
ALGORITHMS AND LOWER BOUNDS
IN FINITE AUTOMATA SIZE COMPLEXITY

by

CHRISTOS KAPOUTSIS

B.S. Computer Science, Aristotle University of Thessaloniki, Greece, 1997
M.S. Logic and Algorithms, Capodistrian University of Athens, Greece, 2000

M.S. Computer Science, Massachusetts Institute of Technology, 2004

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the Massachusetts Institute of Technology, June 2006

Signature of author:
Department of Elect ical ngineering and Computer Science

May 5, 2006

Michael Sipser
Professpr of Applied Mathematics

Thesw Supervisor

Arthur C. Smith
Professor of Electrical Engineering

Graduate Officer, EECS Graduate Office

Accepted by: -

Certified by:

MASSACHUSETTS 1N4TMUTI
OF TECHNOLOGY

NOV j 2 2006

LIBRARIES

@2006 Massachusetts Institute of Technology. All rights reserved.

ALGORITHMS AND LOWER BOUNDS
IN FINITE AUTOMATA SIZE COMPLEXITY

by

CHRISTOS KAPOUTSIS

Submitted to the Department of Electrical Engineering and Computer Science in
partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Abstract
In this thesis we investigate the relative succinctness of several types of finite

automata, focusing mainly on the following four basic models: one-way determinis-
tic (1DFAS), one-way nondeterministic (1NFAs), two-way deterministic (2DFAs), and
two-way nondeterministic (2NFAs).

First, we establish the exact values of the trade-offs for all conversions from
two-way to one-way automata. Specifically, we prove that the functions

n(n" - (n - 1)"), n1 I (n)(n) (2' - 1)j, (2n")
return the exact values of the trade-offs from 2DFAs to 1DFAs, from 2NFAs to 1DFAs,
and from 2DFAs or 2NFAs to 1NFAs, respectively.

Second, we examine the question whether the trade-offs from INFAs or 2NFAs

to 2DFAs are polynomial or not. We prove two theorems for liveness, the complete
problem for the conversion from 1NFAs to 2DFAs. We first focus on moles, a restricted
class of 2NFAs that includes the polynomially large 1NFAs which solve liveness. We
prove that, in contrast, 2DFA moles cannot solve liveness, irrespective of size. We
then focus on sweeping 2NFAs, which can change the direction of their input head
only on the end-markers. We prove that all sweeping 2NFAs solving the complement
of liveness are of exponential size. A simple modification of this argument also
proves that the trade-off from 2DFAs to sweeping 2NFAs is exponential.

Finally, we examine conversions between two-way automata with more than
one head-like devices (e.g., heads, linearly bounded counters, pebbles). We prove
that, if the automata of some type A have enough resources to (i) solve problems
that no automaton of some other type B can solve, and (ii) simulate any unary
2DFA that has additional access to a linearly-bounded counter, then the trade-off
from automata of type A to automata of type B admits no recursive upper bound.

Thesis supervisor: Michael Sipser, Professor of Applied Mathematics.

Contents

Introduction 7
1. The 2Dvs. 2N Problem 7
2. Motivation 9
3. Progress 16
4. Other Problems in This Thesis 20

Chapter 1. Exact Trade-Offs 23
1. History of the Conversions 23
2. Preliminaries 26
3. From 2DFAs to 1DFAs 31
4. From 2NFAs to 1DFAs 37
5. From 2NFAs to 1NFAs 41
6. Conclusion 49

Chapter 2. 2D versus 2N 51
1. History of the Problem 51
2. Restricted Information: Moles 52
3. Restricted Bidirectionality: Sweeping Automata 66
4. Conclusion 78

Chapter 3. Non-Recursive Trade-Offs 81
1. Two-Way Multi-Pointer Machines 82
2. Preliminaries 83
3. The Main Theorem 87
4. Programming Counters 88
5. Proof of the Main Lemma 89
6. Conclusion 93

End Note 95

Bibliography 97

.. -

Introduction

The main subject of this thesis is the 2D vs. 2N problem, a question on the power

of nondeterminism in two-way finite automata. We start by defining it, explaining
the motivation for its study, and describing our progress against it.

1. The 2D vs. 2N Problem

A two-way deterministic finite automaton (2DFA) is the machine that we get
from the common one-way deterministic finite automaton (1DFA) when we allow
its input head to move in both directions; equivalently, this is the machine that we

get from the common single-tape deterministic Turing machine (DTM) when we do
not allow its input head to write on the input tape. The nondeterministic version
of a 2DFA is simply called two-way nondeterministic finite automaton (2NFA) and,
as usual, is the machine that we get by allowing more than one options at each step
and acceptance by any computation branch. The 2D vs. 2N question asks whether
2NFAs can be strictly more efficient than 2DFAs, in the sense that there is a problem
for which the best 2DFA algorithm is significantly worse than the best 2NFA one.

Of course, to complete the description of the question, we need to explain
how we measure the efficiency of an algorithm on a two-way finite automaton. It
is easy to check that, with respect to the length of its input, every algorithm of

this kind uses zero space and at most linear time. Therefore, the time and space

measures-our typical criteria for algorithmic efficiency on the full-fledged Turing
machine-are of little help in this context. Instead, we focus on the size of the

program that encodes this algorithm, namely the size of the transition function of

the corresponding two-way finite automaton. In turn, a good measure for this size
is simply the automaton's number of states.

So, the 2D vs. 2N question asks whether there is a problem that, although it can
be solved both by 2DFAs and by 2NFAs, the smallest possible 2DFA for it (i.e., the
2DFA that solves it with the fewest possible states) is still significantly larger than

the smallest possible 2NFA for it. To fully understand the question, two additional
clarifications are needed.

First, it is well-known that the problems that are solvable by 2DFAs are exactly
those described by the regular languages, and that the same is true for 2NFAs [53.
Hence, efficiency considerations aside, the two types of automata have the same
power-in the same way that 1DFAs or DTMs have the same power with their non-
deterministic counterparts. Therefore, the above reference to problems that "can be

solved both by 2DFAs and by 2NFAs" is a reference to exactly the regular problems.

Second, although we explained that efficiency is measured with respect to the
number of states, we still have not defined what it means for the number of states

in one automaton to be "significantly larger" than the number of states in another
one. The best way to clarify this aspect of the question is to give a specific example.

7

INTRODUCTION

Consider the problem in which we are given a list of subsets of {0, 1,. .. , n - 1}
and we are asked whether this list can be broken into sublists so that the first set of
every sublist contains the number of sets after it [51]. More precisely, the problem
is defined on the alphabet An :='P({0, 1,.. ., n - 1}) of all sets of numbers smaller
than n. A string a0 a, - --al over this alphabet is a block if its first symbol is a set
that contains the number of symbols after it, that is, if ao E 1. The problem consists
in determining whether a given string over An can be written as a concatenation
of blocks. For example, for n = 8 and for the string

{ 1,2,4}0{4}{0,4}{2,4,6}{4}{4,6}0{3,6}0{2,4}{5,7}{0,3}{4,7}0{4}@{4}{0,1} {2,5,6}{1}

the answer should be "yes", since this is the concatenation of the substrings

{1,2,4}0{4} {0,4}{2,4,6}{4}{4,6}0 {3,6}0{2,4}{5,7} {0,3} {4,7}0{4}0{4}{0,1}{2,5,6}{1}

where the first set in each substring indeed contains the number of sets after it in
the same substring, as indicated by boldface. In contrast, for the string

{1,2,7}{4}{5,6}0{3,6}{2,4,6}

the answer should be "no", as there is obviously no way to break it into blocks.
Is there a 2DFA algorithm for this problem? Is there a 2NFA algorithm? Indeed,

the problem is regular. The best 2NFA algorithm for it is a rather obvious one:
We scan the list of sets from left to right. At the start of each block,
we read the first set. If it is empty, we just hang (in this branch
of the computation). Otherwise, we nondeterministically select from
this set the correct number of remaining sets in the block. We then
consume as many sets, counting from that number down. When the
count reaches 0, we know the block is over and a new one is about to
start. In the end, we accept if the list and our last count-down finish
simultaneously.

It is easy to see that this algorithm can be implemented on a 2NFA (which does
not actually use its bidirectionality) with exactly 1 state per possible value of the
counter, for a total number of n states. As for a 2DFA algorithm, here is the best
known one:

We scan the list of sets from left to right. At each step, we remem-
ber all possibilities about how many more sets there are in the most
recent block. (E.g., right after the first set, every number in it is a
possibility.) After reading each set, we decrease each possibility by 1,
to account for the set just consumed; if a possibility becomes 0, we
replace it by all numbers of the next set. If at any point the set
of possibilities gets empty, we just hang. Otherwise, we eventually
reach the end of the list. There, we check whether 0 is among the
possibilities. If so, we accept.

Easily, this algorithm can be implemented on a 2DFA (which does not actually
use its bidirectionality) that has exactly 1 state per possible non-empty1 set of
possibilities, for a total number of 2" - 1 states. Overall, we see that the difference
in size between the automata implementing the two algorithms is exponential. Such
a difference, we surely want to call "significant".

INote that a 2DFA is allowed to reject by just hanging anywhere along its input. Without
this freedom, the number of states required to implement our algorithm would actually be 2'.

2. MOTIVATION

At this point, after the above clarifications, we may want to restate the 2D vs. 2N
question as the question whether there exists a regular problem for which the small-
est possible 2DFA is still super-polynomially larger than the smallest possible 2NFA.
However, a further clarification is due.

Given any fixed regular problem, the sizes of the smallest possible 2DFA and
the smallest possible 2NFA for it are nothing more than just two numbers. So,
asking whether their difference is polynomial or not makes little sense. What the
previous example really describes is a family of regular problems IH = (ITn),,
one for each natural value of n; then, a family of 2NFAs N = (N,)n o which solve
these problems and whose sizes grow linearly in n; and, finally, a family of 2DFAs
D = (Dn),o which also solve these problems and whose sizes grow exponentially
in n. Therefore, our reference to "the difference in size between the automata" was
really a reference to the difference in the rate of growth of the sizes of the automata
in the two families. It is this difference that can be characterized as polynomial
or not. Naturally, we decide to call it significant if one of the two rates can be
bounded by a polynomial but the other one cannot.

So, the 2D vs. 2N question asks whether there exists a family of regular problems
such that the family of the smallest 2NFAs that solve them have sizes that grow
polynomially in n, whereas the family of the smallest 2DFAs that solve them have
sizes that grow super-polynomially in n. Equivalently, the question is whether there
exists a family of regular problems that can be solved by a polynomial-size family

of 2NFAs but no polynomial-size family of 2DFAs. With this clarification, we are
ready to explain the name "2D vs. 2N". We define 2D as the class of families of
regular problems that can be solved by polynomial-size families of 2DFAs, and 2N as
the corresponding class for 2NFAs [48]. Under these definitions, we obviously have
2D C 2N, and the question is whether 2D and 2N are actually different. Observe how
the nature of the question resembles both circuit and Turing machine complexity:
like circuits, we are concerned with the rate of growth of size in families of programs;
unlike circuits and like Turing machines, each program in a family can work on
inputs of any length.

Concluding this description of the problem, let us also remark that its formu-
lation in terms of families is not really part of our every-day vocabulary in working
on the problem. Instead, we think and speak as if n were a built-in parameter of
our world, so that only the n-th members of the three families (of problems, of
2NFAs, and of 2DFAs) were visible. Under this pretense, the 2D vs. 2N question asks
whether there is a regular problem that can be solved by a polynomially large 2NFA
but no polynomially large 2DFA-and it is redundant to mention what parameter
"polynomially large" refers to. In addition, we also use "small" as a more intuitive
substitute for "polynomially large", and drop the obviously redundant character-
ization "regular". So, the every-day formulation of the question is whether there
exists a problem that can be solved by a small 2NFA but no small 2DFA. Throughout
this thesis, we will occasionally be using this kind of talk, with the understanding
that it is a substitute for its formal interpretation in terms of families.

2. Motivation

Our motivation for studying the 2D vs. 2N question comes from two distinct
sources: the theory of computational complexity and the theory of descriptional

complexity. We discuss these two different contexts separately.

9

INTRODUCTION

2.1. Computational complexity. From the perspective of computational
complexity, the 2D vs. 2N question falls within the general major goal of understand-
ing the power of nondeterminism. For certain computational models and resources,
this quest has been going on for more than four decades now. Of course, the most
important (and correspondingly famous) problem of this kind is P vs. NP, defined
on the Turing machine and for time which is bounded by some polynomial of the
length of the input. The next most important question is probably L vs. NL, also
defined on the Turing machine and for space which is bounded by the logarithm of
some polynomial of the length of the input.

It is perhaps fair to say that our progress against the core of these problems
has been slow. Although our theory is constantly being enriched with new concepts
and new connections between the already existing ones, major advances of our
understanding are rather sparse. At the same time, the common conceptual origin
as well as certain combinatorial similarities between these problems has led some
to suspect that essentially the same elusive idea lies at the core of all problems of
this kind. In particular, the suspicion goes, this idea may be independent of the
specifics of the underlying computational model and resource.

In this context, a possibly advantageous approach is to focus on weak models of
computation. The simple setting provided by these models allows us to work closer
to the set-theoretic objects that are produced by their computations. This serves
us in two ways. First, it obviously helps our arguments become cleaner and more
robust. Second, it helps our reasoning become more objective, by neutralizing our
often misleading algorithmic intuitions about what a machine may or may not do.

The only problem with this approach is that it may very well lead us to models
of computation that are too weak to be relevant. In other words, some of these
models are obviously not rich enough to involve ideas of the kind that we are looking
for. We should therefore be careful to look for evidence that indeed such ideas are
present. We believe that the 2D vs. 2N question passes this test, and we explain why.

2.1-I. Robustness. One of the main reasons why problems like P vs. NP and
L vs. NL are so attractive is their robustness. The essence of each question remains
the same under many different variations of the mathematical definitions of the
model and/or the resource. It is only on such stable grounds that the theoretical
framework around each question could have been erected, with the definition of the
classes of problems that can be solved in each case (P, NP, L, NL) and the identifica-
tion of complete problems for the nondeterministic classes, that allowed for a more
tangible reformulation of the original question (is satisfiability in P? is connectivity
in L?). The coherence and richness of these theories further enhance our confi-
dence that they indeed describe important high-level questions about the nature of
computation, as opposed to technical low-level inquiries about the peculiarities of
particular models.

The 2D vs. 2N problem is also robust. Its resolution is independent of all rea-
sonable variations of the definition of the two-way finite automaton and/or the size
measure, including changes in the conventions for accepting and rejecting, for end-
marking the input, for moving the head; changes in the size of the alphabet, which
may be fixed to binary; changes in the size measure, which may include the number
of transitions or equal the length of some fixed binary encoding. It is on this stable
ground that the classes 2D and 2N have been defined. In addition, 2N-complete
(families of) problems have been identified [48], allowing more concrete forms of

10

2. MOTIVATION

the question. Overall, there is no doubt that in this case, too, our investigations are
beyond technical peculiarities and into the high-level properties of computation.

2.1-II. Hardness. A second important characteristic of problems like P vs. NP
and L vs. NL that contributes to their popularity is their hardness. Until today, a
long list of people that cared about these problems have tried to attack them from
several different perspectives and with several different techniques. Their limited
success constitutes significant evidence that, indeed, answering these questions will
require a deeper understanding of the combinatorial structure of computation. In
this sense, the answer is likely to be highly rewarding.

In contrast, the 2D vs. 2N problem can boast no similar attention on the part of
the community, as it has never attracted the efforts of a large group of researchers.
However, it does belong to the culture of this same community and several of its
members have tried to attack it or problems around it, with the same limited
success. In this sense, it is again fair to predict that the answer to this question
will indeed involve ideas which are deep enough to be significantly rewarding.

2.1-III. Surprising conjecture. If we open a computational complexity text-
book, we will probably find P defined as the class of problems that can be solved
by polynomial-time Turing machines, and NP as the class of problems that can be
solved by the same machines when they are enhanced with the ability to make non-
deterministic choices. Then, we will probably also find a discussion of the standard
conjecture that P $ NP, justified by the well-known compelling list of pragmatic
and philosophical reasons.

In this context, the conjecture does not sound surprising at all. There is cer-
tainly nothing strange with the enhanced machines being strictly more powerful
than the original, non-enhanced ones. They start already as powerful, and then
the magical extra feature of nondeterminism comes along: how could this result in
nothing new? But the conjecture does describe a fairly intriguing situation.

First, if we interpret the conjecture in the context of the struggle of fast deter-
ministic algorithms to subdue fast nondeterministic ones, it says that a particular
nondeterministic Turing machine using just one tape and only linear time [37] can
actually solve a problem that defies all polynomial-time multi-tape deterministic
Turing machines, irrespective of the degree of the associated polynomial and the
number of tapes. In other words, the claim is that nondeterministic algorithms can
beat deterministic ones even with minimal use of the rest of their abilities. This is
an aspect of the P # NP conjecture that our definitions do not highlight.

Second, if we interpret the conjecture in the context of the struggle of fast
deterministic algorithms to solve a specific NP-complete problem, it says that the
fastest way to check whether a propositional formula is satisfiable is essentially to
try all possible assignments. Although this matches with our experience in one sense
(in the simple sense that we have no idea how to do anything faster in general),
it also seriously clashes with our experience in another sense, equally important:
it claims that the obvious, highly inefficient solution is also the optimal one. This
is in contrast with what one would first imagine, given that optimality is almost
always associated with high sophistication.

Similar comments are valid for L vs. NL. The standard conjecture that L f NL
asserts that a particular nondeterministic finite automaton with a small bunch of
states and just two heads that only move one-way [57] can actually solve a problem
that defies all deterministic multi-head two-way finite automata, irrespective of

I1I

INTRODUCTION

their number of states and heads. At the same time, it claims that the most space-
economical method of checking connectivity is essentially the one by Savitch, a fairly
non-trivial algorithm which nevertheless still involves several natural choices (e.g.,
recursion) and lacks the high sophistication that we usually expect in optimality.

Similarly to P vs. NP and L Vs. NL, the conjecture for the 2D vs. 2N problem is
again that 2D # 2N. Moreover, two stronger variants of it have also been proposed.

First, it is conjectured that 2NFAs can be exponentially smaller than 2DFAs
even when they never move their head to the left. In other words, it is suggested
that even one-way nondeterministic finite automata (INFAs) can be exponentially
smaller than 2DFAs. (Note the similarity with the version of L k NL mentioned
above, where the nondeterministic automaton need only move its heads one-way
to beat all two-way multi-head deterministic ones.) So, once more we have an
instance of the claim that nondeterministic algorithms can beat deterministic ones
with minimal use of the rest of their abilities.

Second, it is even conjectured that this alleged exponential difference in size
between 1NFAs and 2DFAs covers the entire gap from n to 2' - 1 which is known to
exist between 1NFAs and 1DFAs [35]2 In other words, according to this conjecture, a
2DFA trying to simulate a 1NFA may as well drop its bidirectionality, since it is going
to be totally useless: its optimal strategy is going to be the well-known brute-force
one-way deterministic simulation [47]. So, once more we have an instance of the
claim that the obvious, highly inefficient solution is also the optimal one.3

For a concrete example of what all this means, recall the problem that we
described early in this introduction (page 8). Remember that we presented it as a
problem that is solvable by small 2NFAs but is conjectured to require large 2DFAs.
Notice that the best 2NFA algorithm presented there is actually one-way, namely
a 1NFA. So, if the conjecture about this problem is true, then 2NFAs can indeed
beat 2DFAs, and they can do so without using their bidirectionality. Also notice
that the best known 2DFA for that problem is one-way, too. In fact, it is simply
the brute-force 1DFA simulation of the INFA solver. So, if this is really the smallest
2DFA for the problem, then indeed the optimal way of simulating the hardest 2NFA
is the obvious, highly inefficient one.

In total, interpreting the questions on the power of nondeterminism (P vs. NP,
L vs. NL) as a contest between deterministic and nondeterministic algorithms, our
conjectures claim that nondeterministic algorithms can win with one hand behind
their back; and then, the best that deterministic algorithms can do in their defeat
to minimize their losses is essentially not to think. This is a counter-intuitive claim,
and our conjectures for 2D vs. 2N make this same claim, too.

2.1-IV. A mathematical connection. Of the similarities described above be-
tween 2D vs. 2N and the more important questions on the power of nondeterminism,
none is mathematical. However, a mathematical connection is known, too. As ex-
plained in [3], if we can establish that 2D # 2N using only "short" strings, then we

2 As with 2DFAS (cf. Footnote 1 on page 8), a iDFA is allowed to reject by just hanging anywhere
along its input. Without this freedom, the gap would actually be from n to 2".

3Note that, contrary to the strong versions of P O NP and L A NL mentioned above [37, 571,
the two conjectures mentioned in these two last paragraphs may be strictly stronger than 2D = 2N.
It may very well be that 1NFAs cannot be exponentially smaller than 2DFAs, but 2NFAs can (it
is known that 2NFAs can be exponentially smaller than 1NFAs). Moreover, even if INFAs can be
exponentially smaller than 2DFAs, it may very well be that this exponential gap is smaller than
the gap from n to 2' - 1.

12

2. MOTIVATION

would also have a proof that L / NL. To describe this implication more carefully,
we need to first discuss how a proof of 2D 2N may actually proceed.

To prove the conjecture, we need to start with a 2N-complete family of regular
problems H = (HI),;>o, and prove that it is not in 2D. That is, we must prove that
for any polynomial-size family of 2DFAs D = (D),>o there exists an n which is
bad, in the sense that D, does not solve 17'. Now, two observations are due:

* To prove that some n is bad, we need to find a string w, that "fools" Ds, in
the sense that w, E H, but D, rejects w., or w,, 17, but D. accepts w,.

* Every D has a bad n iff every D has infinitely many bad n. This is true
because, if a polynomial-size family D has only finitely many bad n, then
replacing the corresponding D, with correct automata of any size would
result in a new family which is still polynomial-size and has no bad n.

Hence, proving the conjecture amounts to proving that, for any polynomial-size
family D of 2DFAs for H, there is a family of strings w = (w,);>o such that, for
infinitely many n, the input w, fools D,.

Now, the connection with L vs. NL says the following: if we can indeed find such
a proof and in addition manage to guarantee that the lengths of the strings in w
are bounded by some polynomial of n, then L # NL.

There is no doubt that this connection increases our confidence in the relevance
of the 2D vs. 2N problem to the more important questions on the power of nonde-
terminism. However, its significance should not be over-estimated. First, the two
problems may very well be resolved independently. On one hand, if 2D = 2N then the
connection is irrelevant, obviously. On the other hand, if 2D / 2N then our tools for
short strings are so much weaker than our tools for long strings, that it is hard to
imagine us arriving at a proof that uses only short strings before actually having a
proof that uses long ones. Second, and perhaps most importantly, ideas do not need
mathematical connections to transcend domains. In other words, an idea that works
for one type of machines may very well be applicable to other types of machines,
too, even if no high-level theorem encodes this transfer. Examples of this situation
include the Immerman-Szelepcs6nyi idea [24, 58], Savitch's idea [49], and Sipser's
"rewind" idea [54], each of which has been applied to machines of significantly
different power [14, 54].

In conclusion, from the computational complexity perspective, the 2D vs. 2N problem
is a question on the power of nondeterminism which seems both simple enough to be
tractable and, at the same time, robust, hard, and intriguing enough to be relevant
to our efforts against other, more important questions of its kind.

2.2. Descriptional complexity. From the perspective of descriptional com-
plexity, the 2D vs. 2N question falls within the general major goal of understanding
the relative succinctness of language descriptors. Here, by "language descriptor"
we mean any formal model for recognizing or generating strings: finite automata,
regular expressions, pushdown automata, grammars, Turing machines, etc.

Perhaps the most famous question in this domain is the one about the relative
succinctness of 1DFAs and 1NFAs. Since both types of automata recognize exactly
the regular languages [47], every such language can be described both by the deter-
ministic and by the nondeterministic version. Which type of description is shorter?
Or, measuring the size of these descriptions by the number of states in the cor-
responding automata, which type of automaton needs the fewest states? Clearly,

13

INTRODUCTION

since determinism is a special case of nondeterminism, a smallest 1DFA cannot be
smaller than a smallest 1NFA. So, the question really is: How much larger than a
smallest INFA need a smallest 1DFA be? By the well-known simulation of [47], we
know that every n-state 1NFA has an equivalent 1DFA with at most 2' - 1 states.4

Moreover, this simulation is optimal [35], in the sense that certain n-state 1NFAs
have no equivalent 1DFA with fewer than 2n - 1 states. Hence, this question of de-
scriptional complexity is fully resolved: if the minimal 1NFA description of a regular
language is of size n, then the corresponding minimal 1DFA description is of size at
most 2" - 1, and sometimes is exactly that big.

There is really no end to the list of questions of this kind that can be asked.
For the example of finite automata alone, we can change how the size of the de-
scriptions is measured (e.g., use the number of transitions) and/or the resource that
differentiates the machines (e.g., use any combination of nondeterminism, bidirec-
tionality, ambiguity, alternation, randomness, pebbles, heads, etc.). Moreover, the
models being compared can even be of completely different kind (e.g., 1NFAs versus
regular expressions) and/or have different power (e.g., 1NFAs versus deterministic
pushdown automata, or context-free grammars), in which case each model may
have its own measure for the size of descriptions.

Typically, every question of this kind is viewed in the context of a conversion.
For example, the question about 1DFAs and 1NFAs is viewed as follows:

Given a 1NFA, we must convert it into a smallest equivalent 1DFA.

What is the increase in the number of states in the worst case?

In other words, starting with a 1NFA, we want to trade size for determinism and
we would like to know in advance the worst possible loss in size. We encode this
information into a function f, called the trade-off of the conversion: for every n,
f (n) is the least upper bound for the new number of states when an arbitrary n-
state INFA is converted into a smallest equivalent 1DFA. In this terminology, our
previous discussion can be summarized into the following concise statement:

the trade-off from 1NFAs to 1DFAs is f(n) = 2n - 1.

Note that this encodes both the simulation of [47], by saying that f(n) < 2' - 1,
and the "hard" INFAs of [35], by saying that f(n) ;> 2 - 1.

The 2D vs. 2N problem can also be concisely expressed in these terms. It con-
cerns the conversion from 2NFAs to 2DFAs, where again we trade size for determin-
ism, and precisely asks whether the associated trade-off can be upper-bounded by
some polynomial:

2D = 2N <->= the trade-off from 2NFAs to 2DFAs is polynomially bounded.
Indeed, if the trade-off is polynomially bounded, then every family of regular prob-
lems that is solvable by a polynomial-size family of 2NFAs N = (N)n;>o is also
solvable by a polynomial-size family of 2DFAs: just convert N, into a smallest
equivalent 2DFA Da, and form the resulting family D := (D)n;>o. Since the size

sn of Nn is bounded by a polynomial in n and the size of Dn is bounded by a
polynomial in sn (the trade-off bound), the size of Dn is also bounded by a polyno-
mial in n. Overall, 2D = 2N. Conversely, suppose the trade-off is not polynomially
bounded. For every n, let N, be any of the n-state 2NFAs that cause the value of
the trade-off for n, and let Dn be a smallest equivalent 2DFA. Then the sizes of the

4 Recall that a 1DFA may reject by hanging anywhere along its input (cf. Footnote 2 on
page 12).

14

2. MOTIVATION

2NFA

ea= 2' - 1
e e n-' d b = n(n" - (n - 1)n)

2DFA - -- - -- - -- - -- do 1NFA C = En 1 -n n n 2)

e ed=(")

c e= n
b " a

1DFA

FIGURE 1. The 12 conversions defined by nondeterminism and
bidirectionality in finite automata, and the known exact trade-offs.

automata in the family D := (Dn)n o are exactly the values of the trade-off, and
therefore D is not of polynomial size. Moreover, for Hf the language recognized
by Nn and Dn, the family H := (HT)g>o is clearly in 2N (because of the linear-size
family N := (Nn),>o) but not in 2D (since D is not of polynomial size). Overall,
2D 2N.

Note the sharp difference in our understanding of the two conversions mentioned
so far. On the one hand, our understanding of the conversion from 1NFAs to 1DFAs
is perfect: we know the exact value of the associated trade-off. On the other hand,
our understanding of the conversion from 2NFAs to 2DFAs is minimal: not only do

we not know the exact value of the associated trade-off, but we cannot even tell
whether it is polynomial or not. The best known upper bound for it is exponential,
while the best known lower bound is quadratic. In fact, the details of this gap
reveal a much more embarrassing ignorance. The exponential upper bound is the
trade-off from 2NFAs to 1DFAs, while the quadratic lower bound is the trade-off
from unary 1NFAs to 2DFAs. In other words, put in the shoes of a 2DFA that tries
to simulate a 2NFA, we have no idea how to benefit from our bidirectionality; at
the same time, put in the shoes of a 2NFA that tries to resist being simulated by a
2DFA, we have no idea how to use our bidirectionality or our ability to distinguish
between different tape symbols.

A bigger picture is even more peculiar. The 12 arrows in Figure 1 show all
possible conversions that can be performed between the four most fundamental
types of finite automata: 1DFAs, 1NFAs, 2DFAs, and 2NFAs. For 10 of these conver-
sions, the problem of finding the exact value of the associated trade-off has been
completely resolved (as shown in the figure), and therefore our understanding of
them is perfect. The only two that remain unresolved are the ones from 2NFAs and
1NFAs to 2DFAs (as shown by the dashed arrows), that is, exactly the conversions
associated with 2D vs. 2N.

In conclusion, from the descriptional complexity perspective, the 2D vs. 2N problem
represents the last two open questions about the relative succinctness of the basic
types of automata defined by nondeterminism and bidirectionality. Moreover, the
contrast in our understanding between these two questions and the remaining ten

is the sharp contrast between minimal and perfect understanding.

15

INTRODUCTION

3. Progress

Our progress against the 2DVS. 2N question has been in two distinct directions:
we have proved lower bounds for automata of restricted information and for au-
tomata of restricted bidirectionality. In both cases, our theorems involve a particular
computational problem called liveness. We start by describing this problem.

3.1. Liveness. As already mentioned in Section 2.1-III, we currently believe
that 2NFAs can be exponentially smaller than 2DFAs even without using their bidi-
rectionality. That is, we believe that even INFAs can be exponentially smaller than
2DFAs. In computational complexity terms, this is the same as saying that the
reason why 2D 2N is because already 2D IN, where iN is the class of fami-
lies of regular problems that can be solved by polynomial-size families of 1NFAs.
In descriptional complexity terms, this is the same as saying that the reason why
the trade-off from 2NFAs to 2DFAs is not polynomially bounded is because already
the trade-off from 1NFAs to 2DFAs is not. In this thesis, we focus on this stronger
conjecture.

As in any attempt to show non-containment of one complexity class into another
(P 0 NP, L 0 NL), it is important to know specific complete problems-namely,
problems which witness the non-containment iff the non-containment indeed holds.
In our case, we need a family of regular problems that can be solved by a polynomial-
size family of 1NFAs and, in addition, they are such that no polynomial-size family
of 2DFAs can solve them iff 2D i IN. Such families are known. In fact, we have
already presented one: the family of problems defined on page 8 over the alphabets

An. So, it is safe to invest all our efforts in trying to understand that particular
family, and prove or disprove the 2D i IN conjecture by showing that the family
does not or does belong to 2D. However, it is easier (and as safe) to work with
another complete family, which is defined over an even larger alphabet and thus
brings us closer to the combinatorial core of the conjecture. This family is called
liveness, denoted by B = (Bn)n>o, and defined as follows [48].

