
Multi-Tape Finite-State Transducer for

Asynchronous Multi-Stream Pattern Recognition

with Application to Speech

by
Han Shu

M.Eng., Massachusetts Institute of Technology (1997)
B.S., Massachusetts Institute of Technology (1996)

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Electrical Engineering and Computer Science

at the

MASSACHU•E.•i8 N1•fl-T
OF TECHNOLOGY

NOV 0 2 2006
-- HiY0~0

LIBRARIES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2006

@ 2006 Massachusetts Institute of Technology. All rights reserved.

A uthor -.
Department of

Electrical Engineering and Computer Science
May 23, 2006

Certified by.................-.-.... . -.
" James R. Glass
x-incipal Research Scientist

./el is Supervisor

Accepted by........~...--. .-. ..-.... •- :
Arthur C. Smith

Chairman, Department Committee on Graduate Students

ARMCVeEs

To all the families who have loved and influenced me:

the Shu, Xu, Chen, Ellis and Balaguru families

Multi-Tape Finite-State Transducer for Asynchronous

Multi-Stream Pattern Recognition with Application to

Speech

by

Han Shu

Submitted to the Department of
Electrical Engineering and Computer Science

on May 23, 2006, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Electrical Engineering and Computer Science

Abstract

In this thesis, we have focused on improving the acoustic modeling of speech recog-
nition systems to increase the overall recognition performance. We formulate a novel
multi-stream speech recognition framework using multi-tape finite-state transducers
(FSTs). The multi-dimensional input labels of the multi-tape FST transitions specify
the acoustic models to be used for the individual feature streams. An additional aux-
iliary field is used to model the degree of asynchrony among the feature streams. The
individual feature streams can be linear sequences such as fixed-frame-rate features in
traditional hidden Markov model (HMM) systems, and the feature streams can also
be directed acyclic graphs such as segment features in segment-based systems. In
a single-tape mode, this multi-stream framework also unifies the frame-based HMM
and the segment-based approach.

Systems using the multi-stream speech recognition framework were evaluated on
an audio-only and an audio-visual speech recognition task. On the Wall Street Journal
speech recognition task, the multi-stream framework combined a traditional frame-
based HMM with segment-based landmark features. The system achieved word error
rate (WER) of 8.0%, improved from both the WER of 8.8% of the baseline HMM-
only system and the WER of 10.4% of the landmark-only system. On the AV-TIMIT
audio-visual speech recognition task, the multi-stream framework combined a land-
mark model, a segment model, and a visual HMM. The system achieved a WER of
0.9%, which also improved from the baseline systems. These results demonstrate the
feasibility and versatility of the multi-stream speech recognition framework.

Thesis Supervisor: James R. Glass
Title: Principal Research Scientist

Acknowledgments

This thesis would not have been possible without the help of many people. I want

to acknowledge and express my deepest gratitude to the following people.

First, I would like to thank my advisor, Jim Glass, for his guidance and encourage-

ment in my research and for his patience and support, especially when I moved from

topic to topic. I am also very grateful to the other members of my thesis committee,

Victor Zue, Michael Collins, and Herb Gish for their suggestions and advice.

This thesis would not have been possible without Lee Hetherington's collabora-

tion on a number of key finite-state transducer based algorithms. The finite-state

transducer toolkit developed by Lee was also essential for many experiments in this

thesis and I want to thank him.

I would like to thank Karen Livescu for her help in providing the baseline Phone-

Book recognizer and answering many PhoneBook-related questions. I would also

like to thank T. J. Hazen for his help with AV-TIMIT and his 3-stream (landmark,

segment, and visual) recognition system.

Everyone in the Spoken Language Systems group have made my life as a graduate

student more pleasant. Chao Wang, Lee Hetherington, T. J. Hazen, and Stephanie

Seneff have all provided generous advice and assistance. Thanks to Scott Cyphers for

answering many of my not-so-short questions on the computing infrastructure, and to

Marcia Davidson for running the administrative side smoothly. A very special thanks

to Karen Livescu for always being willing to talk about speech recognition, politics,

and life. Thanks to Jon Yi and Alex Park for hanging out and research discussions.

Thanks to Ed Filisko for all the baking and cooking discussions and advice. Thanks

to my other officemates Laura Miyakawa, Ernie Pusateri, Mitchell Peabody, Chih-yu

Chao for making the office an intellectually stimulating and fun place to be. Thanks to

the rest of SLS students for making SLS a fun place to be, especially to Ken Schutte,

Min Tang, Eugene Weinstein, Ghinwa Choueiter, and Alex Gruenstein for exchanging

research ideas and for answering and asking many questions over the years.

My exposure to the interesting research problems of pattern recognition and speech

recognition began in the Speech and Language group at BBN. Special thanks to John

Makhoul, Rich Schwartz, Herb Gish, Owen Kimball, Spyros Matsouk, Long Nguyen,

and Bruce Musicus for the guidance and helpful discussions.

Thanks to Youssef Marzouk and Richard Diaz for the years of support and friend-

ship, and for their detailed comments on parts of this thesis. Thank you to Damani

Walton for grabbing those late night meals with me even with zero minute notice,

after I had spent hours slaving away at my thesis. Thanks to all my Chi Phi brothers

for all the years of fun and support since my undergraduate days and continuing.

Thanks to my mother and father for sacrificing so much to immigrate to the

US so that my brother and I could have a better (modern) education. Thanks to

my brother for taking care of me and watching out for me often when I were not

even aware. Thanks to Jichen Zhu for being helpful to me in many ways than she

probably acknowledges. Thanks to the Ellis and Chen families who helped to raise

me and installing wonderful values.

Thanks to my former headmaster Bernier Mayo at St. Johnsbury Academy for

welcoming my brother and I to his wonderful high school in the Northeast Kingdom

of Vermont. The great education we received there laid the foundation for the years

of learning to come.

Finally, a special thanks to my wife Soundhari for her love and support since the

first day we met on her Wellesley graduation day. Life in graduate school would have

been much less fun without her.

Han Shu
May 24, 2006

This research was supported by DARPA under contract N66001-99-1-8904 monitored through Naval
Command, Control and Ocean Surveillance Center and by the NSF under award 9872995-1483.

Contents

1 Introduction

1.1 Motivation

1.1.1 Hierarchical Feature Representations

1.1.2 Previous Work: Multi-stream Speech Recognition

1.2 Asynchrony in Multi-stream Speech Recognition

1.2.1 Asynchrony in Audio-Visual Speech Recognition .

1.2.2 Asynchrony Between Frame-based and Landmark

1.3 Proposed Approach

1.4 Contributions

1.5 Thesis Outline

Features

2 Background

2.1 Automatic Speech Recognition

2.1.1 Language Model

2.1.2 Features

2.1.3 Acoustic Models

2.1.3.1 Parameter Learning for Acoustic Models

2.1.3.2 EM Training of Gaussian Mixture Models

2.1.3.3 EM Training of Hidden Markov Models

2.1.3.4 Viterbi Training

2.2 Segment-based Automatic Speech Recognition

2.2.1 Features..

2.2.2 Segmentation Network

21

23

23

24

26

26

26

28

31

. 31

. 33

.... . 34

.... . 35

. 36

. 37

. 39

. 40

. 41

.. ... 41

. 42

2.2.3 Landmark Models 43

2.2.4 Segment Models 44

2.2.5 Viterbi Training of Segment-based Models 45

2.3 Finite-State Transducers 46

2.3.1 Formal Definition of FSTs and the Semiring 47

2.3.1.1 W eight Semirings 47

2.3.1.2 Weighted Finite-State Transducer 47

2.3.2 Probabilistic Interpretation of Weighted FSTs 48

2.3.2.1 Marginal, Joint, and Conditional Probabilities 49

2.3.2.2 Cascade of FSTs 50

2.3.3 FSTs for Automatic Speech Recognition 52

2.3.3.1 FST Cascade for Recognition 52

2.4 Summary 55

3 EM Training of FST Weights 57

3.1 EM Weight Training 58

3.1.1 Isolated Training 58

3.1.2 Training Within Cascade 61

3.2 Experiments and Results 61

3.2.1 Task 62

3.2.2 Training Phonological Rules P 63

3.2.3 Training Phonemic Pronunciations L 64

3.2.4 Training P and L Separately 65

3.2.5 Training P o L 65

3.3 Summary 66

4 EM Training of Acoustic Models 69

4.1 Introduction 69

4.2 EM Weight Training of Acoustic Models 70

4.2.1 Computation of the Posterior Probabilities 70

10

4.2.2 Training Observation PDFs from Posterior-Weighted Feature

Vectors. 71

4.3 EM Training for Frame-based and Segment-based Acoustic Models.. 72

4.4 Experiments 74

4.4.1 The Phonebook Task 74

4.4.2 EM Training of Landmark Models 74

4.5 Summary 75

5 Multi-tape Finite-state Transducers 77

5.1 Formal Definition 78

5.2 Generalized Composition 79

5.3 Viterbi Beam Search 80

5.4 Summary 81

6 Multi-stream Speech Recognition with mFSTs 83

6.1 Introduction 83

6.2 Experiments for Combining Frame-based and Landmark Features . 84

6.3 Multi-stream, Multi-tape FST Framework 86

6.3.1 FST Cascade with mFSTs 86

6.3.2 Multi-Stream Acoustic Model mFST A () 87

6.3.3 Model Topology mFST M() 89

6.3.4 Search 90

6.4 Examples with the mFST Framework 92

6.4.1 Landmarks and Segments 92

6.4.2 Frames and Landmarks 94

6.5 Experiments 95

6.5.1 The WSJ Task 95

6.5.2 The AV-TIMIT Task 98

6.6 Discussion and Future Work 99

11

7 Conclusions 101

7.1 Sum m ary 101

7.2 Future Directions 102

7.2.1 EM Training of FST Weights 102

7.2.2 Frame-based and Segment-based Speech Recognition 103

7.2.3 Multi-Stream Speech Recognition Framework 103

7.3 Conclusions 105

A Phonetic Alphabet 107

B Pronunciation Rules 109

List of Figures

1-1 Flow chart for a typical state-of-the-art speech recognition system.

1-2 Various feature streams for automatic speech recognition

1-3 Asynchrony in audio-visual speech recognition. Audio-visual example

of "chosen few" adapted from Saenko et al. [58]. From top to bottom,

the panels are: spectrogram; reference time alignment of the phone

sequence; and lip images

2-1 A 3-state left-to-right hidden Markov model with a skip

the first state to the last state.

transition from

2-2 Pseudo-code for the "split and merge" procedure

2-3 Examples of frame-based, landmark, and segment features. The fea-

ture vectors, Fl, F2, ... , F8, are the framed-based which are sampled

at fixed-size intervals. The landmark feature vectors, B1, B2, B3, and

B4 are sampled at variable size intervals. The segment feature vectors,

S1, S2, S3, and S4, each spanning two landmark features

22

23

27

38

42

2-4 Graphical output from the SUMMIT segment-based ASR system. The

top two panels display the speech waveform and corresponding spectro-

gram, respectively. The third panel shows the computed segmentation

network consisting of hypothesized phonetic segments. The highlighted

segments form a single segmentation path, which is also the segmenta-

tion path the decoder found to have the highest score. The fourth panel

shows the hypothesized phone sequence aligned to the highlighted seg-

mentation path from the previous panel. The fifth panel shows the

corresponding hypothesized word sequence. 43

2-5 An example weighted finite-state transducer. The input alphabet is

a, b, c, d, e. The output alphabet is i, j, k. There are three states,

labelled 0, 1, 2. The initial state is 0, and the set of final state is

2. The arcs are each labelled with input label : output label / weight.

There are a total of five possible paths represented by this FST. The

path with the state sequence 0,2 has the highest weight which maps

the input sequence c with the out sequence with the weight of 0.5. . . 48

2-6 Example FSTs in the (+, x) semiring: (a) Tx,y representing joint

probability P(x, y), notice that all the arcs leaving from state 0 and

state 1 sum to 1 respectively. (b) Ty representing marginal proba-

bility P(y). Ty is computed from the Tx,y using the equation Ty =

det(projecty(Tx,y)). Instead of 5 distinct paths in Tx,y, there are only

4 distinct paths in Ty because the state sequence 0, 1, 2 and the state

sequence 0, 2 share the same output sequence of j. It is worthy to

note that all the arcs leaving from state 0 and state 1 sum to 1 re-

spectively. (c) Txly representing conditional probability P(xly). Txly

is computed using Txly = Tx,y o [Ty]- 1. Notice that probabilities of

the two paths, the state sequence 0, 2, 3 and the state sequence 0, 3,

sharing the same output sequence j sum to 1. 51

2-7 Illustration of the model topology FSTs M. (a) is used by the current

SUMMIT landmark features, (b) is used by the current SUMMIT segment

features, and (c) is for a 3-state HMM with skip transitions. 54

3-1 Illustration of FST Tx,y with paired input/output training sequence

pair (xi,yi)................................. .. 59

3-2 Training FST Txyi within the FST cascade Swlx o Txlv o UYiz with

paired input/output training sequence pair (wi, zi), where the weights

for FSTs Swix and Uylz are known. This training within an FST

cascade is equivalent to the isolated training problem with appropriate

operations on the training pair. 61

4-1 Outline for computing the posterior probability for each training ut-

terance .

4-2 Illustration of a sample segmentation network and its corresponding

FST representation. Here only the FST As is shown since FST AM

simply translates the output symbol Mb, Ms, Mh into the set of all

possible sub-phone states. The segmentation network in (a) contains

four phonetic segments with four landmark feature vectors, B1, B2,

B3, and B4, and four segment feature vectors, S1, S2, S3, and S4. The

feature vectors, Fl, F2, ... , F8 are the corresponding fixed frame-rate

feature vectors using by HMMs. (b) shows the corresponding FST As

for landmark features with two identical input sequences, B1B2B3B4,

and the symbol Mb represents the set of all landmark models. The sym-

bol #p denotes phone landmark locations. (c) shows the corresponding

FST As for segment features with two different input sequences each

with two segments, S1S2 and S3S4, and the symbol Ms represents

the set of all segment models. (d) shows the corresponding FST As for

a frame-based HMM. Since the symbol #p in (d) does not provide any

constraint, the size of the corresponding A = As o AM is typically big-

ger than that of segment-based models in (b) and (c). It is important

to note the all the input sequences for landmark models as illustrated

in (a) are the same, where the input sequences for segment models as

illustrated in (b) can be different. 73

4-3 Training and test WERs as a function of training iterations. The upper

curve is the test WERs, and the lower curve is the training WERs. The

WERs of 100.0% from the first iteration is from the flat initialization

models. As the training iteration increases, the number of parame-

ters in the acoustic models also increases. At the 1 1 th iteration, the

context dependent acoustic models are bootstrapped from the context

independent acoustic models, and the over 20% drop in WER is due

to this increase in the number of model parameters. After a total of

87 iterations, the training WER converges to 2.7%, and the test WER

converges to 9.4%. 76

5-1 Pseudo-code for the Viterbi mFST search algorithm

6-1 Flow chart for the "special" decoder which uses a set of permissible

phonetic boundary locations. 85

6-2 Illustration of the multi-stream framework using mFSTs. Notice that

both A and M are mFSTs, and FSTs C, P, L, and G are single-tape. 87

6-3 Example single-tape FST representing both a linear sequence type fea-

ture and a directed acyclic graph type feature. (a) represents an exam-

ple type of linear sequence features, variable-rate landmark features.

Each FST state represents a feature vector f,) and time t1) associ-

ated with each feature. (b) represents an example type of the directed

acyclic graph features, the segment features. Each FST arc represents

a feature vector fj 2) associated with a segment, and each FST state is

associated with time t 2) representing the starting time of the segment

features associated with the leaving arcs from the state. 89

6-4 Pseudo-code for the Viterbi search for the multi-stream recognition

fram ework..... 91

6-5 2-stream feature space combining landmark and segment features. Stream

1 in (a) represents variable-rate landmark features, with a feature vec-

tor f1) and time t associated with each landmark i. Stream 2 in

(b) represents the segment features. Each segment connecting pairs of

landmarks, with a feature vector f(2) associated with each segment j

and time t 2) associated with each segment boundary k. 93

6-6 Model Topology M(q) for 2-stream landmark/segment phonetic model

using mFST. The single stream landmark model is a 2-state HMM, It

is the transition model, and 1i is the internal model. The single stream

segment model is a 1-state whole-segment model s. 93

6-7 (a) Model topology a single-stream HMM. (b) Model topology a single-

stream landmark model. (c) Model Topology M(q) for the 2-stream

landmark and HMM system using mFST. It is a combination of the

single-stream FSTs shown in (a) and (b). Other configurations of the

mFST are possible, including a full Cartesian product. (c) shows the

topology used in our experiments. 95

6-8 WERs and decode time vs. degree of asynchrony. 97

List of Tables

2.1 Manipulations of marginal, joint, and conditional FSTs and their prob-

abilistic equivalent. 50

3.1 Recognition results and relative reduction (Rel. Red.) in WER for

various pronunciation weight training configurations. The operator

tr() denotes the weights of the FST were trained with the FST EM

training algorithm. The size of the first four FST cascades are the same,

and the size of the last one is different since P and L are composed

together first. 63

4.1 Word error rates (WER) of segment-based recognizer training using

Viterbi training and EM training on the training set and test set. . . 74

6.1 Study of the compatibility of phonetic boundary locations preferred by

HMMs and landmark models. 86

6.2 Word error rates (WER) for variable-rate landmark models, fixed-

frame-rate HMMs, and their combined models. 97

6.3 WERs for speech landmark and segment models, visual HMMs, and

their combined models. 99

A.1 The vowels of the ARPABET phonetic alphabet. 107

A.2 The consonants of the ARPABET phonetic alphabet. 108

Chapter 1

Introduction

Automatic speech recognition (ASR) remains one of the "holy grails" in the field

of artificial intelligence. Despite substantial improvement over the last two decades,

in part due to the use of mathematically rigorous modeling techniques, there still

remains a significant performance gap between humans and machines [44].

Figure 1-1 illustrates the main processing stages of a state-of-the-art speech recog-

nition system. The feature extraction module, the lexicon, the acoustic model module

are the key modules for acoustic-phonetic modeling. The feature extraction module

processes the input speech waveform to produce a sequence of feature vectors for

robust ASR. The feature vectors should ideally maximize acoustic-phonetic differ-

ence while minimizing the differences due to individual speaker characteristics and

the acoustic environment. The acoustic model contains parameters of the acoustic-

phonetic classes learned from the feature vectors of the training set. The output

feature vectors are mapped to a linear sequence of sub-phonetic or phonetic models.

The lexicon holds mappings between words and their phonetic spellings. The lan-

guage model typically characterizes the relative frequencies of the word sequences to

be recognized. The decoder outputs the best word sequence with the input feature

vector sequence, the acoustic model, the lexicon, and the language model.

It is clear that improvements in both acoustic-phonetic modeling and language

modeling are needed to bridge the performance gap between human and machines.

The performance gap on tasks where contextual knowledge cannot help, e.g., recog-

Speech
Waveform

Word
Hypothesis

Figure 1-1: Flow chart for a typical state-of-the-art speech recognition system.

nizing isolated phones or nonsensical utterances [44], highlights the human's superior

ability of acoustic-phonetic modeling.

Extensive research has been done to optimize the types of features extracted and

the types of mathematical models used for modeling the feature vectors. The state-of-

the-art ASR system uses a single-stream of frame-based features and hidden Markov

models (HMMs) as its mathematical models. Despite significant advances in the

search for the "optimal" features and training and decoding algorithms for various

types of mathematical models, the equivalent human system still far outperforms the

best machine versions. Many speech researchers agree that the paradigm of optimizing

a single-stream of features modeled by HMMs will not ultimately lead to human-level

performance [62].

In this thesis, we have developed a multi-stream speech recognition framework

with multi-tape finite-state transducers. We first formulated a probabilistic recog-

nition framework with multi-tape finite-state transducers, then we constructed the

missing algorithms for the framework. Finally, we applied the framework to two

different recognition tasks with a multiple streams of features. From these experi-

ments, we demonstrated that this multi-stream speech recognition framework with

multi-tape finite-state transducers is able to flexibly accommodate a large class of

multi-stream features.

This thesis has been motivated by previous works on both single-stream and multi-

stream speech recognition. In the following sections, we will first discuss the motiva-

Speech waveform

Continuous signal

Subphonetic: HMM states
Landmarks
Subphonetic segments

Phonetic: Manner Linguistic representation

Place
Phonetic segment
Viseme Discrete symbols

Syllabic: Pitch/Tone
Stress

Word: Whole word

Figure 1-2: Various feature streams for automatic speech recognition.

tion in detail, then we will highlight some of the key issues the proposed multi-stream

speech recognition framework must accommodate. These have both inspired and

guided the formulation of the new multi-stream speech recognition framework using

multi-tape finite-state transducers.

1.1 Motivation

1.1.1 Hierarchical Feature Representations

The process of speech recognition can be thought of as a decoding process which maps

continuous speech signals to the underlying discrete linguistic representations such as

words. For automatic speech recognition, various types of single stream features have

been used. Figure 1-2 illustrates the type of features that can be extracted at various

time scales: sub-phonetic, phonetic, syllabic, and word-levels. The sub-phonetic fea-

tures, such as fixed frame-rate Mel-frequency Cepstral coefficients (MFCCs) [13], are

at the finest time scale, and the features at the word level are at the coarsest time

scale. The features at various time scales can be organized hierarchically.

