impedance/Spectrum Analyzer at 30MHz, the same fre-

quency as the simulations. The Agilent 4395A is also used for the two-port network mea-

surements of insertion-loss, which provides 50Q source and load impedances.

2.3.1 Vishay BCcomponents 2222-338-24334 330nF

This capacitor outline and dimensions are shown in Fig 2.13. The measured equivalent

series inductance is 9.9nH.
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17.5mm 10.0mm
>= '

/\ 16.5mm

Figure 2.13: Dimensioned illustration of Vishay BCcomponents 2222-338-24334 capacitor.

Winding Design

The filter winding, designed for a maximum series current of 5A, with a loss of no more than

0.01% of the maximum line power at 240V. This corresponds to a series path resistance of

less than 4.8mQ.

The winding inductance is designed to offset the capacitor equivalent series inductance

of 9.9nH, and using the basic design of the example coil in Fig. 2.3 as a starting point, the

final two-layer coil design is shown in Fig. 2.14. The single layer pattern, fabricated from

a 1 mm thick copper sheet using an abrasive-jet cutter, is marked to indicate where the

pattern is folded to create the external leads. Fig. 2.15(a) shows a single layer winding as

originally cut, and Fig. 2.15(b) shows the winding after the structure has been insulated,

folded, and joined into its final two layer form.

1.0mm --->I <-

6.5mmI
0.4mm ->| -

1.6mm ->| I<-

~~1

12mm

(a) Two-Layer Folded

I.

(b) Single-Layer Unfolded

Figure 2.14: Inductance cancellation winding design for use with the Vishay BCcomponents
330n capacitor. Shown in both the two-layer folded and single-layer unfolded designs. The
winding is fabricated from 1mm thick copper.
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(a) Cut-out pattern (b) Final Assembly

Figure 2.15: Inductance cancellation winding photos of single-layer pattern and final two-

layer construction for the 330nF integrated filter element.

Simulation of the winding at 30MHz results in an inductance matrix

[14.8 11.2 1
L =InH

11.2 14.8

and a total winding resistance of 2.5mQ at 60Hz. The measured winding inductances at

30MHz (of one winding selected at random) result in the inductance matrix

26.0 8.5

8.5 25.1

and a measured winding resistance of 3mQ at 60Hz.

The measured inductance matrix shows a significant departure from the simulation. This

is in part due to the additional interconnect length required to mount the winding on the

measurement fixture, which is not reflected in the simulation results. The mutual inductance

value is sufficiently close to justify the use of FastHenry for estimation purposes provided the

designer takes into account the (consistent) variation between the simulation and real-world

measurement setup.
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Integration and Encapsulation

The final filter element potting height is determined by the desired residual shunt induc-

tance, which determines the filtering characteristics of the device. This height is determined

experimentally using the two-port insertion-loss measurements described in Section 2.2.3.

A sacrificial capacitor and magnetic winding were used to determine the optimal potting

height, and this same height was used on all elements in the batch. The final fabrication

result for the 330nF integrated filter element is shown in 2.16. The three terminal device is

1.75mm taller than the original capacitor casing.

Figure 2.16: Photograph of a completed 330nF integrated filter element with inductance
cancellation.

The performance of this integrated filter design is investigated in Section 2.3.3.

2.3.2 Vishay BCcomponents 2222-338-24105 1.OpF

This capacitor outline and dimensions are shown in Fig 2.17. The measured equivalent

series inductance is 13.3nH.

Winding Design

The filter winding is designed with a maximum series current of 10A, and a loss of no more

than 0.01% of the maximum line power at 240V. This corresponds to a series path resistance
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26.0mm 12.0mm

22.0mm

Figure 2.17: Dimensioned illustration of Vishay BCcomponents 2222-338-24105 capacitor.

of less than 2.4mQ. The winding inductance is designed to offset the capacitor equivalent

series inductance of 13.3nH, and using the basic design of the example coil in Fig. 2.3 as

a starting point, the final two-layer coil design is shown with dimensions in Fig. 2.18. The

single layer pattern, fabricated from a 1mm thick copper sheet using an abrasive-jet cutter,

is marked to indicate where the pattern is folded to create the external leads. Fig. 2.19(a)

shows the single layer winding as originally cut, and Fig. 2.19(b) shows the winding after

the structure has been insulated and joined into its final two layer design.

0.4mm -->I <

1.5mm -- | 1<- 2.4mm ->I [-

8.5mm --

16mm

(a) Two-Layer Folded (b) Single-Layer Unfolded

Figure 2.18: Inductance cancellation winding design for use with the Vishay BCcomponents

1.OpF capacitor. Shown in both the two-layer folded and single-layer unfolded designs. The

winding is fabricated from 1mm thick copper.

The simulated winding inductances at 30MHz result in an inductance matrix
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(a) Cut-out pattern (b) Final Assembly

Figure 2.19: Inductance cancellation winding photos of single-layer pattern and final two-
layer construction for the 1.0LF integrated filter element.

18.6 14.8
L= nH

14.8 18.6

and a total winding resistance of 2.0mQ at 60Hz. The measured winding inductances at

30MHz (of one winding selected at random) result in the inductance matrix

34.0 12.7
L= nH

12.7 32.6

and a measured winding resistance of 2mQ at 60Hz.

Again, the variation between the simulated and measured inductance matrices is signif-

icant due to the added interconnect required for the measurement, however, the mutual

inductance term (L1 2 ) remains reasonably close for the purposes of estimation.

Integration and Encapsulation

The final filter element potting height is determined by the methods described in Sec-

tion 2.2.3. A sacrificial capacitor and magnetic winding were used to determine the optimal
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potting height; this same height was used on all elements in the batch. The final fabrication

result for the 1.0pF integrated filter element is shown in 2.16. The three terminal device is

1.2mm taller than the original capacitor casing.

a

Figure 2.20: Photograph of a completed 1.OpF integrated filter element with inductance

cancellation..

The performance of this integrated filter design is investigated in Section 2.3.3.

2.3.3 Fabrication Results

To determine the relative precision of the filter element construction, a batch of twenty filter

elements was fabricated for each design in Section 2.2. Each element was then characterized

using measurements of the residual shunt inductance and insertion-loss.