For each n, we consider the alphabet En := P({1, 2, ... , n}2) of all directed 2-
column graphs with n nodes per column and only rightward arrows. For example,
for n = 5 this alphabet includes the symbols:

where, e.g., indexing the vertices from top to bottom, the rightmost symbol is
{(1, 2), (2,1), (4, 4), (5, 5)}. Given an m-long string over En, we naturally interpret
it as the representation of a directed (m + 1)-column graph, the one that we get by
identifying the adjacent columns of neighboring symbols. For example, for m 8
the string of the above symbols represents the graph:

0 1 2 3 4 5 6 7 8

4 .---. *

where columns are indexed from left to right starting from 0. In this graph, a
live path is any path that connects the leftmost column to the rightmost one (i.e.,
the Oth to the mth column), and a live vertex is any vertex that has a path from

16

3. PROGRESS

the leftmost column to it. The string is live if live paths exist; equivalently, if
the rightmost column contains live vertices. Otherwise, the string is dead. For
example, in the above string, the 5th node of the 2nd column is live because of the
path 3 -+ 3 -+ 5, and the string is live because of two live paths, one of which is

3 -+ 3 -+ 2 -+ 5 -> 5 -* 3 --+ 3 -- > 2 -+ 1. Note that no information is lost if we

drop the direction of the arrows, and we do. So, the above string is simply:

The problem B, consists in determining whether a given string over E*, is live or
not. In formal dialect, we define B, := {w E Z* I w is live }, for all n.

As already claimed, B c IN. That is, there exist small 1NFA algorithms for B,.
The smallest possible one is rather obvious:

We scan the list of graphs from left to right, trying to nondetermin-
istically follow one live path. Initially, we guess the starting vertex
among those of the leftmost column. Then, on reading each graph, we
find which vertices in the next column are accessible from the most
recent vertex. If none is, we hang (in this branch of the nondeter-
minism). Otherwise, we guess one of them and move on remembering
only it. If we ever arrive at the end of the input, we accept.

It is easy to verify that this algorithm can be implemented on a 1NFA with exactly
one state per possible vertex in a column. Hence, B, is solvable by an n-state 1NFA.
In contrast, nobody knows how to solve B, on a 2DFA with fewer than 2' -1 states.
The best known 2DFA algorithm is the following:

We scan the list of graphs from left to right, remembering only the
set of live vertices in the most recent column. Initially, all vertices of
the leftmost column are live. Then, on reading each graph, we use its
arrows to compute the set of live vertices in the next column. If it is
empty, we simply hang. Otherwise, we move on, remembering only
this set. If we ever arrive at the end of the input, we accept.

Easily, this algorithm needs exactly one state per possible non-empty set of live
vertices in a column, for a total of 2' - 1 states, as promised.

By the completeness of B, our questions about the relation between 2D and IN

can be encoded into questions about the size of a 2DFA solving B". In other words,
the following three statements are equivalent:

" 2D D 1N,
" the trade-off from 1NFAs to 2DFAs is polynomially bounded,
" B, can be solved by a 2DFA of size polynomial in n.

Hence, to prove the conjecture that 2D iN, we just need to prove that the number
of states in every 2DFA solving B, is super-polynomial in n. In fact, as explained in
Section 2.1-III, a stronger conjecture says that the above 2DFA algorithm is optimal!
That is, in every 2DFA solving Ba-the conjecture goes-the number of states is
not only super-polynomial but already 2' -1 or bigger. To better understand what
this means, observe that the above algorithm is one-way: it is, in fact, the smallest
1DFA for liveness (as we can easily prove). Therefore, the claim is that in solving
liveness, a 2DFA has no way of using its bidirectionality to save even 1 of the 2n - 1
states that are necessary without it.

17

INTRODUCTION

3.2. Restricted information: Moles. The first direction that we explore
in our investigation of the efficiency of 2DFAs against liveness is motivated by the
particular way of operation of the 1NFA algorithm that we described above.

Specifically, consider any branch of the nondeterministic computation of that
1NFA. Along that branch, the automaton moves through the input from left to right,
reading one graph after the other. However, although at every step the entire next
graph is read, only part of its information is used. In particular, the automaton
'focuses' only on one of the vertices in the left column of the graph and 'sees' only
the arrows which depart from that vertex. The rest of the graph is ignored. In this
sense, the automaton operates in a mode of 'restricted information'.

A more intuitive way to describe this mode of operation is to view the input
string as a 'network of tunnels' and the 1NFA as an n-state one-way nondeterministic
robot that explores this network. Then, at each step, the robot reads only the
index of the vertex that it is currently on and the tunnels that depart from that
vertex, and has the option to either follow one of these tunnels or abort, if none
exists. In yet more intuitive terms, the automaton behaves like an n-state one-way
nondeterministic mole.

Given this observation, a natural question to ask is the following: Suppose we
apply to this mole the same conversion that defines the question whether 2D D IN.
Namely, suppose that this mole loses its nondeterminism in exchange for bidirec-
tionality. How much larger does it need to get to still be solving B"? That is, can
liveness be solved by a small two-way deterministic mole? Equivalently, is there
a 2DFA algorithm that can tell whether a string is live or not by simply exploring
the graph defined by it? Note that, at first glance, there is nothing to exclude the
possibility of some clever graph exploration technique that correctly detects the
existence of live paths and can indeed be implemented on a small 2DFA.

In Chapter 2 we prove that the answer to this question is strongly negative:

no two-way deterministic mole can solve liveness.

To understand the value of this answer, it is necessary to understand both the
"good news" and the "bad news" that it contains.

The good news is that we have crossed an entire, very natural class of 2DFA
algorithms off the list of candidates against liveness. We have thus come to know
that every correct 2DFA must be using the information of every symbol in a more
complex way than moles.

However, note that our answer talks of all two-way deterministic moles, as
opposed to only small ones. This might sound like "even better news", but it is
actually bad. Remember that our primary interest is not moles themselves, but
rather the behavior of small 2DFAs against liveness. So, our hope was that we
would get an answer that involves small moles, and this hope did not material-
ize. Put another way, we asked a complexity-theoretic question and we received a
computability-theoretic answer.

Overall, our understanding has indeed advanced, but not for the class of ma-
chines that we were mostly interested in. Nevertheless, some of the tools developed
for the proof of this theorem may still be useful for the more general goal. Specifi-
cally, if indeed small 2DFAs cannot solve liveness, then it is hard to imagine a proof
that will not involve very long inputs. Such a proof will probably need tools similar
to the dilemmas and generic strings for 2DFAs that were used in our argument.

18

3. PROGRESS

3.3. Restricted bidirectionality: Sweeping automata. The second direc-

tion that we explore is motivated by the known fact that 2D is closed under com-
plement [54, 14], whereas the corresponding question for 2N is open. So, one way

to prove that 2D / 2N is to show that 2N is not closed under complement. In terms

of classes, we can write this goal as 2N 4 co2N, where co2N is the class of families
of regular problems whose complements can be solved by polynomial-size families

of 2NFAs. Of course, it is conceivable that 2N = co2N, in which case a proof of this
would be evidence that 2D = 2N.

As a matter of fact, 2N = co2N is already known to hold in some special cases.
First, the analogue of this question for logarithmic-space Turing machines is known
to have been resolved this way: NL = coNL [24, 58]. By the argument of [3],
this implies that every small 2NFA can be converted into a small 2NFA that makes
exactly the opposite decisions on all "short" inputs (in the sense of Section 2.1-
IV). In addition, the proof idea of NL = coNL has been used to prove that indeed
2N = co2N for the case of unary regular problems [14]. So, 2N and co2N are already
known to coincide on short and on unary inputs.

However, there is little doubt that the above special cases avoid the core of the
hardness of the 2N vs. co2N question. In this sense, our confidence in the conjecture
that 2N = co2N is not seriously harmed. As a matter of fact, in Chapter 2 we
prove a theorem that constitutes evidence for it. We consider a restriction on the
bidirectionality of the 2NFAs and prove that, under this restriction, 2N # co2N. The
restricted automata that we consider are the "sweeping" 2NFAs.

A two-way automaton is called sweeping if its input head can change the direc-
tion of its motion only on the two ends of the input. In other words, each computa-
tion of a sweeping automaton is simply a sequence of one-way passes over the input,
with alternating direction. We use the notation SNFA for sweeping 2NFAs, and SN
for the class of families of regular problems that can be solved by polynomial-size
families of SNFAs. With these names, our theorem says that:

SN 4 coSN.

More specifically, our proof uses liveness, which is obviously in SN: B E SN. We
prove that, in contrast, every SNFA solving the complement of B" needs 2 0(n) states,
so that B V coSN. Overall, B E SN \ coSN and the two classes are different.

Another way to interpret this theorem is to view it as a generalization of two
other, previously known facts about the complement of liveness: that it is not solv-
able by small INFAs [48] and that it is not solvable by small sweeping 2DFAs [55, 14],
either. So, proving the same for small SNFAs amounts to generalizing both these

facts to sweeping bidirectionality and to nondeterminism, respectively. For another

interesting interpretation, note that the smallest known SNFA solving the comple-
ment of B, is still the obvious 2"-state 1DFA from page 17. Hence, our theorem says

that, even after allowing sweeping bidirectionality and nondeterminism together, a
1DFA can still not achieve significant savings in size against the complement of

liveness-whether it can save even 1 state is still open.
Finally, our proof can be modified so that all strings used in it are drawn

from a special subclass of Z* on which the complement of liveness can actually be

determined by a small 2DFA. This immediately implies that:

the trade-off from 2DFAs to SNFAs is exponential,

which generalizes a known similar relation between 2DFAs and SDFAs [55, 2, 36].

19

INTRODUCTION

4. Other Problems in This Thesis

Apart from the progress against the 2D vs. 2N question explained above, this
thesis also contains a few other, related theorems in descriptional complexity.

4.1. Exact trade-offs for regular conversions. As explained in Section 2.2
(Figure 1), the 2D vs. 2N question concerns only 2 of the 12 possible conversions
between the four most basic types of finite automata (1DFAs, 1NFAs, 2DFAs, and
2NFAs). For each of the remaining conversions our understanding is perfect, in the
sense that we know the exact value of the associated trade-off.

For the conversion from 1NFAs to 1DFAs (Figure la), the upper bound is due
to [47] and the lower bound due to [35]. For any of the conversions from weaker
to stronger automata (Figure le), the upper bound is obvious by the definitions
and the lower bound is due to [6]. For the remaining four conversions (from 2NFAs
or 2DFAs to 1NFAs or 1DFAs), both the upper and lower bounds are due to this
thesis-although the fact that the trade-offs were exponential was known before.
We establish these exact values in Chapter 1. For a quick look, see Figure lb-d.

We stress, however, that the exact values alone do to reveal the depth of the
understanding behind the associated proofs. In order to explain what we mean by
this, let us revisit the conversion from 1NFAs to 1DFAs. As already mentioned, we
can encode our understanding of this conversion into the concise statement that:

the trade-off from 1NFAs to 1DFAs is exactly 2' - 1.

A less succinct but more informative description is that, for all n:
" every n-state 1NFA has an equivalent 1DFA with at most 2' - 1 states, and
" some n-state 1NFA has no equivalent 1DFA with fewer than 2' - 1 states.

But even these more verbose statements fail to describe the kind of understanding
that led to them. What we really know is that every 1NFA N can be simulated by
a 1DFA that has 1 distinct state for each non-empty subset of states of N which (as
an instantaneous description of N) is both realizable and non-redundant. This is
exactly the idea where everything else comes from: the value 2n - 1 (by a standard
counting argument), the simulation for the upper bound (just construct a 1DFA
with these states and with the then obvious transitions), and the hard instances
for the lower bound (just find INFAs that manage to keep all of their instantaneous
descriptions realizable and non-redundant). In this sense, we know more than just
the value of the trade-off; we know the precise, single reason behind it:

the non-empty subsets of states of the 1NFA
that is being converted. To be able to pin down the exact source of the difficulty
of a conversion in terms of such a simple and well-understood class of set-theoretic
objects is a rather elegant achievement.

Our analyses in Chapter 1 are supported by this same kind of understanding:
in each one of the four trade-offs that we discuss, we first identify the correct set-
theoretic object at the core of the conversion and then move on to extract from it
the exact value, the simulation, and the hard instances that we need. As a foretaste,
here are the objects at the core of the conversion from 2NFAs to 1NFAs:

the pairs of subsets of states of the 2NFA being converted, where
the second subset has exactly 1 more state than the first subset.

So, every 2NFA can be simulated by a 1NFA that has 1 distinct state for every such
pair, and for some 2NFAs all these states are necessary. Moreover, the value of the

20

4. OTHER PROBLEMS IN THIS THESIS

trade-off is exactly the number of such pairs that we can construct out of an n-state
2NFA; a standard counting argument shows that this number is (n1).

4.2. Non-recursive trade-offs for non-regular conversions. In contrast
to Chapters 1 and 2, the last chapter studies conversions between machines other
than the automata of Figure 1, including machines that can also recognize non-
regular problems. As we shall see, the trade-offs for such conversions may, in
general, behave in a quite different manner.

To understand the difference, note that already since [53] we knew how to
effectively convert any 2NFA (the strongest type of automata in Figure 1) into a
1DFA (the weakest type). This immediately guaranteed a recursive upper bound
for each one of the 12 trade-offs of Figure 1. In contrast, for other conversions,
such a recursive upper bound cannot be taken for granted. As first shown in [35],
there are cases where the trade-off of a conversion grows faster than any recursive
function: e.g., the conversion from one-way nondeterministic pushdown automata
that recognize regular languages to 1DFAs. Moreover, this phenomenon cannot be
attributed simply to the difference in power between the types of the machines
involved. As shown in [56], if the pushdown automata in the previous conversion
are deterministic, then the trade-off does admit a recursive upper bound. Such
trade-offs, that cannot be recursively bounded, are simply called non-recursive.
Note that this name is slightly misleading, as it allows the possibility of a non-
recursive trade-off that still admits recursive upper bounds. However, no such
cases will appear in this thesis.

In Chapter 3 we refine a well-known technique [16] to prove a general theorem
that implies the non-recursiveness of the trade-off for a list of conversions involving
two-way machines. Roughly speaking, our theorem concerns any two types of
machines, A and B, that satisfy the following two conditions:

" the A machines can solve problems that no B machine can solve, and
" the A machines can simulate any two-way deterministic finite automaton that

works on a unary alphabet and has access to a linearly-bounded counter.

For any such pair of types, our theorem says that the trade-off from A machines to
B machines is non-recursive. For example, we can have A be the multi-head finite
automata with k + 1 heads and B be the multi-head finite automata with k heads.
No matter what k is, the conditions are known to be true, and therefore replacing
a multi-head finite automaton with an equivalent one that has 1 fewer head results
in an non-recursive increase in the size of the automaton's description, in general.

At the core of the argument of this theorem lies a lemma of independent interest:
we prove that the emptiness problem remains unrecognizable (non-semidecidable)
even for a unary two-way deterministic finite automaton that has access to a
linearly-bounded counter and obeys a threshold-in the sense that it either rejects
all its inputs or accepts exactly those that are longer than some fixed length.

21

CHAPTER 1

Exact Trade-Offs

In this chapter we prove the exact values of the trade-offs for the conversions
from two-way to one-way finite automata, as pictured in Figure 1 (page 15). In
Section 3 we cover the conversion from 2DFAs to 1DFAs (Figure 1b), whereas the
conversion from 2NFAs to 1DFAs (Figure 1c) is the subject of Section 4. The conver-
sions from 2NFAs and 2DFAs to 1NFAs (Figure 1d) are covered together in Section 5.
We begin with a short note on the history of the subject and a summary of our
conclusions.

1. History of the Conversions

The conversion from INFAs to 1DFAs is the archetypal problem of descriptional
complexity. As already mentioned (Figure la), the problem is fully resolved, in the
sense that we know the exact value of the associated trade-off:1

the trade-off from 1NFAs to 1DFAs is 2n - 1.

The history of this problem began in the late 50's, when Rabin and Scott [46, 47]
introduced INFAs as a generalization of 1DFAs and showed how 1DFAs can simulate
them. This proved the upper bound for the trade-off. The matching lower bound
was established much later, via several examples of "hard" 1NFAs [44, 35, 43, 51,
48, 33].2 Both bounds are based on the crucial idea that

the non-empty subsets of states of the 1NFA
capture everything that a simulating 1DFA needs to describe with its states.

As part of the same seminal work [45, 47], Rabin and Scott also introduced
two-way automata and proved "to their surprise" that 1DFAs were again able to sim-
ulate their generalization. This time, though, the proof was complicated enough to
be superseded by a simpler proof by Shepherdson [53] at around the same time. All
authors were actually talking about what we would now call single-pass two-way de-
terministic finite automata (ZDFAs), as their definitions did not involve end-markers.
However, the automata quickly grew into full-fledged two-way deterministic finite
automata (2DFAs) and also into nondeterministic counterparts (ZNFAs and 2NFAs),
while all theorems remained valid or easily adjustable.

Naturally, the descriptive complexity questions arose again. Shepherdson men-
tioned that, according to his proof, every n-state 2DFA had an equivalent 1DFA with
at most (n+ 1)(n+1) states. Had he cared for his bound to be tight, he would surely

1 Recall our conventions, as explained in Footnote 2 on page 12.
2 The earliest ones, both over a binary alphabet, appeared in (35] (an example that was

described as a simplification of one contained in an even earlier unpublished report [44]) and
in [43] (where [44] is again mentioned as containing a different example with similar properties).
Other examples have also appeared, over both large [51, 48] and binary alphabets [33]. A more
natural but not optimal example was also mentioned in [35] and attributed to Paterson.

23

1. EXACT TRADE-OFFS

have noted that his proof had actually established an upper bound of only n(n+1)"
-e.g., see [20, Section 3.7]. Many years later, Birget [6, Theorem A3.4] claimed
that this upper bound is really just nn. On the other hand, towards a lower bound,
several authors showed that the trade-off is at least exponential [1, 35, 55] and
indeed very close to the upper bound given by Shepherdson [35, 43].

Here we will prove that both the upper and lower bounds meet at the value
n(n' - (n - 1)n). We will thus have arrived at the conclusion that

the trade-off from 2DFAs to 1DFAs is n(nn - (n - i)n).

Note that this value is larger than the upper bound nn claimed by Birget [6].
Indeed, his argument contained an oversight. But it did contain the correct idea,
and it is exactly that idea which we apply here. We also note that our lower bound
is valid even when the 2DFA being converted is single-pass. More importantly,
both the upper and the lower bound are derived in a straightforward manner after
we carefully identify the correct set-theoretic objects that 'live' in the relationship
between the computations of 2DFAs and 1DFAs. These are

the tables of the 2DFA

as defined in Section 2.1-I. No big surprise is to be anticipated: we simply follow
the idea of [6] in properly restricting the functions used in [53, proof of Theorem 2].

The relation between the most and least powerful of all automata mentioned so
far, namely between 2NFAs and 1DFAs, has also been examined. Via a straightfor-
ward adjustment, Shepherdson's argument could show very early that every n-state
2NFA can be converted into a 1DFA with at most 2 2(2 " - 1) states. Much later,
Birget [6, Theorem A3.4] claimed it to be no more than n(n/ 2)2("-). Towards a

lower bound, we just mention the one provided by the systematic framework of [48],
which was 2(n/2-2)2. Here we will show that

the trade-off from 2NFAs to 1DFAs is Z_1 2nii (n) -(2 1

where the lower bound is valid even when the 2NFA being converted is single-pass.
As before, we will first identify the correct set-theoretic objects that relate the
computations of 2NFAs to those of 1DFAs. These are

the tables of the 2NFA

as defined in Section 2.2. Again, we arrive at them by appropriately restricting the
functions in the Shepherdson argument.

The most interesting of the descriptive complexity questions that we consider
emerge as we examine the conversions from 2NFAs to 1NFAs and 2DFAs:

(Q1) from 2NFAs to INFAs: is bidirectionality essential to 2NFAs? Or, is there
a problem that a 1NFA would be able to solve with exponentially fewer
states if it were allowed to move its head to the left?

(Q2) from 2NFAs to 2DFAs: is nondeterminism essential to 2NFAs ? Or, is there
a problem that a 2DFA would be able to solve with exponentially fewer
states it it were allowed to make nondeterministic choices?

3 That the lower bound is close to the upper bound given by Shepherdson was shown by (a
slight modification of) the language of [35, Proposition 2], which requires > n" states on every
1DFA, but only 5n + 5 states on a 2DFA (a ZDFA, even). Similarly, [43] gave a language that
requires > n' + o(n') states on a IDFA, but only <_ 2n + 5 on a 2DFA. For just an exponential
separation, one can look at [1] for > 2' + 2 and < 2n + 2 states (even on a ZDFA); at the Paterson
example of [35] for > 21 and < n + 2 states (even on a SDFA); or at [55 for > 2n and < 0(n)
(even on a SDFA).

24

1. HISTORY OF THE CONVERSIONS

The second question is of course the 2D vs. 2N problem, as explained in the Intro-
duction and covered in detail in Chapter 2. For the first question, the answer is
known to be positive, but here we will find the exact value of the trade-off.

For the upper bound, it is straightforward to use Shepherdson's idea to show

that every n-state 2NFA has an equivalent 1NFA with at most n2" 2 states. A more
economical simulation, with fewer than (n!)2 states, can be achieved by crossing
sequences [21, Section 2.6]. However, it is not hard to observe that the order in
which the pairs of successive states (after the first state) appear inside a crossing
sequence is not important; equivalently, in applying Shepherdson's idea we can use
the nondeterminism of the simulating 1 NFA not only for 'guessing forwards' but also
for 'guessing backwards'. Based on this observation, we can actually construct a
INFA with at most n(n + 1)n states. But this would still be wasting exponentially
many states, as Birget [6] showed 8n + 2 states are always enough. On the other
hand, towards a lower bound, exponential separations between 2DFAs and 1NFAs
have long been known [48, 6], even when the 2DFAs are single-pass [51, 8], the best
being 2(n-1)/2 __ 14

Here, we will again show that the upper and lower bounds meet exactly at the
value (2+ 1). We will thus have that

the trade-off from 2NFAs to 1NFAs is (n2+1

This will again be possible after we identify the correct set-theoretic objects relating
the computations of 2NFAs to those of 1NFAs. These are

the frontiers of the 2NFA

as defined in Section 5.1. Essentially, these objects are what remains of the crossing
sequences of [21] after we ignore not only the order of the pairs of successive states

(as we did for the n(n + 1)n bound above) but the correspondence between first
and second components in this set of pairs.

As a matter of fact, the lower bound is valid even when the 2NFA being converted
is deterministic (and single-pass, actually). This immediately implies that

the trade-off from 2DFAs to 1NFAs is (2+1
as well. Hence, the ability of a 2NFA to move its head in both directions strictly
inside the input can alone cause all the hardness that a simulating 1NFA must
overcome. In other words, the answer to (Q1) above is positive, exactly because
even the answer to the following question is positive (Figure 1d):

(Q3) from 2DFAs to INFAs: can bidirectionality beat nondeterminism? Is there
a problem that a 1NFA would be able to solve with exponentially fewer
states if it were allowed to replace nondeterminism with bidirectionality?

Note the similarity with the conjectured resolution of (Q2) above. As explained
in the Introduction, we believe that the answer to (Q2) is also positive, exactly
because the answer to the following question is positive:

4 1n [48] a language was given that requires < 2n + 1 states on a 2DFA, but > 2' - 1 states on
a INFA. Through a different method, [6] found the same 2(-1)/2 - 1 lower bound. Seiferas [51]
gave a language that needs < 4n + 2 states on a ZDFA, but > 2' states on any JNFA, while
Damanik [8] independently arrived at the same argument. Copying that idea, one can easily see
that the restriction of the language B, of [48] to strings of length 2 has similar properties (2n
and > 2' states).

25

1. EXACT TRADE-OFFS

(Q4) from 1NFAs to 2DFAs: can nondeterminism beat bidirectionality? Is there
a problem that a 2DFA would be able to solve with exponentially fewer
states if it were allowed to replace bidirectionality with nondeterminism?

So, it appears that in both cases, the hardness of a simulation can stem entirely
from the feature of the simulated machine that is absent in the simulating machine.

Finally, let us also briefly discuss the conversions from weaker to stronger au-
tomata (Figure le). By the definitions, the trade-off for each one of them is trivially
upper-bounded by n. Moreover, it is also lower bounded by n. To see why, notice
that the n-th singleton unary language {0 1} can be solved by an n-state 1DFA
but no 2NFA with fewer than n states [4]. This proves that

the trade-off from 1DFAs to 2NFAs is n

and implies the same for all other conversions of this kind.
Before proving our claims, Section 2 will define the notions that we work with.

2. Preliminaries

We write [n] for the set {1, 2,.. ., n}. The special objects 1, r, -L are used for
building the disjoint union of two sets and the augmentation of a set

A U B = (A x {1}) U (B x {r}) and A 1 = A U {1}.

When A, B are disjoint, their union A U B is also written as A + B (so that + can
replace U in both equations above). The size of A, the set of subsets of A, and the
set of non-empty subsets of A are denoted respectively by JAI, P(A), and P'(A).

For Z an alphabet, we use E* for the set of all finite strings over E and Ze
for Z + {F-, -l}, where F- and -I are two special end-marking symbols. If u E E2* is
a string, Jul is its length and ui is its i-th symbol, for all i = 1, 2,..., Jul. By 'the
i-th boundary of u' we mean the boundary between ui and ui+i, if 0 < i < Jul; or
the leftmost boundary of u, if i = 0; or the rightmost boundary of u, if i = jul.
(Figure 2a.) We also write ue for the end-marked extension Fu-I of u and u,,i for
the i-th symbol (ue)i of this extension. The empty string is denoted by e.

Of the automata that we consider, the two-way deterministic ones constitute the
most natural variety and are described in the next section. Section 2.2 introduces
the one-way and nondeterministic cases, while Section 2.3 discusses some of the
problems that we will be solving with all these machines.

2.1. Two-way deterministic finite automata. A two-way deterministic fi-
nite automaton (2DFA) over the states of a set Q and the symbols of an alphabet E
consists of a finite control that can represent all states in Q, a tape that can rep-
resent all symbols in Ze and a read-only head. An input w E 7* is presented
on the tape surrounded by the end-markers, as F-w-l. The automaton starts at
a designated start state, its head reading the left end-marker F-. At every step,
the symbol under the head is read; based on this symbol and the current state,
the automaton selects a next state and whether to move its head left or right; it
then simultaneously changes its state and moves its head accordingly. The input is
accepted if the machine ever moves past the right end-marker -i into a designated
final state-this being the only case in which violating an end-marker is allowed. 5

5 Note the unusual conventions about end-marker violations and the position of the head at
acceptance, borrowed from [6]. They make our definitions and theorems significantly nicer.

26

2. PRELIMINARIES

Formally, a 2DFA over Q and E is defined as a triple M = (s, 6, f), where s, f C
Q are the start and the final states, respectively, and 6 is the transition function,
partially mapping Q x Ze to Q x {1, r}. In addition, 6 obeys the aforementioned

restrictions about end-marker violation: on F-, it either moves the head to the right

or hangs; on -1, it moves the head to the left, or hangs, or moves the head to the

right and enters f.
2.1-I. Computations. Although M is typically started at s and on the tape

cell containing the left end-marker F-, many other possibilities exist: for any string

u, position i, and state q, the computation of M when started at q on the i-th symbol

of u is the unique sequence

COMPM,q,i(U) = ((qt, it)) O<t<M

with (qo, io) = (q, i) and 0 Km < oc, that meets the following restrictions:

" the head is always inside u, except possibly at the very end:

0 < t < m == 1 < it 5 Jul & m # oo -==> 0 < im Jul + 1.
" every two successive pairs respect the transition function:

0 < t < n -=-=> J(qt, ui,) = (qt+l, d),
where either d = 1 & it+, = it - 1 or d = r & it+1 = it + 1.

" a last pair inside u exists only if the transition function allows it:
m # 00 & 1 < im < Ju| ===> 6(qm, uim) is undefined.

We say (qt, it) is the t-th point and m is the length of this computation. If m = cc,
we say the computation loops; otherwise, it hits left into qm, if im = 0; or it hangs,
if 1 < im Jul; or it hits right into qm, if im = Jul + 1. (Figure 2.) When i = 1 or

i = Jul we get the left computation of M from q on u or the right computation of
M from q on u, respectively:

LCOMPM,q(u) := COMPM,q,1(u) or RCOMPM,q(U) := COMPM,q,1u1(u).

Finally, for w C E*, the computation of M on w refers to the typical usage

COMPM(W) := LCOMPM,s(We),

so that M accepts w iff the computation COMPM(w) hits right into f.
1. REMARK. Note that, when u is the empty string, the left computation of M

from q on u is just LCOMPM,q(e) = ((q, 1)) and therefore hits right into q, whereas
the corresponding right computation is just RCOMPM,q(E) = ((q, 0)) and therefore
hits left into q.

2. REMARK. Also note that, since M can violate an end-marker only when it

moves past A into f, a computation of M on any end-marked u (e.g., COMPM(w)
is such a computation) can only loop, or hang, or hit right into f.

2.1-II. Tables. Pick any string u and suppose LCOMPM,,(u) hits right into

some state pu. Motivated by [53], we define the table of M on u to be the function

TABLEM(u) := 7 : Qj -+ Q

that satisfies r(L) := p, and, for all q E Q,

T(q) := i if RCOMPM,q(u) hits right into p,

pu if RCOMPM,q(u) hits left, loops, or hangs.

We stress that the table is defined only when LCOMPM,s(u) hits right; in all other
cases, no meaning is associated with the notation TABLEM(u).

27

1. EXACT TRADE-OFFS

0 1 2 20 3 4 5 6 0 ?0 6 0 6

U 1 U 2 -L3 -4 U5
16

qm
qm q9n

(a) (b) (c)

FIGURE 2. (a) Symbols and boundaries on a 6-long string u, and
a computation that hits left. (b) A computation that hangs. (c) A
computation c that hits right, and its i-th frontier: R in circles
and L in boxes.

Note that, whenever the table of M on u is defined, it almost fully describes
the behavior of the 1 + QJ computations

LCOMPM,s(u) and RCOMPM,q(u), for all q E Q,
on the rightmost boundary of u, in the sense that, whenever the boundary is indeed
hit, r returns the resulting last state. The only ambiguity arises when -r(q) = pu, for
some q E Q: then we do not know if this is because the corresponding computation
RCOMPM,q(u) misses the rightmost boundary, or because it hits it but it does so
into pu. If we allowed r to take values in Qi (as opposed to just Q), we could easily
remove this ambiguity-at the same time making our representation identical to
that of [53]. But we will not do so. Our ultimate goal is the construction of a 1DFA
that simulates M and, as we shall prove, this slightly ambiguous representation
contains exactly the amount of information required for this purpose.

3. REMARK. Note that, according to our conventions (Remark 1), the table on
the empty string TABLEM(e) is defined, and it equals the constant function s (i.e.,
the function that maps every element of Q± to the start state of M). Similarly,
according to our conventions for end-marker violation (Remark 2), whenever the
table TABLEM(u) on an end-marked u is defined, it necessarily equals the constant
function f (i.e., the function that maps every element of Q1 to the final state of M).

