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Abstract

Ferrofluid surface and volume effects in uniform dc and rotating magnetic fields are
studied. Theory and corroborating measurements are presented for meniscus shapes
and resulting surface driven flows, spin-up flows, and Hele-Shaw cell flows and insta-
bilities. To characterize the water-based and oil-based ferrofluids used in experiments,
measurements were made of the magnetization curve, surface tension, viscosity, den-
sity, and the speed of sound.

Extensive measurements of the height and shape of ferrofluid menisci in applied
uniform dc magnetic fields show that the height of the meniscus increases for vertical
applied magnetic fields, whereas horizontal magnetic fields decrease meniscus height.
An approximate energy minimization analysis agrees with the observed trends in fer-
rofluid meniscus height. The effects of ferrofluid meniscus curvature on spin-up flow
were modeled under simplified assumptions. Analytical solutions were derived for two
dimensional low Reynolds number flows and extended results were obtained numer-
ically using COMSOL’s Multiphysics finite element software package (FEMLAB) to
solve for three dimensional recirculating flows at higher Reynolds numbers.

Familiar magnetostatic energy expressions in linear magnetic media were extended
to non-linear magnetization relations. These energy expressions were applied to study
the effects of linear and non-linear magnetization on flows and instabilities in Hele-
Shaw cells with simultaneously applied in-plane rotating and dc axial magnetic fields.

Ultrasound velocimetry of the spin-up flow in the bulk region of water-based fer-
rofluids conclusively demonstrates the co-rotation of the bulk of the ferrofluid with
the applied rotating magnetic field with and without a free surface. Careful ultra-
sound investigation of flow profiles at different heights in uncovered ferrofluid cylinders
showed flow direction reversal between the counter-rotating top free surface and the
co-rotating bulk region of the ferrofluid. A framework for a numerical solution of
the coupled governing equations of conservation of linear and angular momentum in
magnetic spin-up flows that considers all the terms in the first Shliomis magnetization
relaxation equation was formulated and solved. Previous solutions in the literature
which decouple the magnetic and fluid mechanical dynamics by neglecting the lin-
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ear and spin velocities in the magnetization relaxation equations result in no spin-up
flow in uniform magnetic fields in the absence of spin diffusion effects. Contrary to
the commonly held view in the literature, spin-up flows develop in rotating uniform
magnetic fields even in the absence of spin diffusion effects. Including the linear and
spin velocity terms in the magnetization relaxation equation results in non-zero spin-
up flow. Numerical solutions using FEMLAB software are shown for flow profiles
with zero and non-zero spin viscosity. Fitting numerical simulations to velocity pro-
file ultrasound measurements allows the estimation of the magnetization relaxation
time and the spin viscosity for Ferrotec Corp.’s MSG W11 and EMG705 water-based
ferrofluids.

Thesis Supervisor: Markus Zahn
Title: Professor
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Chapter 1

Introduction to ferrofluid flow

phenomena

The research for this doctoral thesis focuses on the effects of magnetic force and torque

densities in ferrofluid as well as magnetic-surface-shear stress at a ferrofluid/air menis-

cus on the magnetic spin-up behavior of ferrofluids. Ferrofluids are stable colloidal-

suspensions of permanently magnetized nanoparticles in a carrier liquid like water or

oil. Each particle is typically made from magnetite (Fe3O4) coated with a monolayer

of surfactant to prevent the particles from agglomerating under van der Waals at-

traction forces. Furthermore, the ∼ 10 nanometer particle diameter is small enough

to ensure that the particles remain dispersed by Brownian motion and do not ag-

glomerate under gravity and magnetic interactions. Ferrofluids are therefore stable

suspensions that exhibit superparamagnetic susceptibilities with suspended magnetic

particles constituting typically up to 10% of the total fluid volume.

Spin-up flow of ferrofluids results from the coupling of uniform rotating magnetic

fields to ferrofluid angular momentum. A rotating magnetic field acting on a ferrofluid

in a stationary vessel entrains the ferrofluid into a steady circular motion. The study

of the coupling of magnetic and mechanical forces in ferrofluids draws from the di-

verse fields of magnetism, fluid dynamics, electromechanics, colloidal chemistry and

thermodynamics. There remains, however, a fundamental disagreement in the litera-

ture about the relative significance of surface and volume forces driving the observed
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flows in ferrofluids. Disagreements exist also on whether a uniform magnetic field can

cause spin-up flow with some researchers contending that spin-up flows are in fact due

to slight magnetic field non-uniformity. This thesis research combines the analysis of

contending theories in the literature with careful experimental investigation to resolve

the effects of the different physical models presented in the literature.

1.1 Background and motivation

Ferrofluids exhibit a rich set of flow patterns and instabilities in the presence of dc,

ac, and rotating magnetic fields [40, 10]. Current applications of ferrofluid technology

generally rely on dc magnetic fields and include liquid-rotary-shaft seals on disk drives,

improved heat transfer in loud speakers, and sink-float systems for separation of

materials. Ferrofluid spheres are also used to model and study gravitational dynamics

in a controlled laboratory setting [41].

Magnetic-field-based micro-electromechanical (MEMS) and nano-electromechanical

systems (NEMS) that use ferrofluids offer a potentially more reliable and compact

alternative technology to existing electric-field-based devices. Zahn proposed a num-

ber of device concepts that use the magnetic particles of ferrofluid with or without

a carrier liquid to make nanoscale electromechanical micro-power generators [49].

The ability to position a ferrofluid volume precisely in a flow channel presents many

opportunities in the design of microfluidic systems. Various microfluidic devices us-

ing magnetic fluids such as micro-actuators, dampers, accelerometers and generators

have been developed and reported in the literature. Koser and Mao built a pump

for ferrofluids in filled pipes using spatially traveling sinusoidal magnetic fields [25]

extending the analysis and results of Zahn and Greer [51]. Krauss et al. built a

ferrofluid pump for open channels where a rotating magnetic field drives a flow on

the ferrofluid/air interface [22]. They report an operating magnetic field rotational

frequency range that extends from 300 Hz to 30 kHz with maximum volumetric flow

rate near 3 kHz.

Numerous biomedical applications can benefit from this technology, including:
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microfluidic medical devices, magnetically targeted drug delivery [19], targeted de-

struction of tumors [18], in-vivo monitoring of chemical activity in the brain [20],

enhancement of existing medical imaging technology [1] and toxin removal from the

body [21]. Often in the field of chemotherapy successful treatment depends as much

upon the means of delivering the drug to its target as it does upon the efficacy of

the drug itself. Biocompatible surfactant coatings have been designed for ferrofluid

nanoparticles so that they selectively bond to specific molecules on cells and perform

predetermined chemical functions (e.g., deliver anti-cancer agents such as radionu-

clides, cancer-specific antibodies, genes, etc.) [2].

1.2 Force mechanisms in ferrofluid literature

Rosensweig pioneered the study of ferrofluids and with the help of his early co-

workers laid down the first-principles of ferrohydrodynamics. He documented a broad

overview of these early efforts in his book: Ferrohydrodynamics [40]–a term first

coined by Rosensweig. When subjected to rotating or time varying magnetic fields,

ferrofluid particles will rotate to align their magnetic axis with the instantaneous

applied field. The magnetization relaxation equation, first proposed by Shliomis,

governs the process by which the magnetization of the fluid bulk eventually settles

into its steady state value. Two processes limit the rate of ferrofluid particle alignment

with the applied magnetic field: rotational Brownian motion and Néel redistribution

of sub-particle magnetic domains. These delays lead to a lag between the ferrofluid

magnetization and the applied magnetic field so that magnetization M is not collinear

with the magnetic field H which results in a body-torque density µ0M × H. This

body-torque density drives fluid flow and spinning nanoparticles [43] as well as con-

tributing to the shear stress at a free surface [39].

The phenomenon of magnetic fluid spin-up flow has been reported by many in-

dependent investigators. Experiments reported in the literature place a stationary

cylindrical container of ferrofluid in rotating magnetic fields. Essentially rigid-body

rotation of the ferrofluid is reported by most investigators based on observations of
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the top free surface. The reported direction of ferrofluid rotation depends on the

amplitude and frequency of the applied magnetic field. The reports in the literature

often conflict about the direction of magnetic fluid rotation with respect to the ro-

tation direction of the applied magnetic field. Brown and Horsnell report that the

sense of spin-up rotation for a magnetic oxide slurry switches from counter-rotation

to co-rotation as the applied rotating magnetic field strength is increased beyond

a threshold value [8]. Kagan, on the other hand, reports the opposite trend with

co-rotation for low field strengths and counter rotation for high field strengths [16].

The mean size of the magnetic particles in Kagan’s experiment was ∼ 0.2 µm and

volume concentration of the solid phase was 10-20%. These experimental results are

for slurries of micron sized particles and have yet unknown significance to ferrofluids.

The opacity of the fluids limits these experimental observations to the velocity profile

at the free surface of the ferrofluid. There are no reports in the literature of measured

velocity profiles in the bulk of the ferrofluid. These measurements can provide the

quantitative observations needed to resolve the current confusion in the literature.

In order to explain these experimental observations, the ferrofluid literature presents

two main theories on the dominant mechanism in establishing spin-up flow: the spin-

diffusion model and the surface-driven flow model. The spin-diffusion model for

ferrofluid spin-up considers the non-equilibrium magnetization of ferrofluid particles

to be the dominant mechanism for transfer of momentum from the rotating magnetic

field to the ferrofluid. In this mechanism the magnetization relaxation time constant,

due to Brownian and Néel relaxation of the fluid, prevents the magnetic nanoparticles

from instantaneously aligning with the applied magnetic field. This relaxation time

introduces a lag between the orientation of the magnetization of the ferrofluid and

the rotating field. The resulting torque tries to align each particle with the applied

magnetic field and is transferred to the bulk of the ferrofluid by viscous coupling

[35, 38, 37]. Rinaldi, Zahn et al. report torque measurements on hollow spindles

filled completely with ferrofluid so that there is no free surface [45]. They report that

when the ferrofluid spindles are placed in a rotating magnetic field a non-zero torque

is measured even in the absence of free surfaces. The issue of whether this observed
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torque necessarily implies an internal fluid flow remains open for debate.

Rosensweig’s model for the spin-up flow of magnetic fluid in a uniform magnetic

field considers the interfacial deformation of a free ferrofluid surface having contact

angle θ0 with a container wall [39]. The deformation of the ferrofluid results in a

magnetic surface shear stress driven flow. The surface-driven flow is believed to be

usually stronger than that produced by the spin diffusion model which was recently

treated by Rinaldi [35]. The volume flow field resulting from the surface-driven model,

however, remained unmeasured until recently [9]. Rosensweig conducted a careful

set of experiments with concave, flat and convex free surface shapes by respectively

under-filling, filling to the brim, and slightly over-filling a container with ferrofluid. He

reports counter-rotation for concave surface shapes, no rotation for flat surface shapes,

and co-rotation for convex surface shapes. Rosensweig concludes that this observed

behavior constitutes evidence that surface stress rather than a volume torque density

drives the spin-up flow [39]. Rosensweig, however, observed only the flow velocity at

the top free surface of the ferrofluid, and the flow in the bulk of the ferrofluid was not

known.

Shliomis and Zaitsev argued in their early work that macroscopic velocities were

possible only if non-uniform spin velocities existed in the bulk of ferrofluid [53, 52].

The authors solved the ferrohydrodynamic equations, under a limiting set of assump-

tions, for the velocity and spin velocity profiles, taking into account the spin-diffusion

term (i.e., they considered non-zero spin viscosity). More recently, Shliomis, Pshenich-

nikov et. al have reported that the early spin-diffusion model predicted velocities

that fell short of experimentally observed values by three to four orders of magni-

tude [32, 31]. The authors conclude that spin diffusion leads to negligible rotational

flows and propose two alternative mechanisms: tangential surface shear stress at the

ferrofluid meniscus and magnetic field gradients induced by thermal gradients in the

bulk of the ferrofluid.

Most researchers in the field espouse views that are more or less aligned with

Shliomis’ conclusions as evidenced by [31]. The statement that negligible spin-

diffusion, i.e., when η′ = 0, cannot result in rotational flow in a uniform rotating
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magnetic field is, however, misleading. Shliomis’ analysis [53, 32], as well as similar

arguments by Pshenichnikov and Lebedev [31], decouple the magnetic and hydrody-

namic equations by neglecting the linear and spin velocity terms in the magnetization

relaxation equation. This means that while the magnetic fields drive the ferrofluid

flow, the resulting flow does not affect the field. Rosensweig considers a spatially

constant spin velocity but neglects the effect of linear velocity in the magnetiza-

tion relaxation equation [40]. Chapter 8 continues the discussion of these issues and

presents numerical solutions that take into account the nonlinear convective derivative

terms in the magnetization relaxation equation as well as the spin diffusion term.

1.3 Overview of thesis

This thesis documents the investigation of the dominant force and torque mechanisms

in ferrofluids in uniform, dc and rotating magnetic fields. As a result of our research

effort, we succeeded in developing simple tractable analytical and numerical models

to describe ferrofluid spin-up flow that agree with velocity profile measurements.

1.3.1 Research methodology

Interfacial force effects of uniform horizontal and vertical magnetic fields on the shape

of a ferrofluid meniscus were studied. Hele-Shaw cell experiments demonstrated the

role of magnetic forces and torques on ferrofluid flows and patterns in combined dc

and rotating magnetic fields. Spin-up volume flows of ferrofluids were investigated in

rotating uniform magnetic fields.

Finite element analysis was used to examine the basic assumptions of simple ana-

lytical models and to refine further theoretical predictions (e.g., finite element analysis

was used to extend the analytical low Reynolds number expressions for flow profiles

at higher Reynolds numbers). This modeling effort was combined with careful exper-

imental investigations to verify theoretical predictions.

The opacity of ferrofluid rules out laser Doppler or streak path techniques for

measuring the bulk velocity flow profiles. Experimental measurements of the velocity
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in the bulk of the ferrofluid can help decide the debate in the ferrofluid spin-up

literature. There have been no investigations of ferrofluid spin-up in the literature

that report the flow velocities inside the bulk of the ferrofluid prior to our collaborative

effort with the Rinaldi research group [9]. Experimental techniques thus far have been

limited to studying the flow profile on the top surface of the ferrofluid by recording

the motion of floating tracer particles. Pshenichnikov reports covering the surface of

the ferrofluid with particles of aluminum powder and using photographs to examine

the flow profiles [31]. Others have used similar techniques to measure spin-up flow

[39, 8, 16].

The pulsed ultrasound velocimetry technique uses reflections off small tracer parti-

cles or air bubbles suspended in the fluid volume. The technique then uses the time of

flight of the reflected ultrasound beams to estimate the velocity of the tracer particles.

A clear advantage of this technique is that it allows non-disruptive measurement of

the flow profile in opaque fluids since the ultrasound probes can be placed in the walls

of the ferrofluid container without directly contacting ferrofluid. Investigators have

reported using this technique to investigate the flow of various fluid flows including

flow of liquid metals and ferrofluids [6, 7, 17, 46].

With this ultrasound velocimetry we have investigated the r and z dependence of

bulk flows in a cylindrical container of ferrofluid driven by a rotating magnetic field.

The measured flow profiles agreed well with theoretical analysis reported by Rinaldi

in the literature [35] and with numerical simulations. Moreover, by fitting measured

velocity profiles to theory, the magnetization relaxation time constant and the spin

viscosity coefficient for were determined for MSG W11 and EMG705 water-based

ferrofluids. Moreover, ultrasound measurements of ferrofluid spin-up flow confirm

flow reversal in ferrofluid spin-up flow in an uncovered container. Measurements

show that the volume flow velocity co-rotates with the applied rotating magnetic field,

which agrees with spin-diffusion theory [35], while the free surface of the ferrofluid

counter-rotated as predicted by Rosensweig et al. [39] for a concave free surface.
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1.3.2 Thesis preview

Chapter 2 presents a summary of some useful magnetic, rheological and physical

properties of the ferrofluids used in experiments and simulations as well as a brief

description of the experimental techniques used to measure these properties.

Chapter 3 describes an optical system using reflections of a narrow laser beam

to measure the height and shape of a ferrofluid meniscus in response to a uniform

applied magnetic field. Characterization of the effect of an applied magnetic field on

the ferrofluid interface is an important first step in understanding the surface-shear-

stress-driven flows experimentally observed in ferrofluids.

Chapter 4 describes energy models for determining the height of the meniscus

formed when a ferrofluid wets a wall in horizontal and vertical applied uniform mag-

netic fields. These models explain the trends observed in Chapter 3.

Chapter 5 presents preliminary analytical and numerical models for surface shear

stress driven flows in cylindrical cavities. This chapter assumes a known surface shear

stress drive due to the magnetic phenomena discussed in Chapters 3 and 4.

Chapter 6 presents observations of spiral pattern formation and abrupt phase-

transformation like behavior of Hele-Shaw cells in combinations of vertical dc and

in-plane rotating magnetic fields. The chapter applies the results of Appendix B to

predict some features of the observed patterns.

Chapter 7 presents the results of the pulsed ultrasound velocimetry experimental

investigation of ferrofluid spin-up flow phenomena by measuring bulk and free top

surface interfacial velocities of the ferrofluid.

Chapter 8 uses FEMLAB software to compare the predictions of an iterative finite

element numerical simulation with the experimentally observed bulk flows in Chapter
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7, in order to determine best fit values of magnetization relaxation time and ferrofluid

spin viscosity.
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Chapter 2

Ferrofluid physical parameters

This chapter summarizes the measured physical properties of three commercial fer-

rofluid samples used extensively throughout the experiments and analyses reported

in the following chapters of this thesis. We performed a wide array of experimental

characterization techniques on Ferrotec Corp. oil-based ferrofluid EFH1, and water-

based ferrofluids MSG W11 and EMG 705. Any physical properties for NBF-1677

fluorocarbon-based ferrofluid reported in this chapter were not measured by us and

are taken directly from T. Franklin’s thesis [13]. Some measurements were performed

also on non-magnetic fluids like de-ionized (DI) water and Nytro—a commercial trans-

former oil—to test the operation of the experimental apparatus and build confidence

in the measurements we report. For each of the fluid samples we measured the speed

of sound in the fluid, the mass density, surface tension, and viscosity. Furthermore,

for magnetic fluid samples, we measured the magnetization curve from which we

determined the saturation magnetization, the low-field magnetic susceptibility, and

volume fraction of magnetic material in order to obtain rough estimates for the range

of nanoparticle diameters. Finally, Transmission Electron Microscopy (TEM) was

used to measure the distribution of ferrofluid particle sizes more accurately.
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Micrometer
Ultrasound probe

Sample fluid

Figure 2-1: Schematic cross-section showing the container used to measure the speed
of sound in the sample fluids.

2.1 Speed of sound measurement

The ultrasound velocimetry results presented in Chapter 7 require precise knowledge

of speed of sound in the fluid sample to interpret the ultrasound reflections. Table 2.1

lists the results of two experimental techniques to measure the speed of sound in fer-

rofluids under investigation as well as DI water and Nytro, a commercial transformer

oil, for reference. Both techniques adapt Signal Processing Corporation’s DOP 2000

pulsed ultrasound velocimeter to measure the speed of sound in a fluid sample in a

container provided by Signal Processing Corporation specifically for measuring the

speed of sound in fluids. The cylindrical vessel houses a calibrated micrometer and an

insertable ultrasound probe at diametrically opposite ends on the perimeter. Turning

the micrometer changes the distance between the probe and the opposite reflecting

surface in a controllable fashion. The first method–suggested by Signal Processing–

measures the differential change in the ultrasonic echo correlation signal due to a

known incremental change in the distance between the face of the ultrasound probe

and the reflecting face of the micrometer. The ratio between the nominal change in

round-trip distance and actual change in distance leads to an estimate of the speed

of sound in the fluid sample.

The results of the first method (i.e., Signal Processing’s method) were not repeat-

able enough to inspire trust without corroboration from an independent experiment.
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While the technique usually yields reasonable results, small errors or disturbances in

turning the micrometer can lead to a string of unreasonably high measured sound

speeds. The second method (MIT’s relative method) uses the same experimental

setup as the first differential method, but avoids the requirement of changing the

reflection distance. Instead the micrometer is maintained at a known fixed position

while recording the echo correlation signals for all the different fluid samples in se-

quence. The speed of sound for the various ferrofluid samples is determined relative

to a reference fluid sample (e.g., de-ionized water). Table 2.1 demonstrates that the

results of the two techniques of measuring the speed of sound at 18◦ Celsius differ

by less than 5%, which falls well within practical engineering margins. Moreover,

Bilanuik et al. [5] quote a value of 1476 m/s for the speed of sound in water at a tem-

perature of 18◦ Celsius, which again differs from our relatively simple measurement

by less than 0.1%. The agreement between the two measurement techniques, as well

as the close agreement with the accepted value for the speed of sound in water inspire

confidence in the measured values of the speed of sound in the ferrofluid samples.

2.2 Mechanical properties

2.2.1 Mass density

The mass densities of each of the sample ferrofluids used in our research effort are

summarized in Table 2.2. The mass density is needed in our magnetization mea-

surements to convert measured fluid weight to volume accurately and subsequently

convert the measured magnetization in emu (electromagnetic units) to gauss using

the relationship µ0M [gauss] = 4π[emu]/volume[cc]. The values for the mass densities

were determined by filling a container of calibrated volume with the sample fluid.

The difference in weight between the full and empty container divided by the volume

of the container yields the mass density listed in Table 2.2. The values we report fall

within the range given in Ferrotec Corporation’s data sheets.
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Fluid sample Speed of sound [m/s] Speed of sound [m/s] Diff. %
Signal Processing method MIT relative method

DI water 1459 1462 +0.21

Nytro (oil) 1456 1403 -3.64

EMG705 1487 1432 -3.70
water-based

MSG W11 1487 1439 -3.23
water-based

EFH1 1143 1116 -2.36
oil-based

Table 2.1: Speed of sound measurements for water-based ferrofluids, an oil-based
ferrofluid, and non-magnetic fluids at a temperature of 18◦ Celsius. The results of
two different techniques of measuring the speed of sound agree to within less than
4%. The value of the speed of sound in water at 20◦ Celsius reported in the literature
is 1476 m/s which exceeds our measured value by about 0.1% only.
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2.2.2 Viscosity

We obtained the viscosities summarized in Table 2.2 by using the CSL500 rheometer

from TA instruments configured in a Couette cell geometry. The rheometer performed

a controlled shear-rate sweep to determine the viscosity of the suspension. Because

ferrofluids act like Newtonian fluids even with applied magnetic field, the resulting

shear-strain to shear-rate profile is a straight line with constant slope. The ratio of

the shear-strain to the shear-rate given by the slope of the measured profile is the

viscosity of the fluid. Note that the EFH1 oil-based ferrofluid is about 3.6 times

as viscous as MSG W11 water-based ferrofluid and 2.9 times as viscous as EMG705

water based ferrofluid.

2.2.3 Surface tension

The coefficient of surface tension is a measure of the force necessary to hold a fluid

interface together. We estimated the surface tension by measuring the peak spacing

and threshold magnetic field at the incipience of the Rosensweig peaking instability

in perpendicular magnetic fields [3]. The surface tension results were verified using

a Krüss Tensiometer (K10ST). This apparatus first dips a small metal plate slightly

below the surface of the fluid sample and then records the force needed to pull the

plate out. Table 2.2 shows that surface tension measurement techniques agree within

1.8% for MSG W11 and to within 5.2% for EFH1. Note that the standard accepted

value for the surface tension of water in the literature is 72.8 mN/m [11], which

exceeds the value we measured with the tensiometer by only 1.2%.

2.3 Magnetic properties

Magnetization curves for the sample ferrofluids were characterized using a vibrat-

ing sample magnetometer (VSM) model 880 Digital Measurement System (DMS) by

ADE Technologies. Tests were performed on small samples of fluid placed in a stan-

dard DMS plastic container with a 6.0 mm internal diameter, and an internal height
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Figure 2-2: Measured magnetization relation curve for EMG705 water-based fer-
rofluid.

of 2.5 mm. The applied magnetic field was smoothly increased in small increments

until magnetic saturation was reached. We also carefully investigated the magnetiza-

tion in the linear regime with low applied magnetic fields to determine the magnetic

susceptibility χ. The details of VSM measurement are discussed in detail in Chapter

2 of Thomas A. Franklin’s master’s thesis [13]. Franklin describes how to use the

measured magnetization curves and a simple Langevin model to estimate the range

of nanoparticle diameters in the sample ferrofluid. The magnetic parameters relevant

to our research (i.e., the saturation magnetization and the magnetic susceptibility)

are summarized in Table 2.3. The reader should be aware that in this thesis measured

values of the magnetization M and magnetic field intensity H , which have proper SI

units of Amps/m, are generally reported as µ0M and and µ0H with units of gauss,

a preference of the author. The volume fraction of magnetic particles listed in the

table is based on a nominal magnetization (µ0Md) of 5600 gauss for magnetite.
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Figure 2-3: Magnetization curve for MSG W11 water-based ferrofluid.

Figure 2-4: Magnetization curve for EFH1 water-based ferrofluid.
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2.4 Particle size

The VSM data summarized in Table 2.3 allows us to estimate the range of ferrofluid

particle sizes. The minimum and maximum particle sizes can be calculated from

fitting VSM measurements to the high field and low field limits of the Langevin

curve respectively. Table 2.3 compares the VSM estimates to Transmission Electron

Microscopy results.

Note that the TEM particle diameter values in the second column of Table 2.3

represent the smallest and largest particles observed in the TEM images. TEM images

show a distribution of MSG W11 particle sizes with a mean particle diameter of 15.6

nm and a standard deviation of +
−5.3 nm (See Fig. 2-5). The particle size distribution

for EMG705 had a mean of 9.4 nm and standard deviation of +
−3.4 nm (See Fig.

2-6). We were unable to obtain clear uncontaminated TEM images of the EFH1 oil-

based ferrofluid because the oil based ferrofluid does not evaporate completely and

the residue hydrocarbons react with the electron beam.

46



Figure 2-5: Transmission Electron Microscope image of EMG705 ferrofluid (50, 000×
magnification). The magnetic nanoparticles have a mean diameter of 9.4 nm and a
standard deviation of +

−3.4 nm .
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Figure 2-6: Transmission Electron Microscope image of MSG W11 ferrofluid particles
(60, 000× magnification). The magnetic nanoparticles have a mean diameter of 15.6
nm and a standard deviation of +

−5.3 nm
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Chapter 3

Laser measurement of ferrofluid

meniscus shape in a uniform

applied magnetic field

3.1 Introduction

This chapter documents an optical measurement technique of the equilibrium shape

of the meniscus formed when a ferrofluid contacts a vertical glass surface. Initially,

we investigated the shape of the meniscus for EFH1 oil-based and MSG W11 water-

based ferrofluids by immersing a glass slide in a container of ferrofluid with no applied

magnetic field. A uniform-dc-magnetic field was subsequently applied to a glass

container of ferrofluid in the three configurations illustrated in Fig. 3-1. In the first

configuration, the applied magnetic field is tangential to both the glass slide and

the flat portion of the ferrofluid meniscus. In the second configuration the applied

magnetic field is perpendicular to the glass slide and tangential to the flat portion of

the ferrofluid meniscus. The applied magnetic field is tangential to the glass slide and

perpendicular to the flat portion of the interface in the third configuration. We used a

Helmholtz coil configuration to generate the applied magnetic fields in configurations

a and b, resulting in a ∼ 30 gauss per ampere scaling between current and field
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strength. In configuration c we used a single coil with a core of highly permeable iron

to generate fields that scaled as ∼ 20 gauss/ampere with current.

a b cH H H

Ferrofluid

Meniscus

Container

Glass slide

Figure 3-1: The three magnetic field configurations of the ferrofluid meniscus exper-
imentally investigated.