The residual shunt inductance of each filter was found using the three two-terminal

impedance measurements in (2.5), then offset by the geometric mean of all twenty filter

elements in the batch to provide a zero centered measurement. Centering the residual in-

ductances around zero is done to eliminate the inductance of the measurement apparatus,

and illustrates the error relative to the other elements, and not necessarily a specific target

residual shunt inductance. Histograms of this data are presented in Figs. 2.21 and 2.22

for the 330nF and 1.OpF devices, offset by 1.89nH and 5.09nH respectively. Additionally,

it may be useful to consider this data in a normalized form, scaled by the magnitude of
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the initial capacitor equivalent inductances to allow a comparison between designs. This

results in part-to-part variation measurement of are 8% and 5% for the 330nF and 1.0LF

filter elements respectively.

Residual Shunt Inductance

5 1 - - - - - - - - - - - - - -

4P

0

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Inductance (nH)

Figure 2.21: Zero centered histogram of measured residual shunt inductance values of twenty
330nF integrated filter elements.

Figs. 2.23 and 2.24 present the insertion-loss measurements of an original unmodified

capacitor and the geometric mean response (least squares fit) of the twenty integrated filter

elements in the 330nF and 1.OpF batches respectively. This illustrates the 'typical' insertion

loss improvement that can be expected from the integrated elements in place of the standard

capacitor. Both integrated filter elements show a significant improvement in performance

over a standard capacitor, gaining more insertion-loss at the higher frequencies where the

equivalent series inductance would normally dominate. At 30MHz, the upper bound of the

conducted EMI specification [3], the 330nF and 1.OpF both show an improvement of at

least 25dB.

An interesting result in both filter element responses is the unveiling of the resonance lo-

cated in the low-mid range in the figures. This small resonance results from the distributed

nature of the capacitor [19], and is normally insignificant relative to the dominating inter-

connect inductance.
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Residual Shunt Inductance

.................................................

.................... .................................................

I I I
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Figure 2.22: Zero centered histogram of measured residual shunt inductance values of twenty

LOAF integrated filter elements.

Integrated Filter Element Insertion Loss

Figure 2.23: Comparison of measured results between the original 330nF capacitor and the

(geometric) mean response of the integrated filter elements.
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Figure 2.24: Comparison of measured results between the original 1.OpF capacitor and the
(geometric) mean response of the integrated filter elements.

Figs. 2.25 and 2.26 plot the frequency response for each filter element of the two types,

illustrating the part-to-part insertion-loss variations obtained. These figures also include

a plot of the difference between the largest and smallest insertion-loss value among filters

at each frequency, giving the maximum variation between filter elements of that batch.

The maximum variation across the frequency range is 4.1dB for the 330nF device and

3.5dB for the 1.OpF. Additionally, the insertion-loss measurements of the 330nF integrated

filter elements can be compared directly with the results presented in [14] for the 330nF

capacitor with inductance cancellation implemented using printed circuit board windings.

The variation of insertion loss with the PCB inductance cancellation windings, which are

nominally more repeatable than the hand fabrication methods considered here, appear to

offer only a slight decrease in the maximum variation.

2.4 Conclusion

This chapter has presented an implementation of inductance cancellation where the coupled

magnetic winding is co-packaged with the capacitor to form a self-contained integrated filter
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Figure 2.25: Insertion loss measurements of twenty 330nF integrated filter elements.
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Figure 2.26: Insertion loss measurements of twenty 1.OpF integrated filter elements.



2.4 Conclusion

element. A design methodology and fabrication procedure suitable for low volume prototyp-

ing work (and extendable to high-volume production) is presented. It is implemented using

two different capacitors and coil designs. The resulting filter element characteristics and

performance measurements validate the feasibility of fabricating devices with repeatable

performance results, even using simple hand fabrication and assembly. Additional gains in

device repeatability can be expected with a refined process, steadier hand, or mechanized

fabrication and assembly. The approach presented here offers a compelling combination of

substantial performance improvements, repeatability, and ease of manufacture.
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Chapter 3

Multiple Element Inductance

Compensation

C ONVENTIONALLY, inductance cancellation windings have only been used to com-

pensate for the equivalent series inductance of a single capacitor. In a filter designed

to attenuate both common- and differential-mode signals with multiple capacitors, this sig-

nificantly increases the number of windings required. The simple EMI filter in Fig. 3.1

contains three capacitors, and the commercial filter in Fig. 3.14 uses six.

The goal of this chapter is to extend the inductance cancellation presented in Chapter 1

by developing a method that allows for the use of a single magnetic winding to compensate

for the effects of equivalent series inductances of two capacitors, instead of just one. For

many filter topologies,this provides an opportunity to reduce the number of cancellation

windings needed, thereby saving precious space and added cost.

3.1 Motivation

To understand why the use of a single magnetic winding to compensate for the inductive

parasitics of two capacitors is of particular value in EMI filtering, consider the structure

and operation of an EMI filter. Fig. 3.1 shows the basic structure of an EMI filter designed

to attenuate both common-mode and differential-mode signals, along with representative

source and load networks for performance evaluation. This circuit can be analyzed by

separating its common-mode and differential-mode responses and treating these equivalent

circuits as if they were independent [3]. The common- and differential-mode equivalent

circuits are shown in Fig. 3.2.

Now, if the circuit of Fig. 3.1 is augmented with inductance cancellation coils for each
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2LA L

2L, L,

Figure 3.1: Simple EMI filter circuit shown with representative source and load networks
for performance evaluation. Some parasitic elements (such as capacitor equivalent series
inductance) are not shown explicitly.

2L 2L,
2Cy CX -

T T
(a) Common-Mode (b) Differential-Mode

Figure 3.2: Models for the simple EMI Filter circuit of Fig. 3.1, decomposed into common-
and differential-mode portions.

capacitor, the circuit in Fig. 3.4 is generated. In this new figure, the differential capacitor

Cx is fitted with two inductance cancellation coils instead of only one to preserve circuit

symmetry. Past work [1] has shown this to be as effective as a single coil, and Fig. 3.3 shows

a photograph of this where the inductance cancellation windings are fabricated on a PCB.

Figure 3.3: Test circuit with balanced inductance cancellation windings implemented in the
printed circuit board. Performance of this filter has been previously shown [1].