2.1-III. Frontiers. Fix some computation c = ((qt, it))ostim of M and con-
sider the i-th boundary of the string being read (Figure 2c). The computation
crosses this boundary 0 or more times, each crossing being either in the left-to-
right or in the right-to-left direction. Collect into set R all states that result from
a rightward crossing and do the same for the leftward crossings to get set L%:

{q1i 0 < t < m & it = i & it+, = i + 1},
L :={qt+1 I0 t<m & it=i+1 & it+1 =i},

also making the special provision that R 1 necessarily contains 6o.
6 The pair

(L, Rf) partially describes the behavior of c over the i-th boundary and we call it
the i-th frontier of c.

6 This reflects the convention that the starting state of any computation is considered to be
the result of an 'invisible' left-to-right step.

28

2. PRELIMINARIES

Note that the description is indeed partial, as the pair contains no information
about the order in which c exhibits the states around the i-th boundary, and says
nothing about the number of times each individual state is exhibited. For a full
description we would need instead the i-th crossing sequence of c (e.g., as defined
in [21]). However, in certain interesting cases, the extra information provided
by the complete description is redundant. In particular, if we only care to decide
reachability between two points via cycle-free computations, then the computations'
frontiers contain exactly the amount of information that we need. We will prove
and use this in Section 5.

2.2. Nondeterministic, one-way, and single-pass variations. If in the
definition of a 2DFA M = (s, 6, f) more than one next moves are allowed at each step,
we say the automaton is nondeterministic (2NFA). This formally means that 6 to-
tally maps Q x E, to the powerset of Q x {1, r} and implies that C := COMPM,q,i(u)

is now a set of computations. If then

P := {p I some c E C hits right into p},

we say that C hits right into P. Note that, if u is end-marked, then P is either 0
or {f} (cf. Remark 2). An input string w E Z* is considered to be accepted iff the

set of computations COMPM(W) = LCOMPM,S(we) hits right into {f}.
If the head of M never moves to the left, we say M is one-way (a 1NFA; or a

1DFA, if M is deterministic). 7 If no computation of M 'continues after reaching an
end-marker', we say M is single-pass (a ZNFA; or a ZDFA).

2.2-I. Tables of a 2NFA. If M is a 2NFA and u c Ze* is any string, we can
define the table of M on u similarly to what we did for 2DFAs in Section 2.1-II. In
particular, the table is defined only if the set of computations LCOMPM, 5 (u) hits
right into some P, # 0, and is then the function

TABLEM(U) := T: Qi -+ P'(Q)

that satisfies T(L) := P, and, for all q E Q,

T(q) :=_P \ P if RCOMPM,q(u) hits right into some P P,

P, if RCOMPM,q(u) hits right into some P ; PC .

Note that the definition is consistent with the one for the deterministic case.8 More-
over, it suffers the same ambiguities: whenever T(q) = Pu we do not know if this
is because all computations in RCOMPM,q(U) miss the right boundary or because

some of them hit it but do so only into states that are already in Pu.

4. REMARK. Also note that an analogue of Remark 3 is true. If u is the empty
string, then T is defined, and it equals the constant function {s}. If u is end-marked,
then T is either undefined or equal to the constant function {f}.

7
Note that, under this definition, a one-way finite automaton works on an end-marked input,

a deviation from the standard definition. However, it is easy to verify that an automaton that

follows either definition can be converted into an equivalent automaton that follows the other

definition and has the same set of states. So, all our conclusions concerning the numbers of states

in different automata will be valid irrespective of which definition we have in mind.
8 1f the 2NFA M is actually deterministic and T, r are its tables on u as described by the

definitions for 2NFAs and 2DFAs respectively, then T is defined iff r is. Moreover, when both tables
are defined, we have T(r) = {r(r)} for all r E Qi.

29

1. EXACT TRADE-OFFS

G - .< h G h g h

(a) (b) (c)

FIGURE 3. (a) A nice input, that has a path. (b) An nice input
with no path. (c) A deterministic nice input, that has a path.

2.3. Problems. Given any alphabet Z, a (promise) problem over E is any
pair H = (lyes, H, 0) of disjoint subsets of E*. An automaton solves H iff it
accepts every w E Hyes but no w E HT0 . Note that the behavior of an automaton
on strings outside Hyes + Hno does not affect whether it solves H or not. When
there are no such strings, namely when Hn0 + Ino = Z*, the problem is also called
language and is adequately described by Hyes alone (since then fln. = Hyes).

We will be interested in problems over the alphabet that contains pairs of the
form (x, d) or (G, d), where x is a number in [n], G is a binary relation on [n], and
d is a direction tag from {1, r}. In other words, our alphabet is

F := ([n]+ P([n] x [n])) x {1, r}.

However, among all strings over 1, we will only care about those that have length 4
and happen to follow the specific pattern

(1) (x,1)(G, 1)(h, r)(y, r)

where x and y are two numbers in [n], G is a binary relation on [n], and h is a
partial function from [n] to [n] which is not defined on y. (Note that a partial
function is a special case of a binary relation. So, these symbols do exist in r.) We
call these strings nice inputs.

Intuitively, given a nice input as above, we think of the two-column graph of
Figure 3a, where the columns are two copies of (n], the arrows between the columns
are determined by G (left-to-right) and h (right-to-left), and the two special nodes
are determined by x (entry point) and y (exit point). On this graph, a path from
the entry point to the exit point may or may not exist; if it does, we just say that
'the (graph of the) input has a path'. For example, the nice input of Figure 3a has
a path, but the nice input of Figure 3b does not have a path.

What makes nice inputs interesting is that a 2NFA can decide whether such an
input has a path or not using only n states and a single pass over the input. More
precisely, consider the promise problem 0 = (0yes, no) with

Oyes := {w c p* I w is a nice input that has a path},

Gno := {w c p* I w is a nice input that has no path}.

Then 0 can be solved by a ZNFA N0 that has [n] as its set of states and implements
the following natural algorithm:

On a nice input like (1) surrounded by end-markers, we use the first
2 steps to reach (G, 1) at state x. Then we repeatedly and alternately
read the two middle symbols, each time selecting nondeterministically

30

3. FROM 2DFAS TO 1DFAS

and following one of the arrows defined by G (if any) or following the

(at most one) arrow defined by h. If we ever reach (h, r) at a state z

from which no h-arrow departs, we stay at z and move right to check

whether z = y. If so, we move 2 more steps to the right and accept.

Formally, No := (1, 6, 1), where 6 is any total function from [n] x 1e to the powerset

of [n] x {1, r} that satisfies the following equations:

3(1,1-) = {(1,r)}, 6(1,(x,1)) = {(x,r)}, J(1, -d) = {(1, r)},

6(z, (G, 1)) = {(z', r) I (z, z') C G},

6(z, (h, r)) = if h(z) is defined then { (h(z), 1) } else {(z, r)},

6(z, (y, r)) = if (z = y) then {(1, r)} else 0.

Recall that the behavior of No on inputs that are not nice is irrelevant.

We will also be interested in the special case of inputs of the form (1) where,
like h, the relation G is also a partial function (Figure 3c). It is easy to verify that

on such inputs No does not use its nondeterminism, so we refer to strings of this

form as deterministic nice inputs and we use g in place of G to represent them:

(2) (x, 1)(g, 1)(h, r)(y, r).

Not surprisingly, the promise problem T = (Tye, WPo) with

Pyes := {w c * I w is a deterministic nice input that has a path},

Pn. :={w E F* I w is a deterministic nice input that has no path},

can be solved by a ZDFA Mo with state set [n], executing the following straight-

forward modification of the previous algorithm:

On a deterministic nice input like (2) surrounded by end-markers, we

use the first 2 steps to reach (g, 1) at state x. We then repeatedly

and alternately read the two middle symbols, each time following the

arrow (if any) defined by g or h. If we ever reach (h, r) at a state z

from which no h-arrow departs, we stay at z and move right to check

whether z = y. If so, we move 2 more steps to the right and accept.

Formally, Mo := (1, 6, 1), where 6 is any partial function from [n] x e to [n] x {1, r}

that satisfies the following equations:

5 (1, F-) = (1, r), 6 (1, (x, 1)) = (x, r), (,)=(,r),

5(z, (g, 1)) = if g(z) is defined then (g(z), r) else 'undefined',

3(z, (h, r)) = if h(z) is defined then (h(z),1) else (z, r),

3 (z, (y, r)) = if (z = y) then (1, r) else 'undefined'.

Again, the behavior of Mo on inputs that are not deterministic nice is irrelevant.

The lower bounds that we will be proving in the following sections will be

based on variants of problems <P and !'. Perhaps the reader has already recognized

in them two restrictions of Cs, the 2N-complete language of [48]. At the same time,
< is a large-alphabet variant of a problem used in [3].

3. From 2DFAs to 1DFAs

Fix an n-state 2DFA M = (s, 6, f) over some set of states Q and an alphabet Z.

In this section we will build a 1DFA that is equivalent to M. First some facts.

31

1. EXACT TRADE-OFFS

u a U a U a

(a) (b) (c)

FIGURE 4. Trying to compute r'(I): (a) c hangs right away, (b) c

hits right in the first step, and (c) c moves left in the first step.

3.1. Tables. Consider some non-empty string u and suppose that the table
of M on it T : TABLEM(u) is defined. We then know that the computation
c : LCOMPM,s(u) hits right into 'r(I). This implies that c visits the rightmost
symbol of u at least once. If q is the state of M during the latest such visit, we
easily see that the computation c' :=RCOMPM,q(u) is a suffix of c. Hence, it also
hits right, like c. Moreover, it certainly hits right into the same state as c, meaning
r(q) = T(I). We thus conclude that r assigns to I one of the values that it uses
for the states in Q. That is, T(I) E r[Q]. This motivates the following.

5. DEFINITIoN. A table of M is any r :Q -+ Q such that 'r(I) E T[Q].

Note that this defines what a "table of M" is, whereas Section 2.1-II defined what
the "table of M on u" is, for any string u. The next lemma shows the relation
between these two notions. The lemma after it, carries out an easy counting argu-
ment.

6. LEMMA. If the table of M on a string u is defined, then it is a table of M.

PROOF. If u # E, the proof is the argument before Definition 5. If u = e, the
table of M on u is the constant function s (cf. Remark 3), and therefore it obviously
qualifies as a table of M. LI

7. LEMMA. The number of distinct tables of M is exactly n(n" - (n -1).

PROOF. Easily, the number of distinct tables of M is exactly equal to the
number of (n + 1)-tuples of elements of [n] where the first component equals some
other component. Since there is a total of nfl+l unrestricted tuples and exactly
n(n - 1)n of them violate the restriction about the first component, the number
that we want is the difference nn+1 - n(n - i)n, exactly as claimed. II

3.2. Compatibilities among tables. Consider any string u, any symbol a,
and suppose that the table r : TABLEM(U) is defined. We would like to know
whether the table T' := TABLEM(ua) is also defined and, if so, to compute it. In
this section we will show how this can be done using only T and a, but not u. Our
algorithm will be based on the algorithm implied in [53], but it will also need some
modifications to account for the ambiguity of our representation.

Recall that T' is defined ifl the computation LCOMPM,s(ua) hits right. (Fig-
ure 4.) Clearly, this computation ends in c := RCOMPMTr(I)(Ua)- So, in order to
figure out whether T' is defined, we can just check whether c hits right. If it does,
our check will also reveal the last state of c. which we know is the value of r' on _L.

32

3. FROM 2DFAS TO 1DFAS

P <--) P +- q
repeat: repeat:

if 6(p, a) undefined: fail if 6(p, a) undefined: return T'(I)

(r, d) <- 5(p, a) (r, d) <- 6 (p, a)
ifd= r: returnr ifd= r: returnr
if r(r) = -r(I): fail if -r(r) = r(L): return r'(I)
if ir(r) seen before: fail if ir(r) seen before: return -r'(I)
P +-r(r) p<- r(r)

FIGURE 5. Computing er,a(I) (left) and e-r,a(q) (right).

So, let us set p := r(I) and consider the first step of c. If 6(p, a) is undefined
(Figure 4a), then c hangs inside ua and -r' is undefined. If b(p, a) is defined and
equal to some (r, r) (Figure 4b), then c immediately hits right into r, so -r' is defined
and -r'(I) = r. The last case (Figure 4c) is that S(p, a) equals some (r, 1), so then c
starts behaving as d := RCOMPM,r(u) and we know this behavior is already encoded
in r as the value p* := r(r). We distinguish two cases.

9 If p* = r(I), then we can conclude that r' is undefined, as we are in one of
the following two cases: either d hits left, loops, or hangs inside u, therefore
c does the same inside ua, and hence r' is not defined; or d hits right into
-r(L), therefore c is back on a and at state p again, so c loops inside ua and
hence -r' is again undefined.

9 If p* - r(L), we know d hits right into p*, so that c is back on a. To find

out what happens next, we simply ask 3 exactly as before, and continue.
However, we should be careful not to ask 3 a question we have already asked.
If this is about to happen, then c repeats p* under a, so c actually loops
inside ua, in which case r' is undefined.

This concludes our description of how to check whether r' is defined and, if so, also

compute -r'(I). Equivalently, we have shown that the algorithm of Figure 5(left)
always terminates and either fails, if r' is undefined, or correctly returns the value
7'(1), if -r' is defined.

In the case that r' is defined, we also want to compute the rest of its values,
namely -r'(q) for all q E Q. Given the discussion so far, this is easy: we simply run
the algorithm of Figure 5(left) again, but starting with p := q (as opposed to p:=
r(L)). It is easy to verify that, if the algorithm does not fail, then RCOMPM,q(ua)

hits right exactly into the state that the algorithm returns. So, if the algorithm does
return a value, this value is the correct r'(q). On the other hand, if the algorithm
fails, this is due to one of its f ail statements. We distinguish cases.

* If this is due to the 1st or the 3rd fail statement: Then we know that
RCOMPM,q(ua) hangs on a or loops inside ua. Therefore, by definition, r'(q)
equals r'(I). So, instead of failing, the algorithm should have returned T'(I).

* If this is due to the 2nd fail statement: Then we know that one of the
following is true about the computation RCOMPM,q(ua):

* at some point, the computation locks itself inside u and eventually hits
left, hangs, or loops: Then we again know that, by definition, T'(q) =
r'(I). So, instead of failing, the algorithm should have returned T'(I).

* at some point, the computation really enters state r(L) while on a:
Then we know that, from that point on, the computation will behave

33

1. EXACT TRADE-OFFS

identically to RCOMPM,,(±) (ua) and hence it will eventually hit right
into T'(I). So, once again, the algorithm should have returned r'(L).

In conclusion, we see that in all cases of failure the algorithm should have re-
turned r'(I). Hence, if in Figure 5(left) we just replace every f ail statement with
the statement "return r'(L)", we have a correct algorithm for computing '(q)-
provided, of course, that r'(I) is defined and available. Figure 5(right) shows the
algorithm after these modifications.

Overall, we have described an algorithm er,a that can be used for checking if
r' is defined and, if so, for computing its values. The algorithm can be run on
any element of Qi. Figure 5(left) shows the computation e',,a(I). Figure 5(right)
shows the computation e,,a(q), for q E Q, where every reference to '(I) can be
understood as a call to e.,a(I). With er,a in our vocabulary, we can summarize
the discussion of this section into the next definition and lemma.

8. DEFINITION. If r and r' are two tables of M and a some symbol in Ze, we
say that r is a-compatible to r' if and only if

r'(-) = e,,a(I) and for all q E Q : r'(q) = e,, (q),

where er,a is the algorithm from Figure 5.

9. LEMMA. Suppose u E)E* and the table r := TABLEM(U) is defined. Then,
for any a C ZE and any table r' of M, the following holds:

7r is a-compatible to T
1 4=> TABLEM(ua) is defined and equals r'.

PROOF. Suppose r is a-compatible to -r'. Then r'(I) = e,a(_L). Hence, on
input 1, the algorithm era does not fail. This implies that the table TABLEM(ua)
is defined. Moreover, its values are exactly those returned by er,a. But the values
of r' are also the same as those returned by e-,a (because r is a-compatible to it).
Overall, TABLEM(ua) =,T'.

Conversely, assume that the table TABLEM(ua) is defined and equals r'. The ar-
gument before Definition 8 proves that er,a returns the same values as TABLEM(ua).
Hence, eT,a returns the same values as r'. So, r is a-compatible to -r'. E

3.3. The upper bound. We are now ready to build a 1DFA M' that simu-
lates M with exactly n(n" - (n - 1)n) states. First, we characterize the acceptance
of an input by M in terms of the tables of M and the compatibilities between them.

10. DEFINITION. Suppose w E 7* is of length 1 and TO, r, . . . , 71+2 is a sequence
of tables of M. We say the sequence fits w iff:

1. ro is the constant function s,
2. for all i = 0, 1, . . . , 1 + 1: Ti is we,i+1-compatible to ri+ 1,9

3. r1+2 is the constant function f.
11. THEOREM. M accepts w G Z* iff some sequence of tables of M fits w.

PROOF. Fix w and consider the sequence

(3) TABLEM(e), TABLEM(F), TABLEM(t-Wi), ... , TABLEM(Qw -).

Clearly, there is no guarantee that all members in this sequence are defined. But if
they all are, then the sequence trivially satisfies Conditions 1 and 3 of Definition 10
(cf. Remark 3) and also Condition 2 (by Lemma 9), so the sequence fits w.

9 Recall that by wvi+l we mean the i + 1st symbol of the end-marked string Hw-i. This is
either F (when i = 0), or wi (when i $ 0, 1 + 1), or - (when i = I + 1).

34

3. FROM 2DFAS TO 1DFAS

Now assume M accepts w. Then the computation LCOMPM,s(We) hits right
into f. This immediately implies that each one of the tables in (3) is defined.

So, their sequence fits w. Conversely, suppose some sequence of tables of M fits

w. By Lemma 9 and an easy induction, this sequence must be identical to the one

in (3). This implies that the table TABLEM(We) is defined and equal to the constant

function f. Hence, the computation LCOMPMS(We) hits right, into f. This means

that M accepts w.

Based on this lemma, the construction of M' is straightforward. To test if its

input is accepted by M, the automaton checks if there is a sequence of tables of M

that fits it. At every step, it 'remembers' the last table of the subsequence found

so far. More carefully, the algorithm is as follows:

We start with the constant table s in our memory. On reading a
symbol a, we check if the table in our memory is a-compatible to any
table of M. If so, there is exactly one such table, so we change our
memory to it and move right. If not, there is no sequence that fits w
and we hang. We accept if we ever reach the constant table f.

Formally, M' := (s', ', f') where Q' := {T I T is a table of M}, s' := the table that

always returns s, and f' := the table that always returns f. For each r and a, the
value '(r, a) is either the unique r' to which r is a-compatible, if such a r' exists;
or undefined, if r is a-compatible to none of the tables of M. It should be clear
that M' is correct and as large as claimed.

3.4. The lower bound. We will now prove that the construction of the pre-

vious section is optimal. In other words, we will prove that some n-state 2DFAS
have no equivalent 1DFAs with fewer than n(nn - (n - 1)n) states. To this end,
we will actually exhibit such a 2DFA. Our witness will be the automaton Mo from

Section 2.3, solving problem fT-.
So, for the remainder of this section, we assume that the n-state 2DFA M that

we kept fixed from the beginning of Section 3 is actually Mo. We will prove that

the automaton M' constructed in the previous section is smallest among the 1DFAs

that are equivalent to M. In fact, we will show that M' needs all its states not only

for staying equivalent to M, but even for solving !--on a stricter promise, even.

More precisely, consider any table r : [n]i -> [n] of M and any 'query' i c [n].

The pair (T, i) gives rise to the deterministic nice input

WI : (x,, 1) (gy, 1) (h', r) (y', r),

where x, is the smallest x for which (x) = T(L); QT is the restriction of T to [n];
h' is the single arrow from T(L) to i, if T(i) # T(I), or else the empty function;
and y, is just T(i) (see Figure 6 for examples):

XT := min{x I T(X) = T(I)}, yi := T(i)

(4) r (x, T (x)) I x E [n] h' 0 if T(i)

I {(T(L), i)} otherwise.

It is easy to verify the following.

12. LEMMA. For any table r and any state i of M: The table of M on the prefix

-(xy, 1)(gr, 1) of w' is exactly T and the computation c of M on w' is accepting.

35

1. EXACT TRADE-OFFS

< -..........

(a) (b)

FIGURE 6. The input w. when n 6, table T maps 1, 1, 2,3,4,5,6
to the values 3, 1, 3, 6, 3, 5, 6 respectively, and (a) i = 6, or (b) i = 4.

Moreover, if T(i) # -r(L), then c contains a left-to-right crossing of the middle
boundary from i to r(i).

Hence, the inputs in the set {w T is a table and i a state of M} push M' to
its limits, in the sense that they collectively force every one of its states to be
used in every interesting way in some accepting computation. Hence, no state of
M' is redundant in some straightforward manner, which intuitively suggests M' is
minimal. It is this intuition that we turn into a proof.

We start with the observation that, for every two distinct tables of M, there is
a 'query' that can distinguish them.

13. LEMMA. Two tables T and T' of M are distinct iff there exist a partial
function h : [n] -+ [n] and a y c [n] such that exactly one of the following inputs
has a path:

(x,1)(g,1)(h,r)(y,r) and (x,,,1)(g,-,1)(h,r)(y,r).

PROOF. If the two tables are identical, then the two inputs are also identical
and either none or both of them have a path. For the interesting direction, suppose
r, T' are distinct. We examine two cases.

If r(I) # -r'(L), then choose h to be the empty function and y the smallest
between r(L) and r'(1). Then the input corresponding to the table from which y
takes its value has a path but the other input does not.

If -r(L) = T'(1) =: y*, then there exists an x C [n] such that T(x) # r'(x) (or
else r, T' would be identical, a contradiction). Pick the smallest such x, choose h
to contain only the arrow from y* to x, and set y to the smallest of T(x), r'(x) that
is different from y*. Clearly, there is a path in the input corresponding to the table
from which y takes its value, while the other input has no path. 0

Now, for every pair of tables T and T' of M, let us define the input

Wr,, := (X1 , 1)(gr, 1)(h-,' r)(y,,,, r),

where x, and g, are defined as in (4), while h,,,, and y,,, are either the values
given by the proof of Lemma 13, if T k r'; or the values h', y" as defined in (4)
for i == x, if T =T' 0 Strengthening the promise of T1 to allow only deterministic

1 0 1n the first case, note that the order of the pair -r, 7' is not important: h,,l = h-rr and

yr,= y,,.. In the second case, note that we just have h,,, = 0 and y-,- =r(L).

36

4. FROM 2NFAS TO 1DFAS

nice inputs of this form, we get the problem T1' with

Tyes :{= fW,' | T, r' are tables of Al and wT,,, has a path},

K' := {, T, r' are tables of M and wT,,, has no path}.

Clearly, M solves V', so that a single-pass 2DFA can solve this problem with only n
states. However, for 1DFAs the problem is maximally hard.

14. LEMMA. Every 1DFA that solves ' has at least n(n' - (n - 1)') states.

PROOF. Towards a contradiction, suppose that A is a 1DFA that solves V'
with fewer than n(n' - (n - 1)n) states. For every table r of M, the automaton

accepts wir, (Lemma 12), so the computation c, := COMPA(w 1 ,7) hits right. In

particular, it crosses the middle boundary from left to right. Let q, be the state

that results from this crossing. Since there are fewer states in A than tables of M,
two tables r ? -r' must map to the same state q := q, = q,. As a consequence, the
computations of A on wr,,, and w,,,, both cross the middle boundary into q (since
the two strings are identical to w,,, and w,,,, before this boundary, respectively)

and therefore have the same suffix (since the two strings are identical to each other
after that boundary). In particular, they are either both accepting or both rejecting,
a contradiction to Lemma 13 and the definition of w-,,, and w,,-. L

4. From 2NFAs to 1DFAs

Fix an n-state 2NFA N = (s, 5, f) over some set of states Q and alphabet Z.
We will generalize the discussion of Section 3, to build a 1DFA equivalent to N.

4.1. Tables. Consider any non-empty string u and assume that the table T

TABLEN(u) is defined. This means that the set of computations C := LCOMPN,,(u)
hits right into the set of states T(I) # 0. Hence, C contains right-hitting com-

putations. Let c be one of them. Clearly, c visits the rightmost symbol of u at

least once. If p is the state of N at one of these visits, then combining the pre-

fix of c up to that visit with any of the (possibly 0) right-hitting computations in

RCOMPN,p(U), produces a right-hitting computation which is also in C. Therefore,
the computations of RCOMPN,p(u) can hit right only into states that are already in

T(I). By the definition of T, this implies that T(p) = T(I). We thus conclude
that T assigns the value T(I) to at least one state. Furthermore, a straightforward

inspection of the definition of T reveals that every state that is not assigned the set

T(L) is assigned a set disjoint from T(I). This motivates the following definition.

15. DEFINITION. A table of N is any T: Q± -+ P'(Q) such that
1. for every p E Q: T(p) = T(L) or T(p) n T(L) = 0,
2. for some p E Q: T(p) = T(I).

As in the deterministic case, note that this definition explains what a "table of N"
is, whereas Section 2.2-I defines what the "table of N on u" is, for any string u.

The relation between the two notions is shown in the next lemma. The lemma after
it carries out some counting.

16. LEMMA. If the table of N on a string u is defined, then it is a table of N.

PROOF. If u , e, then the argument before Definition 15 proves the claim. If
u = e, then the table of N on u is the constant function {s} (cf. Remark 4), and
thus it is obviously a table of N. l

37

1. EXACT TRADE-OFFS

P - T(I), S' -0 P - {q}, S'- 0
repeat: repeat:

R - U{(p, a) I p G P} R - U{6(p, a) I p G P}
S' - S'U {r I (r, r) E R} S' +-S'U {r I (r,r) E R}
P*- U{T(r) I (r, 1) E R} P*- U{T(r) I (r, 1) G R} \ T(i)
P - {p E P* I p not seen before} P <- {p G P* I p not seen before}

if P =0 then: if P =0 then:
if S' =0: fail if S' C T'(I): return T'(I)

if S' ? 0: return S' if S' ! T'(I): return S' \ T'(I)

FIGURE 7. Computing ET,a(I) (left) and ET,a(q) (right).

17. LEMMA. The number of distinct tables of N is exactly"

n-ln-1

3j3(n) (n)(2' j).
i=0 j=0

PROOF. The number of distinct tables for N is equal to the number of distinct

(n + 1)-tuples of non-empty subsets of [n] where the set of the first component

appears in other components, too, but intersects no other set in the tuple. For
each i,j = 1, 2,... ,I n, there are (7) choices for the set S in the first component and

() choices for the set of the components after it that host the same set S. Given

i and j, each one of the remaining (n + 1) - (j + 1) components can admit any of

the 2'-' - 1 non-empty sets that avoid intersection with S. Overall, we have

n n n-1 n-1

i=1 j=1 i=0 j=0

choices for completing this (n + 1)-tuple, where the right-hand-side of the equation

is obtained via a straightforward variable substitution.

4.2. Compatibilities among tables. Consider any string u, any symbol a,
and suppose the table T := TABLEN (u) is defined. We will describe an algorithm for

deciding whether the table T' := TABLEN(ua) is defined and, if so, for computing it

based on T and a but not u. As in Section 3.2, our algorithm works on any element

of QL. On input _L, it either returns T'(I) or fails, depending on whether T' is

defined or not. On input q C Q and with T'(I) available, it returns T'(q).
We call this algorithm ET,a and we derive it from er,a of Section 3.2 by a

straightforward generalization that takes into account nondeterminism-see Fig-
ure 7 for the two distinct computations, ET,a(I) and ET,a(q). Based on ET,a, we
can again define a-compatibility between tables-the proof of the next lemma is
similar to that of Lemma 9 and is omitted.

18. DEFINITION. If T and T' are two tables of N and a some symbol in Ze, we

say that T is a-compatible to T' if and only if

T'(I) = ET.a(I) and for all q E Q: T'(q) = Er,a(q),

where ETa is the algorithm from Figure 7.

1iNote that for i = j = 0, this expression uses the quantity 00. In this context, 00 1

38

4. FROM 2NFAS TO 1DFAS

19. LEMMA. Suppose u E E* and the table T := TABLEN(u) is defined. Then,
for any a E E and any table T' of N, the following holds:

T is a-compatible to T' -> TABLEN(ua) is defined and equals T'.

4.3. The upper bound. We now construct a 1DFA M that is equivalent to N.
As in Section 3.3, we base our construction on a characterization of acceptance by

N in terms of tables and compatibilities.

20. DEFINITION. Suppose w C Z* is of length I and TO, T1,..., T+2 is a se-

quence of tables of N. We say the sequence fits w iff:
1. To is the constant function {s},
2. for all i = 0, 1, . .., 1 + 1: T is we,i+ 1-compatible to Ti+1,
3. T+2 is the constant function {f}.
21. THEOREM. N accepts w E E* iff some sequence of tables of N fits w.

The theorem is proved similarly to Theorem 11 and suggests that M should

simply try to find a sequence of tables of N that fits its input. So, M implements
the following algorithm:

We start with the constant table {s}. On reading a symbol a, we

check if the current table is a-compatible to any table of M. If so,
there is exactly one such table, so we move right with this in our

memory. If not, there is no sequence that fits w and we hang. We

accept if we ever reach the constant table {f}.

Formally, M := (s', 6', f') where Q' := {T I T is a table of N}, s' := the table that

always returns {s}, and f' := the table that always returns {f}. For any T and

a, the value 5'(T, a) is either the unique table to which T is a-compatible, if such

table exists; or undefined, otherwise. It should be clear that M is correct and as

large as claimed.

4.4. The lower bound. We will now exhibit an n-state 2NFA for which every

equivalent 1DFA need at least one state per table. Our witness will be the automaton

No from Section 2.3, solving problem <P. So, for the rest of this section, we assume
that the n-state 2NFA N that we fixed at the beginning of Section 4 is the automaton

No, and we will show that the 2DFA M constructed in the previous section is

minimal. We start with some intuition why this must be the case.

For each table T : [n]j -+ 'P'([n]) of N, each i c (n], and each j E T(i), we

consider the nice input

m :=(XT, 1) (GT, 1) (h'r, r)(j r),

where XT is the smallest x for which T(x) = T(I); GT is the binary relation

induced by T on [n]; and hr contains either exactly the arrows from T(I) to i, if

T(i) = T(_L), or else no arrow at all (see Figure 8 for examples):

XT := min{x I T(x) = T(L)} 0 if T(i) = T(1),

CT := {(x, y) I y E T(x)} h {(y,i) y c T(I)} otherwise.

It is easy to verify the following fact.

22. LEMMA. For any table T and any two states i, j of N such that j G

T(i): The table of N on the prefix F(xT,1)(GT,1) of WTj is exactly T and some

computations in COMPN(w'j) are accepting. Moreover, if T(i) $ T(L), then each

accepting computation contains a step that crosses the middle boundary from i to j.

39

1. EXACT TRADE-OFFS

G T hT G Ti

(a) (b)

FIGURE 8. The input w j when n = 6; table T maps 1, 1, 2,3,4,5,
and 6 to the values {3,5}, {2,6}, {1, 2,4}, {3,5}, {4},{6}, {3, 5} re-
spectively; and (a) i = 1, j = 6, or (b) i = 6, j = 5.