3.2 Experimental setup

Fig. 3-2 illustrates the experimental setup for measurement of meniscus height and

shape. A laser is mounted above a container of ferrofluid so that its position can be

accurately controlled with a micrometer. The laser shines a narrow beam vertically

through a transparent calibrated glass pane onto the ferrofluid surface. The laser

beam gets reflected back onto the glass pane where the reflected beam’s position on

the glass pane is recorded. Far from the glass slide and the container walls, in the

flat region of the ferrofluid meniscus, the reflected beam is vertical and it intersects

the glass pane at the same position as the incident beam. As we translate the laser

towards the glass slide, it enters the region where the meniscus begins to curve.

Consequently the reflected beam deflects from the vertical and the distance between

the two laser points on the glass pane increases.

The deflection of the reflected beam from the vertical incident beam is related to

the slope of the ferrofluid by simple geometry, as illustrated in Fig. 3-3. From the

figure we see that the angle θL between the incident and reflected beams is double the

angle θF formed by the tangent to the ferrofluid meniscus at the point of incidence

with the horizontal:

θL = 2θF (3.1)
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Laser beam

Ferrofluid

Glass pane

iz

Laser

Test stand

Calibrated x-axis
translation
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ix

Figure 3-2: The experimental setup for optically measuring the shape of the ferrofluid
meniscus with no applied magnetic field. The laser beam reflects off the surface of
the ferrofluid to the observed point on the glass pane. The angle by which the beam
is deflected from the vertical depends on the slope of the ferrofluid meniscus.
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We also see from the figure that ∆, the distance between the two points where the

laser intersects the glass pane is related to the angle θF by,

θF =
θL

2
=

1

2
tan−1(

∆

H − ξ
) (3.2)

where H , the distance between the glass pane and the flat region of the ferrofluid

meniscus, is much larger than the meniscus height ξ so that H − ξ ≈ H . The slope

of the meniscus is related to the angle θF by the expression,

tan θF = −dξ

dx
(3.3)

Integration of the measured slope of the ferrofluid yields the height of the meniscus

as a function of distance from the glass slide. The height of the ferrofluid far from

the glass slide in the flat region of the meniscus is taken to be zero.

Laser beam

Ferrofluid

Glass pane

Glass slide

θL

θF

nξ

x

∆

H

Figure 3-3: Geometric relationship of the laser beam’s deflection from the vertical to
the local slope of the ferrofluid meniscus. The shape of the meniscus is obtained from
the integration of measured slope values. The height of the ferrofluid far away from
the walls is taken to be zero.
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The finite diameter of the laser beam (1.0 mm for our measurements) poses a

serious challenge in this system of measurement. The curvature of the meniscus

increases near the glass slide, deforming the reflected beam into a long thin ellipse

because the slope of the ferrofluid interface changes significantly across the width of

the laser beam. Fig. 3-4 illustrates how the ferrofluid meniscus acts like a concave

mirror, first focusing then elongating the impression of the reflected laser beam on

the glass pane. To overcome this difficulty the relative positions of the left-most and

right-most edges of the two laser spots on the glass pane were recorded and processed

as two independent sets of measurements. We can apply Eq. 3.2 twice to compute

θF1 and θF2 using the displacements ∆1 and ∆2. Fig. 3-4 shows the case when the

focal point is below the glass pane, but relationship for the case when the focal point

is above the glass pane can be similarly derived. The elongation and blurriness of

the reflected laser beam reduces the quality of our measurements near the glass slide

where the slope of the meniscus is large. The accuracy of the measurement near the

glass slide can, of course, be improved by reducing the diameter of the laser beam.

w/2

Laser beam

Ferrofluid

Glass pane

w

Glass slide

∆2

∆1

θF1

θF2

H

Figure 3-4: Geometrical optics of the laser beam reflection off the surface of the
ferrofluid. The curvature of the ferrofluid meniscus first focuses and then disperses
the reflected laser beam as the beam moves towards the glass slide.
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3.3 Meniscus measurements in a large beaker

A pair of electromagnets in a Helmholtz coil configuration were used to excite the uni-

form field in configurations a and b. For configuration c, only one electromagnet was

used because a Helmholtz coil in this configuration would have completely enclosed

the experimental vessel making it difficult to investigate the shape of the meniscus

with laser reflections. The electromagnets used were two identical cylindrical copper

coils with a height of 13 cm, an inner radius of 18 cm and an outer radius of 27 cm.

In a Helmholtz coil configuration the centers of the two circular coils are spaced by an

axial distance equal to the average coil radius (22.5 cm) to generate a very uniform

magnetic field on axis. The total number of turns in each coil is 235.

To form the meniscus a glass slide (7.5 cm × 2.5 cm) was immersed in a large 300

ml cylindrical beaker partially filled with ferrofluid. The long dimension of the glass

slide was placed against the bottom of the beaker and we measured the meniscus shape

at the midpoint of the slide to minimize the effects from the edges of the glass slide.

The beaker had a diameter of 15 cm and a height of 6 cm and was filled with ferrofluid

up to a 2 cm level. The beaker was positioned inside the Helmholtz coil setup so that

the ferrofluid interface was near the magnetic axis of the electromagnets. Fig. 3-5

shows measurements of the highly uniform magnetic flux density, with magnetic field

applied in configuration b, in the air right above the central region of a glass beaker

filled with EFH1 oil-based ferrofluid. The location of the flat ferrofluid interface far

away from the glass slide in the figure is at z = 0 and the location of the glass slide is

at x = 0. The magnetic field in this setup remained relatively uniform near the glass

slide.

3.3.1 No applied magnetic field

We first measured the shape of the ferrofluid meniscus without any magnetic field.

Fig.s 3-6 and 3-7 document these measurements for water-based (MSG W11) and oil-

based (EFH1) ferrofluids respectively. Each figure shows three sets of measurements

that were performed just prior to the application of the magnetic field in each of the
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Figure 3-5: The variation of horizontal magnetic flux density Bx(x, z) in the central
region of a glass beaker filled with oil-based ferrofluid. Measurements on the air side
just above the ferrofluid show horizontal (x) and vertical (z) variations in magnetic
flux density.

55



configurations shown in Fig. 3-1 and were done on different days with the same batch

of ferrofluid re-poured each time. The solid curves in the figures show the Landau and

Lifschitz [23] theoretical expression for the shape of a fluid meniscus in the absence

of magnetic forces,

x

a
=

1√
2

cosh−1 a
√

2

ξ
−
√

2 −
(

ξ

a

)2

− 1√
2

cosh−1 a
√

2

h
+

√
2 −
(

h

a

)2

(3.4)

where a is the capillary length and h = ξ(x = 0) is related to the contact angle θ0 by

the expression,

h = a
√

1 − sin θ0 (3.5)

These relationships are derived in Chapter 4, and extended to include magnetic forces.

Note that our expression for the shape of the meniscus in Eq. 3.4 differs from the

Landau and Lifschitz expression by a minus sign. This disagreement is due to a sign

error in the derivation published by Landau and Lifschitz and is discussed in our

theoretical investigation of ferrofluid interfacial behavior in Chapter. 4.

The parameters a and θ0 are selected to minimize the least squares error between

the theoretical curve and the experimental data. For MSG W11 water-based ferrofluid

a = 2.7 mm and θ0 = 40◦, whereas for EFH1 oil-based ferrofluid a = 2.0 mm and

θ0 = 50◦. Figs. 3-6 and 3-7 demonstrate that the theory and experimental data are

in good agreement with no applied magnetic field.

The capillary length, a, can also be calculated from the ferrofluid properties given

in Table 2.2 according to the expression,

a =

√
2σ

ρg
(3.6)

where σ is the surface tension, ρ is the density, and g is the acceleration due to

gravity. Representative parameter values for Ferrotec Corp. water-based ferrofluid

(MSG W11) are ρ = 1200 kg/m3 and σ = 0.0384 N/m yielding a = 2.55 mm. For

EFH1 oil-based ferrofluid ρ = 1221 kg/m3 and σ = 0.0235 N/m yields a = 1.98

mm. The calculated values of the capillary length agree with the values observed
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experimentally.
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Figure 3-6: The shape of the meniscus formed when a water-based ferrofluid (MSG
W11) wets a glass slide with no applied magnetic field. The solid curve shows the
least-squares method best fit of the data to the theoretical expression of Landau and
Lifschitz (Eq. 3.4), with best fit parameters a = 2.7 mm and θ0 = 40◦. The figure
shows three independent sets of repeated measurements under identical conditions
with zero applied magnetic field denoted by ×, · and ◦.

3.3.2 Applied horizontal tangential magnetic field (configu-

ration a)

Fig.s 3-8 and 3-9 show the effect of a horizontal magnetic field, as in configuration

a in Fig. 3-1, on oil-based and water-based ferrofluids contacting a glass surface.
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Figure 3-7: The shape of the meniscus formed when an oil-based ferrofluid (EFH1)
wets a glass slide with no applied magnetic field. Best fit parameters for the solid
curve are a = 2.0 mm and θ0 = 50◦. The figure shows three independent sets of
repeated measurements under identical conditions with zero applied magnetic field
denoted by ×, · and ◦.
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Experiments demonstrate that the effects of the magnetic field in this configuration

are negligible, as expected from theory. These results provide further proof of the

uniformity of the magnetic field at the ferrofluid interface in our experimental setup,

since even a small gradient in the magnetic field can lead to significant forces and

alter the shape of the ferrofluid meniscus.
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Figure 3-8: The shape of the meniscus formed when an oil-based ferrofluid (EFH1)
wets a glass slide with an applied horizontal magnetic field in configuration a of Fig.
3-1. The meniscus shape at zero applied magnetic field (◦) is essentially unaffected
by configuration a applied magnetic field strengths of 300 G (�) and 600 G (�).

59



0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x [cm]

ξ 
[c

m
]

Configuration a

 

 
Theory       B = 0 G
Experiment B = 0 G
                   300 G
                   600 G

Figure 3-9: The shape of the meniscus formed when a water-based ferrofluid (MSG
W11) wets a glass slide with an applied horizontal magnetic field in configuration a
of Fig. 3-1. The meniscus at zero magnetic field (◦) is essentially unaffected by the
applied magnetic field strengths of 300 G (�) and 600 G (�).
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Figure 3-10: The shape of the meniscus formed when an oil-based ferrofluid wets a
glass slide with an applied horizontal magnetic field (configuration b in Fig. 3-1). The
meniscus height decreases with an increased applied field strength of 600 G (�).

3.3.3 Horizontal perpendicular applied magnetic field (con-

figuration b)

Fig.s 3-10 and 3-11 show the effect of a horizontal magnetic field in configuration b of

Fig. 3-1 on oil-based (EFH1) and water-based (MSG W11) ferrofluids contacting a

glass surface. Experiments show that a horizontal magnetic field decreases the height

of the ferrofluid meniscus. Increasing the magnetic field strength to the maximum

available value leads to a steady depression of the ferrofluid interface. The strength

of the generated magnetic fields was limited by the capabilities of the available equip-

ment, which were less than ∼ 20 amperes (corresponding to ∼ 600 G).
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Figure 3-11: The shape of the meniscus formed when a water-based ferrofluid (MSG
W11) wets a glass slide with an applied horizontal magnetic field (configuration b in
Fig. 3-1). The meniscus height decreases with increased field strengths of 300 G (�)
and 600 G (�).
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3.3.4 Applied vertical magnetic field (configuration c)

Fig.s 3-12 and 3-13 show the effect of a vertical magnetic field on oil-based and

water-based ferrofluids contacting a glass surface. Experiments show that a verti-

cal magnetic field increases the height of the ferrofluid meniscus. This increase in

meniscus height is limited by the critical value of vertical magnetic field at which

the Cowley-Rosensweig instability [10] occurs and ferrofluid peaks begin to form.

For magnetic field strengths greater than the threshold value for the instability, the

ferrofluid interface does not remain smooth and hexagonally spaced peaks cover the

surface of the ferrofluid. For MSG W11 water-based ferrofluid the critical value of the

magnetic field was observed at ∼ 642 gauss and whereas for EFH1 the critical value

was observed to be as low as ∼ 81.9 gauss, which is in agreement with the analysis

presented by Amin and Elborai in [3].

3.4 Meniscus measurements in a small rectangular

container

Experiments were also conducted in a small (10.2 cm ×5.1 cm ×5.1 cm) rectangu-

lar glass container, where instead of inserting a glass slide we observed the meniscus

formed at the walls of the small container. We measured the magnetic field at the

edges of the container. These measurements show that the ferrofluid significantly

affects the uniformity of the magnetic field. The field non-uniformity becomes most

significant at the edges of the container. Fig. 3-14 shows measurements of the hori-

zontal magnetic field applied in configuration b in the air outside the wall of a small

glass container filled with oil-based ferrofluid. The hall probe was moved along the

outside wall of the glass container. The ferrofluid demagnetizing field tends to lower

the magnetic field strength inside the ferrofluid. The ferrofluid feels a force that acts

to move it towards regions of higher magnetic field strength. The effects of this mag-

netic field gradient force significantly alter the behavior of the ferrofluid meniscus in

our experiments.
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Figure 3-12: The shape of the meniscus formed when an oil-based ferrofluid (EFH1)
wets a glass slide with an applied vertical magnetic field (configuration c in Fig. 3-1).
The meniscus rises with increased field strength. The magnetic flux density scales
with current as ∼ 20 gauss/ampere in this configuration.
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Figure 3-13: The shape of the meniscus formed when a water-based ferrofluid (MSG
W11) wets a glass slide with an applied vertical magnetic field (configuration c in
Fig. 3-1). The meniscus rises with increased field strength. The magnetic flux
density scales with current as ∼ 20 gauss/ampere in this configuration.
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Figure 3-14: The variation of the horizontal magnetic flux density with vertical pa-
rameter z at the edge of the narrow side-wall of a small rectangular glass container
partially filled with oil-based ferrofluid. Measurements are shown for the case with-
out ferrofluid (©) and for the case with ferrofluid (×). The ferrofluid interface is at
z = 0. The transverse hall probe was tightly pressed against the outer edge of the
container wall.
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3.4.1 Applied horizontal tangential magnetic field (configu-

ration a)

Fig. 3-15 shows the effects of the applied horizontal magnetic field on the meniscus

formed by an oil-based ferrofluid on the walls of a small rectangular container. The

height of the meniscus increases significantly with increasing magnetic field strength.

The effects of the magnetic field are stronger than any of the measurements described

in Section 3.3. At higher values of the magnetic field incremental increases of the

applied field strength result in only small changes in the height and shape of the

meniscus.
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Figure 3-15: The shape of the meniscus formed when an oil-based ferrofluid (EFH1)
wets the glass wall of a rectangular container with an applied tangential magnetic field
(configuration a in Fig. 3-1). The meniscus rises with increased field strength. The
magnetic flux density scales with current as ∼ 30 gauss/ampere in this configuration.

67



3.4.2 Horizontal perpendicular applied magnetic field (con-

figuration b)

Fig. 3-16 shows the effects of a horizontal magnetic field applied in configuration b

on the shape of the ferrofluid meniscus in a small rectangular container. The fer-

rofluid height increases with increasing magnetic field strength. However, the effects

of the magnetic field strength on the meniscus height are smaller for higher values of

magnetic field strength.
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Figure 3-16: The shape of the meniscus formed when an oil-based ferrofluid (EFH1)
wets the glass wall of a rectangular container with an applied horizontal magnetic field
(configuration b in Fig. 3-1). The meniscus rises with increased field strength. The
magnetic flux density scales with current as ∼ 30 gauss/ampere in this configuration.
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3.4.3 Applied vertical magnetic field (configuration c)

Fig. 3-17 shows the effects of a vertical magnetic field on the shape of an oil-based

ferrofluid meniscus formed in a small rectangular container. The ferrofluid meniscus

rise exceeds that of the corresponding case in Section 3.3. The maximum magnetic

field strength is limited by peak formation at the onset of the Cowley-Rosensweig

surface instability [10].
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Figure 3-17: The shape of the meniscus formed when an oil-based ferrofluid wets the
glass wall of a rectangular container with an applied vertical magnetic field (configu-
ration c in Fig. 3-1). The meniscus rises with increased field strength. The magnetic
flux density scales with current as ∼ 20 gauss/ampere in this configuration.
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3.5 Summary of results

The experimental data presented in this chapter shows that for a glass slide partially

immersed in a large cylindrical container of ferrofluid a horizontal field perpendicular

to the wall reduces meniscus height, a vertical field increases the height, and a field

parallel to the wall has no effect. At the side walls of a rectangular container strong

effects were observed due to fringing field effects.
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Chapter 4

Height of ferrofluid meniscus in

applied magnetic field

4.1 Introduction

Chapter 3 of this thesis documents experiments measuring, with laser reflection, the

height and shape of the meniscus formed by the partial immersion of a thin glass plate

into ferrofluid contained in a large vessel. The meniscus curve formed on both sides

of the immersed plate decreases in horizontal applied magnetic fields and increases

in vertical applied fields. The approximate analysis presented in this chapter uses

the calculus of energy minimization to determine the observed influence of an applied

magnetic field on meniscus height h.

For a stationary, incompressible ferrofluid the ferrohydrodynamic form of Bernoulli’s

equation in the ferrofluid volume is [40],

p + ρgz − µ0

∫ H

0

MdH = constant (4.1)

where the magnetostrictive force density is neglected because it has no effect for

incompressible fluids [26].

In addition, there must be an interfacial force balance of pressure, magnetic,

and surface tension forces. The ith component of the interfacial surface force with
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interfacial normal n is,

(pb − pa) ni + (Tija − Tijb)nj + Tsi = 0 (4.2)

where a and b are the positions just above and just below the interface in Fig. 4-1

respectively, pb − pa is the jump in interfacial pressure, Tija − Tijb is the jump in

magnetic stress tensor across the interface, and Tsi is the surface tension stress.

For the interfacial deflection ξ(x) shown in Fig. 4-1, the interfacial unit normal

vector is

n =
iz − dξ

dx
ix√

1 +
(

dξ
dx

)2 (4.3)

where there are no variations with the y coordinate as we take the wall at x = 0 to

be flat and of infinite depth in the y direction. This one-dimensional treatment is

justified for flat walls and for cylindrical vessels whose diameter is much larger than

the interfacial radius of curvature.
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Figure 4-1: A ferrofluid in a uniform applied magnetic field at an angle θf to the
x-axis. The ferrofluid contacts a vertical wall at x = 0 at an angle θ0 rising to a
height h. The shape of the meniscus is described by ξ(x)

The surface tension stress Tsi depends on the radius of curvature R at the interface
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which is related to the unit normal vector as [26],

Ts = − σ

R
n = −σ (∇ · n)n =

σn d2ξ
dx2(

1 +
(

dξ
dx

)2) 3
2

(4.4)

where σ is the surface tension and the radius of curvature in the y direction is taken

to be infinite.

Boundary conditions on B and H require that the normal component of B and

tangential component of H be continuous across the interface.

Ban = Bbn

Hat = Hbt (4.5)

The magnetic stress tensor Tij , where i denotes the component direction of force

and j the normal to the plane on which the force acts, without magnetostriction is

given by [40]

Tij = HiBj − 1

2
δijµ0HkHk (4.6)

Let us take a coordinate system (t, n) which has unit vectors tangential (t) and normal

(n) to the interface. Then the magnetic surface force tangential to the interface is

Ttna − Ttnb = HatBan − HbtBbn = 0 (4.7)

where we used the continuity boundary conditions on tangential components of H

and normal components of B (Eq. 4.5) to show that the net magnetic shear stress is

zero.

Similarly, the magnetic surface force normal to the interface is

Tnna − Tnnb = HanBan − 1

2
µ0

(
H2

an + H2
at

)−(HbnBbn − 1

2
µ0

(
H2

bn + H2
bt

))

=
1

2

B2
an − B2

bn

µ0
− 1

2
µ0(H

2
at − H2

bt) −
1

2
µ0(M

2
an − M2

bn)

=
1

2
µ0M

2
n (4.8)

73



where Man = 0 and Mbn = Mn in Fig. 4-1. Both of the magnetic stress relationships

in Equations 4.7 and 4.8 were derived by Rosensweig [40].

The normal component of magnetization is,

Mn = M · n = Mx(x)nx + Mz(x)nz =
Mz(x) − Mx(x) dξ

dx√
1 +
(

dξ
dx

)2 (4.9)

The normal magnetic stress is then given by the expression,

Tnna − Tnnb =
1

2
µ0

(
Mz(x) − Mx(x) dξ

dx

)2
1 +
(

dξ
dx

)2 (4.10)

Evaluating Equation 4.1 at z = ξ(x) at point b, just below the fluid interface

yields

pb + ρgξ(x) − µ0

∫ Hb(x)

0

M(H)dH = constant (4.11)

Substituting the results of Equations 4.10 and 4.4 into Equation 4.2 yields the force

balance at the fluid interface,

pb − pa +
1

2
µ0

(
Mz(x) − Mx(x) dξ

dx

)2
1 +
(

dξ
dx

)2 +
σ d2ξ

dx2(
1 +
(

dξ
dx

)2) 3
2

= 0 (4.12)

Note that the pressure just above the interface is atmospheric, pa = p0, whereas the

pressure just below the interface is a function of x, pb = pb(x). Eliminating pb from

Equations 4.11 and 4.12 leads to the governing equation for the meniscus shape,

p0 − 1
2
µ0

(Mz(x)−Mx(x) dξ
dx)

2

1+( dξ
dx)

2 − σ d2ξ

dx2“
1+( dξ

dx)
2
” 3

2
+ ρgξ (x) − µ0

∫ Hb(x)

0
M(H)dH = constant

(4.13)

We can evaluate the constant by taking the limit of Equation 4.11 as x → ∞. At

that limit the interface is flat so that ξ(x) = 0, dξ
dx

= 0 and the constant has the value,

constant = p0 − 1

2
µ0M

2
z (x → ∞) − µ0

∫ Hb(x→∞)

0

MdH (4.14)
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Substitution of the constant in Equation 4.14 into Equation 4.13 yields the governing

equation for the meniscus shape,

ρgξ (x) + 1
2
µ0

(
M2

z (x → ∞) − (Mz(x)−Mx(x) dξ
dx)

2

1+( dξ
dx)

2

)
− σ d2ξ

dx2“
1+( dξ

dx)
2
” 3

2
+ µ0

∫ Hb(x→∞)

Hb(x)
MdH = 0

(4.15)

It is convenient to introduce the dimensional capillary length a and the following

non-dimensional variables

a =

√
2σ

ρg
, ξ̃ =

ξ

a
, x̃ =

x

a
, z̃ =

z

a
, N =

1

2
µ0

M2
s a

σ
, M̃z =

Mz

Ms
, M̃x =

Mx

Ms
(4.16)

so that Equation 4.15 in non-dimensional form is

2ξ̃(x̃) + N

[
M̃2

z (x̃ → ∞) −
“
M̃z(x̃)−M̃x(x̃) dξ̃

dx̃

”2

1+
“

dξ̃
dx̃

”2 +
∫ H̃b(x̃→∞)

H̃b(x̃)
M̃dH̃

]
−

d2 ξ̃

dx̃2„
1+
“

dξ̃
dx̃

”2
« 3

2
= 0

(4.17)

Representative parameters for Ferrotec MSG W11 (a water-based ferrofluid) are

µ0Ms = 153.9 G, ρ = 1200 kg
m3 , σ = 0.0384 N

m
so that a = 2.55 mm and N = 6.4,

while for an oil-based ferrofluid like Ferrotec EFH1, µ0Ms = 421.2 G, ρ = 1221 kg
m3 ,

σ = 0.0235 N
m

yielding a = 1.98 mm and N = 59.5 (see Tables 2.2 and 2.3).

When there are no magnetic forces so that N = 0, Equation 4.17 becomes,

2ξ̃(x̃) −
d2ξ̃
dx̃2(

1 +
(

dξ̃
dx̃

)2
) 3

2

= 0 (4.18)

which has been solved by Landau and Lifschitz [23] and used in Chapter 3. Let

u =
1√

1 +
(

dξ̃
dx̃

)2
(4.19)

so that Equation 4.18 can be written as

du

dξ̃
= −2ξ̃ (4.20)
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This integrates to

u = −ξ̃2 + 1 (4.21)

where the integration constant was determined to be unity by evaluating Equations

4.19 and 4.21 at x̃ → ∞ where ξ̃ = 0 and dξ̃
dx̃

= 0.

Then using Equation 4.19 with Equation 4.21 gives the differential equation

dξ̃

dx̃
= −

ξ̃

√
2 − ξ̃2

1 − ξ̃2
(4.22)

with solution in implicit form

x̃ = − 1√
2

cosh−1

√
2

ξ̃
+

√
2 − ξ̃2 +

1√
2

cosh−1

√
2

h̃
−
√

2 − h̃2 (4.23)

where we use the boundary condition that

ξ̃ (x̃ = 0) = h̃ (4.24)

with h̃ the non-dimensional fluid height at the x̃ = 0 wall.

Usually, h̃ is not known, but rather the contact angle θ0 is known at x̃ = 0, so

that (
dξ̃

dx̃

)
x̃=0

= − cot θ0 (4.25)

Using Equations 4.19, 4.24, and 4.25 in Equation 4.21 gives

h̃ =
√

1 − sin θ0 (4.26)

Note that mathematically there are four possible roots h̃ = ±−√
1 ± sin θ0. However,

only the smallest positive root is physical since it guarantees that ξ̃(x) ≥ 0, and

dξ̃
dx̃

≤ 0.

With an applied magnetic field, the parameters M̃z and M̃x in Equation 4.17 are

non-zero functions of x, and a valid solution is not possible without exact knowledge

of the fields just below the surface of the ferrofluid. We present in the following
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Figure 4-2: Schematic profile of ferrofluid meniscus formed on both sides of a verti-
cal glass plate partially immersed in the middle of a large vessel of ferrofluid. The
meniscus has a height h at the contact wall and a contact angle θ0.

sections an approximate energy analysis that does not require exact knowledge of the

magnetic fields.

4.2 The energy methodology

The total energy stored in the ferrofluid meniscus depends strongly on the height and

shape of the meniscus. The implicit expression derived by Landau and Lifschitz (See

Eq. 4.23 above) describes the exact shape of the meniscus in the absence of applied

magnetic field but is not easy to manipulate mathematically; for the purposes of

this energy analysis we re-examine the expression for the shape of the meniscus with

no applied magnetic field given in Eq. 4.18 in two simple limits. First we present

Rosensweig’s linear meniscus shape approximate analysis in Sec. 4.3 [42]. Rosensweig

simply replaces the meniscus curve with a straight line at the slope set by the contact

angle of the fluid. Then in Sec. 4.4 we extend Rosensweig’s energy minimization

analysis to an exponential meniscus shape which approximates the actual shape of

the meniscus in the limit when
∣∣ dξ
dx

∣∣ << 1.
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4.3 Linear meniscus profile

The approximate analysis assuming a linear meniscus profile correctly captures all

the trends that we observed experimentally and provides physical insight into the

surface effects of magnetic fields on ferrofluids. Fig. 4-3 shows the idealized shape of

the ferrofluid in the container. The meniscus formed on both sides of the immersed

slide is represented by a triangular zone (we choose to neglect the thickness of the

slide). The total energy E per unit distance into the page is given by the expression,

E = ES + EW + EG + EM (4.27)

where the total energy is given as the respective sum of surface, wall, gravitational

and magnetic energies. The system achieves equilibrium when the condition,

∂E

∂h
= 0 (4.28)

is satisfied.

h
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DE

G
P

Ferrofluid

Air

θ

z

x

Q

0

Figure 4-3: Idealized triangular model of ferrofluid meniscus. Straight lines starting
from a height h and slanted at the contact angle θ0 represent the meniscus formed
around an immersed vertical glass plate.