It is desirable to implement the cancellation windings in a balanced fashion to avoid

inserting an unbalanced circuit element within the otherwise well-balanced system. Without

balancing the series inductances on both sides of the capacitor, a cross coupling between the

differential and common-mode signal sources would result. By avoiding this coupling, the

common- and differential-mode circuit equivalents remain straightforward, as illustrated in

Figs. 3.5(a) and 3.5(b).
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2L,1 L1 -- - - ------------C2L, L,

Cx---- -- --

2Lj, Li

Figure 3.4: Simple EMI Filter circuit from Fig. 3.1 with balanced inductance cancellation

of each capacitor.

22

2CY CX T#T:

(a) Common-Mode (b) Differential-Mode

Figure 3.5: Simple EMI Filter circuit with balanced inductance cancellation of each capac-

itor, decomposed into common- and differential-modes.

As shown in Fig. 3.4, the construction of an EMI filter with full, balanced inductance

cancellation would require four magnetically coupled windings when constructed using the

previously established method. These windings occupy additional space within the filter,

and if placed in close proximity may exhibit secondary effects from magnetic coupling,

complicating the design. The effects of coupling on a single capacitor are developed in

Chapter 4, and are investigated more thoroughly for two capacitors here in Section 3.3.

Given these limitations, it would be a considerable improvement if the number of required

windings could be reduced by utilizing a single winding to provide appropriate inductance

compensation for two capacitors.

3.2 Implementation

To show experimentally that the use of a single inductance cancellation coil for two ca-

pacitors is feasible, a simple test filter was created with a planar winding mounted with

EMI filter capacitors inside a shielded enclosure. Fig. 3.6 shows the filter along with the
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two Panasonic ECK-ATS472ME6 4700pF Y2 class ceramic capacitors used. This test filter

does not directly examine common- and differential-mode testing, however it does provide

a straightforward example how a single coil can support the compensation of inductance for

two capacitors. A dimensioned line-art drawing of the coil, which was cut using an OMAX

abrasive-jet cutter from a single piece of 1mm thick copper, is shown in Fig. 3.7. Based on

simulation results from FastHenry [17], the coil itself has a maximum series inductance of

393.OnH, and a maximum equivalent shunt-path inductance of -63.2nH when used for single

element inductance cancellation (in the magnetic winding T model). It should be noted

that this coil was intentionally designed to be far over-sized for the amount of cancellation

required; this was to allow for maximum flexibility in testing.

C1 C

T TC

(a) Schematic (b) Physical Layout

Figure 3.6: Test filter for inductance compensation of two Panasonic ECK-ATS472ME6
4700pF ceramic capacitors using a single magnetic winding.

The procedure outlined here was developed for tuning the filter response of the two

capacitors, and is one way a high performance filter response can be determined. Initially,

the connection of capacitor C1 is tuned to optimally cancel its parasitic inductance. This can

be done by adjusting the connection point of the capacitor on the winding while observing

the filter attenuation (e.g. with a network analyzer), and/or using methods associated with

previously described techniques in [6]. Once its optimal position is found, the position of the

capacitor is fixed. Following this, the connection of capacitor C2 is tuned (with capacitor C1

in place) to find an optimal filter response. This gives one possible combination of capacitor

locations on the coupled winding that results in a high performance filter characteristic.
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24mm

24mm

1.2mm ---
I<- 0.6mm

Figure 3.7: Illustration of the planar winding used in the test filters of Section 3.1, fabricated

from 1mm thick copper. The total series-path inductance based on simulation is 393.OnH,

and the maximum equivalent shunt-path inductance for a single element is -63.2nH (in the

magnetic winding T model).

Experimental results for this test system are shown in Fig. 3.8, with data taken from an

Agilent 4395A network analyzer which provides 50Q source and load impedances. Inser-

tion gain measurements were made in accordance with those used to evaluate inductance

cancellation performance in [1,6] to allow for direct performance comparison. When tuning

the response with only C1, two measurements were taken for comparison: one with the

capacitor connected directly at the input (source-side) terminal providing no cancellation,

and one where the capacitor was connected to the cancellation coil at a location where

the output response was optimal. The same approach was taken when tuning the response

for the combination of C1 and C2: C2 was connected either directly at the filter output

(load-side) terminal or at a position optimizing the filter response with both capacitors.

The characterization results of the filter attenuation performance clearly show a dramatic

improvement (as much as 35dB at high frequency) from the case where no compensation is

provided (Both Not Cancelled) to the case where inductance compensation is provided for

both capacitors (Both Cancelled). These results demonstrate that a single coupled magnetic

winding can be used to provide inductance compensation for two capacitors, with dramatic

performance improvement at high frequencies.

3.3 Coupling of Multiple Windings

When physically placing multiple magnetic windings in close proximity, linked magnetic

flux between the windings can affect the predicted performance in various ways [8]. Thus,
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Filter Insertion Loss
0

40 -- - - - - -- - -- - --- ---

0

* 0- - - - -6 - - - - -

Both Cancelled'
80 - - -- - - C1 Cancelled C2 Not Cancelled ------

both Not Cancelled -------
. .......................... ........... ... ...... -..... -. C 1 C a n celled --- -- -- --

C1 Not Cancelled
100 t I I

0 10 20 30 40 50
Frequency (MHz)

Figure 3.8: Measured results from the test filter in Fig. 3.6 showing the performance of
multiple-element inductance compensation.

the implementation of multiple cancellation windings in a single filter may affect the induc-

tance cancellation and filter performance. Here the effects of mutual coupling are explored

when two coils are used to provide balanced inductance cancellation for both common- and

differential-mode capacitors.

Two additional filters (using the same windings shown in Fig. 3.7) were created to test

two coil configurations having different magnetic coupling directions. In addition to a pair

of line-to-ground (Y) capacitors (Panasonic ECK-ATS472ME6) for common-mode filtering,

these test filters incorporate a Rubycon 250MMCA334KUV class X2 line-to-line capacitor

for differential-mode filtering. Fig. 3.9 is a photo of one of the filters, and shows its internal

layout. Figs. 3.10 and 3.11 show the filter configurations and illustrate the difference between

the two winding orientations.

Windings placed in the same direction each throw flux in a way which opposes the flux of

its paired winding for common-mode currents, reducing each winding's effective inductance.