Hence, as T, i, and j vary as above, the inputs w collectively force every inter-
esting use of every state of M in some accepting computation, so that intuitively
no state of M is dispensable. To turn this intuition into a proof, we first establish
the fact that distinct tables can be distinguished by 'query'.

23. LEMMA. Two tables T and T' of N are distinct iff there exist a partial
function h : [n] -- > [n] and a y E [n] such that exactly one of the following two
inputs has a path:

(xT, 1)(GT, 1)(h, r)(y, r) and (XTI, 1)(GTI, 1)(h, r)(y, r).

PROOF. If T = T' then, for all h and y, the two inputs are identical and
therefore < does not distinguish between them. For the interesting direction, we
suppose T # T' and examine two cases.

If T(1) # T'(1), then we can pick h to be the empty function and y the
smallest state in the symmetric difference of the two 1-values. Then the input that
corresponds to the 1-value that contains y is the only one with a path.

If T(1) = T'(1) =: Y*, consider the smallest x c [n] with T(x) # T'(x) (such
an x exists, since T # T'). It is not hard to see that either both of the two x-values
avoid intersection with Y*, or exactly one of them does while the other one equals
Y*. (Indeed: If an x-value intersects Y*, then it is actually equal to Y*, since T and
T' are tables. Hence, if both x-values intersected Y*, we would have T(x) = T(x),
a contradiction. So, at most one of them intersects Y*. And, if one does, this one is

equal to Y*.) In both cases, the symmetric difference of the two x-values contains
an element which does not belong to Y*. If y is the smallest such element and h
contains exactly the arrows from Y* to x, namely

h := {(y*,x) I y* E Y*},

then the input that corresponds to the x-value containing y clearly has a path,
while the other one does not. Ei

Now, for every pair of tables T and T' of N we define the nice input

wT,T' := (XT, 1)(GT, 1)(hT,T', r)(yTT, r)

where XT, GT are as in (5), while hT,T, and YT,T, are either the ones given by the
proof of Lemma 23, if T # T'; or the values h' and min T(i) as defined in (5) for

40

5. FROM 2NFAS TO INFAS

2 = XT, if T = T'. 2 Strengthening the promise for i to allow only inputs of this

particular form, we get a new problem ' with

Gyes:= {wT,T' T, T' are tables for N and WT.T/ has a path},

Vo:= {WT,TI j T, T' are tables for N and wT,T' has no path}.

This is clearly still solvable by N, so that n states are enough on a single-pass 2NFA

against V. However, 1DFAs need many more states.

24. LEMMA. The size of every 1DFA Solving VP is at least
n-1 n-1

(n) (n) (2i -) .
i=0 j=0

PROOF. Assume A is a 1DFA solving '. For every table T of N, the automaton
accepts WT,T (Lemma 22). Hence, the computation cT := COMPA(WT,T) hits right,
and therefore crosses the middle boundary into some state, call it qT. If the states
of A were fewer than the tables of N, two tables T $ T' would map to the same
state qr = q, and (by the standard cut-and-paste argument, as in Lemma 14)
the automaton would be deciding identically on WT,T' and WTI,T, contradicting
Lemma 23 and the definition of the two strings. Hence, A must have as many

states as there are tables of N. The rest of the proof is by Lemma 17. l

5. From 2NFAs to 1NFAs

Fix an n-state 2NFA N = (s, 6, f) over state set Q and alphabet E. In this

section we will build an equivalent (n 1)-state 1NFA via an optimal construction.

5.1. Frontiers. Let us momentarily assume that N is actually deterministic
and that c:= COMPN(w) is accepting, for some i-long input w. Consider the i-th
frontier (L , R) of c, for some i # 0,1 + 2. The number of states in R' equals
the number of times that c left-to-right crosses the i-th boundary: each crossing
contributes a state into R and no two crossings contribute the same state, or else

c would be looping. Similarly, L contains as many states as many times c right-
to-left crosses the i-th boundary. Now, since c accepts, it goes from the leftmost
symbol F- all the way past the rightmost one -1, forcing the left-to-right crossings
on every boundary to be exactly 1 more than the right-to-left crossings. Hence,

|Lc|+ 1 = IRcI,

which remains true even on the leftmost boundary (i = 0, under our convention
from Footnote 6 on page 28) and also on the rightmost one (i = l + 2, obviously).

So, the equality holds over every boundary, and motivates the following definition.

25. DEFINITION. A frontier of N is any (L, R) with L, R C Q and L| + 1 = IR|.

Note that this defines what a "frontier of N" is, whereas Section 2.1-III defined what

a "frontier of a computation" is. The relation between the two notions is partially
explained by the motivating argument above, which shows that if the computation

c of a 2DFA on an input is accepting, then all frontiers of c are frontiers of the 2DFA.
However, this argument is not valid for our nondeterministic N, as a state

repetition under a cell does not necessarily imply looping. Still, it implies a cycle.

12 Again, when T $ T', the order of the two tables in the definition of these values is not
important: hTT = hT,T and YT,T' = YT',T. Also, hT.T = 0.

41

1. EXACT TRADE-OFFS

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

S0 _4 4 1 1
1 2 1 4

1 3 5 0 4 3 4 3 5 5
1 2 4 4 2

3 2 (J 2

3 2 3 2 4 01 E 4 1 3 3 2 00

1 5 5

(a) f (b)

FIGURE 9. (a) An accepting minimal c E COMPN(W), for a 6-long
w; we assume 0, 1,.. ., 5 are states of N, and s = 0, f = 5. (b) The
same c arranged in frontiers; only the even-indexed frontiers are
drawn.

26. DEFINITION. A computation is minimal if every two of its points are dis-
tinct.

In other words, a computation is minimal iff it is cycle-free. Obviously, a minimal
computation is not looping, and for 2DFAs the converse is also true. However, for
2NFAs the converse is not always true: accepting computations may not be minimal.
So, in order to extend our previous observation to 2NFAs, we need to take this detail
into account. The following lemma makes the appropriate corrections. The lemma
after it carries out an easy counting.

27. LEMMA. If a computation of N on a string w is accepting and minimal,
then all frontiers of that computation are frontiers of N.

PROOF. We just need to modify the argument before Definition 25, as follows:
No two left-to-right crossings of the i-th boundary contribute the same state into
R , or else c would not be minimal. Similarly for L. .

28. LEMMA. The number of distinct frontiers of N is exactly (n,).

PROOF. Easily, the number of different frontiers of N is equal to the number of
distinct pairs of subsets of [n] where the second subset is 1-larger than the first one.
In turn, this is equal to the number of different ways of choosing n + 1 elements
of the set [2n]: the unselected elements of [n] determine the first subset, while the
selected elements of [2n] - [n] determine the second subset. Therefore, our number
is exactly (1;), as claimed. 13

5.2. Compatibilities among frontiers. Suppose c is an accepting minimal
computation of N on an 1-long w and let Fic = (Lc, R') be its i-th frontier, for each
i = 0, 1,.. ., 1 + 2 (Figure 9). Note that the first and last frontiers in the sequence
Fj, Ff, ... , F+2 are always

Fj = (0, {s}) and F+ 2 = (0, If),
as c starts at s, ends in f, and never right-to-left crosses an outer boundary.

Also note that, for (L, R) := (L, R) and (L', R') := (Lc 1, Rc+1) two succes-
sive frontiers in the sequence (Figure 10a), it should always be that R n L' = 0:

1 3 Another way to write this number is nCn, where C, is the n-th Catalan number. So,
Catalan strikes again! [12, 10]

42

5. FROM 2NFAS TO 1NFAS

0 1 2 i- 1 i+ I +2 1 1+1 1+2

R R

L L,

Fj Fi+j

(a)

t i+1

Wi

R1
R

L L

F, Fi+1

(b)

FIGURE 10. (a) Two successive frontiers. (b) The associated bijection.

otherwise, c would be using the same state under the (i + 1)st cell of the tape and

would not be minimal. Hence, R + L' contains as many states as many (occurrences
of) states there are in L and R' together:

fR + L'| = RI + \L'j = (ILI + 1) + (IR'I - 1) = ILI + R'f = IL U R'j.

Hence, bijections can be found from R + L' to L W R'. Among them, a very natural

one (Figure 1Ob): for each q E R + L' find the unique step in c that produces q
under the (i + 1)st cell (this is either a left-to-right crossing of boundary i or a

right-to-left crossing of boundary i +1; the minimality of c guarantees uniqueness);
the next step left-to-right crosses boundary i +1 into some state p C R' or right-to-

left crosses boundary i into some p C L; depending on the case, map q to (p, r) or

(p, 1) respectively. If p : R + L' --+ L W R' is this mapping, it is easy to verify that it

is injective (because c is minimal) and therefore bijective, as promised. In addition,
p clearly respects the transition function: p(q) E 6(q, we,i+i), for all q E R + L'.

Overall, this discussion shows that every accepting minimal computation in

COMPN(w) exhibits a sequence of frontiers which necessarily obeys certain restric-

tions. The following definitions and lemma summarize these findings.

29. DEFINITION. If (L, R) and (L', R') are two frontiers of N and a some symbol

in Ee, we say that that (L, R) is a-compatible to (L', R') if and only if

1. RfnL'=0, and
2. some bijection p : R + L' -- L W R' respects the transition function on a:

for all q e R+ L': p(q) E c(q,a).

30. DEFINITION. Suppose w C E* is of length 1 and F0 ,F1,..., F+ 2 is a se-

quence of frontiers of N. We say the sequence fits w iff
1. Fo = (0, {s}),
2. for all i = 0, 1,.. . , 1 + 1: F is w,i+-compatible to Fi+1,
3. F+2 = (0, {f}).

31. LEMMA. For all w G Z*: if COMPN(W) contains an accepting computation,
then some sequence of frontiers of N fits w.

43

1. EXACT TRADE-OFFS

PROOF. Suppose COMPN(w) contains an accepting computation d. Removing
from d all cycles, we get a computation c which is also in COMPN (w) and is accepting
and minimal. Then, the argument before Definition 29 proves that the sequence of
the frontiers of c fits w.

The crucial observation-proved in the next section-is that the converse of
this lemma is also true, and therefore an analogue of Theorems 11 and 21 holds.

32. LEMMA. For all w G E*: if some sequence of frontiers of N fits w, then

COMPN(w) contains an accepting computation.

33. THEOREM. N accepts w E Z* iff some sequence of frontiers of N fits w.

5.3. Proof of the main observation. In this section we prove Lemma 32.
So, assume that the sequence of frontiers

Fo = (Lo, Ro), F 1 = (Li, R1), ... , F1+2 =(L+2, R1+2)

fits w. We will prove a stronger statement: for every i 0, 1, ... , 1 + 2, the states
of Ri can be produced by IR I right-hitting computations on -wi ... wi_ 1 , one of
them starting at s and on F and each one of the remaining ILiL starting at a distinct
q E Li and on wi_ 1 . More formally, we will prove the following claim.

CLAIM. For all i = 0,1, ... , + 2, a bijection si : (Li) -- Ri is such that
1. some c E LCOMPN,s8 -w ... wi-1) hits right into 7ir(I), and
2. for all q c Li, some c E RCOMPN,q[Wl ... wi- 1) hits right into 7ri(q).

Note that Lemma 32 indeed follows from this claim, when i = 1 + 2: The only
bijection from (Ll+2)1 = 01 = {I} to R 1+2 = {f} is 71+2 := {(1, f)}. So,
condition 1 says that some computation in LCOMPN,s(FWl ... wj-) hits right into

7rl+ 2 (I) = f, which implies that COMPN(w) contains an accepting computation.
To prove the claim, we use induction on i.
BASE CASE. The base case i = 0 is satisfied by the definitions. The only

bijection from (Lo)1 = 0_ = {_} to Ro = {s} is 7ro= {(I, s)}. Condition 1 is
true because LCOMPN,s(e) contains exactly the 0-length computation ((s, 1)) which
does hit right into s (cf. Remark 1). Condition 2 is true vacuously, as Lo = 0.

INDUCTIVE STEP. For the inductive step (Figure 11), assume i < 1 + 2, let
(L, R) := (Li, R%), (L', R') := (Li+1, Rj+ 1), a := We,i+1, and consider the bijections

7 := 7ri : L -+ R and p: R+ L' - L L R'

guaranteed respectively by the inductive hypothesis and by the assumption that
(L, R) is a-compatible to (L', R'). We need to build a bijection

7F' := 7i+ : (L') --* R'

that satisfies Conditions 1, 2 of the claim, and we will do so based on 7, p, and one
more function o that will emerge from the following discussion.

DEFINITION OF -. Consider any state q E R and let us take a trip around under

F-wlw2 ... wi- 1a by alternately following bijections p and 7

q, p(q), irp(q), pirp(q), ,rpirp(q),
70 71 r2 r3 r4

44

(6)

5. FROM 2NFAS TO 1NFAS 45

0 1 2 - - 1 i -+1

Wi w,-. 1 a

s R, R'

L

F F+1

7r p 7r'

FIGURE 11. An example for the inductive step in the proof of

Lemma 32. Note, for instance, that a maps the 3rd and 5th (from
the top) states of R to _, while the 4th state is mapped to the 1st
state of R'.

until the first time that 'p fails to return a state in L',i4 and let r0 , ri, r2,... be

the states that we visit. There are two cases about what might happen.
Case 1 is that p does eventually fail to return a state in L and the trip pays

only a finite number of visits

ro, ri,-- , rk,

for some even k > 0 and with rk E R. Then rk is p-mapped to some q' E R'.

Case 2 is that p always returns a state in L and the trip is infinite. Since all

even-indexed and all odd-indexed visits in the trip are inside the finite sets R and
L respectively, there have to be repetitions of states both on the even and on the
odd indices. Let k be the first index for which some earlier index j < k of the same

parity points to the same state: rj = rk. If k is odd, then j is also odd and hence
j 1; then rj = rk == p-1 (j) = p- 1 (rk) ==-> rj- = rk_1 and k - 1 also has

the property that k is the earliest one to have, a contradiction. So, k must be even,
and so must j. In fact, j must be 0-otherwise we can again reach a contradiction
(as before, with 7r-1 instead of p- 1). Hence, the first state to be revisited is the

state q we started from and our trip consists of infinitely many copies of a cycle

r , Ti, ... , rk,

for some even k > 2, for rk = ro = q E R, and with no two states in the list

rO, ri, -. - , rk- 1 being both equal and at positions of the same parity.
Overall, in the trip that we take, we either reach a state rk E R (possibly k = 0)

that is p-mapped to a state q' E R' (Case 1), or we return to the starting state

1 4
Note that we abuse notation here. Bijection p can only return a pair of the form (p, 1) or

(p, r). So, in the description (6) above, p(-) really means 'the first component of p(-), if the second

component is 1'. Similarly, 'p fails to return a state in L' means 'p returns a pair of the form

(p, r)'. Hopefully, the abuse does not confuse. We will stick to it throughout the definition of -.

1. EXACT TRADE-OFFS

q E R having previously repeated no state in L and no state in R (Case 2). We
define the function

-: R -- (R')

to encode exactly this information. Specifically: in Case 1, we set a(q) := q'; in
Case 2, we set a(q) := I. In either case, our trip respects 7r and p, which in turn
respect the behavior of N on F 1W 2 ... wi- 1 a. It should therefore be clear that

So(q) = q' implies there is some c E RCOMPN,q(W'.' w'i-la) that respects
7r, p and hits right into q', while

" -(q) = I implies there is some looping C E RCOMPN,q(FW1 ... wi-a) that
respects 7r, p and repeats a cycle that visits only states from R when under a.

This concludes the definition of a and our discussion of its properties. E

We are now ready to return to the construction of bijection 7r'. Recall that this
must inject everything in L', to R' so that Conditions 1 and 2 of the claim above
are satisfied. We examine three separate cases about the argument of 7r'.

Case (a). The easiest argument is a state p G L' that is p-mapped rightward
to a state r E R'. Then we just let 7r' also return that state: ir'(p) := r. Since p
respects the transition function on a, the corresponding 1-step computation from p
rightward to r is indeed in RCOMPN,pf(IWl ... wi-la) that hits right into ir'(p).

Case (b). If the argument is some p E L' that is p-mapped leftward to a state
r E L, then we consider where in R bijection 7r takes us from there: q := ir(r). We
know some computation of N can start at p under a and eventually reach q under
a, so the question is what can happen after that if we keep following p and 7r. To
answer this question, we examine a(q).

If a(q) = 1, then we will eventually return to q after a cycle of length at least 2
and having visited only states of R when under a. But can this happen? If it does,
then the next-to-last and last steps in this cycle will follow p and 7r respectively,
ending up in q. Since p and 7r are bijections, the last two states (before q) in this
cycle must respectively be p and r. In particular, p must be in the cycle. But,
since the cycle visits only states from R whenever under a, we should have p C R.
This means that R and L' must intersect, and hence (L, R) is not a-compatible to
(L', R'), a contradiction.

It is therefore necessary that a(q) = q' C R', which implies that some compu-
tation c C RCOMPN,q(-w1 . .. wi- 1 a) hits right into q'. Prefixed by the computation
that takes p to q, this c becomes a computation in RCOMPN,p -Wl .. . wi- 1a) that
hits right into q'. So, we can safely set ir'(p) := q'.

Case (c). It remains to define 7r'(I). The reasoning is similar to Case (b). We
consider the state q c R where 7r(I) takes us, and examine c(q). Again, a(q) = I
is impossible, as this would imply that I c L, a contradiction. Hence, u(q) = q' for
some q' c R'. Combining the computation guaranteed by 7r(I) = q with the one
guaranteed by cr(q) = q', we get a computation in LCOMPN,s(HWl ' wi-. Ia) that
hits right into q'. So, we can safely set 7r'(I) := q'.

This concludes the definition of 7r'. The construction must have made clear that
7r' satisfies the two conditions of the claim; that it is also a bijection should be an
easy consequence of the way bijections 7r and p are used. Hence, the inductive step
is complete, and with it the proof of the claim.

46

5. FROM 2NFAS TO INFAS

9F - hF

X1g

0 Y1 9F
QG Y1 X1 Y2 X2 Y3 X3 Y4

Y2

X2 Y3 h Y

X3 Y

(a) (b)

FIGURE 12. (a) The deterministic nice input WEF when n = 6 and
F = ({1, 5, 6}, {2, 4, 5, 6}). (b) How to derive it from the corre-
sponding list 2, 2, 1, 4, 5, 5, 6, 6.

5.4. The upper bound. We are now ready to build a (n+4)-state iNFA N'

that simulates N. Our construction is based on Theorem 33. In other words, the
strategy of N' is to go through the input 'guessing' the members of a sequence of
frontiers, one after the other, and verifying that this sequence fits the input. More
precisely, N' implements the following algorithm:

We start with the frontier (0, {s}) in our memory. On reading a
symbol a, we check if the frontier in our memory is a-compatible
to any other frontiers. If not, we just hang. If it is, we find all such
frontiers, select one of them nondeterministically, and move right with
it as our new memory. If we ever reach the frontier (0, {f}), we accept.

Formally, N' := (s', ', f') where Q' := {F I F is a frontier for N}, s' := (0, {s}),
f/ := (0,{f}), and the transition function is such that '(F, a) := {F' I F is a-
compatible to F'}, for all F E Q' and a E Ze. It should be clear that N' is correct
and as large as promised.

5.5. The lower bound. To prove that the construction of the previous sec-
tion is optimal, we will exhibit an n-state 2NFA that has no equivalent 1NFA with
fewer than (n1) states. In fact, our witness will simply be the automaton Mo

from Section 2.3, which is deterministic and single-pass. Moreover, 1NFAs will be
shown to need) states not only for staying equivalent to Mo, but even for
solving P--on a stricter promise, actually.

So, assume that the n-state 2NFA N that we kept fixed since the beginning
of Section 5 is actually Mo. We will show that the 1NFA N' constructed in the
previous section is minimal. We start with some intuition why this should be true.

Consider an arbitrary frontier F = (L, R) of N and let us list the elements of
the sets L, R C [n] in increasing order,

L = {X1, X2, - - -, Im} and R = {Y1, Y2, ... ,Ym+1},

for the appropriate 0 < m < n. Since m < n, we know L is a strict subset of [n].

So, we can name an element outside L, say xo := min L. Then the combined list

(7) XO Y1X1 Y2 X2 - -Ym Xm Ym+1

gives rise to the following deterministic nice input (see Figure 12):

WF :=XF, 1) (9F, 1) (hF, r) (yF, r),

47

1. EXACT TRADE-OFFS

X1 X' xXs 1 X ,X Y X X
yi 9 x'-e -' j' y XO Oyi x'o-..0--'-' y1

*~ ~ 1 0 cJ~

Y 2 X'2 e e/ Ys Xie- Y2
x2~ 3s 3' 2'- v 2 * - @ v ' - u

X3 -Y4 *X - * Y4

(a) (b) (c) (d)

FIGURE 13. (a) Input WF from Figure 12. (b) A new input WF',
for F' = ({1, 4,5},{2,3,4,5}). (c,d) Inputs WE,F' and WF',F. Note
that only WF,F' has a path.

where XF := x 0 , the function 9F maps every x in the list (7) to the following y, the

function hF maps every y # ym+l to the following x, and YF := Ym+i. Namely:

(8) XF :=min E yF:=max R
9F := {(xi, yi+1) 1 < i < m} hF:= (yi, Xi) 1i m}.

It is easy to verify that this input has a path and that the following holds.

34. LEMMA. For any frontier F of N, the computation of N on WF is accepting

and its frontier under the middle boundary is exactly F.

This implies that every state of N' is used in some accepting computation and is
therefore not redundant in any obvious way. Hence, N' indeed seems minimal.

To prove this intuition, we start by noting that every two frontiers F and F'

of N give rise to the deterministic nice input (see Figure 13 for an example)

WF,F' := (XF, 1)(gP, 1)(hF', r)(yF', r),

where XF, 9F, hF', YF' are defined as in (8). Strengthening the promise for problem
T1 to allow only inputs of this form, we get problem fT" = (Tly' 5 , P"'), with

yes := WF,F' I F, F' are frontiers for N and WEF,' has a path},

no := {WF,F' I F, F' are frontiers for N and WEF,' has no path}.

Clearly, N solves this problem, so that n states on a (single-pass deterministic)
2NFA are enough to solve iT". For 1NFAs the problem is harder.

35. LEMMA. Every 1NFA that solves T" has at least (,+ 1) states.

At the heart of the argument for this lemma lies the fact that, in the (n+,) X
(2n) matrix W = [wFF']F,F' containing all inputs of the form wFF', two distinct
inputs sitting in cells that are symmetric with respect to the main diagonal cannot
both have a path. We prove this claim before proving Lemma 35 itself.

CLAIM. For any two frontiers F, F' of N: WF,F',WF',F E Ts - F = F'.

PROOF. Let F (L, R) and F' = (L', R') be any two frontiers of N. If F = F'

then WF,F' = WF',F WF and we have already observed that this input has a path.
For the interesting direction, we assume that F = F' and we will prove that at
least one of WF,F', WF',F lacks a path.

We start by letting m = IL|, m' = IL'I and considering the combined lists

defined by the two frontiers, as in (7):

XO Y1 X1 Y2 X2 -. ym rxm vm+i and x' y' x' y x1 ... y' ' Ym'+1-

48

6. CONCLUSION

If the two lists were identical after their first elements, they would agree in their
lengths, in their x's (except possibly at xo, xo), and in their y's, forcing F = F', a
contradiction. Hence, there have to be positions of disagreement after 0. Consider
the earliest one among them.

If this position is occupied by y's, say yj and y', then we have either that yj < y
(Case 1) or that yj > y' (Case 2). If it is occupied by x's, say xi and x', then we
have either that xi < x' or x' is not present at all15 (Case 3) or that xi > Z' or xi
is not present at all (Case 4). The four cases are treated with similar arguments.
We will present only the argument for the first one in detail, and sketch the rest.

So, suppose that the first disagreement is between yi and y', and that in fact
yj < y . This implies that all previous positions after 0 contain identical elements:

9E

XF-XO Y 1' :Xl Y2 X2, '' Yi-1:,Xi1, yi

0-' Y1 X1 'Y2 '2 -- --1 y
hF

It also implies that y is not in R'. Indeed, if it were, it would be in the sublist

Y1, y2, .. , yz-1 (since y2 < y'), and hence in the sublist Yi, Y2,- , Y-1 (since the two
sublists coincide), contradicting the fact that yj is greater than all these elements
of R. So yj R', and therefore yj is not YF' (which is in R') and has no value
under hF' (since the domain of hF' is also in R'). But then searching for a path in
WF,F' we travel deterministically

9 F (y 1 = y ',) ', (X ', = X) 9 F (y 2 =. ys) - x 1 = x -) 3 Y i

reaching a node which is neither the exit YF' nor the start of an hF'-arrow. This
means that WF,F' has no path.

In Case 2, we similarly conclude that yj V R and that gF', hF combine to reach
y ; but this is neither the exit yF nor the start of an hF-arrow, implying WF',F has
no path. In Case 3, we deduce that xi V L' and yet gF', hF combine to reach it,
so WF',F has no path. Finally, in Case 4, x' can be shown outside L while gF and
hF' reach it, so that WEF,' has no path. L

PROOF OF LEMMA 35. Towards a contradiction, assume that A is a 1NFA that

solves f" with fewer than (n"1) states. For each frontier F for N, we know the input

WF = WF,F is in es and therefore A accepts it. Choose any accepting computation

CF G COMPA(WF) and let qF be the state immediately after the middle boundary
is crossed. Since the states of A are fewer than the frontiers for N, we know
qF = qF' for two frontiers F # F'. But then, the usual cut-and-paste argument on
the computations cF and CF' shows that A must also accept the inputs WF,F' and
WF',F. Since A solves TV", we conclude that WF,F', WF',FE eyes despite F # F', a
contradiction to the last claim. L

6. Conclusion

In this first chapter we showed the exact trade-offs in the conversions from
two-way (deterministic or nondeterministic) to one-way (deterministic or nonde-
terministic) finite automata. Our arguments recast those of Birget [6] into a more

1 5 This happens if the list for F' stops at y"

49

1. EXACT TRADE-OFFS

standard set-theoretic vocabulary and then complement them by carefully removing
the redundancies in the associated constructions. 16

Introducing frontiers, we provided a set-theoretic characterization of 2NFA ac-
ceptance (already present in [6], essentially) that complements the also set-theoretic
characterization of 2NFA rejection given in [60]. Moreover, by applying the concept
of promise problems even to the domain of regular languages, we nicely confirmed
its reputation for always leading us straight to the combinatorial core of the hard-
ness of a computational task.

Crucially, the tight simulations performed by one-way automata in our proofs
are as 'meaningful' as the tight simulation given in [47] for the removal of nonde-
terminism from INFAs: each state in these automata corresponds to a realizable
and non-redundant set-theoretic object (a table, a frontier) that naturally emerges
from the computational behavior of the simulated machine.

It would be nice to identify similar objects and derive exact trade-offs for the
conversions from and towards other types of automata (e.g., alternating, probabilis-
tic, or pebble automata, or even Hennie machines [4]) and more powerful machines
(e.g., pushdown automata). In addition, it would be interesting to know if the large
size of the alphabet over which problems <P and T are defined is necessary for the
exactness of the associated trade-offs.

A preliminary version of the contents of Section 5 can be found in [29].

16
First, the reasoning for the improvement on Shepherdson's idea in the proof of [6, Theo-

rem A3.4] was refined. Second, the universal 1NFA constructed in the proof of [6, Theorem 4.2(1)]
was observed to not be minimal: it could be implemented with only 4n + 4 states, as opposed to
8n+3. Then, a careful application of the reachable-set construction in the proof of [6, Theorem 4.5}
(on the minimal universal INFA obtained previously) revealed the frontier structure.

50

CHAPTER 2

2D versus 2N

After Chapter 1, our understanding for almost all conversions shown in Figure 1
(page 15) is perfect. The only exceptions are the two conversions associated with the
2D vs. 2N problem, and our understanding of them is so limited that we cannot even
tell whether the associated trade-offs are polynomially bounded. In this chapter we
will advance our knowledge about these conversions in two quite different directions.

In Section 2, we will focus on the conversion from INFAs to 2DFAs and the
associated complete problem of liveness. We will prove that a certain class of 2DFAs
of restricted information fail to solve this problem, no matter how large they are.
In Section 3 we will focus on the conversion from 2NFAs to 2DFAs and a certain
class of 2NFAs of restricted bidirectionality, the sweeping 2NFAs. We will prove that
small automata of this kind are not closed under complement. See Section 3 of the
Introduction for the motivation behind these two different approaches.

We begin with a brief note on the history of the 2D vs. 2N question.

1. History of the Problem

The 2D vs. 2N question was first studied in the manuscript [511. In it, Seiferas
worked on the conversion from 1NFAs to 2DFAs. He suggested the strong conjecture
(cf. page 12) that the trade-off is at least 2' - 1, and presented several examples
of problems that could serve as witnesses. Soon after that, Sakoda and Sipser [48]
invested the question with a robust theoretical framework (cf. Introduction, Sec-
tion 3.1). Among other things, they defined the classes 1N, 2D, and 2N, along with
the appropriate reduction relation that allowed the identification of complete prob-
lems. A 2N-complete and a 1N-complete problem were also defined, the latter being
liveness. At the same time, the problems from [51] proved to be 1N-complete, too.

In one class of attempts towards 2D =# 2N, people have focused on proving
exponential lower bounds for the trade-off from INFAs to 2DFAs of limited bidirec-
tionality. Already in [51], Seiferas showed that the trade-off is at least 2' - 1 if
the 2DFAs are single-pass. Later, Sipser [55] did the same for the case of 2DFAs
that are sweeping-much later, Leung [34] showed the lower bound remains as
large even on a binary alphabet, as opposed to the exponentially large one of [55].
Recently, Hromkovic and Schnitger [22] did the same for the case when the 2DFAs
are oblivious, in the sense that they move identically on all inputs of the same
length-they also showed the lower bound remains exponential if we relax the re-
striction to allow a sub-linear (in the input length) number of distinct trajectories.
Unfortunately, we know that none of these theorems resolves the conjecture in its
generality, since full 2DFAs can be exponentially more succinct than each of these
restricted variants [51, 55, 2].

A second class of attempts has focused on unary automata. Under this restric-
tion, Chrobak [7] proved that the trade-off from INFAs to 2DFAs is at most O(n 2)

51

2. 2D VERSUS 2N

and at least Q(n 2). Note that, on one hand, this upper bound shows that 2D D 1N
for unary automata, so that the situation on unary inputs is sharply different from
what is conjectured to be in general. On the other hand, the lower bound is the
best known one even for the trade-off from general 2NFAs to 2DFAs. In two more
recent developments, Geffert, Mereghetti and Pighizzini have established the sub-
exponential upper bound 2 9(1g 2

n) for the trade-off from unary 2NFAs to 2DFAs [13],
as well as a polynomial upper bound for the trade-off in the complementation of
unary 2NFAs [14].

Finally, there have also been some variations of the general problem of con-
verting a 2NFA to 2DFA. If we demand that the 2DFA can decide identically to
the simulated 2NFA no matter what state and input position the latter is started
at (a condition conceptually stronger than ordinary simulation, but always satisfi-
able [5]), then the trade-off is at least 2 g ', for any k [25]. If we demand that the
2DFA decides identically to the simulated 2NFA only on all polynomially long inputs
(a requirement conceptually weaker than ordinary simulation), then an exponen-
tial lower bound would confirm the old belief that nondeterminism is essential in
logarithmic-space Turing machines (L , NL) [3]. Last, if we allow the starting 2NFA
to be a Hennie machine (a more powerful device, but still not powerful enough to
solve non-regular problems), then converting to a 2DFA indeed costs exponentially,
but only because converting to a 2NFA already does [4].