In order to proceed with finding the equilibrium value of h, we must examine each

of the different ferrofluid energies in turn.
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4.3.1 Free surface energy, ES

Interfacial surface tension σ represents the free energy stored per unit area of fluid

surface. We will consider only the region x > 0 since by symmetry the total energy

in the system would be simply double the value we obtain. Summing the surface free

energy per unit depth over surfaces AG and AB as well as the horizontal surfaces

FG and BC yields,

Es = σ

(
h

cos θ0

− h tan θ0 + PC

)
(4.29)

and

dEs = σ
1 − sin θ0

cos θ0
dh (4.30)

where PC is the distance between points P and C.

4.3.2 Wall interfacial energy, EW

The wall interfacial energy EW per unit depth into the page is given by the sum of

the products of the areas covered by the ferrofluid/wall and the wall/gas interfaces

with their respective interfacial free energies σLS and σSG,

EW = hσLS + (PQ − h)σSG. (4.31)

where PQ is the distance between points P and Q. This relationship can be simpli-

fied by using the Young-Dupre equation for vertical force balance equilibrium at the

meniscus contact line, σLS − σSG + σ cos θ0 = 0, yielding,

EW = −hσ cos θ0 + PQσSG (4.32)

which in turn gives the differential form,

dEW = −σ cos θ0dh (4.33)
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4.3.3 Gravitational energy, EG

In order to compute the differential increase in gravitational energy due to an incre-

ment in meniscus height, we assume that the bulk volume of the ferrofluid greatly

exceeds the volume of meniscus. Under this assumption, the level of the distant free

surface of the ferrofluid remains constant as the meniscus rises or falls. The conserva-

tion of mass is taken into account and shown to have a negligible effect in Appendix

A.

Integrating the gravitational potential over the meniscus region on one side of the

glass plate yields the expression,

EG =
1

6
ρgh3 tan θ0 (4.34)

and consequently the differential form,

dEG =
1

2
ρgh2 tan θ0dh (4.35)

Note that Eq. 4.34 can be interpreted as the gravitational potential energy of an

object with mass per unit length equal to the total mass per unit length of ferrofluid

in the meniscus region (1
2
h2 tan θ0 ρ) located at the center of mass of the triangle at

height h/3.

4.3.4 Magnetic field energy, EM

Unlike the expressions in previous sections, which were derived for the various types

of energy stored in the meniscus, the magnetic energy EM depends on field orien-

tation and needs separate consideration of demagnetizing coefficients for horizontal

and vertical magnetic fields. For magnetic fluid modeled by a constant magnetic sus-

ceptibility, χ = M/H , the magnetic energy is given by Paris and Hurd’s [30] familiar

expression for linear magnetic materials,

EM = −µ0

2

∫
M ·H0dV (4.36)
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where M is the actual magnetization vector inside the ferrofluid and H0 is the uni-

form applied magnetic field in the absence of magnetic material. Rosensweig [40]

provides a more complete derivation of this result for linear magnetic materials than

the discussion found in Paris and Hurd.

Even though the magnetization vector, M , generally varies spatially, we assume

that it is spatially uniform throughout the meniscus region ABG and the bulk fluid

FCDE. In this analysis, the magnetization M is collinear with the magnetic field inten-

sity, H, inside each region of the ferrofluid. The relationship between the magnitudes

of the magnetization inside the fluid M , the internal magnetic field intensity H and

the externally applied field H0 is approximately given in terms of a demagnetization

coefficient D so that,

H = H0 − DM (4.37)

For linear materials M = χH , which when substituted into Eq. 4.37 leads to the

expression,

M =
χH0

1 + χD
(4.38)

Further substitution of this expression for the magnetization M into the integral

expression given by Eq. 4.36 yields,

EM = −µ0

2

∫
VM

χH2
0

1 + χDM
dVM − µ0

2

∫
VB

χH2
0

1 + χDB
dVB (4.39)

where the magnetic energy is written in terms of demagnetizing coefficients DM and

DB for the meniscus and bulk ferrofluid regions respectively. Note that we shall prove

later in this section that the demagnetizing coefficients are functions of θ0 only and

have no dependence on h.

The integration over the meniscus volume VM and the bulk fluid volume VB is very

simply performed because M is considered constant in both regions by assumption.

EM = −µ0

4

χH0
2

1 + χDM
hw − µ0

2

χH2
0

1 + χDB
VB (4.40)
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where w = h tan θ0. The corresponding incremental form is given by the expression,

dEM = −µ0

4

χH0
2

1 + χDM
d(hw) − µ0

2

χH2
0

1 + χDB
dVB (4.41)

ds

n
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Figure 4-4: Expanded view of the meniscus region of the simple linear shape approx-
imation of ferrofluid meniscus of Fig. 4-3. To derive the demagnetization factor the
magnetic field is computed at the point P at the origin.

For conservation of mass to hold in an incompressible fluid requires the following

relationship between dVB and d(hw),

d

(
1

2
hw

)
+ dVB = 0 (4.42)

with w = h tan θ0, and

d(hw) = 2h tan θ0dh (4.43)

Substitution of the geometric constraints of Eqs. 4.42 and 4.43 into Eq. 4.41 leads

to,

dEM =
µ0

2
χH2

0

(DB − DM)

(1 + χDM)(1 + χDB)
h tan θ0dh (4.44)

Note that the expression for dEM holds for both horizontal and vertical magnetic
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fields when expressed in the general terms of DM and DB. The demagnetization

coefficients for the case of horizontal applied magnetic field, DMH and DBH , and the

equivalent expressions for the case of vertical applied magnetic fields, DMV and DBV ,

are derived in the following sub-sections.

Horizontal field

Fig. 4-4 shows the idealized triangular shape of the meniscus formed on both sides

of a thin glass plate partially immersed in a large ferrofluid vessel. We neglect the

thickness of the thin glass plate in order to compute the demagnetization inside the

fluid in response to a horizontal applied magnetic field. The demagnetization will be

computed at a representative point P at the base of the triangle shown in Fig. 4-3.

The horizontal applied magnetic field results in a pole density on a free surface of

the meniscus that is given by,

σM = µ0M · n = ±µ0M cos θ0 (4.45)

where M is the magnetization in the ferrofluid, and n is the unit out-going normal

to the surface given by the expression,

n = ± cos θ0ix + sin θ0iz (4.46)

Note that for positive Hx in Fig. 4-3 the positive pole density and the x-component

of the normal vector correspond to surface AB whereas the negative pole density and

the x-component of the normal vector correspond to surface AG.

The magnetization is horizontal at point P because vertical components of the

demagnetization fields cancel by symmetry. The magnitude of demagnetization field

due to the line source of width ds on surface AC, considered infinite in the y direction,

is given by,

dHr =
σMds

2µ0πr
=

M cos θ0ds

2πr
(4.47)

where r is the distance from the line pole source to the point P and dHr is collinear
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with r. The component of dHr along the horizontal, i.e., the x-direction, is given

by − sin βdHr. An equal contribution is made by the corresponding negative line of

poles situated on surface AG. Thus, the total contribution dHx is given by,

dHx = −2 sin βdHr = −M cos θ0 sin β

πr
ds (4.48)

so that the expression for the total demagnetization field at point P is,

Hx = −M

π

∫ S

0

sin β cos θ0

r
ds (4.49)

Furthermore, from the law of sines applied to the triangle in Fig. 4-4 we have

that,
sin β

s
=

sin θ0

r
(4.50)

and from the law of cosines,

r2 = s2 + h2 − 2sh cos θ0 (4.51)

Using the relations in Eqs. 4.50 and 4.51 we can rewrite Eq. 4.49 as,

Hx = −DMH(θ0)M (4.52)

where DMH , the demagnetization coefficient, can be expressed as follows,

DMH(θ0) =
sin 2θ0

2π

∫ 1

0

ςdς

ς2 + (1 − 2ς) cos2 θ0
(4.53)

where ς = s
S
. Note that DMH is independent of h and only a function of θ0. The

integral expression for DMH has the following closed form solution,

DMH(θ0) =
sin(2θ0)

2π

[π
2

cot(θ0) + ln(tan θ0)
]

(4.54)
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By superposition, the net magnetic field at any wall point is given by,

H = H0 − DMH(θ0)M (4.55)

A plot of DMH(θ0) is shown in the left inset in Fig. 4-5 where it can be seen that

DMH(π/2) = 0 and DMH(0) = 1
2
. The demagnetizing coefficient in the bulk of the

ferrofluid is zero,

DBH = 0, (4.56)

for the case of a horizontal applied magnetic field because segments EF and CD are

assumed to be small compared to the horizontal dimension of the system and very

distant from point P (see Fig. 4-3).

Vertical field

The vertical applied magnetic field results in a pole density on a free surface of the

meniscus that is given by,

σM = µ0M · n = µ0M sin θ0 (4.57)

where M is the actual magnetization and n is the unit normal to the surface given

in Eq. 4.46. The magnetization is vertical at point P because horizontal components

of the demagnetization fields cancel.

The magnitude of demagnetization field due to the line source of width ds on

surface AC, considered infinite in the y direction, is given by,

dHr =
σMds

2µ0πr
=

M sin θ0ds

2πr
(4.58)

where r is the perpendicular distance from the line pole source to the point P and

dHr is collinear with r. The component of dHr along the vertical, i.e., the z-direction,

is given by − cos βdHr. An equal contribution is made by the corresponding negative

line of poles situation on surface AB. Thus, the total contribution dHz at point P is
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given by

dHz = −2dHr cos β = −M sin θ0 cos β
ds

πr
(4.59)

From the geometry of the meniscus we can write,

cos β =
h2 + r2 − s2

2hr
(4.60)

and

r2 = h2 + s2 − 2hs cos θ0 (4.61)

Substitution of Eqs. 4.60 and 4.61 into Eq. 4.59 leads to,

dHz =
M sin θ0(h − s cos θ0)

π(h2 + s2 − 2hs cos θ0)
(4.62)

Defining ς = s/S the integral for Hz can be written as,

Hz = −M sin 2θ0

2π

∫ 1

0

1 − ς

ς2 + (1 − 2ς) cos2 θ0
(4.63)

which is independent of h. The value of Hz obtained from integrating Eq. 4.63

accounts for the poles on the surface of the meniscus region. This field contribution

must be augmented by poles of opposite sign on the bottom of the ferrofluid container

(i.e., on line segment ED shown in Fig. 4-3). These poles give a contribution of −M
2

.

Because DMV = −Hz/M , the demagnetization coefficient can be expressed as,

DMV (θ0) =
sin 2θ0

2π

[
ln(cot θ0) +

π

2
tan θ0

]
(4.64)

Note that DMV is independent of h and only a function of θ0.

A plot of DMV (θ0) is presented on the right inset Fig. 4-5 where it can be seen

that DMV (π/2) = 1. A well-known result of elementary electromagnetics is that

the demagnetization coefficients on orthogonal axes must sum to unity. This can be

confirmed from adding Eqs. 4.64 and 4.54, or verified graphically from the insets in

Fig. 4-5. The demagnetization coefficient in the bulk of the ferrofluid for the case of
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a vertical applied magnetic field is unity [50]:

DBV = 1 (4.65)

4.3.5 Governing equation for meniscus height

Substituting the expressions for dES, dEW , dEG, and dEM into the differential form of

Eq. 4.27, applying the minimization condition of Eq. 4.28, and putting the equation

into dimensionless form yields the following quadratic equation for relative meniscus

height h
a

where a is the capillary length,

(
h

a

)2

+ P (χ, θ0)NB
h

a
− (1 − sin θ0) = 0 (4.66)

where,

P (χ, θ0) =
χ [DM(θ0) − DB]

[1 + χDM(θ0)] [1 + χDB]
, (4.67)

and NB is the magnetic Bond number given by the expression,

NB =
µ0H

2
0a

2σ
. (4.68)

The roots of Eq. 4.66 are given by the expression,

h

a
= −P (χ, θ0)

NB

2
+

√[
P (χ, θ0)

NB

2

]2

+ (1 − sin θ0) (4.69)

Meniscus height in unmagnetized fluid

In the absence of an applied magnetic field (i.e., NB = 0) Eq. 4.69 reduces to the

simple expression,
h

a
=
√

1 − sin θ0 (4.70)

This result is identical to the prediction of the more rigorous Landau and Lifschitz

expression for the height of the meniscus with no applied magnetic field given in Eq.
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Figure 4-5: Meniscus height predictions of triangular shape model for horizontal ap-
plied field (left) and vertical applied field (right) with corresponding meniscus demag-
netization coefficients (insets). Circles denote measure meniscus heights for water-
based MSG W11 ferrofluid, dashed lines denote theory. Asterisks denote measured
meniscus heights for oil-based EFH1 ferrofluid, solid lines denote theory. Values of
θ0 = 0, 15, 30, 45, 60, 75 degrees correspond to curves in order from top to bottom.
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4.26.

Meniscus height in horizontal applied magnetic field

We substitute into Eq. 4.67 the demagnetizing coefficients for a horizontal applied

magnetic field given by the expressions in Eqs. 4.54 and 4.56,

P (χ, θ0) =
χDMH(θ0)

[1 + χDMH(θ0)]
(4.71)

This substitution leads to the following expression for meniscus height,

h
a

= − χDMH(θ0)
[1+χDMH(θ0)]

NB

2
+

√[
χDMH(θ0)

[1+χDMH(θ0)]
NB

2

]2
+ (1 − sin θ0) (4.72)

A graph of h
a

vs. NB with contact angle θ0 as parameter, shown in Fig. 4-5, demon-

strates that a horizontal applied magnetic field reduces the height of the meniscus at

the wall, a trend which agrees with the observed experimental results of Chapter 3.

Meniscus height in vertical applied magnetic field

We substitute into Eq. 4.67 the demagnetizing coefficients for a vertical applied

magnetic field expressed in Eqs. 4.64 and 4.65,

P (χ, θ0) =
χ [DMV (θ0) − 1]

(1 + χ) [1 + χDMV (θ0)]
(4.73)

This substitution leads to the following expression for meniscus height,

h

a
= − χ [DMV (θ0) − 1]

(1 + χ) [1 + χDMV (θ0)]

NB

2
+

√[
χ [DMV (θ0) − 1]

(1 + χ) [1 + χDMV (θ0)]

NB

2

]2

+ (1 − sin θ0)

(4.74)

A graph of h
a

vs. NB with contact angle θ0 as parameter is shown in Fig. 4-5. It

can be seen that a vertical magnetic field increases the height of the meniscus at the

wall. This trend is in agreement with experiments.
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4.4 Exponential meniscus profile

In the limit where
∣∣ dξ
dx

∣∣ << 1, the expression for the shape of the ferrofluid meniscus

with no magnetic field given in Eq. 4.18 reduces to the following second order linear

differential equation in dimensional form,

2
ξ

a
− a

d2ξ

dx2
= 0 (4.75)

The profile of the meniscus ξ(x) is then given by the solution,

ξ(x) = he−
√

2x/a = he−
x
h

cot θ0 ; x > 0 (4.76)

which satisfies the boundary conditions,

ξ(x = 0) = h (4.77)

dξ

dx
(x = 0) = − cot θ0 (4.78)

ξ(x −→ ∞) = 0 (4.79)

dξ

dx
(x −→ ∞) = 0 (4.80)

where h is the height of the ferrofluid at the contact wall interface relative to the

height of the ferrofluid in the bulk of the ferrofluid far away from the meniscus.

Fig. 4-6 demonstrates how the simple linear profile first suggested by Rosensweig

compares with the exponential profile and the analytical expression for the shape of

the meniscus given by Eq. 4.23 for a contact angle of θ0 = π
4
. The figure shows

considerable agreement between the approximate exponential solution and the exact

meniscus profile even though
∣∣ dξ
dx

(x = 0)
∣∣ = 1. The exponential approximation holds

very well for π
2

> θ0 > π
4
. The meniscus geometry under an applied magnetic field

is idealized as the decaying exponential profile depicted in Fig. 4-7, with the notion

that the exponential profile approximates the actual surface profile.

As was done for the linear meniscus profile analysis in Section 4.3, the total energy

E per unit depth of the system is the sum, on a per unit depth basis, of the free surface
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Figure 4-6: Comparison of different meniscus profile approximations with the Landau
and Lifschitz expression with θ0 = π

4
and h = 1. The exponential profile (dash-dotted

curve) better approximates the actual profile (solid curve) than the linear profile
(dashed curve).

energy ES, wall interfacial energy EW , gravitational energy EG, and magnetic energy

EM , now performed for an exponential meniscus profile.

E = ES + EW + EG + EM (4.81)

The equilibrium state of the system corresponds to the condition

dE

dh
= 0 (4.82)

It will be found that the meniscus height is thereby determined explicitly.

To proceed, each of the terms on the right side of Eq. 4.81 is formulated in turn

in the following sections.
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4.4.1 Free surface energy, ES

Interfacial tension σ is equivalent to free energy per unit area. Thus, per unit depth

into the page of Fig. 4-7 the sum of surface energy over the meniscus surface can be

written as,

Es =

∫ ∞

x=0

σds (4.83)

where ds, the incremental length of curve on the meniscus profile, can be expressed

in terms of dx and dξ by the Pythagorean theorem,

ds =
√

dx2 + dξ2 =
√

1 + cot2 θ0e
−2 x

h
cot θ0dx (4.84)

Note that in the limit as x −→ ∞ the increment ds becomes equal to dx in the flat

region of the meniscus. Consequently, the integral in Eq. 4.83 does not converge to a

finite value. Since, however, we are mainly interested in the change in surface energy

as a function of meniscus height we set the surface energy of a completely flat fluid

surface as our zero energy reference. This leads to the integral expression,

ES =

∫ ∞

x=0

σ
(√

1 + cot2 θ0e
−2 x

h
cot θ0 − 1

)
dx (4.85)

which clearly converges to a finite value.

In order to evaluate Es, we make the change of variable u = x
h

so that,

ES = σh

∫ ∞

u=0

(√
1 + cot2 θ0e−2u cot θ0 − 1

)
du (4.86)

It is interesting to note from Eq. 4.86 that ES scales linearly with h. Consequently

dEs

dh
depends only on θ0 and can be written as,

dES = σf(θ0)dh (4.87)
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where the function, f(θ0), is given by,

f(θ0) =

∫ ∞

u=0

(√
1 + cot2 θ0e−2u cot θ0 − 1

)
du

= tan θ0

[
csc θ0 −

(
1 + ln

1 + csc θ0

2

)]
(4.88)

4.4.2 Wall interfacial energy, EW

This term accounts for the energetics associated with the wetting contact of the fluid

with the wall.

EW = σLSh + σSG(PQ − h) (4.89)

σLS is the liquid/solid interfacial energy per unit area and σSG the solid/gas interfacial

energy. Because PQ is constant, the differential of EW is found as

dEW = (σLS − σSG)dh (4.90)

This relationship may be simplified using the Young-Dupre equation giving the con-

dition for equilibrium of a liquid/solid/gas contact line.

σLS − σSG + σ cos θ0 = 0 (4.91)

Combining Eqs. 4.90 and 4.91 yields the desired expression for the differential dEW ,

dEW = −σ cos θ0dh (4.92)

4.4.3 Gravitational energy, EG

The gravitational energy in the meniscus can be found by performing the following

integral,

EG =

∫ ∞

x=0

∫ he−
x
h

cot θ0

ξ=0

ρgξdξdx =
1

4
h3ρg tan θ0 (4.93)
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where the level surface of the fluid is considered the reference for zero energy. This

expression neglects the lowering of the level surface of the fluid as the meniscus rises,

a reasonable assumption if the volume of fluid in the meniscus region is much less

than the total volume of fluid. The gravitational energy differential is given by,

dEG =
3

4
h2ρg tan θ0dh (4.94)

4.4.4 Magnetic energy, EM

The expression for EM in Eq. 4.39 can be written in terms of demagnetizing factors

as,

EM = −µ0

2
χH2

0

(
VM

1 + χDM
+

VB

1 + χDB

)
(4.95)

From conservation of mass of the ferrofluid, considered as incompressible, it follows

that,

dVM + dVB = 0 (4.96)

An additional relationship for dVM is obtained from integrating the area of the

meniscus. Thus,

VM =

∫ ∞

0

ξ(x)dx = h2 tan θ0 (4.97)

dVM = 2h tan θ0dh (4.98)

Finally, differentiating Eq. 4.95 and using Eqs. 4.96 and 4.98 to eliminate dVB

yields an expression for dEM in the form

dEM = −µ0χH2
0

χ [DB − DM ]

[1 + χDM ] [1 + χDB]
h tan θ0dh (4.99)

Note that this expression for dEM holds for both horizontal and vertical applied

magnetic fields. The demagnetizing coefficients DM and DB for the case of horizontal

applied magnetic field are derived in Sec. 4.4.4, while the equivalent expressions for

the case of vertical applied magnetic field are derived in Sec. 4.4.4. The sections
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compute the demagnetizing coefficients for an idealized meniscus surface shape with

a decaying exponential profile, as illustrated in Fig. 4-7. Demagnetization will be

computed ignoring wall thickness. Thus the cross-section geometry of the fluid is a

cusp with a fine tip. The coefficient pertains to fluid located at the origin (i.e., at

point P in the figure).

A

BP
Ferrofluid

Air

θ

β
r

n

x

z

ds

ξ(x) To point C

0

h

Figure 4-7: Idealized approximate exponential shape of the meniscus for demagne-
tization factor derivation. The magnetic field is computed at the point P at the
origin.

Horizontal applied field

If we assume that the shape of the meniscus is described by the expression in Eq.

4.76 then we can proceed to calculate the demagnetizing coefficient in the meniscus

region by following a procedure similar to that outlined in Sec. 4.3.4 for a linear

approximate meniscus shape. The horizontal applied magnetic field results in a pole

density on a free surface of the meniscus that is given by,

σM = µ0M · n =
µ0M cot θ0e

− x
h

cot θ0√
1 + cot2 θ0e

−2 x
h

cot θ0

, (4.100)

95



where M is the actual magnetization (to be determined), and n is the unit normal

to the surface given by the expression,

n =
iz − dξ

dx
ix√

1 +
(

dξ
dx

)2 (4.101)

The magnetization is evaluated at point P and is purely horizontal because vertical

components of the demagnetization fields cancel due to the symmetrical meniscus

shape around the immersed glass plate.

The magnitude of demagnetization field in Fig. 4-7 due to the line source of width

ds and magnetic surface charge density σM on surface ABC, considered infinite in

the y direction, is given by,

dHr =
σMds

2µ0πr
=

M cot θ0e
− x

h
cot θ0

2π
√

x2 + h2e−2 x
h

cot θ0

dx, (4.102)

where r is the distance from the line pole source to the point P . The component

of dHr along the horizontal, i.e., the x-direction, is given by − sin βdHr. An equal

contribution is made by the corresponding positive line of poles situated on surface

AGF in Fig. 4-2. Thus, the total demagnetization contribution dHx is given by

dHx = −2 sin βdHr. (4.103)

Hence, from the geometry of the meniscus we can write,

dHx =
−2x√

x2 + h2e−2 x
h

cot θ0

dHr =
−M cot θ0xe−

x
h

cot θ0

π
(
x2 + h2e−2 x

h
cot θ0

)dx (4.104)

Since DMH = −Hx

M
, the demagnetization coefficient can be expressed as,

DMH =
cot θ0

π

∫ ∞

x=0

xe−
x
h

cot θ0

x2 + h2e−2 x
h

cot θ0
dx (4.105)

To demonstrate that DMH is independent of h and only a function of θ0 we make
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Figure 4-8: The demagnetizing factor of the meniscus as a function of θ0 in the case
of horizontal applied magnetic fields. The solid curve shows the result for a linear
profile and the dashed curve for exponential profile.

the change of variables u = x
h

so that,

DMH =
cot θ0

π

∫ ∞

u=0

ue−u cot θ0

u2 + e−2u cot θ0
du (4.106)

Here it can be seen that DMH depends only on the contact angle θ0, and is independent

of h. By superposition, the net magnetic field at any wall point is given by

H = H0 − DMH(θ0)M (4.107)

A plot of DMH(θ0) is presented in Fig. 4-8 where it can be seen that DMH(π/2) = 0

and DMH(0) = 1
2
. The demagnetizing coefficient in the bulk of the ferrofluid is zero

for the case of a horizontal applied magnetic field, DBH = 0, because segments EF

and CD are assumed to be small compared to the horizontal dimension of the system

and very distant from point P (see Fig. 4-2).
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Vertical applied field

The vertical applied magnetic field results in a pole density on a free surface of the

meniscus that is given by,

σM = µ0M · n =
µ0M√

1 + cot2 θ0e
−2 x

h
cot θ0

, (4.108)

where M is the actual magnetization and n is the unit normal to the surface. The

magnetization is vertical at point P as horizontal components of the demagnetization

fields cancel.

The magnitude of demagnetization field due to the line source of width ds on

surface AC, considered infinite in the y direction, is given by,

dHr =
σMds

2πµ0r
=

M

2π
√

x2 + h2e−2 x
h

cot θ0

dx, (4.109)

where r is the perpendicular distance from the line pole source to the point P . The

component of dHr along the vertical, i.e., the z-direction, is given by − cos βdHr. An

equal contribution is made by the corresponding negative line of poles situation on

surface AGF . Thus, the total contribution dHz is given by

dHz = −2 cos βdHr. (4.110)

Hence from the geometry of the meniscus we can write,

dHz =
−2he−

x
h

cot θ0√
x2 + h2e−2 x

h
cot θ0

dHr =
−Mhe−

x
h

cot θ0

π
(
x2 + h2e−2 x

h
cot θ0

)dx (4.111)

The value of Hz obtained from integrating Eq. 4.111 accounts for the poles on the

surface of the meniscus region. This must be augmented by poles of opposite sign on

the bottom of the ferrofluid container (i.e., on line segment ED shown in Fig. 4-2).

These poles give a contribution of −M
2

. Since DMV = −Hz/M , the demagnetization
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coefficient can be expressed as,

DMV =
1

π

∫ ∞

x=0

he−
x
h

cot θ0

x2 + h2e−2 x
h

cot θ0
dx +

1

2
(4.112)
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Figure 4-9: The demagnetizing factor in the meniscus as a function of θ0 in the case
of vertical applied magnetic fields. Linear profile (solid curve), exponential profile
(dashed curve).

To demonstrate that DMH is independent of h and only a function of θ0 we make

the change of variables u = x
h

so that,

DMV =
1

π

∫ ∞

u=0

e−u cot θ0

u2 + e−2u cot θ0
du +

1

2
(4.113)

Here it can be seen that DMV depends only on the contact angle θ0, and is independent

of h. By superposition, the net magnetic field at any wall point is given by

H = H0 − DMV (θ0)M (4.114)

A plot of DMV (θ0) is presented in Fig. 4-9 where it can be seen that DMV (π/2) = 1

as expected. A well known result of elementary electromagnetics is that the demagne-

99



tization coefficients on orthogonal axes must sum to unity [29]. This can be confirmed

from adding Eqs. 4.113 and 4.106

DMH(θ0) + DMV (θ0) = 1 (4.115)

or verified graphically in Figs. 4-8 and 4-9. The demagnetization coefficient in the

bulk of the ferrofluid for the case of a vertical applied magnetic field is unity, DBV = 1.

4.4.5 Governing equation for meniscus height

Substituting the expressions for dES, dEW , dEG, and dEM into the differential of

dE of Eq. 4.81, applying the minimization condition of Eq. 4.82, and putting the

equation into dimensionless form yields the following quadratic equation for relative

meniscus height h
a

where a is the capillary length.

(
h

a

)2

+
4

3
P (χ, θ0)NB

h

a
− 2[cos θ0 − f(θ0)]

3 tan θ0
= 0 (4.116)

where f(θ) is given in Eq. 4.88,

P (χ, θ0) =
χ [DM(θ0) − DB]

[1 + χDM(θ0)] [1 + χDB]
, (4.117)

and NB is the magnetic Bond number given by the expression,

NB =
µ0H

2
0a

2σ
. (4.118)

The roots of Eq. 4.116 are given by the expression,

h

a
= −2

3
P (χ, θ0)NB +

√[
2

3
P (χ, θ0)NB

]2

+
2[cos θ0 − f(θ0)]

3 tan θ0
(4.119)
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Meniscus height in the unmagnetized fluid

Taking Eq. 4.119 with NB = 0, the height of the meniscus at the wall is given by,

h

a
=

√
2[cos θ0 − f(θ0)]

3 tan θ0
(4.120)

A graph of h
a

with NB = 0 as a function of contact angle θ0 is shown in Fig. 4-10.