In the case of the windings oriented in the opposite direction, the flux from each winding is

reinforced by the other for common-mode currents, providing a coupling direction like that

of a common-mode choke, and increasing each winding's effective inductance.
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Figure 3.9: Filter for investigation of common- and differential-mode coupling between

inductance compensation windings.

Cn CnY

CL

(a) Same Direction

Cp C to

CnJ

(b) Opposite Direction

Figure 3.10: Two orientations of coupled inductance compensation coils. The coils are

of the type shown in Fig. 3.7. Cy1 and Cy2 are Panasonic ECK-ATS472ME6, Cxi is a

Rubycon 250MMCA334KUV. The two circuits only differ with respect to mutual coupling

among the coils.

(a) Same Direction (b) Opposite Direction

Figure 3.11: Flux patterns for common-mode operation of the two magnetic winding config-

urations of Fig. 3.10. Windings oriented in the same direction generate flux in a way which

opposes the flux of the paired winding for common-mode currents. Windings oriented in the

opposite direction generate fluxes which reinforce each other, providing a coupling direction

like that of a common-mode choke.
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The tuning procedure used here is similar to the one used in the two-capacitor case in

Section 3.2. Initially, the connections of capacitors Cy1 and Cy2 are tuned simultaneously in

the common-mode case to compensate for their parasitic inductances (while retaining a bal-

anced configuration). Once the optimal positions are found, the positions of the capacitors

are fixed. Following this, the capacitor Cxi is tuned in the differential-mode case by moving

its connections on both coils symmetrically to find an optimal output response. Tuning is

carried out in this order because ideally the addition of the differential-mode capacitor does

not affect the common-mode response, while the reverse would not necessarily be true.

The measurement setup for the common- and differential-mode filter insertion-loss per-

formance is taken from [18], with signal generation and measurement performed by the

same Agilent 4395A Network Analyzer as in Section 3.2, with Mini-Circuits 1800 power

splitters (models ZSCJ-2-1 and ZSCJ-2-2) for dividing its output into differential signals,

and custom-made common-mode splitters.

In both winding configurations the target frequency for optimization was 30MHz, with

measurements shown up to 40MHz. The two orientations possess similar optimized filtration

performance, seen in the thicker traces of Fig. 3.12. The thinner traces in show additional

measurements from intermediate steps in the tuning process.

The results show that in both winding orientations an equivalent inductance compen-

sation improvement can be achieved for both the common- and differential-modes. This

allows the orientation of the windings to be selected based on other factors (e.g. based on

magnetic coupling with more dominant circuit parasitics). While the winding orientation

does not influence the final optimized response in these filters, how each winding orientation

achieves this optimum is slightly different. In Fig. 3.13 the connection locations for the filter

capacitors are shown, corresponding to the optimal common- and differential-mode filter

response from Fig. 3.12.

Due to the coupling in the common-mode, the connection for the Cy, capacitor was closer

to an end terminal on the winding in the opposite direction orientation than in the same

direction orientation. Effectively, in the common-mode, the opposite direction orientation

has a marginally higher inductance-per-turn than the same direction orientation, and thus

requires a slightly reduced number of turns to achieve the same performance.
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Figure 3.12: Measured results from the coupled inductance compensation winding orien-

tations of Fig 3.10, including both common-mode (CM) and differential-mode (DM) mea-

surements.
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(a) Same Direction (b) Opposite Direction

Figure 3.13: Connection locations of capacitors corresponding to the results in Fig. 3.12.
Only one winding of each pair is shown, the connections made to the other winding are
symmetric. X represents the connection location of Cxi, Y represents the corresponding
Cyn connection location for that winding, I is connected to the input of the filter, and 0
represents the connection to the filter output.

Even with the the windings in close proximity, the effects of magnetic coupling on the

inductance compensation are minimal. In more extreme cases where the coupling is sig-

nificantly higher, the observed effects may become more pronounced. Even in this case,

however, an equivalent performance should be achievable given properly sized windings.

3.4 Application to Commercial EMI Filter

Having shown in the previous sections that a single inductance cancellation winding can

be used with two capacitors to improve filtration performance, and that the coupling ori-

entation of multiple windings in a single filter does not adversely affect potential induc-

tance compensation, the use of multiple element inductance compensation in the context

of common- and differential-mode EMI filter is examined. A commercially-available filter

is used as a starting point.

Figs. 3.14(a) and 3.14(b) show the schematic and physical views of the filter, which is

rated for up to 250 volts and 25 amps of 50/60Hz alternating current. The large (15tH)

series inductors L11 and L12 are particularly bulky, heavy, and expensive components of

the commercial filter, and it would be desirable to eliminate them provided that filter

performance is preserved. The series inductors were removed to provide working space for

installing the inductance cancellation windings, and to provide an opportunity to offset their

removal through use of the much smaller cancellation windings. Figs. 3.15(a) and 3.15(b)

show the modified schematic and physical layout of the filter with the inductance cancella-

- 58 -



3.4 Application to Commercial EMI Filter

tion windings installed. Additionally, Fig. 3.16 shows the folded design of the inductance

cancellation coil used in this filter. As with the previous coil in Fig. 3.7, Fig 3.16 was cut

with an abrasive-jet cutter, using 2mm thick copper for enhanced current carrying capacity.

The flat winding structure is folded at the center of its longest side to form a square one-

piece two-layer winding with Mylar tape used as insulation between the layers. Based on

simulation results, the coil is estimated to have a series inductance of 288.3nH, and a maxi-

mum equivalent shunt-path inductance of -81.2nH when used for single element inductance

cancellation (in the magnetic winding T model). As in the previous test filters, the coil is

purposefully over-designed for the required inductance cancellation to allow for additional

design flexibility and testing.

L11 C1i CY21CyiX2
L c x

L12  CYn2 CY22

(a) Schematic

(b) Physical Layout

Figure 3.14: Original Commercial EMI Filter. L 11, L 12 are 15pH wound toroidal inductors,

Cy11 and Cy12 are Rifa PME-271 47nF film capacitors, Cxi and Cx2 are Vishay Roederstein

F1772-522-2030 2.2pF film capacitors, Cy21 and CY22 are 15nF ceramic capacitors, and

the common-mode choke has measured leakage inductances of 30.2H and a magnetizing

inductance of 4.45mH.