2. Restricted Information: Moles

In this section we explore the approach that we described in Section 3.2 of the
Introduction. After we formally define what it means for a 2NFA to be a mole,
we will move on to prove that two-way deterministic moles cannot solve liveness,
irrespective of how large they are.

2.1. Preliminaries. Our notation and definitions are as explained in the pre-
vious chapter, in Section 2, plus the following few additional concepts.

If A and B are two sets, then A e B denotes their symmetric difference. If
f and g are two functions, then f o g and fg denote their composition, returning
g(f(x)) for every x, while fk denotes the k-fold composition of f with itself. In
contrast, for u a string of symbols, uk denotes the concatenation of k copies of u.

2.1-I. Behavior of a 2DFA. Given any 2DFA M over set of states Q and alphabet
E and any string u E Z*, the behavior of M on u is the partial mapping -Yu from
Q x {1, r} to Q x {1, r} that encodes all possible 'entry-exit pairs' as M computes
on u: for every q C Q,

(p, 1) if LCOMPM,q(u) hits left into p,
-y,(q, 1) := (p, r) if LCOMPM,q(u) hits right into p,

undefined if LCOMPM,q(u) loops or hangs,

while the value yu(q, r) is defined analogously, with RCOMP instead of LCOMP.
2.1-I. Strings over E,. Recall the alphabet Z, over which we defined liveness

(cf. Introduction, Section 3.1; see also Figure 14 on page 53). A concise way to refer
to a symbol of Z, is to simply list its arrows in brackets: e.g., the rightmost symbol
in Figure 14a is [12,14,25,44]. The symbol [containing no arrows is called the
empty symbol.

52

0 1 2 3

--- 2--- 0 & 0 0 S 0

5-.S~'b ~50 0 S S

? - P - ?

(a) (b) (c) (d)

FIGURE 14. (a) Three symbols in Z 5 . (b) The string they de-
fine, simplified and indexed; each node has a row and a column
index. (c) A 5-long 2-{1, 2, 4}-1 path, which is 2-disjoint on itself.
(d) State p of focus (5, 1) is reading the middle symbol: if it moves
right, the next focus will be (1, 1) or (3, 1); if it moves left, the
next focus will be (1, r) or (5, r).

Given any string x C Z*, we define the set of its nodes in the following, quite
natural way (Figure 14b):

Vx := {(i,j) I i E [n] & 0< < jlxi}.

The left-degree of a node (i, i) E V is the number of its neighbors on the column
to its left (column j - 1), or 0 if j = 0. Similarly, the right-degree of (i, j) is the
number of its neighbors on the column to its right (column j + 1), or 0 if j = |x|.

If x has exactly |xi edges that form 1 live path, we say x is a path (Figure 14c).
For iL, R E I C [n], we say x is a iL--R path if this one live path connects the iLth
leftmost node to the iRth rightmost node and visits only nodes with indices in I.

If y E Z*, then x U y is the unique string of length max(ixi, iyi) that has all
edges of x, all edges of y, and no other edges. For k > 0, we say y is k-disjoint
on x if in x U ([]ky) the edges from x and from y meet at no node (Figure 14c,
Figure 16c).

2.2. Moles. To define when a 2NFA over En is a mole, we need a way of
describing the notion of a state 'focusing on' some a particular node of the current
symbol. We define a focus to be any pair (i, s) C [n] x {1, r} of index and side. We
write - for the side opposite s. The (i, s)th node of a string x is the ith node of its
leftmost (resp., rightmost) column, if s = 1 (if s = r). The connected component
of that node in the graph implied by x is called the (i, s)th component of x. By
x [(i, s) we denote the unique string that has the length of x, all edges of the (i, s)th
component of x, and no other edges.

A 2NFA is a mole if each state p of it can be assigned a focus (ip, sp) so that,
whenever at p, the automaton behaves like a mole located on the (ip, sp)th node of
the current symbol and facing 1p: (i) it can 'see' only the component of that node,
and (ii) it can 'move' only to nodes in that same component. More carefully:

1. DEFINITION. Let M = (-, 6, -) be a 2NFA over a set of states Q and the
alphabet E,. An assignment of foci for M is any mapping 0 : Q -+ [n] x {1, r}
such that, for any states p, q E Q, symbol a E Z, and side s E {1, r}: whenever
M is at p reading a,

(i) its next move depends only on the component containing the node which p
is focused on: 6(p, a) = 6 (p, a [0(p)),

2. MOLES 53

2. 2D VERSUS 2N

(ii) its next state and position can only be such that the new focused node belongs
to the same connected component as the node which p is focused on:

6(p, a) D (q, s) --#> (-i [n]) [0(q) = (i,) & a [(i, s) = a [0(p)].

We say 0(p) is the focus of p. If an assignment of foci for M exists, M is a mole.

To understand Condition (ii), consider as an example the case s = r (see also
Figure 14d): If p on a moves right into q, then in the new position q must focus on
the left column (#(q) = (.,-) = (-, 1)), the one shared with the previous position.
Moreover, if in this column q focuses on the ith node (#(q) = (i, 1)), then in the
previous position this node (now the ith node of the right column) must belong to
the same connected component as the node which p focused on (a [(i, r) = a [0(p)).

Note that the 1NFA from page 17 satisfies Definition 1. So, small one-way
nondeterministic moles can solve liveness. In contrast, we will prove the following.

2. THEOREM. Two-way deterministic moles cannot solve liveness.

Remark that the theorem applies to all two-way deterministic moles, as opposed
to only small ones. We also stress that the main purpose of Definition 1 is to
disambiguate the intuitive notion of a mole-in contrast, the arguments in our
proofs will heavily rely on intuition.

2.3. Mazes. What makes moles so weak is of course the fact that, as they
move through the input, they can only observe the part of the graph directly con-
nected to their current location. The rest of the graph is not observable, even if
it occupies the same symbols as the observable part, and therefore does not affect
the computation. Lemma 3 below turns this intuition into a clean fact that can
be used in proofs. Before stating it, we need to talk about mazes and how moles
compute on them and their compositions.

Intuitively, a maze is any string on which some nodes have been designated as
'entry-exit gates' for moles (Figure 16d). More carefully, for x E Z*, let VS C VX
consist of every node that has exactly one of its two degrees equal to 0 (and can
thus serve as a gate). A maze on x is any pair (x, X) where X C V2.

The computation of a mole on a maze is the same object as the computation of
any 2NFA on any string, with the extra condition that it 'starts by entering a gate'
and 'if it exits a gate, it ends immediately'. Formally, let x = (x, X) be a maze,
u = (i, j) E X a gate with 0-degree side s, and p a state of a mole M with focus
0(p) = (i, s). Then, the computation COMPM,pu(x) of M on x from p and u (note
the overloading of operator COMP) is a prefix of either COMPM,pj+1(x) (if s = 1)
or COMPM,p,j(x) (if s = r). The prefix ends the first time (if ever) it reaches a
point (qt, jt) where the focus O(qt) = (i', s') is on a gate with 0-degree side s. Note
that x may contain nodes that have degree 0 on one of their two sides but are not
gates; the computation may very well visit the 0-degree side of these nodes without
having to terminate.

To compose two mazes means to draw their strings on top of each other and
then discard all coinciding gates (Figure 16e). More carefully, mazes x = (x, X)
and 0 = (y, Y) are composable iff IxI = IyI (so that Vx = Vy = V) and their graphs
intersect only at gates and only appropriately: every v E V, either has both its
degrees equal to 0 in at least one of x, y; or is a gate in both mazes, with a different
0-degree side in each of them. If x, V) are composable, then their composition is
the pair x o 4 := (x U y, X e Y). Clearly, the composition is a maze, too.

54

2. MOLES

Note that, by the conditions of composability, in each one of the symbols of
x U y every non-empty connected component comes entirely from exactly one of x
or y. Hence, when a mole reads a symbol, its next step depends on exactly one of
x or y. Generalizing, we can prove the following.

3. LEMMA. Let x and 0 be as above, and w := x o V) be their composition.
Consider a computation c := COMPMp(x o V) of a mole M from a gate u c X e Y
that comes from X. A unique list of computations c 1, c2,... exists, such that:

" each ct is a computation of M on x (resp., on 0) iff t is odd (even);
" c1 starts from p and u; each ct+1 starts from the state and gate where ct ends;
" if we remove the first point of each ct after c1 and then concatenate, we get c.

Put another way, if we can decompose a maze w into two mazes x and V", then any
computation c of a mole on w can be uniquely decomposed into 'subcomputations'
c1 , c2,... that alternate between x and 4'. We say these computations are the
fragments of c with respect to the decomposition w = x o V. Clearly, either all
fragments are finite, and then their list is infinite iff c is; or not all fragments are
finite, in which case their list is finite and the only infinite fragment is the last one.
Note that a different decomposition of w leads to a different decomposition of c.

2.4. Hard inputs. In Section 2.5 we will fix an arbitrary deterministic mole
and prove that it fails against liveness. To this end, we will construct inputs on
which the automaton decides incorrectly. Those fatally hard strings will be ex-
tremely long. However, we will build them out of other, much shorter (but still
very long) strings, which already strain the ability of the automaton to process the
information on its tape. In this section we describe those shorter strings. We start
with inputs which can be built for any 2DFA and later (Section 2.4-V) focus on
inputs that can be built particularly for deterministic moles. So, fix M to be an
arbitrary 2DFA over state set Q and alphabet E.

2.4-1. Dilemmas. Consider any property P C Z* of the strings over Z, and
assume that it is infinitely extensible to the right, in the sense that every string that
has the property can be right-extend into a strictly longer one that also has it:

(Vy E P)(]z =,4 e)(yz E P).

For example, the property of being of even length is of this kind.
Given any y E P, we can perform the following experiment. For each p c Q,

we examine the computation LCOMPM,p(y) and check if it hits right: if it does, we
set a bit ay,, to 1; otherwise, the computation hangs, loops, or hits left, and ay,, is
set to 0. In the end, we build the bit-vector ay := (ay,p)pEQ. This is our outcome.

How does the outcome change if we right-extend y into some yz E P? How do
ay and ayz compare? For every p, clearly LCOMPM,p(y) is a prefix of LCOMPM,p(yz).
So, if the first computation hits left, loops, or hangs, so does the second one; but
if the first one hits right, there is no guarantee what the second computation does.
Hence, all bits in ay that are 0 keep the same value in ayz; but a bit which is 1
may turn into a 0. Overall, if ">" is the natural component-wise order, we have
the following.

4. LEMMA. For all y,yz E P: ay > aYZ

What happens to the outcome of the experiment if we further right-extend y
into yzz' E P? And then into yzz'z" E P? While y is infinitely right-extensible

55

2. 2D VERSUS 2N

(a) (b) (c)

FIGURE 15. 2DFA computations on dilemmas, generic strings, and traps.

inside P, the outcome may decrease only finitely many times. Obviously then, from

some point on it must stop changing. When this happens, the extension of y that

we have arrived at is very useful tool. The following definition and lemma talk

about it formally.

5. DEFINITION. Let P C Z*. An L-dilemma over P is any y E P such that1

(Vyz E P)(Vp E Q) [LCOMPM,p(y) hits right 4--> LCOMPM,p(yz) hits right].

An R-dilemma over P can be defined symmetrically, on left-extensions and RCOMP.

6. LEMMA. Suppose P C E*. If P is non-empty and infinitely extensible to the

right (resp., left), then there exist L-dilemmas over P (R-dilemmas over P).

PROOF. Pick any y E P and keep extending it in the direction of infinite

extensibility until ay stops changing. When it does, the extension is a dilemma. E

In [51], dilemmas are called "blocking strings". We now explain these names.

7. LEMMA. Assume x E Z*, y is an L-dilemma over P, yz E P, and that some

computation c := LCOMPM,(xyz) crosses the xy-z boundary. After the first such

crossing, c never visits x again and it eventually hits right.

PROOF. Consider the first time c crosses the xy-z boundary (Figure 15a). Let

r be the state resulting from this crossing, and q the state resulting from the last

crossing of the x-yz boundary before that. Then, the computation between these

two crossings is LCOMPM,q(y) and hits right (into r). Since y is an L-dilemma over

P and z does not spoil the property (yz E P), we know that LCOMPM,q(yz) also

hits right. But this computation is a suffix of c. So, c also hits right. Moreover,
after crossing the xy-z boundary, it never visits x again. D

In total, once the computation crosses the xy-z boundary, it is restricted inside

yz and forced to eventually hit right. Put another way, when M enters y, it faces a

'dilemma': either it will stay forever inside xy, never crossing the xy-z boundary; or

it will cross it, but then also hit right without visiting x again. In effect, y 'blocks'

M from returning to x after having seen z -and 'locks' it into hitting right. In yet

other words, y makes sure that every left computation of M on xyz that hits left,
hangs, or loops does so inside xy, before making it to z.

1 Note that the displayed condition is the same as (Vyz c P)(ay = ay,); but rather more
informative. Also note that the "-" part of the equivalence there is given, by Lemma 4. What
is important is the "->" part: on every extension in P, the computation will keep hitting right.

56

2. MOLES

2.4-II. Generic strings. Consider again a property P C Z* which is infinitely
extensible to the right. For each y E P, we can define the set of states that can be

produced on the rightmost boundary of y by left computations:

LSTATES(y) := {q E Q I (1p E Q) (LCOMPMp(y) hits right into q)}.

How does this set change if we extend y into a string yz E P? How does it compare

to the set LSTATES(yz)?
Consider the function LMAP(y, z)(.), defined as follows (Figure 15b): for each

q E LSTATES(y), the computation COMPM,q,jyj+1(YZ) is examined; if it hits right
into some state r, then LMAP(y, z)(q) := r; otherwise, it hits left, loops, or hangs,
and LMAP(y, z)(q) is left undefined.

Note that the values of LMAP(y, z) are all in LSTATES(yz). Indeed, if r is such
a value, then r = LMAP(y, z)(q) for some q E LSTATES(y). Hence, the computation

COMPM,q,iyl+1(yz) hits right into r and some computation LCOMPM,p(y) hits right
into q. Combining the two, we get the computation LCOMPM,p(yz), that hits right
into r. We thus conclude that r E LSTATES(yz), as claimed.

Moreover, the values of LMAP(y, z) cover LSTATES(yz). Indeed, if some state
r E LSTATES(yz), then some computation c := LCOMPM,p(yz) hits right into r. We
know c crosses the y-z boundary, so let q be the state produced by the first such
crossing. The computation before this crossing is LCOMPM,p(y) and hits right into
q, so q E LSTATES(y). The computation after the crossing is COMPM,q,lyl+1(YZ)
and, as a suffix of c, hits right into r. We thus conclude that LMAP(y, z)(q) = r,
namely that LMAP(y, z) covers r.

Overall, LMAP(y, z) is a partial surjection from LSTATES(y) to LSTATES(yz).
This clearly implies its domain has enough elements to cover the range, so we know
ILSTATES(y)I ILSTATES(yZ)I.

The next fact summarizes our findings. Analogously to LSTATES(y), the set
RSTATES(z) consists of all states that can be produced on the leftmost boundary of

z via right computations. Clearly, the symmetric arguments apply. Note that these
involve a partial surjection RMAP(y, z) from RSTATES(z) to RSTATES(yz), defined

analogously to LMA P(y, z).

8. LEMMA. For y, yz E P, the function LMAP(y, z) partially su7jects LSTATES(y)
to LSTATES(yz); hence ILSTATES(y)i ILSTATES(yz)I. Similarly, in the opposite
direction, if yz, z E P then the function RMAP(y, z) partially surjects RSTATES(z)
to RSTATES(yz); hence IRSTATES(yz)l < IRSTATES(z)I.

As in Section 2.4-I, we now ask what happens to the size of the set LSTATES(y)
as we keep right-extending y inside P. Although y is infinitely right-extensible, the

size of the set can decrease only finitely many times. Hence, from some point on it
must stop changing. When this happens, we have arrived at another useful tool.

9. DEFINITION. Let P C 2*. A string y is L-generic over P if y E P and 2

(Vyz E P)[ILSTATES(y)i = ILSTATES(yz)J1.

An R-generic string over P is defined symmetrically, on left-extensions and RSTATES.
A string that is simultaneously L-generic and R-generic over P is called generic.

2 Note that the ">" part of the displayed equality ILSTATES(y)I = |LSTATES(yz)| is given, by
Lemma 8. What is important is the "<" part: on every extension in P, the set will manage to
stay as large.

57

2. 2D VERSUS 2N

10. LEMMA. Suppose P C E*. If P is non-empty and infinitely extensible to
the right (resp., left), then there exist L-generic strings over P (R-generic strings
over P). If yL is L-generic and yR is R-generic, then every YLZYR E P is generic.

PROOF. For the last claim, we simply note that every right-extension of an
L-generic string inside P is also L-generic. Similarly in the other direction. 0

Generic strings were introduced in [55], for SDFAs and over the property of
liveness. As we will show in the next section, they strengthen dilemmas. Before
that, however, let us prove a last fact about the operators LSTATES and RSTATES.

11. LEMMA. For all y, z E P: LSTATES(yz) C LSTATES(z) and RSTATES(y) D
RSTATES(yz).

PROOF. We prove the first containment. Pick any r E LSTATES(yz) and any
computation d:= LCOMPM,p(yz) that hits right into r. (Figure 15b.) We know d
crosses the y-z boundary. Let q' be the state produced by the last such crossing.
Then LCOMPM,q' (Z) is a suffix of d, and therefore also hits right into r. So, r E
LSTATES(z). E

2.4-111. Dilemmas versus generic strings. To examine the relation between
dilemmas and generic strings, it is helpful to have the following alternative char-
acterizations of the two classes of strings, in terms of the functions LMAP(y, z)
and RMAP(y, z).

12. LEMMA. Suppose y E P C Z*. Then y is an L-dilemma over P iff for
all yz C P the function LMAP(y, z) is total. Similarly for any z C P and for
R-dilemmas and RMAP(y, z).

PROOF. For the forward direction, assume y is an L-dilemma over P. Consider
any yz c P and any q E LSTATES(y). (Figure 15b.) Let c := LCOMPM,p(y) be a
computation that hits right into q. We know c is a prefix of d := LCOMPM,p(yZ).
So, d crosses the y-z boundary (the first such crossing is into q), and hence hits
right (by Lemma 7). Therefore, its suffix COMPM,q,jyj+1(yz) hits right, too. This
implies that LMAP(y, z)(q) is defined.

For the reverse direction, fix y C P and suppose LMAP(y, z) is total for all
yz e P. Consider any such yz, any p C Q, and assume c := LCOMPM,p(y) hits right
into some state q. (Figure 15b.) Then q E LSTATES(y). Therefore, LMAP(y, z)(q)
is defined. This implies c' := COMPM,q,jyj+1(yz) hits right. Combining c and c', we
get the computation d:= LCOMPM,r(yz). As c' is a suffix of d, we know d hits right
as well. LI

13. LEMMA. Suppose y E P C E*. Then y is L-generic over P iff for all yz C P
the function LMAP(y, z) is total and bijective. Similarly for z E P being R-generic
and for RMAP(y, z).

PROOF. For the forward direction, suppose y is L-generic and pick any yz E P.
We already know LMAP(y, z) is a partial surjection from LSTATES(y) to LSTATES(yz).
Since y is L-generic, we also know the two sets have the same size. So, LMAP(y, z)
must be total and injective. Conversely, fix y C P and suppose ay,, is total and
bijective for all yz c P. Then clearly, for every such yz, the sets LSTATES(y) and
LSTATES(yz) must have the same size. L

58

2. MOLES

Intuitively, a dilemma guarantees that the computations that manage to survive
through it will also survive through every extension that preserves the property. A
generic string guarantees that, in addition, the computations will keep exiting each
extension into different states.

14. LEMMA. Let P C E*. Over P, every L-generic string is an L-dilemma
and every L-dilemma is right-extensible into an L-generic string. Similarly for R-
generic strings, R-dilemmas, and left-extensions.

PROOF. Lemmata 12 and 13 prove the first claim. For the second claim, we
simply note that every string in P can be right-extended into L-generic strings. 0

2.4-IV. Traps. Consider a property P C * which is infinitely extensible in
either direction and closed under concatenation. For this section, fix V as a generic
string over P, and let

L := RSTATES(9), R:= LSTATES(79),

denote the sets of states producible on the leftmost and rightmost boundary of '0.
Note that, by Lemma 14, we know O is both an L-dilemma and an R-dilemma.

A trap (on ?9) is any string of the form dxd, where x E P is the infix.
By Lemma 10 and the closure of P under concatenation, traps are still generic

strings. However, they further restrict M's freedom: By Lemma 13, the function
LMAP(, X79) is a total bijection from LSTATES(d) = R to LSTATES(19x79). Since
LSTATES(VxV) 9 R (by Lemma 11), LMAP(T9,Xt9) is a total bijection from R to a
subset of R. Clearly, this is possible only if this subset is R itself. So, LMAP(t 9 , Xi)
simply permutes R. To simplify notation, we denote this permutation by ax.
Namely,

ax := LMAP(1, xi).

Similarly, RMAP(ox, d) permutes L, and we denote this permutation as #3. Overall,
we have proved the following.

15. LEMMA. For all x E P: ax permutes R and 3x permutes L.

Intuitively, in each direction, the computations that manage to cross the first
copy of V eventually cross the entire trap; but, after this first copy, they collectively
do nothing more than simply permute the set of states that they have already
produced. As we now show, the two permutations fully describe the behavior of M
on the trap.

16. LEMMA. For all infixes x, y E P: (ax,13 ,) = (ay,,3) =>* 'y,0 =Y yd.

PROOF. Suppose (ax,fl3) =(a, 3 y) and consider any p E Q. We show 'yox
and yyv agree on (p, 1)-the proof for (p, r) is similar. We examine the com-
putations cx := LCOMPM,p(ixi9) and c, := LCOMPM,p(ty'9). Clearly, these be-
have identically up to the first crossing of the 'critical' boundary between V and
x0 or yzO. If one of them hits left, loops, or hangs, it does so inside V (since d
is an L-dilemma) without crossing the critical boundary; so, the other computa-
tion behaves identically, thus -yx (p,1) = yv (p, 1). If one of them hits right,
then it crosses the critical boundary into some state q and so does the other
one; but then they both hit right, into the same state r := ax(q) = ay(q), so

^Y1r(p,1) = yyo(p,1) = (r,r). l

59

2. 2D VERSUS 2N

We call (a., 0.,) the inner-behavior of M on the trap t 9O, to distinguish from -yx.
An interesting case arises when V is an infix of the infix itself. Then the inner-

behavior of M on the trap can be deduced from its inner-behavior on the traps
that are induced by the other two pieces of the infix.

17. LEMMA. Suppose x, y E P and z := xi9y. Then (az, 32) = (ax o ayI, 0'0).

PROOF. To show that a, = czxoay (the argument for z = y3 o/3 x is similar), we
pick an arbitrary q c R and show that az(q) = ay (ax(q)). (Figure 15c.) We know
q is produced by some right-hitting left computation on ?9, say ci := LCOMPM,p(Z9)
for some state p. Since 7 is an L-dilemma over P and Ozd E P, we know c :=
LCOMPM,p(79z99) also hits right, into some state s. Therefore, az(q) = s. Before
hitting right, c surely crosses the '0x9-y9 boundary; let r be the state produced
by the first such crossing. Clearly, the computation c2 := COMPM,q,jfl+1(zxz9) hits
right into r, and hence ax(q) = r. Moreover, the suffix of c after the first crossing
of the t9x 9-y9 boundary is c3 := COMPM,r,ji9xt9+1(x?9yt 9) and obviously hits right
into s. However, since V is an L-dilemma over P and dyd E P, we know c3 never
visits the prefix z9x. Hence, it can also be written as c3 = COMPM,r,Iol+1(-? 9).
Since it hits right into s, we conclude that a,(r) = s. Overall, az(q) = s = ay(r) =
ay (ax(q)). L

An obvious generalization holds when the infix contains multiple copies of V.
In a particular case of interest, the infix consists of several 1-separated copies of
some x c P. Specifically, for any k > 1, we define x(k) := X(dX)k-1 and prove the
following.

18. LEMMA. For any x E P and any k > 1: (a>(k),I
3

Xk) ((ax), (Q)k).

2.4-V. Hard inputs to deterministic moles. We now assume that the 2DFA M
of the previous sections is defined over En and that it is actually a mole. We will
design inputs on which M misses a significant amount of information. All these
inputs are going to be paths (cf. Section 2.1-I).

We fix some I C [n] and i E I, and consider the set H C E* of all i-I-i paths.
Clearly, H is non-empty, infinitely extensible in both directions, and closed under
concatenation. Hence, by Lemma 10, generic strings over H exist. We fix 9 to be
one, and let r, := 1. We also set L := RSTATES(O), R := LSTATES('d), and let
p := lcm(ILI!, IRI!) be the least common multiple of the sizes of the corresponding
permutation groups.

For every length l > 1, we consider all traps (on '9) with infixes of length 1 and
collect into a set Qj all inner-behaviors that M exhibits on these traps:

1 := {(ax, Ox) I x is an i-I-i path of length 1}.

As shown in the next fact, every inner-behavior that can be induced by an 1-long
infix can also be induced by an infix of length l + 2p(l + K). The subsequent fact
explains that sometimes the converse is also true.

19. LEMMA. For every l > 1: Q1 9 Q1+2p(1)-

PROOF. Pick any behavior (a,3) C 9 j. We know that some I-long infix x C H
induces this behavior, namely (ce,3) = (ar, 3). Consider the path X(2p+l) -

x(4)xt9x(A). This is also in 17 and of length (2p + 1)1 + 2pK = l + 2p(l + K).
Moreover, by Lemma 18 and the selection of p, we know that this path induces

60

2. MOLES 61

the behavior (a2!+±,f3?+1) =((cx)2"ai32(3x)2 4) = (a, #/3) = (a, 3). Hence,
(a,) E (

20. LEMMA. There exist 3 1 > 1 such that Qi = f?+2p(1+x)-

PROOF. As the constant (ILI!) x (IRI!) upper bounds the sizes of all sets

01, 0 2 , . . ., we know at least one of them is of maximum size. Pick 1 so that
Qi is such. Then both Q1 C Ql+2i(l+K) (by Lemma 19) and 101 1 IQI+2/(I+a)l (by
the selection of 1). Necessarily then, the two sets must be equal. L

Intuitively, for the two lengths 1 and l+2p(l+r,), this last fact says that between
two copies of d, every i-I-i path of either length can be replaced by some path of
the other length without M noticing the trick (recall Lemma 16).

2.5. The proof. We now fix an arbitrary deterministic mole M = (s, 3, f)
over Z5 and prove that it fails to solve liveness. To this end, in Sections 2.5-II
and 2.5-III we construct a maze that 'confuses' M. Our most important building
blocks are the paths of the next section.

2.5-I. Three special paths. In this section we fix n := 5, i := 2, I := {1, 2}.
For these n, i, and I, we fix IH, ?, r, and p as in Section 2.4-V, let A be a length as
in Lemma 20, and set A := 2p(A + r.).

21. LEMMA. There exist paths 7r, p,0 E HI such that
* M cannot distinguish among them: -, = -y = -y.
9 p is A-disjoint on itself, and 7r is A-disjoint on cr.
* 7r is A-shorter than p, and p is A-shorter than o: IpI -|,rl = Jo - IpI = A.
* ,r is non-empty but short: 0 < |ir < A.

PROOF. Each of 7r, p, o- is a trap on 1. We will select their infixes x, y, z E H.
We set p := dyO, where y has length A + A and guarantees p is A-disjoint on

itself. Constructing y is straightforward (Figure 16a): We pick paths
r: any 2-I-1 path of length A,

9' := the 1-I-1 path of length , that is 0-disjoint on V,
t any 1-I-1 path of length A - (2n + A), and

r :=the 1-1-2 path of length A that is 0-disjoint on r.
Then, setting y := rp9'vO'r' we see that this is indeed a 2-1-2 path of length A + A;
and shifting p = i9yO = ir0q't9'rq' on a copy of itself by A = l'0r 9''tl causes only its
prefix dr/d' to overlap with the 'mirroring' suffix '7'9, so that no vertex is shared
(Figure 16b).

We set 7r := 79xi, where x has length A and guarantees 7r is indistinguishable
to p. Selecting x is easy: Since y is of length A+A, the inner-behavior (ay, /y) of M
on p is in Q±A, and therefore in QX. Hence, there exist A-long paths that induce
this inner-behavior. Picking x to be such a path, we know that (a,,L3) = (ay,3v)
and hence -y, =yp.

We set o- := iOz, where z has length A + 2A and guarantees that 7r is A-disjoint
on a and that a is indistinguishable to 7r. Note that, given the lengths of x and
z, the disjointness condition amounts to saying that 7r and a should not intersect
when 'centered' on top of each other. The construction of z is trickier.

We start by selecting a path y' that is as long as y (namely, of length A + A)
and does not intersect 7r when the two paths are 'centered' on top of each other

3 The argument essentially shows an infinity of such 1 exists, but this will not be needed here.

2. 2D VERSUS 2N

(namely, VxO is (4 - r,)-disjoint on y'). This selection is trivial: We simply take
the unique 1-I-1 path that is as long as 7r (namely, of length A + 2K) and 0-disjoint
on it, then extend it by y - n in both directions into any 2-1-2 path.2

Now, the inner-behavior (a,,,3y,) of M on dy'd is in Q2 A+A, and hence in
Q\. Therefore, we can find an A-long x' E I1 that induces the same behavior,
(ax,,) = (ayl, 3y,). We set z := (x')()t9y'9(x')(,-1)Yx, the path containing
2p + 1 '-separated paths, all copies of x' except the middle and rightmost ones,
which copy y' and x.

The length of z is indeed A + 2A. Moreover, o- = dzO symmetrically extends y'
by 19(x')(1)9I = z(x')(-)dx - 4 + n, which in turn symmetrically out-lengths
7r by -,. Overall, a symmetrically out-lengths 7r by A without intersecting it.
That is, 7r is A-disjoint on o. Finally, the inner-behavior (as, i3) of M on o- is

((axr)"ay,,(ax,)/-la., OX0 A-1 0Y,(0x,)A) = ((ax')2 "aX, 0X (!s,)2t,) = (a ,Ox),

where we used Lemmata 17 and 18, and the selection of /t. Hence, y. -y,. IZ

2.5-II. A maze of questions. We start with the two strings Ti := [3Ap D and

-2 := [33] -1[32] [22] 1 [23 [33] - [32,34] [45] [55]^-1 [54] [44] IT 1 [23,43],

(Figure 16f) which are equally long and each is A-disjoint on itself (recall the
selection of p). Also, in r := Ti U T2 their graphs intersect only at the endpoints of
p, so that r is A-disjoint on itself, too. This implies that r is also A-disjoint on
itself, for all i > 1 (Figure 16g).

Let P := {-r I i > 1} be the set of all powers of r. Select rL and TR as L-
and R-dilemmas over P. Fix m := 2 1QI + 1. The live string z := TL-mTR is also a
power of r and in it we think of the m 'middle' copies of r as distinguished. On
this string, we consider the natural maze w = (z, Z) := (z, {u, v}), where u := (3, 0)
and v := (3, IzI).