The representations at the various time scales constrain each other. For exam-

ple, the word sequence limits the set of phonetic segments. Similarly, the landmark

sequence is paired with a single unique phonetic segment sequence. There are many

occasions in which one may want to consider multi-stream approaches, different time

scale being only one of them because the features at the same time scale also con-

strain each other. For example, viseme and phonetic segment features, both features

at same time scale, also constrain each other. When a recognition system only uses a

single stream of features, the representation corresponding to that single stream can

be used to derive the other levels of representations. When a recognition system uses

multiple streams of features, it is possible to take advantage of additional constraints

among these various streams. These additional constraints can potentially improve

the acoustic-phonetic modeling for the overall speech recognition system performance.

In the state-of-the-art HMM systems, only a single stream of features is commonly

used. The features are typically computed at the sub-phonetic time scale. Other types

of features are not typically used simultaneously, so these systems do not attempt to

exploit the constraints among the various features. In this thesis, we will develop a

multi-stream framework to investigate whether applying the constraints can improve

the overall recognition performance.

1.1.2 Previous Work: Multi-stream Speech Recognition

The information associated with individual streams of features can be combined either

before or after the search performed by the decoder module. Approaches for multi-

stream speech recognition can be divided into two main categories: early integration

and late integration.

In the early integration approaches, the individual streams are stacked together

to form a single stream of feature vectors. The dimension of the resulting feature

streams is the sum of the dimensions of the individual feature streams. When the

individual feature streams are time synchronous (e.g., fixed frame-rate features with

the same frame rates), the stacking procedure is straightforward. However, when the

feature streams are asynchronous (e.g., variable frame-rate features, or fixed frame-

rate features with the different frame rates), simply stacking the features may be

impossible. In addition, if the individual feature streams correspond to different

feature spaces (e.g., phonemes and visemes), combining the various feature spaces

may also prove difficult.

For the late integration approaches, searches are performed on the individual

feature streams, and the individual feature spaces are combined. The combination can

also be performed at the phone or word level. ROVER [22] is a late integration method

where the combination is done at the word hypothesis level. While late integration

methods at the word hypothesis level like ROVER are simple to implement and low

in computational cost, ROVER does not take advantage of all possible constraints

among the feature spaces corresponding to the individual feature streams.

The segmental speech recognition system at MIT [27] integrates two feature

streams, landmarks and segments. While the landmark feature stream is a linear

sequence like MFCCs, the segment feature stream must be represented by a directed

acyclic graph (DAG). The integration is done at the phonetic level, and synchroniza-

tion between the two feature streams are enforced at phonetic boundaries during the

search.

The multi-stream speech recognition by HMM recombination by Bourlard, Dupont,

et al. [3, 4, 17, 18] and the multi-rate HMM framework of Qetin and Ostendorf [5] are

examples of late integration methods where the integration is not done at the word hy-

pothesis level. In [3,4, 17, 18], the individual features streams are modeled together

in a network. The different streams are represented by different HMMs, and the

HMMs are connected together with special synchronization states. Between the spe-

cial synchronization states, the individual feature streams are modeled by the HMMs

independently.

The multi-rate HMM framework of (etin and Ostendorf [5] can model feature

streams of both fixed and variable frame rates. These streams can also be of different

rates. The individual feature streams are modeled with HMMs. The parameters for

the individual HMMs are trained separately. Graphical models [43] are used to model

the constraints among the feature streams for decoding.

Both the multi-stream speech recognition by HMM recombination and the multi-

rate HMM framework are flexible frameworks for multi-stream speech recognition.

Both frameworks can be used to specify the various constraints among the feature

streams, and both can accommodate a large class of feature representations. However,

they are not able to support the features represented by directed acyclic graphs such

as segment features.

1.2 Asynchrony in Multi-stream Speech Recogni-

tion

1.2.1 Asynchrony in Audio-Visual Speech Recognition

Audio-visual speech recognition (AVSR) refers to speech recognition with both the

usual acoustic speech signal and the video signal of the speaker's face, or at least of

the mouth region. Within the last few years, AVSR has become a very active research

area [8, 18, 19, 29, 31, 55]. The additional modality of the video images often improves

the overall recognition performance. This improvement can be especially significant

for speech in noisy environments. These two complementary input modalities are

often modelled as two separate feature streams, one for the audio stream, and the

other for the visual stream. Many researchers have found that these two feature

streams are asynchronous [19, 28].

Figure 1-3 shows the spectrogram and the corresponding lip images of the spoken

phrase "chosen few." In between, the reference time alignment of the phone sequence

is also displayed. In this example, asynchrony can be seen during the phone [en] and

the phone [f]. The lip image corresponding to the phone [en] shows that the lips are

already in the position for producing the phone [f].

1.2.2 Asynchrony Between Frame-based and Landmark Fea-

tures

For a frame-based speech recognition system using HMMs, the exact phone boundary

locations do not play a role in the computation of the features. However, as part of

ch ow z en f y uw

Figure 1-3: Asynchrony in audio-visual speech recognition. Audio-visual example of
"chosen few" adapted from Saenko et al. [58]. From top to bottom, the panels are:
spectrogram; reference time alignment of the phone sequence; and lip images.

the decoding process, the phone boundaries are implicitly computed in conjunction

with discovering the best word sequence. HMM-based systems are optimized to max-

imize recognition performance, not necessarily the accuracy in the phone boundary

locations. Toledano et al. have reported that the phonetic alignments preferred by

the context-dependent or context-independent HMMs are not consistent with human

transcribed phone boundaries [48, 69].

In contrast, the exact phone boundary locations affect the landmark feature com-

putation in a segment-based landmark system. In this system, the phone boundary

locations are hypothesized first, before the computation for the landmark features.

Anecdotally by comparing landmark-based phone boundary locations with manually

transcribed ones, landmark-based phone boundary locations are better aligned to the

human transcribed phone boundaries than the ones hypothesized with HMMs.

The phonetic boundary locations preferred by the HMM-based system and by the

segment-based landmark system are different. We carried out a set of experiments

to test whether it is important to accommodate this difference when combining these

two types of features. The details of the experiments are described in Section 6.2.

The experiments show that allowing some degree of asynchrony between HMMs and

other models may be critical when integrating these models together.

1.3 Proposed Approach

Motivated by these observations, this thesis proposes a new multi-stream recognition

framework using a multi-tape finite-state transducer to model the different types of

feature streams at different time-scales. This framework is more flexible than the

previous approaches in two ways:

* The individual feature streams can be either a linear sequence or a graph.

* The asynchrony across the feature streams is controllable by a multi-tape finite-

state transducer.

The graph features are important for segment-based systems. They are more

general than linear sequence features. The ability to accommodate both types of

features enables the multi-stream framework to support a bigger class of combination

of features. The proposed multi-stream framework uses the multi-tape finite-state

transducer formalism to specify the various constraints. Both the finite-state trans-

ducer and the multi-tape finite-state transducer will be introduced in detailed in the

later chapters.

Before we developed the multi-stream recognition framework, we first formulated

a single-stream recognition framework using an FST cascade for features that can be

either a linear sequence or a graph. With the single-stream recognition framework,

we generalized the single-stream framework to the multi-stream framework by using

a multi-tape finite-state transducer.

1.4 Contributions

The primary contributions of this thesis are:

* We formulated a multi-stream recognition framework with a multi-tape finite-

state transducer. This multi-stream framework accommodates multiple streams

of features which can be a mixture of sequential and graph features, and it also

allows controllable asynchrony across the feature streams. We demonstrated

the capabilities on the WSJ task with HMM frame-based features and segment-

based landmark features and on a audio-visual recognition task with HMM

frame-based features and segment-based landmark and segment features.

* We introduced a single-stream recognition framework based on the finite-state

transducer cascade with support for both sequential and graph features. With

the existing beam search and newly developed EM-based training for this frame-

work, it freed the dependency on initialization models for the framework and

enabled direct comparison among various kinds of recognition systems (e.g.,

frame-based and segment-based) supported by the framework.

* We developed a novel EM-based weight training algorithm for learning FSTs

weights from data. We applied this algorithm for the problem of learning

pronunciation weights for the FSTs inside the FST cascade, we showed im-

proved recognition performance with learned pronunciation weights over the

unweighted baseline system.

1.5 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 provides relevant

background information. Chapter 3 formally introduces weighted finite-state trans-

ducers and constructs a unifying probabilistic framework for single-stream recog-

nition with frame-based and segment-based acoustic models. Chapter 4 develops a

novel EM-based weight training algorithm for finite-state transducer weights. We also

present experimental results of this algorithm for the problem of learning pronuncia-

tion weights from training data. Chapter 5 formulates a novel EM-based training for

acoustic models represented with finite-state transducers. We also present experimen-

tal results for both frame-based and segment-based acoustic models training with this

algorithm. Chapter 6 formally introduces weighted multi-tape finite-state transducers

and associated algorithms. Chapter 7 presents the multi-stream recognition frame-

work with multi-tape finite-state transducers. We also show through experiments

the flexibility of the framework for modeling multiple streams of features. Finally,

Chapter 8 summaries the thesis and discusses future directions and conclusions.

Chapter 2

Background

This chapter provides a brief introduction to automatic speech recognition for both

frame-based and segment-based approaches and the finite-state transducers. In Sec-

tion 2.1 we will first review the standard probabilistic formulation for the frame-based

approach using hidden Markov models (HMMs), then we will discuss the acoustic and

language models and the associated training and decoding algorithms. In Section 2.2,

we will highlight aspects of the segment-based system that is different from the frame-

based approach. In Section 2.3, we will first formally define FSTs and semirings, then

we will discuss the probabilistic interpretation of FSTs, including the FST operations

needed to convert a joint probability transducer to a conditional probability trans-

ducer. Finally we will illustrate how various constraints are represented by FSTs in

a typical speech recognition systems.

2.1 Automatic Speech Recognition

In the typical formulation for automatic speech recognition, the goal is to find the

sequence of words W* = {wl, w 2 , . , WM} which gives the maximum a posteriori

probability given the acoustic observations = {ol, 02, ... , ON}, that is:

W* = argmaxP(W I). (2.1)
w

31

With Bayes' rule,

* = argmax P()P((2.2)
Wv P(O)

= arg max P(OI/V)P(wX) (2.3)
w

= arg max P(O, I) (2.4)
W

where W ranges over all possible word sequences.

In most ASR systems, a sequence of sub-word units, U, and a sequence of sub-

phone states, S = {sl, 8 2 ,..., SN}, are decoded along with the optimal word sequence.

Equation 2.4 becomes:

W* = arg max P(S, U, W, 0) (2.5)
W .

VS,U

arg max P(S, U, W, 0)). (2.6)
W,S,U

The approximation in this equation is commonly known as the "Viterbi approxima-

tion." The expression P(S U, W, 0) can be decomposed into the form with the chain

rule of probability:

P(S, U1, W),) = P(O1S, U, V)P(sIU, W)P(UV)P(W). (2.7)

With appropriate conditional independence assumptions,

P(S, U, W, 5) = P(0 S)P(SU)P(UW)P(). (2.8)

Thus, Equation 2.6 becomes,

W* = arg max P(dOS)P(SIU)P(IUI)P(1). (2.9)
W,S,U

Note that the people familiar with HMMs may not be use to this formulation.

This formulation is similar to the unified view of the frame-based and segment-based

approaches presented in by Ostendorf et al. [53]. The term P(O IS) is the feature obser-

vation model. The term P(SIU) is a weighted mapping between the sequences of sub-

word units to sequences of sub-phone units, and we will refer to it as model topology.

The term P(UIW) is the pronunciation model which describes the sequences of sub-

word units that can be generated for a given word sequence, typically accomplished

by a dictionary lookup table and phonological rules to model systematic phonological

variations in fluent speech. Sometimes P(O W) - P(OIS)P(SI)P(UIW) is referred

to as the acoustic model, and P(W) is the language model.

2.1.1 Language Model

P(W) models the relative frequencies of word sequences. Common types of language

models are finite-state grammar (or context-free grammar) and n-gram models. Both

types can also be used together [50, 71]. Finite-state grammars are often used for

recognition tasks with a small vocabulary, and are manually created. The statistical

language model P(W) can be factored with the chain rule of probability:

N

P(W) = P(STOPwl, w2, WN) n P(wwiIl, w2, .. , Wi-1l), (2.10)
i=1

where STOP denotes the termination symbol at the end of a word sequence, and N

denotes the length of the word sequence W. [11] contains a detailed discussion on

why the STOP symbol is needed. n-gram models assume that the current word wi

is only dependent of the n - 1 previous words, that is:

P(wiwl, w 2 , . . . , wi-1) = P(wiwiwn+l, wi-n+2, . . , Wi-1). (2.11)

Thus,

N

P(W) = P(STOPIwN, WN_1,... , WN-n+2) 7 P(wii-n+1, Wi-n+2, ... Wi-1)*
i=2.12)

(2.12)

P(wilwi-n+1, wi-n+2,. . , w i- 1) are the parameters of the n-gram model. The trigram

and bigram are the most popular language models in the state-of-the-art systems.

They are typically trained from a text corpus using a number of standard language

modeling toolkits [9, 66].

2.1.2 Features

The acoustic observations 0 are acoustic features extracted from the speech waveform.

For multimodal speech recognition or visual speech recognition, the acoustic features

can also be extracted from the video data of the speaker, primarily from around the

mouth region. Typically the feature vectors in HMM-based speech recognition sys-

tems consists of Mel-frequency Cepstra coefficients (MFCCs) [13] and their first and

second differences. Sometimes energy is used in place of the 0 th MFCC. The MFCCs

are typically computed with a Hamming sampling window of about 25ms in duration.

The first and second differences are estimated over several of these window frames

from the MFCCs. In this thesis, the MFCCs of the frame-based feature vectors are

14-dimensional. Together with the deltas and the delta-deltas [24], the feature vectors

are 42-dimensional in total. These feature vectors are computed at a fixed frame-rate,

most commonly at 10ms/frame. Because these features vectors are computed on a

frame by frame basis, they are often referred to as frame-based features. It is impor-

tant to note that these acoustic observation vectors form a single, linear temporal

sequence. Since the duration of a typical phone can vary from 20ms to over 200ms,

the number of fixed frame-rate feature vectors within the same phonetic segment is

usually much greater than one. These feature vectors within the same phonetic seg-

ment are typically highly correlated. However, HMMs have an inherent conditional

independence assumption on the observation feature vectors. Thus, the fixed frame-

rate feature vector employed by HMM-based recognizers fundamentally limits the

range of acoustic models that can be explored for encoding acoustic-phonetic infor-

mation. While many researchers have focused on improving frame-based HMM ASR

systems, some have tried to avoid this limitation by constructing segment-based ASR

systems [15, 26, 53]. We will discuss these segment-based feature vectors in detail in

Section 2.2.

2.1.3 Acoustic Models

The acoustic models P(OIW) in Equation 2.4 have three components, the feature

observation model P(O|S), the model topology P(SJI), and the pronunciation model

P(UIW). In the context of a typical HMM-based system, the pronunciation model

P(|•W) is simply based on a dictionary lookup and is not weighted. The sub-word

units U are either context-independent or context-dependent phone models. The

sub-phone units S correspond to the individual HMM states. The model topology

P(SU) is typically a 3- or 5- state left-to-right model with optional skip states.

Figure 2-1 illustrates a 3-state model with a skip transition. The weights in the

model topology are the same as the "state transition probabilities" of the HMMs. The

feature observation models P(OJW) correspond to the state observation probability

distribution functions (PDFs) of HMMs.

Figure 2-1: A 3-state left-to-right hidden Markov model with a skip transition from
the first state to the last state.

The feature observation model P(oi I sj) is typically in the form of Gaussian mixture

models (GMMs) because of their modeling power and their computational efficiency.

P(oilsj) with M Gaussian components is expressed as,

M

P(oi sj) = ZCj,k P(oi 9j,k), (2.13)
k=1

where
M

Scj,k = 1. (2.14)
k=1

Each component P(oilgj,k) is a Gaussian density function,

P(1i eoi,))(o N(T W'j 2oij (2.15)P(oij,k) N(j-j,k, Ej,k) (27r)D/2 IEj,k 1/2

where D is the dimension of the feature vector oi.

2.1.3.1 Parameter Learning for Acoustic Models

All the parameters in the acoustic models can be learned from a set of training acous-

tic data. The training problem is typically formulated as an optimization problem,

maximizing an objective function via the acoustic model parameters. Various types

of criteria, such as maximum likelihood (ML) [56], maximum mutual information

(MMI) [70], and minimum probability of error (MPE) [49] have been explored with

various degree of success. ML training assumes a generative model of the underline

stochastic processing. In contrast, MMI and MPE training does not assume a gen-

erative model, and are often referred to as discriminative training methods. Within

the last few years, a number of researchers have reported better performance using

discriminative training methods with the additional cost of algorithmic complexity

and training time [70]. For simplicity in this thesis, we will focus only on the ML

criterion for the multi-stream speech recognition framework. In the future, exploring

the discriminative training methods for the multi-stream recognition framework will

be an interesting research direction.

Let 8 be the set of parameters to be learned and X be the set of training examples.

Let £(X 90) be the likelihood function. The parameter learning problem is converted

into the problem of finding the optimal 0* where,

0* = arg max £(X 0). (2.16)

For the problem of learning parameters for HMMs, this optimization problem can-

not be solved analytically. For these types of cases, one can use the Expectation-

Maximization (EM) algorithm [14]. The EM algorithm is an iterative procedure

which is guaranteed to find a local maximum. In the following two sections, we will

first review how to learn the parameters of GMMs with the EM algorithm, then we

will show how EM is used for training HMM model parameters.

2.1.3.2 EM Training of Gaussian Mixture Models

First we review the EM training of Gaussian mixture models from a set of training

data [2], X = {I1,XX 2,... i *XN}. From Equation 2.13, the set of parameters for a

GMM is e = {Cj,k, lj,k, Ej,k}. The key insight for this problem is that the variable

k is the only unobservable part of the data. The variable k specifies which Gaussian

component the data sample is generated from. If k is known for every training

data sample, then the parameter set e can be easily estimated. The standard EM

algorithm learns the parameter set e from the training data set in two steps [2]. First,

the expectation step (E step) determines the posterior probability that each Gaussian

mixture component could have been generated from each data point. This posterior

probability is expressed as:

P(kin, jk) Cj,k p(lg,k) (2.17)
S1=1 • 1C,k P(Xn9lgl,k)

Second, the maximization step (M step) re-estimates the parameters set based on the

posteriors calculated in the E step. The parameter set {Cj,k, ij,k, Ej,k} is re-estimated

for each mixture component on the entire training set according to the following

equations:
N

ne = w P(k gj,k), (2.18)

n=1

. ,new = P(kZn, gj,k) n (2.19)En=1 P(kIZn, gj,k)

_new n=g1 P(k , gj,k) (,n w n -jl
j,k =k (2.20)

•=1 P(k-, Nj,k

The Gaussian components are initialized by a well-known procedure called "split

and merge" [72]. First, a single Gaussian is learned from all the training data. Over

subsequent iterations, each Gaussian component is split into two, then the GMM is

trained with the EM algorithm, and finally Gaussian components are merged with

others if there are not enough data samples associated with those component. This

is repeated until a desired number of Gaussians is reached. Figure 2-2 outlines the

"split and merge" procedure.

1 C -- minimum required number of data samples belonging to a Gaussian component
2 T -- target number of Gaussians
3 estimate a single Gaussian from all of the training data
4 M +- 1
5 while M < T
6 /* split every Gaussians component */
7 for k -- 1 to M
8 gj,k+M -- gj,k

9 Cj,k+M <- "Cj,k
10 Cj,k +- Cj,k
11 shift /j,k along the direction of the largest variance of Ej,k
12 shift Pj,k+M along the negative direction of the largest variance of Ej,k
13 end
14 M +- 2M
15
16 /* EM train the Gaussian mixtures */
17 Update variables P(k| i,, gj,k), cJw I, P7,k and new according to Equations 2.17-2.20
18
19 /* merge Gaussian components if needed */
20 for k •-- 1 to M
21 if E=1 P(kl, g9j,k) < C
22 remove gj,k from the set of Gaussian components
23 q +- index of Gaussian component closest to this kth component
24 Cj,q 4- Cj,q + Cj,k
25 M -M-1
26 end
27 end
28 end

Figure 2-2: Pseudo-code for the "split and merge" procedure.

A procedure called "K-means clustering" [16] can also be used for the initial-

ization. Since the first step of K-means clustering is a random initialization of the

centroids, the resulting Gaussian mixture models can vary in performance from dif-

ferent initializations. Experimentally the split and merge procedure matches the best

performance of multiple training runs with different K-means initializations. For this

thesis, only the split and merge procedure will be used.

2.1.3.3 EM Training of Hidden Markov Models

Now we will review the EM training of HMMs from a set of training acoustic data

X = {i 1, i2, , I. N } [2, 56]. Let E be the set of parameters for the HMMs. Typically

the training acoustic data is labelled with the reference word transcriptions. The de-

tailed time alignment information between the reference words and the observation

can be manually transcribed. However, this task of manually transcribing the time

alignment information is very labor intensive and very subjective. Usually only the

reference word transcription is supplied for training, and the detailed time alignments

between the acoustic feature vectors and the sub-phonetic units are "implicitly" gen-

erated as part of the training process. In "lightly-supervised" training, the accuracy

requirement for the reference word sequence is further relaxed [42]. In this thesis, we

will only focus on the case where accurate reference word transcription is known for

the training data.