Common- and differential-mode measurements were taken of the unmodified filter, as

well as an intermediate step before the inductance cancellation windings were installed. In

this intermediate step, the large inductors L 11 and L12 were removed and straight, solid
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C2F
* C Cx1 CxCxii 1 ~

CY12C

(a) Schematic

(b) Physical Layout

Figure 3.15: Modified version of the EMI filter in Fig. 3.14 with L 11 and L12 removed, and
two inductance compensation windings installed.

60mm

2mm -

28mm

4mm->
28mm

28mm Fold Line

Figure 3.16: Illustration of folded winding used for inductance compensation in the EMI
filter of Section 3.4, fabricated from 2mm thick copper. When folded, the total series
inductance is 288.3nH, and the maximum equivalent shunt-path inductance for a single
element is -81.2nH (in the magnetic winding T model).
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14ga wire was installed in their place. This configuration, referred to here as Without

Series Inductor, was used as a baseline comparison for improvements based on inductance

cancellation.

The tuning procedure outlined here is the same as the one used in Section 3.3, and was de-

veloped for tuning the filter response due to the common- and differential-mode capacitors.

Initially, the connections of common-mode capacitors Cy1 and Cy2 are tuned simultaneously

to compensate (in a symmetric fashion) for their parasitic inductances. Once the optimal

positions are found, the capacitors are permanently attached to their respective windings.

Following this, the differential-mode capacitor Cxi is tuned by moving its connections on

both coils symmetrically to find an optimal output response.

This order of tuning makes sense: the common- and differential-mode capacitors do

not impact system performance in the same way. In Fig. 3.5(a) it can be seen that the

common-mode equivalent circuit is not influenced by the differential-mode capacitance (or

the inductance cancellation, other than through the fixed series inductance introduced by

the winding); the common-mode filtration operates as if the differential-mode capacitor were

an open circuit. However, the differential-mode filtration is dependent on the common-mode

capacitance and inductance cancellation. This means that if the inductance compensation

for the common-mode capacitance is optimized first, the inductance compensation for the

differential-mode capacitor can be tuned subsequently without influencing the common-

mode performance.

The results of the completed tuning are shown in Fig. 3.17 along with the stock and

baseline filter configurations. It should be noted that tuning of both the common- and

differential-modes is based on compromises between high and low frequency performance.

This particular "optimal" output response chosen here may not be the highest achievable

performance for a particular range of frequencies of interest.

The results of incorporating the inductance cancellation coils reveal a dramatic improve-

ment in the filtration performance for both the common- and differential-mode responses

over the baseline (stock filter with L 1 1 and L 12 removed, labeled as without series induc-

tor). The common-mode shows improvement across its full range, and the differential-mode

shows substantial improvement over its full range except for the small resonance around

2MHz. (This small resonance is caused in part by the capacitor-inductor-capacitor ir-section
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Figure 3.17: Performance comparison of the commercially-available EMI filter in Fig. 3.14
and the modified version in Fig. 3.15, showing performance both without and with induc-
tance compensation.



3.5 Analytic Formulations

Table 3.1: Published common- and differential-mode 50Q circuit insertion loss specifications
for the commercially-available EMI filter considered in Section 3.4. All measurements are
listed in dB.

Frequency (MHz)
0.01 0.03 0.05 0.1 0.5 1.0 5.0 10.0 30.0

Common-Mode 2 14 22 36 75 75 70 70 48
Differential-Mode 14 14 17 42 75 75 70 70 50

formed with the two capacitors attached to the inductance compensation winding in the

differential-mode, and can be reduced by fabricating a winding with lower series inductance

than the over-sized one used here.)

The common-mode performance with inductance compensation is somewhat worse than

the stock filter by approximately 10dB, while the differential-mode performance is very com-

parable, even without L1 1 and L12 . More importantly, the performance with the inductance

cancellation windings exceeded the commercially-published performance specification of the

stock filter, shown in Table 3.1, without requiring the large, expensive series inductors of

the stock filter.

The results from this commercial EMI filter, as well as those from the test filters in

Section 3.1, show clearly that a single magnetically coupled winding can provide effective

inductance compensation for two capacitors. Moreover, it is demonstrated that the per-

formance of a commercial filter design can be preserved at lower component weight and

cost through use of the proposed approach. It is anticipated that further substantial de-

sign improvements could be achieved in a filter expressly designed to take advantage of the

inductance compensation method proposed here.

3.5 Analytic Formulations

In this section an analytical basis is sought for the proposed method of compensating for

the inductance of two capacitors using a single coupled magnetic winding. It is derived

from an extension of the methods used to analyze single-capacitor inductance cancellation

techniques. The predictions of this method are then compared to measured results to

illustrate its usability.
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3.5.1 Extended Cantilever Model

Analysis of inductance cancellation windings with a single capacitor is relatively straight-

forward since a two-port transformer model of the windings is used, which has only three

independent terms. The number of independent terms needed to completely describe cou-

pled magnetics with n terminals is given by n(n + 1)/2 [20], which grows as the square of

n.

Adding to the complexity is the fact that many models for multiple winding transformers

either do not adequately model the complete transformer behavior, or have poor correlation

and numeric conditioning to attempted measurements of model parameters from terminal

characteristics [21,22]. One model that is effective, and well conditioned for experimental

parameter extraction, is the Extended Cantilever Model [20,21].

C12 C23

A . . B -,UL - -- 3 L
c11 C23 C11 C12 C13

A C13 CB' 1

A:N C

C'_ -A'-- Ao-B'-- B C' Co

(a) General configuration (b) Tapped inductor configuration

Figure 3.18: Three-port extended cantilever models.

The Extended Cantilever Model of a coupled system yields an equivalent circuit with

directly measurable parameters and provides a direct mapping between circuit parameters

and the inductance matrix parameters. It is also well conditioned numerically when dealing

with small leakage fluxes or high coupling factors. The extended cantilever circuit model for

a three-port system is shown in Fig. 3.18(a), with circuit parameters related to impedance

matrix parameters as follows:

Z = sL (3.1)
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-1_
Z1 1Z 12 Z13

B = Z21Z22Z23 (3.2)

LZ3lZ32Z33_

Nk = (3.3)
Z11

c11 = Z11 (3.4)
1

Ci - = -(3.5)
Ni Nj bi j

where bij is the (, j)th element of B.