Consider the IQI computations of the form COMPM,p,e(w) that we get as we
vary p E Q and pick e := u when p focuses on the left (O(p) = (., 1)), and - := v
otherwise. Some of them are infinite (i.e., they loop) or finite but non-crossing (i.e.,
they hang; or they start and end on the same gate). We disregard them and keep
only those that are crossing (i.e., they start and end in different gates). Let k be
their number. Clearly, k < IQI.

Fix d to be any of these k computations and fix 1 < i < m. We know d
'visits' the ith distinguished copy of r, and we want to discuss its behavior there.
In particular, we want to consider the parity bi,d E {0, 1} of the number of times
that d 'fully crosses' the copy of p in the ith distinguished copy of r. A careful
definition of bi,d follows.

If we 'rip off' p from the ith distinguished copy of 7 and then add the two
endpoints ui, vi of the path as new gates, we construct a new maze,

Xi := ((rLT 1) 72 (TmiTR), U,VUi,vi})-

By the 'complementary' operation, where we rip off everything except the particular
copy of p, we can construct the 'complementary' maze,

b:= (([]-,- 1) []31 [] ([] i '~I), {ui,vi}).

Clearly, w = Xi o)i, and d is a finite computation on this composition. By Lemma 3,
we can break d into its finitely many, finite fragments dl, d2 , .. ., d,. We know every
even(-indexed) fragment is a computation on Qi; we call it crossing if its starting

62

2. MOLES 63

A _ A - (2K+ A)

(A)

(B)

A
A - 1 A -1 A -1 A - 1 17r - I

P

(8)

(9)

FIGURE 16. (a) in A: picking , t; then the mirrors ', '. (b) in B:

the path p and how it is A-disjoint on itself. (c) in each of i, 2, 3:

a 29-long string, 6-disjoint on itself; see 5. (d) in each of i, 2, 3: a
maze; gates marked with circles. (e) in 3: the composition of the
mazes of 1, 2. (f) in 1, 2, 3: examples of T2, Ti, T, respectively, for
a schematic case A =6, r 4, and a schematic p. (g) in 4: a

schematic of rd; in s: a snippet of the union of a T
2 with a A-shifted

copy of itself. (h) in : a schematic of x', focusing on the snippets

around the leftmost, i1th distinguished, i2 th distinguished, and
rightmost pairs of copies of T. (i) in 8: a schematic of 4', for the
same snippets. (j) in 9: a schematic of w' =-x o 4', for the same

snippets; in 5, 6: a better view of how u-, in connect the two disjoint
graphs of x' when they replace two copies of p.

2. 2D VERSUS 2N

and ending gates differ. The bit b2,d records the parity of the number of such
fragments. In other words: b2,d = 0 +==> d exhibits an even number of crossing
even fragments.

Intuitively, as the mole develops a crossing computation on W, each distin-
guished copy of T asks: "odd or even?" The mole answers this question with the
parity of the number of times that it fully crosses p in that copy. The bits bi,d
record exactly these answers.

Organizing these mx k bits into m k-long vectors bi := (bi,d)d, for i 1,... ,m,
we see that there are more vectors than values for them: 2 k < 2 1Q1 < 2 1QI + 1 = m.
Hence, bi, = b2 for some 1 < i1 < i 2 < n. This means that, in each crossing finite
computation, the answer to the i 1th question equals the answer to the i 2th one.

2.5-III. A more complex maze. We now return to w = (z, {u, v}). We remove
p from the i 1th and i 2th distinguished copies of r, and name the four natural new
gates UL, VL (endpoints of p in the i 1th copy) and uR, vR (endpoints of p in the i 2th
copy) to get the new maze

x = (x, X) := ((rLr") T2 (ri2-i- 1) 2 (T'i27R), {UV1UL, L, UR, VR).

As previously, the 'complementary' maze (remove everything except the two p's) is

4= (y, Y) := ((. - -) []3AP[] (..) []3A] (.. UL, VL, UR, VR),

where ellipses stand for appropriately many [Is. Obviously, W = x o 4'. In this
section, we will construct a maze w' = X' o 4', where the mazes x' and 4' are
complex versions of x and 4.

We start by noting that x is A-disjoint on itself (because z is). So, in the union
X := x U ([] Ax) of x with a A-shifted copy of itself, the two graphs do not intersect.
(Figure 16h.) So, letting x' := (x', X'), where X' := X U {u', v', u/, v, 'v}
contains all gates of x plus their counterparts in the shifted copy, we know every
computation on x' visits and depends on exactly one of the two disjoint graphs.

Similarly, y is A-disjoint on itself (because p is), the union y U ([]Ay) contains
two pairs of disjoint copies of p, and Y' := Y U {ut, v/ IU, v' I contains their end-
points. Viewing each pair of copies of p as a copy of the string p U ([Ap), we can
replace it with a copy of the string p' := a U ([]A7r). If y' is the new string, we set
4" := (y', Y'). (Figure 16i.) Crucially, this substitution preserved (i) the lengths of
strings: ly'l ly U ([]Ay)l, because

|p'I =|ouU (0 ^,r)I =|01= 2, + A + 2A =|p|+ A =p u ([] Ap);

(ii) the number and disjointness of paths: since ,r is A-disjoint on o-, we know p'
also contains two disjoint paths; and (iii) the set of endpoints of paths: e.g., on the
copy of p' on the left, a and ir have endpoints uL, v' and u', VL. Note that every
computation on 4' visits and depends on exactly one of the paths.

Clearly, the graphs of x' and y' intersect only at the gates in Y'. Therefore,
x' and 4" are composable, into w' = (z', Z') := x' 4" = (x' U y', {u, V, U', v'}).
(Figure 16j.) Note that u and u' are on the far left; v and v' are on the far right;
and the four paths of y' connect the two graphs of x': the mole can switch graphs
only if it fully crosses one of the paths.

2.5-IV. The hidden gate. Consider the dead input z'[1 and the computation
c := LCOMPAI.(-z'[]H) on it. From now on, our goal is to prove that c' never
visits [I. Equivalently, we want to show that M never visits the 0-degree side of
the rightmost node v' of z'. Intuitively, this is the same as saying that the maze

64

2. MOLES 65

implied by z' hides v' from the mole. Note that this will immediately imply the
failure of M: on the live input z'[33] the mole will compute exactly as on the dead
input z [], as it will never visit the 0-degree side of v' to note the difference.

We start by remarking that, since the first symbol of z' is [33], any attempt
of the mole to depart from F into a state of focus other than (3,1) is followed by
a step back to F-. Ignoring these attempts and also noting that the mole can never
move past [], we see that c' consists essentially of zero or more computations of the
form CoMPM,p,1(z'[]) with 0(p) = (3,1). For our purposes, it is enough to study
the case where c' consists of exactly one such computation.

So, suppose c' := COMP,p,1(z'[]), where 0(p) = (3,1). As a mole, every time
M visits the 0-degree side of the nodes U', v v', it changes direction to 'return into
the graph' of z'. Call every such move a turn and break c' into segments c', c', . . . so
that successive segments are joined at a turn: the later segment starts at the state
and position following the last state and position of the earlier segment. Clearly:
each segment is a computation on w'; the first segment is cl = COMPM,pU(W'), but
later segments start at a gate in {u', v,v'}; and either all segments are finite, in
which case their list is finite iff c' is, or not, in which case the list is finite and only
the last segment is infinite.

To prove that c' never visits [], it is enough to show that no segment ends
in v'. This, in turn, is a corollary of the following:

" the first segment starts at gate u,
" every finite segment that starts at gate u and does not hang necessarily ends

either at gate u or at gate v, and
" every finite segment that starts at gate v and does not hang necessarily ends

either at gate u or at gate v.
We only prove the second statement, in the next section. The third statement can
be proved by a similar argument, whereas the first statement is already known.

2.5-V. The final argument. Let d' be a non-hanging finite segment of c' that
starts at u. As a finite computation on w' = X' o i', it can be broken into finitely
many, finite fragments d', d,....., d',; odd(-indexed) fragments compute on x' and
even(-indexed) fragments compute on 0' (Lemma 3). By previous remarks, every
odd fragment visits and depends on exactly one of the two graphs (non-shifted and
shifted) inside x'; and every even fragment visits and depends on exactly one of
the four paths in y'. Calling an even fragment crossing if its start and final gates
differ, we clearly see that two successive odd fragments visit different graphs in x'
iff the even fragment between them is crossing. Generalizing, and since d' starts on
u, each odd fragment visits the shifted graph in x' if the number of crossing even
fragments that precede it is odd.

Towards a contradiction, assume d' does not end in u or v. Then it ends in
either u' or v'. Hence, d' is an odd fragment that visits the shifted graph in x'. This
immediately implies that the total number of crossing even fragments (before d',,
and so throughout d') is odd. In particular, even fragments exist and d' necessarily
ends at a gate in Y.

To reach a contradiction, we will show that, by replacing every fragment d'
of d' with an appropriate computation di on the original maze w, we can create a
computation d on w that cannot really exist. Before we start, let h : X' -+ X be the
function that maps every gate in X' to its 'unprimed' version in X: for example,
h(uL) = h(u') = uL. We distinguish two cases:

2. 2D VERSUS 2N

* If d' is an odd fragment (a computation on exactly one of the two graphs in X')
from state q and gate E to state r and gate (, we let di be the computation
on (the one graph of) x from q and h(E). Clearly, di ends at r and h(c). In
particular, d, starts at h(u) = u and ends at a gate in h(Y) = Y.

0 If di is an even fragment (a computation on exactly one of the four paths
in 0') from state q and gate e to state r and gate C, we let di be the com-
putation on (one of the two copies of p in) 0 from q and h(e). Since p is
indistinguishable from each of -r and o-, we know di ends at r and h((). Note
here the critical use of the inability of the mole to detect the big difference
in the lengths of ir, p, and a-.

Reviewing the list di, d 2 ,.. . , d, we see that: di starts at h(u) = u; for every
1 < i < v, fragment di ends at the state and gate where dj+j starts; fragment
d, ends on h(u') = u or h(v') = v; and every even fragment di is crossing (on
the path of 7P that it visits) iff d' is (on the path of 0' that it visits). Hence, by
concatenating, we can build a computation d on x o = w that starts at u, ends
at u or v, and contains an odd number of crossing even fragments.

But is this possible?
If d ends at u, then it never moves beyond TL (if it did, it would traverse the

L-dilemma and get 'blocked' away from u). In particular, dl never reaches a gate in
Y. But (by a previous remark) this is where it is supposed to end. Contradiction.

If d ends in v, then it is a crossing computation on w. As w equals each of
the compositions x o 4, Xii o 4'j, and Xi 2 a IN2, we know d can be fragmented in
three different ways. Clearly, every even fragment with respect to either Xi, o40j, or

Xi 2 o4'i 2 is also an even fragment with respect to yo0, and vice versa; and is crossing
or not (on the copy of p that it visits) irrespective of which composition we look
at it through. So, letting , 6, 2 be the numbers of crossing even fragments with
respect to the three compositions, we know = 61 + 2 and (as established above)
6 is odd. Yet, by the selection of il and i 2 , the parities of 1, 62 are respectively
bi,,d, bi2 ,d and hence equal (as bi, = bi 2), so that 6 should be even. Contradiction.

So, in both cases we reach a contradiction, as desired. L

3. Restricted Bidirectionality: Sweeping Automata

In this section we explore the approach that we described in Section 3.3 of the
Introduction. After we formally define what it means for a 2NFA to be sweeping,
we will prove that every sweeping 2NFA solving B, needs 2 2(") states-here, B, is
the complement of liveness.

3.1. Preliminaries. Our basic notation and definitions are as presented in
Section 2 of Chapter 1. However, we will also need some extra notions and facts of
special interest to this section. We present this additional material below.

3.1-I. Sets, functions, and relations. As usual, for any set U, we write U, fUI,
P(U), and U 2 for the complement, the size, the powerset, and the set of pairs of
U. The following simple lemma plays a central role in our proof.

22. LEMMA. Let (u2j)ci and (vi)jie be two sequences of subsets of a set U,
where I is a set of indices totally ordered by <. If for all i', i C I we have

i' < i => uf n vi 0= and i' = i => u' n vi 7 0,

then I|I < JU|.

66

3. SWEEPING AUTOMATA

PROOF. For each i C I, let a, be any element of the non-empty intersection
ui n vi. If the list (ai)iE contains a repetition, say ag = ai =, a for two indices
i' < i, then a = ait E uil and a = a2 E vi; hence a E ui' n vi, a contradiction.
Therefore the list (ai)iEI contains IIl distinct elements of U. Hence, 1I < JUI. D

Let V C P(U) be a set of points in the lattice of subsets of U. For u e V,
the part of V below u is Vu := {u' E V I u' C u}; the height hv(u) of u in V
is the length of the longest chain 0 7 ul C - - uk in V,. For (: V -- V, we
say (is monotone if it respects inclusion: u' C u ==> ((u') C ((u); we say (is
an automorphism if its restriction to V is a bijection from V to VC(u), for all u.
Clearly, every automorphism respects heights: hv(u) = hy (((u)), for all u. By (
we mean the t-fold composition of (with itself; if t = 0, this is the identity.

23. LEMMA. Suppose (: V -> V, where V C P(U) is a finite set of points from
the lattice of a set U. If (is injective and monotone, then it is an automorphism.

PROOF. Pick any u E V, set v := C(u), and let C, be the restriction of (to
V,,. We will show (, is a bijection from V to V. Since (is monotone, (has all
its values in V: u' E V => u' C u == ((u') C ((u) =- (u(u') C V. Since
(is injective, so is (,. So, (, is an injection from V to V. To show that it is a
bijection, it is sufficient to show that V, does not have more elements than V,.

Since (is injective and V is finite, (is a permutation of V. Hence, for some
t > 1, (' is the identity. Let (' := (". Since (is injective and monotone, (' is
also injective and monotone. Moreover, u = ('(u) = (" (((u)) = ('(v). Now the
same argument as in the previous paragraph shows that the restriction ,' of (' to
V is an injection from V to V,. Consequently, IVvI IV|I. LI

Let R C U2 be a binary relation. We write R(.) for the mapping of each
U C U to the set R(u) := {b C U | (]a E u)(aRb)} of all elements related to
elements of u; we usually write R(a) instead of R({a}). Clearly, R(.) is a monotone
function. If R' C U2 is also a binary relation, we write R' o R for the composition:
a(R'o R)b +-> (3c E U)(aR'c & cRb). Clearly, (R'o R)(u) = R(R'(u)), for all u.

A total order < on P(U) 2 is nice if each pair "escapes" from every strictly
smaller pair in at least one component: (u', v') < (u, v) =-> u' u V v' v. As
shown in the next lemma, such orders exist no matter what finite set we pick as U.

24. LEMMA. For every finite set U, there exist nice orders on p(U)2.

PROOF. Given any finite U, we simply exhibit such an order. Specifically, we
declare (u', v') < (u, v) whenever lu'l + v'J < Jul + v, and pick any order whenever

Iu'l + Jv'J = |ul + v. (Note that we can make these comparisons between the sizes
of the sets, as they are all finite.) The result is indeed a nice order. To prove this,
we pick arbitrary u, v C U and show the contrapositive of the necessary condition:

u'D Du & v' D v -=-> (u',v') $ (u,v).

So, suppose u' D u & v' D v. If u' , u or v' $ v, then one of the two inclusions is
strict, hence lu'l + v' > Jul + vf, and thus (u', v') > (u, v). Otherwise, a' = u and

= v, and thus (u', v') = (u, v). In both cases, (u', v') 5 (u, v), as needed. L

3.1-II. Strings over Z. Recall the alphabet Z, over which liveness is defined.
In this section, it will be convenient to have a concise way of describing how the
edges of a string over Z, connect the vertices of its outer columns. So, given any

67

2. 2D VERSUS 2N

z E 2* , we say that z has connectivity 9 [n] 2 if the following holds: (a, b) E
iff z contains a path from the a-th node of its leftmost column to the b-th node
of its rightmost column. For example, the connectivity of the string on page 17
is {(3, 1), (3, 4)}; the connectivity of the empty string e is the identity relation

{(a, a) I a E [n]}; and the connectivity of any single symbol is the symbol itself.
The set of all strings of connectivity 6 is written as B,,. In this notation,

Bn = BnO.

In other words, the dead strings are exactly those with connectivity 0. Any other
connectivity implies that a string is live.

3.2. Sweeping automata. One way to define sweeping 2NFAs is to start with
our standard definition for 2NFAs (cf. Chapter 1, Section 2) and simply impose
the restriction that the transition function is such that the direction of the input
head never changes strictly inside the input, for all inputs and all branches of the
corresponding nondeterministic computations. Note that, with a definition of this
kind, it becomes meaningful to ask whether a given 2NFA is sweeping or not.

Our approach will be different. We will give an entirely new definition, with
the restriction about the direction of motion built-in. The best way to explain
what this means to give the definition right away. So, here it is. As usual, we
start with the deterministic version and leave the straightforward generalization to
nondeterminism for later.

3.2-I. The deterministic case. By a sweeping deterministic finite automaton
(SDFA) over the states of a set Q and the symbols of an alphabet Z we mean any
triple M = (s, 6, f), where 3 is the transition function, partially mapping Q x Ze
to Q, and s, f E Q are the start and the final states. An input w E Z* is presented
to M surrounded by the end-markers, as -wH. The computation starts at s and on
the symbol to the right of F-, heading rightward. The next state is always derived
from 6 and the current state and symbol. The next position is always the adjacent
one in the direction of motion, except when the current symbol is F- or when the
current symbol is -i and the next state is not f, in which two cases the next position
is the adjacent one in the opposite direction. Note that the computation can either
loop, or hang, or move past -] into f. In this last case we say that M accepts w.

We stress that the values of the transition function do not contain any direction
information. In contrast, this information is derived implicitly from the assumption
that the automaton is sweeping. This greatly simplifies the setting and helps us stay
closer to the combinatorial essence of sweeping automata, avoiding the distraction
caused by irrelevant inherited features. Moreover, this definitional shift does not
invalidate our conclusions in this section. Specifically, it is not hard to verify that
the size of a sweeping 2NFA under the new definition is linearly related to the size of
a smallest equivalent sweeping 2NFA under the standard definition, and vice versa.
Hence, any exponential lower bound under either definition implies an exponential
lower bound under the other one. Of course, for exact trade-offs, the choice of
definition will matter-but we will not be worrying about them here.

The simplified definition allows for a simplified notion of computation, as well.
In particular, for any z E Z* and p E Q, the left computation of M from p on z is
the unique sequence

LCOMPM,p(Z) = (qt)1<t<m

68

3. SWEEPING AUTOMATA

where qi = p; every next state is qt+l = 6 (qt, zt), provided that t < jzj and the value
of 5 is defined; and m is the first t for which this last provision fails. If m = Iz I+ 1,
the computation exits into qm; otherwise, 1 < m < jzj and the computation hangs
at q,. The right computation of M from p on z is defined symmetrically, as the
sequence RCOMPM,p(z) = (qt)1<t<m with qt+1 = 6 (qt, zlzl+1 -t).

3.2-I. The nondeterministic case. If M is allowed more than one next move
at each step, we say that it is nondeterministic (SNFA). Formally, this means that
6 totally maps Q x Ze to the powerset of Q and implies that, on input any w E Z*,
M exhibits a set of computations on I-w-]. If at least one of them moves past -I
into f, then M accepts w. Similarly, LCOMPM,p(z) and RCOMPM,p(z) are now sets
of computations.

We also introduce a notion to describe how the states of M connect via left
and right computations on some string. For left computations on some z E Z*, we
encode these connections into a binary relation LVIEWM(Z) C Q2, which we refer
to as the left behavior of M on z, defined as:

(p, q) E LVIEWM(Z) <=* (1c E LCOMPM,p(z)) (c exits into q),

Then, for any u C Q, the set LVIEWM(z)(U) of states reachable from within u via
left computations on z is the left view of u on z. The right behavior RVIEWM(Z) of
M on z and the right view RVIEWM(Z)(u) of u on z are defined symmetrically.

Note that, if izl = 1, the automaton has the same behavior in both directions:

25. LEMMA. IzI = 1 =-> LVIEWM(z) = RVIEWM(z) = {(p, q) I 6(p, z) E q}.

We also note that, if extending the string z does not cause a view to include
any new states, then this remains true on all identical further extensions:

26. LEMMA. The following implications are true, for all t > 1:
* LVIEWM(z)(u) 2 LVIEWM(zi)(u) ==- LVIEWM(z)(u) D LVIEWM(z t)(u),
* RVIEWM(z)(u) D RVIEWM(zz)(u) ==> RVIEWM(z)(u) D RVIEWM(z t Z)(u).

PROOF. For the first implication, suppose that the set LVIEWM(z)(u) contains
the set LVIEWM(zZ)(u). To show that it also contains LVIEWM(zi t)(u), we use
induction on t. The case t = 1 is the assumption itself. For t > 1, we calculate:

LVIEWM(zit+1)(u) = LVIEWM(i)(LVIEWM(zit)(u)) (algebra of relations)

C LVIEWM (i) (LVIEWM (z) (u)) (inductive hypothesis)

= LVIEWM(zi)(u) (algebra of relations)

C LVIEWM(z)(u). (original assumption)

In the 1st step, note that LVIEWM(zVt+1) = LVIEWM(zZV) 0 LVIEWM(z). In the
2nd step, along with the inductive hypothesis, we use the fact that LVIEWM(i)(-) is
monotone. The 3rd step uses the fact that LVIEWM(zi) = LVIEWM(z) O LVIEWM(Z).

The second implication can be proved symmetrically. D

3.3. Proof outline. We are now ready to present an outline of our argument.
As explained in the introduction, to prove that small SNFAs are not closed under
complement (SN # coSN), it is enough to prove the following.

27. THEOREM. Every SNFA that recognizes Ba,0 has 2f-n) states.

69

2. 2D VERSUS 2N

The remainder of Section 3 is a proof is this fact. We fix n and an SNFA M = (s, 6, f)
over a set of k states Q that solves Bn,0 , and we prove that k = 2-(n)

The proof is based on Lemma 22. We build two sequences (X,)LEI and (Y),cz
that are related as in the lemma. The indices are all pairs of non-empty subsets of
[n], the universe is all sets of 1 or 2 steps of M:4

I:= {(a, 0) 1 0:# a, ;; [n]} S:= {{e',e} le' e E Q2

and the total order < is the restriction on I of some nice order on)P([n])2 . If we
indeed construct these sequences, then the lemma says that lI| < 1E6, therefore

(2" - 1)2 k k 2 + (k),

which implies k = 2 A(n), as required. For the remainder, we fix I and E as here.
Note that from now on some subscripts in our notation are redundant. We thus

drop them: e.g., B,,0 and LVIEWM(z)(u) become B 0 and LVIEW(z)(u).

Before moving on, let us also quickly prove a fact that will be useful later: In order
to accept a dead string but reject a live one, M must produce on the dead string a
single-state view that "escapes" the corresponding view on the live string.

28. LEMMA. If z' is live and z is dead, then at least one of the following holds:
e LVIEW(z')(p) / LVIEW(z)(p) for some p E Q.
9 RVIEW(z')(p) 2 RVIEW(z)(p) for some p E Q.

PROOF. Towards a contradiction, suppose that LVIEW(z')(p) D LVIEW(z)(p)
and RVIEW(z')(p) 2 RVIEW(z)(p), for all p. Pick any accepting computation c of M
on z and break it into its traversals ci, ... , cm, in the natural way: for all j < m,

e cj starts at a state pj next to H and ends at a state qj on -A, if j is odd;
e cj starts at a state pj next to -1 and ends at a state qj on F-, if j is even;

pi = s and pj+1 is in 6(qj, A) or 3 (q, F-), depending on whether j is odd or even,
respectively; m is even and the last fragment is not really a traversal, but simply
cm (f). Then, for each j < m, we know that

* qj is in LVIEW(z)(pj) and thus also in LVIEW(z')(pj), if j is odd,
* qj is in RVIEW(z)(pj) and thus also in RVIEW(z')(pj), if j is even.

Hence, in both cases, some computation c of M on z' starts and ends identically
to cj. If we also set c' := (f) and concatenate the computations c',..., c' , we
end up with a computation c' of M on z' which is also accepting. So, M accepts
the live string z', a contradiction. IZ

3.4. Hard inputs and the two sequences. In this section, we will construct
a set of inputs that collectively force M to use exponentially many states. Similarly
to what we did for moles, here we will again need to start with strings that are long
and rich enough to strain the ability of M to process their information, and then
use those strings as building blocks for constructing the hard inputs. Once again,
we call these strings generic, and we base their construction on the same general
idea of [55].

4
A step of M is any e E Q2 . Also, note that {e', e} represents a singleton when e' = e.

70

3. SWEEPING AUTOMATA

3.4-I. Generic strings. Consider any y c Z* and the set of views produced via
left computations on it:

LVIEWS(y) := {LVIEW(y)(u) I u C Q},
i.e., the range of the function LVIEW(y)(.). How does this set change when we
extend y into a longer string yz?

Let LMAP(y, z) be the function that for every left view produced on y returns its
left view on z-namely, LMAP(y, z) is the restriction of LVIEW(z)(-) to LVIEWS(y).

It is easy to verify that the values of LMAP(y, z) are all inside LVIEWS(yz).
Indeed, consider any u in the range of LMAP(y, z). Then some u' in the domain of
LMAP(y, z) is such that LMAP(y, z)(u') = u. Since this domain is LVIEWS(y), some
U" C Q is such that LVIEW(y)(u") = u'. Then,

u = LMAP(y, z)(u') = LMAP(y, z)(LVIEW(y)(u"))

= LVIEW(z) (LVIEW(y)(u"))

= LVIEW(yz)(u"),

so that u is indeed in LVIEWS(yz). (Note that in the last equality we used the fact
that LVIEW(yz) = LVIEW(y) o LVIEW(z).)

Moreover, the values of LMAP(y, Z) cover LVIEWS(yz). Indeed, consider any
U E LVIEWS(yz). Then there exists u" C Q is such that LVIEW(yz)(u") = u.
Letting u' := LVIEW(y)(u"), we see that u' E LVIEWS(y). Therefore, u' is in the
domain of LMAP(y, z). Moreover,

LMAP(y, z)(u') = LVIEW(z)(u')

- LVIEW(z)(LVIEW(y)(u"))

- LVIEW(yz)(u") = U,
so that u is indeed in the range of LMAP(y, z). (Again, in the last equality we used
the fact that LVIEW(yz) = LVIEW(y) 0 LVIEW(z).)

Overall, LMAP(y, z) is a surjection from LVIEWS(y) to LVIEWS(yz). This imme-
diately implies that |LVIEWS(y)I |LVIEWS(yz)I.

The next fact encodes this conclusion, along with the obvious remark that
LMAP(y, z) is monotone. It also shows the symmetric facts, for left extensions
and right views. The set RVIEWS(y) consists of all views produced on y via right
computations, and RMAP(z, y) is the restriction of RVIEW(z)(-) on RVIEWS(y).

29. LEMMA. For all y, z: LMAP(y, z) is a monotone surjection of LVIEWS(y) onto
LVIEWS(yz), so ILVIEWS(y)l ILVIEWS(yz)I; similarly, RMAP(z,y) is a monotone
surjection of RVIEWS(y) onto RVIEWS(zy), so IRVIEWS(y)I > IRVIEWS(zy)I.

Now suppose y belongs to an infinitely right-extensible property P C Z*. What
happens to the size of LVIEWS(y) if we keep extending y into yz, yzz',,... inside P?
Although there are infinitely many extensions, the size of the set can decrease only
finitely many times. So, at some point it must stop changing. When this happens,
we have arrived at a very useful tool. We define it as follows.

30. DEFINITION. Let P C E*. A string y is L-generic over P if y E P and

(Vyz E P)[ILVIEWS(y) = ILVIEWS(yz)I].

An R-generic string over P is defined similarly, with left-extensions and RVIEWS(-).
A string that is both L-generic and R-generic over P is called generic.

71

2. 2D VERSUS 2N

31. LEMMA. Let P C Z*. If P is non-empty and infinitely right-extensible
(resp., left-extensible), then there exist L-generic (resp., R-generic) strings over P.

If yL is L-generic and yR is R-generic, then every string yLxyR E P is generic.

PROOF. For the last claim, we just note that all right-extensions of an L-generic
string inside P are also L-generic, and the same is true in the other direction. D

Intuitively, from the perspective of M, a generic string is among the richest
inputs that have property P, in the sense that it exhibits a greatest subset of the
"features" that M is "prepared to pay attention to". This makes generic strings
useful in building hard inputs, as described in the Lemma 33 below and in Sec-
tion 3.4-II.

32. LEMMA. For any y, z E E*: LVIEWS(yz) g LVIEWS(z) and RVIEWS(zy) C
RVIEWS(z).

PROOF. By Lemma 29, LVIEWS(yz) is the range of LMAP(y, z), which is a
restriction of LVIEW(z)(.). So, the first containment follows. The argument in the
other direction is similar. D

33. LEMMA. Let y be generic over P C Z*, and let x E E*. If yxy E P,
then

" LMAP(y, xy) is an automorphism on LVIEWS(y), and
" RMAP(yx, y) is an automorphism on RVIEWS(y).

PROOF. Suppose yxy E P. Then fLVIEWS(y)j = JLvIEwS(yxy) (since y is
generic) and LVIEWS(yXy) C LVIEWS(y) (by Lemma 32). Therefore, we know that
LVIEWS(y) = LVIEWS(yXy). By this and Lemma 29, we conclude LMAP(y, xy) sur-
jects LVIEWS(y) onto itself, which is possible only if it is injective. Since LMAP(y, Xy)
is also monotone, Lemma 23 implies it is an automorphism.

The fact about RMAP(yx, y) is proved similarly. 0

3.4-II. Constructing the hard inputs. Fix t = (a,,) CI and let P, := Bx o
be the property of connecting exactly every leftmost node in a to every rightmost
node in 3. Easily, P, is non-empty and infinitely extensible in both directions.
Therefore, an L-generic string y, and an R-generic string YR exist (Lemma 31).
Then, forq := [n]2 the complete symbol, we easily see that YL77YR C Ps,, too. Hence,
this string is generic over P (Lemma 31). We define y, := YL7YR. We also define
the symbol x, :=,3 x a.

34. LEMMA. The two sequences (y,),ETe and (xL),L=z are such that:

t' < t =-> ytxclye G P and t' =t => y,,x,,y, E B0.

for all t', t G i.

PROOF. Fix t' = (a',,') and t = (a,f0) and let z := yetrXty. Note that the
connectivities of y. and x, are respectively := a x 3 and ' :=,3' x a'.

YL . ' x . YL YL /' x1, a'. y1,

b* a*

72

3. SWEEPING AUTOMATA

If t' < t (on the left), then a' a or 0' 0 (since < is nice). Suppose 0' 0
(if a' a, use a similar argument) and fix any b* e 3 \ /3' and any a* E a. For
any a, b c [n], consider the a-th leftmost and b-th rightmost nodes of z. If a V a
or b V 0, then the two nodes do not connect in z, since neither can "see through"

y,. If a E a and b E 0, then (a, b*) E and (b*, a*) E ' and (a*, b) E , so the two
nodes connect via a path of the form a - b* -> a* --- b. Overall, z E P.