The figure compares the predictions of the exponential model against the Landau

and Lifschitz result given by Eq. 4.26. The expression in Eq. 4.120 goes to infinity

at θ0 = 0, but closely matches the Landau and Lifschitz expression for larger angles.

For θ0 = 40◦ the error between the result for the exponential approximation and the

exact result is less than 10 %. The results of the linear approximate meniscus profile

identically match the Landau and Lifschitz expression.
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Figure 4-10: The meniscus height at the contact wall, h, as a function of contact
angle θ0 for zero applied magnetic field. Landau and Lifschitz result of Eq. 4.23
(solid curve) which matches the results for a linear meniscus shape, and the results
for the exponential approximation give by Eq. 4.120 (dashed curve).
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Meniscus height in horizontal applied magnetic field

We substitute into Eq. 4.117 the demagnetizing coefficients for a horizontal applied

magnetic field derived in Sec. 4.4.4,

P (χ, θ0) =
χDMH(θ0)

[1 + χDMH(θ0)]
(4.121)

This leads to the following expression for meniscus height,

h
a

= − 2χDMH(θ0)
3[1+χDMH(θ0)]

NB +

√[
2χDMH(θ0)

3[1+χDMH(θ0)]
NB

]2
+ 2[cos θ0−f(θ0)]

3 tan θ0
(4.122)

A graph of h
a

vs. NB with contact angle θ0 as parameter as shown in Fig. 4-11 shows

that a horizontal magnetic field reduces the height of the meniscus at the wall as

observed in the experimental results presented in Chapter 3.
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Figure 4-11: The meniscus height at the contact wall, h, as a function of applied hor-
izontal magnetic field for different values of contact angles θ0 for oil-based EFH1 (left
panel) and water-based MSG W11 (right panel) ferrofluid. Shown curves correspond
to values of θ0 = 0, 15, 30, 45, 60, 75 degrees from top curve downward. Applied hor-
izontal magnetic field decreases the height of the meniscus in directional agreement
with experimental results presented in Chapter 3.
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Meniscus height in vertical applied magnetic field

We substitute into Eq. 4.117 the demagnetizing coefficients for a vertical applied

magnetic field derived in Sec. 4.4.4,

P (χ, θ0) =
χ [DMV (θ0) − 1]

(1 + χ) [1 + χDMV (θ0)]
(4.123)

This leads to the following expression for meniscus height,

h
a

= − 2χ[DMV (θ0)−1]NB

3(1+χ)[1+χDMV (θ0)]
+

√[
2χ[DMV (θ0)−1]NB

3(1+χ)[1+χDMV (θ0)]

]2
+ 2[cos θ0−f(θ0)]

3 tan θ0
(4.124)

A graph of h
a

vs. NB for various values of contact angle θ0 as in Fig. 4-12 shows that

the vertical magnetic field reduces the height of the meniscus at the wall. This trend

agrees with the results of experiments in Chapter 3.

0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
B

h/
a

0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
B

EFH1 MSG W11

Figure 4-12: The meniscus height at the contact wall, h, as a function of applied verti-
cal magnetic field for different values of contact angles θ0. The height of the meniscus
increases with applied vertical magnetic field in directional agreement with experi-
mental results. The shown curves correspond to values of θ0 = 0, 15, 30, 45, 60, 75
degrees from top curve downward.
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4.5 Discussion and future work

A possible direction for further theoretical analysis of the meniscus combines the inter-

facial force balance with an extended Bernoulli’s equation, including magnetic effects

[40], to write a governing equation for the shape of the ferrofluid meniscus. This effort

would require a self-consistent solution of the ferrohydrodynamic Bernoulli’s equation

and the fringing field effects at the ferrofluid/air interface due to the curvature of the

ferrofluid meniscus. An iterative Femlab finite element simulation can be used that

first calculates the non-uniform magnetic fields due an assumed meniscus shape, then

uses the calculated magnetic fields to solve the Ferrohydrodynamic Bernoulli’s equa-

tion for a new estimate of the equilibrium shape of the meniscus. The new shape of

the meniscus can be used subsequently to solve for the non-uniform magnetic fields

until the results of the iteration converge.
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Chapter 5

Steady, laminar and transition

regime solutions to

surface-driven-fluid flow in a fixed

cylindrical container

5.1 Introduction

A model for the spin-up flow of magnetic fluid in a uniform magnetic field considers

the interfacial deformation of a free ferrofluid surface in contact with the vessel and

the resulting magnetic surface shear stress as the driving forces of the flow in the

fluid. The surface-driven flow is believed to be two-dimensional axisymmetric and

more intense than that produced by the spin diffusion model. However, to date

the flow profile resulting from the surface-driven model remains undetermined. This

chapter presents some closed form solutions to the driven-cylindrical-cavity fluid flow

problem in the steady low Reynolds number limit as preliminary steps to an analytical

description of the flow profile in the ferrofluid spin-up problem.

In Section 5.2 we consider the flow profile in a fixed cylinder with a rotating

top face. The velocity profile at the surface of the fluid increases linearly with radial
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position in order to maintain no-slip with the rotating disk. The results of this analysis

are verified with computational fluid dynamics simulations using the Femlab software

package and shown to agree qualitatively with preliminary experiments performed by

Rosensweig.

In Section 5.3 we investigate a cylinder driven by a constant azimuthal shear

stress, Tφz = T0iφ, on a thin annulus of thickness δ at the outside wall on the top

face of the cylinder, including the limiting case where δ equals the entire cylinder

radius R. We use the resulting flow profile to model the surface-driven flow in the

magnetic fluid spin-up problem, with δ << R to represent the meniscus region near

the cylinder wall and with T0 to represent the magnetic shear stress on the ferrofluid

meniscus.

Section 5.4 reexamines the surface-driven cylindrical cavity in the high Reynolds

number limit where the assumption of negligible inertial effects breaks down. We

develop Femlab finite element models to solve the full Navier-Stokes equations for

velocity-driven and for surface-shear-stress-driven flows. The results of the finite

element numerical simulations help define the regime where the low Reynolds number

analytical solutions hold. We conclude from the numerical investigations that the

analytical solutions developed for RE << 1 remain accurate for the low Reynolds

RE ≈ 1.

5.2 Low Reynolds number velocity-driven flow

Fig. 5-1 illustrates the geometry under consideration in this section: a cylindrical

container of radius R and height L with a fixed lateral wall and bottom face. The top

face, however, rotates around the axis of the cylinder at a constant angular velocity

Ω. An incompressible viscous fluid of density ρ and viscosity η fills the cylinder so

that the rotation of the top-face causes the fluid in contact with it to circulate about

the z-axis in order to satisfy the no-slip condition. The analysis developed in this

chapter assumes that fluid flow in the cylinder has reached the steady state and that

the Reynolds number is much less than unity (RE = ρΩR2

η
<< 1), so that inertial
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effects are by assumption negligible when compared to viscous forces.

The governing set of equations in this problem with no magnetic body forces

are the Navier-Stokes and conservation of mass equations. The vector Navier-Stokes

equation is given by,

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p′ + η∇2v (5.1)

where v is the velocity of the fluid, ρ is the fluid density, and η is the fluid viscosity.

Note that the definition of the effective pressure p′ = p + ρgz, where g = 9.8 m
s2

is the acceleration due to gravity, eliminates the need for an explicit treatment of

gravitational effects.

The conservation of mass equation for an incompressible fluid is given by,

∇ · v = 0 (5.2)

We can rewrite these governing equations in dimensionless form by defining the non-

dimensional variables, ṽ = v
RΩ

, p̃ = p′
Ωη

, t̃ = Ωt, and (r̃, z̃) = ( r
R
, z

R
), where the

characteristic length of the system is taken to be the radius of the cylinder R,

RE

(
∂ṽ

∂t̃
+ (ṽ · ∇̃)ṽ

)
= −∇̃p̃ + ∇̃2ṽ (5.3)

In this analysis we are interested in the behavior of the fluid in the steady, laminar

limit; consequently ∂v
∂t

−→ 0 in the steady state and the Reynolds number is much

less than unity RE << 1. Under these assumptions viscous forces dominate the flow

allowing us to neglect the inertial terms on the left hand side of Eqs. 5.1 and 5.3,

and write the following simplified expression,

0 = −∇p′ + η∇2v (5.4)

Further simplifications follow from the axisymmetry of the problem under consid-

eration about the z-axis, so that ∂
∂φ

= 0, and therefore v can be at most a function of

109



r and z only. For the purposes of this analysis we assume a flow of the form vφ(r, z),

and that the magnitudes of the vr(r, z) and vz(r, z) components of the flow are negli-

gible when RE << 1. Note that our assumed flow already satisfies the conservation of

mass condition of Eq. 5.2. The azimuthal component of the Navier-Stokes equation

for our assumed flow is then given by,

∂

∂r

(
1

r

∂

∂r
[rvφ]

)
+

∂2vφ

∂z2
= 0 (5.5)

whereas the radial and axial components of the Navier-Stokes equation with RE << 1

are,
∂p′

∂r
≈ −RE

v2
φ

r
≈ 0,

∂p′

∂z
≈ 0 (5.6)

Note that the magnitude of RE
v2

φ

r
is the first order estimate of the error in the simpli-

fied solution presented in this section. The solution to these equations must satisfy

all of the following boundary conditions:

vφ(r, z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ; r = R; z = 0

Ωr ; z = L

finite ; r = 0

(5.7)

The no-slip condition forces the fluid to be at rest at the stationary side wall (r = R)

and bottom face (z = 0) of the cylinder, whereas at the top face of the cylinder

(z = L) the no-slip condition constrains the fluid to a velocity linear with radial

position r. The symmetry about the z-axis dictates that the φ-directed velocity must

vanish at r = 0.

The form of the general solution to Eq. 5.5 can be found by using the method

of separation of variables. If we assume that the solution has the form of a product

of a function of r and a function of z, i.e., vφ(r, z) = f(r)g(z), then Eq. 5.5 can be

written as,
1

f(r)

∂

∂r

(
1

r

∂

∂r
[rf(r)]

)
+

1

g(z)

∂2g(z)

∂z2
= 0 (5.8)

Note that the left hand side of the equation is the sum of a term that is only a
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Figure 5-1: Illustration of the rotating top boundary value problem. The bottom face
at z = 0 and r = R side of the cylinder are fixed. The top-face, however, rotates at
angular velocity Ω. At the boundaries the no-slip condition requires that the fluid
must flow at the same velocity as the walls it contacts.

function of z and a term that is only a function of r. We can separate Eq. 5.8 into

two separate second-order-ordinary differential equations,

1

f(r)

d

dr

(
1

r

d

dr
[rf(r)]

)
= k2 (5.9)

and,
1

g(z)

d2g(z)

dz2
= −k2 (5.10)

where k2 is the separation constant.

Eq 5.9 can be rewritten in the form of a first order modified Bessel differential

equation:

r2d2f(r)

dr2
+ r

df(r)

dr
− (k2r2 + 1)f(r) = 0 (5.11)
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with solution given by,

f(r) = AI1(kr) + BK1(kr) + Cr +
D

r
(5.12)

where A, B, C, and D are arbitrary constants, and I1(kr) and K1(kr) are first order

modified Bessel functions of the first and second kinds respectively. Note that the

zero separation variable terms in the solution are given by Cr and D
r
.

Similarly, Eq. 5.10 can be written as a linear constant coefficient first order

differential equation,
d2g(z)

dz2
= −k2g(z) (5.13)

which has solutions given by,

g(z) = E sin(kz) + F cos(kz) + Gz + H (5.14)

where E, F , G, and H are arbitrary constants.

The product of the expressions in Eqs. 5.12 and 5.14 yields the general form of

the solution to Eq. 5.5 in terms of arbitrary constants,

vφ(r, z) = [AI1(kr) + BK1(kr)] sin(kz) + [CI1(kr) + DK1(kr)] cos(kz)

+Erz +
Fz

r
+ Gr +

H

r
+ K (5.15)

This expression includes all of the zero and non-zero separation constant solutions,

where k and the coefficients A through K are to be determined by the boundary

conditions. We need not retain most of the terms in the general solution in Eq.

5.15. First the constants B, D, F , and H are set to zero because the first order

modified Bessel function of the second kind K1,
z
r

and 1
r

are infinite at r = 0, and

therefore cannot be physical solutions. The constants K, G, C and D are set to zero

to guarantee that the no-slip condition holds at z = 0. This leaves the expression,

vφ(r, z) = AI1(kr) sin(kz) + Erz (5.16)
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We now need to find the constants A and E that match the remaining boundary

conditions at r = R and at z = L.

To satisfy the no-slip condition at z = L we must have that,

k =
nπ

L
(5.17)

and that

E =
Ω

L
(5.18)

Substitution of Equations 5.17 and 5.18 into Eq. 5.16 leads to,

vφ(r, z) = −AI1(
nπ

L
r) sin(

nπ

L
z) +

Ω

L
rz (5.19)

Note that evaluation of Eq. 5.19 at z = L gives the expected linear velocity profile

directly proportional to radius r at that boundary.

Finally we must determine a value A that satisfies the no-slip condition at r = R.

Inspection of Eq. 5.19 at r = R reveals that only a superposition of all the solutions

in Eq. 5.19 can satisfy the constraint,

vφ(r = R, z = 0) = −
∞∑

n=1

AnI1(
nπ

L
R) sin(

nπ

L
z) +

Ω

L
Rz (5.20)

Hence to satisfy Eq. 5.20 we must find the Fourier series amplitudes An. The following

Equation must be solved to compute the terms of the series An,

∞∑
n=1

AnI1(
nπ

L
R) sin(

nπ

L
z) =

Ω

L
Rz (5.21)

In order to solve for An we multiply both sides of Eq. 5.21 by sin(mπ
L

z), then integrate

both sides with respect to z from z = 0 to z = L,

∫ L

0

∞∑
n=1

AnI1(
nπ

L
R) sin(

nπ

L
z) sin(

mπ

L
z)dz =

∫ L

0

Ω

L
Rz sin(

mπ

L
z)dz (5.22)
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We utilize the orthogonality of sine functions and the integral identity,

∫
u sin(u)du = −u cos(u) + sin(u) (5.23)

to evaluate the integrals on the left-hand and right-hand side of Eq. 5.22. The result

is,
1

2
LAmI1(

mπR

L
) = (−1)m+1 LRΩ

mπ
(5.24)

for (m = 1, 2, 3, ...). Consequently the Fourier series coefficients are given by the

expression,

Am =
−2 cos(mπ)RΩ

mπI1(
mπR

L
)

(5.25)

for (m = 1, 2, 3...). The solution that satisfies all of the boundary conditions is

therefore given by the expression,

vφ(r, z) =
Ω

L
rz +

∞∑
m=1

2 cos(mπ)RΩ

mπI1(
mπR

L
)

I1(
mπ

L
r) sin(

mπ

L
z) (5.26)

Fig. 5-2 shows the functional dependence of vφ(r, z) plotting 1000 Fourier series

terms in Eq. 5.26. The finite element program Femlab was also used to verify these

plots for low Reynolds numbers; the numerical results (dashed curves) agree so well

with the theoretical analysis (solid curves) that the slight deviations are generally

indiscernible. Slight deviations can be seen for the z
L

= 1 curve near r/R = 1. These

are due to numerical errors and can be reduced by refining the finite element mesh.

5.3 Low Reynolds number surface-stress-driven flow

The geometry illustrated in Fig. 5-3 is very similar to the geometry investigated

in Section 5.2. The flow in the cylinder is, however, now driven by an azimuthal

shear stress of magnitude T0 on a strip of width δ along the circumference of the

top face (see Fig. 5-4). This model attempts to calculate a magnetic-field-induced

shear stress on a thin ferrofluid meniscus region at z = L. Rosensweig et al. give the

free surface stress acting on a circular meniscus of elevation h as 2ζω sin β and the
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Figure 5-2: The dimensionless velocity
vφ

RΩ
as a function of r

R
for different values of

z
L
. Results shown are for a cylinder where R = L. Analytical expression of Eq. 5.26

summed up to 1000 Fourier series terms and plotted as solid lines. Femlab numerical
solutions are plotted as dashed curves but are so accurate that they completely overlap
the analytical curves.

associated surface couple as 4πR2ζωh [39]. These expressions when combined with

the investigations in Chapters 3 and 4 allow the estimation of the surface shear stress

magnitude T0.

The governing equations in this case are still given by Eqs. 5.5 and 5.6. The

boundary conditions for this set of differential equations, however, are now given by,

vφ(r, z) =

⎧⎨
⎩ 0 ; r = R; z = 0

finite ; r = 0
(5.27)

Tφz(r, z) =

⎧⎨
⎩ T0 ; R − δ < r < R, z = L

0 ; 0 < r < R − δ, z = L
(5.28)

Note that in terms of the parameters defined in the statement of the shear-driven

problem the key non-dimensional parameter is RE = ρR2T0

η2 . We assume that RE << 1

in the following solution.
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Figure 5-3: Illustration of the shear-stress driven boundary value problem. The
bottom face at z = 0 and r = R side of the cylinder are fixed. The top-face is
stressed by an azimuthal shear stress Tφz = T0 over an annular region of width δ.
The rest of the top surface is free from shear stress (i.e., Tφz = 0 for 0 < r < R − δ).
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r
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Figure 5-4: The shear stress at the top face of the cylinder Tφz(r, z = L)
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If we assume the same general solution given by Eq. 5.15 and proceed to enforce

the boundary conditions at r = 0 and z = 0 in the same manner demonstrated in

that section we find that the solution requires imaginary k. We choose a solution of

the form,

vφ(r, z) = AJ1(βr) sinh(βz) (5.29)

where k = jβ. We shall demonstrate that Eq. 5.29 satisfies all the boundary condi-

tions given in Eq. 5.28.

The boundary condition vφ(r = R, z) = 0 requires that,

J1(βR) = 0 −→ β =
αn

R
(5.30)

where αn is the nth zero of the first order Bessel function of the first kind J1.

All that remains is to determine the arbitrary constants An for each mode of Eq.

5.30 that satisfy the boundary condition on the stress at z = L. An infinite Bessel-

Fourier series for the velocity is required to satisfy the boundary condition of Eq.

5.28,

vφ(r, z) =

∞∑
n=1

AnJ1(
αnr

R
) sinh(

αnz

R
) (5.31)

Consequently, the stress distribution is given by the series,

Tφz(r, z = L) = η
∂vφ

∂z
|z=L =

∞∑
n=1

η
αn

R
AnJ1(

αnr

R
) cosh(

αnL

R
) (5.32)

which must match the boundary condition given by Eq. 5.28 and shown in Fig. 5-4.

We can use the orthogonality of Bessel functions of the first kind to solve for the

series coefficients,

η
∫ R

r=0

∑∞
n=1

αn

R
AnJ1

(
αnr
R

)
J1

(
αmr
R

)
cosh(αnL

R
)rdr =

∫ R

r=0
Tφz(r, z = L)J1

(
αmr
R

)
rdr

(5.33)
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Figure 5-5: The dimensionless velocity
ηvφ

RT0
as a function of r

R
for different values of

z
L

for the low Reynolds number flow illustrated in Fig. 5-3. The non-dimensional
width of the strip δ

R
is 1.0. The plot shown is for a cylinder with R = L. The solid

curves show the results of the analytical expression in Eq. 5.31 where the summation
is performed up to 200 terms. Numerical results given by the dashed curves are so
accurate that they completely overlap the analytical solutions.

which reduces to,

η

R
αmAm cosh

(
αmL

R

)∫ R

r=0

J2
1 (

αmr

R
)rdr =

∫ R

r=R−δ

T0J1

(αmr

R

)
rdr (5.34)

where we have used the integral identities,

∫ R

r=0

rJν

(αnr

R

)
Jν

(αmr

R

)
dr =

⎧⎨
⎩ 0 ; if m �= n

R2

2
(Jν+1(αm))2 ; if m = n

(5.35)

where αm is the mth zero of the νth order Bessel function of the first kind (in our

problem ν = 1). Finally, application of the following integral relationship on Eq.
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Figure 5-6: The dimensionless velocity
ηvφ

RT0
as a function of r

R
for different values of

z
L
. The non-dimensional width of the strip δ

R
is 0.1. The plot shown is for a cylinder

with R = L. The solid curves are plots of the analytical expression in Eq. 5.31 with
An given by Eq. 5.37 where the summation is performed up to 200 terms. Numerical
results given by the dashed lines agree very well with the analytical curves.

5.34, ∫ a

w=0

wJ1(w)dw =
aπ

2
(J1(a)H0(a) − J0(a)H1(a)) (5.36)

where w is a dummy variable of integration, and H0 and H1 are Struve functions of

zeroth and first order respectively, leads to the series coefficients given by,

Am =
πRT0 {J2(αm)H1(αm) + b [J0(bαm)H1(bαm) − J1(bαm)H0(bαm)]}

ηα2
m cosh

(
αmL

R

)
J2

2 (αm)
(5.37)

where b = 1 − δ
R
. These coefficients can be substituted into Eq. 5.31 to produce the

velocity profiles for δ
R

= 1.0, 0.1, and 0.05 as illustrated in Figs. 5-5, 5-6 and 5-7

respectively.

The finite element program Femlab was also used to verify these plots; the nu-

merical results (dashed curves) agree with the theoretical analysis (solid curves). The

small disagreement between the finite element analysis and the analytical expression

is an artifact due to the mesh size. These errors are hard to discern and can be further
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Figure 5-7: The dimensionless velocity
ηvφ

RT0
as a function of r

R
for different values of

z
L
. The non-dimensional width of the strip δ

R
is 0.05. The plot shown is for a cylinder

with R = L. The solid curves are plots of the analytical expression in Eq. 5.31 with
An given by Eq. 5.37 where the summation is performed up to 200 terms. Numerical
results given by the dashed curves agree very well with analytical results.

arbitrarily reduced by refining the mesh elements. The effort would require only the

allocation of more memory and computational resources to the Femlab finite element

solver software.

Figs.5-5 to 5-7 illustrate that even though surface shear stress drives strong flows

on the surface experiencing the shear stress, the flow decays quickly in z and r as you

move away from the surface. Faster decay rates result for thinner strips of applied

surface shear stress: examination of the figures shows that the ratio of the maximum

fluid velocity at z
L

= 0.95 to the maximum velocity at z
L

= 1.0 is 0.83 for δ
R

= 1.0, 0.45

for δ
R

= 0.1 and 0.27 for δ
R

= 0.05. Fig. 5-8 shows how the velocity at the top surface

of the cylinder decreases as the width of the surface shear stress strip decreases.

5.4 High Reynolds number flows

Unlike the analysis in sections 5.2 and 5.3, which hold for very low Reynolds number,

the analysis in this section does not neglect the inertial terms in Eq. 5.1. The
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Figure 5-8: Numerical solutions of the dimensionless low Reynolds number azimuthal
velocity

ηvφ

RT0
as a function of r

R
at the top surface of the cylinder (z/L = 1) in Fig.

5-3 for L = R for different values of the relative width of the shear stress strip δ
R
.

assumption that the r and z components of the velocity profiles are negligible is not

true for higher values of the Reynolds number. In general, the fluid velocity profile

v can have radial, azimuthal, and axial components vr, vφ, and vz respectively. The

numerical study of the resulting three-dimensional recirculating flow sheds light on

the conditions under which the assumptions and solutions of sections 5.2 and 5.3 hold.

The governing equations for the high Reynolds number flows are given by the full

Navier Stokes equation,

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p′ + η∇2v (5.38)
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and the conservation of mass equation for an incompressible fluid,

∇ · v = 0 (5.39)

The high Reynolds number problem has four dependent variables: three velocity

components and pressure. The investigation of the solutions to Eqs. 5.38 and 5.39

requires the use of finite element analysis method, in contrast to the simpler low

Reynolds number solutions previously studied.

Cylindrical symmetry dictates that the dependent variables are functions of r and

z only. Consequently, we need consider only the problem in a plane of constant φ,

which greatly simplifies our analysis. In a plane of constant φ for 0 < r < R and

0 < z < L, Eq. 5.38 in cylindrical coordinates for vr(r, z), vφ(r, z), vz(r, z) and p(r, z)

reduces to,

ρ

(
vr

∂vr

∂r
+ vz

∂vr

∂z
− v2

φ

r

)
= −∂p′

∂r
+ η

[
∂

∂r

(
1

r

∂

∂r
(rvr)

)
+

∂2vr

∂z2

]
(5.40)

ρ

(
vr

∂vφ

∂r
+ vz

∂vφ

∂z
+

vrvφ

r

)
= η

[
∂

∂r

(
1

r

∂

∂r
(rvφ)

)
+

∂2vφ

∂z2

]
(5.41)

ρ

(
vr

∂vz

∂r
+ vz

∂vz

∂z

)
= −∂p′

∂z
+ η

[
1

r

∂

∂r

(
r

∂

∂r
(vz)

)
+

∂2vz

∂z2

]
(5.42)

(5.43)

and Eq. 5.39 reduces to,

∇ · v =
vr

r
+

∂vr

∂r
+

∂vz

∂z
= 0 (5.44)

We studied this set of non-linear coupled differential equations using the Femlab finite

element analysis package. Section 5.4.1 presents the results where the velocity flow

profile in the cylindrical cavity is driven by a rotating top cover as shown in Fig. 5-1.

Section 5.4.2 presents the flow profiles driven by a shear stress on a top surface strip

of the fluid as shown in Fig. 5-3.
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5.4.1 Velocity driven flows

The boundary conditions at the side walls and the bottom face of the cylinder in

this case are that all three components of the velocity have to vanish by the no slip

condition.

vφ(r, z) =

⎧⎨
⎩ 0 ; r = R; r = 0; z = 0

Ωr ; z = L
(5.45)

vr = 0 ; r = R; r = 0; z = L; z = 0 (5.46)

vz = 0 ; r = R; z = L; z = 0 (5.47)

On the top face of the cylinder the r and z components of velocity must be zero while

the φ component must be linearly proportional to the radius r. Furthermore, axial

symmetry requires that the r and φ components of the velocity go to zero on the axis

of the cylinder (i.e., at r = 0). By symmetry only the z component of the velocity

can have a non-zero value at r = 0.

Fig. 5-9 compares photographs of streamlines taken by Rosensweig to our nu-

merical results. The solution for the velocity-driven flow equations interests us only

as a means of verifying the correct implementation of the numerical model for the

surface-stress-driven problem presented in Sec. 5.4.2. Specifically we verified that the

numerical solution for vanishingly small Reynolds numbers RE reproduced exactly the

flow profiles illustrated in Fig. 5-2.

5.4.2 Surface-stress-driven flows

The no-slip condition requires that the three components of the velocity vanish at

the side wall and bottom face of the cylindrical container.

vφ(r, z) = 0 ; r = R; r = 0; z = 0 (5.48)

vr(r, z) = 0 ; r = R; r = 0; z = 0 (5.49)

vz(r, z) = 0 ; r = R; z = L; z = 0 (5.50)
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Figure 5-9: Comparison of experimental stream lines in Glycerin with food coloring
dye photographed by R. Rosensweig with numerical simulation results for velocity
driven flows. Top disk rotates at 2 rps corresponding to RE ≈ 1
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Note that the radial velocity is not constrained at the top free surface of the cylinder

at z = L. However, the z component of the velocity at the top surface has to be zero.

Furthermore, axial symmetry requires that the r and φ components of the velocity go

to zero on the axis of the cylinder (i.e., at r = 0). By symmetry only the z component

of the velocity can have a non-zero value at r = 0.
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Figure 5-10: Reynolds number RE = 100 numerical solutions of the dimensionless
azimuthal velocity

ηvφ

RT0
as a function of r

R
at the top surface of the cylinder in Fig.