Because the alignments between the acoustic feature vectors and the HMM states

are also unobservable, the EM training of HMMs is a more difficult problem than

the GMM training problem. Let a random variable qt correspond to the HMM state

that observation vector Yt is aligned with. The update equations for EM training of

HMMs parameters are:

new tI 1 P(qt = j, mq,t = k|X, e)
C'k e t 1 1 1 P(qt = j, mqt,t = X,) (2.21)

ke t = EtNlP(qt = j, mq,,t = kIX, O) t
_, new EtN=I P(qt = j, mq,t kfN, e) (i - .-ne)(, kN, (2.22)1 [It=l P(qt = j, mqt,t = kX, O)

Notice that this set of equations is very similar to EM-based GMM training update

Equations 2.18-2.20, except for the term P(qt = j, mqt,t = k X, E). This term eval-

uates the posterior probabilities of the observation feature vector Zt aligning to the

kth Gaussians component of the jth HMM state observation models. This term can

also be decomposed into,

P(qt = j, mq,,t = klX, O) = P(mq,,t = klqt = j, X, 8) P(qt = jlX, 8). (2.24)

The second term of the product denotes the posterior probability of the observation

feature vector It aligning to the jth HMM state observation model. The first term of

the product denotes the posterior probability of observation feature vector it aligning

to the kth Gaussians component. This can be viewed as each observation feature

vector is time aligned with a set of HMM states. This alignment is weighted by the

posterior probabilities, P(qt = j X, E).
The brute force method of calculating the terms in Equation 2.24 is exponen-

tial with the length of the training data. Taking advantage of the independence

assumptions of HMMs, the Baum-Welch algorithm [1] can reduce the computation

complexity to being linear with the length of the training data.

2.1.3.4 Viterbi Training

The parameters of HMMs can also be trained with a procedure call "Viterbi train-

ing" [36]. For every iteration of Viterbi training, each observation feature vector Yt is

aligned to a single HMM state instead of a set of HMM states as in the EM training.

Using a procedure called "Viterbi alignment" [56], the single-best HMM state align-

ment sequence can be evaluated for each sequence of observation feature vectors. The

parameters of the HMMs are similarly updated using Equations 2.21-2.23 except that

the term P(qt = j X, 8) is approximated with an indicator function. This indicator

function evaluates to 1 when j is equal to the state index of the Viterbi-aligned state

for xt, and it evaluates to 0 otherwise. In comparison to the EM training algorithm

for HMMs, the Viterbi training typically converges faster, and is also computationally

less expensive. However, the performance of the Viterbi training algorithm is sensitive

to the choice of initialization models. In contrast, the EM training algorithm is less

sensitive to the initialization model and can be trained with a flat initialization model.

For frame-based speech recognizers, the EM-based training algorithm [14, 57] has been

shown to have a smoother convergence property than the Viterbi training [57].

2.2 Segment-based Automatic Speech Recognition

In the previous section, we reviewed the standard probabilistic formulation for the

frame-based approach using HMMs, as well as the acoustic and language models and

the associated training and decoding algorithms. In this section, we will highlight

aspects of the segment-based system that is different from the frame-based approach.

2.2.1 Features

Unlike frame-based features, the features in segment-based ASR systems are com-

puted on time intervals that are not necessarily equal. Two different types of feature

vectors for the segment-based approach have been developed, namely segment features

and landmark features [27]. The segment features are computed from the portion of

the speech waveform belonging to a hypothesized phonetic segment, and the landmark

features are computed from fixed-size waveform intervals centered at landmarks. The

landmark feature framework is motivated by the belief that acoustic cues important

for phonetic classification are located at acoustic landmarks corresponding to oral

closure (or release) or other points of maximal constriction (or opening) in the vocal

tract [65]. The segment feature framework promotes flexible modeling of phonetic

segments without the conditional independence assumption imposed by HMMs. Fig-

ure 2-3 illustrates examples of frame-based, landmark, and segment features. The

segment and landmark features can be used individually or jointly for modeling the

dynamics of the acoustic observations.

F1 F2 F3 F4 F5 F6 F7 F8

t t t
B1 B2 B3

Figure 2-3: Examples of frame-based, landmark, and segment features. The feature
vectors, F1, F2, ... , F8, are the framed-based which are sampled at fixed-size in-
tervals. The landmark feature vectors, B1, B2, B3, and B4 are sampled at variable
size intervals. The segment feature vectors, S1, S2, S3, and S4, each spanning two
landmark features.

2.2.2 Segmentation Network

A segment-based ASR system either implicitly or explicitly hypothesizes segmenta-

tions of the speech waveform, although SUMMIT typically uses explicit segmentation,

especially for real-time performance. It is worth noting that the segmentation is

not simply a single sequence of non-overlapping segments; rather it is a network of

segment sequences, which allows multiple segmentation sequences to be encoded to-

gether. Figure 2-4 shows an example of a segmentation network used by SUMMIT

recognizer. The segmentation network can be computed directly from acoustics [59]

or using "segmentation by recognition" where a phone graph is produced by a reduced

set of acoustic phone models. Sainath and Hazen have recently developed a new algo-

rithm for computing segmentation network based on sinusoidal model of speech that

are more robust to noise. [60] The use of network of segmentation paths reduces the

accuracy requirement of the algorithm for hypothesizing the segmentation paths, thus

increasing the robustness of the overall segment-based system. Frame-based HMM

ASR systems do not generate a segmentation network. The frame-based approach

can be viewed as using an implicit fully-connected segmentation network.

It is clear that when the segmentation network can be computed "correctly,"

the segmentation network can reduce computation and improve the word error rate

(WER). However, a "correct" segmentation network can be difficult to obtain. This

thesis will attempt to answer the question of whether the use of a segmentation

Figure 2-4: Graphical output from the SUMMIT segment-based ASR system. The top
two panels display the speech waveform and corresponding spectrogram, respectively.
The third panel shows the computed segmentation network consisting of hypothesized
phonetic segments. The highlighted segments form a single segmentation path, which
is also the segmentation path the decoder found to have the highest score. The fourth
panel shows the hypothesized phone sequence aligned to the highlighted segmentation
path from the previous panel. The fifth panel shows the corresponding hypothesized
word sequence.

network is beneficial.

2.2.3 Landmark Models

The segment-based landmark models are a generalization of the acoustic models for

frame-based feature vectors. These two types of acoustic models differ in two aspects.

First, the observation feature vector for landmark models is not limited to a fixed-

frame-rate feature vector, but is rather sampled non-uniformly. Whether uniformly

sampled or not, it is important to note that in both types of systems all the input fea-

ture vectors are the same on different segmentation paths. Second, the segmentation

network in segment-based systems constrains the search space, whereas HMM-based

system do not. The segmentation network constraint can be relaxed, so that it is

exactly a fully connected network like HMMs. We will address how the probabilistic

framework is modified to deal with these two major differences in Section 2.3.3.

2.2.4 Segment Models

From Figure 2-3, it is clear that the segment feature sequences on different segmen-

tation paths can be different. This is one of the fundamental differences between the

segment models and the frame-based HMMs. The term P(W, 0) in Equation 2.4

assumes that all observation sequences 0 to be compared are the same regardless of

the segmentation paths. Both "antiphone" modeling and "nearmiss" modeling [7, 27]

have been developed to address this. For brevity, only "antiphone" modeling is de-

scribed here. "Nearmiss" modeling is described in detail in [27]. In "antiphone"

modeling, instead of scoring only the segment features on the segmentation path,

on , the segments off the segmentation path, Ooff, are also scored. To simplify com-

putation, the algorithm uses a single "antiphone" model, to score all the off-path

segments. The conditional independence between on-path segment features and off-

path segment features given a word sequence is also assumed. The term P(W, 0) in

Equation 2.4 becomes,

P(W, O) = P(dIV)P(W) (2.25)

= P(Oon0off 1W)P(W) (2.26)

= P(OonWI,)P((off|1b)P(W) (2.27)

= P(on IW)P(off) P(tonl P(W) (2.28)

P(O0 O 10t= K P(I), (2.29)P(donl)
where w represents the non-lexical unit. For a phone-based system, the lexical units

are phone-level units. In this case, the non-lexical units do not correspond to any

phone-level units. K = P(-off b)P((Ion ^), is constant for the same set of segment

observation vector, 0 = on U doff. Thus, Equation 2.4 becomes,

* = arg max P(o P(i), (2.30)
f P(Oon I)

and the term P(OIS) in Equation 2.9 becomes P(ol) where s represents "non-

segment" units. Note that with "antiphone" modeling, the calculation is limited to

the observation on the segmentation path, Oon. The computation of "antiphone" is

only slightly more complicated.

2.2.5 Viterbi Training of Segment-based Models

The baseline segment-based system uses Viterbi training for learning the parameters

of the segment-based acoustic models [27]. The use of segment-based features and

segmentation networks complicates the probabilistic modeling because they alter the

sample space of all possible segmentation paths and the feature observation space.

Viterbi training avoids these complications by only learning from the single best forced

alignment with a given initial model. It is important to note that EM training was

used for the segment-based recognition systems in [15, 53]; however these systems do

not have the same difficulties from their feature vectors and segmentation network.

In these studies the feature vectors are uniformly sampled, as in a typical frame-based

recognition system. The segmentation networks are also similar to those of a frame-

based system, an implicit fully-connected segmentation network. In this thesis, we will

develop a common probabilistic formulation for both the segment-based and frame-

base approaches by an innovative use of the finite-state transducer. The training of

both approaches will be based the EM training algorithm, and the decoding algorithm

will be based on the Viterbi algorithm [23]. Both the training and decoding will allow

more sophisticated modeling, such as a model with more states. This will also enable

us to consider a fusion of segment-based and frame-based processing methods.

2.3 Finite-State Transducers

Finite-state transducers (FSTs) have been shown to be useful in a number of speech

and language processing applications [51]. FST operations such as composition, deter-

minization, and minimization make manipulating FSTs very simple. The algorithms

used for these operations can be "implemented once and used everywhere." An FST

is an extension of a finite-state acceptor (FSA) where the arcs encode an input and

output symbol pair. The individual paths specified by the FST represent mappings

between the input and output label sequences. In general, the length of the input

and output sequences can be different because labels can be empty.

When each arc is also associated with a weight or a score, it is commonly referred

to as a weighted FST (wFST) in the literature. In this thesis, we will ignore this

distinction, and interchangeably use FST and wFST to denote a weighted finite-state

transducer. The interpretation of the weights on the arcs depends on how they are

manipulated algebraically, and the algebraic structure is a semiring. This will be

discussed in detail in Section 2.3.1.1.

Mohri, et al. have demonstrated a traditional HMM-based speech recognizer

using FSTs [51]. Hetherington have successfully utilized FSTs to specify various

constraints for the SUMMIT segment-based speech recognizer [33]. FSTs have also

been successfully used for other speech and language processing applications, such as

speech synthesis and natural language parsing and tagging [37].

In the remaining of the section, we will first formally define FSTs and semirings.

In Section 2.3.2, we will discuss the probabilistic interpretation of FSTs, including

the FST operations needed to convert a joint probability transducer to a conditional

probability transducer. In Section 2.3.3, we illustrate how various constraints are

represented by FSTs in a typical speech recognition systems.

2.3.1 Formal Definition of FSTs and the Semiring

2.3.1.1 Weight Semirings

A weight semiring 1 K = (K, @, 0, 0, T) defines the set K containing the weights, the

operators E and 0, with the identity elements 5 and 1. The operators E and 0 are

both communicative and associative, for all a, b, c E K, a ED b = b ED a, a 0 b = b 0 a,

(a @b) 0 c = (a ® c) @ (b ® c), and a ® (be c) = (a ® b) @ (a ® c). The identity

elements 0 and I have the following properties, for all a E K, a ED = a, a 1 = a,

a®0=0 [41, 51].

Two semirings commonly used within speech and language applications include

the real semiring (R, +, x, 0, 1) and the tropical semiring (IR U oc, min, +, 00, 0). The

real semiring, abbreviated here (+, x), can be used to represent probabilities directly,

where we take the product of probabilities in series and the sum of probabilities in

parallel. The tropical semiring, abbreviated here (min, +), can be used to represent

negative log (i.e., -log) probabilities where we take the sum of -log probabilities in

series and the minimum, or most probable, -log probability in parallel. The (min, +)

tropical semiring corresponds to how scores are typically manipulated in a traditional

Viterbi dynamic programming search.

2.3.1.2 Weighted Finite-State Transducer2

A weighted finite-state transducer (wFST) T over the semiring K is defined by a tuple

T = (E, Q, Q, E, i, F, A, p) where E is the input alphabet, Q is the output alphabet, Q

is the finite set of states, E is the finite set of transitions, i is the initial state where

i E Q, F is the set of final states where F C Q, A is the initial weight associated with

the initial state i, and p is the final weights function, p : f E F -+ R.

A transition t is defined by a tuple, t = (p[t], n[t], lilt], lo[t], w[t]). The transition t

is an arc from the source state p[t] to the destination state n[t] with the input label

1Unlike the algebraic structure ring, a semiring may not contain the additive inverse in the set.
For all a E K and a P -a 0, -a E K is not always true. A semiring can be thought as a ring
without negative elements.

2The formulation is adapted from [51].

Figure 2-5: An example weighted finite-state transducer. The input alphabet is a, b,
c, d, e. The output alphabet is i, j, k. There are three states, labelled 0, 1, 2. The
initial state is 0, and the set of final state is 2. The arcs are each labelled with input
label : output label / weight. There are a total of five possible paths represented by
this FST. The path with the state sequence 0, 2 has the highest weight which maps
the input sequence c with the out sequence with the weight of 0.5.

of li[t], output label of 1o[t], and weight of w[t].

A set of N consecutive transitions connecting the initial state and a final state

forms a permissible path (or simply path), written 7 = t1t2 .'. tN, with p[ti] = i,

n[tN] E F, and for all j = 1, 2, -.. N - 1, n[tj] = p[tj+l].

The input label sequence associated with path 7r (or simply input sequence) is

li[w] = 4i[tli[t]l[t ... li[tN]. Similarly, the output label sequence associated with path

7r (or simply output sequence) is ,lo[7] = lo[t1lo2[t 2] ... l[tN]. It is important to note

that since an input or output symbol can be e, representing the "empty" symbol, the

input and output sequences associated with the same path can have different lengths.

Figure 2-5 illustrates an example weighted finite-state transducer.

The semiring K specifies how the weights in the wFST can be manipulated. The

0 and e operators are used to combine weights in series and parallel, respectively.

The path weight for the path 7T is w[Tr] = A 0 w[tl] 0 w[t 2] ... ' w[tN] 0 p(n[tN]).

The path weight for a set of paths is w[r, 7, 2, ... , 7rN] = w[T 1] (w[w 2] ' ... (WT[7N].

2.3.2 Probabilistic Interpretation of Weighted FSTs

The weighted FST specifies a weighted mapping between the input and output label

sequences. The FST weights can have a probabilistic interpretation. With an appro-

priate choice of the semiring, the probabilistic interpretation of the FST weights can

be maintained with FST operations, such as composition, e-removal, etc.

2.3.2.1 Marginal, Joint, and Conditional Probabilities

Let X and Y be random variables representing the input and output label sequences

of an FST, respectively. The weights in FST can represent the marginal probabilities

P(x) and P(y), the joint probability P(x, y), or the conditional probabilities P(xly)

and P(ylx).

Let Tx,y denote a joint probability FST. It is important to note that ($X, Tx,y =

1. With the (+, x) semiring, it is sufficient to have all the weights leaving individual

states sum to 1.

Let Tx and Ty denote the marginal probability FSTs of the input and output

label sequences respectively. The joint probability FST Tx,y can be marginalized

with FST operators, namely a projection operation followed by the determinization

operation:

Ty = det(projecty(Tx,y)) , (2.31)

projecty(.) is the projection operation which replaces all the input labels with their

corresponding output labels on individual arcs. Similarly, projectx(.) replaces all the

output labels with their corresponding input labels on individual arcs. The operator

det(-) determinizes the FST such that there is only one path for any distinct input

label sequence. Since the input and output labels for Tx and Ty are identical, they

are really weighted FSAs. The determinization (and included c removal) is important

so that the marginal FST is properly specified. With det(.), there is at most one path

for any given y, with the determinization having performed the necessary G sum. It

is important to note that it is not always possible to determinize a cyclic weighted

FSA [51], and thus it is not always possible to compute a marginal FST from a joint

FST. However, we have yet to encounter this situation in practice.

Let Txly denote the conditional probability FST. It is important to note that

(• Txly = 1 for all y or @y Tylx = 1 for all x. These conditions can be tedious

to verify. It is typically easier to satisfy these conditions by the familiar Bayes' Rule

Probabilistic Equivalent FST Operations

P(y) = Ex P(x, y) Ty = det(projecty(Tx,y))

P(xly) = P(x, y)/P(y) Tx 1y = Tx,y o [Ty]- 1

P(x, y) = P(xly)P(y) Tx,y = TxiY o Ty

Table 2.1: Manipulations of marginal, joint, and conditional FSTs and their proba-
bilistic equivalent.

P(xjy) = P(x, y)/P(y) with the FST equivalent:

TxIY = Tx,y o [Ty] 1 , (2.32)

where [.]-1 replaces every non-0 transition and final weight w by its reciprocal T-l 1w.

For the (+, x) semiring this reciprocal is 1/w, and for the (min, +) semiring it is -w.

Given a conditional probability FST Tx1y and marginal probability FST Ty, we

can compute the joint probability FST as:

Tx,y = Tx 1Y o Ty (2.33)

as illustrated in Figure 2-6. Figure 2-6 shows various FSTs representing joint, con-

ditional, and marginal probabilities. Note that the topology of the conditional FST

Txiy in (b) is different from the topology of the joint FST Tx,y in (a). In general the

topology of a given joint distribution FST differs from the topology of its correspond-

ing conditional distribution FST. Furthermore, some FST topologies are not able to

support arbitrary conditional probability distributions due to 6 outputs.

Table 2.1 summaries the FST operations used for manipulate among marginal,

joint, and conditional FSTs and their probabilistic equivalent.

2.3.2.2 Cascade of FSTs

Consider a cascade of FSTs Wx,z = Tx= y o Uyvz o Vz. Define W(x, z) to be the a
sum over the weights of all paths through Wx,z with input sequence x and output

sequence z, and define T(xly), U(y z), and V(z) to be analogous E sums for the FSTs

Txly and UYiz and finite-state acceptor (FSA) Vz, respectively. From the definition

(a) Tx,y

(b) Ty

(c) Tx Y

Figure 2-6: Example FSTs in the (+, x) semiring: (a) Tx,y representing joint prob-
ability P(x, y), notice that all the arcs leaving from state 0 and state 1 sum to 1
respectively. (b) Ty representing marginal probability P(y). Ty is computed from
the Tx,y using the equation Ty = det(projecty(Tx,y)). Instead of 5 distinct paths in
Tx,y, there are only 4 distinct paths in Ty because the state sequence 0, 1, 2 and the
state sequence 0, 2 share the same output sequence of j. It is worthy to note that all
the arcs leaving from state 0 and state 1 sum to 1 respectively. (c) Txly representing
conditional probability P(xly). Txly is computed using Txly = Tx,y o [Ty]-l. Notice
that probabilities of the two paths, the state sequence 0, 2, 3 and the state sequence
0, 3, sharing the same output sequence j sum to 1.

of weighted composition we have:

W(x, z) = 3 T(xly) 0 U(ylz) 0 V(z) . (2.34)

If Wx,z, Txlv, Uylz, and Vz represent probabilities in the real semiring (+, x), then

W(xlz) = P(xlz), T(xly) = P(xly), U(ylz) = P(ylz), and V(z) = P(z). With the

conditional independence assumption P(xly, z) = P(xly), Equation 2.34 becomes the

familiar chain rule:

P(x, z) = P(xly)P(ylz)P(z) .

For the tropical semiring (min, +) with -log probabilities, Equation 2.34 yields the

following approximation:

log P(x, z) - max [log P(xly) + log P(ylz) + log P(z)]

This is analogous to the approximation made by a traditional Viterbi dynamic pro-

gramming decoder when it considers best paths rather than summing over all paths.

It is important to note that for a cascade of FSTs to chain together to represent a

probability such as P(w, z) above, the intermediate FSTs must represent conditional

probabilities as do Txly and Uylz in this example.

2.3.3 FSTs for Automatic Speech Recognition

2.3.3.1 FST Cascade for Recognition

In an example segmental speech recognition system [27], constraints such as the acous-

tic model, model topology, context dependency, phonological rules [10, 25, 32], lexicon,

and language model are all represented by weighted finite-state transducers (FSTs).

Specifically, these constraints are represented by FSTs A, M, C, P, L, and G, re-

spectively.

The acoustic model A associates acoustic feature vectors with sub-phone units,

and the weights on A are functions of acoustic feature vectors and sub-phone units

(typically, these functions are Gaussian mixture models). For frame-based HMM

systems, the FST A represents a linear sequence of frame-based feature vectors. Sim-

ilarly for segment-based landmark features, they can also be represented as a linear

sequence. For other features such as segment features where a directed acyclic graph

is needed, they can also be represented by an FST. Thus, the acoustic model A can

be used to represented both types of features: linear sequence features or directed

acyclic graph features. The FST A may be implicitly represented in recognizer.