It should be clarified that the notation used to indicate the impedance matrix Z is

representative of only the reactive component of Z due to the equivalent inductance; the

extended cantilever model in [20] is formulated only with consideration to inductances. An

extension which allows for full Laplace domain circuit elements can be found in [23, 24],

however in the idealized case considered here, parasitic resistances and capacitances are

assumed to be negligible.

3.5.2 Three-Port Analysis

Fig. 3.18(b) shows the application of the extended cantilever model to a center-tapped wind-

ing with two tap points. Fig. 3.19 shows additional circuit connections used for finding the

system transfer function. The full transfer function for the system is given in Appendix A,

and truncated versions are utilized in this section where appropriate.

By analogy to the case of inductance cancellation for a single capacitor, we desire to

find conditions that drive the transfer function from the input source to the output voltage

to zero (or close to zero). In finding where the transfer function goes to zero, conditions

must be found where both the numerator becomes zero, and the denominator remains

finite and non-zero. Starting from the numerator of the full transfer function in (A.1) from

Appendix A, setting it equal to zero, refactoring, and dividing by the non-zero value of zi,

a condition is found in which a zero in the numerator can be generated:
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Tapped Inductor Model

..... A' B C'O

T2 B3'V

Figure 3.19: Shared-terminal three-port circuit for use with the Extended Cantilever Model
tapped-inductor configuration of Fig. 3.18(b). T 2 and T3 represent the (inductive) high
frequency impedances of the capacitors.

0 = Z13 (Z 12 + Z23 + Z 13 + Z22 )

- (T2 - Z12 - Z 13 ) (T 3 - Z13 - Z 2 3 )

This result, considered by itself, provides a number of terms that can be adjusted to

satisfy the equality. However, in the case of common-mode and differential-mode filtering

there are additional constraints that must be considered.

3.5.3 Common- and Differential-Mode Optimization

As described previously in Sections 3.3 and 3.4, in an EMI filter the common- and differential-

mode capacitors do not impact system performance in the same way: the common-mode

filtration operates as if the differential-mode capacitor were an open circuit, while the

differential-mode filtration is dependent on the common-mode capacitance and its induc-

tance cancellation. To find the optimal cancellation for the common-mode capacitor, the

transfer function in (A.1) is considered at the limit where T 3 -+ oo (the differential-mode

capacitance is a virtual open circuit for common-mode signals).

H(s) = (T2 - Z 13 - Z 12 ) z 1 = 0 (3.7)

From this result, it is shown that if T2 = Z 12 + Z 13 , then full cancellation in the common-

mode can be achieved. With the common-mode cancellation constraint met, the result is
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then inserted back into the original transfer function in (A.1) to find the constraint placed

on the differential-mode compensation:

H(s) = Z 13 (Z12 + Z23 + Z 13 + Z22 ) = 0 (3.8)

The numerator of this result contains no terms of T3 in which to tune in comparison

to the terms of the impedance matrix. Additionally, the terms of the impedance matrix

in a cylindrically or concentrically wound coil configuration are positive, preventing simple

geometries from creating a zero in the transfer function. If differential-mode compensation

is to be achieved, this result seems to provide no opportunity for the transfer function to

become zero, save for the possibility of making Z 13 = 0. In the case where Z 13 can be made

zero, the transfer function denominator would remain finite and non-zero, representing

a possible condition to generate a zero for the transfer function, if the structure can be

arranged to provide it.

Another consideration may apply in this case. In past work [6] it was shown that depend-

ing on the frequency range of interest, filter performance, even with imperfect cancellation,

may be perfectly adequate for practical purposes. With imperfect cancellation, a new term

A 2 can be defined to be the effective residual shunt-path impedance of the capacitor. More

specifically, A 2 = T2 - (Z 12 + Z13 ). If this is substituted into the general condition in (3.6),

and with the resulting equation rearranged, (3.9) results. This provides a relation where

Z 13 is not explicitly required to be zero for the transfer function to become zero.

0 = Z13 (T2 + Z22 + Z 23 ) - A2 (T3 - Z23 ) (3.9)

Hence, one may gain good performance in both common-mode and differential-mode by

realizing substantial (but not perfect) cancellation in common-mode to benefit differential-

mode performance.
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3.5.4 Simulation and Model Validation

To validate the model and transfer function analysis, the common- and differential-mode

filters constructed in Section 3.3 are used as the basis for simulation, excluding the coupling

between the two coils. Each of the measurements presented in the section is simulated here

using the model developed, to allow comparison to the experimental results.

To simulate both common- and differential-mode responses, the equivalent circuit mod-

els for each mode are constructed. These equivalent circuit models, shown in Fig. 3.20,

include the inductance compensation windings, as well as the equivalent series resistance

and equivalent series inductance of each capacitor. This allows for the direct use of (A.1)

from Appendix A, the transfer function of the circuit in Fig. 3.19.

Lcoi2L

z z' 2Ry Rx2 y
ZI 2Ly Lx

VC2 VdA
2 Cy Cx

(a) Common-Mode (b) Differential-Mode

Figure 3.20: Common- and differential-mode equivalent circuits used to simulate the filters
in Section 3.3.

For simulation, both the line-to-ground (Y) capacitor (Panasonic ECK-ATS472ME6)

and the line-to-line (X) capacitor (Rubycon 250MMCA334KUV) are modeled with first-

order equivalent series resistance, equivalent series inductance, and bulk capacitance. The

nominal value of capacitance, along with the measured values of inductance and resistance,

are used in the model of each capacitor. The parameters are: Ry=200mQ, Ly=48.6nH,

Cy=4700pF, Rx=50mQ, Lx=49.4nH, Cx=330nF. The source and load impedances, z,

and zj respectively, match those of the network analyzer, 50Q. The coil used in the test

filters, shown in Fig. 3.7, is represented by the inductance matrix L,0 ij, which is obtained

using the numerical inductance calculation tool FastHenry:
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36.52 42.62 0.236

Lco = 42.62 224.6 8.089 nH

0.236 8.089 5.262

For common-mode, T3 is set to 1MQ to approximate an open circuit, and T2 is set to

the effective impedance of the Y capacitor, ZycM = . (Ry + (jwCy) 1 + jwLy). For the

differential-mode simulation, the effective impedance of the Y capacitor is different. With

the two capacitors in series, the effective impedance, and thus T 2 , now becomes ZyD, =

2 (Ry + (jwCy) 1 + jwLy). The effective impedance of the X capacitor is ZxD, = Rx +

(jwCx) 1 + jwLx, the value used for T3 .