If t' = t (on the right), then ' = 3 x a. Suppose z V B 0 . Then some path

in z connects the leftmost to the rightmost column. Suppose it is of the form
a - b* -> a* - b. Then b* E / and (b*, a*) E 6' and a* E a, a contradiction. E]

3.4-I1. Constructing the two sequences. Suppose t' < t. Since the extension

ytXLyL of y. preserves P, (Lemma 34), each of LMAP(y,, XL'YL) and RMAP(ytXL, yt)
is an automorphism (Lemma 33). Put another way, the interaction between the
steps of M on x,, and its two behaviors on y, is such that these two mappings are
automorphisms. Put formally, both

* the restriction of (Et, 0 LVIEW(y,))(-) on LVIEWS(y,) and

" the restriction of (Er 0 RVIEW(y,))(-) on RVIEWS(y,)

are automorphisms, for EL' := {(p, q) I 5(p, x,,) E q} = LVIEW(XL') = RVIEW(XL).

What if t' = t? What is then the status of LMAP(yt, xyL) and RMAP(yXL, yt)?

We can show that, since yLxLy, is dead (Lemma 34), we cannot have both functions
be automorphisms. 5 However, something stronger is also true: we can even convince
ourselves that one of the functions is not an automorphism by pointing at only 1 or 2
of the steps of M on x,. The next figure shows three examples of this. In each, we
sketch the left behavior of M on yL and all single-state views.

y, X, yL y " Y, y, y , y,

e'

e e

u v U u V' v u U V' v

Example I shows only 1 of the steps of M on x,, say e = (p, q) -many more
may be included in E. Is LMAP(yL, xey,) an automorphism? Normally, we would

need to know the entire E to answer this question. Yet, in this case e is enough to
answer no. To see why, note that the view v of q on y, has height 2, while one of the
views that contain p is u, of height 1. Irrespective of the rest of E,, LMAP(y, XLyL)

will map u to a view that contains v and thus has height 2 or more. So, it does not
respect heights, which implies it is not an automorphism.

Example II shows 2 of the steps in E,, say e' = (p', q') and e = (p, q). Is
LMAP(yL, XyL) an automorphism? Observe that neither step alone can force a

negative answer: the view v' of q' on y, has height 1, as does the lowest view u'
containing p'; similarly for e, u, v, and height 2. Hence, individually each of e' and
e may very well participate in sets of steps that induce automorphisms. Yet, they
cannot belong to the same such set. To see why, suppose they do. Since u' C u,

51f they were, they would be bijections (because each of LVIEWS(y,) and RVIEWS(y,) has a

maximum). Hence, M would not be able to distinguish between the live y, and the dead y, (xty,)t,
for t any exponent that turns both bijections into identities. (Note that this is true even for the

n-state SNFA that solves liveness. Therefore, this observation alone can give rise to no interesting

lower bound for k.)

73

2. 2D VERSUS 2N

the image of u would be v' U v or a superset. Since v' Z v, the height of that
image would be greater than the height of v, and thus greater than the height of
u, violating the respect to heights.

Example III also shows 2 of the steps in Et, say e' = (p', q') and e = (p, q),
neither of which can disqualify LMAP(y, XLYL) from being an automorphism. Yet,
together they can. To see why, suppose both steps participate in the same auto-
morphism. Then the image of u' must be exactly v': otherwise, it would be some
strict superset of v', of height 2 or more, disrespecting the height of u'. On the
other hand, u must map to a set that contains v, and thus also v' C v. Hence, v'
must be the exact image of some u* C u. But then both u* and u' map to v', when
U* : u' (since u' Z u), a contradiction to the map being injective.

In short, each step in E severely restricts the form of LMAP(y, xy) and
RMAP(yLtX, y,). And, either individually or in pairs, some steps can be so restrictive
that they cannot be part of any set of steps that induces an automorphism in both
directions. To describe this formally, we introduce the next definition.

35. DEFINITION. A set of steps E C Q2 is compatible with y, if there exists a
set E such that E C E C Q2 and the following are both automorphisms:

* the restriction of (E 0 LVIEW(yL))(-) on LVIEWS(y,), and
* the restriction of (Eo RVIEW(y,))(-) on RVIEWS(yL).

E.g., {e} in Example I and {e', e} in Examples 11,111 are incompatible with y,.
We are now ready to define the sequences promised in Section 3.3. For each

t I, we let X. consist of all sets of 1 or 2 steps of M on x,, and Y consist of all
sets of 1 or 2 steps of M that are incompatible with y,:

X, := {E E & E C Et}, Y := {E E E I E is incompatible with yL}.

We need, of course, to show that the sequences relate as in Lemma 22.
The case t' < t is easy. Each E c X., can be extended to the set of all steps of

M on x, (i.e., t:= EL'), which does induce automorphisms, so X., n Y, = 0.
The case t' = t is harder. We analyze it in the next section.

3.5. The main argument. Suppose t' = t. Our goal is to exhibit a singleton
or two-set E C E. that is incompatible with y,. First, some preparation.

3.5-I. The witness. Consider the strings yL(XLYL)t = (yx,)ty, for all t > 1.
Since yLxLy, is dead, the same is true of all these strings. Since y, is live, Lemma 28
says that for all t > 1:

* LVIEW(y,)(p) / LVIEW(yt(Xy,)t)(p) for some p E Q, or
* RVIEW(yt)(p) 2 RVIEW((yLX)ty)(p) for some p E Q.

Namely, in order to accept the extensions yL(XtyL)t = (YLXL) t y but reject the orig-
inal yL, M must exhibit on each of them a single-state view that 'escapes' its
counterpart on the original. In a sense, among all 2k single-state views on each
extension, the escaping one is a 'witness' for the fact that the extension is accepted,
and Lemma 28 says that every extension has a witness. Of course, this allows for
the possibility that different extensions may have different witnesses. However, we
can actually find the same witness for all extensions:

36. LEMMA. At least one of the following is true:
" LVIEW(y,)(p) / LVIEW(yt(Xry))(p) for some p E Q and all t > 1.
* RVIEW(y,)(p) / RVIEW((yX)ty,)(p) for some p G Q and all t > 1.

74

3. SWEEPING AUTOMATA

PROOF. Suppose neither is true. Then each of the 2k single-state views has an
extension on which it fails to escape from its counterpart on y,. Namely, every p has
some tp,L 1 such that LVIEW(y,)(p) 2 LVIEW(y,(X'y)PL)(p) and some tp,R > 1
such that RVIEW(y)(p) 2 RVIEW((ytx1,)tP"y,) (p). Consider the exponent

t* := (]1,EQ t,,) - (FpE t p,R)

and the extension z := yt(xty,)t = (ybxt)t*y,. Then each p has some t > 1 such
that z = y,((XLy)tPL)t, and thus Lemma 26 implies LVIEW(y,)(p) 2 LVIEW(z)(p);
similarly, RVIEW(y,)(p) 2 RVIEW(z)(p). Overall, all single-state views on z fall
within their counterparts on y,, contradicting Lemma 28. 0

We fix p to be a witness as in Lemma 36. We assume p is of the first type,
involving left views (otherwise, a symmetric argument applies). Moreover, among
all witnesses of this type, we select p so as to minimize the height of LVIEW(y)(p)
in LVIEWS(y,). We let V := LVIEWS(y,), h := hV, and vo:= LVIEW(y,)(p).

By the selection of p, no P with LVIEW(y,)(p) C vo can be a witness of the
first type. Hence, for every such P there is some t > 1 such that LVIEW(y)(P) D
LVIEW(y,(XIy))(P). We fix t* to be the product of all such i. Then:

37. LEMMA. For all such P and A > 1: LVIEW(y,)(P) 2 LVIEW(y,(XIy)At)(P).

PROOF. Fix such a P and the i for which LVIEW(y,)(P) 2 LVIEW(y,(Xzy,)t)().

Fix any A > 1. Then At* is a multiple of f and Lemma 26 applies. 0

3.5-I. Escape computations. For all t > 1, collect into a set Ct all computa-
tions c E LCOMPp(ys(xty,) t) that exit into some state q § vo. These are the escape
computations for p on the t-th extension. We also define C := Ut>1 Ct.

Let us see how an escape computation looks like. Pick any c c C (Figure 17a),
say on the t-th extension, exiting into q. Let ei, .. . , et be the steps of c on x,, where
ej = (pj, qj) E E. These are the critical steps along c. Let v3 := LVIEW(y,)(qj)
be the view of the right end-point of ej. Along with vo, these views form the
list vo,v1,..., vt of the major views along c. Clearly, each of them contains the
left end-point of the following critical step: vj_1 D pj (similarly, Vt D q). So, for
each ej there exist views u E V that contain its left end-point and are contained
in the preceding major view: v_1 D u D pj (similarly, vt 2 u D q). Among
them, let uj_1 be one of minimum height in V (select ut similarly). Then the list
uo, . - - , ut-1, ut are the minor views along c. This concludes our description of how
escape computations look like.

3.5-III. The incompatible set. We are now ready to find the incompatible set
E that we are looking for. We will find its one or two steps among the critical steps
of escape computations. We distinguish two cases.

Case 1: Some c E C contains some critical step e such that the singleton {e} is
incompatible with y,. Then we can select E := {e}, and we are done.

Case 2: For all c E C and all critical steps e in c, the singleton {e} is compatible
with y,. In this case, we will find an incompatible two-set.

Steepness. First of all, every c C C (say with t, ej, vj, uj as above) has every
major view at least as high as the next minor one (h(vj) h(uj), since vj D uj)
and every minor view at least as high as the next major one (h(uj) h(v3 +1),
otherwise {ej+I} would be incompatible, as in Example I). Hence, every c c C has

75

76

(a)

(b)

2. 2D VERSUS 2N

0 1 2 3 4 5

Yt Xt Ye X Y |Xt Y Xt y X y|

p V1 e2:

- n 3I e5l qy U x y x yy U4- y

Ye. X XL I Xt Yt. t~ Ye. L Ye. Xt Ye
Vl I V1 - q.v

- -- I -.

2 - 63-

(c)
Ye. .t Y. .~ Y. . XL ..

.Nil U2'

UO- Ul* U2 e4

FIGURE 17. (a) An escape computation c E C5 , exiting into q.
(b) An example of Case 2A, for j = 3 and 1 = 2; in dashes, the new
computation c' E C,. (c) An example of Case 2B, for j' = 2 and
j = 4; in dashes, the hypothetical case uy _1 D uj_1 and c'.

views of monotonically decreasing height (h(vo) > h(uo) > h(vi) > ... > h(ut)).
To capture the "rate" of this decrease, we record the list of minor view heights
He := (h(uj))O , t7and order each Ct lexicographically: c' < c iff He, <Iex H.

With respect to this total order, "smaller" computation means "steeper".
Long and steepest computation. We fix t to be a multiple of t* which is at least

IVI, and select c to be steepest in Ct. We let q, ej, vj, u3 be as usual.
Since t > IVI, the list uo,. . .,ut contains repetitions. Let j' < j be the indices

for the earliest one. Then uj, uj, so h(uj,) h(uj), and thus all views in between
have the same height: h(uj,) h(vj'+1) = = h(vj) h(uj). As a result, each
major view equals the next minor one: v+ 1 = uy+1, . . ., V = u3.

Case 2A: j' = 0. Then h(Nuo) = h(vi) = ... = h(vj) = h(uj), and therefore
vi =u1,... ,v = uj. In fact, we also have h(vo) = h(uo), and therefore vo = uo.

To see why, suppose h(vo) # h(uo). Then vo D uo. Since uo E V, some state
p has LVIEW(y,)(P) = uo (Figure 17a), and thus Lemma 37 applies to it (since
no C vo). In particular, LVIEW(y,)(P) D LVIEW(ye(Xey))(P) (since t is a multiple
of t*). On the other hand, uo contains the left end-point of el, so the part of c
after el shows that q c LVIEW(y,(xey)t)(P), and thus q E LVIEW(y,)(P) - u0 . Since
uo C vo, this means that c is not an escape computation, a contradiction.

So, h(vo) = h(uo) = ... = h(vj) = h(uj) and vo = uo,... , vj = uj (Figure 17b).
By the selection of p, its view on the J-th extension escapes vo. Pick any c' E Ci,
with exit state q' < vo, critical steps e. e, and major views v,. .. , vj. Then
V0 = vo (since both c' and c start at p) and q' E vj \ vj (since v' = uj = uo = vo

Pi

3. SWEEPING AUTOMATA

and q' V vo). So, the respective major views start with inclusion v' C vo but end
with non-inclusion v7 Z v . So there is 1 < 1 ; j so that v'- I C vl but v' Z vi.

We are now ready to prove that {e, el} is incompatible with y,. The argument
is as in Example ii. Suppose the two steps participate in a set inducing an auto-
morphism (. Since v'_ 1 C vi_1, both e' and el have their left end-points in v1_ 1.
Hence, ((vi_ 1) D v'U vi. Since v' Z vi, the height of ((vl-1) is greater than that of
vi. But h(v 1 -1) = h(vi). Therefore h((vi_1)) > h(vi_ 1), a contradiction.

Case 2B: j' = 0. Then we can talk of the minor views uji1 and uj_1 that precede
the first repetition. Of course, u'_1 7 uj-_. In fact, uj_1 uj_1.

To see why, suppose uy_1 D uj_1 (Figure 17c). Then uj_1 ; uj_1 (since
uy-1 # uj_1) and thus h(uj,_) > h(uj_1). Moreover, ej has its left end-point
in Vjo_1 (since v 3 ' 1 D uj-1 D uj-_) while its right end-point has view u3 I (since

V3 = Uj = uj,). Hence, by replacing ej with ej, we get a new computation c' that
is also in Ct. In addition, Hc, differs from H, only in that h(uj, 1) is replaced by
h(ujI). But then c' is strictly steeper than c, a contradiction.

We are now ready to prove that {ey, ej } is incompatible with y,. The argu-
ment is as in Example in. Suppose the two steps participate in a set inducing an
automorphism (. Because of ej, ((uji) 2 uj; but h(uj-i) = h(uj) and respects
heights, so in fact ((uj_1) = u. Because of ej, ((uy_1) 2 uy = uj; so there
exists u* C uy'1 such that (u*) = uj. Overall, u* $ uj_1 (since exactly one is in
ui-1) and ((u*) = ((uj_1). Hence (is not injective, a contradiction.

This concludes the analysis of the case t' = t and thus the proof of Theorem 27.

3.6. 2DFAs versus SNFAs. As mentioned in the Introduction, an easy mod-
ification of the proof of Theorem 27 allows us to also establish the following.

38. THEOREM. The trade-off from 2DFAs to SNFAs is exponential.

In other words, there exists a problem that can be solved by small 2DFAs but
cannot be solved by small SNFAs. This problem is simply an appropriate restriction
of liveness and the small 2DFA solving it is actually single-pass.

To describe this restriction, let us use E' to denote the subset of E, containing
only the 2" 'parallel' symbols of the form {(a, a) I a c a} for a C [n]. For example,
the leftmost symbol in Figure 14a is in Z5, for a ={2,3,4,5} [5]. Let us also
recall the complete symbol rq = [n]2 from Section 3.4-II. The restriction of liveness
that we have in mind can be described as the promise problem B' where all inputs
are promised to follow the pattern

En(qE' EnE')* '

In other words, according to this promise, every input z starts and ends with a
parallel symbol and the rest of it consists of one or more copies of q separated by
3-symbol snippets of the form

where the outer symbols have to parallel and the middle one can be anything. For
example, here is an input that obeys this promise:

77

2. 2D VERSUS 2N

Notice that every such string is live iff its first and last symbol are non-empty and
its snippets are all live. Intuitively, the copies of the complete symbol 'reset' liveness
every four symbols.

This last observation immediately suggests a small 2DFA algorithm for solving
liveness under this promise: just check that the first and last symbols are non-empty
and that every snippet is live. More carefully, the algorithm is as follows:

We read the first symbol. If it is empty, we hang. Otherwise, we start
scanning the input from left to right. Every time that we read a copy
of q, we use a depth-first search to check whether the string of the
next 3 symbols is live. If it is not, we hang. If it is, we move to the
next copy of 77. If there is only 1 next symbol, we check whether it is
empty or not. If it is, we hang. Otherwise, we accept.

Easily, this algorithm can be implemented on a ZDFA with only 0(n2) states.6

On the other hand, even under this promise, every SNFA solving liveness still
needs 2 0(n) states. This is true simply because the promise does not invalidate our
argument for the general case, as the hard inputs constructed in Section 3.4-II can
all be drawn so as to obey the promise. More specifically, we can replace property
P, with the property P' C P which contains only the strings of P that obey the
promise. Easily, P' is still non-empty and infinitely extensible in both directions.
So, we can again find an L-generic string y' and an R-generic string y' over P. and
construct y' := y'r7y', which is clearly in P/ and is thus generic over P'. Then, it
is trivial to verify that the sequence (Y')tEI is related to (X),GeI exactly as (y1)1E1
is in Lemma 34. The rest of the proof remains the same.

4. Conclusion

In the first part of this chapter, we focused on a natural class of restricted but
still fully bidirectional 2NFA algorithms for liveness, which includes the small 1NFA
solvers. We asked whether small 2DFAs from that class can succeed and proved
that they cannot, no matter how large they are.

It is certainly good to provably know that graph exploration alone can never
be a sufficient strategy. However, as already mentioned in the Introduction, in the
context of the full conjecture the emphasis above stresses an alarming mismatch:
a complexity question received a computability answer. This suggests that the
reasons why deterministic moles fail against liveness are only loosely related to the
reasons why small 2DFAs fail -if they really do. In order for this approach to
ultimately be of any use against the full conjecture, we need restricted versions of
fully bidirectional 2DFAs that are both weak enough to succumb to our arguments
and strong enough to keep us in complexity: large 2DFAs of this kind should be
able to solve liveness.

In the second part of the chapter, we proved that a SNFA must be exponentially
large to solve the complement of liveness, and thus that small SNFAs are not closed

6 1n fact, replacing the depth-first search on the 3-symbol snippets with a cleverer search, we
can reduce the size of this ZDFA to only O(n2 / log n) states-which, by the way, is asymptotically
optimal for this restriction of liveness. However, the algorithm is too complicated to describe here
and is not necessary for Theorem 38, anyway.

78

4. CONCLUSION

under complement. With an easy modification, our proof also showed that 2DFAs

can be exponentially more succinct than SNFAs.

An interesting next question concerns the exact value of our lower bound. The
smallest known SNFA for B, 0 is the obvious 2"-state 1DFA. Is this really the best
SNFA algorithm? If so, then nondeterminism and sweeping bidirectionality together
are completely useless in this context.

A preliminary version of the contents of Section 2 can be found in [27]. The contents
of Section 3 can be found in an article to be included in [301.

79

CHAPTER 3

Non-Recursive Trade-Offs

In Chapters 1 and 2 we compared the relative succinctness of several pairs of
types of machines. In each case, the two types had the same computational power,
in the sense that they could solve the same class of problems-the regular languages.
Moreover, the associated trade-off was easily seen to be bounded from above by
some recursive function. In contrast, the comparisons that we will consider in this
chapter are more general. We will discuss conversions between types of machines
of different computational power and, most often, the associated trade-offs will be
growing faster than any computable function.

One of the earliest studies of the relative succinctness of types of machines of
different power was conducted in [56], as part of a proof that we can algorithmi-
cally check whether the language of a deterministic pushdown automaton (1DPA)
is regular or not. Stearns showed that, although not every 1DPA has equivalent
1DFAs, whenever such equivalent automata exist, the smallest among them are at
most triple-exponentially larger than the 1DPA.

This naturally lead to the corresponding question for one-way nondeterministic
pushdown automata (iNPAs): in the case where a INPA has equivalent 1DFAs, what
is an upper bound for the size of the smallest among them? The answer was
qualitatively new, by Meyer and Fischer [35], who showed that every such bound
grows (as a function of the size of the 1NPA) faster than any computable function.
Hence, among the cases where it is possible to convert a 1NPA into a 1DFA, the
trade-off in the size of description is in general non-recursive.1 Several refinements
of this result followed [59, 50].

In an important development, Hartmanis [16] later explained that the recur-
siveness of the trade-off from a type of machines A to a not-as-powerful type of
machines B typically implies the recognizability (semi-decidability) of the corre-
sponding inadequacy problem: "given a machine of type A, check that it has no
B-equivalents". This greatly simplified the proofs of [35, 59, 50], while it nicely re-
vealed the connections of the entire discussion to G6del's theorem that the addition
of an extra axiom to a formal system typically results in non-recursively shorter
proofs for some of its theorems [17].

'As already noted in the introduction, this name can be misleading. Our intention here is
to characterize the trade-offs that admit no recursive upper bounds. Clearly, every such trade-off
is non-recursive. However, it is conceivable that there exist non-recursive trade-offs that admit
recursive upper bounds. (It is easy to present natural functions that fall into this category.
However, we do not know of one that is also the trade-off of some natural conversion.) So, strictly
speaking, the class of non-recursive trade-offs is a subclass of the class of trade-offs that do not
admit recursive upper bounds and, if the two classes are in fact equal, then an argument is needed
to support this. With this clarification, we will move on using the popular choice. Note that,
under this choice, a "recursive trade-off" is one that admits recursive upper bounds, and the
"(non-)recursiveness of a trade-off" refers to the (non-)existence of a recursive upper bound for it.

81

3. NON-RECURSIVE TRADE-OFFS

Today many refinements of the above results are known and non-recursive
trade-offs have emerged in numerous other comparisons between different types of
machines. Comprehensive surveys can be found in [15, 32].

1. Two-Way Multi-Pointer Machines

In a remark in [19], Hartmanis and Baker showed that a non-recursive trade-
off can occur even when an optimal algorithm replaces a near-optimal one.2 For
example, converting an n2+c-space deterministic Turing machine (DTM) into one
that uses only n 2-space involves a non-recursive blowup in the size of description.
In the pattern of [16], they derived this observation from the unrecognizability of
the inadequacy problem from near-optimal to optimal machines (from n2+c-space
to n 2-space DTMs), which in turn was shown to be a consequence of the fact that
the near-optimal complexity class is strictly larger than the optimal one (some
n 2+E-space DTMs have no n 2-space equivalent).

In this chapter we will refine that argument. We will prove a general theorem
that directly shows the non-recursiveness of the trade-off in many conversions be-
tween machines of different power. In loose terms, our theorem states the following:

If two types of machines A and B are such that
1. some machine of type A has no equivalent machine of type B, and
2. a machine of type A has enough resources to simulate a unary two-way de-

terministic finite automaton which has access to a linearly-bounded counter,
then the trade-off from machines of type A to machines of type B is non-recursive.

For example, for the previous remark on space, we argue that, since n2
=(n2+E),

there exist n 2+E-space DTMs with no n2-space equivalent, so that condition 1 is
clearly true; that condition 2 is true, too, follows from the easy observation that any
Q(lg n) amount of space suffices for the simulation of a linearly-bounded counter.

The most characteristic applications of our theorem concern the successive lev-
els of hierarchies of two-way multipointer automata, where by 'pointer' we mean any
of the following accessories (in order of nondecreasing power): a linearly-bounded
counter; a blind read-only head, namely a head that cannot distinguish between dif-
ferent input symbols (but can distinguish between input symbols and end-markers);
an ordinary read-only head; a sensing read-only head, namely one that can sense
which of the other heads are at the same cell as itself; or a pebble.

For example, we can establish the non-recursiveness of the following trade-offs
(in each case, the reference indicates where condition 1 of the theorem has been
established; for condition 2, it is always easy to see that it is also satisfied):

" from k + 1 to k counters, on linearly-bounded two-way deterministic counter
automata (unary or not) [42],

* from k + 1 to k heads, on two-way multi-head finite automata (deterministic
or not, unary or not) [40, 41, 42],

" from k + 1 to k heads, on two-way multi-head pushdown automata (deter-
ministic or nondeterministic) [23],

for all k. Sometimes, we can only be as refined as the hierarchy is known to be:
* from k+2 to k registers, on linearly-bounded register machines (deterministic

or nondeterministic) [42],

2
The reader is referred to [19, 17, 18] for a quite interesting discussion of the implications

that this might have to our search for optimal algorithms.

82

2. PRELIMINARIES

* from k+2 to k counters, on linearly-bounded two-way nondeterministic coun-
ter automata (unary or not) [42],

for all k. Similarly, the trade-off is non-recursive
* from 3 to 2 heads, on a simple two-way deterministic finite automaton [9]

(a multi-head automaton is simple if every input head after the first one
is blind). It remains non-recursive even when we start from a 2-head two-
way deterministic finite automaton, or from a 1-head two-way deterministic
pushdown automaton [9].

Finally, we can also conclude the non-recursiveness of the trade-off, for k > 2:
* from k +1 to k work-tape symbols, on Turing machines (deterministic or not)

that, on every input of length n, use no more than lgn work-tape cells [52]

(even if the starting Turing machine has unary input alphabet, but then only
for sufficiently large k).

Other conversions between machines of different power can be treated similarly.
Returning to the statement of the theorem above, we warn that it is, in fact,

incomplete. Additional conditions have to be met, concerning A and B, their de-
scriptions, and how 'size' is measured. However, in most interesting cases these
conditions are trivially satisfied (in the above examples they are), so that listing
them in this introduction would be a distraction. The complete list is contained in
the formal statement of the theorem in Section 3.

The next section describes the formal framework of this study in more detail.
Section 3 states and proves the theorem, except for an important lemma, which is
proved in Section 5, after some preparation in Section 4. We warn that the discus-
sion in this chapter is going to be much more abstract than in Chapters 1 and 2, so
as to ensure that the conclusions cover as many conversions as possible-including
cases where A or B denote types of language descriptors other than machines (e.g.,
regular expressions, grammars). A more concrete discussion can be found in [26],
where the theorem is proved specifically for the conversion from k + 1 to k heads
on two-way multi-head finite automata.

2. Preliminaries

We write N for the set of positive integers and lg. n for [log, nJ, for all n, a E N.
As usual, given any problem H = (Hyes, Hn) over some alphabet Z and any

DTM M, we say that M recognizes H if M accepts all w E Hyes and rejects (pos-
sibly by looping) all w E Hn.. If some DTM recognizes H, we say H is (Turing-)
recognizable. If H' is also a problem over Z, we write H < H' and say that H
reduces to H' iff there is a DTM that, on input w E Hyes U HI0, eventually halts
with an output w' such that

W C H yes -= W' E H/es and w G H, 0 -> w' E H'>.

Clearly, if some unrecognizable H reduces to H', then H' is also unrecognizable.
If H is a language (Hyes + H 1o = Z*) and Hyes contains exactly all sufficiently

long strings, for some interpretation 0 < 1 < oo of 'sufficiently long'

Hyes = {W E * I Iwi > l},

we say that H obeys a threshold. Note that then Hyes is empty iff this threshold is
infinite. A machine that solves H is similarly said to obey the same threshold.

83

3. NON-RECURSIVE TRADE-OFFS

2.1. Descriptional systems. A descriptional system over the alphabets F
and Z is any set D C F* of names (or descriptors), along with two total functions

(-)D and I*ID, mapping every name d E D to its language (d)D C)* and its size
JdID c N, respectively. For example, suppose that we fix a binary encoding of all
1DFAs over, say, the input alphabet {a, b, c}. This induces the descriptional system
over {0, 1} and {a, b, c} that contains all encoding strings as names and maps each
of them to the language accepted by the corresponding 1DFA (as its language) and
to the number of states in that 1DFA (as its size). Alternatively, the size of a name
could just be its length.

A system D is decidable if the membership problem for its names is decidable.
That is, if there exists a DTM UD that always halts and is such that:

for all d E D and w E Z*: UD (d, w)accepts ,-> w E (d) D

Thus, the system of the previous example is clearly decidable, whereas a system
containing binary encodings of DTMs would be undecidable.

In order to be able to compare two descriptional systems D and E in terms of
their relative succinctness, we require that they are comparable, in the sense that
[i] they are defined over the same alphabets, and that [ii] their (.) and .- mappings
agree on all common names, 3

for all z E D n E: (z)D = (z)E and IzID = IZIE,

so that subscripts can be dropped: for all z E D U E, (z) and IzI are unambiguous.
For such systems, the comparison of E against D involves two natural notions:

I. For a name e E E, there may or may not exist a name in D that maps to
the same language. In the latter case, we say that D is inadequate for describing
the language of e and, accordingly, we call the associated computational problem,
"given an e E E, check that no d E D maps to (e)", the inadequacy problem from
E to D. Formally, this is the promise problem I = (Iyes, 1,o), with:

'yes := {e c E I (d) # (e) for all d E D},
Ino :{e c E I (d) = (e) for some d c D}.

Notice that e is promised to be in E, so that solving I does not require checking
membership in E (which might be hard, even impossible).

ii. When a name e C E does have equivalent names in D (i.e., names mapping
to (e)), we naturally ask how larger than e the smallest of these D-equivalents are.
As usual, we answer this question with a function f : N -+ N that upper bounds
this increase in size in terms of the size of e. Namely, f is such that

for all s E N and all e E E of size s: if D contains names that are
equivalent to e, then at least one of them is of size at most f(s).

We say that f upper bounds the trade-off (for the conversion) from E to D. When a
computable such upper bound exists, we say the trade-off from E to D is recursive.5

As first noted in [16], discussions I and ii are not unrelated: unrecognizability
of the inadequacy problem typically implies that the trade-off is non-recursive.

3 1t is only for simplicity that we require the agreement for 11; we do not actually need it.
4
Note that this defines directly the notion of an upper bound for the trade-off from E to D.

A more natural approach would be to first define the notion of the trade-off from E to D (in the

sense of Chapters 1 and 2), and only then say what an upper bound for it is. However, that would
be redundant, as our goal in this chapter is to show the non-recursiveness of the upper bounds.

5 See the discussion in Footnote 1 on page 81 about what "recursive trade-off" means.

84

2. PRELIMINARIES

1. LEMMA (Hartmanis). Suppose D, E are two comparable descriptional sys-
tems over alphabets F and Z, and that the following conditions are met:

H1 . both D and E are decidable,
H 2 . for every e E E, we can effectively compute its size |el, and

H3. there is a halting DTM that, given s E N, produces a list Z C 1* such that

i. the non-D names can be recognized in Z: (ZnD, ZnD) is recognizable.
ii. the languages of the D-names in Z cover all and only those languages

over Z that are supported by a name in D of size at most s:

{(z)| z E Z n D} = {(d) | d E D & Jd| < s}.

Then, recursiveness of the trade-off from E to D implies that the corresponding
inadequacy problem is recognizable.

Before giving the proof, let us remark how mild conditions Hi-H 3 are. For most
interesting cases, the first two of them are trivially true and H 3 is satisfied via
the DTM that simply lists all names in D that have size < s (so that the problem
of H3 i is trivially decidable and the two sets of H 3ii trivially identical). Having
H 3 as complicated simply covers some special cases (e.g., comparing general to
unambiguous context-free grammars [17, Example 21).

PROOF. Suppose D, E are as in the statement and f is a computable upper
bound for the trade-off from E to D. To check that a given e E E has no D-
equivalents, we first compute s := f(jej) (by H 2 and since f is computable). We
then run the DTM guaranteed by H 3 on s, to produce a (finite, since the DTM is
halting) list of names Z := {zi, z2, ... , zk}. At that moment, we know (by the
selection of f and H 3 ii) that we should accept iff every D-name in Z maps to a
language different from (e).