The model topology FST M currently used by SUMMIT is different from that of

an HMM. In summary, the segment-based SUMMIT ASR system implemented with

FSTs is a very flexible framework. It can be easily configured to implement an

HMM by appropriately altering the FSTs A and M. M can be weighted, and the

weights are typically called state transition weights. Figure 2-7 illustrates the different

configurations of FST M using for landmark models, segment models, and HMM. The

three configurations are illustrated in sub-figure a), b), and c) respectively.

The context dependency C is used to describe the phonetic context of phone units

used for the acoustic model. Some example types of the context dependencies are

context-independent phones, diphones, triphones, or clustered versions of these. In

this thesis, we used the decision-tree based clustering similar to the one describe in

[52]. C is typically unweighted.

The phonological rules P can be optional used in this framework. Whether the

usage of phonological rules improves the recognition performance is still an open

question. P is typically unweighted. In Chapter 3, we will describe an algorithm for

training the weights for P from training data and demonstrated that a weighted P

can improve the overall recognition performance.

The lexicon L is converted from the baseform dictionary. Since some words can

have more than one pronunciation associated with them, L can also be weighted. In

the most common systems, L is however typically unweighted. G is the language

model as described in Section 2.1.1.

With these FSTs, the joint probability in Equation 2.8 has an FST equivalent,

P(S , W, P(,)) = P(SIU) - P(U71If) P(W-)

I M o(CoPoL)o G I I
AoMoCoPoLoG= A o M o(CoPoL) o G

(2.35)

The recognition problem of Equation 2.6 is thus converted to the equivalent problem

of searching for the best path in AoMoCoPoLo G. MCPLG = MoCoPoLo G

is independent of the input utterance to be recognized, so it is typically cached for

computational reasons. A o (MCPLG) composition is really performed implicitly

during the decoding search.

s(a): a

t(alb):alb

Al:E

AO:E
S A3:A A4:E

A2:E

(c)

Figure 2-7: Illustration of the model topology FSTs M. (a) is used by the current
SUMMIT landmark features, (b) is used by the current SUMMIT segment features, and
(c) is for a 3-state HMM with skip transitions.

2.4 Summary

In this chapter, we have given a brief introduction to automatic speech recognition for

both frame-based and segment-based approaches. We have highlighted the differences

between two approaches and have explained the challenges to construct an unified

framework for both approaches. We also formally introduced the weighted finite-

state transducer, formulated a probabilistic interpretation of finite-state transducer

weights, and showed how probabilities on the FST arcs can be manipulated to main-

tain the probabilistic interpretation. Finally, we constructed the typical probabilistic

formulation for automatic speech recognition using the weighted FSTs.

In the coming chapters, we will develop the unified framework for both frame-based

and segment-based systems with an innovative use of the finite-state transducer, and

then we will extend this unified framework for the multi-stream recognition using

multi-tape finite-state transducers.

Chapter 3

EM Training of FST Weights

In the previous chapter, we have shown how FSTs are used for specifying a weighted

mapping between input and output sequences and how the weights can be manip-

ulated as probabilities. In practice, the appropriate weights for the FST are often

unknown and need to be assigned. When the number of arcs in the FST is small,

experts with significant domain knowledge are able to assign the weights manually. In

most cases, manually assigning FST weights can require a significant amount of effort.

Often, a set of training data that relates to the FST's input and output symbols is

available. In this chapter, we extend the well-known Expectation Maximization (EM)

algorithm [2, 14] to the problem of learning FST weights from a set of training data.

In this chapter, we present a novel FST weight training algorithm for generic FSTs.

Eisner concurrently developed a similar FST weight training algorithm [20,21]. This

new algorithm expand the existing repertoire of FST operations such as composition

and N-best search.

First in Section 3.1, we present the novel method that learns weight for arbitrary

FSTs using the EM algorithm. In Section 3.2, we apply the proposed algorithm to

the problem of learning pronunciation weights for a speech recognizer. This work was

previously presented in [30, 64].

3.1 EM Weight Training

We pose the FST weight training problem as an optimization problem, maximiz-

ing the likelihood of the training data by optimally assigning the FST weights. A

similar algorithm for training weights for FSTs was developed by Eisner concur-

rently [20, 21]. Eisner's algorithm makes use of a novel "expectation semiring". For

the "isolated training" and "training with cascade" problems presented in the follow-

ing sections 3.1.1 and 3.1.2, Eisner's algorithm is equivalent with the algorithms pre-

sented in this chapter except for some additional memory and computation required

for the "expectation semiring". With the additional memory and computation for the

"expectation semiring", Eisner's algorithm is also able to learn FST weights of FSTs

X and Y jointly from training pairs corresponding to the input and output of X o Y.

Our algorithm however does not handle this case. It may be possible to extend our

algorithm to handle this case in the future.

In Section 2.3.2, we discussed how some FST topologies are not able to support

arbitrary conditional probability distributions due to e outputs. For this reason, we

chose to train a joint distribution FST using EM and afterwards convert it to a

conditional distribution FST using Equation 2.32 if required.

In the following two subsections, we will describe the EM training algorithm for

FSTs in detail. First, we will describe the more straightforward version of the algo-

rithm where the two random variables associated with the training FST are directly

observable, i.e. the training data is a set of input and output sequence pairs of the

training FST. Second, we will extend the algorithm to the case where the input and

output sequences are not directly observable.

3.1.1 Isolated Training

In this simpler version of the EM training of FST weights algorithm, a set of joint

input/output sequence pairs (xi, yi) is given as training data for the joint probability

FST Tx,y. The goal is to assign the weights for Tx,y so to maximize the joint

likelihood of the training data set (xi, yi). Figure 3-1 illustrates the setup of this

to be trained

-- Xi -- TX ,Y Yi

Figure 3-1: Illustration of FST Tx,y with paired input/output training sequence pair
(xi, Yi).

training problem.

We use the EM algorithm [14] to train a joint probability model for an FST Tx,y.

For a given joint input/output sequence pair (xi, yi), multiple paths through Tx,y

may be permitted. We initialize the weights of Tx,y such that for each state, all

leaving transitions are equally likely. For the initialization step, the final weights of

the final states are also treated as leaving transitions from the states. These final

weights are also initialized before the training. We use the (+, x) semiring for the

weights to represent probabilities directly during the EM training, and if desired

convert trained weights to the (min, +) semiring to represent log probabilities after

training. Finally, if we require a conditional probability model, we convert the joint

FST to its corresponding conditional FST using the method of Section 2.3.2.1.

During the expectation step of each EM iteration, for each input/output sequence

pair (xi, yi) in the training corpus, we compute the expected number of times each

transition in Tx,y is traversed as follows:

1. Compute Ti = xi o Tx,y o Yi, essentially the part of Tx,y supporting input

sequence x and output sequence y. Ti may contain more than one path.

2. Normalize the weights in Ti such that probabilities of all paths sum to 1.

3. Update the expected transition counts for Tx,y that correspond to transitions

in Ti.

For the maximization step, we convert the transition and state final counts to a

joint probability distribution by normalizing counts so that the total weights of all

transitions (and state finality) leaving each state is 1. To allow the trained joint dis-

tribution to generalize to unseen input/output sequences that it accepts, we typically

apply a floor to all counts so that transitions are not assigned zero probabilities.

Note that by construction, the probabilities of all the paths in Tx,y sum to 1 both

before the expectation step and after the maximization step. Both the initialized Tx,y

before the expectation step and the resulting Tx,y after each maximization step are

joint probablities of symbol sequences in X and symbol sequences in Y. In step 1 of

the expectation step, we compute Ti which contains only the set of paths in Tx,y that

are compatiable with both the input sequence xi and the output sequence yi. The

composition of Ti with xi on the left and yi on the right computes this set of paths.

The weights of the Ti arcs are the same as the weights on the corresponding arcs in

Tx,y. The FST Ti is not processed by any other FST operations such as optimization

or determinization so that the correspondence between the arcs of Ti and Tx,y can

be maintained easily. This correspondence is needed in step 3. The training pair xi

and yi are here assumed to be a single sequence of symbols. In general, both xi and

yi can be finite state networks since finite state networks can be readily represented

by FSTs.

Since the FST Ti contains only a subset of the paths in Tx,y, all paths in Ti typi-

cally sums to less than 1. The goal in step 2 is to convert Ti into an FST representing

the conditional probabilities of input sequences in Xi given output sequences in Yi.

This is accomplished by normalizing the weights in Ti such that the path probabil-

ities do sum to 1. Specifically, the weights of arcs with the same starting state are

normalized by the sum of these arc weights.

In step 3, the accumulators, one per each arcs in Tx,y, are updated with the

corresponding normalized arc weight in Ti. As stated earlier, the correspondence

between the arcs in Ti and Tx,y are maintained during the step 1 and 2 for the easy

of step 3. Note that all three steps of the expectation stage are performed one-by-one

on each training pair.

Both the expectation steps and the maximization step are performed iteratively

until the weights in Tx,y converges. After each iteration, the total likelihood of the

to be trained

-projectx(W,oSx)--. 4projecty/Uz o Z)-

Figure 3-2: Training FST Txly within the FST cascade Swlx o TxlY o UYiz with paired
input/output training sequence pair (wi, zi), where the weights for FSTs Swjx and
Uylz are known. This training within an FST cascade is equivalent to the isolated
training problem with appropriate operations on the training pair.

training data computed with the resulting Tx,y is guarenteed to improve until it

reachs a local maxima.

3.1.2 Training Within Cascade

We have outlined how to train an isolated joint FST from example pairs of direct

input and output sequences. It is also possible to train a FST in the middle of a

cascade such as Swlx o Tx o Uz. Figure 3-2 illustrates the setup of this training

problem. In this case, we may wish to train Txly from example sequence pairs

(wi, zi). A straightforward way to accomplish this is to compute the weighted FSAs

xi = projectx(wi o Swlx) and yi = projecty(Uylz o zi). These FSAs represent all

possible input and output sequences (x, y) for Txly compatible with the given (wi, zi).

Then, xi and yi FSAs can be used as in Section 3.1.1.

3.2 Experiments and Results

To test the FST EM training algorithm, we apply the algorithm to the problem of

learning pronunciation weights. With phonological rules and multiple phonemic pro-

nunciations, the pronunciation graph for spontaneous speech can have high branching

factors. Pronunciation weighting has been shown to be beneficial for segment-based

speech recognition [67]. In [67] within-word pronunciation weights were ML estimated

from training examples. Here we experiment with learning various pronunciation

weights on phonological rules and phonemic pronunciations via the proposed FST

EM algorithm.

3.2.1 Task

For the recognition task, we chose to use a weather information domain for the exper-

iment data [73]. The training set consisted of 116K utterances, totaling 105 hours of

speech. The acoustic model employed 1,573 clustered diphone models using mixtures

of diagonal Gaussians, with a total of 35K component Gaussians. The test set con-

tained 1,711 utterances with 9,659 words, totaling 1.6 hours of speech. The decoding

dictionary consisted of 2,014 words, covering the test set. Bigram and trigram class-

based language models were used in the first pass and the second pass respectively.

Both models were trained with 236 hand-crafted class definitions and transcriptions

of the training set and 2,661 utterances containing out of training vocabulary words.

In the baseline recognition configuration, the context dependency FST C, the

phonological rules FST P, and the lexicon FST L were unweighted FSTs, all weights

are 0 in the (min, +) semiring (i.e., 1). The phonological rules FST P specifies a

many-to-many mapping between phone sequences and phoneme sequences. Due to

multiple alternative pronunciations for the same word, the lexicon FST L also specifies

a many-to-many mapping between phoneme sequences and words. The language

model G was a weighted FSA, and the weights were imported from a separately

trained n-gram. The baseline recognition word error rate (WER) was 9.4%. There

is no need to assign weights to C because it represents a one-to-one mapping from

phone sequences to their corresponding sequence of context-dependent labels. We

suspected that training the weights of P and L would decrease the word error rate.

The FST EM algorithm detailed in Section 3.1 enabled learning weights for P and L

without implementing custom training methods.

To learn the weights, we first computed the "reference phone labels" on the train-

ing set with baseline acoustic models and the baseline U with unweighted P and L.

For simplicity the one-best "reference phone labels" were used in place of a phone lat-

U WER Rel. Red.
CoPoLoG 9.4% -

Co tr(P) oLo G 9.0% 4.3%
CoPo tr(L) o G 8.8% 6.4%

C o tr(P) o tr(L) o G 8.7% 7.4%
Co tr(P o L) o G 8.7% 7.4%

Table 3.1: Recognition results and relative reduction (Rel. Red.) in WER for various
pronunciation weight training configurations. The operator tr() denotes the weights
of the FST were trained with the FST EM training algorithm. The size of the first
four FST cascades are the same, and the size of the last one is different since P and
L are composed together first.

tice. Together, the "reference phone labels" and the reference word transcription on

the training set formed the example sequence pair (xi, zi) in Section 3.1.2 needed for

EM training. For each experiment, we first trained a joint FST, then we computed the

corresponding conditional FST using Equation 2.32. Because decoding in the speech

recognizer was done via the (min, +) semiring, we also evaluated Equation 2.32 with

the same semiring, so that the resulting conditional FSTs would contain at least one

input sequence with a path weight of 0 (i.e., i) for any possible output sequence. The

usage of the (min, +) semiring ensures that regardless how many input sequences

correspond to the same output sequence, the input sequence with the highest proba-

bility always has a path weight of 0. With this property, the output sequences with

many alternative input sequences are not penalized unnecessarily. We also tried to

evaluate Equation 2.32 via the (+, x) semiring which does penalize output sequences

with many alternative input sequences, and the WER increased.

The results of training various pronunciation weights were summarized in Table 3.1

and described in more detail in the following subsections. For the purpose of fair

comparison, we used the same beam pruning parameters for all the conditions.

3.2.2 Training Phonological Rules P

The baseline recognizer uses 168 hand-crafted phonological rules that map 63 "phone-

mic" input symbols to 71 "phonetic" output symbols [32]. Each rule is in the form

It states that phoneme ¢ with left input context of A1, A2,..., Am and right input con-

text P1, P2, i ...*, Pm can be mapped to a regular expression of phones, 4. Additionally,

0 has the capability to specify output (surface) context constraints. "<(}" and "> }"

are used for left and right output context constraints respectively. The rules apply

to both within-word and cross-word phoneme sequences. All the pronunciation rules

can be found in Appendix B. For example, one rule for flappable /t/ is expressed

by':

{VOWEL} t {VOWEL} = dx I tcl t.

This rule only applies to intervocalic /t/'s. In this case, /t/ can be mapped to a flap

[dx] or [t] closure, [tcl], followed by a [t] release. The weights associated with this rule

would model how often an intervocalic /t/ is flapped.

P has about 800 states and 12,000 transitions. To speed up training, we de-

composed P into a cascade of three FSTs, P = S o R o I, where both S and I repre-

sented deterministic mappings between input and output sequences. Thus, learning

weights on R alone is equivalent to learning weights on P in whole. R contained only

249 states and 884 transitions. After EM training R, and building a new U with

C o S o tr(R) o I o L o G, where tr(R) denotes the conditional probability FST R after

EM training with data. This new recognizer with trained P, tr(P), obtained a word

error rate rate of 9.0%, a relative reduction of 4.3% from the baseline.

3.2.3 Training Phonemic Pronunciations L

L represents the phonemic pronunciations of words. L has 5,542 states and 8,312

transitions. The training procedure learned relative frequencies of the different pro-

nunciations which were used by the training data. The phonemic pronunciations in

'All the symbols used for phonemes and phones are based on the ARPAbet, described in Ap-
pendix B. Here we use the convention that phonemes are enclosed in "/ /" and phones are enclosed
in "[]".

training L were not shared between similar words, e.g., the paths for the word "rain"

and the word "raining" are not shared. Thus, this learning process only trained word-

dependent phonemic pronunciation weights. The new recognizer with tr(L) achieved

a WER of 8.8%, a relative reduction of 6.4% from the baseline.

3.2.4 Training P and L Separately

In the two previous subsections, we trained weights for P and L separately. We can

use both of them simultaneously by constructing U with an FST cascade using both

tr(P) and tr(L), C o tr(P) o tr(L) o G. The WER obtained using this new U was

8.7%, better than using either tr(P) or tr(L) alone, but only slightly.

3.2.5 Training P o L

Both P and L have relatively few branching points that need to be trained. To in-

crease the number of parameters to be learned, we chose to train word-dependent

pronunciation weights by composing P with L, (i.e. P o L). The resulting P o L

contains 14,428 states and 127,113 transitions, which was significantly bigger than

the size of P or L. EM training to obtain the joint probability FST required only

slightly more computation than training either P or L alone. The size of U with

either tr(P) or tr(L) was similar to the baseline U. However, the U with tr(P o L)

had 50 times more transitions than the baseline U because the marginal distribution

FSA increased in size dramatically. The marginal FSA which models word sequences

learned a complicated model with long range dependencies. After projection of the

joint probability FST, 27,467 transitions out of 127,113 of the resulting FSA were E

transitions. The determinization (including E removal) of the marginal distribution

FSA dramatically increased its size to nearly 6 million transitions. The resulting U

size actually increased to 20 million transitions. Clearly, the application of Equa-

tion 2.32 to compute the exact conditional may be computationally impractical, and

an approximation may be necessary for larger FSTs. Despite the increased number of

parameters in Po L, the WER achieved was the same 8.7% achieved by tr(P)o tr(L).

3.3 Summary

We have presented a novel method to train FSTs directly via the EM algorithm in

this chapter. The method operates on any generic FST, even those with C transitions.

Because some FST topologies are not able to support arbitrary conditional probability

distributions due to c outputs, we chose to train a joint probability FST first, then

compute the corresponding conditional probability FST from the trained joint FST.

We applied the EM training of FST weights for the pronunciation weighting prob-

lem in the weather information task. By learning pronunciation weights on P, L,

and P o L with the FST EM algorithm, we showed that WER can be reduced. To

our knowledge, this is the first application of an FST training algorithm. In our ex-

periments, weights on word-dependent phonemic pronunciations reduced WER more

than weighting phonological rules. However, a trained pronunciation rules P has the

advantage that it can provide pronunciation weights for unseen words. This property

is desirable because it can provide some degree of vocabulary-independent pronuncia-

tion weighting. In the future, we plan to address this issue by training syllable-based

pronunciation weights and also automatically learning pronunciation rules [63].

Since Equation 2.32 does not guarantee that the resulting conditional probability

FST will be similar in size to the joint probability FST, there will be cases where

the exact application of Equation 2.32 is impractical, e.g., P o L. To overcome this

problem, different methods to approximate the marginal FST might be needed. Recall

that the "reference phone labels" are computed using U. We plan to experiment

with iteratively computing new "reference phone labels" based on the U with trained

pronunciation weights. Training the pronunciation weights in this iterative way might

reduce word error rate further.

To our knowledge, the other known FST EM training algorithm was concurrently

developed by Eisner [20, 21]. The application of this algorithm for the problem of

pronunciation weight training is the first successful use of this type of algorithm.

The FST EM algorithm can have many applications other than pronunciation weight

learning. It has also been used in an FST-based speech synthesis system [61]. To

facilitate wide use of this algorithm, we have included this as part of an open source

FST toolkit [33].

Chapter 4

EM Training of Acoustic Models

4.1 Introduction

In Section 2.3.3, we described how the acoustic model can be represented by a con-

ditional probability FST Aoslss. It is important to note that unlike the FSTs we

discussed in Chapter 3, the arc weights on Aoslss are not simply numbers, they are

actually functions of both the input and output labels.

Acoustic models of speech recognition systems specify the likelihood of an ob-

servation feature vector sequence for a proposed sequence of sub-phone units. The

parameters for the likelihood functions are typically learned from a set of training

data with EM training or Viterbi training. Since there is no existing generic training

operations for acoustic models represented by FSTs, the parameters for the acoustic

models are typically learned outside the FST framework then imported in. In this

chapter, we extend the EM FST weight learning algorithm for the FSTs where the

arc weights are functions. This generalization enables the training of the acoustic

model represented by FSTs directly. This new algorithm is an extension of the novel

FST weight learning algorithm for FSTs where the arc weights are simply numbers

presented in Chapter 3.

4.2 EM Weight Training of Acoustic Models

The EM training of acoustic models consists of two steps. First, the "expectation"

step (or E step) computes the posterior probabilities, -y,(i) defined as:

-yn(i) = P(qn = il, A) Vi = 1,2,...,K, (4.1)

where the random variable qn is equal to integer i when the observation o, belongs

to the i th acoustic model, 0 is a sequence of N observations, {l, 02, ... ,ON) , A is

the parameter set for the current acoustic models, and K is the number of acoustic

models. The posterior, 7,(i), is the probability that nth observation belongs to the ith

acoustic model. Second, the "maximization" step (or M step) will train observation

probability density functions (PDFs) with the posterior-weighted observations for

each acoustic model. In the following sections, we will describe the details of these

two steps.