The results of the common- and differential-mode simulations are shown in Fig. 3.21.

Comparing the simulation results to the experimental data in Fig. 3.12, the differential-mode

results do match in an absolute sense. The Optimal Y (DM) simulation is roughly between

the two measured coupling cases, which is understandable given coupling between the coils

is not modeled. However, the addition of the X capacitor in the Optimal Y, Uncancelled X

(DM) fails to match the same downward-shift in resonance to near 20MHz, which exists in

both experimental measurements. The shift of this resonance is representative of an increase

in effective inductance in the Y capacitor branch, which may be a result of unmodeled

inductive coupling between the X and Y capacitors. The important similarity between the

experimental measurements and the simulation is seen comparing Optimal Y, Uncancelled

X (DM) and the final trace Optimal Y, Optimal X (DM). By appropriately locating the X

capacitor on the coil, it is possible to both shift the resonance higher in frequency, and to

increase the attainable attenuation.

If consideration is given to modeling the increase in effective inductance in the Y capacitor

branch when the X capacitor is present, significantly improved correlations between the

experimental measurements and the model simulation result. If ZyDM is increased by

a modest 20% to make ZyDM = 2 (Ry + (jwCy)- + jw (Ly + 0.2Ly)), and the tuning

location of the X capacitor on the coil is slightly moved (by 1.5mm), a refined inductance

matrix yields,
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Figure 3.21: Simulated results for the filters in Section 3.3, using the circuits shown in
Fig. 3.20. Note the different frequency range than in Fig. 3.12.

Lcol=

36.52

42.29

0.563

42.29

222.4

9.091

0.563

9.091

5.432

nH

the plot in Fig 3.22 results. These results correlate significantly better than the case

without the added effective inductance, although differences are still notable for Optimal

Y, Uncancelled X (DM).

Given the substantial modeling simplifications used in creating these simulations (e.g.

neglecting coil-to-coil and other mutual couplings, using simple numerical simulations to

obtain coil inductances, etc.) the degree of accuracy of the model is striking, confirming its

usefulness for understanding the behavior of such systems.
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Figure 3.22: Simulated results for the filters in Section 3.3, using the circuits shown in

Fig. 3.20 with additional differential-mode Y capacitor inductance.

3.6 Conclusion

The size and performance of discrete EMI filters are often limited by their component

parasitics, such as the equivalent series inductance of capacitors. Implementing inductance

cancellation traditionally requires at least one winding for each capacitor, increasing the

volume and cost of the filter if all capacitor inductances are to be cancelled in a balanced

fashion.

This chapter has extended the inductance cancellation presented in Chapter 1 by devel-

oping a method that allows for the use of a single magnetic winding to compensate for the

effects of equivalent series inductances of two capacitors, instead of just one.

This multiple-element compensation method was applied experimentally to both test

filters and to a commercially-available EMI filter with great success. Further, the coupling

of closely oriented magnetic windings was also investigated, illustrating their successful

use in constrained spaces, and a possible avenue for optimizing winding size. Finally, an

analytical basis for the inductance compensation is developed and compared to experimental

results.
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Chapter .4

Balanced Cancellation

T HIS chapter presents an alternative implementation of inductance cancellation where

two windings, one for each capacitor terminal, are utilized to create a balanced four-

terminal filter with minimized shunt inductance. The implementation provides balanced

impedances in the source and return paths that may be desirable in some applications.

Additionally, fabrication techniques from Chapter 2 and results from the coupling of in-

ductance cancellation windings in Section 3.3 are combined to create a novel four-terminal

integrated filter element with performance at the same level of an equivalent three-terminal

design.

4.1 Motivation

Three terminal filter elements inherently create an imbalance between the source and return

paths of the circuit due to presence of the series inductance of the cancellation winding.

In many applications this is perfectly acceptable. However, in filters designed to attenuate

both common- and differential-mode signals, such as the filters presented in Section 3.1,

this can contribute asymmetries which cause cross coupling between the differential and

common-mode signal sources. Four-terminal elements can maintain symmetry (or balance)

for common- and differential-mode signals. Moreover, use of a balanced four-terminal el-

ement provides consistent shunt-path impedance for differential mode signals independent

of (balanced) interconnect lead lengths.

Results from a filter using two "balanced" inductance cancellation windings have been

presented in [1], illustrating performance similar to that obtainable with a single winding.

This chapter extends this work, implementing balanced cancellation for the Vishay BCcom-

ponents 2222-338-24334 330nF capacitor used previously in Section 2.3.1. Furthermore, a
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second design is presented where the coupling of flux between the two windings is uti-

lized, yielding an integrated filter element with performance of an equivalent three terminal

design, while being amenable to fabrication using the methods established in Chapter 2.

4.2 Flux Coupling

As shown in Section 3.3, the coupling of two windings can have an appreciable effect on

the effectiveness of inductance cancellation. The results of this investigation show that

for differential-mode signals, orienting the coupled coils such that the fluxes are additive

increases the effective inductance of each winding. This result is conceptually intuitive

when considering the flux coupling in a single cancellation winding, as shown in Fig. 1.3.

Extending this illustration, Fig. 4.1 shows the flux linkages and orientations of two separate

windings, when driven with a differential signal.

Figure 4.1: Illustration of the flux coupling of two inductance cancellation windings when
drive by a differential signal. A capacitor is connected such that each terminal is connected
to a separate winding.

4.3 Design and Fabrication

Using the winding structure in Fig. 2.14(a) as a starting point, slight modifications were

made to arrive at the design in Fig. 4.2. The goal was to use as close a design as possible

to the single two-layer winding design to compare the relative effectiveness of the balanced

design. Each of these windings occupies nearly the same footprint area as the parent two-

layer design, and utilize nearly the same conductor length.

Simulation results of a single winding gives an inductance matrix of
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1.0mm ->i I<-

6.5mm{

10.6mm

Figure 4.2: Illustration of the winding design used for implementing balanced inductance

cancellation for the 330nF capacitor.