5-3 for different values of the width of the shear stress strip δ
R
.

The stress on the top surface is given by,

Tφz(r, z) =

⎧⎨
⎩ T0 ; R − δ < r < R, z = L

0 ; 0 < r < R − δ, z = L
(5.51)

where 0 < δ < R is the width of the strip of fluid surface along which the shear stress

is applied.

Figs. 5-10 and 5-11 show how the velocity at the top surface of the cylinder

decreases as the width of the surface shear stress strip decreases for Reynolds numbers

RE = 100 and 500 respectively. It is instructive to compare the flow profiles in both
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Figure 5-11: Reynolds number RE = 500 numerical solutions of the dimensionless
azimuthal velocity

ηvφ

RT0
as a function of r

R
at the top surface of the cylinder in Fig.

5-3 for different values of the width of the shear stress strip δ
R
.

of these figures with the low Reynolds number limit shown in Fig. 5-8. Regimes with

very high Reynolds numbers lead to significant departures from the simple analytical

solution presented in Sec. 5.3.

Figs. 5-12 to 5-14 show the recirculation cells that develop in the r-z plane for

the surface shear-stress-driven cylinder with δ/R = 0.05, 0.1 and 1.0 respectively.

Only the stream lines for Reynolds number RE = 500 are shown because we found

that the shape of the stream lines does not depend strongly on the value of the

Reynolds number. The magnitude of the maximum velocity on the r-z stream lines

scales approximately linearly with Reynolds RE with proportionality factors of 8.6×
10−8 and 1.35 × 10−6 for δ

R
= 0.05 and 0.1 respectively. Figs. 5-15 and 5-16 show

the z-directed flow along the axis of the cylinder (r = 0) for δ/R = 0.05 and 0.1

respectively. Flow along the axis of the cylinder constitutes a reliable measure of

the strength of recirculating flows, which we see are insignificant compared to the

azimuthal component of the velocity, vφ, even at a Reynolds numbers RE = 10.
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Figure 5-12: Numerical solution for the r-z plane stream lines for the surface shear
stress-driven problem illustrated in Fig. 5-3. The recirculation cells shown are for a
Reynolds number value of 500, and shear stress strip width of δ/R = 0.05.

In conclusion, the numerical investigation of high Reynolds number flows presented

in this section leads us to conclude that the assumptions underlying the simple ana-

lytical solution presented in Sec. 5.3 break down for regimes with Reynolds numbers

RE  10. The analytical solution is valid for Reynolds numbers with order of mag-

nitude RE � 10 and holds to within engineering approximations even for Reynolds

numbers on the order of magnitude of 10.
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Figure 5-13: Numerical solution for the r-z plane stream lines for the surface shear
stress-driven problem illustrated in Fig. 5-3. The recirculation cells shown are for a
Reynolds number value of 500, and shear stress strip width of δ/R = 0.1.

128



Figure 5-14: Numerical solution for the r-z plane stream lines for the surface shear
stress-driven problem illustrated in Fig. 5-3. The recirculation cells shown are for a
Reynolds number value of 500, and shear stress strip width of δ/R = 1.0.
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Figure 5-15: Femlab numerical solutions for the dimensionless z-directed velocity ηvz

RT0

as a function of z
L

on the axis of the cylinder in Fig. 5-3 ( r
R

= 0) for different Reynolds
number values with R = L. The width of the stress strip δ

R
= 0.05.
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Figure 5-16: Femlab numerical solutions for the dimensionless z-directed velocity ηvz

RT0

as a function of z
L

on the axis of the cylinder in Fig. 5-3 ( r
R

= 0) for different Reynolds
number values with R = L. The width of the stress strip δ

R
= 0.1.
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Figure 5-17: Femlab numerical solutions for the dimensionless z-directed velocity ηvz

RT0

as a function of z
L

at r
R

= 0.25 for different Reynolds number values with R = L. The
width of the stress strip δ

R
= 0.1.
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Figure 5-18: Femlab numerical solutions for the dimensionless z-directed velocity ηvz

RT0

as a function of z
L

at r
R

= 0.5 for different Reynolds number values with R = L. The
width of the stress strip δ

R
= 0.1.
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Figure 5-19: Femlab numerical solutions for the dimensionless z-directed velocity ηvz

RT0

as a function of z
L

at r
R

= 0.75 for different Reynolds number values with R = L. The
width of the stress strip δ

R
= 0.1.
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Figure 5-20: Femlab numerical solutions for the dimensionless z-directed velocity ηvz

RT0

as a function of z
L

at r
R

= 0.99 for different Reynolds number values with R = L. The
width of the stress strip δ

R
= 0.1.
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Chapter 6

Quasi-two-dimensional ferrofluid

pattern formation in Hele-Shaw

cells

6.1 Introduction

Thin layers of ferrofluid confined with an immiscible non-magnetic fluid between two

glass plates in a Hele-Shaw cell configuration and stressed by a dc magnetic field

normal to the layers form intricate labyrinth patterns [44]. This chapter documents

the characterization of a new class of ferrofluid instabilities that arise for thin layers

of ferrofluid confined in glass Hele-Shaw cells with simultaneously applied, in-plane-

rotating and dc-axial magnetic fields. The spectacular two-dimensional equilibrium

patterns associated with these instabilities exhibit combinations of smooth spirals,

circular drops and small droplets of opaque ferrofluid arranged on a clear immiscible

non-magnetic fluid background [34, 12, 33]. Interestingly, Bacri et al. observed similar

patterns but on a microscopic scale (∼ 50µma) by examining phase separations and

failures of colloidal stability in ferrofluids in rotating applied magnetic [4].
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6.2 Experimental investigation of Hele-Shaw cells

in rotating magnetic fields

We used the experimental apparatus shown in Fig. 6-1 to investigate the instabilities

due to simultaneous in-plane-rotating and dc-axial uniform-magnetic fields using a

fluorocarbon-based ferrofluid drop constrained to the two-dimensional geometry of

a Hele-Shaw cell. The stator winding of a three-phase, two-pole motor excites a

uniform clockwise-rotating magnetic field in the plane of the Hele-Shaw cell for our

measurements. An electromagnet surrounding the stator winding produces a uniform-

dc magnetic field normal to the plane of the cell. A non-magnetic stand supports the

Hele-Shaw cell in the central region of the apparatus where the magnetic fields are

highly uniform. The non-uniformities due to end effects, non-ideal winding and slot

harmonics are insignificant in the central region of the stator. We investigated rotating

field strengths up to ∼100 gauss rms at rotational frequencies between 20 and 40 Hz.

The dc-axial field strengths investigated went up to ∼250 gauss. Note that the thin

disk of ferrofluid distorts the uniform in-plane magnetic field.

The Hele-Shaw cells used in this investigation consist of two glass plates separated

by a small gap filled with fluorocarbon-based ferrofluid and a 50/50 mixture of iso-

propyl alcohol and de-ionized water known as propanol. We found that this mixture

prevents the ferrofluid from wetting the glass plates and therefore allows us easily to

observe the behavior of the ferrofluid drop. A video camera placed directly above the

experimental setup was used to monitor and record the effects of various combinations

of applied magnetic fields on the ferrofluid drop. The experimental results presented

in this paper are for three Hele-Shaw cells with gap thicknesses ∼0.9, 1.1, and 1.4

mm. The experiments were performed for each of the three cell gap thicknesses filled

by ∼200µl of Ferrotec Corporation’s NBF-1677 fluorocarbon-based ferrofluid hav-

ing ∼10 nm diameter magnetite particles, a low-field-magnetic susceptibility ∼3 and

saturation magnetization ∼400 gauss.
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Figure 6-1: The experimental setup for investigating the behavior of a thin-layer of
ferrofluid in a Hele-Shaw cell with a three-phase, two-pole stator winding to excite
the uniform rotating magnetic field and an electromagnet to produce the uniform
dc-axial field.

6.3 Experimental results

With no applied magnetic field, the ferrofluid coalesces into a single large circular drop

held together by surface tension. In a uniform dc-axial magnetic field of strength up to

∼250 gauss, a ferrofluid drop in a Hele-Shaw cell readily forms the familiar labyrinth

pattern. With subsequent application of an in-plane 20-40 Hz rotating magnetic field

of strength up to ∼100 gauss rms, smooth spirals form that bend in the same direction

as the applied in-plane magnetic field rotation. Weak applied rotating magnetic fields

fail to bend the initial labyrinth pattern into spirals while excessively strong fields

tear the spirals into many separate small spiral and circular structures. The example

sequences shown in Fig. 6-2 demonstrate how labyrinth instabilities transform into

multi-leaf-clover-shaped clusters of smooth spirals under the influence of a 25 Hz,

∼40 gauss rms applied in-plane clockwise rotating magnetic field with a 150-155

gauss uniform dc magnetic field [24].

If, alternatively, the rotating magnetic field is applied before the dc-axial magnetic
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Figure 6-2: A 1.1 mm gap Hele-Shaw cell with 200µl of ferrofluid starts to form a
labyrinth pattern when stressed by a ∼150 gauss uniform dc axial magnetic field (a).
Spirals develop with the subsequent application of a 25 Hz, ∼40 gauss rms uniform
in-plane clockwise-rotating magnetic field (b). A more elaborate labyrinth pattern
develops for a 1.1 mm Hele-Shaw cell with ∼100µl of ferrofluid stressed by a 155
gauss dc axial magnetic field (c). Subsequent application of a 25 Hz, ∼40 gauss rms
uniform in-plane clockwise-rotating magnetic field leads to a clover shaped cluster of
smooth spirals (d).

field, the ferrofluid drop co-rotates with the applied magnetic field and holds together

as a single circular drop for low values of applied dc-axial magnetic field and no

labyrinth pattern forms. Gradual increase of the applied dc-axial magnetic field

causes the apparent area of the ferrofluid drop to expand until the applied dc-axial

magnetic field exceeds a threshold value and an abrupt phase-transition occurs. A

thin ferrofluid layer is observed to suddenly peel off the top glass surface of the Hele-

Shaw cell revealing many ferrofluid droplets arranged in a regular pattern inside a

thick ring of ferrofluid. The steady state patterns form beneath a thin film of ferrofluid

before their abrupt appearance. Fig. 6-3 illustrates the described progression with

increasing applied dc-axial field strength for a 200µl drop of ferrofluid in a 1.1 mm gap

Hele-Shaw cell initially stressed by a 25 Hz, ∼40 gauss rms rotating magnetic field.
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Figure 6-3: Sequence showing the apparent increase in ferrofluid drop area prior to
the phase-transition in a 1.1 mm gap Hele-Shaw cell. The ferrofluid drop co-rotates
with the magnetic field but remains unchanged in size and shape with an applied
25 Hz, ∼40 gauss rms in-plane rotating magnetic field (a). With the subsequent
application of ∼120 gauss dc-axial magnetic field no labyrinth pattern forms, but
the apparent area of the ferrofluid drop increases to approximately twice the initial
area (b). When the applied dc-axial field is gradually increased to ∼170 gauss the
ferrofluid peels off the top glass surface of the Hele-Shaw cell revealing an already
formed droplet pattern (c) which deforms as the dc axial field is further increased to
∼230 gauss (d).

The described phase-transition instability occurs only for a small range of rotating

magnetic field strengths. When the rotating field strength is at the lower limit of

this range, the drop fails to hold together against the dc-axial field and labyrinth

“fingers” form readily. At the other extreme, a large dc-axial field tears the ferrofluid

drop apart. For the conditions of the sequence shown in Fig. 6-3 the range of rotating

field strengths was observed to extend from ∼30 to ∼55 gauss rms. Figs. 6-4 and 6-5

show sample steady state patterns for various rotating field strengths in this range.
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Figure 6-4: Pictures of the steady-state ferrofluid 1.1 mm gap Hele-Shaw cell pattern
after the application of 25 Hz in-plane clockwise rotating magnetic fields of different
magnitudes followed by a ∼230 gauss dc-axial field. The magnitude of the rotating
field in (a) is ∼30 gauss rms, (b) ∼44 gauss rms, and (c) ∼50 gauss rms.

Figure 6-5: Pictures of the steady-state pattern for Hele-Shaw cells with 200µl of
ferrofluid each stressed by a 30 Hz in-plane clockwise rotating magnetic field showing
a reduction in the number of smaller droplets in cells with bigger cell gap thicknesses.
The most droplets (∼105) were observed with the 0.9 mm gap cell with an applied
in-plane clockwise rotating magnetic field strength of ∼80 gauss rms and dc-axial
field strength 230 gauss (a), followed by approximately 55 droplets in the 1.1 mm gap
cell with rotating magnetic field strength ∼30 gauss rms and dc-axial field strength
230 gauss (b), and finally the 1.4 mm gap cell with rotating magnetic field strength
∼30 gauss rms and dc-axial field strength of 140 gauss showed ∼30 droplets(c).

6.4 Linear model

For the purposes of this theoretical analysis the behavior of the ferrofluid in the Hele-

Shaw cell is idealized as the formation of N smaller cylinders as illustrated in Fig.

6-6. Furthermore, we assume the ferrofluid cylinders are spaced far enough apart

for them to be magnetically non-interacting. Letting U denote the total energy of a

ferrofluid configuration, we have,

U = Us + Um (6.1)
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where Us is the interfacial tension energy and Um is the magnetostatic energy. The

energy of the configuration will be formulated as the summation over N cylinders

with identical interfacial and magnetostatic energies. In Section 6.4.1 we solve for

the demagnetizing field inside a cylinder of ferrofluid. The results will subsequently

be used in Section 6.4.2 to write a full expression for the energy U and perform a

calculus of minimization to determine the equilibrium number of ferrofluid cylinders.

t

a

t t t t t

R a a a a

Figure 6-6: Idealized representation of the breakup of a ferrofluid Hele-Shaw-cell drop
into a collection of identical smaller droplets.

6.4.1 Ferrofluid demagnetization coefficient

Figure 6-7 illustrates the geometry of a cylindrical ferrofluid droplet in a uniform-dc-

vertical magnetic field. Before deriving an expression for the magnetostatic energy

stored in a cylinder of ferrofluid we first must solve for the magnetic field inside the

bulk of the cylinder. In the following analysis we assume uniform magnetization at

all points within the ferrofluid. Such uniform magnetization in an external-uniform

magnetic field would hold exactly for the case of spheroidal and ellipsoidal droplets,

but holds only approximately for cylindrical droplets.

The magnetization is given by M = χH, where χ is the magnetic susceptibility of

the ferrofluid. The field intensity, H, within a cylinder of ferrofluid, is reduced from

the applied field intensity H0 due to the demagnetization field Hd which results from

magnetic surface charge on the top and bottom faces of a cylindrical droplet. We

neglect the contributions of neighboring cylinders to the demagnetizing field within

139



t/2

σm

σm−

z
+

(r = 0, z = z/)

a

r φ

(r = 0, z = 0)

t/2

dq= rdφdr

rdφdrdq=
----

- -- ----------
------- ----
---- -- ------

----- - ----
-- -- --

-
- - - - -

---- ----
--- --- ---- - - --- -

--- --- -
----- --------- ----

--- --- --- -
--------

--- ----
-

-----
----- --

----- -- ----- ------- --
----- --

----- --- --
--- ---

+++
+++ ++ + +

++++ +
+++++ +++ +

+++
+++++++++++++

+
+ +++
++ +++

+++
+ +

++ +
++ +++++
+++

Figure 6-7: Schematic of magnetic field geometry under consideration for computation
of the demagnetization field at the center of the cylinder (r = 0, z = 0) from magnetic
surface charge densities σm = ±µ0M at the top and bottom faces of the cylindrical
droplets.
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a cylinder of ferrofluid. Thus,

H =
M

χ
= H0 + Hd = H0 − DM =⇒ M =

χH0

1 + χD
(6.2)

where D is the demagnetization coefficient defined by the expression,

Hd = −DM (6.3)

We can approximate D by solving for the demagnetizing field at the center, (z = 0,

r = 0), of a uniformly magnetized cylinder of ferrofluid, M = M iz, with radius a and

height t as shown in Figure 6-7. The uniform M has no divergence within the bulk of

the cylinder and hence no magnetic volume charge density (i.e., ρm = −µ0∇·M = 0).

Therefore Hd results solely from the magnetic-surface-charge density σm present on

the top and bottom faces of the cylinder containing non-zero M. The magnetic

surface charge densities are given by,

σm = ±µ0M (6.4)

where the upper and lower faces of the cylinder carry positive and negative surface

charge densities respectively. In the region of space under consideration for this field

problem, there is no current density J. Therefor, Ampere’s law requires, that Hd be

curl-free,

∇×Hd = J = 0 (6.5)

Moreover, since the divergence of B is zero and B = µ0(H + M) we can write the

expression,

∇ · Hd = −∇ · Md =
ρm

µ0
(6.6)

where ρm is the magnetization volume charge density and µ0 = 4π×10−7 Hy/m is the

magnetic permeability of free space. By analogy to electrostatics we introduce the

scalar magnetic potential ψ so that Hd = −∇ψ which leads to the familiar Poisson’s
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equation,

∇2ψ = −ρm

µ0

(6.7)

which can be solved by performing the superposition integral on the surface charge

densities on the top and bottom faces of the cylinder to find the magnetic field

intensity along the r = 0 axis of the cylinder,

ψ =
1

4πµ0

∫ 2π

0

∫ a

0

⎛
⎝ 1√

r′2 +
(
z − t

2

)2 − 1√
r′2 +

(
z + t

2

)2
⎞
⎠ σmr′dr′dφ′ (6.8)

This integral evaluates to the expression,

ψ =
σmt

2µ0
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t
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which holds for any value of z on the r = 0 axis of the cylinder. Inside the cylinder,

however, we have that −1
2

< z
t

< 1
2
, which in turn implies that in this region ψ is

given by,

ψ =
σmt

2µ0

⎛
⎝
√(a

t

)2

+

(
z

t
− 1

2

)2

−
√(a

t

)2

+

(
z

t
+

1

2

)2

+
2z

t

⎞
⎠ (6.10)

By analogy to electrostatics, again, the field intensity follows as the negative gradient

of ψ,

Hd = −∂ψ

∂z
iz = − σm

2µ0

⎛
⎝ z

t
− 1

2√(
a
t

)2
+
(

z
t
− 1

2

)2 −
z
t
+ 1

2√(
a
t

)2
+
(

z
t
+ 1

2

)2 + 2

⎞
⎠ iz (6.11)

Assuming that the aspect ratio a
t

is large we approximate the field intensity along

the z-axis as uniform at the value it has at the midpoint z = 0,

Hd ≈ Hd(z = 0) =
σm

µ0

⎛
⎝ 1√(

2a
t

)2
+ 1

− 1

⎞
⎠ iz (6.12)
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Substituting the expression for σm from Equation 6.4 leads to,

Hd = M

⎛
⎝ 1√(

2a
t

)2
+ 1

− 1

⎞
⎠ (6.13)

Consequently, the demagnetization coefficient D is given by,

D = 1 − 1√
1 +
(

2a
t

)2 (6.14)

6.4.2 Minimum-energy-ferrofluid pattern

If a ferrofluid cylinder with radius R and height t splits to form N smaller radius

cylinders of radius a and height t, the conservation of ferrofluid volume requires that,

πR2t = Nπa2t (6.15)

which leads to the relationship,

a =
R√
N

(6.16)

From Figure 6-7 the interfacial energy stored in N cylinders of radius a is given

by,

Us = 2Nπatγ (6.17)

where γ denotes the interfacial surface tension. In addition, energy is stored in the

magnetic field associated with this configuration. The magnetic energy stored in N

ferrofluid cylinders can be written as,

Um = −1

2
µ0

∫
M ·H0dV = −µ0

2

Nπa2tχH2
0

1 + χD
(6.18)

where the magnetization is assumed to be approximately uniform in the ferrofluid.

Substitution of Equation 6.16 into Equations 6.17 and 6.18 yields,

Us = 2πRtγ
√

N (6.19)
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Um = −µ0

2

πR2tχH2
0

1 + χD
(6.20)

Note that from Equations 6.14 and 6.16, the demagnetization coefficient D in Equa-

tion 6.20 is now given by,

D = 1 − 1√
1 + 1

N

(
2R
t

)2 (6.21)

The total energy U stored in the configuration is the sum of interfacial and mag-

netic energies,

U = Us + Um = 2πRtγ
√

N −
µ0

2
πR2tχH2

0

1 + χ

(
1 − 1q

1+ 1
N ( 2R

t )
2

) (6.22)

This expression can be rewritten in non-dimensional terms as,

Ũ =
√

N +
1
2
R̃NBχ

1 + χ

⎛
⎝1 − 1r

1+
(2R̃)2

N

⎞
⎠

(6.23)

where we define the non-dimensional energy Ũ , the magnetic Bond number NB, and

a non-dimensional radius R̃ as,

Ũ =
U

2πRtγ
, NB =

µ0H
2
0 t

2γ
, R̃ =

R

t
(6.24)

The minimization of the total energy given in Equation 6.23 yields,

∂Ũ

∂N
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4
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4
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2 = 0 (6.25)
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The magnetic Bond number, NB = NBO, at equilibrium is,

NBO = 4

(
1 +

N

(2R̃)2

) 3
2

⎛
⎜⎜⎝ 1

χ
+

⎛
⎜⎜⎝1 − 1√

1 + 1
N

(
2R̃
t

)2

⎞
⎟⎟⎠
⎞
⎟⎟⎠

2

(6.26)

6.5 Linear model results

The general dependence of the magnetic Bond number on N and R̃ shown in Fig. 6-8

illustrates the existence of a minimum value of Bond number, NBO, independent of

R̃, beneath which no solution exists for any value of N . Furthermore, Figs. 6-8 and

6-9 shows that for values of NB greater than the threshold value NBO, N is double

valued. A more exact analysis is needed to determine whether this curious feature

is a mathematical artifact since the existence of more than one stable pattern under

identical experimental conditions has not yet been observed.
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Figure 6-8: The Bond number, NB, at equilibrium as a function of N for χ = 3.
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Figure 6-9: The number of cylinders, N , at the threshold Bond number NBO as a
function of R̃ = R/t and χ.

The expression for the threshold value is given by,

NBO =
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χ2 + 6χ + 3 + (1 + χ)

√
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(6.27)

which can be derived by setting ∂NB

∂N
and finding the local minimum of the expression

given in Equation 6.26. The threshold for instability is then associated with an

equilibrium number of cylinders N , given by the following expression,

N =
2R̃2

3 + 6χ

(
χ2 − 6χ − 3 + (1 + χ)

√
9 + 18χ + χ2

)
(6.28)

While the threshold-applied magnetic field for the phase-transition-like instability is

independent of R̃, the number of small cylinders that appear after the instability

occurs depends strongly on the value of R̃ as illustrated in Fig. 6-9. The results of

our experimental investigation qualitatively agree with the predictions of this energy

minimization analysis: Fig. 6-5 verifies the reduction in the number of ferrofluid
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R [mm] t [mm] vr [µl] adjusted R/t

8.4 0.9 106 6.4
7.6 1.1 64.1 5.7
6.7 1.4 55.1 4.1

Table 6.1: The non-dimensional parameter R/t was adjusted to take into account
the volume of ferrofluid in the ring and spirals surrounding the small droplets in the
Hele-Shaw cell phase transformation. The volume of the ferrofluid in the surrounding
strip, vr, was subtracted from the initial ferrofluid volume of 200 µl. The difference
in volume was used to compute a new effective value of R.

droplets with increasing gap thickness for the same initial drop volume.

Quantitatively, the number of ferrofluid droplets predicted by the minimum en-

ergy analysis generally agrees with experimentally observed values. To compare our

approximate analysis with measurements we consider only the volume of the ferrofluid

in the small droplets to compute the initial drop’s aspect ratio (i.e., we subtract the

volume of the ferrofluid in the ring surrounding the droplets from the initial volume

as documented in Table 6.1). For t =∼ 0.9, 1.1 and 1.4 mm, the adjusted aspect

ratios R/t of ∼6.4, 5.7, and 4.1 lead to model predictions that ∼100, 70, 30 droplets

should form after the phase transition; experiments show that approximately 80,

60 and 30 droplets form respectively. The model-predicted threshold magnetic field

strength values of ∼90, 75 and 70 gauss for the respective aspect ratios R/t of ∼6.4,

5.7, and 4.1, agree well with the observed experimental threshold values of ∼99, 85,

and 70 gauss. The threshold value was taken to be the value of the magnetic field

that leads to an approximately 20% increase in apparent ferrofluid drop area from

its initial value with no applied magnetic field. The magnetic field values at which

the ferrofluid peels off the top glass surface and reveals the droplets are much higher

than the incipience of the phase-like transition. The peel-off magnetic field values are

∼210, 180, 120 gauss respectively.
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6.6 Non-linear analysis

The magnetic field intensity inside the ferrofluid droplet, Ha, is related to applied

magnetic field Ho by the expression,

Ha = Ho − DMa(Ha) (6.29)

where D is the demagnetization factor and Ma is the magnetization. The analysis

in this section assumes that the demagnetization coefficient D inside the ferrofluid

droplet is constant. The assumption of a linear magnetization relation however is

relaxed and the magnetization characteristic Ma is assumed to follow the non-linear

Langevin relation given by,

Ma(Ha) = Ms

(
coth(βHa) − 1

βHa

)
(6.30)

where

β =
3χ

Ms
(6.31)

Substitution of Eq. 6.30 into Eq. 6.29 leads to the expression,

β(Ho − Ha) = αo − αa = 3χDMs

(
coth(αa) − 1

αa

)
(6.32)

where α = βH and appropriate subscripts denote the non-dimensional magnetic in-

tensities inside (subscript a) and outside (subscript o) the ferrofluid droplet. Eq. 6.32

is a transcendental equation, having no closed-form analytical solution; fortunately

the equation can be easily solved by numerical or graphical methods. Such a solu-

tion would completely determine the functions αa(D, αo), and Ma(D, αo) and their

derivatives with respect to D and αo.

The numerical computation of αa(D, αo), and Ma(D, αo) determines the magneto-

static energy stored in a ferrofluid droplet (See discussion in Appendix B). The

total stored energy, U, in the ferrofluid Hele-Shaw cell system is then given by the
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expression,

U = 2πRtγ
√

N − µ0

2
πR2t

(
DM2

a +
M2

s

3χ
ln

[
sinh αa

αa

])
(6.33)

Normalization of the total energy by the surface tension energy in the initial ferrofluid

drop of radius R yields

Ũ =
U

2πRtγ
=

√
N − 1

2

µ0M
2
s t
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t

(
DM̃2

a +
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[
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(6.34)

This expression of the total non-dimensional energy in the Hele-Shaw cell ferrofluid

system can be minimized with respect to the demagnetization factor D

∂Ũ
∂D

= 1
2
√

N
∂N
∂D

− 1
2

µ0M2
s t

2γ
R
t

[
M̃2

a + M̃a

(
2D
[
1 − coth2 αa + 1

α2
a

]
+ 1

3χ

)
∂αa

∂D

]
= 0 (6.35)

where we have used the following relation derived from using the chain rule on Eq.

6.32,
∂M̃a

∂D
=

(
1 − coth2 αa +

1

α2
a

)
∂αa

∂D
(6.36)

The minimum value of D as a function of αo is therefore given by,
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= 0 (6.37)

The one-to-one correspondence between the number of droplets N and D leads to the

number of drops that minimizes the total energy stored in a Hele-Shaw cell ferrofluid

system. Fig. 6-10 shows the minimum energy curves for the linear and non-linear

magnetization analyses for R/t = 4.1, 5.7, and 6.4.