4.2.1 Computation of the Posterior Probabilities

To compute the posterior probabilities, we can employ the standard equation using

the forward probability, an(i), and backward probability, 3n(i) [2, 34],

n(i) = (i)(i) (4.2)
Ej=(i) 1 an n(i)(i)'

where an(i) and ,3(i) are defined as,

a,(i) = P(0102 ... on, qn = ilA), (4.3)

in(i) = P(On+1On+ 2 . . .ONjqn = i, A). (4.4)

Let W be the linear FST representing the sequence of reference words, W. Given a

sequence of observations, oi, and its corresponding reference word sequence, W, one

can construct an FST, Z, that specifies all possible mappings between each observa-

tion, oi, and each state variable qn. We refer to the FST Z as the training lattice.

Similar to the FST operations used in Section 3.1.2 for training FST weights within

an FST cascade, the training lattice FST Z can be computed by,

Z = oi o Ao projectI(M o Co Po L o L W). (4.5)

The term projectI(M o C o P o L o W) on the right-hand side is an acceptor for the

(possibly infinite) sequences of sub-phone units implied by the word sequence, W. As

described in Section 2.3.3, FSTs M, C, P, and L represent various constraints used

by the recognizer. The training lattice Z is computed for each training utterance. By

construction, all input label sequences of the training lattice are the same as the linear

sequences oi. The forward and backward variables a,(i) and f,3(i) can be computed

on the network specified by Z. Finally, yn(i) can be computed from an(i) and 0,(i)

according to Equation 4.2.

1 Compute training lattice Z using Equation 4.5
2 Compute the forward variable using Equation 4.3
3 Compute the backward variable using Equation 4.4
4 Compute the posterior probabilities using Equation 4.2

Figure 4-1: Outline for computing the posterior probability for each training utter-
ance.

4.2.2 Training Observation PDFs from Posterior-Weighted

Feature Vectors

To train GMMs from posterior-weighted feature vectors, the above procedure needs

to be modified slightly. Let W = {wl, w2 , ... , WN} be the posterior probabilities

associated with the data set X. Note that the w, variables are the same as the ny(i)

from Section 4.2.1. Equation 2.17, used for the E step, needs to be modified to take

into account the posteriors. Specifically, Equation 2.17 becomes,

P(kl, k) k Wk) (4.6)

71

The rest of the procedure and equations remain unchanged except that the algorithm

goes over all the data instead of only data labeled by Viterbi search.

4.3 EM Training for Frame-based and Segment-

based Acoustic Models

In the typical frame-based HMM system, there is no segmentation network which

constrains the mapping between observation vectors and acoustic models. However,

in a segment-based ASR system, the segmentation network does constrain the possi-

ble mappings between observations and acoustic models. The segmentation network

constraint can be represented by an FST. We recall that the FST A in Equation 2.35

encodes the set of mappings between sequences of observation vectors and the sub-

phone state sequences. We can incorporate the segmentation network constraint into

Equation 2.35 by treating A as the composition of two FSTs, As oAM, where the FST

As represents the segmentation network constraint with the output symbol "#p" for

marking phonetic landmarks, and the FST AM simply translates the output symbol

"M" into the set of all possible sub-phone states. The FST A with the segmenta-

tion network constraint has smaller branching factor than without the segmentation

network constraint. Figure 4.3 shows a sample segmentation network, and its corre-

sponding FST representations for landmark features and segment features, As.

The EM training of frame-based acoustic models simply follows the steps described

in the previous section. For the EM training of segment-based acoustic models, the

segmentation network constraint needs to be taken into account. Specifically, the

FST A in Equation 4.5 needs to be replaced by As o AM for the training lattice

computation, This is the key difference between EM training for frame-based models

and for segment-based models.

F1 F2 F3 F4 F5 F6 F7 F8

f t t t
B1 B2 B3 B4

(a)

0 B1:Mb B3:Mb 43M

(b)
Sl:MS I I 2 S2:Ms

o0 S3:Ms S4:MS 3 4
5 E 6

(c)

:#p E:#p E:#p E:#p E:#p E:#p :#p E#p
(3) Mb 5 PF2:Mh 5 P3 Mh 5 F4:Mh 5 F5:Mh 5 F6:Mh 5 l 7:Mh 5 F8:Mh

(d)

Figure 4-2: Illustration of a sample segmentation network and its corresponding FST
representation. Here only the FST As is shown since FST AM simply translates the
output symbol Mb, Ms, Mh into the set of all possible sub-phone states. The seg-
mentation network in (a) contains four phonetic segments with four landmark feature
vectors, B1, B2, B3, and B4, and four segment feature vectors, S1, S2, S3, and S4.
The feature vectors, Fl, F2, ... , F8 are the corresponding fixed frame-rate feature
vectors using by HMMs. (b) shows the corresponding FST As for landmark features
with two identical input sequences, BIB2B3B4, and the symbol Mb represents the
set of all landmark models. The symbol #p denotes phone landmark locations. (c)
shows the corresponding FST As for segment features with two different input se-
quences each with two segments, S1S2 and S3S4, and the symbol Ms represents the
set of all segment models. (d) shows the corresponding FST As for a frame-based
HMM. Since the symbol #p in (d) does not provide any constraint, the size of the
corresponding A = As o AM is typically bigger than that of segment-based models in
(b) and (c). It is important to note the all the input sequences for landmark models
as illustrated in (a) are the same, where the input sequences for segment models as
illustrated in (b) can be different.

4.4 Experiments

4.4.1 The Phonebook Task

We applied the new EM training algorithm on the segment-based landmark models

for the PhoneBook task [54]. The PhoneBook telephone-based corpus consists of read,

isolated words from a vocabulary of close to 8,000 words. In the baseline systems the

landmark models were trained with the Viterbi training algorithm [46]. As defined

in [46], we focused on the more difficult task of the "large" set containing about

80,000 training utterances and 7,000 test sentences, with a decoding vocabulary of

8,000 words.

The baseline word error rate (WER) on the training is 4.3%, and on the test is

9.9%. This baseline is with landmark acoustic models only. We are focused on EM

training of the landmark models here, so we will only compare with the results of

landmark models.

4.4.2 EM Training of Landmark Models

Training Method # Params Training WER Test WER

Viterbi 1.55M 4.3% 9.9%
EM 1.64M 2.7% 9.4%

Table 4.1: Word error rates (WER) of segment-based recognizer training using Viterbi
training and EM training on the training set and test set.

Table 4.1 summarizes the results of WERs of the baseline systems and of EM

trained models. The EM trained acoustic models achieved a relative error reductions

of 37% on training, and a relative error reductions of 5% on test. The WER improved

significantly on training, but on test the improvement was much smaller.

Although the WER improvement on the test set is small, EM training has a

desirable advantage over Viterbi training. Viterbi training requires an initial set of

acoustic models for forced alignment of the training data, whereas EM training is

bootstrapped with flat initialization models-mixtu-res with single zero-mean unit-

variance Gaussian components. The performance of Viterbi trained acoustic models

is thus dependent on the quality of the initial models. Since the initial models are

typically learned from additional data, the implicit training set is arguably bigger than

the stated training set. More importantly, in some cases the initialization required by

Viterbi training is difficult to obtain. For example, when Tang et al. experimented

with a two stage recognition system in which the first stage is a recognizer using a

reduced phone set [68], the requirement of good initialization models limited the types

of reduced phone sets to be a many-to-one mapping of an existing recognizer's phone

set. Because EM training does not require any pre-trained initial acoustic model, the

set of reduced phone set are not limited. However, EM training is slower since it has

to iterate through the training data a number of times. On the PhoneBook task, EM

training is about ten times slower than the Viterbi training baseline.

4.5 Summary

In this chapter, we have extended the EM training algorithm for FST weights to

EM training for acoustic models that can be represented by FSTs. Since we can

represent both frame-based and segment-based acoustic models as FSTs, this training

algorithm completes the common framework for both frame-based and segment-based

speech recognition systems. With this common framework, one can use the same

generalized algorithms for training and decoding of frame-based or segment-based

speech recognizers.

This common framework enables a direct comparison of the frame-based and the

segment-based approaches. We have preliminarily explored the effect of the segmenta-

tion network on the overall systems performance. For example, with a less constrained

segmentation network, and Viterbi trained duration models, we achieve a PhoneBook

test WER of 7.6%, which we believe is the lowest reported result on this task. This

result also suggests that the "standard" SUMMIT acoustic segmentation algorithm for

generating the segmentation network is too restrictive. While the resulting segmenta-

tion network improves the decoding time, it is doing so at the expense of recognition

error rate.

Training and Test WERs VS. Training Iterations
1

0 10 20 30 40 50 60 70 80 90

Iteration Number

Figure 4-3: Training and test WERs as a function of training iterations. The upper
curve is the test WERs, and the lower curve is the training WERs. The WERs of
100.0% from the first iteration is from the flat initialization models. As the training
iteration increases, the number of parameters in the acoustic models also increases.
At the 11 th iteration, the context dependent acoustic models are bootstrapped from
the context independent acoustic models, and the over 20% drop in WER is due to
this increase in the number of model parameters. After a total of 87 iterations, the
training WER converges to 2.7%, and the test WER converges to 9.4%.

We are ultimately interested in exploring the benefits of combining frame-based

and segment-based acoustic modeling. In the coming chapters, we will describe a

multi-stream recognition framework implemented using the multi-tape FST. The

multi-stream framework will allow us to investigate the fusion of the frame-based

and the segment-based approaches and to explore a richer class of models.

Chapter 5

Multi-tape Finite-state

Transducers

A multi-tape finite state transducer (mFST) is an extension of a finite state transducer

where the arcs encode a n-tuple of symbols instead of an input and output symbol

pair. The individual paths specified by the mFST still represent mappings between

input and output label sequences. However, the input and output label sequences

themselves can be n-tuples.

When the arcs of the mFST have associated weights, they are commonly referred

to as weighted multi-tape FSTs in the literature. In this thesis, we will ignore this

distinction, and interchangeably use mFST and weighted mFST to denote a weighted

multi-tape FST. Similar to FST, the interpretation of the mFST weights depends on

the particular choice of semiring. The same types of semirings used for FSTs can be

used for mFSTs.

While not as widely used as FSTs, mFSTs have been successfully used for a

number of speech and language applications. Johnston and Bangalore have used an

mFST for multi-model (gestures and speech) parsing and tagging [35]. Kiraz has used

an mFST for nonlinear morphology for Semitic languages [38].

In the remaining of the chapter, we will first formally define mFSTs and the

composition operation for mFSTs. In Section 5.3, we present a novel Viterbi mFST

search algorithm to find the path with the best weight in the composition result of

two mFSTs. The search algorithm is essential for the multi-stream framework for

speech recognition which we will formulate in the coming chapter.

5.1 Formal Definition

A weighted multi-tape FST of n-dimensional tape T (n) over the semiring K is defined

by a tuple T (n) = (E,, Q, E(n), i, F, A, p) where E is the input alphabet, Q is the

output alphabet, Q is the finite set of states, E (") is the finite set of transitions, i is

the initial state where i E Q, F is the set of final states where F C Q, A is the

initial weight associated with the initial state i, and p is the final weights function,

p: f E F -- R.

A transition t(") is defined by a tuple, t(n) = (p[t(n)], n[t(n)], li[t()], 10[t(n)], w [t(n)]).

The transition t (") is an arc from the source state p[t(n)] to the destination state n[t(n)]

with the input label of li[t(ni)] E (E*)ni, output label of lo,[t(no)] E (E*)no, and weight

of w[t(")]. The integers ni and no are the dimensions of the input and output labels

respectively, where n = ni + no.

A set of N consecutive transitions connecting the initial state and a final state

forms a permissible path (or simply path), written 7(n) = t(n n) t (, with p[t)] =

i, n[t] E F, and for all j = 1, 2, ... N - 1, n[t[t)] = p[t+n)

The input label sequence associated with path 7(n) (or simply input sequence) is

l [(n)"] = li[tn"]li[tni)]... li[tN]('"). Similarly, the output label sequence associated

with path .r(n) (or simply output sequence) is lo[r(n)] = lof[tno)]lo[t°no)] ... lo[t()]. It is

important to note that implicitly e E , the symbol in individual tapes of the input

or output sequence can be e, representing the "empty" symbol.

The path weight for the path r(n) is w[7 (n)] = A ® w[t(n)] W (n .w w[t[] 0

p(n[t ()]). The path weight for a set of paths is w[r ••) ,.n) n) w[(n)]

5.2 Generalized Composition

For single-tape FSTs, the composition operation of two FSTs A and B results in

another FST T, T = A o B. FST T has the property that there exists one path 7rT in

T that maps the input label sequence li[7yT] to the output label sequence lo[7aT] if and

only if there exists a path 7rA in FST A that li[7jA] = li[T] and a path 7B in FST B

that li[rB] = o1[7TA] and lo[WuB] = lo[TT]. The weight of the path in T is the 0 product

of the weight w[T7A] in A and the weight w[iFB] in B.

We can generalize the composition operation for mFSTs in the following way.

The generalized composition operation of two mFSTs A (p) and B(q) results mFST

T (n) , T (n) = A (p) o B(q). This generalized composition operation is valid only if the

dimension of the output label of mFST A() , po, is exactly the same as the dimension

of the input label of mFST B (q) , qj. When the condition of Po = qi is satisfied, the

dimension of the input label of T (n) is the same as that of A(P) , ni = pi, and the

dimension of the output label of T (") is the same as that of B (q) , no = qo.

The resulting mFST T (n) has the property that there exists one path 7(n) in T (n)

that maps the input label sequence li[r (n)] to the output label sequence lo [r"n)] if and

only if there exists a path 7(p) in FST A(p) that i [ir)] = li[T(n)] and a path 7) in

FST B (q) that i~[[)i] = lo_[7A] and l0o[7•)] = lo[r(n)]. The weight of the path in T (n)

is the 0 product of the weight w[ir')] in A(p) and the weight w[j(Q)] in B(q).

Depending on the magnitude of Po and qi, this generalized composition operation

can be very memory intensive. Since this operation can be done with an on-demand

(or lazy) implementation, it is often desirable to carry out the composition operation

in this manner. In the next section, we will present a novel Viterbi beam search

algorithm for computing the path with best path weight in a mFST which itself is

the result of a generalized composition of two mFSTs.

1 /* First initialize */
2 PriorityQueue +- initial state of A (p)

3 DPNodes(initial state of A(p)) +- [initial state of B(q)]
4
5 /* Inner Loop */
6 foreach state2 +- pop(Priority Queue)
7 foreach statel +- [statesBackwardReachableFrom(state2)]
8 arcA - arc in A (p) connecting statel with state2
9 foreach DPNode +- DPNodes(statel)
10 foreach arcB +- arcsLeavingFrom(DPNode.state)
11 if arcB is compatible with arcA
12 tmpDPNode.weight = DPNode.weight 0 w[arcA] ® w[arcB]
13 if tmpDPNode in search beam for DPNodes(state2)
14 add tmpDPNode to DPNodes(state2)
15 endif
16 endif
17 end
18 end
19 end
20 propagate E for all DPNodes(state2)
21 PriorityQueue -- [statesForwardReachableFrom(state2)]
22 end
23
24 /* Backtrace */
25 return BestPath +- backtrace start at DPNodes(final states of A(p))

Figure 5-1: Pseudo-code for the Viterbi mFST search algorithm.

5.3 Viterbi Beam Search

Let mFST T(") be the generalized composition result of two mFSTs A(P) and B(P),

T (n) = A (P) o B(q). Here we generalize the Viterbi beam search used for single tape

FST for the mFST case. The algorithm uses the standard Viterbi beam search to

find the best single path in T (n) . It is worth noting that the mFST T (") does not have

to be explicitly computed. The generalized composition, A () o B(q), is computed on

demand as part of the search.

Figure 5-1 shows the pseudo-code for the algorithm. We first initialize the priority

queue with the initial state of A() . The priority queue stores a list of states in At()

that we "pull towards" during the search. DPNodes is an array indexed by the

topologically sorted states of A (p) . Associated with each element of DPNodes array is

a hash of states in B (q) , and a score is associated with each hash element. The score

stores the score of the current best theory associated with a pair of states, the state

in A(p) and the state in B (q) . We initialize the DPNode at the initial states of A (p)

and B(q) with a score of 0.

After initialization, we loop through all the states in A(p) . For each of these states

(state2 in the pseudo-code), we identify all the states (statel in the pseudo-code) that

are backward reachable from state2. Note that the statel and state2 forms a valid

transition in A(P) . For each of these transitions, we then identify all the transitions in

B (q) , new DPNode will be created for the DPNode array at statel if it survives the

score- and count-based beam criterions.

At the end of the loop, the search will be at the final states in A (p) and B(q) . Back

trace information in the DPNodes provides the information for the best path in the

generalized composition result of two mFSTs A(p) and B(4) .

5.4 Summary

In this chapter, we have formally defined multi-tape FSTs and the composition oper-

ation for multi-tape FSTs. We also presented a novel Viterbi mFST search algorithm

to find the path with the best weight in the composition result of two mFSTs. In the

coming chapter, we will formulate the the multi-stream framework for speech recog-

nition with mFSTs, and will also demonstrate the use of the Viterbi mFST search

algorithm developed in this chapter for the the multi-stream framework.

Chapter 6

Multi-stream Speech Recognition

with mFSTs

6.1 Introduction

In the previous chapter, we generalized the FST formulation to multi-tape FSTs. We

also presented associated algorithms for generalized composition and Viterbi beam

search. In this chapter, we use the mFST extension to construct a new approach to

general multi-stream speech recognition. The multi-dimensional input labels of the

mFST transitions specify the acoustic models to be used for the individual feature

streams. An additional auxiliary field is used to specify the degree of asynchrony

allowed among the feature streams. A novel aspect of this approach is that individual

feature streams can be either linear sequences or directed acyclic graphs (DAGs).

Traditional fixed- or variable-rate frames are examples of the linear sequence type of

feature. Segment features on a hypothesized phonetic segment graph are an example

of the DAG type of feature.

We first show the importance of modeling asynchrony in a multi-stream frame-

work in Section 6.2. We then present the new multi-stream framework in detail in

Section 6.3. In Section 6.4, we demonstrate the types of applications made possible

by this new multi-stream framework with two examples. The first example involves

combining the variable-rate landmark and segment features used in our baseline seg-

mental speech recognizer. The second example combines standard HMMs with land-

mark models. In Section 6.5 we report on experiments with this new framework: first,

combining landmark models and standard HMMs on the Wall Street Journal speech

recognition task; second, performing an audio-visual speech recognition experiment

using the AV-TIMIT task.

6.2 Experiments for Combining Frame-based and

Landmark Features

In Section 1.2.2, we discussed that the phone boundary locations hypothesized by

HMM-based systems and segment-based landmark system can be very different.

HMM-based systems are optimized to maximize recognition performance, not nec-

essarily the accuracy in the phone boundary locations. Toledano et al. have re-

ported that the phonetic alignments preferred by the context-dependent or context-

independent HMMs are not consistent with human transcribed phone boundaries [48,

69]. In a segment-based landmark system, the phone boundary locations are hypothe-

sized first, before the computation for the landmark features. Anecdotally, landmark-

based phone boundary locations are better aligned to the human transcribed phone

boundaries than the ones hypothesized with HMMs.

We carried out a set of experiments to test whether it is important to accommo-

date this difference when combining these two types of features. The experiment was

carried out on the WSJ corpus, specifically the standard H2-C2 task on the Eval'92

test set [40, 52]. For training, we used the WSJ SI84 corpus. The training set con-

tained 14 hours of speech with 7,138 sentences. The language model is a bigram with

a decoding vocabulary of 5,000 words. The Eval'92 test set has 330 sentences with

5,353 words with 0.29% OOV rate.

For this task, the WER for the baseline HMM system is 9.5%, and the WER for the

baseline landmark-based system is 10.4%. We first computed the "reference" phonetic

boundary locations by aligning speech waveform with its corresponding reference word

Speech
Waveform

Single Best
Word Sequence

Figure 6-1: Flow chart for the "special" decoder which uses a set of permissible
phonetic boundary locations.

transcription. We obtained the reference phonetic boundary locations for both the

HMM-based and landmark-based systems. We will refer to these as forced HMM

phonetic boundaries and forced landmark phonetic boundaries. We constructed a

special decoder where the search space is additionally constrained by a sequence

of permissible phonetic boundary locations. With this decoder, all hypotheses are

guaranteed to be compatible with the input sequence of phonetic boundary locations.

Figure 6-1 illustrates how this "special" decoder is used. When this decoder was used

with forced HMM phonetic boundaries and HMMs models, we were able to verify

that the WER is the same as the baseline system. The same was found to be true

for the landmark models with forced landmark phonetic boundaries. However, when

we used this decoder with forced HMM phonetic boundaries and landmark models

and with forced landmark phonetic boundaries and HMMs, both decoding results

degraded relative to their respective baselines. Table 6.1 summarizes these results.

These results highlight the difference in phonetic boundary locations preferred by

these two different systems. Thus, when building a system combining both these

types of features, one needs to accommodate this difference in phonetic boundary

locations. If not dealt with properly, this difference can potentially have an adverse

effect on the overall system. Therefore, allowing some degree of asynchrony between

HMMs and other models may be critical to successful integration with a multi-stream

framework.

Type of Acoustic Model Type of Phone Boundaries WER
HMM None 9.5%
HMM Forced using HMMs 9.5%
HMM Forced using landmarks 10.5%

Landmarks None 10.4%
Landmarks Forced using Landmarks 10.4%
Landmarks Forced using HMMs 12.6%

Table 6.1: Study of the compatibility of phonetic boundary locations preferred by
HMMs and landmark models.