Equivalently, we should accept iff: for every z E Z, either z is not a D-name
or z is a D-name and (z), (e) differ at one or more w E Z*. In order to check this,
we start simulating, in two parallel threads:

i. the recognizer guaranteed by H3 i on each of z 1 , z 2 , . . , zk in parallel, and
ii. for all w E Z*: the machines UE and UD (guaranteed by H1) respectively on

(e, w) and on each of (z1, w), (z2, w), .. . , (zk, w).
Whenever a z E Z is accepted in thread i, we cross it off the list. Whenever a z E Z
is found to disagree with e on some w in thread ii, it is crossed off the list, as well.
Finally, if the list ever gets empty, we accept.

Clearly, every string in Z that is not a D-name, will eventually be crossed
off, in thread i. Similarly, each D-name that is inequivalent to e will also be
eventually removed, in thread ii. Moreover, neither thread can delete a D-name
that is equivalent to e. Hence, the list will eventually get empty iff e had no D-
equivalent in the original list Z, which is true iff e has no D-equivalent at all. L

2.2. Multi-counter automata. Our main theorem will need to make use
of the natural notion of a unary two-way deterministic finite automaton that has

additional access to a number of counters. Such models are of course known and
well studied, but mainly for non-unary alphabets-see, for example, the two-way
multi-counter machines of [11, 42]. Since we will only be interested in the unary
case, it is possible to simplify the model in helpful ways. Most notably, we can

85

3. NON-RECURSIVE TRADE-OFFS

avoid the notion of input tape, and assume instead that the input is the upper
bound for one of the counters. 6 The simplified definition follows.

A deterministic automaton with k counters (DCAk) consists of a finite state
control and k counters, each of which can store a nonnegative integer. One of the
counters is distinguished as primary, the rest being referred to as secondary. The
input to the automaton is a nonnegative upper bound n for the primary counter.
The machine starts at a designated start state with all its counters set to 0. At
each step, based on its current state, the automaton decides which counter it should
act upon and whether it should decrease it or increase it. Then the action is
attempted. An attempt to decrease fails iff the counter already contains 0; an
attempt to increase fails iff the counter is the primary one and it already contains n;
an attempt to increase a secondary counter never fails. A failed attempt leaves
the counter contents intact; a successful attempt updates the counter contents
accordingly. Based on its current state and on whether the attempt succeeded or
not, the automaton selects a new state and moves to it. The input is accepted if the
machine ever enters a designated final state. The language of the machine is exactly
the set of inputs that it accepts. If, for all n, the behavior of the automaton is such
that no secondary counter ever grows larger than n, we say that the automaton is
(linearly) bounded.

We will be interested in a special version of the emptiness problem for multi-
counter automata. One way to introduce this problem is to start with the emptiness
problem for DTMs ("given a description of a DTM, check that the language of the
machine is empty"), which is well known to be unrecognizable [21], and to consider
certain ways of 'simplifying' it:

" What happens if, instead of a full-fledged DTM, the machine we are given
is 'simpler'? Say, a multi-counter automaton? Or just a DCA 2 ? Clearly,
checking emptiness becomes 'simpler', too. Does it also become recognizable?

" What if the given DCA 2 is also promised to be bounded? And terminating,
too? And to also obey a threshold? As the promise gets stronger, checking
emptiness again becomes 'simpler'. But does it become recognizable?

So, the problem that we want to define is the following: "given a description of
a DCA 2 that is promised to be bounded and terminating and to obey a threshold,
check that its language is empty." In formal dialect, E = (Eyes, Eno), where

Eyes := {z E (DCA2) I (z) = 0}
En :={Z (DCA*) I (z) 5 0}.

Here, we use (DCA*) to denote the set of descriptions (under a fixed encoding) of
all terminating, bounded DCA 2s that obey a threshold, whereas (z) stands for the
language of the machine described by z. Interestingly, although not surprisingly,
even for such a weak automaton and under such a strong promise, emptiness remains
unrecognizable: 7

2. LEMMA. E is unrecognizable.

We use this fact in the next section, but defer proving it until Section 5. In between,
Section 4 discusses the capabilities of multi-counter automata.

6 Here there is a difference from [26], where the upper bound is applied to all counters.
7 Note that clearly E E H1 and that the proof of Lemma 2 will show E is H1-complete. We

also remark that, under no promise and after non-trivially modifying the definition of DcA2s, E is
the emptiness problem for 2-register machines, which is well known to be H1-complete [38].

86

3. THE MAIN THEOREM

3. The Main Theorem

We are now ready to state and prove the main theorem.

3. THEOREM. Suppose D, E are two comparable descriptional systems that
satisfy conditions H1-H 3 of Lemma 1. If they also satisfy the following:

C 1 . there exists a name eo E E that has no equivalent in D,
C2 . given a description z of a terminating, bounded DCA 2 that obeys a threshold,

we can effectively construct a name e, C E such that

(9) (e,) = (eo) U {w E Z* I IwI E (z)},

C3 . every co-finite language has a name in D that maps to it,
then the trade-off from E to D is non-recursive.

Before proving the theorem, we discuss how mild conditions Cl-C 3 really are. Since
every co-finite language is regular, C3 is trivially satisfied whenever the names in
D describe machines that have some kind of finite state control.

The second condition essentially says that the machines described by E have
enough resources to simulate a bounded DCA 2 . Because then, from a given z, we
can always construct the description e, of the E-machine that does the following:

on input w C Z*: first simulate on IwI the DCA 2 described by z; if
this accepts, then halt and accept; otherwise, simulate on w the
machine described by eo and accept, reject, or loop accordingly.

and which obviously satisfies (9) (note the importance of the promise that z de-
scribes a DCA 2 that never rejects by looping). Given how weak bounded DCA 2 s are,
most two-way machines with non-regular capabilities will easily meet C2 .

The important condition is C1 , which requires that the machines described by
D are not as powerful as those described by E; in other words, a separation is
needed between the complexity classes that correspond to the two systems.

PROOF. We essentially repeat Hartmanis' argument from [17, Example 4] (see
also [31, Theorem 7]). Suppose D, E are as in the statement of the theorem.
Since H1 -H 3 are satisfied, Lemma 1 implies that we only need to prove that the
inadequacy problem I from E to D is unrecognizable. By Lemma 2, we just need
to reduce E to it:

E < 1.
Given a z E (DCA'), we simply construct the name e, E E guaranteed by condi-
tions C1 and C2 , so that

(e,) = (eo) U {w EE* I w E (z)}.

If z c Eyes, then the language of z is empty, so that (ez) = (co) and ez has no
D-equivalent (because eo does not); hence e, E 'yes. On the other hand, if z C En.,
then the language of z contains all sufficiently large w C E*, so that (ez) is co-finite
and has D-equivalents (by C3); hence e- C . This concludes the proof. L

As a side remark, we note that the proof has shown a slightly stronger fact:
problem I remains unrecognizable even under the promise that the given e E E
either has no D-equivalent or its language is co-finite. In addition, the promise
that the given DCA' obeys a threshold can be slightly relaxed: we only need to
know that its language is either empty or co-finite.

87

3. NON-RECURSIVE TRADE-OFFS

4. Programming Counters

In order to present the capabilities of multi-counter automata, we introduce
some 'program' notation. First, the two atomic operations, the attempt to decrease
a counter X and the attempt to increase it, are denoted respectively by

X X - 1 and X (X +1,

where, in each case, flag f is set to true iff the attempt succeeds. Then, the
compound operation of setting X to 0, denoted by X - 0, can be described by

(10) repeat X 2f X -1 until ,f.

If a second counter Y is present, we can transfer the contents of Y into X: we set
X to 0, then repeatedly decrease Y and increase X until Y is 0. We denote this by

(X, Y) 2- (Y, 0),
and describe it by a line similar to (10). Note that, if X is the primary counter and
Y > n, then one of the attempts to increase X will fail; in that case, we restore
the original value of Y returning X to 0, and set flag f to false. So, X's original
contents are always lost, but this never happens to the original contents of Y.

Changing how fast X increases as Y decreases, we can multiply/divide Y into
X by any constant a E N. We denote these operations by

(X, Y) 2 (aY, 0) and (X, Y) (LL ([j, 0),
where, in the second operation, we also find the remainder and return it in r. As
before, if X is the primary counter and aY > n (respectively, LY/aj > n) then
one of the attempts to increase X will fail; we then restore the original value of Y
returning X to 0, and set flag f to false.

At a higher level, we can try to multiply Y by a constant a (into Y) using X
as an auxiliary counter and making sure Y changes only if the operation succeeds:

(X, Y) 2 (aY,0); if f then (Y, X) - (X, 0).

Note the use of t in the place of a flag, indicating that the action is guaranteed
to be successful. Division (with remainder) can be performed in a similar manner.
We denote the two operations by

(11) Y aY and Y [

Now, if X is primary, we can set Y to the largest power of a that can fit in n:

X <- 0; X * X ± 1;
(12)

xif f then {Y <- 0; Y Y +1; repeat Y (aY until -g},

an operation that fails iff n = 0. To denote this operation, we use the notation:

Y (f a an

where, as already mentioned, lg,, n := 1loga nJ.
If a third counter Z is present, we can modify (12) to also count (in Z) the

number of iterations performed. This gives us a way to calculate lga n:

Z (ga n,

88

5. PROOF OF THE MAIN LEMMA

an operation that fails iff n = 0. In another variation, we can modify the multipli-
cation in (11) so that the success of the operation depends on the contents of X

(as opposed to its upper bound n):

Y {9L aY,

meaning that, using Z as auxiliary and without affecting X: if aY < X, then Y
is set to aY; otherwise, Y is unaffected. Specifically, to implement this, we first
set Z to 0. Then, we repeatedly decrease Y, increase Z, and decrease X by a. If
X becomes 0 before Y, then aY > X and the operation should fail: we restore the
original values of Y and X by repeatedly decreasing Z, increasing Y, and increasing
X by a, until Z becomes 0. Otherwise, aY < X and the operation will succeed:
we copy the correct value to Y and restore the value of X by repeatedly decreasing
Z and increasing each of Y, X by a, until Z becomes 0. Note that if originally
Y, Z < X, then at no point during the operation does any of the counters assume a
value greater than the original value of X.

Using this last operation, we can program the following variant of (12):

X <-- X - 1; if f then {X 4 X + 1;

Y - 0; Y 4 Y +1; repeat Y gA z aY until -,g}

which implements the attempt to set Y to the largest power of a that is at most X,
using Z as auxiliary and leaving X unaffected (and failing iff X is 0). We denote
this operation by

y4 1ga xY als

It is important to note that, by the remark at the end of the previous paragraph,
if originally Y, Z < X, then during this operation no counter ever assumes a value
greater than the original value of X.

Hopefully, the reader is convinced of the quite significant capabilities of DCAks
that have 2 or more counters. We will be using these capabilities in the next section.

5. Proof of the Main Lemma

We now prove that E is unrecognizable. We do this by a reduction from the
complement of the halting problem, which is known to be unrecognizable [213:

HALTING < E,

where HALTING := {z E {0, 1}* I z encodes a DTM that loops on z}. That is, we
give an algorithm that, on input a description z of a DTM M produces a description
z' of a terminating, bounded, threshold-obeying DCA 2 M', such that

(13) M loops on z ==* (z') = 0 and M halts on z ==> (z') #0.

In describing this algorithm, we will be calling a machine (DTM or DCAk) good, if it is
terminating, bounded (for DCAks), obeys a threshold, and its language satisfies (13)
when it replaces (z'). Thus, for example, M' will be good.

On its way to z', the algorithm will construct descriptions of two other ma-
chines: a description ZA of a DTM A, and a description ZB of a DCA 3 B. In the
sequence M, A, B, M' each machine after M will be defined in terms of the pre-
vious one and will be good. Our constructions use the ideas of [61] and [38] (also
found in [39, 21]).

89

3. NON-RECURSIVE TRADE-OFFS

5.1. The first machine. A is a DTM with one tape, infinite in both directions;
the tape alphabet is {L, o, 1,6, i}, while the input alphabet is {0}. On input O', A
starts with tape contents

UUUOOO..--OO-UUU---

n times

and its head on the U next to the leftmost 0 (or any U, if n = 0). It then computes:

1. For all w E {0, 1}n, from 0 up to 1,:
- if w encodes a halting computation history of M on z, accept.

2. Reject.

The check inside the loop presupposes some fixed reasonable encoding of sequences
of configurations of M into binary strings, with the additional property that if w
encodes a computation history, then every string of the form wO* encodes the same
computation history.

Note that, using the extra dotted symbols, A can easily perform this check
without ever writing a non-blank symbol on a U, or a U on a non-blank symbol;
and without ever visiting any Li that lies beyond the two that originally delimit
the input. As a consequence, throughout its computation on 0', A keeps exactly
n non-blank symbols on its tape, occupying the same n cells as the symbols of the
input. Also note that, by the selection of the encoding scheme for M's computation
histories, if A accepts an input 0, it necessarily accepts all longer inputs, as well.

5.2. The second machine. B is a DCA 3 that, on input n > 30, simulates
the behavior of A on input 0 195 1930 f; on input n < 30, B just rejects. Note the
strange length 1g 5 1g 30 n. This is chosen as a function of n that is (i) computable by
a DCA 3 and (ii) increasing, but also (iii) small enough. Goodness of B bases on (ii),
whereas (iii) facilitates the simulation performed by M' in the next section.

To explain B's behavior, let J, L, R be its three counters. J is primary and
helps performing operations on L and R, while L and R together encode tape
configurations of A. To see the encoding, consider the following example of a
configuration:

--- 14 13 12 11 l h rO rl r2 r3 r4 T5 ...

- u x x x x x x x x U H ...

T

where x stands for any non-blank symbol, and I shows the head position. Mapping
symbols U, i, 6, 1 and 0 to numbers 0, 1, 2, 3 and 4, respectively (in fact, any
mapping that maps symbol U to code 0 and symbol 0 to code 4 will do), we get
each tape cell map to a digit of the 5-ary numbering system. Then, the head
position splits the tape into three portions, which define the integers

00 00

l = li .5' and h and r = Z ri .5',
i=O r=O

where the two sums are finite, exactly because Li maps to 0. The values 1 and r are
kept in L and R, while h is kept in a register H in B's finite memory.

More specifically, on input n, B starts with a two-part initialization. First, it
computes 1g 30 n into J, leaving Os in L and R (this is if n > 1; if n = 0, B rejects):

R L lg30 n; if -if then reject else {(J,R) 4 (R,0); L <- 0}.

90

5. PROOF OF THE MAIN LEMMA

Then, it computes into R the value 5 ' - 1, where m :=-g 5 1g30 n, leaving Os in L
and H (this is only if J > 1, that is if n > 30; otherwise, n < 30 and B rejects):

R f 515 J; if -f then reject else {R - - R - 1; L <- 0; H - 0}.

This completes the initialization, with L = H = 0 and R = 5' - 1, or in 5-ary:

L = 0 and H=O and R = 4 4 4 .- 4.

m times

Hence L, H, R correctly represent A's starting tape configuration on input Om:

- 1 -0 h ro ri r2 '. rm-1 m r m+1 -.-

U U U 0 0 0 .-- 0 U U -.

T

since symbol 0 maps to code 4. At this point, B is ready to start a faithful step-
by-step simulation of A.

The automaton remembers in its finite memory the current state of A as well
as the code of the currently read symbol (in H). If s is the code of the new symbol
to be written on the tape, B computes

L J 5L; repeat s times: L - L + 1; R t '-,J ; H <-ro

to simulate writing this symbol and moving to the right; similarly, it computes

R 5R; repeat s times: R <-- R +1; L -- [fl; H -lo

to simulate writing this symbol and moving to the left.
It is important to note the range of the values assumed by the counters. By

the design of its main operation, the second part of the initialization phase never
assigns to a counter a value greater than the original value of J, which is 1g3 0 n.
Then, in the simulation phase, the behavior of A (the tape starts with m Os and
always contains exactly m non-blank symbols) and the selection of the symbol codes
(0 gets the largest code) are such that the initial value 5' -1 of R upper bounds all
possible values that may appear in B's counters. One consequence of this is that
all operations in the previous paragraph are guaranteed to be successful (hence
the t reminder). Another consequence is that, since 5 m - 1 < 1g30 n, the entire
computation of B after the first part of its initialization phase keeps all values of
all counters at or below 1g30 n. This will prove crucial in the next section.

5.3. The final machine. M' is a DCA 2 that simulates the behavior of B. If
U, V are its two counters, then U is primary and helps performing operations on
V, while V encodes the contents of the counters of B: whenever J, L, R, contain

1, r respectively, V contains 2335r.
The automaton starts by computing into V the product 30' = 2t3'5', where

t := 1g3 0 n (this is only if n > 1; if n 0, M' rejects, exactly as B would do):

V *--- 3 0 1g3 0 ; if -f then reject.

It then removes all 3s and 5s from this product, so that V becomes 2 1g30 n 3 05 0.
Specifically, in order to remove all 3s, M' divides V by 3 repeatedly:

91

3. NON-RECURSIVE TRADE-OFFS

until a non-zero remainder r is returned, which implies there were no 3s in V before
the last division. Then the correction

tUt
V <-- 3V; repeat r times: V (V+1

undoes the damage caused by the last division. After this, M' performs a similar
computation to remove from V all 5s. At this point, the value 2 1g 30 ' 3 05 0 correctly
encodes the values of the counters of B right after the first part of its initialization
phase and M' is ready to start a faithful step-by-step simulation of B.

The current state of B is stored in M"s finite memory. Whenever B tries to
decrease J,

J J -1,

M' divides V by 2. If this division returns no remainder, then it has simulated a
successful decrement; otherwise, the simulated attempt has failed, and M' restores
the initial value of V:

V~r U!; if r= 0 then f -true else

{f +-false; V A 2V; repeat r times: V t V+1}

The attempts to decrease L or R are handled similarly, with 3 or 5 instead of 2.
Attempts of B to increase its counters are of course simulated by appropriate

multiplications of V. The only subtlety involves failure during increment attempts.
To be faithful, the simulation must ensure that

an attempt of B if the corresponding attempt of M'
to increase a counter fails to multiply V fails.

How is this condition satisfied? If it is, this does not happen in some obvious way.
In B the upper bound for J is always the same (the input of B), whereas in M' the
upper bound for its representation is the base 2 logarithm of a value that depends

(on the input of M' and) on the values of the other two counters. Similarly, in B
counter L is unrestricted, whereas in M' its representation is bounded by a value
that depends on the other two counters-and the same is true for R.

The crucial observation (from the previous section) is that, since we are after the
first part of B's initialization phase, no counter of B ever assumes a value greater
than t = 1g30 n. This immediately implies that, after the initialization phase of M',
no counter of M' ever assumes a value greater than 2 t3 t5*. Now, since t < n and
2t3t5t < n, we conclude that both

* all increment attempts of B are successful, and
" all corresponding multiplication attempts of M' are successful, as well.

Hence, the equivalence above is satisfied vacuously. Put another way, when M'
multiplies V to simulate a counter increment in B, it knows in advance that this
increment does not fail and therefore that the multiplication will not fail, either.
Overall, B's atomic operation

J - J + 1 is simulated by V (2 2V,

and similarly for L and R.
As a final remark, we note the immediate by-product of our last argument:

Since V clearly never exceeds n during the initialization phase of M' and it also
never exceeds n during the simulation of B, it follows that M' is bounded.

92

6. CONCLUSION

This concludes the definitions of all three machines in our reduction. It should be
clear that M' is good and that a description z' of it can be computed out of z.

6. Conclusion

Using old ideas [61, 38], we showed the unrecognizability of the emptiness
problem for DCA 2s that are promised to be bounded, always terminate, and obey a
threshold. We then combined this with the idea of [19] to show that, if machines A
have the resources to simulate DCA 2s of the particular kind and can also solve
problems that machines B cannot, then typically the trade-off from A to B is non-
recursive. Applying the theorem, we derived such trade-offs in many conversions.

We do not know if the emptiness problem of Section 2.2 remains unrecognizable
even when the underlying machine is a 2-register automaton [38] (that is, a DCA 2
that starts with n in its primary counter and where increments of that counter
never fail). If it is, then our main theorem can be made slightly stronger.

A preliminary and more concrete version of the contents of this chapter can be
found in [26]. An improved but more abstract version appeared in [28].

93

End Note

I would like to thank my research advisor, Michael Sipser, for suggesting to me
the 2D vs. 2N problem and for being a constant source of encouragement and ideas
as I was working on it during the past five years. I learned a lot from him about
computation, and more generally about how to think and how to explain. I enjoyed
the kindness and humanity of his personality and I particularly admire his ability
to just take a few silent seconds and then return with the most valuable advice for
whatever problem needs to be solved.

I would also like to thank Albert Meyer, from whom I also learned a lot over
the past years as a teaching assistant for his class on discrete mathematics. I really
enjoyed the honesty of his character and I cannot but admire his eagerness and
ability to talk and think efficiently through almost any kind of problem.

This is probably a good place to also thank the people of MPLA in Greece,
where my graduate studies actually began. When I moved to Athens in 1997, it was
not certain that the universities was indeed going to be the place where I would be
burning my energy. If it turned out this way, it is mainly due to the quality of the
people and the academic program at MPLA. I am particularly grateful to Yiannis
Moschovakis for encouraging me to continue my studies abroad.

On my way out of Greece, I also had the honor to meet General Leftheris and
Mrs. Roula Kanellakis. Like so many other students, I am proud to have been a
Paris Kanellakis Fellow and I have often drawn inspiration from Paris's academic
conduct and achievements.

Finally, many thanks are due to my uncle Demos Fokas. When I first came to
Cambridge, he had already been around for a while and he helped me a lot with
the transition. Most importantly, having been through graduate school himself,
Demos knew very well what this process is all about and in many occasions used
his experience to provide me with valuable advice and inspiration. He is now in the
'southern provinces' already-and this is exactly where I am also heading for.

95

Pu * KWWMMMMMW

Bibliography

[1] Bruce H. Barnes. A two-way automaton with fewer states than any equivalent one-way au-
tomaton. IEEE Transactions on Computers, C-20(4):474-475, 1971.

[2] Piotr Berman. A note on sweeping automata. In Proceedings of the International Colloquium
on Automata, Languages, and Programming, pages 91-97, 1980.

[3] Piotr Berman and Andrzej Lingas. On complexity of regular languages in terms of finite
automata. Report 304, Institute of Computer Science, Polish Academy of Sciences, Warsaw,
1977.

[4] Jean-Camille Birget. Two-way automata and length-preserving homomorphisms. Report 109,
Department of Computer Science, University of Nebraska, 1990.

[5] Jean-Camille Birget. Positional simulation of two-way automata: proof of a conjecture of
R. Kannan and generalizations. Journal of Computer and System Sciences, 45:154-179, 1992.

[6] Jean-Camille Birget. State-complexity of finite-state devices, state compressibility and in-
compressibility. Mathematical Systems Theory, 26:237-269, 1993.

[7] Marek Chrobak. Finite automata and unary languages. Theoretical Computer Science,
47:149-158, 1986.

[8] David Damanik. Finite automata with restricted two-way motion. Master's thesis, J. W.
Goethe-Universitat Frankfurt, 1996. In german.

[9] Pavol buris and Zvi Galil. Fooling a two-way automaton or one pushdown store is better
than one counter for two-way machines. Theoretical Computer Science, 21:39-53, 1982.

[10] Roger B. Eggleton and Richard K. Guy. Catalan strikes again! How likely is a function to be
convex? Mathematics Magazine, 61(4):211-219, 1988.

[11] Michael J. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Counter machines and counter
languages. Mathematical Systems Theory, 3:265-283, 1968.

[12] Martin Gardner. Catalan numbers: an integer sequence that materializes in unexpected
places. Scientific American, 234(6):120-125, June 1976.

[13] Viliam Geffert, Carlo Mereghetti, and Giovanni Pighizzini. Converting two-way nondeter-
ministic unary automata into simpler automata. Theoretical Computer Science, 295:189-203,
2003.

[14] Viliam Geffert, Carlo Mereghetti, and Giovanni Pighizzini. Complementing two-way finite
automata. In Proceedings of the International Conference on Developments in Language
Theory, pages 260-271, 2005.

[15] Jonathan Goldstine, Martin Kappes, Chandra M. R. Kintala, Hing Leung, Andreas Malcher,
and Detlef Wotschke. Descriptional complexity of machines with limited resources. Journal
of Universal Computer Science, 8(2):193-234, 2002.

[16] Juris Hartmanis. On the succinctness of different representations of languages. SIAM Journal
of Computing, 9(1):114-120, 1980.

[17] Juris Hartmanis. On Godel speed-up and succinctness of language representations. Theoretical
Computer Science, 26:335-342, 1983.

[18] Juris Hartmanis. On the importance of being fl 2 -hard. Bulletin of the EATCS, 37:117-127,
1989.

[19] Juris Hartmanis and Theodore P. Baker. Relative succinctness of representations of lan-
guages and separation of complexity classes. In Proceedings of the International Symposium
on Mathematical Foundations of Computer Science, pages 70-88, 1979.

[20] John E. Hopcroft and Jeffrey D. Ullman. Formal languages and their relation to automata.
Addison-Wesley, Reading, MA, 1969.

[21] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory, languages, and
computation. Addison-Wesley, Reading, MA, 1979.

97

BIBLIOGRAPHY

[221 Juraj Hromkovit and Georg Schnitger. Nondeterminism versus determinism for two-way fi-
nite automata: generalizations of Sipser's separation. In Proceedings of the International
Colloquium on Automata, Languages, and Programming, pages 439-451, 2003.

[23] Oscar H. Ibarra. On two-way multihead automata. Journal of Computer and System Sciences,
7:28-36, 1973.

[24] Neil Immerman. Nondeterministic space is closed under complementation. SIAM Journal of
Computing, 17(5):935-938, 1988.

[25] Ravi Kannan. Alternation and the power of nondeterminism. In Proceedings of the Symposium
on the Theory of Computing, pages 344-346, 1983.

[26] Christos Kapoutsis. From k + 1 to k heads the descriptive trade-off is non-recursive. In
Proceedings of the Workshop on Descriptional Complexity of Formal Systems, pages 213-
224, 2004.

[27] Christos Kapoutsis. Deterministic moles cannot solve liveness. In Proceedings of the Workshop
on Descriptional Complexity of Formal Systems, pages 194-205, 2005.

[28] Christos Kapoutsis. Non-recursive trade-offs for two-way machines. International Journal of
Foundations of Computer Science, 16:943-956, 2005.

[29] Christos Kapoutsis. Removing bidirectionality from nondeterministic finite automata. In Pro-
ceedings of the International Symposium on Mathematical Foundations of Computer Science,
pages 544-555, 2005.

[30] Christos Kapoutsis. Small sweeping 2NFAs are not closed under complement. In Proceedings
of the International Colloquium on Automata, Languages, and Programming, 2006.

[31] Martin Kutrib. On the descriptional power of heads, counters, and pebbles. In Proceedings
of the Workshop on Descriptional Complexity of Formal Systems, pages 138-149, 2003.

[32] Martin Kutrib. The phenomenon of non-recursive trade-offs. In Proceedings of the Workshop
on Descriptional Complexity of Formal Systems, pages 83-97, 2004.

[33] Hing Leung. Separating exponentially ambiguous finite automata from polynomially ambigu-
ous finite automata. SIAM Journal of Computing, 27(4):1073-1082, 1998.

[34] Hing Leung. Tight lower bounds on the size of sweeping automata. Journal of Computer and
System Sciences, 63(3):384-393, 2001.

[35] Albert R. Meyer and Michael J. Fischer. Economy of description by automata, grammars,
and formal systems. In Proceedings of the Symposium on Switching and Automata Theory,
pages 188-191, 1971.

[36] Silvio Micali. Two-way deterministic finite automata are exponentially more succinct than
sweeping automata. Information Processing Letters, 12(2):103-105, 1981.

[37] Pascal Michel. An NP-complete language accepted in linear time by a one-tape Turing ma-
chine. Theoretical Computer Science, 85(1):205-212, 1991.

[38] Marvin L. Minsky. Recursive unsolvability of Post's problem of "tag" and other topics in
theory of Turing machines. Annals of Mathematics, 74(3):437-455, 1961.

[39] Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Englewood
Cliffs, NJ, 1967.

[40] Burkhard Monien. Transformational methods and their application to complexity problems.
Acta Informatica, 6:95-108, 1976.

[41] Burkhard Monien. Corrigenda: Transformational methods and their application to complex-
ity problems. Acta Informatica, 8:383-384, 1977.

[42] Burkhard Monien. Two-way multihead automata over a one-letter alphabet. RAIRO Infor-
matique Thiorique/Theoretical Informatics, 14(1):67-82, 1980.

[43] Frank R. Moore. On the bounds for state-set size in the proofs of equivalence between deter-
ministic, nondeterministic, and two-way finite automata. IEEE Transactions on Computers,
20(10):1211-1214, 1971.

[44] G. Ott. On multipath automata I. Research report 69, SRRC, 1964.
[45] Michael 0. Rabin. Two-way finite automata. In Proceedings of the Summer Institute of

Symbolic Logic, pages 366-369, Cornell, 1957.
[46] Michael 0. Rabin and Dana Scott. Remarks on finite automata. In Proceedings of the Summer

Institute of Symbolic Logic, pages 106-112, Cornell, 1957.
[47] Michael 0. Rabin and Dana Scott. Finite automata and their decision problems. IBM Journal

of Research and Development, 3:114-125, 1959.
[48] William J. Sakoda and Michael Sipser. Nondeterminism and the size of two-way finite au-

tomata. In Proceedings of the Symposium on the Theory of Computing, pages 275-286, 1978.

98

BIBLIOGRAPHY

[49] Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexi-
ties. Journal of Computer and System Sciences, 4:177-192, 1970.

[50] Erik M. Schmidt and Thomas G. Szymanski. Succinctness of descriptions of unambiguous
context-free languages. SIAM Journal of Computing, 6(3):547-553, 1977.

[51] Joel I. Seiferas. Manuscript communicated to Michael Sipser. October 1973.
[52] Joel I. Seiferas. Relating refined space complexity classes. Journal of Computer and System

Sciences, 14(1):100-129, 1977.
[53] John C. Shepherdson. The reduction of two-way automata to one-way automata. IBM Journal

of Research and Development, 3:198-200, 1959.
[54] Michael Sipser. Halting space-bounded computations. Theoretical Computer Science, 10:335-

338, 1980.
[55] Michael Sipser. Lower bounds on the size of sweeping automata. Journal of Computer and

System Sciences, 21(2):195-202, 1980.
[56] Richard E. Stearns. A regularity test for pushdown machines. Information and Control,

11:323-340, 1967.
[57] Ivan H. Sudborough. On tape-bounded complexity classes and multihead finite automata.

Journal of Computer and System Sciences, 10(1):62-76, 1975.
[58] R6bert Szelepcs6nyi. The method of forced enumeration for nondeterministic automata. Acta

Informatica, 26(3):279-284, 1988.
[59] Leslie G. Valiant. A note on the succinctness of descriptions of deterministic languages. In-

formation and Control, 32:139-145, 1976.
[60] Moshe Y. Vardi. A note on the reduction of two-way automata to one-way automata. Infor-

mation Processing Letters, 30:261-264, 1989.
[61] Hao Wang. A variant of Turing's theory of computing machines. Journal of the A CM, 4(1):63-

92, 1957.

99