6.7 Discussion and future work

The non-linear analysis predicts that 88, 70, and 37 small droplets form for ratios

R
t

= 6.4, 5.7 and 4.1, slightly lower than the number of droplets predicted by the linear

magnetization model. The predicted number of droplets for both models are in better
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agreement for lower values of initial aspect ratio R/t (See Fig. 6-11). Furthermore,

the non-linear model predicts the occurrence of the phase-like transition from one drop

to many smaller droplets at critical value of Bond number NBO ≈ 3.0. The value of

the critical Bond number predicted by the linear model is higher at approximately

4.2.
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Figure 6-10: Plots of minimum energy curves for linear (dashed line) and non-linear
(solid line) magnetization analysis for χ = 3 corresponding to NBF −1677 fluorocar-
bon based ferrofluid. Curves shown correspond to experiments with initial ferrofluid
drop to Hele-Shaw cell gap thickness ratio R/t = 4.1, 5.7, and 6.4. The non-linear
model predicts a phase-like transition from one drop to many smaller droplets at
Bond number NBO ≈ 3.0 while the linear model predicts a higher Bond number of
approximately 4.2.

Comparison of the linear and non-linear models clearly indicates that non-linear

magnetization lowers the predicted value of the threshold magnetic Bond number.

Moreover, the non-linear correction brings the predicted number of droplets to closer

agreement with experimental results. Lastly, the intractability of the non-linear model

requires the use of numerical methods to compute the energy minimization criteria

for the ferrofluid Hele-Shaw cell system. The linear analysis, however, results in

analytical expressions that are easier to study.

The main source of discrepancy between experimental and theoretical results is

due to the gross simplification of modeling the phase-like transition in the Hele-Shaw
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cell system as the transition from one large drop of ferrofluid into many smaller

droplets of ferrofluids. This over-simplification ignores significant features of the

two-dimensional ferrofluid pattern that forms inside the Hele-Shaw cell after the oc-

currence of the phase-like transition. These features include the surrounding circular

strip of ferrofluid that encloses the ferrofluid droplets and the spirals projecting out of

the surrounding strip of ferrofluid. Removing such assumptions as (i) uniform mag-

netic field inside the ferrofluid droplet, (ii) non-interaction between ferrofluid droplets

and (iii) neglecting the rotating magnetic field in the energy analysis, might improve

the predictions of the model at the cost of increased model complexity.
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Figure 6-11: Equilibrium number of droplets N as a function of R/t for χ = 3. The
shown values minimize the total energy in the ferrofluid Hele-Shaw system according
to the linear (dashed line) and non-linear (solid line) magnetization analysis.
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Chapter 7

Experimental investigation of

Ferrofluid spin-up phenomena

The velocity distribution in the bulk of a ferrofluid cannot be measured by laser

Doppler or streak path techniques due to the opacity of ferrofluids. Pulsed ultra-

sound velocimetry allows, however, for the real-time measurement of velocity profiles

in opaque fluids [6, 7, 17, 46]. Experimental measurements of the velocity field in

the bulk of the ferrofluid provides the information required to answer many of the

questions that arise from reviewing the ferrofluid spin-up literature. Investigations of

ferrofluid spin-up in the literature do not report the flow field inside the bulk of the

ferrofluid, being limited to studying only the flow profile on the free-surface of the

opaque ferrofluid by recording the motion of various kinds of floating tracer beads

and particles.

The pulsed ultrasound technique uses reflections off of small tracer particles or

air bubbles suspended in the fluid flow. The technique then uses the time of flight of

the reflected ultrasound beams to estimate the velocity of the tracer particles. Each

ultrasound probe measures the component of the velocity along the emitted beam

at every point along the beam. By definition the velocity is measure positive if the

flow is away from the probe and negative if the flow is towards the ultrasound probe.

Combining the readings of multiple probes at various positions and angles allows the

measurement of the velocity at many points in the flow field. In ferrofluid applications,
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tracer particles of sizes around 50-200 microns must be added to the fluid. The 5-15

nm ferrofluid particles are too small to scatter the ultrasound effectively. Commonly

used particles include plastic polyethylene spheres, corn pollen, and hollow spheres

of SiO2. In our experiments we found it necessary to add GrilTex-P1 latex particles,

produced by EMS chemie, Switzerland, to the ferrofluid to improve the quality of the

reflected ultrasound signal. These copolyamide spherical particles with an average

diameter of 50 µm have a density of 1.1 g/cc and are practically neutrally buoyant

in water-based ferrofluid. During the course of the experiments, we would, however,

stir the ferrofluid vigorously by hand once every day to prevent the particles from

settling, thus maintaining the dispersion of tracer particles necessary for a high level

of ultrasonic echoes.

The pulsed ultrasound technique has the advantage of non-disruptive measure-

ment of the flow profile; the ultrasound probes can be placed in the outside walls

of the ferrofluid container without contacting the ferrofluid. However, this increases

ultrasound energy losses because the signal must couple from the probe to the con-

tainer wall and from container wall into the fluid. Walls made out of materials that

have an acoustic impedance similar to that of ferrofluids (like Plexiglas) can maximize

transmissivity between the container wall and the ferrofluid.

This chapter presents the preliminary results of our investigation of ferrofluid

spin-up flow phenomena in MSG W11 and EMG705 water based ferrofluids with

the Signal Processing DOP2000 ultrasound velocimeter. Unlike previous reports in

the literature which are restricted to optical observations at the top ferrofluid/air

interface, the ultrasound technique overcomes the difficulty that the ferrofluid opacity

poses, enabling us to measure the velocity profiles in the bulk of the ferrofluid

7.1 Experimental setup

Figs. 7-1 to 7-3 show the experimental apparatus we used to investigate the flow in

the bulk of a cylindrical container of water-based ferrofluid with a free top surface

undergoing spin-up flow driven by a uniform counter-clockwise rotating magnetic field.

154



Figure 7-1: Photograph showing top view of an empty cylindrical experimental con-
tainer inside the stator winding. Ultrasound probes were inserted into the grooves in
the side wall to measure velocity profiles along different secants.

The uniform rotating magnetic field is produced by the stator winding of a two-pole

three-phase motor. The motor’s rotor was removed and replaced by a polycarbonate

cylindrical vessel filled to a height of 50 mm with water-based ferrofluid. A video

camera placed directly above the experiment was used to monitor the behavior of

the top ferrofluid/air interface. Channels grooved at different angles from the radial

normal to the cylinder’s lateral side housed the ultrasound velocimeter probe (See

Fig. 7-1). The depth of grooved channels was specified to leave a thin thickness

of wall intact (< 5 mm) so that the ultrasound probe does not directly contact the

ferrofluid. Ultrasound gel was used at the interface of the probe and the vessel wall

to couple the ultrasound signal through the vessel wall to the bulk of the ferrofluid

more effectively. Table 7.2 shows the values of geometric parameters for the spin-up

experimental apparatus.

The cylindrical polycarbonate container used in these experiments was designed

to fit snugly into the 78 mm diameter bore of a three phase, 2-pole motor stator

winding in order to guarantee that the ferrofluid is radially centered along the axis

of the stator winding where the applied magnetic field is most uniform. To maintain

high magnetic field uniformity, the container was also centered vertically within the
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Figure 7-2: Photograph of the spin-up experimental apparatus showing the three-
phase, two-pole stator winding driven by the AE Techron 5050 linear amplifier and the
Wavetek Datron 40 MS/s universal waveform generator. The three Fluke multimeters
are connected in ac-current mode to monitor and set the currents in each phase to
have the same magnitude.
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stack of the stator’s iron core. The uniform magnetic fields inside the stator winding

were generated with balanced-three-phase-sinusoidal currents to create clockwise or

counter-clockwise rotating uniform magnetic fields. We grounded one of the phases of

the stator winding and excited the remaining two phases at 0◦ and ±60◦ to generate

clockwise or counter-clockwise rotating uniform magnetic fields. Fig. 7-2 shows the

experimental setup used to generate the waveforms we input to the stator winding.

Measurements were taken at frequencies from 10 to 1000 Hz with input currents of

up to 4 Amps rms. The currents at higher frequencies were limited to lower values

of amperes to avoid overheating and damage to the stator winding. In the stator

winding used for these experiments each 1 Amp rms generates a uniform magnetic

field of 38 gauss rms in the absence of ferrofluid. The 10 mm non-magnetic wall

thickness of polycarbonate cylindrical container which separates the ferrofluid from

the stator iron leads to small demagnetization effects outside the test vessel. The field

values reported in this chapter correspond, however, to the external applied magnetic

field strength and do not account for the demagnetizing effect of the ferrofluid. For a

long cylinder of ferrofluid with magnetic susceptibility χ the internal magnetic field Hi

is given in terms of the external magnetic field H0 by the expression Hi = H0 −MD

so that Hi = H0

1+χ/2
. With no ferrofluid the magnetic field was measured to be highly

uniform over the experimental volume inside the stator winding. The in-plane field

at mid-height was found to vary by less than 2% over the radial dimension, by less

than 18% along the z-axis at r = 0 from the center of the iron core to the top and

bottom edges, and had negligible azimuthal variation throughout the volume.

We added 1 gram of Latex tracer particles to every 0.1 liters of water-based

ferrofluid or equivalently less than 1% by weight. This amount of tracer particle

produced much higher reflected echo signals than obtained by introducing air bub-

bles, significantly improving the quality and repeatability of our measurements with-

out perceptibly changing the velocity flow profiles in our experiments. The tracer-

particle/ferrofluid suspension requires more than 24 hours to precipitate enough Latex

tracer particles to the bottom of the cylindrical container to cause significant degra-

dation of the reflected ultrasound signals. Our experience shows, however, that the
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Ultrasound probe
Frequency 4 [MHz]
Diameter 8.0 [mm]
Length 10.0 [mm]
Case material Epoxy
Output wire Radial
Other spec. Non-magnetic

Device settings
PRF ∼ 1–10 [kHz]
Emitting frequency 4.0 [MHz]
Emitting power Low–Medium
Burst length 8 cycles
Number of gates ∼ 200

Table 7.1: Ultrasound probe specifications and typical settings of DOP2000 ultra-
sound velocimeter.

signal quality can be maintained at its initial quality by simply vigorously stirring the

suspension by hand at the start of every day of measurements after the experimental

sample has been left unstirred overnight. Further stirring during the day was not

necessary.

Also, we have found it important to prevent the ferrofluid from heating up during

the tests to avoid temperature-gradient-driven, thermal-convection bulk flows in the

fluid. The currents flowing in the stator winding’s coils heat up the whole stator due

to ohmic losses in the copper winding. Special care was taken after each set of tests

to turn off the currents and allow enough time for the motor stator to cool down

to room temperature; an electric fan helped accelerate the tedious cooling process.

The polycarbonate material of the cylindrical ferrofluid container also acted as a

heat insulator. These combined measures assured that the ferrofluid remained at a

practically uniform and constant temperature throughout an experimental test set.

To gain confidence in the measurements reported in this chapter we performed a

series of preliminary experiments. For example, we regularly confirmed the direction

of rotation of the applied uniform rotating magnetic field at low frequencies (∼ 10

Hz) with a small compass. Another regular check that we performed was to stir
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Apparatus Geometry
R Inner cylinder radius 28.7 [mm]
Rm Stator iron radius 39.0 [mm]
α Probe angle 15◦ [ ]
zf Height of ferrofluid 50.0 [mm]
zp Probe position 25.0 [mm]
dw Cylinder wall thickness 10.0 [mm]

Table 7.2: Summary of dimensions of spin-up flow experiment.

the fluid slowly by hand, both clockwise and counterclockwise, while observing the

polarity of the velocimeter’s measured velocity profiles. Finally, to verify the magni-

tude of the velocities reported by the ultrasound velocimeter the theoretically known

velocity profiles were measured for water and oil in a concentric cylinder Couette ge-

ometry. Appendix C demonstrates that the profiles reported by the velocimeter are in

satisfactory agreement with known classical theoretical expressions for non-magnetic

fluids.

7.2 Measurement of the spin-up flow velocity pro-

file

The velocimeter measures only the component of the velocity parallel to the axis of

the probe. The device records the parallel component of the velocity as a function

of time at every point along the path of the ultrasound beam. Table 7.1 documents

the configuration of the DOP2000 velocimeter and lists typical device settings. Due

to the finite width of the ultrasound beam, the velocity recorded at every point is

the spatial average of the velocity over a small volume. The geometry necessary to

interpret the ultrasound velocimeter data can be derived from Fig. 7-4 which shows

a top-view of the ferrofluid vessel in the spin-up experiment.

The ultrasound probe was inserted into the outer cylinder wall at an angle α = 10◦

from the radial direction ir at a height z = 25 mm from the bottom of the ferrofluid
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Figure 7-3: Configuration of motor stator winding and cylindrical vessel for the ultra-
sound spin-up flow profile measurement experiment. A three-phase, two-pole motor
stator winding was used to excite a counter-clockwise rotating uniform magnetic field.
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Figure 7-4: Geometry for spin-up flow profile measurement experiment. The ultra-
sound probe measures the component of the fluid velocity parallel to the probe’s
axis.
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(i.e., approximately in the middle of the 50 mm height of ferrofluid in the vessel).

The probe emits a horizontal ultrasonic beam and measures the component of fluid

velocity parallel to the direction of the beam at every point along the beam. Thus,

the z- and r-components of the fluid velocity can be measured directly by ultrasound

beams pointing in the vertical and radial directions respectively. Measurement of

the φ-component of the velocity requires processing of the velocity measured on the

ultrasound beam path shown in Fig. 7-4. From the figure we see that the radius r at

a point on the ultrasound beam path is given by,

r =

√
(x2 + (R sin α)2) (7.1)

The velocity of the fluid at any point in the fluid is most generally given by,

v(r, z) = vr(r, z)ir + vφ(r, z)iφ + vz(r, z)iz (7.2)

On the ultrasound beam path this general expression can be rewritten as,

v(r, z) = vr(r, z)

(
x

r
ix +

R sin α

r
iy

)
+ vφ(r, z)

(−R sin α

r
ix +

x

r
iy

)
+ vz(r, z)iz (7.3)

However, the velocity measured by the velocimeter at a point on the ultrasound

beam path has at most only r- and φ-components, because the z-component of the

velocity is perpendicular to the r-φ plane. The ultrasound probe shown in Fig. 7-4

measures only the x-component of the fluid velocity at every point along the beam

path. Therefore the velocity profile measured by the velocimeter, vm, is given by,

vm(x) = −vφ(r)
R sin α√

x2 + (R sin α)2
+ vr(r)

x√
x2 + (R sin α)2

(7.4)

This means that to deduce the velocity profile vφ(r, z) from the ultrasound velocimeter

profile we must first directly measure the radial component of the velocity vr(r, z) and
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then use the expression,

vφ(r) = −vm(x)

√
x2 + (R sin α)2

R sin α
+ vr(r)

x

R sin α
(7.5)

The radial component of the velocity can be measured directly by aligning the ultra-

sound beam with the diameter of the vessel (i.e., the probe angle α = 0 ).

7.3 Results for MSG W11 water-based ferrofluid

Experiments were conducted on MSG W11 water-based ferrofluid in a container with

and without a top cover as illustrated in Fig. 7-5. The figure also illustrates how

velocity profiles were recorded at different heights z in each of the two sets of mea-

surements presented in this section. The results for the covered container presented in

Sec. 7.3.1 show only the effects of bulk momentum coupling of the rotating magnetic

field. The results in Sec 7.3.2 are for a container of ferrofluid without a top cover and

show the effects of both spin diffusion and surface-shear-stress-driven flows.

These experiments were conducted with the ferrofluid container axially and ra-

dially centered within the stator iron stack so that the ferrofluid container lies in a

region with a highly uniform applied magnetic field. The non-uniformity of the mag-

netic field at the top and bottom ends of the stator iron stack has a very strong effect

on the direction and speed of rotation measured at the surface of the ferrofluid [39].

On the other hand, the bulk of the ferrofluid was consistently observed to co-rotate

with the applied magnetic field in all of our experiments.

7.3.1 MSG W11 water-based ferrofluid with top cover

The spin-up velocity profiles measured in the bulk of MSG W11 water-based fer-

rofluid are shown in Figs. 7-6 to 7-8. The figures show that when subject to a

counter-clockwise rotating magnetic field the bulk ferrofluid in the cylindrical vessel

undergoes rigid-body-like counter-clockwise rotation at a constant angular velocity.

Only near the walls of the cylinder does the no-slip condition force the fluid flow to
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Figure 7-5: The placement of the ultrasound probes at different values of z in con-
tainers of ferrofluid with and without a top cover. The top cover of the left cylindrical
container forces zero flow at z = zf and reduces surface shear stress effects, whereas
in the right container the absence of the top cover allows the free top surface to
develop surface-shear-stress-driven flows. The ultrasound probe needs to be entirely
submerged beneath the top surface for accurate velocity measurements.
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Figure 7-6: The azimuthal component of spin-up flow profiles at z =
zf

2
for MSG

W11 water-based ferrofluid excited by a magnetic field rotating counter-clockwise at
20 Hz. In the central region (r < 15 mm) the flow profiles resemble the linear profile
of a fluid in rigid body co-rotation with the applied magnetic field. The velocity must
be zero at the r = R stationary wall. The cylindrical container was covered so that
there were no free ferrofluid surfaces.

differ significantly from rigid-body rotation. At any given frequency, higher values of

the applied magnetic field strength lead to higher rotational velocities.

Figs. 7-9 and 7-10 show the effects of applied magnetic field strength and rotation

frequency on the observed bulk rotational speed of the ferrofluid Ω. We used the

slopes of the linear region of the measured velocity profiles as an estimate for the

bulk ferrofluid rotational speed. For low frequencies of applied rotating magnetic

field the bulk rotational speed of the ferrofluid increases with the applied rotating

magnetic field frequency. We measured a maximum in ferrofluid bulk rotation at

each value of applied rotating magnetic field strength. Fig. 7-9 shows that at higher

frequencies the rigid-body rotation of the ferrofluid saturates or begins to decrease

slowly with applied frequency for any given rotating magnetic field strength. On the

other hand, the bulk rotational speed of the ferrofluid Ω was observed to increase

monotonically with applied rotating magnetic field strength (See Fig. 7-10).

The no-slip condition applies at the top and bottom stationary surfaces of the cov-

ered cylindrical container. We measured the velocity profiles at z =
zf

4
and z =

3zf

4

and at the center, z =
zf

2
, of the cylindrical container. This investigation of the
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Figure 7-7: Azimuthal flow profiles at z =
zf

2
for MSG W11 water-based ferrofluid

excited by a magnetic field rotating counter-clockwise at 40 Hz. A flat top cover on
the filled ferrofluid container eliminates the free surface and prevent the formation of
a meniscus.
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Figure 7-8: Azimuthal flow profiles at z =
zf

2
for MSG W11 water-based ferrofluid

excited by a magnetic field rotating counter-clockwise at 200 Hz. This flow profile
results when water-based ferrofluid in a container without a free surface was placed
in a uniform rotating applied magnetic field.
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Figure 7-9: Relation between the bulk rotational rate in the central region of the
MSG W11 ferrofluid, Ω =

vφ

r
, and the frequency of the applied rotating magnetic

field for various magnetic field strengths. The ultrasound probe was placed at height
z =

zf

2
in the outside wall of a cylindrical container with a top cover.
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Figure 7-10: Relation between the bulk rotational rate in the central region of the
ferrofluid Ω =

vφ

r
at z = zf/2 and the applied magnetic field strength for various

frequencies in a covered container of MSG W11 water-based ferrofluid. The rate of
rotation increases monotonically with applied field strength for the investigated range
of magnetic field strengths.
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Figure 7-11: Azimuthal flow profiles at z =
zf

2
, z =

zf

4
and

3zf

4
excited by a 76 gauss

rms magnetic field rotating counter-clockwise at 200 Hz in a covered container of
MSG W11 water-based ferrofluid.

dependence of the azimuthal velocity profile on z shows the symmetry of the covered

spin-up flow. As expected, the experimental data in Fig. 7-11 and Fig. 7-12 demon-

strate that there are higher flow rates at the vertical center of the cylindrical container

than near the top and bottom faces of the cylindrical container. Ideally, the curves for

z =
zf

4
and

3zf

4
should completely overlap in both figures. Experimental results show

some discrepancy especially in Fig. 7-11. The ferrofluid in the container is, however,

observed to consistently co-rotate with the applied-uniform-rotating-magnetic field.

Most significantly, these experiments demonstrate that there is significant rotational

flow in the bulk of the ferrofluid in the absence of any free surfaces.

7.3.2 MSG W11 water-based ferrofluid without top cover

The ferrofluid/air interface at the top surface of the ferrofluid is observed by eye to

rotate in the clockwise direction for a counter-clockwise-rotating applied magnetic

field; reversal of the applied magnetic field’s rotation results in the reversal of the

ferrofluid flow near the surface and in the volume. In the experiments presented in

this section the ferrofluid container was centered axially and radially in the stator

iron stack so that the ferrofluid container was in a region of highly uniform magnetic
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Figure 7-12: Relation between the rotational rate in the bulk of the MSG W11 water-
based ferrofluid and the frequency of the applied rotating magnetic field at 76 gauss
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in a covered container of water-based ferrofluid.
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Figure 7-13: The radial position, rmax/R, of the measured velocity profile’s maximum
value for MSG W11 water-based ferrofluid.
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Figure 7-14: The azimuthal component of spin-up flow profiles at z =
zf

2
and near

the top free surface excited by a magnetic field rotating counter-clockwise at 20 Hz.
The positive curves correspond to co-rotating ferrofluid bulk flow profiles measured
at z =

zf

2
, while the negative curves correspond to the counter-rotating flows near

the top free surface of the MSG W11 water-based ferrofluid.

field. The approximate rate of rotation at the surface was also estimated by observing

the trajectories of surface bubbles and small particles.

The spin-up velocity profiles measured in the bulk of the water-based ferrofluid

and near the top free surface of the ferrofluid rotate in opposite directions as demon-

strated by the sample flow profiles shown in Figs. 7-14 to 7-16 for applied rotating

magnetic field frequencies of 20, 40, and 200 Hz. The flow in the bulk of the fer-

rofluid was measured with the ultrasound probes and found to co-rotate with the

applied rotating magnetic field. Indeed, the flow at the vertical center of the fer-

rofluid container z =
zf

2
exhibited trends and behavior very similar to the case of the

covered container presented in the previous section. Interestingly, our observations

conclusively demonstrate that the bulk and top free surface of the ferrofluid rotate

in opposite directions. Note that the abrupt changes in velocity shown in the surface

flow profiles in Figs. 7-14 to 7-16 are spurious artifacts due to measurement difficul-

ties with ultrasound reflections from the fluid/gas interface. The abrupt changes in

velocity do not appear in the bulk measurements because the ultrasound beam is far

from the ferrofluid/air interface. In summary, our experiments confirm that while the
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Figure 7-15: Azimuthal flow profiles at z =
zf

2
and near the top free surface of

the MSG W11 water-based ferrofluid excited by a magnetic field rotating counter-
clockwise at 40 Hz. The ferrofluid flow co-rotates with the applied magnetic field at
z =

zf

2
(positive curves) and counter-rotates near the free surface (negative curves).

ferrofluid bulk co-rotates with the applied magnetic field, the ferrofluid free surface

counter-rotates against the rotating applied magnetic field. The rate of bulk rotation

is observed to be lower for the container without a top cover, than for a corresponding

case with a covered container with no surface flow.

Figs. 7-17 and 7-18 show the effect of applied magnetic field strength and rota-

tional frequency on the observed bulk and surface rotational speeds of the ferrofluid

measured at z =
zf

2
and near z = zf . Negative values of rotational speed signify that

the fluid counter-rotates with reference to the applied magnetic field. For low frequen-

cies of applied rotating magnetic field the bulk rotational speed of the ferrofluid scales

in proportion to the applied rotating magnetic field frequency. The trend in the bulk

rotational speed saturates at higher values of applied magnetic field frequency. The

bulk rotational speed of the ferrofluid increases monotonically with applied magnetic

field strength in all the tests performed in this experimental investigation. Fig. 7-19

shows the optically observed rotational speeds on the free surface of the ferrofluid.

Note that the highest reported velocities occur on the surface of the ferrofluid.
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Figure 7-16: MSG W11 water-based ferrofluid azimuthal flow profiles at z =
zf

2
and

near the top free surface excited by a magnetic field rotating counter-clockwise at 200
Hz. This flow near the free top surface (negative curves) rotates opposite the flow
in the bulk of the ferrofluid (positive curves) measured at z =

zf

2
and opposite the

applied rotating magnetic field.

7.3.3 Ferrofluid flow reversal

Further investigation of the change in the spin-up velocity profile between the surface

and bulk of the ferrofluid was required in order to verify the measured flow reversal

between the top free surface and bulk of the ferrofluid reported in Sec. 7.3.2. Fig.

7-20 illustrates the two experimental configurations used to investigate the flow of

the ferrofluid near the ferrofluid/air interface. In configuration A the surface of the

ferrofluid is initially aligned with the bottom rim of the iron stack of the stator

winding. In configuration B the surface of the ferrofluid is initially aligned with the

top rim of the iron stack of the stator winding. The steady state velocity profiles were

measured as the amount of ferrofluid in the container was increased incrementally by

injecting 2.5 ml of ferrofluid with a syringe. Each injected increment of ferrofluid

increased the height of the ferrofluid in the contained by 1 mm. The velocity profiles

were measured for applied 10 and 50 Hz rotating uniform magnetic fields of 76 gauss

rms.

A plausible explanation for the flow reversal phenomena builds on Rosensweig’s
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Figure 7-17: The rotational rates, Ω =
vφ

r
, in the central bulk region, z =
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with

Ω > 0, and near the free top surface of MSG W11 water-based ferrofluid with Ω < 0,
for various magnetic field amplitudes as a function of the frequency of the applied
rotating magnetic field.
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Figure 7-18: Central region bulk (Ω > 0) and near free top surface rotational rates
(Ω < 0), Ω =

vφ

r
, of the ferrofluid dependence on the applied magnetic field strength

for various frequencies in a container of MSG W11 water-based ferrofluid without a
top cover. The negative curves correspond to the counter-rotating flow near the free
top surface of the water-based ferrofluid.
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Figure 7-19: The rotational rates, Ω =
vφ

r
, observed optically on the free top surface

of MSG W11 water-based ferrofluid with Ω < 0 (counter-rotation) as a function of the
frequency of the applied rotating magnetic field for various magnetic field amplitudes.
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observation of the dependence of direction of ferrofluid surface flow on the curvature of

the meniscus [39]. In configuration A the ferrofluid interface is drawn upwards towards

the region with higher magnetic field strengths which might cause the meniscus to

have convex shape. Conversely in configuration B the strong field region is below the

interface and the shape of the meniscus is concave. A measurement of surface shape

to determine the effects of fringe fields on the curvature of the meniscus would verify

this hypothesis. Preliminary laser measurements have shown that the curvature of the

ferrofluid/air interface changes from concave to convex at the bottom of an energized

stator as hypothesized. Unfortunately, the laser reflection technique from Chapter

3 cannot be used to measure the exact shape of the ferrofluid air interface with

this experimental configuration because the stator winding occludes the ferrofluid

container.

Fig. 7-21 plots the change of rotational rate, Ω =
vφ

r
, of the ferrofluid as the height

of the ferrofluid is increased in increments of 1 mm. The figure shows a flow reversal

in configuration B. Initially, when the ultrasound probe is close to the surface of the

ferrofluid we measure a counter-rotating flow. When more ferrofluid was added, the

probe is no longer near the surface and the measured flow co-rotates with applied

magnetic field. In configuration A, however, the fluid is measured to always co-rotate

with the applied magnetic field. We also observed by eye that the surface of the

ferrofluid co-rotated with the applied magnetic field in this configuration.

7.4 Results for EMG705 water-based ferrofluid

This section presents experimental results for EMG705 water-based ferrofluid. EMG705

is significantly higher in quality and price than MSG W11. We have only performed

a subset of the measurements that we presented for MSG W11 in Sec. 7.3.