6.3 Multi-stream, Multi-tape FST Framework

6.3.1 FST Cascade with mFSTs

In Section 2.3.3, we described how FSTs are used for the recognition problem with

one input feature stream. In this section, we generalize this to arbitrary F feature

streams allowing asynchrony using a multi-tape FST representation. Recall that for

the single feature stream case, the recognition problem is equivalent to the problem of

searching for the best path in AMCPLG, where AMCPLG = A o M o C o P o L o G.

In this equation, all the FSTs are single-tape FSTs.

By generalizing some of the FSTs in the cascade AMCPLG to be mFSTs, we can

use a similar framework for the problem of recognition with an arbitrary number of

feature streams. Figure 6-2 illustrates this generalization. mFST A (p) represents the

acoustic models with multi-stream feature vectors. The dimensions of the input and

output labels of the mFST A (P) are both F, pi = Po = F. mFST M(q) represents the

model topology for the multi-stream feature vectors. The dimension of the input label

of the mFST M(q) is F, qi = F, and the dimension of the output label is 1, q, = 1.

FSTs C, P, L, and G remain single-tape as before.1 In the next two subsections, we

will describe how the mFSTs A (p) and M(€) are formulated, then we will discuss how

we modified the Viterbi search for the FST cascade AMCPLG when A (p) and M(q)

are multi-tape FSTs.

1C, P, and L can also be represented with mFSTs, but for simplicity we will only focus on the
case where A (p) and M(q) are mFSTs.

A(p) o M (q) o(CoPoLoG)

mFST mFST FST

Figure 6-2: Illustration of the multi-stream framework using mFSTs. Notice that
both A and M are mFSTs, and FSTs C, P, L, and G are single-tape.

6.3.2 Multi-Stream Acoustic Model mFST A(p)

For a single-stream system, the acoustic model FST A associates a sequence of features

with a sequence of acoustic models. On each arc of the acoustic model FST, a single

feature vector is associated with a single acoustic model, and the weight on the arc

represents the acoustic likelihood score of the feature vector for the given acoustic

model. The semiring of the single-tape acoustic model FST is defined such that the

path weight is equal to the total likelihood of a sequence of feature vectors for the

associated sequence of acoustic models.

For a system with F feature streams, the multi-tape FST A(p) specifies how the

multiple streams of feature vectors are associated with their corresponding acoustic

models. On the input side, the mFST also specifies the set of all possible sequence

of multi-stream feature vectors. The asynchrony among the features can be encoded

in a number of ways. The mFST A (p) can contain all permissible transitions among

all the possible sequence of multi-stream feature vectors. Instead, we chose to encode

the feature-space asynchrony in two separate components. First, the mFST A (p) is

encoded with all possible transitions in the F-dimensional feature stream space where

all possible asynchrony among the feature streams are permitted. Second, the degree

of asynchrony permitted among the feature streams are encoded as part of "time

predicts" in the mFST M (q) which will be discussed in detail in the next section. We

chose this approach because the mFST in the first component can be represented

compactly and the "time predicts" offers high degree of flexibility for specifying the

asynchrony among the feature streams.

The mFST A(P) representing all possible transitions in the F-dimensional feature

stream space where all possible asynchrony among the feature streams are permit-

ted can be expressed compactly. In Section 2.3.3, we showed how individual feature

streams either of a linear sequence type or directed acyclic graph type can be rep-

resented with single-tape FSTs. Let Ai be the single-tape FST representing the ith

feature stream. Figure 6-3 illustrates example single-tape FSTs for both the linear

sequence feature and directed acyclic graph feature. Note that the states in the FSTs

are associated with the time stamp of the corresponding feature vectors. Since each

feature vector is uniquely identifiable with the corresponding time, each single-tape

FST can be thought of as a graph containing potential time transitions. Given the

single-tape FSTs Ai used for the individual feature stream, the mFST A(p) encoding

with all possible transitions can be thought as the "cross-product" of all the individ-

ual feature stream single-tape FSTs. This presentation is very large if it is encoded

explicitly. The number of states in this network is equal to the products of the num-

ber of states of the individual Ai feature stream FSTs. For a given hyper-state j in

this "cross-product" mFST, let ti(j) be the number of arcs leaving the corresponding

the states in the individual Ai feature stream FSTs. The number of arcs leaving the

hyper-state j is equal to II= (ti(j) + 1) - since any combination of one or more

(up to F) feature transitions are permitted. Fortunately the "cross-product" can be

expressed implicitly linear with the number of feature streams.

The mFST A(p) is simply represented by the set of single-tape FSTs Ai, and

we generate the "cross-product" on-the-fly as needed. Since each feature vector is

uniquely identifiable with their corresponding time, each mFST state in this "cross-

product" mFST can be uniquely identified by a F-tuple (t(1), t(2),..., t(F)), represent-

ing the current time (or state) across all feature streams. We call such a time F-tuple

a "hypertime" t. With this "cross-product" mFST, the feature streams are allowed

to de-synchronize arbitrarily with each other in time. The amount of synchrony can

be specified in M (q) by the use of time predicates, which we will discuss in more detail

in the next subsection. On the output side of the mFST, individual acoustic models

are associated with the corresponding feature vectors. The weights on the arcs of the

mFST is chosen to be a linear combination of the individual acoustic models scores.

(1) (1) (1) (1)

1 2 3 4
t t)t

f(2)

f(2) f3(2~ f(2)O

(t (2) (2) (2)1 2 (b) 3 4

Figure 6-3: Example single-tape FST representing both a linear sequence type feature
and a directed acyclic graph type feature. (a) represents an example type of linear se-
quence features, variable-rate landmark features. Each FST state represents a feature
vector f0) and time t41) associated with each feature. (b) represents an example type
of the directed acyclic graph features, the segment features. Each FST arc represents
a feature vector f 2) associated with a segment, and each FST state is associated with

time t 2) representing the starting time of the segment features associated with the
leaving arcs from the state.

The linear combination weights for the feature streams are computed by optimizing

the recognition performance of the entire system on a development set.

6.3.3 Model Topology mFST M(q)

We make use of a multi-tape FST representation for the model topology with M(q) .

In the single-tape case, the single-tape model topology FST M used for a three-state

HMM specifies the allowable HMM state transitions. In the multi-tape case, the

multi-tape model topology mFST M(Q) also specifies the allowable state transitions.

These state transitions in a F-dimension hyper-state space. The synchronization

among these hyper-states are also specified with the mFST transition labels.

Each transition label of the mFST is in the form

m(1) : m (2) :... : n(F) : p: o / w . (6.1)

The input side of M(q) is multi-tape, where q = F + 1. The first F tapes encode the

acoustic models used for the feature streams. The it h tape of the multi-tape acoustic

model corresponds to the ith feature stream. These first F tapes encode allowable

transitions through the F feature streams space.

The F + 1 th tape, represented by the symbol p, is used for time predicates. The

output side of M(q) is single-tape which specifies the phone-level units, o. w represents

the model transition weights (e.g., -log probabilities). Each m () represents a model

identifier for feature stream f, or E if there is none. p identifies a predicate to be

applied to the hypertime t, controlling the degree of asynchrony (in time, as opposed

to in states) between the feature streams at any given point in the search, or it too

can be E for no predicate. 2

6.3.4 Search

Since the output symbols of M(q) are single-tape, and C, P, L, and G are also

single tape, we can compute the FST cascade MCPLG = M (q) o Co Po Lo G the

same way as if they are all single-tape. The recognition problem for multi-stream

feature vectors is equivalent to the problem of searching for the best path in the

generalized composition between the mFST A(p) and the mFST MCPLG. Here, the

best path is defined to the path with the best associated score. The score is equal

to the sum of the linear combination score of acoustic models used for the feature

stream, the transition weights in the model topology, and the corresponding language

model score. In Section 5.3, we had developed a novel Viterbi beam search for the

generalized composition of two mFSTs. In this section, we will discuss how to apply

this algorithm for this specific case of A(p) o MCPLG.

Figure 6-4 outlines the pseudo-code for this algorithm. To make a transition within

the mFST A(p) , equivalently in hypertime space from tl -- t 2 , the presence of the

m (f) model identifiers constrains the possible hypertime transitions. If m(f) e c (i.e.,

model present for stream f), then feature space f must make a transition: t) > t f)

Otherwise, there will be no transition: t) = t2f). In addition, the predicate p on the

transition must evaluate to true for the destination hypertime: p(t 2) = 1 if a joint

FST and feature space transition is to take place. The predicate could be generalized
2 Figures in this section have been simplified and do not show the o and w components on FSTs.

1 /* First initialize */
2 PriorityQueue +- initial state of A (p) or hypertime (0, 0, ... , 0)
3 DPNodes(initial state of A(p)) +- [initial state of M(0)]
4
5 /* Inner Loop */
6 foreach t2 +- pop(PriorityQueue)
7 foreach tl -- [statesBackwardReachableFrom(t 2)]
8 arcA ý- arc in A(p) connecting tl with t2
9 foreach DPNode -- DPNodes(tl)
10 foreach arcB -- arcsLeavingFrom(DPNode.state)
11 if ((hypertime and model space transitions match)
12 and (t2 satisfies timePredict(arcB)))
13 tmpDPNode.weight = DPNode.weight 0 w[arcA] 0 w[arcB]
14 if tmpDPNode passes score- and count-based pruning for DPNodes(t2)
15 add tmpDPNode to DPNodes(t2)
16 endif
17 endif
18 end
19 end
20 end
21 propagate e for all DPNodes(t2)
22 PriorityQueue -- [statesForwardReachableFrom(t2)]
23 end
24
25 /* Backtrace */
26 return BestPath -- backtrace start at DPNodes(final states of A(p))

Figure 6-4: Pseudo-code for the Viterbi search for the multi-stream recognition frame-
work.

to model the probability of a given degree of asynchrony.

When an FST transition is taken, the score is updated by linear combination of

the log probabilities provided by the individual feature classifiers. Note that this is

a substantial difference from Bourlard et al.'s HMM recombination framework [4],

in which the stream scores are integrated only at synchronization states. Earlier

integration has the potential advantage that different streams can contribute to beam

pruning earlier in the search, though it does limit the possible forms of feature score

combination.

The dynamic-programming search finds the best path through the generalized

composition of the mFST A(p) and the mFST MCPLG. The search starts at the

initial hypertime and proceeds to the final hypertime. The hypertimes are traversed

in lexicographically sorted order. Other orderings of the hypertimes can also be used.

We chose the lexicographically sorted order due to its simple implementation. Beam

pruning is performed at every DPNode as described in Figure 6-4. The beam pruning

is both count-based and score-based. To further prune the search space, we can also

perform beam pruning across all DPNode with the same t(1) in hypertime. The first

dimension of the hypertime, t(1), typically stores the feature with the finest time

resolution.

The acoustic models for the individual features streams are trained separately.

Both the acoustic scores and transition weights of individual acoustic models are

linearly combined for the multi-stream models. The linear combinations are weighted

and the weights are optimized on a development set. In the future, we plan to

investigate training the acoustic models jointly.

6.4 Examples with the mFST Framework

6.4.1 Landmarks and Segments

In Section 2.2.1, we have described the usage of landmark and segment features for

segment-based speech recognition. The landmark feature framework is motivated by

the belief that acoustic cues important for phonetic classification are located at acous-

tic landmarks corresponding to oral closure (or release) or other points of maximal

constriction (or opening) in the vocal tract [65]. The segment features are computed

from the portion of the speech waveform belonging to a hypothesized phonetic seg-

ment, and the landmark features are computed from fixed-size waveform intervals

centered at landmarks. As described in Section 2.2.2, an over-generated phonetic

segmentation network facilitates computation of the landmark and segment features.

Both of these features are derived from the fixed-rate (5ms) MFCC features. The

landmark feature stream is a variable-rate sequence of fixed-length feature vectors.

This is similar to the features used in variable-rate HMMs [5]. Figure 6-5(a) shows

f() f (1) f (1) f(1)1 2 3 4

4t t() t t (1 2 (a) 3 4

2(2)

(2) f(2) f2)O

(2) (2) (2) (2)
1 2 3 (b)

Figure 6-5: 2-stream feature space combining landmark and segment features. Stream
1 in (a) represents variable-rate landmark features, with a feature vector fi(l) and time

(t) associated with each landmark i. Stream 2 in (b) represents the segment features.
Each segment connecting pairs of landmarks, with a feature vector f 2) associated

with each segment j and time t(2) associated with each segment boundary k.

li: :p2

_ t:EP2 :s*p 0

Figure 6-6: Model Topology M() for 2-stream landmark/segment phonetic model
using mFST. The single stream landmark model is a 2-state HMM, It is the transition
model, and 1i is the internal model. The single stream segment model is a 1-state
whole-segment model s.

the FST representation of a landmark feature sequence. The segment feature cannot

be represented by a single linear sequence, but it can be represented by a directed

acyclic graph. Figure 6-5(b) shows an FST representation of the segment features.

The FST states in Figure 6-5 are also augmented with time stamps of the correspond-

ing feature vectors. The time stamps are used by the time predicates in the model

topology mFST.

The single stream landmark model is a 2-state HMM; It is the transition model,

and 1i is the internal model. The internal model 14 can be skipped or used multiple

times. The single stream segment model is a 1-state whole-segment model s. As

described in Section 2.2.4, an "antiphone" model is used for the segment model to ac-

count for the different segment observation sequences along the different segmentation

paths. The landmark models (transition and internal) and segment models are all

context-dependent. At phone boundaries, the landmark and segment feature streams

are fully synchronized in time (i.e., t(1) - t(2)). Our segmental speech recognizer [27]

can use both the landmark and segmental acoustic feature streams jointly. Unlike the

new multi-stream framework with mFST, it does not flexibly integrate other types of

feature vectors. In this section, we present the mFST version of combining these two

features.

Figure 6-6 shows the model topology M(q) for the 2-stream landmark/segment

phonetic model using mFST. Tape 1 in the mFST represents models for the landmark

feature stream, tape 2 represents the models for the segment feature stream, and

tape 3 contains the time predicates used for specifying asynchrony between the two

features.

Predicate pl(t) enforces the degree of asynchrony between the landmark and seg-

ment features permitted at phone boundaries. Here, the time predicate pi (t) is in the

form of It() - t(2) < -T. In the baseline system, the landmark and segment features

are required to be exactly synchronized, i.e., T = 0. In this multi-stream framework

pi allows us to relax this synchrony constraint if needed. Predicate P2 is used to

prevent feature stream 1 from being explored too far ahead of stream 2 unnecessarily.

The time predicate p2(t) is in the form of t(') < max reachable(t(2)) + T, where "max

reachable" holds the maximum finishing time of any segments starting at t (2) . Use

of time predicate p2 improves the efficiency of the search by eliminating dead ends

earlier.

6.4.2 Frames and Landmarks

Figure 6-7 shows the mFST representing the model topology for a 2-stream speech

recognition system combining a 3-state HMM and a 2-state landmark model. Here,

we interleaved the two models so that the partial-phone frame scores and landmark

scores can be integrated as early as possible. Early integration of the scores enables

more effective beam pruning during the search. The configuration shown is not the

only one that is suitable. For example, a full Cartesian product of the individual

hi h2 h3 1i

(a) (b)

hl:E:pi d:1i:Pi h2:E:pl 6:1i Pi h3:E.p1

(c)
Figure 6-7: (a) Model topology a single-stream HMM. (b) Model topology a single-
stream landmark model. (c) Model Topology M(Q) for the 2-stream landmark and
HMM system using mFST. It is a combination of the single-stream FSTs shown in
(a) and (b). Other configurations of the mFST are possible, including a full Cartesian
product. (c) shows the topology used in our experiments.

stream FSTs can also be used. Since there is no additional constraint needed at the

individual landmark model and HMM states, the full Cartesian-product configuration

did not offer any additional advantage with our multi-stream framework.

The time predicate pl(t) is in the form of It() - t(2)1 < 7. This time predicate

permits the frame and landmark streams to be out of sync by up to T, both between

and within phones.

6.5 Experiments

We have experimented with the multi-stream framework on two different tasks. One

is the Wall Street Journal (WSJ) speech recognition task, and the other is an audio

visual speech recognition task on the AV-TIMIT corpus [31].

6.5.1 The WSJ Task

The WSJ corpus consists of read speech of sentences from the Wall Street Journal

newspaper. We chose to do the standard H2-C2 task on the Eval'92 test set [40, 52].

It

For training, we used the WSJ SI84 corpus. The training set contains 14 hours

of speech with 7,138 sentences. The language model is a bigram with a decoding

vocabulary of 5,000 words. The Eval'92 test set has 330 sentences with 5,353 words

with 0.29% OOV rate.

Two baseline systems were used for this WSJ task. The first baseline system is a

standard HMM system. The 42-dimensional feature vector consists of 13-dimensional

MFCCs and the energy, the deltas, and the delta-deltas, and they are computed with

a fixed 10ms frame shift. The 3-state HMM acoustic models have 3,347 clustered

triphone models with 26,742 Gaussians. The word error rate (WER) for the baseline

HMM system is 8.8%. The second baseline system uses a 50-dimensional landmark

feature vector. They are computed at hypothesized landmark locations. The feature

vector can be thought as a variable rate sampling of the acoustic waveform. The aver-

age landmark spacing is approximately 30ms. The baseline landmark acoustic models

had 993 clustered diphone models with 13,496 Gaussians. The WER using the land-

mark models is 10.4%. Two separate reasons probably contribute to the higher WER

of the landmark models. First, the landmark models are diphone models which have

less number of parameters than the triphone HMMs. Second, the acoustic segment

network in some cases do not contain the "optimal" segmentation since using a fully

connected segment network improves recognition performance with increased compu-

tation cost. "Segmentation by recognition" suggested by Chang has demonstrated

improved recognition performance [6]. The goal here is not to construct the best

baseline system possible, but to test whether the novel multi-stream framework can

effectively integrate the feature streams in the baseline systems.

The multi-stream decoder provides a flexible framework to combine these two

baseline feature streams. The multi-tape FST representation of the phone model

used for these two streams is the same one illustrated in Figure 6-7(a).

Table 6.2 summarizes the results in terms of WERs of the baseline landmark

models, HMM models, and their combined models. The combined acoustic models

achieved a WER error rate of 8.0%, which improves from either baseline configurations

alone. A development set was used to optimize the weighting of the landmark and

Acoustic Models Test WER

Landmark Models 10.4%
HMM Models 8.8%
Landmark + HMM Models 8.0%

Table 6.2: Word error rates (WER) for variable-rate landmark models, fixed-frame-
rate HMMs, and their combined models.

20

CT 15
w

10

40 60 80 100 120 140

Degree of Asynchrony (ms)

150

0)
E

100C

=s

50

Figure 6-8: WERs and decode time vs. degree of asynchrony.

- WER
-- - Running Time

"* "m__

-

HMM scores.

The degree of asynchrony allowed in the time predicates has a significant impact on

performance in terms of WER and computation time. In general the landmarks and

the HMM features are not aligned in time, and a strict requirement of all the phonetic

boundaries are synchronized at the same locations will most likely not produce any

complete hypothesis. Figure 6-8 shows how the WER and the computation time

changes as the degree of asynchrony varies. When the asynchrony between the two

streams is at least 95ms (T > 95ms), the WER does not improve and the computation

time increases. The two feature stream need a minimum amount of asynchrony so

a compatible hypothesis can be considered. The computation time increases with

increasing degree of asynchrony because the size of search space increases due to an

increasing number of hypertimes visited.

6.5.2 The AV-TIMIT Task

The multi-stream framework can also be applied to other recognition tasks. Here

we show its use for audio-visual speech recognition on the AV-TIMIT corpus. The

AV-TIMIT corpus is a collection of audio-visual speech data of many speakers read-

ing phonetically rich TIMIT sentences. Along with the speech waveform, the facial

movement of the speakers were also captured in video. The training set consists of

3,608 utterances from 185 speakers, and the test set contains 285 utterances from

other 19 speakers [31].

Two baseline systems were used for this task. The first baseline system was a

segment-based system using both landmark and segment features from audio data

only. The second baseline system was a frame-based 3-state HMM system modeling

only the visual features. The multi-stream system modeled these three feature streams

together.

Table 6.3 summarizes the results in terms of WERs of the baseline speech land-

mark and segment models, visual HMM models, and their combined models. The

visual HMM models alone performed poorly. This is not surprising since the visual

information of the mouth movement contains only partial information of the linguistic

Acoustic Models Test WER
Speech Landmark & Segment 2.27%
Visual HMM Models 96.3%
Speech Landmark & Segment + Visual HMM Models 0.91%

Table 6.3: WERs for speech landmark and segment models, visual HMMs, and their
combined models.

message. The WER of the combined models is the same as reported in [29], where

a custom designed decoder was used for combining the same 3 feature streams. The

decoding speeds of the two decoders were approximately the same.

6.6 Discussion and Future Work

In this chapter, we presented a new framework for multi-stream speech recognition.

The framework takes advantage of the multi-tape FST representation for specifying

the various constraints among the individual feature streams. Asynchrony among the

various feature streams can also be specified with the novel use of time predicates.