L= 12.0 2.1 nL=[ ]nH
2.1 4.7

with a total series resistance of 1.3mQ at 60Hz. For both the uncoupled and coupled

implementations, two windings are insulated and individually joined to separate capacitor

terminals, creating a four-terminal filter element. Photographs of prototype filter elements

containing this winding design are shown in Fig. 4.3 and 4.4 for the uncoupled and coupled

implementations respectively.

To minimize flux coupling in Fig. 4.3, the windings have been joined with the capacitor,

extending outward from each terminal. The second design, utilizing the flux linkage between

the windings, places both windings in close proximity in the footprint area of the capacitor.

Additionally, this design can be fabricated using a slightly modified method from those

developed in Chapter 2, allowing for a consistent and reliable integrated filter element to

be manufactured.

To adapt the construction methods from Section 2.2 to the coupled balanced filter ele-

ment, the step illustrated in Fig. 2.5(b), where a solder mask is created, is not performed.

The coupled set of windings for the balanced filter element remain entirely insulated from

one another, and are not electrically joined. Without joining the two layers together electri-

cally, the alignment of the two winding sheets is maintained using an electrically insulating

adhesive, or a two-sided adhesive tape such as Mylar or Kapton. Additionally, when en-

capsulating the final filter element, small changes in the potting height, as illustrated in
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Figure 4.3: Top view photograph of a 330nF four-terminal filter element with uncoupled
balanced inductance cancellation. The windings can be seen here extending outward from
each terminal of the capacitor to minimize any flux coupling between windings.
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(a) Side view

(b) Top view

Figure 4.4: Side and top view photos of a 330nF four-terminal integrated filter element

with coupled balanced inductance cancellation. The two windings are sandwiched together

within the footprint of the capacitor to provide meaningful flux coupling.
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Fig. 2.7, will not affect the final component performance in an appreciable way as it did

with the three-terminal implementation.

4.4 Performance

For the uncoupled configuration, the two windings are expected to provide a total cancel-

lation of 4.1nH, which is less than half of the total capacitor equivalent series inductance

of 9.9nH. This is readily seen in Fig. 4.5, where the insertion-loss measurement lies be-

tween that of the unmodified capacitor and the three-terminal filter element presented in

Section 2.3.1.

Integrated Filter Element Insertion Loss

(n
0

0

0

10

20

30

40

50

60

70
0 10 20 30

Frequency (MHz)
40 50

Figure 4.5: Insertion-loss comparison between the uncoupled and coupled four-terminal
filter elements, a standard capacitor, and integrated filter element from Chapter 2. All
designs use the Vishay BCcomponents 2222-338-24334 330nF X2 capacitor.

The insertion-loss performance of the coupled winding implementation can also be seen in

Fig. 4.5, showing a significant improvement over the uncoupled design, and illustrating its

ability to achieve performance at or near the same level as the three-terminal single-winding

filter element. This allows a four-terminal filter element to be utilized when necessary

without a sacrifice in performance.
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4.5 Future Work

4.5 Future Work

While this chapter has shown that coupled cancellation coils can be implemented to create a

four-terminal filter element, an analytical model has not yet been developed. Implementing

the extended cantilever model, as done in Section 3.5 shows promise, however the insertion-

loss transfer function results in a relationship with an order of magnitude more terms than

in (A.1). Alternative transformer or coupled-inductor models may prove to generate more

insightful results.

4.6 Conclusion

This chapter has provided an additional implementation of inductance cancellation utilizing

two windings in a balanced configuration. A design utilizing the coupling of flux between the

windings has been shown to provide equivalent insertion-loss performance, and automated

fabrication potential.
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Chapter 5

Summary and Conclusions

5.1 Thesis Summary and Contributions

The research presented in this thesis was undertaken to extend the inductance cancellation

implementation and design approach from the work in [141. Focus was placed on enhancing

the manufacturability and usability of integrated filter elements, and on more effectively

addressing common- and differential-mode filter topologies, such as those designed for at-

tenuating EMI.

The major contributions of the work presented in this thesis can be separated into three

main areas: integrated filter element fabrication methods for low- to medium-volume pro-

duction, multiple capacitor inductance compensation for common- and differential-mode

filters, and balanced inductance cancellation with coupled windings.

5.2 Future Work

A number of loose ends remain at the conclusion of this thesis, the majority surrounding the

development and understanding of models for the coupling of separate windings. Section 3.3,

and even more so Section 4.2, rely on multi-port coupled magnetics having circuit models

which offer significantly more complexity than the elegant two-port T-model presented in

Chapter 1. The development of a reduced-order physically-based model would make the

design of these more complicated inductance cancellation implementations more tractable.
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Appendix A

Three-Port Tapped-Inductor Extended

Cantilever Model Transfer Function

Equation (A.1) gives the analytic solution of the transfer function from input voltage Vi"

to output voltage V for the circuit in Fig. 3.19. The result was found using direct circuit

analysis, with the source network consisting of an input voltage source Vrn with series

impedance z,, and a load network comprised of an impedance zi. T 2 and T3 are arbitrary

impedances representing the two capacitors.

(T2T - Z 13 T3 - Z 12 T3 - Z 23 T 2

H(s) -Z3T2 + Z12Z23 - Z13Z22) Z(A.1)

T3z1zs + T2zlzs + Z 22zlzs + T 2Tzs

+Z 3 3 T3 zs + 2Z 23 T3 zs + Z 2 2Tzs

+Z33 T2z, + Z22Z33zs - Z Z,

+T 2Tz 1 + Z 11 T3 z1 + Z 2 2T 2z1 + 2Z 12 T 2z 1

+Zn1T 2zi + Z 1 1 Z 22z1 - Zz 1

+Z3 3 T 2T + 2Z 23 T 2T + Z 2 2T 2 T

+2Z 13 T 2T + 2Z 12 T 2T + Z 11T 2 T

+Z 11 Z3 3 T3 + 2Z 1 1 Z 23T + Z 11 Z 22 T

-Z1 3 T3 - 2Z 12 Z13T3 - 2

Z 22 Z33 T2 + 2Z 12 Z3 3 T 2 + Z 1 1Z 33 T 2

-Z23 T 2 - 2Z 13Z 23 T2 -Z

+ Z11Z22 Z33 1Z33s - Zn1Z23

+2Z12Z13Z23 -1Z3Z22
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