7.4.1 EMG705 water-based ferrofluid with top cover

Figs. 7-22 to 7-24 show velocity profiles for frequencies of 20, 40 and 200 Hz. The thick

curves in the figures are actual experimental data points reported by the velocimeter
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Figure 7-20: Experimental configurations A and B to investigate the z-dependence of
the velocity profiles near the ferrofluid/air interface.
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Figure 7-21: Measured change of rotational rate, Ω =
vφ

r
, of MSG W11 ferrofluid

as the height of the ferrofluid is increased in increments of 1 mm. The experiments
were conducted with 10 and 50 Hz rotating uniform magnetic fields of 76 gauss rms.
Configuration A measures the change in velocity near an interface located in the
bottom fringing fields of the motor stator winding and configuration B measures near
an interface located at the top fringing fields of the motor stator winding.
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Figure 7-22: Co-rotating azimuthal flow profiles at z =
zf

2
for EMG705 water-based

ferrofluid excited by a magnetic field rotating counter-clockwise at 20 Hz. This co-
rotating flow profile results when a water-based ferrofluid in a container without a
free surface is placed in a uniform rotating applied magnetic field.

over the measured range of radial positions. We used thin lines in each case to

extrapolate the data for radial positions where measurements are unavailable.

Fig. 7-25 summarizes the bulk rotation rate of the ferrofluid in our experimental

results for all the frequencies and magnitudes of applied uniform magnetic fields,

demonstrating that EMG705 exhibits the same spin-up flow trends observed for MSG

W11. The bulk rates of flow for EMG705 are, however, slightly lower than the flow

rates in MSG W11 water-based ferrofluid. Fig. 7-27 shows the radial position of the

maximum velocity for different frequencies and currents.

Fig. 7-26 shows velocity profiles measured at three different heights: z =
zf

4
,

z =
3zf

4
and z =

zf

2
, as illustrated in the covered cylindrical configuration in Fig.

7-5. In the covered configuration, the no-slip condition applies at the top and bottom

stationary surfaces of the container. The data shows the even symmetry of the covered

spin-up flow across the plane z =
zf

2
. As expected, the experimental data shows that

there are higher flow rates in the center of the cylindrical container than near the

top and bottom faces of the cylindrical container. Note that in theory, the velocity

profiles measured at z =
zf

4
, z =

3zf

4
should be identical; the measured curves agree
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Figure 7-23: Co-rotating azimuthal flow profiles at z =
zf

2
for EMG705 water-based

ferrofluid excited by a magnetic field rotating counter-clockwise at 40 Hz. The fer-
rofluid container was covered by a flat cover to eliminate the free surface and prevent
the formation of a meniscus.
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Figure 7-24: Co-rotating azimuthal flow profiles in a container without a free surface
at z =

zf

2
for EMG705 water-based ferrofluid excited by a magnetic field rotating

counter-clockwise at 200 Hz.
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Figure 7-25: Relation between the co-rotating bulk rotational rate in the central
region of the EMG705 water-based ferrofluid, Ω =

vφ

r
, and the frequency of the

applied rotating magnetic field for various magnetic field strengths. The ultrasound
probe was placed at height z =

zf

2
on the outside of a cylindrical container with a top

cover.

very well within experimental error.

7.4.2 EMG705 water-based ferrofluid without top cover

The spin-up velocity profiles measured in the bulk of the EMG705 water-based fer-

rofluid and near the top free surface of the ferrofluid rotate in opposite directions

as demonstrated by the sample flow profiles shown in Fig. 7-28 for applied rotating

magnetic field frequency of 80 Hz.

7.4.3 Transient velocity profiles

In contrast to the previous sections in this chapter, which focused on measurements of

steady state velocity profiles, this section summarizes the results of a brief preliminary

investigation of turn-on and turn-off transients. Ultrasound velocimetry was used to

record the velocity profile at the central region, z = zf/2, of a covered cylindrical

container of EMG705 ferrofluid. Figs. 7-29 to 7-34 show the bulk rotational rate of

the ferrofluid as a function of time for 38, 76, 114 gauss rms.
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by a 76 gauss rms magnetic field rotating counter-clockwise at 200 Hz in a covered
container of EMG705 water-based ferrofluid.
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The positive curves correspond to co-rotating ferrofluid bulk flow profiles measured
at z =

zf

2
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Figure 7-29: The turn-on transient in EMG705 water based ferrofluid in a 38 gauss
rms rotating uniform magnetic field for various rotating field frequency. A steady
state rotational rate develops in the bulk of the ferrofluid initially at rest.
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Figure 7-30: The turn-off transient in EMG705 water based ferrofluid initially driven
by a 38 gauss rms rotating uniform magnetic field for various rotating field frequency.
The steady state rotational rate steadily decreases untill the bulk of the ferrofluid is
at rest.

The turn-on transients in Figs. 7-29, 7-31 and 7-33 have characteristic times that

decrease for higher rotating magnetic field strengths and frequencies. On the other

hand, the turn-off transients in Figs. 7-30, 7-32 and 7-34 have characteristic times on

the order of ∼ 20 s independent of rotating magnetic field strength and frequency. The

turn-off transients are viscous dominated and are larger than the turn-on transient

characteristic times.

7.5 Discussion and future work

This section presents a brief overview and summary of some of the most salient

results for this chapter’s spin-up experiments with MSG W11 and EMG705 water

based ferrofluids in containers with and without a top cover. We conclude with

recommendations for further contributions and investigations that would build on

our results.

Firstly, while the central region of the ferrofluid developed linear rigid body motion
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Figure 7-31: The turn-on transient in EMG705 water based ferrofluid in a 76 gauss
rms rotating uniform magnetic field for various rotating field frequency. A steady
state rotational rate develops in the bulk of the ferrofluid initially at rest.
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Figure 7-32: The turn-off transient in EMG705 water based ferrofluid in a 76 gauss
rms rotating uniform magnetic field for various rotating field frequency. The steady
state rotational rate steadily decreases untill the bulk of the ferrofluid is at rest.
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Figure 7-33: The turn-on transient in EMG705 water based ferrofluid in a 114 gauss
rms rotating uniform magnetic field for various rotating field frequency. A steady
state rotational rate develops in the bulk of the ferrofluid initially at rest.
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Figure 7-34: The turn-off transient in EMG705 water based ferrofluid in a 114 gauss
rms rotating uniform magnetic field for various rotating field frequency. The steady
state rotational rate steadily decreases untill the bulk of the ferrofluid is at rest.
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velocity profiles, the velocity profiles reached a maximum value and dropped to zero

near the stationary outer wall of the cylinder. This occurs not in a thin boundary

layer but over a significant region near the wall. The maximum velocities measured

for EMG705 were consistently lower than those measured for MSG W11 under the

same experimental conditions.

Secondly, in all of the experimental cases presented in this chapter the ferrofluid

in the bulk region rotated consistently in the same direction as the applied uniform

rotating magnetic field. This observation holds for MSG W11 and EMG705 even

in experiments where the cylindrical container was not covered, and the free surface

clearly rotated opposite to the magnetic field.

Moreover, we measured significant volume flows even in the case of a covered

container with no free surfaces. The flows scaled with applied rotating magnetic

field frequency and current, and were demonstrated to be symmetric about the plane

z = zf/2 for a covered container.

Finally, both optical observation at the surface of the ferrofluid and ultrasound

measurement just beneath the surface reveal that the fluid counter-rotates with re-

spect to the applied rotating magnetic field on the top surface of the ferrofluid. Mea-

surements show that the largest magnitude of the flow velocity occurs right at the

surface layer of the uncovered ferrofluid cylindrical container.

It is easy to claim that fringing field non-uniformities arise when we introduce

the ferrofluid into the bore of the stator winding despite the great care we took to

generate uniform magnetic fields in our experiments and perhaps even to attribute

our results to field gradient effects. In addition, two-pole stator windings have slots,

teeth, end effects, winding factors etc. that introduce non-uniformities and higher

order harmonics. We believe that fields inside the ferrofluid cylinder are adequately

uniform: the ferrofluid cylinder approximates a spherical vessel since its dimensions

are such that the diameter is approximately equal to its height. Spherical vessels are

more difficult to handle and are not as readily available as cylindrical ones. Future

work should investigate flow profiles in spherical vessels of ferrofluid to dispel any

lingering doubts or misgivings about the results we presented in this chapter. Instead
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of using a commercial two pole machine stator a long, thin, non-magnetic, smooth,

hollow cylinder could be wound with at least two sinusoidal winding distributions

specifically for this experiment. Alternatively, multiple phases of spherical coils, based

on the so-called “fluxballs” of Appendix B, could be wound around spherical container

of ferrofluid to produce highly uniform rotating magnetic fields.
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Chapter 8

Numerical simulation of ferrofluid

spin-up

8.1 Ferrofluid spin-up governing equations

This chapter uses fluid dynamical equations of motion modified to account for internal

nanoparticle rotation to describe the behavior of non-conducting magnetic fluids in

uniform rotating magnetic fields. The expressions for the conservation of linear and

angular momentum for incompressible fluid describe how the fluid velocity v and spin

velocity ω arise from applied magnetic body torques and forces. In conjunction with

these fluid mechanical equations, Maxwell’s equations and the constitutive relation

for a ferrofluid–as given by the magnetization relaxation equation–are essential for

a complete hydrodynamic description of ferrofluid spin-up. It is essential that we

self-consistently account for coupling between mechanical flows and magnetic fields

to describe correctly the experimentally measured rotation velocity of ferrofluids in

rotating magnetic fields. Just as the magnetic body force and torque densities drive

the flow and spin velocities of the ferrofluid, fluid motion and spin also affect the

magnetic field and consequently the magnetic force and torque densities.

The solutions presented in this chapter satisfy the full coupled set of fluid dy-

namical and magnetic equations without making the simplifying assumptions in the

magnetization relaxation relation–made in Shliomis’ analysis–that decouple mechan-
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ical and magnetic variables. We make the assumption that the fluid flow velocity,

spin velocity, torque and force densities are only functions of radial position r. This

ignores possible variations along the axial direction z from boundary conditions on

the top cover and bottom surface of the cylindrical container. This assumption holds

in the middle region of the ferrofluid container in the limit when the top and bottom

faces of the cylinders are infinitely far away. Addressing flows that are a function of

two or even three dimensions is a relatively straightforward–albeit algebraically more

involved and numerically more intensive–extension of our analysis.

8.1.1 Fluid mechanics governing equations

The equations governing the ferrohydrodynamic torque-driven spin-up flow for an

incompressible ferrofluid (i.e., ∇ · v = 0) are given by the expressions for the conser-

vation of linear momentum,

ρ
Dv

Dt
= −∇p + 2ζ∇× ω + (ζ + η)∇2v + F (8.1)

and the conservation of angular momentum,

J
Dω

Dt
= 2ζ (∇× v − 2ω) + η′∇2ω + (λ′ + η′)∇(∇ · ω) + T (8.2)

where v is the velocity, ω is the spin velocity, p is the pressure, ρ is the density,

J is the local moment of inertia per unit volume, η is the dynamic viscosity, η′ is

the shear coefficient of the spin viscosity, λ′ is the bulk coefficient of spin viscosity,

ζ is the vortex viscosity, the time-average magnetic body force density is given by

F =< µ0M · ∇H >, and the time-average magnetic body torque density in the

ferrofluid is T =< µ0M×H >. Note that the delimiters <> signify the computation

of the time-average torque and force densities that lead to steady velocity and spin-

velocity profiles.

We non-dimensionalize Eqs. 8.1 and 8.2 with respect to reference parameters such

as the frequency of the applied rotating magnetic field Ωe, the radius of the vessel R,
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and a reference magnetic field intensity H0,

RE
Dṽ

Dt̃
= −∇̃p̃ + 2

ζ

η
∇̃ × ω̃ +

(
1 +

ζ

η

)
∇̃2ṽ + F̃ (8.3)

RE

(
J

ρR2

)
Dω̃

Dt̃
= 2

ζ

η

(
∇̃ × ṽ − 2ω̃

)
+

η′

R2η
∇̃2ω̃ +

λ′ + η′

R2η
∇̃(∇̃ · ω̃) + T̃ (8.4)

where RE = ρΩeR2

η
,ṽ = v

ΩeR
, ω̃ = ω

Ωe
, r̃ = r

R
, t̃ = Ωet, p̃ = p

µ0H2
0
, F̃ = RF

µ0H2
0
, and

T̃ = T
µ0H2 .

In the steady state, time derivatives vanish ∂
∂t

→ 0. For an axisymmetric cylinder

of infinite height in the z direction we neglect variations in z and φ (i.e., ∂
∂z

, and

∂
∂φ

→ 0) and only investigate solutions with the form ṽ = ṽφ(r̃)iφ, ω̃ = ω̃z(r̃)iz,

T̃ = T̃z(r̃)iz, F̃ = F̃φ(r̃)iφ which simplify the expressions in Eqs. 8.3 and 8.4 to,

T̃z(r̃) + 2
ζ

η

(
∂ṽφ

∂r̃
+

ṽφ

r̃
− 2ω̃z

)
+

η′

R2η

(
∂2ω̃z

∂r̃2
+

1

r̃

∂ω̃z

∂r̃

)
= 0 (8.5)

F̃φ(r̃) − 2
ζ

η

∂ω̃z

∂r̃
+

(
1 +

ζ

η

)(
∂2ṽφ

∂r̃2
+

1

r̃

∂ṽφ

∂r̃
− ṽφ

r̃2

)
= 0 (8.6)

Equations 8.5 and 8.6 determine the ferrofluid mechanical variables ṽφ and ω̃z for a

given body torque density T̃z and body force density F̃φ as a function of radius r̃.

The body torque and force densities result from an applied rotating magnetic field

and in turn depend on the mechanical variables ṽφ and ω̃z. Note that the ∇̃ · ω̃ term

in Eq. 8.4 vanishes in Eq. 8.5 for ω̃ = ω̃z(r̃)iz. Unlike the divergence of the velocity

∇·v which must alway be zero for an incompressible fluid, the divergence of the spin

velocity ∇ · ω generally can be non-zero.

The no-slip boundary condition on the velocity requires that the velocity goes to

zero at the stationary wall of the container as given by the expression,

ṽφ(r̃ = 1) = 0 (8.7)

The boundary condition on the spin velocity, however, is not as straightforward. We
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chose to investigate a boundary condition of the form,

ω̃z(r̃ = 1) =
1

2
γ

(
∂ṽφ

∂r̃
|r̃=1 +

ṽφ(r̃)

r̃
|r̃=1

)
=

1

2
γ
∂ṽφ

∂r̃
|r̃=1 (8.8)

where γ is a parameter that is either 0 or 1. If γ = 0 then the spin velocity ω̃

satisfies a no-slip condition at the stationary boundaries (i.e., ω̃ = 0 at the wall). On

the other hand, γ = 1 implies that the spin velocity balances half the vorticity at a

stationary boundary, ω̃ = 1
2
∇× ṽ (i.e., the magnetic nanoparticles roll freely on the

lateral cylinder wall).

8.1.2 Magnetic governing equations

This analysis in this section starts from Maxwell’s Equations in the magneto qua-

sistatic limit with the magnetization relaxation constitutive relation and develops a

set of governing equations describing the magnetic field dynamics in the ferrofluid.

Ferrofluids do not conduct significant currents, therefore the current density J is set

to zero in Ampère’s law:

∇× H = 0 → H = −∇ψ (8.9)

where we have exploited the mathematical result that any irrotational field can be

written as the gradient of a scalar potential function ψ.

Gauss’ law states that the magnetic flux density B is always solenoidal. Substi-

tuting the constitutive relation B = µ0(H + M), we can rewrite Gauss’ law in the

form,

∇ · B = ∇ · µ0(H + M) = 0 → ∇ · H = −∇ · M (8.10)

Further substitution of the relationship in Eq. 8.9 into Eq. 8.10 leads to the expres-

sion,

∇2ψ = ∇ · M (8.11)

Note that the expression in Eq. 8.11 takes the form of Poisson’s equation, where

−µ0∇ · M acts like an effective magnetic charge density.

The rotating uniform magnetic field in our spin-up experiment is generated by
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the stator-winding of a two-pole motor. A standard idealized model of a 2-pole

stator replaces the current in the slots of the stator with a traveling sinusoidal surface

current density Kz = �
{
K̂ze

j(Ωet−φ)
}

. Since the surface current density exciting the

fields rotates at a frequency Ωe, the magnetic variables H, ψ, and M for the uniform

magnetic field spin-up problem can be written in complex phasor notation as follows

H(r, φ, t) = �
{
Ĥ(r)ej(Ωet−φ)

}
= �

{
H0

ˆ̃H(r̃)ej(t̃−φ)
}

ψ(r, φ, t) = �
{
ψ̂(r)ej(Ωet−φ)

}
= �

{
H0R

ˆ̃
ψ (r̃)ej(t̃−φ)

}
(8.12)

M(r, φ, t) = �
{
M̂(r)ej(Ωet−φ)

}
= �

{
H0

ˆ̃M(r̃)ej(t̃−φ)
}

where we use a small hat symbol above the variables to stress the distinction between

the mechanical variables v and ω, which are not time harmonic, and time harmonic

variables with complex amplitudes M̂, Ĥ, ψ̂. Non-dimensional magnetic quantities

are normalized to a reference magnetic field strength H0 as H̃ = H
H0

, M̃ = M
H0

, and

ψ̃ = ψ
H0R

. Note that the angle φ in radians is already dimensionless.

Using the complex exponential forms from Eq. 8.12 in Eq. 8.11 leads to,

∂2 ˆ̃
ψ

∂r̃2
+

1

r̃

∂
ˆ̃
ψ

∂r̃
−

ˆ̃
ψ

r̃2
=

∂ ˆ̃Mr

∂r̃
+

ˆ̃Mr

r̃
− j

ˆ̃Mφ

r̃
(8.13)

To relate the magnetization vector M to the magnetic field intensity H we use the

constitutive relation given by the ferrofluid relaxation equation,

∂M

∂t
+ (v · ∇)M + M(∇ · v) = ω ×M +

1

τ
(χH − M) (8.14)

where the ∇ · v term vanishes for an incompressible fluid and the relaxation time

constant τ =
(

1
τN

+ 1
τB

)−1

results from a parallel combination of a Néel relaxation

process with time constant τN and a Brownian process with time constant τB. Sub-

stitution of the complex exponential form from Eq. 8.12 into Eq. 8.14 leads to the

expression,

j ˆ̃M + (ṽ · ∇̃) ˆ̃M = ω̃ × ˆ̃M +
1

Ωeτ
(χ ˆ̃H− ˆ̃M) (8.15)
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This equation can be further simplified by considering ferrofluid flows with ω̃ =

ω̃z(r̃)iz, and ṽ = ṽφ(r̃)iφ,

(
j

[
1 − ṽφ(r)

r̃

]
+

1

Ωeτ

)
ˆ̃Mr +

(
ω̃z − ṽφ(r̃)

r̃

)
ˆ̃Mφ =

χ

Ωeτ
ˆ̃Hr (8.16)

(
j

[
1 − ṽφ(r)

r̃

]
+

1

Ωeτ

)
ˆ̃Mφ −

(
ω̃z − ṽφ(r̃)

r̃

)
ˆ̃Mr =

χ

Ωeτ
ˆ̃Hφ (8.17)

With some algebraic manipulation of Eqs. 8.16 and 8.17 we can now express the

magnetization vector as a function of magnetic field intensity and the mechanical

state of the ferrofluid as given by the matrix expression,

⎡
⎣ ˆ̃Mr

ˆ̃Mφ

⎤
⎦ =

χ

⎡
⎣ 1 + jΩeτ

(
1 − Ω̃m(r̃)

)
−Ωeτ

(
ω̃z(r̃) − Ω̃m(r̃)

)
Ωeτ

(
ω̃z(r̃) − Ω̃m(r̃)

)
1 + jΩeτ

(
1 − Ω̃m(r̃)

)
⎤
⎦
⎡
⎣ ˆ̃Hr

ˆ̃Hφ

⎤
⎦

1 + (Ωeτ)2 (1 − ω̃z(r̃))
(
1 + ω̃z(r̃) − 2Ω̃m(r̃)

)
+ 2jΩeτ

(
1 − Ω̃m(r̃)

)
(8.18)

where we have identified Ω̃m(r̃) =
ṽφ(r̃)

r̃
from Eqs. 8.16 and 8.17 as the non-dimensional

mechanical rotation rate of the ferrofluid as a function of radius. We can use Eq. 8.9

to relate ˆ̃H to ˆ̃ψ ⎡
⎣ ˆ̃Hr

ˆ̃Hφ

⎤
⎦ = −

⎡
⎣ ∂ ˆ̃ψ

∂r̃

−j
ˆ̃
ψ
r̃

⎤
⎦ (8.19)

Substitution of Eq. 8.19 into Eq. 8.18 leads to the expression,

⎡
⎣ ˆ̃Mr

ˆ̃Mφ

⎤
⎦ =

−χ

⎡
⎣ 1 + jΩeτ

(
1 − Ω̃m(r̃)

)
−Ωeτ

(
ω̃z(r̃) − Ω̃m(r̃)

)
Ωeτ

(
ω̃z(r̃) − Ω̃m(r̃)

)
1 + jΩeτ

(
1 − Ω̃m(r̃)

)
⎤
⎦
⎡
⎣ ∂

ˆ̃
ψ
∂r̃

−j
ˆ̃ψ
r̃

⎤
⎦

1 + (Ωeτ)2 (1 − ω̃z(r̃))
(
1 + ω̃z(r̃) − 2Ω̃m(r̃)

)
+ 2jΩeτ

(
1 − Ω̃m(r̃)

)
(8.20)

Eqs. 8.13 and 8.20 describe the magnetic state of a ferrofluid undergoing spin-up

in terms of the mechanical variables. These two equations can be solved for ˆ̃ψ and

consequently for ˆ̃H and ˆ̃M if ṽφ and ω̃z are known functions of radius. The boundary
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condition on the magnetic potential, ψ̃, is given by the expression,

H̃φ(r̃ = 1) = −1

r̃

∂ψ̃

∂φ
|r̃=1 = −K̃z → ˆ̃

ψ (r̃ = 1) = j ˆ̃Kz (8.21)

which follows from the boundary condition on the discontinuity of the tangential

component of the magnetic field at an interface carrying a surface current density.

The time-average magnetic body torque density and the magnetic body force

density can be directly computed from known H and M fields,

T̃ =
1

2
�{ ˆ̃M× ˆ̃H

∗
} =

1

2
�{ ˆ̃Mr

ˆ̃Hφ

∗
− ˆ̃Mφ

ˆ̃Hr

∗
}iz (8.22)

F̃ =
1

2
�
{

ˆ̃M · ∇̃ ˆ̃H
∗}

=
1

2
�

⎧⎪⎨
⎪⎩
(

ˆ̃Mr

∂

∂r̃
− j

r̃
ˆ̃Mφ

)⎡⎣ ˆ̃Hr

∗
ir

ˆ̃Hφ

∗
iφ

⎤
⎦+

⎡
⎢⎣

ˆ̃Mφ
ˆ̃Hφ

∗

r̃
ir

ˆ̃Mφ
ˆ̃Hr

∗

r̃
iφ

⎤
⎥⎦
⎫⎪⎬
⎪⎭ (8.23)

Substitution of the appropriate relations from Eq. 8.18 into Eq. 8.22 leads to the

following expression for the torque density,

T̃z = χ
2
�
{

[1+jΩeτ(1−Ω̃m(r̃))]
h

ˆ̃Hr
ˆ̃Hφ

∗
− ˆ̃Hφ

ˆ̃Hr

∗i
+Ωeτ[Ω̃m(r̃)−ω̃z(r̃)]

h
| ˆ̃Hr|2+| ˆ̃Hφ|2

i
1+Ω2

eτ2(1−ω̃z(r̃))[1+ω̃z(r̃)−2Ω̃m(r̃)]+2jΩeτ[1−Ω̃m(r̃)]

}
(8.24)

Similarly the force density can be computed using the relations in Eq. 8.23 resulting

in the following expression:

F̃r = χ
2
�
⎧⎨
⎩

ˆ̃Hr

„
[1+jΩeτ(1−Ω̃m(r̃))] ∂

ˆ̃
Hr

∗
∂r̃

− j
r̃
Ωeτ(ω̃z(r̃)−Ω̃m(r̃)) ˆ̃Hr

∗«
1+Ω2

eτ2(1−ω̃z(r̃))[1+ω̃z(r̃)−2Ω̃m(r̃)]+2jΩeτ[1−Ω̃m(r̃)]

⎫⎬
⎭

−χ
2
�
⎧⎨
⎩

ˆ̃Hφ

„
[1+jΩeτ(1−Ω̃m(r̃))] j

r̃
ˆ̃Hr

∗
+Ωeτ(ω̃z(r̃)−Ω̃m(r̃)) ∂ ˆ̃Hr

∗
∂r̃

«
1+Ω2

eτ2(1−ω̃z(r̃))[1+ω̃z(r̃)−2Ω̃m(r̃)]+2jΩeτ[1−Ω̃m(r̃)]

⎫⎬
⎭

+χ
2
�
{

Ωeτ(ω̃z−Ω̃m)
ˆ̃

Hr
ˆ̃

H
φ

∗

r̃
+(1+jΩeτ(1−Ω̃m)) ˆ̃Hφ

ˆ̃Hφ

∗

1+Ω2
eτ2(1−ω̃z(r̃))[1+ω̃z(r̃)−2Ω̃m(r̃)]+2jΩeτ[1−Ω̃m(r̃)]

}
(8.25)
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for the r-component of the force density and,

F̃φ = χ
2
�

⎧⎪⎨
⎪⎩

ˆ̃Hr

 
[1+jΩeτ(1−Ω̃m(r̃))]

∂
ˆ̃

H
φ

∗

∂r̃
− j

r̃
Ωeτ(ω̃z(r̃)−Ω̃m(r̃)) ˆ̃Hφ

∗
!

1+Ω2
eτ2(1−ω̃z(r̃))[1+ω̃z(r̃)−2Ω̃m(r̃)]+2jΩeτ[1−Ω̃m(r̃)]

⎫⎪⎬
⎪⎭

−χ
2
�

⎧⎪⎨
⎪⎩

ˆ̃Hφ

 
[1+jΩeτ(1−Ω̃m(r̃))] j

r̃
ˆ̃Hφ

∗
+Ωeτ(ω̃z(r̃)−Ω̃m(r̃))

∂
ˆ̃

H
φ

∗

∂r̃

!

1+Ω2
eτ2(1−ω̃z(r̃))[1+ω̃z(r̃)−2Ω̃m(r̃)]+2jΩeτ[1−Ω̃m(r̃)]

⎫⎪⎬
⎪⎭

+χ
2
�
{

Ωeτ(ω̃z−Ω̃m)
ˆ̃

Hr
ˆ̃

Hr
∗

r̃
+(1+jΩeτ(1−Ω̃m)) ˆ̃Hφ

ˆ̃Hr

∗

1+Ω2
eτ2(1−ω̃z(r̃))[1+ω̃z(r̃)−2Ω̃m(r̃)]+2jΩeτ[1−Ω̃m(r̃)]

}
(8.26)

for the φ-component.

8.2 Flows with negligible spin diffusion coefficients

(η′ = 0, λ′ = 0)

Before proceeding to solve Eqs. 8.3 and 8.4 numerically, it is perhaps instructive to

consider first the limit where spin diffusion effects are negligible. Most researchers in

the field use this approach to conclude that there can be no ferrofluid spin-up flow in

uniform magnetic fields [40]. We will show that careful examination of the underlying

assumption reveals that this accepted wisdom in the ferrofluid literature is misleading

since it holds under a very limited set of simplifying assumptions.