Because the degree of asynchrony permitted can significantly change the size of the

search space, good design of the time predications themselves is important to achiev-

ing good decoding performance. The new framework can accommodate a greater vari-

ety of feature types, including fixed-rate and variable-rate sequences of frames, as well

as directed acyclic graphs. In the single-stream mode, both traditional frame-based

HMMs and segment-based systems can be represented. In the multi-stream model,

a great variety of feature types can be integrated. The additional constraint among

the various types of features can potentially improve the overall recognition perfor-

mance. We carried out two experiments using the multi-stream speech recognition

framework in this chapter. One experiment combined a traditional frame-based HMM

with segment-based landmark features for the Wall Street Journal speech recognition

task, while the other experiment combined a landmark model, a segment model, and

a visual HMM for the AV-TIMIT task. Both experiments demonstrated improved

recognition performance over their single-stream baseline experiments.

Many types of features have been shown to be useful for speech recognition, such

as sub-band features and articulatory features [12, 39, 45, 47]. In the future, we plan to

experiment with other types of feature streams with this new multi-stream framework.

In general, however, the size of the search space is exponential in the number of feature

streams. If the decoding is computationally too demanding, a multi-pass decoding

approach may be needed. In this multi-pass decoding approach, a first decoding pass

with a subset of the feature streams generates a phone or word lattice. Using all the

feature streams and the phone or word lattice from the first pass, a second decoding

pass searches for the hypothesis with the best score. Thus far we have focused on

synchronization at the phonetic level. We plan to investigate synchronization at other

levels, such as the syllable level.

100

Chapter 7

Conclusions

7.1 Summary

In this thesis, we have focused on improving the acoustic modeling of speech recog-

nition systems to increase the overall recognition performance by machines. We have

formulated a multi-stream speech recognition framework using multi-tape FSTs. This

multi-stream framework is novel in the following ways:

* The multi-dimensional input labels of the multi-tape FST transitions specify

the acoustic models to be used for the individual feature streams. The topology

of the multi-tape FSTs are used to specify various constraints among the feature

streams.

* In many cases, the asynchrony among the various feature streams needed to

be modeled specifically. An additional auxiliary field as part of the multi-tape

FST transition is used to model the degree of asynchrony among the feature

streams.

* The individual feature streams can be linear sequences such as fixed-frame-

rate features in traditional HMM systems, and the feature streams can also be

directed acyclic graphs such as segment features in segment-based systems.

101

* A Viterbi-based search algorithm has been developed for this multi-stream

speech recognition framework. This algorithm can accommodate any model

topology that can be specified with the multi-tape FSTs.

* In a single-tape mode, this multi-stream framework also unifies the frame-based

HMM and the segment-based approach. Both EM-based training algorithm and

Viterbi-based search algorithm have been developed for this single-tape mode.

In Chapter 6, we used the multi-stream speech recognition framework for an audio-

only and an audio-visual speech recognition task. On the Wall Street Journal speech

recognition task, the multi-stream framework combined a traditional frame-based

HMM with segment-based landmark features. The system achieved word error rate

(WER) of 8.0%, improved from both the WER of 8.8% of the baseline HMM-only

system and the WER of 10.4% of the landmark-only system. On the AV-TIMIT

audio-visual speech recognition task, the multi-stream framework combined a land-

mark model, a segment model, and a visual HMM. The system achieved a WER of

0.9%, which also improved from both the WER of 2.27% of a combined audio-only

landmark and segment baseline system and the WER of 96.3% of a visual-only HMM

system. These results demonstrate the feasibility and versatility of the multi-stream

speech recognition framework.

7.2 Future Directions

7.2.1 EM Training of FST Weights

In Chapter 3, we presented a novel method to train FSTs directly via the EM algo-

rithm. The method operates on any generic FST, even those with e transitions. We

applied the EM training of FST weights for the pronunciation weighting problem.

The application of this algorithm for the problem of pronunciation weight training is

the first successful use of this type of algorithm. The FST EM algorithm can have

many applications other than pronunciation weight learning. It has also been used in

102

an FST-based speech synthesis system [61]. To facilitate wide use of this algorithm,

we have included this as part of an open source FST toolkit [33].

7.2.2 Frame-based and Segment-based Speech Recognition

In Chapter 4, we have extended the EM training algorithm for FST weights to EM

training for acoustic models that can be represented by FSTs. Since we can rep-

resent both frame-based and segment-based acoustic models as FSTs, this training

algorithm completes the common framework for both frame-based and segment-based

speech recognition systems. With this common framework, one can use the same gen-

eralized algorithms for training and decoding of frame-based or segment-based speech

recognizers. This common framework enables a direct comparison of the frame-based

and the segment-based approaches. We have preliminarily explored the effect of the

segmentation network on the overall systems performance. It suggested that the

"standard" SUMMIT acoustic segmentation algorithm for generating the segmenta-

tion network is too restrictive. While the resulting segmentation network improves

the decoding time, it is doing so at the expense of recognition error rate. Improve-

ments for the computation of segmentation network has been recently [59]. Further

comparison between the frame-based and segment-based approaches are needed using

this framework.

7.2.3 Multi-Stream Speech Recognition Framework

In this thesis, we have focused on the framework for multi-stream speech recognition.

The framework can accommodate a large class of multiple feature streams by allowing

the feature streams to be either linear sequences or directed acyclic graphs and by

the use of time predicates on the multi-tape FST transitions. We have demonstrated

that the use of framework through two experimental systems using the framework.

As noted in Chapter 1, the types of feature streams used for speech recognition can

be quite diverse. Much works remain to be done for experimenting with combinations

of these feature streams. So far, we have focused on phone-level and subphone-level

103

features, syllable-level and whole-word-level features should also be considered. As

we experiment with more feature streams, different model structure and different

asynchrony constraints may be needed to achieve optimal performance.

In this thesis, we have not focused on the computational complexity of using mul-

tiple feature streams. In general, however, the size of the search space is exponential

in the number of feature streams. If the decoding is computationally too demanding,

a multi-pass decoding approach may be needed. In this multi-pass decoding approach,

a first decoding pass with a subset of the feature streams generates a phone or word

lattice. Using all the feature streams and the phone or word lattice from the first

pass, a second decoding pass searches for the hypothesis with the best score.

The multi-stream framework presented in this thesis provides a flexible way to

integrate the feature stream during the search. This integration method is typically

referred to as "early integration". It would be instructive to compare this frame-

work with other approaches, such as ROVER, a "late integration" approach. [22) We

did not perform this comparision on the landmark and HMM combination because

ROVER without word confidences requires at least three seperate recognition out-

puts. The performance of combining two recognition outputs with word confidences

using ROVER depends on the quality of the word confidences, the usage of word

confidences can complicate the intepretation of the results. We plan to perform this

comparision when at least three seperate recognition outputs are available.

In Chapter 3, we presented a novel method to train FSTs directly via the EM

algorithm. In Chapter 4, we extended the EM training algorithm for FST weights

to EM training for acoustic models that can be represented by FSTs. Within the

multi-stream speech recognition framework, the acoustic models for the individual

feature streams are trained separately. It should be possible to extend the algorithms

in Chapters 3 and 4 for FSTs to the case of multi-tape FSTs. By doing so, the

acoustic models can be jointly trained. Intuitively, the jointly trained models should

outperform the separately trained models if enough training data is available.

104

7.3 Conclusions

The primary contributions of this thesis are detailed below:

* We formulated a multi-stream recognition framework with a multi-tape finite-

state transducer. This multi-stream framework accommodates multiple streams

of features which can be a mixture of sequential and graph features, and it also

allows controllable asynchrony across the feature streams. We demonstrated

the capabilities on the WSJ task with HMM frame-based features and segment-

based landmark features and on a audio-visual recognition task with HMM

frame-based features and segment-based landmark and segment features.

* We introduced a single-stream recognition framework based on the finite-state

transducer cascade with support for both sequential and graph features. With

the existing beam search and newly developed EM-based training for this frame-

work, it freed the dependency on initialization models for the framework and

enabled direct comparison among various kinds of recognition systems (e.g.,

frame-based and segment-based) supported by the framework.

* We developed a novel EM-based weight training algorithm for learning FSTs

weights from data. We applied this algorithm for the problem of learning

pronunciation weights for the FSTs inside the FST cascade, we showed im-

proved recognition performance with learned pronunciation weights over the

unweighted baseline system.

The most significant contribution of thesis is the unified framework for multi-

stream speech recognition. While there have been previous efforts to use multiple

streams together for recognition, this framework uses the multi-tape FST for flexible

specification of the model topology and asynchrony among the feature streams, and

it can accommodate both linear sequence and direct acyclic graph features. From

two experiment systems, we demonstrated the flexibility and versatility of the multi-

stream speech recognition framework. We have not done extensive experimentation

to optimize the combination of feature streams for specific speech recognition task.

105

With this framework, we have constructed a platform for others to experiment with

multi-stream recognition. We hope that the multi-stream framework will encourage

more researchers to investigate in this direction.

106

Appendix A

Phonetic Alphabet

label description example transcription
[iy] high front tense sweet Is w iy t]
[ih] high front lax Bill [b ih 1]
[ey] middle front tense ate [ey t]
[eh] middle front lax head [h eh d]

[ae] low front lax after [ae f t er]
[er] high central lax r-colored (stressed) bird [b er d]

[axr] high central lax r-colored (unstressed) creature [k r iy ch axr]
[uh] middle central lax (stressed) butter [b uh dx axr]
[ax] middle central lax (unstressed) about [ax b aw t]
[ay] low central tense diphthong kite [k ay t]
[aw] low central lax flower [f1 aw er]

[aa] low back lax hot [h aa t]

[ow] middle back tense rounded goat [g ow t]
[oy] middle back tense rounded diphthong toy [t oy]
[ao] middle back lax rounded bought [b ao t]
[uw] high back tense rounded smooth Is m uw dh]
[uh] high back lax rounded wood [w uh d]

Table A.1: The vowels of the ARPABET phonetic alphabet,
examples. Based on http://www.billnet. org/phon/arpabet.php

with descriptions and

107

label description example transcription
[p] voiceless bilabial stop put [p uh t]
[t] voiceless alveolar stop top [t aa p]
[k] voiceless velar stop crazy [k r ey z iy]
[b] voiced bilabial stop buy [b ay]
[d] voiced alveolar stop dull [d uh 1]
[g] voiced velar stop bug [b uh g]
[m] voiced bilabial nasal mouth [m aw th]
[n] voised alveolar nasal night [n ay t]
[ng] voiced velar nasal sing [s ih ng]

[f] voiceless labiao dental fricative find [f ay n d]
[v] voiced labio dental fricative vine [v ay n]
[th] voiceless dental fricative cloth [k 1 aa th]
[dh] voiced dental fricative clothe [k 1 ow dh]
[s] voiceless alveolar fricative see [s iy]

[z] voiced alveolar fricative zoo [z uw]
[sh] voiceless palato-alveolar fricative cash [k ae sh]
[zh] voiced palato-alveolar fricative leisure [1 iy zh axr]
[ch] voiceless palato-alveolar affricate chicken [ch ih k ih n]
[jh] voiced palato-a;veolar affricate judge [jh uh jh]

[1] voiced alveolar lateral liquid [1 ih k w ih d]
[w] voiced bilabial approximant water [w ah dx axr]
[r] voiced alveolar approximate round [r aw n d]
[y] voiced velar approximant year [y iy r]
[h] voiceless glottal fricative happy [h ae p iy]
[q] voiceless glottal stop kitten [k ih q n]
[dx] voiceless tap (allophone of /t/) latter [1 ae dx er]

Table A.2: The consonants of the ARPABET phonetic alphabet, with descriptions
and examples. Based on http://www.billnet.org/phon/arpabet.php.

108

Appendix B

Pronunciation Rules

Each rule is in the form of

0{1,., 1Aml 0P1, -... Pn) 1 P

It states that phoneme ¢ with left context of A1,..., or Am and right context pl,...,

or pm can be mapped to a regular expression of phones, 0. Additionally, 4 has the

capability to specify output (surface) context constraints. "<{}" and ">{}" are used

for left and right output context constraints respectively. The rules apply to both

within-word and cross-word phoneme sequences.

/* Define the input alphabet */
alphabet {
- _ aa ae ah ah_fp ao aw ax axr ay b bd ch d dd df dh dr eh el
en er ey f g gd hh ih ix iy jh k k- kd 1 m n ng nt ow oy p p-

pd r s sh t t- td tf th tq tr uh uw v w y z zh

};

/* Define the initial and final phones */
/* initial {-}; */
/* final {-}; */

/* Define special rule connection symbols. */

connect axr$ $axr;
connect ax$ $ax;
connect en$ $en;

connect syl$ $syl;
connect dx$ $dx;

109

/* Define the symbols not taking part in rules. */
ignore {#};

/* Define some broad phonetic classes */
DSTOP = {bd dd gd pd td kd tq};
STOP = {b d g p t k p- t- k- tr dr tf df ch jh};
VOWEL = {aa ae ah ahfp ao aw ax axr ay eh

el er ey ih ix iy ow oy uh uw};
VOWEL_NOR = {aa ae ah ahfp ao aw ax ay eh

el ey ih ix iy ow oy uh uw};
VOWEL_NO_Y = {aa ae ah ah-fp ao aw ax axr eh

el er ih ix ow uh uw};
VOWEL_NOW = {aa ae ah ahfp ao ax axr ay eh

el er ey ih ix iy oy uh};
SEMIVOWEL = {1 y w r};

NASAL = {n en m ng};
FRIC = {f th s sh v dh z zh};
// Alveolar & Dental sounds
ALVEOLAR = {en n t t- td tf tr d dd df dr s z th dh};
PALATAL = {sh ch zh jh}; // Palatal sounds
AFFRIC = {ch jh};

/*** Rules for /_/ ***/

/*** Rules for /-/ ***/

{} - {} => - ;

/*** Rules for /aa/ ***/

{} aa {} => aa ;

/*** Rules for /ae/ ***/
{} ae {} => ae ;

/*** Rules for /ah/ ***/
{} ah {} => ah ;

/*** Rules for /ah_fp/ ***/
{} ah_fp {} => ah_fp ;

/*** Rules for /ao/ ***/
{} ao {} => ao ;

110

/*** Rules for /aw/ ***/
{} aw {df dd tf td} => aw [w {dx}>]
{} aw {VOWEL r 1 y hh} => aw [w]
{} aw {} => aw ;

/*** Rules for /ax/ ***/

{f v} ax {n} => ix I ax I syl$;
{s z sh zh th dh} ax {n} => ix I [epi] syl$;

{ALVEOLAR} ax {n} => ix I <{tcl dcl tq} syl$;
{r} ax {n} => (ax I ix) I $axr axr ;
{} ax {n} => ax I ix I <{pcl kcl bcl gcl} syl$;
{f v} ax {m} => ax I [epi] syl$;
{s z sh zh th dh} ax {m} => ix I ax I [epi] syl$;
{ALVEOLAR} ax {m} => ax I ix I <{tcl dcl tq} syl$;
{r} ax {m} => ax I $axr axr ;
{} ax {m} => ax I <{pcl kcl bcl gcl} syl$;
{ALVEOLAR} ax {1} => ax I ix I syl$;
{r} ax {ALVEOLAR PALATAL y} => (ax I ix) I $axr axr
{ALVEOLAR PALATAL} ax {r} => ax I ix I axr axr$;
{y iy ey ay oy} ax {r} => ax I ix I axr axr$;
{ALVEOLAR PALATAL} ax {ALVEOLAR PALATAL y} => ix
{ y iy ey ay oy} ax {ALVEOLAR PALATAL y} => ix ;
{ALVEOLAR PALATAL} ax {} => ax I ix
{y iy ey ay oy} ax {} => ax I ix ;
{r} ax {r} => ax I axr axr$;
{r} ax {1} => ax I $axr axr I syl$;
{} ax {l} => ax I syl$;
{} ax {r} => ax I axr axr$;
{r} ax {} => ax I $axr axr ;
{} ax {ALVEOLAR PALATAL y} => ax I ix
{} ax {} => ax ;

/*** Rules for /axr/ ***/
{} axr {df dd tf td} => axr [r {dx}>]
{} axr {VOWEL 1 y w hh} => axr [r];
{} axr {} => axr ;

/*** Rules for /ay/ ***/
{} ay {df dd tf td} => ay [y {dx}>]
{} ay {VOWEL r 1 w hh} => ay [y]
{} ay {} => ay ;

/*** Rules for /b/ ***/
{VOWEL SEMIVOWEL} b {VOWEL} => bcl [b]

111

{- _} b {} => b ;
{} b {} => (bcl I <{m em pcl tcl kcl bcl dcl gcl}) b;

/*** Rules for /bd/ ***/

{m} bd {} => b I bcl [b]
{} bd {} => bcl [b]

/*** Rules for /ch/ ***/

{- _} ch {} => ch ;
{} ch {} => (tcl I <{pcl tcl kcl}) ch

/*** Rules for /d/ ***/

{- _} d {sh zh y} => d I jh
{} d {sh zh y} => (dcl I <{n en pcl tcl kcl bcl dcl gcl}) (d I jh);
{- _} d {} => d ;
{} d {} => (dcl I <{n en pcl tcl kcl bcl dcl gcl}) d;

/*** Rules for /dd/ ***/

{VOWEL} dd {VOWEL hh} => dcl [d] I dx
{SEMIVOWEL} dd {VOWEL hh} => dcl [d] I $dx dx
{VOWEL} dd {y} => dcl [d I jh] I dx dx$;
{SEMIVOWEL} dd {y} => dcl [d I jh I I $dx dx dx$;
{VOWEL} dd {r w 1} => dcl [d] I dx dx$;
{SEMIVOWEL} dd {r w 1} => dcl [d] I $dx dx dx$
{} dd {en} => dcl (d ax$ I en$)
{en n} dd {y sh zh} => [dcl] [d I jh] ;
{en n} dd {} => [dcl] [d] ;
{} dd {y sh zh} => (dcl I <{pcl tcl kcl bcl dcl gcl}) d I jh];
{} dd {} => (dcl I <{pcl tcl kcl bcl dcl gcl}) [d] ;

/*** Rules for /df/ ***/

{VOWEL} df {VOWEL hh} => dcl d I dx;
{SEMIVOWEL} df {VOWEL hh} => dcl d I $dx dx;
{VOWEL} df {y} => dcl (d I jh) I dx dx$;
{SEMIVOWEL} df {y} => dcl (d I jh) I $dx dx dx$
{VOWEL} df {w r 1} => dcl d I dx dx$;
{SEMIVOWEL} df {w r 1} => dcl d I $dx dx dx$
{} df {} => dcl d ;

/*** Rules for /dh/ ***/

{dh} dh {} => dcl dh I [dh]
{DSTOP FRIC AFFRIC NASAL} dh {} => Edcl] dh ;
{} dh {} => dh ;

/*** Rules for /dr/ ***/

112

{n} dr {} => [dcl] dr
{- _} dr {} => dr ;
{} dr {} => (dcl I <{pcl

/*** Rules for /eh/ ***/
{} eh {} => eh ;

/*** Rules for /el/ ***/
{} el {df dd tf td} => el [1
{} el {VOWEL r y w hh} => el
{} el {} => el ;

/*** Rules for /en/ ***/
{tq td dd} en {} => [$en] en
{} en {} => [$en] en I [$ax]

/*** Rules for /er/ ***/
{} er {df dd tf td} => er [r
{} er {VOWEL 1 y w hh} => er
{} er {} => er ;

tcl kcl bcl dcl gcl}) dr ;

{dx}>]
[1];

I [$ax] ix n ; // en I ax n
ax n ;

{dx}>]
[r];

/*** Rules for /ey/ ***/
{} ey {df dd tf td} => ey [y {dx}>]
{} ey {VOWEL r 1 w hh} => ey [y] ;
{} ey {} => ey ;

/*** Rules for /f/ ***/

{} f {} => f I <{f} ;

/*** Rules for /g/ ***/
{ng} g {} => [gcl] g ;
{- _} g {} => g ;
{} g {} => (gcl I <{pcl tcl

/*** Rules for /gd/ ***/
{ng} gd {} => g I gcl [g]
{} gd {} => gcl [g]

kcl bcl dcl gcl}) g ;

/*** Rules for

{} hh {} => hh

/*** Rules for
{} ih {} => ih

/hh/ ***/

/ih/ ***/

/*** Rules for /ix/ ***/

113

{} ix {} => ix ;

/*** Rules for /iy/ ***/

{} iy {df dd tf td} => iy [y {dx}>]

{} iy {VOWEL r 1 w hh} => iy [y]

{} iy {} => iy ;

/*** Rules for /jh/ ***/

{n} jh {} => [dcl] jh
{- _} jh {} => jh ;
{} jh {} => dcl jh ;

/*** Rules for /k/ ***/
{- } k {} => k ;
{} k {} => (kcl I <{kcl pcl tcl}) k

/*** Rules for /k-/ ***/
{} k- {} => kcl k- ;

/*** Rules for /kd/ ***/
{} kd {} => kcl [k] ;

/*** Rules for /1/ ***/
{df dd tf td} 1 {} => $dx 11 I1 ;
{ax} 1 {df dd tf td} => -1 I $syl el [1 dx$] I 11 dx$;
{ax} 1 {VOWEL r y w hh} => $syl el [1] I 11 ;
{ax} 1 {} => $syl el I -1 ;
{VOWEL r} 1 {df dd tf td} => -1 I 11 dx$;
{VOWEL r} 1 {VOWEL r y w hh} => 11
{VOWEL r} 1 {} => -1;
{} 1 {} => 1 ;

/*** Rules for /m/ ***/

{m} m {} => [m] ;
{ax} m {} => $syl em I m ;
{} m {} => m ;

/*** Rules for /n/ ***/

{ax} n {ax ix} => $syl en I n I nx;
{VOWEL SEMIVOWEL} n {ax ix} => n I nx ;
{ax} n {gd g kd k} => $syl en I n I ng;
{} n {gd g kd k} => n I ng ;
{en n} n {} => [n] ;
{ax} n {} => $syl en I n
{} n {} => n ;

114

/*** Rules for /ng/ ***/

{} ng {} => ng ;

/*** Rules for /nt/ ***/

{} nt {} => n [tcl t]

/*** Rules for /ow/ ***/

{} ow {df dd tf td} => ow [w {dx}>]

{} ow {VOWEL r 1 y hh} => ow [w]
{} ow {} => ow ;

/*** Rules for /oy/ ***/
{} oy {df dd tf td} => oy [y {dx}>]
{} oy {VOWEL r 1 w hh} => oy [y]
{} oy {} => oy ;

/*** Rules for /p/ ***/

{- _} p {} => p
{} p {} => (pcl I <{pcl tcl kcl}) p ;

/*** Rules for /p-/ ***/
{} p- {} => pcl p- ;

/*** Rules for /pd/ ***/
{} pd {} => pcl [p] ;

/*** Rules for /r/ ***/
{df dd tf td} r {ax} => $dx rr I axr$ I r ;
{df dd tf td} r {} => $dx rr I r;
{ax} r {ax} => rr I $axr [r] I axr$;
{ax} r {VOWEL y w 1 hh} => rr I $axr [r]
{ax} r {tf td df dd} => -r I rr dx$ I $axr ;
{ax} r {} => -r I $axr ;
{VOWEL_NO_R 1} r {ax} => rr I axr$;
{VOWEL_NOR 1} r {VOWEL y w 1 hh} => rr;
{VOWEL_NO_R 1} r {tf td df dd} => -r I rr dx$;
{VOWEL_NO_R 1} r {} => -r ;
{th} r {ax} => axr [r] I r I axr$;
{th} r {} => [axr] r;
{} r {ax} => r I axr$;
{} r {} => r ;

/*** Rules for /s/ ***/

{en n} s {en n m ng w r 1 el} => [epi I tcl [t]] s [epi]

115

{en n} s {sh zh} => [epi I tcl [t]] (s I sh) ;
{en n} s {y} => [epi I tcl [t]] (s [epi] I sh)
{en n} s {} => [epi I tcl [t]] s ;
{m ng 1 el} s {en n m ng w r 1 el} => [epi] s [epi] ;
{m ng 1 el} s {sh zh} => [epi] (s I sh) ;
{m ng 1 el} s {y} => [epi] (s [epi] I sh)
{m ng 1 el} s {} => [epil s ;
{} s {en n m ng w y r 1 el} => (s I <{s z}) [epi] ;
{} s {sh zh} => s I sh I <{s z} ;
{} s {y} => (s I <{s z}) [epi] I sh;
{} s {} => s I <{s z};

/*** Rules for /sh/ ***/
{en n m ng 1 el} sh {en n m ng w r 1 el} => [epi] sh [epi]
{en n m ng 1 el} sh {} => [epi] sh ;
{} sh {en n m ng w r 1 el} => (sh I <{sh ch}) [epil ;
{} sh {} => sh I <{sh ch};

/*** Rules for /t/ ***/
{s} t {ax ix} => [tcl t] ;
{- _} t {y} => (t I ch)
{- _} t {} => t ;
{} t {sh zh y} => (tcl I <{pcl tcl kcl}) (t I ch) ;
{} t {} => (tcl I <{pcl tcl kcl}) t

/*** Rules for /t-/ ***/
{s} t- {ax ix} => [tcl t-]

{} t- {} => tcl t- ;

/*** Rules for /td/ ***/
{VOWEL} td {VOWEL hh} => tcl [t] I tq I dx
{SEMIVOWEL} td {VOWEL hh} => tcl [t] I tq I $dx dx
{VOWEL} td {y sh zh} => tcl [t I ch]I tq I dx dx$;
{SEMIVOWEL} td {y sh zh} => tcl [t I ch]I tq I $dx dx dx$;
{VOWEL} td {r w 1} => tcl [t] I tq I dx dx$;
{SEMIVOWEL} td {r w 1} => tcl [t] I tq I $dx dx dx$;
{VOWEL SEMIVOWEL} td {} => tcl [t] I tq ;
{NASAL} td {sh zh y } => tcl [t I ch] I tq ;
{NASAL} td {en} => tq en$ I tcl (en$ I t ax$)
{NASAL} td {} => tcl [t] I tq ;
{s f} td {sh zh y} => tcl (t I ch) tcl] ;
{f s} td {} => [tcl [t] ;
{} td {sh zh y} => (tcl I <{pcl tcl kcl}) [t I ch]
{} td {} => (tcl I <{pcl tcl kcl}) [t] ;

116

/*** Rules for /tf/ ***/
{VOWEL} tf {VOWEL hh} => tcl t I dx ;
{SEMIVOWEL} tf {VOWEL hh} => tcl t I $dx dx
{VOWEL} tf {y} => tcl (t I ch) I dx dx$;
{SEMIVOWEL} tf {y} => tcl (t I ch) I $dx dx dx$;
{VOWEL} tf {1 r w} => tcl t I dx dx$;
{SEMIVOWEL} tf {1 r w} => tcl t I $dx dx dx$;
{- _} tf {} => t ;
{} tf {} => (tcl I <{pcl tcl kcl}) t ;

/*** Rules for /th/ ***/
{th} th {} => tcl th I [th]
{DSTOP FRIC AFFRIC NASAL} th {} => [tcl] th;
{} th {} => th ;

/*** Rules for /tq/ ***/
{} tq {en} => tq en$ I tcl t ax$; // tq {en}> I tcl t {ix}>
{} tq {} => tq ;

/*** Rules for /tr/ ***/

{-_} tr {} => tr ;
{} tr {} => (tcl I <{pcl tcl kcl}) tr ;

/*** Rules for /uh/ ***/
{} uh {} => uh ;

/*** Rules for /uw/ ***/
{ALVEOLAR PALATAL y iy ey ay oy} uw {ALVEOLAR PALATAL y} => ux
{ALVEOLAR PALATAL y iy ey ay oy} uw {VOWEL r 1 y hh} => uw [w] I ux;
{ALVEOLAR PALATAL y iy ey ay oy} uw {} => uw I ux
{} uw {df dd tf td} => uw [w {dx}>] I ux ;
{} uw {ALVEOLAR PALATAL} => uw I ux ;
{} uw {y} => uw [w] I ux;
{} uw {VOWEL r 1 hh} => uw [w]
{} uw {} => uw ;

/*** Rules for /v/ ***/

{} v {} => v I <{v} ;

/*** Rules for /w/ ***/
{dd df td tf} w {} => w I $dx ww ;
{VOWEL_NO_W r 1} w {} => ww ;
{uw} w {} => <{uw} w I <{ux} ww ;
{} w {} => w ;

117

/*** Rules for /y/ ***/

{df dd tf td t} y {} => y I $dx yy I <{ch jh} [y]
{VOWEL_NO_Y r 1} y {} => yy ;

{} y {} => y ;

/*** Rules for /z/ ***/

{en n m ng 1 el} z {en n m ng w r 1 el} => [epi] z [epi] ;
{en n m ng 1 el} z {y sh zh} => [epil (z I zh) ;
{en n m ng 1 el} z {} => [epil z ;
{} z {en n m ng w r 1 el} => (z I <{z}) [epi] ;
{} z {y sh zh} => z I zh I <{z} ;
{} z {} => z I <{z} ;

/*** Rules for /zh/ ***/

{en n m ng 1 el} zh {en n m ng w r 1 el} => [epi] zh [epi]

{en n m ng 1 el} zh {} => [epil zh ;
{} zh {en n m ng w r 1 el} => (zh I <{zh}) [epi] ;
{} zh {} => zh I <{zh};

118

Bibliography

[1] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximizzation technique

occurring in teh statistical analysis of probabilistic function of markov chains.

Annals of Mathematical Statistics, 41(1):164-171, 1970.

[2] J. Bilmes. A gentle tutorial on the EM algorithm and its application to parameter

estimation for gaussian mixture and hidden markov models. Technical Report

ICSI-TR-97-021, University of Berkeley, 1997.

[3] H. Bourlard and S. Dupont. A new ASR approach based on independent process-

ing and recombination of partial frequency bands. In Proc. Intl. Conf. on Spoken

Language Processing, volume 1, pages 426-429, Philadelphia, PA, October 1996.

[4] H. Bourlard, S. Dupont, and C. Ris. Multi-stream speech recognition. Technical

Report IDIAP-RR 96-07, IDIAP, Martigny, 1996.

[5] 0. Qetin. Multi-rate Modeling, Model Inference, and Estimation for Statistical

Clusters. PhD thesis, University of Washington, Seattle, Washington, 2004.

[6] J. W. Chang. Near-Miss Modeling: A Segment-Based Approach to Speech Recog-

nition. Ph. D. thesis, Department of Electrical Engineering and Computer Sci-

ence, Massachusetts Institute of Technology, Cambridge, June 1998.

119

[7] J. W. Chang and J. R. Glass. Segmentation and modeling in segment-based

recognition. In Proc. Eurospeech, pages 1199-1202, Rhodes, Greece, September

1997.

[8] C. Chibelushi, F. Deravi, and J. Mason. A review of speech-based bimodal

recognition. IEEE Trans. on Multimedia, 4(1):23-37, March 2002.

[9] P. Clarkson and R. Rosenfeld. Statistical language modeling using the cmu-

cambridge toolkit. In Proc. Eurospeech, pages 2707-2710, Rhodes, Greece,

September 1997.

[10] M.H. Cohen. Phonological Structures for Speech Recognition. PhD thesis, Com-

puter Science Division, University of California at Berkeley, April 1989.

[11] M. Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD

thesis, University of Pennsylvania, 1999.

[12] M. P. Cooke, A. C. Morris, and P. D. Green. Missing data techniques for robust

speech recognition. In Proc. ICASSP, pages 863-866, Munich, Germany, April

1997.

[13] S. B. Davis and P. Mermelstein. Comparison of parametric representations for

monosyllabic word recognition in continously spoken sentences. IEEE Trans.

Acoustics, Speech and Signal Processing, 28(4):357-366, August 1980.

[14] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society,

Series B, 39:1-38, June 1977.

[15] V. Digilakis. Segment-based stochastic models of spectral dynamics for continuous

speech recognition. PhD thesis, Boston University, January 1992.

120

[16] R. Duda and P. Hart. Pattern Classification and Scene Analysis. John Wiley &

Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1973.

[17] S. Dupont and H. Bourlard. Using multiple time scales in a multi-stream speech

recognition system. In Proc. Eurospeech, pages 3-6, Rhodes, Greece, September

1997.

[18] S. Dupont and J. Luettin. Using the multi-stream approach for continuous audio-

visual speech recognition: Experiments on the M2VTS database. In Proc. IC-

SLP, volume 4, pages 1283-1286, November 1998.

[19] S. Dupont and J. Luettin. Audio-visual speech modeling for continuous speech

recognition. IEEE transactions on multimedia, 2(3):1520-9210, 2000.

[20] J. Eisner. Expectation semirings: Flexible EM for learning finite-state transduc-

ers. In Proc. of the ESSLLI Workshop on Finite-State Methods in NLP, Helsinki,

August 2001.

[21] J. Eisner. Parameter estimation for probabilistic finite-state transducers. In

Proc. of the Annual Meeting of the Association for Computational Linguistics,

Philadelphia, July 2002.

[22] J. Fiscus. A post-processing system to yield reduced word error rates: Recogniser

output voting error reduction (ROVER). In Proc. of IEEE Workshop on Au-

tomatic Speech Recognition and Understanding, pages 347-352, Santa Barbara,

CA, 1997.

[23] G. D. Forney. The Viterbi algorithm. Proc. IEEE, 61:268-278, March 1973.

[24] S. Furui. Speaker independent isolated word recognition using dynamic features

of speech spectrum. In IEEE Trans. Acoustics, Speech and Signal Processing,

pages 52-59, 1986.

121

[25] E. P. Giachin, A. E. Rosenberg, and C. H. Lee. Word juncture modeling using

phonological rules for HMM-based continuous speech recognition. Computer

Speech and Language, 5(2):155-168, April 1991.

[26] H. Gish and K. Ng. Parametric trajectory models for speech recognition. In

Proc. ICSLP, volume 1, pages 466-469, Philadelphia, PA, USA, October 1996.

[27] J. R. Glass. A probabilistic framework for segment-based speech recognition.

Computer Speech and Language, 17(2):137-152, 2003.

[28] G. Gravier, G. Potamianos, and C. Neti. Asynchrony modeling for audiovisual

speech recognition. In Human Language Technology Conference, pages 1-6, San

Diego, USA, March 2002.

[29] T. J. Hazen. Visual model structures and synchrony constraints for audio-visual

speech recognition. IEEE Trans. Acoustics and Audio Processing, May 2006. to

be published.

[30] T. J. Hazen, I. L. Hetherington, H. Shu, and K. Livescu. Pronunciation modeling

using a finite-state transducer representation. Speech Communication, 46(2):189-

203, June 2002.

[31] T. J. Hazen, K. Saenko, C. La, and J. R. Glass. A segment-based audio-visual

speech recognizer: Data collection, development and initial experiments. In Proc.

ICMI, State College, Pennsylvania, October 2004.

[32] I. L. Hetherington. An efficient implementation of phonological rules using finite-

state transducers. In Proc. Eurospeech, pages 1599-1602, Aalborg, September

2001.

122

[33] I. L. Hetherington. The MIT finite-state transducer toolkit for speech and lan-

guage processing. In Interspeech, pages 2609-2612, Jeju Island, Korea, October

2004.

[34] X. D. Huang, A. Acero, and H.-W. Hon. Spoken Language Processing: A Guide

to Theory, Algorithm, and System Development. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 2001.

[35] M. Johnston and S. Bangalore. Finite-state multimodal parsing and understand-

ing. In Proceedings of the 18th conference on Computational linguistics, pages

369-375, Morristown, NJ, USA, 2000. Association for Computational Linguistics.

[36] B. H. Juang and L. R. Rabiner. The segmental K-means algorithm for estimating

parameters of hidden Markov models. IEEE Trans. Acoustics, Speech and Signal

Processing, ASSP-38(4):1639-1641, 1990.

[37] D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction

to Natural Language Processing, Computational Linguistics, and Speech Recog-

nition. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000.

[38] G. A. Kiraz. Multitiered nonlinear morphology using multitape finite automata:

a case study on syriac and arabic. Computational Linguistics, 26(1):77-105, 2000.

[39] K. Kirchhoff, G. A. Fink, and G. Sagerer. Combining acoustic and articula-

tory feature information for robust speech recognition. Speech Communication,

37:303-319, 2000.

[40] F. Kubala, J. Bellegarda, J. Cohen, D. Pallett, D. Paul, M. Phillips, R. Ra-

jasekaran, F. Richardson, M. Riley, R. Rosenfeld, B. Roth, and M. Weintraub.

The hub and spoke paradigm for CSR evaluation. In Proc. ARPA Human Lan-

guage Technology Workshop, pages 37-42, Princeton, NJ, USA, March 1994.

123

[41] W. Kuich and A. Salomaa. Semirings, Automata, Languages. Springer-Verlag,

1986.

[42] L. Lamel, J. Gauvain, and G. Adda. Lightly supervised acoustic model training.

In Proc. Automatic Speech Recognition workshop, volume 1, pages 150-154, Paris,

France, September 2000.

[43] S. Lauritzen. Graphical Models. Oxford University Press, Oxford, UK, 1996.

[44] R. P. Lippmann. Speech recognition by machines and humans. Speech Commu-

nication, 22:1-15, July 1997.

[45] K. Livescu. Feature-Based Pronunciation Modeling for Automatic Speech Recog-

nition. PhD thesis, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge, MA, August 2005.

[46] K. Livescu and J. R. Glass. Segment-based recognition on the PhoneBook task:

Initial results and observations on duration modeling. In Proc. Eurospeech, pages

1437-1440, Aalborg, Denmark, September 2001.

[47] K. Livescu and J. R. Glass. Feature-based pronunciation modeling with trainable

synchrony probabilities. In Proc. ICSLP, Jeju, South Korea, October 2004.

[48] A. Ljolje, J. Hirschberg, and J. P. H. Van Santen. Automatic speech segmentation

for concatenative inventory selection. In J. P. H. Van Santen, editor, Progress in

Speech Synthesis, pages 305-311. Springer, 1997.

[49] E. McDermott. Discriminative Training for Speech Recognition. PhD thesis,

Waseda University, 1997.

[50] M. Meteer and J.R. Rohlicek. Statistical language modeling combining n-gram

and context-free grammars. In Proc. ICASSP, pages II-37 - II-40, Minneapolis,

MN, April 1993.

124

[51] M. Mohri. Finite-state transducers in language and speech processing. Compu-

tational Linguistics, 23(2):269-311, 1997.

[52] J. Odell. The Use of Context in Large Vocabulary Speech Recognition. PhD

thesis, Cambridge University, 1995.

[53] M. Ostendorf, V. Digilakis, and 0. Kimball. From HMM's to segment models: a

unified view of stochastic modelling for speech recognition. IEEE Trans. Speech

and Audio Processing, 4(5):360-378, 1996.

[54] J. F. Pitrelli, C. Fong, S. H. Wong, J. R. Spitz, and H. C. Leung. Phonebook:

A phonetically-rich isolated-word telephone-speech database. In Proc. ICASSP,

pages 101-104, Detroit, MI, May 1995.

[55] G. Potamianos, C. Neti, G. Gravier, A. Garg, and A. Senior. Recent advances

in the automatic recognition of audiovisual speech. Proceedings of the IEEE,

91(9):1306-1326, September 2003.

[56] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in

speech recognition. Proc. IEEE, 77:257-286, 1989.

[57] L. R. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition. PTR

Prentice Hall, Englewood Cliffs, NJ, 1993.

[58] K. Saenko, K. Livescu, K. Schutte, J. R. Glass, and T. Darrell. Audio-visual

speech recognition with streams of articulatory features. In Advances in Neural

Information Processing Systems, 2005.

[59] T. Sainath. Acoustic landmark detection and segmentation using the Mcaulay-

Quatieri sinusoidal model. Master's thesis, Department of Electrical Engineering

and Computer Science, Massachusetts Institute of Technology, Cambridge, MA,

August 2005.

125

[60] T. Sainath and T. J. Hazen. A sinusoidal model approach to acoustic landmark

detection and segmentation for robust segment-based speech recognition. In

Proc. ICASSP, Toulouse, France, May 2006.

[61] S. Sakai and H. Shu. A probabilistic approach to unit selection for corpus-based

speech synthesis. In Interspeech, pages 81-84, Lisbon, Portugal, September 2005.

[62] S. Seneff. Comments on "Towards increasing speech recognition error rates" by

H. Bourlard, H. Hermansky, and N. Morgan. Speech Communication, 18:253-

255, May 1996.

[63] S. Seneff. The use of linguistic hierarchies in speech understanding. In Proc. Intl.

Conf. on Spoken Language Processing, Sydney, August 1998.

[64] H. Shu and I. Lee Hetherington. EM training of finite-state transducers and its

application to pronunciation modeling. In Proc. Intl. Conf. on Spoken Language

Processing, pages 1293-1296, Denver, CO, USA, September 2002.

[65] K. N. Stevens. Applying phonetic knowledge to lexical access. In Proc. Eu-

rospeech, pages 3-11, Madrid, Spain, September 1995.

[66] A. Stolcke. SRILM - an extensible language modeling toolkit. In Proc. Intl.

Conf. on Spoken Language Processing, Denver, CO, USA, September 2002.

[67] N. Str6m, I. L. Hetherington, T. J. Hazen, E. Sandness, and J. R. Glass. Acoustic

modeling improvements in a segment-based speech recognizer. In IEEE Auto-

matic Speech Recognition and Understanding Workshop, pages 139-142, Snow-

bird, December 1999.

[68] M. Tang, S. Seneff, and V. W. Zue. Modeling linguistic features in speech recog-

nition. In Proc. Eurospeech, Geneva, Switzerland, September 2003.

126

[69] D. T. Toledano, L. A. Hernandez G6mez, and L. V. Grande. Automatic pho-

netic segmentation. IEEE Trans. Speech and Audio Processing, 11(6):617-625,

November 2003.

[70] V. Valtchev, J. Odell, P. Woodland, and S. Young. MMIE training of large

vocabulary recognition systems. Speech Communication, 22:303-314, September

1997.

[71] Y. Wang, M. Mahajan, and X. Huang. A unified context-free grammar and n-

gram model for spoken language processing. In Proc. ICASSP, pages 1639-1642,

Istanbul, Turkey, June 2000.

[72] S. Young, J. Odell, D. Ollason, V. Valtchev, and P. Woodland. The HTK Book.

Cambridge University, Cambridge, UK, 1997.

[73] V. Zue, S. Seneff, J. R. Glass, J. Polifroni, C. Pao, T. J. Hazen, and I. L.

Hetherington. JUPITER: A telephone-based conversational interface for weather

information. IEEE Trans. on Speech and Audio Processing, 8(1):100-112, 2000.

127