If η′ is zero then we can simplify Eq. 8.2 in the viscous dominated limit to the

expression,

T + 2ζ(∇× v − 2ω) = 0 (8.27)

Taking the curl of both sides of Eq. 8.27

∇× ω =
µ0

4ζ
∇× (M ×H) +

1

2
∇× (∇× v) (8.28)

Substitution of the expression from Eq. 8.28 into Eq. 8.1 in the viscous dominated
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limit leads to,

−∇p + ζ∇× (∇× v) + (ζ + η)∇2v +
µ0

2
∇× (M× H) + µ0(M · ∇)H = 0 (8.29)

This can be rewritten by using the known vector identity, ∇×(∇×v) = ∇(∇·v)−∇2v,

resulting in the following expression,

−∇p + η∇2v +
µ0

2
∇× (M ×H) + µ0(M · ∇)H = 0 (8.30)

Another known vector identity, ∇ × (M × H) = M(∇ · H) − H(∇ · M) + (H ·
∇)M− (M ·∇)H, can be used to simplify the torque term in Eq. 8.30 if we note that

∇ · H = −∇ · M (8.31)

since B = µ0(H + M) and ∇ · B = 0. This leads to the torque term given by the

expression,

∇× (M× H) = (H + M)(∇ · H) + (H · ∇)M− (M · ∇)H (8.32)

The governing ferrohydrodynamic equation is then given by,

−∇p + η∇2v +
µ0

2
(M · ∇H) +

1

2
B(∇ · H) +

µ0

2
H · ∇M = 0 (8.33)

Two of the driving terms in Eq. 8.33 can be combined together with the aid of

the known vector identity,

(H · ∇)M + (M · ∇)H = ∇(H · M) − H × (∇× M) − M× (∇× H) (8.34)

resulting in the expression,

−∇p + η∇2v +
1

2
B(∇ · H) +

µ0

2
[∇(H · M) −H × (∇×M)] = 0 (8.35)
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Figure 8-1: Velocity flow profiles obtained by numerically solving the spin-up model
without a spin diffusion term (i.e., with spin viscosity η′ = 0). The simulation was
run for the parameters of MSG W11 listed in Table 8.1 with τ = 1 × 10−5 s and
f = 200 Hz. Note that Ωe = 2πf .
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Figure 8-2: Velocity flow profiles obtained by numerically solving the spin-up model
without a spin diffusion term (i.e., with spin viscosity η′ = 0). The simulation was
run for the parameters of MSG W11 listed in Table 8.1 with τ = 1 × 10−5 s and
f = 100 Hz.
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where we have used the fact that ∇× H = 0 in a non-conducting medium. Finally

we can lump the ∇(µ0H·M
2

) term into the pressure and write,

−∇
{

p +
µ0H · M

2

}
+ η∇2v +

1

2
B(∇ · H) − 1

2
µ0H × (∇×M) = 0 (8.36)

Although Pshenichnikov and Lebedev derive the driving terms in Eq. 8.36 [31],

they choose to neglect them. An applied uniform rotating magnetic field in the

ferrofluid means that ∇ ·H = 0. The gradient of a potential such as ∇{p + µ0
H·M

2

}
cannot induce a rotational effect. The only remaining term is −1

2
µ0H × (∇ × M).

This term is non-zero unless ∇ × M = 0. Does a spatially uniform H necessarily

imply that M must also be uniform? From Eq. 8.31 we can write Poisson’s equation

for the magnetic potential,

∇2ψ = ∇ · M (8.37)

Examination of the constitutive relation between M and H given by the magnetiza-

tion relaxation equation,

∂M

∂t
+ (v · ∇)M = ω ×M +

1

τ
(χH − M) (8.38)

is necessary to solve for the fields M and H.

From Eq. 8.27 we have the following expression,

ω =
1

4ζ
M× H +

1

2
∇× v (8.39)

which when substituted into Eq. 8.38 yields,

∂M

∂t
+ (v · ∇)M +

1

4ζ

[
M(M · H) − H|M|2]+ 1

2
M×∇v− 1

τ
(χH−M) = 0 (8.40)

If we neglect the velocity of the ferrofluid, v ≈ 0, then Eq. 8.40 can be rewritten as,

∂M

∂t
+

1

4ζ

[
M(M · H) − H|M|2]− 1

τ
(χH − M) = 0 (8.41)
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In the phasor notation of 8.12 this expression leads to,

M̂ =
χ + c1(r)

1 + c2(r)τ + jΩeτ
Ĥ (8.42)

where the c1(r) and c2(r) are scalar functions of r equal to τ
4ζ
|M̂|2 and τ

4ζ
(M̂ · Ĥ∗)

respectively. The governing equation for the magnetic field given by Eq. 8.37 reduces

to,

∇2ψ̂ = ∇ · χ + c1(r)

1 + c2(r)τ + jΩeτ
Ĥ (8.43)

When both convective terms ω × M and the (v · ∇)M in Eq. 8.38 are neglected

the magnetization relaxation equation becomes,

∂M

∂t
=

1

τ
(χH− M) (8.44)

which when written in terms of the sinusoidal steady state phasor notation of Eq.

8.12 becomes,

M̂ =
χ

1 + jΩeτ
Ĥ = (χ′ + jχ′′)Ĥ (8.45)

Eq. 8.45 shows that a rotating magnetic field H drives a time-lagging rotating mag-

netization M. Neglecting both the spin velocity and linear velocity terms in Eq. 8.38

reduces Eq. 8.37 to Laplace’s equation,

∇2ψ = 0 (8.46)

which results in uniform H and M thus eliminating the −1
2
µ0H × (∇× M) driving

term in Eq. 8.36. The torque density is spatially uniform in this limit and is given

by,

T =
1

2
µ0�{M̂× Ĥ∗} =

µ0χH2
0 (Ωeτ)

1 + (Ωeτ)2
(8.47)

If η′ = 0 there can be no spin-up flow in uniform applied rotating magnetic fields only

if the spin velocity and linear velocity terms in the magnetization relaxation equation

are neglected.
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Figure 8-3: Velocity flow profiles obtained by numerically solving the spin-up model
without a spin diffusion term (i.e., with spin viscosity η′ = 0). The simulation was
run for parameters of with τ = 1 × 10−5 s and f = 20 Hz.

Figs. 8-1 to 8-3 show that non-zero flow profiles exist in the ferrofluid when the

spin viscosity η′ is set to zero. The magnitude of the velocity for zero spin viscosity

is very small, but increases rapidly for non-zero spin viscosities as demonstrated in

Fig. 8-4.

8.3 Numerical algorithms

We approach the numerical solution for the full ferrofluid spin-up governing equa-

tions by decoupling the system non-linear differential equations into two linear sub-

problems that are easily solved by FEMLAB finite element models. The schematic

diagram in Fig. 8-5 illustrates the iterative procedure used to solve numerically the

full set of governing equations for ferrofluid spin-up. The algorithm starts with initial

guesses for the body torque and force densities as functions of radius. The assumed

forms for T̃z(r̃), F̃φ(r̃) and F̃r(r̃) are then used to solve numerically the fluid mechan-

ical governing equations given by Eqs. 8.5 and 8.6 for ṽφ(r̃) and ω̃z(r̃). These results

are subsequently input into the magnetization constitutive relation in Sec. 8.1.2. The

electro-magnetic governing equations given by the expressions in Eqs. 8.13 and 8.20
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Figure 8-4: Velocity flow profiles obtained by numerically solving the spin-up model
for zero and non-zero spin diffusion. The simulation was run for the parameters of
MSG W11 listed in Table 8.1 with τ = 1 × 10−5 s and f = 20 Hz.

are numerically solved for the magnetic potential ψ̃(r̃). Knowledge of ψ̃(r̃) determines

the magnetic field intensity H̃ and magnetization vector M̃ and consequently a new

estimate of the body torque and force densities.

The new estimate can be used as input to the fluid mechanics governing equations

to produce new estimates for the velocity and spin velocity. The algorithm allows this

iterative procedure to continue until the successive estimates converge on a final value

and further iterations have negligible effect on the solution. Table 8.1 summarizes

the parameters used for MSG W11 and EMG705 spin-up simulations.

FEMLAB, the numerical finite element multiphysics package from Comsol, was

used to perform the spin-up simulations. This software package possesses three im-

portant features that enabled the solution of the spin-up problem outlined in the

previous section. Firstly, FEMLAB enables us to define and solve general partial

differential equations. Secondly, it handles complex numbers and variables in differ-

ential equations. Thirdly, problem definition in FEMLAB is not limited to a graphical

user interface. A scripting language allows us to define FEMLAB models in terms of

simple commands that can be incorporated into MATLAB scripts [54].

The algorithm outlined converges to a solution to the ferrofluid spin-up problem
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Parameter Value Method

µ0H0 38
√

2 × 10−4 tesla Reference peak magnetic field
R 0.027 m Caliper

MSG W11
χ 0.65 VSM measurements
η 2.02 mNs/m2 Viscometry measurement
φm 2.75% VSM measurements
ζ 0.83 × 10−4 Ns/m2 ζ = 3

2
φmη

EMG705
χ 1.89 VSM measurements
η 2.48 mNs/m2 Viscometry measurement
φm 3.69% VSM measurements
ζ 1.37 × 10−4 Ns/m2 ζ = 3

2
φmη

Table 8.1: Parameter values for Ferrotec’s MSG W11 and EMG705 water-based fer-
rofluids. Estimates of τ and η′ are obtained by fitting the simulations to the spin
up experiments. The reference value of the magnetic field, µ0H0, corresponds to a
current of 1 Amp in each of the three stator windings.
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numerical solution
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Figure 8-5: Schematic of algorithm to numerically solve the governing equations for
ferrofluid spin up. By guessing an initial functional form for the torque and force
densities we decouple the spin-up problem into two linear subproblems.

when all the mechanical and magnetic properties of the ferrofluid are known. Most

of the required properties of ferrofluids, like the density, viscosity, low-field magnetic

susceptibility and saturation magnetization, were measured directly through the in-

dependent experimental techniques described in Chapter 2. The magnetic relaxation

time τ and the spin-viscosity η′ are difficult to measure directly. Theoretical consid-

eration for finding estimates of η′ are based on dilute limit approximations and may

not apply at the concentration levels used in the studies we present in this thesis.

Fig. 8-6, illustrates the method used to search for values of η′ and τ that best

match the results of the numerical simulation to ultrasound velocity measurements.

The algorithm first fully maps out a region in τ -η′ space for each value of experimen-

tally applied magnetic field strength and frequency. The algorithm runs hundreds of

numerical simulations and stores all the solution data for subsequent processing. The

code usually ran over a few nights on a dedicated computer. Once the solution space

is mapped, the algorithm could plot contours of constant peak profile velocity vmax
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Figure 8-6: Sequence illustrating the method used to find the values of τ and η′ in
the 2d search space that best fit numerical simulation results to experimental data.
Panel a: The algorithm first runs an extensive array of numerical simulations to
fully map out contours of constant peak velocity magnitude vmax(solid contours),
and peak velocity radial position (dashed contours) for any given applied magnetic
field strength and frequency. Panel b: The experimentally measured values of peak
velocity magnitude, and peak velocity radial position for the applied magnetic field
strength and frequency are subtracted from the contours. Panel c: The intersection of
the two contours labeled zero is the point in τ -η′ space that best matches simulation
to experiment.

and contours of constant peak velocity radial position rmax/R as illustrated in panel a

of Fig. 8-6. Each experimental result for a given applied magnetic field strength and

frequency corresponds to the intersection of a particular vmax contour and a rmax/R

contour. This is seen more clearly in panel b of the figure, where the contours are

offset by the experimentally measured values. The algorithm can easily compute the

intersection of the contours labeled zero shown in panel c.

8.4 Results and discussion

The algorithms outlined in Sec. 8.3 were used to estimate fit values τ = 1.20 ×
10−5 ± 1.18 × 10−5 s and η′ = 3.15× 10−9 ± 1.13 × 10−9 kg-m/s for MSG W11 water-
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based ferrofluid. If we assume that Brownian processes dominate the relaxation time

constant, i .e., τ = τB = 3V η/kT , these values result in average particle diameter of

∼ 21.0 nm, with a high value of 27.4 nm and a low value of 2.4 nm. The characteristic

diffusion length defined by the approximate dilute-limit relationship, η′ ∼ ηl2, can be

estimated to have a mean value of 1.2 mm, with a high value of 1.5 mm and a low

value of 1.0 mm.

The estimates for EMG705 were τ = 1.37× 10−6 ± 1.27 × 10−6 s and η′ = 4.23 ×
10−9 ± 2.62 × 10−9. Based on the best fit relaxation time constant results. average

particle diameter is 7.4 nm, with a high value of 10.0 nm and low value of 7.2 nm.

Estimating the diffusion length from the dilute limit theory relation for η′ results in

an average value of 1.3 mm, with a high value estimate of 1.7 mm and a low value of

0.8 mm. Ideally only one pair of τ and η′ fit parameters should fit all the flow profile

data. Fig. 8-7 shows the scatter of η′ and τ fit parameters for each experimental

measurement of velocity profile for MSG W11 water-based ferrofluid, while Fig. 8-8

shows the scatter for EMG705 water-based ferrofluid.

The preceding calculation of ferrofluid physical parameters from flow data illus-

trates the sensitivity of key ferrofluid properties like the magnetization relaxation

time τ and the spin viscosity η′ to small variations in particle size and diffusion

length respectively. Fig. 8-9 shows the sensitivity of the radial position of the peak

velocity to η′ and τ for a rotating magnetic field strength of 114 gauss rms and ro-

tational frequency of 250 Hz. Fig. 8-10 shows the sensitivity of the value of the

maximum velocity to η′ and τ for a rotating magnetic field strength of 114 gauss rms

and rotational frequency of 250 Hz.

Although ferrofluids are modeled as continua of mono-dispersed non-interacting

nanoparticles, they are more accurately characterized by a distribution of particle sizes

around an average value. Moreover, it has been suggested that the magnetic particles

agglomerate to form long chains of particles due to interaction between the particles

when magnetic fields are applied [28]. Other authors report microscopic failures of

colloidal stability even in relatively weak magnetic fields, ∼ 10 gauss, resulting in the

separation of ferrofluids into two liquids of different particle concentrations [4].

206



Ha [G rms] τ [s] η′[kgm
s
]

MSG W11 (at 30 Hz) [Fig. 8-11]
38 2.6 × 10−6 3.1 × 10−9

76 6.4 × 10−6 2.1 × 10−9

114 1.2 × 10−5 1.0 × 10−8

152 1.5 × 10−5 2.1 × 10−8

MSG W11 (at 50 Hz) [Fig. 8-12]
38 1.2 × 10−6 1.1 × 10−8

76 2.5 × 10−6 3.3 × 10−9

114 2.1 × 10−5 6.8 × 10−9

152 2.9 × 10−5 1.9 × 10−8

MSG W11 (at 100 Hz) [Fig. 8-13]
38 1.3 × 10−6 2.5 × 10−10

76 2.6 × 10−5 2.2 × 10−9

114 2.6 × 10−5 2.2 × 10−9

152 2.6 × 10−5 1.3 × 10−8

Table 8.2: Best fit values of τ and η′ for different applied magnetic field strengths for
MSG W11 water-based ferrofluid.

Tables 8.2 and 8.3 summarize the best fit values of η′ and τ used in Figs. 8-11 to

8-16 that fit all experimental data points well. Figs. 8-11 to 8-13 compare measured

velocity profiles and simulation results for MSG W11 water-based ferrofluid in applied

magnetic field frequencies of 30, 50 and 100 Hz. Note that each figure uses a different

value of η′ and τ for the theoretical curves as documented in Table 8.2. Figs. 8-14 and

8-16 compare measured velocity profiles and simulation results for EMG705 water-

based ferrofluid in applied magnetic field frequencies of 20, 40 and 200 Hz. Note again

that each figure uses a different value of η′ and τ for the theoretical curves (See Table

8.3).

The numerical results show a very small reversal of flow for low values of r that we

have not observed experimentally. The small magnitudes predicted for reversed flows

and their presence near r = 0 poses serious challenges for ultrasound velocimetry.
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Ha [G rms] τ [s] η′[kgm
s
]

EMG705 (at 20 Hz) [Fig. 8-14]
38 7.9 × 10−7 3.5 × 10−9

76 8.0 × 10−7 3.1 × 10−9

114 6.2 × 10−7 3.4 × 10−9

152 1.2 × 10−6 3.0 × 10−9

EMG705 (at 40 Hz) [Fig. 8-15]
38 3.2 × 10−7 1.6 × 10−8

76 3.4 × 10−7 1.8 × 10−8

114 3.0 × 10−7 8.1 × 10−9

152 2.9 × 10−7 7.9 × 10−9

EMG705 (at 200 Hz) [Fig. 8-16]
38 4.8 × 10−7 1.5 × 10−9

76 5.0 × 10−7 1.1 × 10−9

114 4.6 × 10−7 5.0 × 10−10

152 6.8 × 10−7 5.1 × 10−10

Table 8.3: Best fit values of τ and η′ for different applied magnetic field strengths for
EMG705 water-based ferrofluid.
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Figure 8-7: Scatter plot showing the different fit values of η′ and τ for each MSG
W11 water-based ferrofluid experimental magnetic field strength and frequency.
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Figure 8-8: Scatter plot showing the different fit values of η′ and τ for each MSG
W11 water-based ferrofluid experimental magnetic field strength and frequency.
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Figure 8-9: Sensitivity of the maximum velocity to the value of η′ and τ for a magnetic
field strength of 114 gauss rms and rotational frequency of 250 Hz. Curves shown for
τ = 1 × 10−7, 5 × 10−7, 1 × 10−6, 5 × 10−6, and 1 × 10−5 s.
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Figure 8-10: Sensitivity of the radial position of maximum velocity to the value of η′

and τ for a magnetic field strength of 114 gauss rms and rotational frequency of 250
Hz. Curves shown for τ = 1 × 10−7, 5 × 10−7, 1 × 10−6, 5 × 10−6, and 1 × 10−5 s.
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Figure 8-11: Comparison of experimentally measured (thick dotted curves) and nu-
merically computed ferrofluid spin-up velocity profiles (thin solid curves) for a 30 Hz
rotating magnetic field for MSG W11 water-based ferrofluid. The numerical plots
were generated using the fit values listed in Table 8.2.
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Figure 8-12: Comparison of experimentally measured (thick dotted curve) and nu-
merically computed ferrofluid spin-up velocity profiles (thin solid curve) for a 50 Hz
rotating magnetic field for MSG W11 water-based ferrofluid. Table 8.2 summarizes
the fit parameters that were used to generate the numerical plots.
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Figure 8-13: Comparison of experimentally measured (thick dotted curves) and nu-
merically computed ferrofluid spin-up velocity profiles (thin solid curves) for a 100
Hz rotating magnetic field for MSG W11 water-based ferrofluid. The fit values listed
in Table 8.2 were used to generate numerical results.
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Figure 8-14: Comparison of experimentally measured (thick dotted curve) and nu-
merically computed ferrofluid spin-up velocity profiles (thin solid curve) for a 20 Hz
rotating magnetic field for EMG705 water-based ferrofluid (see Table 8.3 for fit values
used to generate the numerical results in this figure).
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Figure 8-15: Comparison of experimentally measured (thick dotted curve) and nu-
merically computed ferrofluid spin-up velocity profiles (thin solid curve) for a 40 Hz
rotating magnetic field for EMG705 water-based ferrofluid (see Table 8.3 for fit values
used to generate the numerical results in this figure).
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Figure 8-16: Comparison of experimentally measured (thick dotted curve) and nu-
merically computed ferrofluid spin-up velocity profiles (thin solid curve) for a 200 Hz
rotating magnetic field for EMG705 water-based ferrofluid (see Table 8.3 for fit values
used to generate the numerical results in this figure).
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Chapter 9

Concluding remarks

9.1 Key contributions

Ferrofluid surface and volume effects in uniform dc and rotating magnetic fields are

studied in order to develop analytical and numerical first principle models. The

following points summarize the key contributions to ferrofluid spin-up research made

in this thesis:

• Volume flow in ferrofluid spin-up is experimentally found to be co-rotational

with the magnetic field and opposite to the surface-meniscus coupled flow. Co-

rotating volume flow occurs in ferrofluid containers with and without a free

surface. These experimental investigations were independently repeated and

verified by our collaborators in the Rinaldi research group. We were the first to

observe and measure: (i) flow reversal between the co-rotating ferrofluid bulk

and counter rotating free surface and (ii) flow profiles in a filled and sealed

container of ferrofluid without a free surface.

• Numerical simulation of spin-up flow including contributions from the linear

and spin velocity terms in the relaxation equation is carried out with relaxation

time and effective spin viscosity determined from fits to the data. Theory and

numerical analysis have shown that, with the inclusion of the linear and spin

velocity terms in the magnetic relaxation equation, spin-up flow occurs in a
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uniform magnetic field even if the the spin viscosity is zero, η′ = 0. Neglecting

the linear and spin velocity terms in the magnetic relaxation equation results

in no spin-up flow in a uniform rotating magnetic field.

• The influence of magnetic field on meniscus height and shape is experimentally

determined. A uniform horizontal applied magnetic field is observed to lower

the height of the ferrofluid meniscus, while a vertical applied magnetic field is

observed to increase the meniscus height. Experimental results are shown to

agree with energy minimization analyses.

• Analytical-low-Reynolds-number limiting solutions are developed for a surface

shear strip driven flow in a cylindrical cavity. The solutions are extended to high

Reynolds number recirculation flows with numerical finite element methods.

• An expression is derived for the energy of a magnetized volume of non-linearly

magnetizable material and the result used to determine the influence of ro-

tating field on the morphology of drops of ferrofluid in a Hele-Shaw cell with

comparisons made to experiments.

• Appendix C validates the ultrasonic probe technique using Taylor-Couette flow.

9.2 Critique of results

Ferrofluid spin-up dynamics remains a rich field for further study and there are many

open questions. The following questions, raised but not fully resolved by our research

efforts, offer potential areas for further research:

• Ideally, a single value of spin viscosity and magnetization relaxation time con-

stant would fit all experimental values. In our experiments the best fit values of

theory to experiment spread over a range from one to two orders of magnitude.

• The spin-up model does not predict the experimentally observed saturation of

bulk rotation at such a low frequency as ∼ 150 Hz. This is a major cause
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of the scatter in fit values for the spin viscosity and the magnetization relax-

ation time. The discrepancy might indicate that microscopic structure of the

ferrofluid might change under the applied magnetic fields.

• The average experimental fit for spin viscosity, η′, exceeds the theoretical es-

timates by many orders of magnitude. Theoretical considerations for finding

estimates of spin viscosity are (i) based on dilute limit approximations and (ii)

less than rigorous adaptations of kinetic theory analyses for the viscosities of

gases. Our values, however, are ∼ 8 orders of magnitude off, which remains a

cause for serious concern in the absence of a plausible explanation or hypothesis.

• Numerical simulations for bulk driven spin-up neglect recirculation, whereas

experiments show some moderate recirculation flows. A full simulation of spin-

up with both r and z dependence was considered but not implemented. Instead

we focused on the more tractable problem of solving for the primary azimuthally

directed flow.

9.3 Future work

In closing, we suggest the following natural directions for future work to extend and

build upon the results presented in this thesis:

• Record start-up transient time sequence for ferrofluids in a covered container

for various applied field strengths and rotating field frequencies with ultrasound

velocimetry. This investigation could show (i) the development from initial

rest of a steady state velocity profile and (ii) the dependence of the 90% rise

time to the steady state value as a function of applied rotating field strength

and frequency. The turn-off transient should be recorded in each experimental

case as a reference. We presented some preliminary transient measurements in

Section 7.4.3.

• Experimentally investigate radial and axial recirculation velocity profiles in

EMG705 and MSG W11. Examine the effects of reversing the direction of rota-
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tion of the magnetic field on the direction symmetry and shape of recirculation

flow.

• Extend the finite element analysis model to handle two dimensional axisym-

metric solutions to investigate numerically the effects of recirculating flows in

spin-up flow.
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Appendix A

Conservation of mass correction to

gravitational potential term in

Chapter 4

This Appendix considers a conservation of mass correction to the incremental change

in gravitational energy dEG due to a change in meniscus height dh given by Eq. 4.35

in Sec. 4.3.3 for a linear meniscus profile. Conservation of mass for an incompressible

fluid requires that the level of the ferrofluid in the bulk decrease if the meniscus rises

as shown schematically in Fig. A-1.

Superposition gives the total gravitational potential energy of the initial state

of the system in Fig. A-1 as the sum of the gravitational potentials of equivalent

point masses, ρL1W and 1
2
ρh2 tan θ , at the center-of-mass heights L1

2
and L1 + h1

3

respectively.

E1 =
1

2
ρg

[
WL2

1 + h2
1

(
h1

3
+ L1

)
tan θ0

]
(A.1)

A similar argument, mutatis mutandis, for the final state gives,

E2 =
1

2
ρg

[
WL2

2 + h2
2

(
h2

3
+ L2

)
tan θ0

]
(A.2)
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Figure A-1: Schematic of ferrofluid meniscus and bulk region showing the effects of
taking mass conservation into account as the height of the meniscus increases.

The change in gravitational potential is then given by,

∆EG = E2 − E1 =
1

2
ρg

[
W
(
L2

2 − L2
1

)
+

{
h2

2

(
h2

3
+ L2

)
− h2

1

(
h2

1

3
+ L1

)}
tan θ0

]
(A.3)

We define the initial state as,

L1 = L

h1 = h (A.4)

and the final state as,

h2 = h + dh

L2 = L + dL (A.5)

where dh and dL are small increments. It can be easily shown from Eq. 4.42 that dL

and dh are related by,

dL = − h

W − h tan θ0
tan θ0dh (A.6)
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Substitution of Eqs. A.4, A.5 and A.6 into Eq. A.3 leads to the expression,

∆EG =
1

2
ρgh2 tan θ0

(
1 +

2L

W
tan θ0

)
(A.7)

where we have retained only terms that first order in dh. Note that this expression

reduces to the result in Sec. 4.3.3 in the limit when W → ∞. Although L can be

large its value must remain finite if we are to have a meaningful gravitational potential

reference point.
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Appendix B

Non-linear energy considerations

in ferrofluids: fluxball analysis

B.1 Introduction

The electrical energy is a useful thermodynamic function for computing forces of elec-

trical origin and mechanical work in electromechanical systems. The energy function

for continuum electromechanical systems can be computed simply by evaluating the

integral expression

W =

∫
V

∫ B

0

H · dBdv (B.1)

where the volume of integration V extends over all the space where magnetic fields

excited by the system are present. For linear materials, B = µH, the integral relations

reduce to a familiar result,

W =

∫
V

1

2
H · Bdv =

∫
V

1

2
µH2dv (B.2)

The change in energy, ∆W , due to the introduction of a magnetic material with

permeability µa and volume Va into a region of free space that initially had a magnetic
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field intensity H0 and flux density, B0 = µ0H0, is given by the expression,

∆W =

∫
V

1

2
(H · B − H0 · B0) dv (B.3)

where H and B are the magnetic field intensity and flux density after the introduction

of the magnetic material. The volume of integration V in Eq. B.3 extends over all

space. Paris and Hurd [30], however, show that Eq. B.3 reduces to the following

integral over the finite volume of the linear magnetic material Va,

∆W = −1

2

∫
Va

(µa − µ0)H · H0dv (B.4)

The derivation of Eq. B.4 assumes no energy exchange through the electrical terminals

of the system (i.e., constant magnetic flux through source coils) and that the magnetic

fields go to zero as r −→ ∞ at a rate of decay faster than 1
r3/2 .

Paris and Hurd use Eq. B.4 in Example 6-2 of section 6.6 of their book to illustrate

the computation of the energy of a sphere of radius a and permeability µa surrounded

by free space in an infinite uniform magnetic field H0 = H0iz. The field solution to

this classical problem is given by,

H(r, θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H0

(
3µ0

2µ0+µa

)
iz ; r < a

H0

[
cos θ

(
1 + 2a3

r3
µa−µ0

2µ0+µa

)
ir − sin θ

(
1 − a3

r3
µa−µ0

2µ0+µa

)
iθ

]
; r > a

(B.5)

Using the field solution of Eq. B.5 in Eq. B.4 the change in magnetic energy is,

∆W = −1

2

[
(µa − µ0)

(
H0

3µ0

2µ0 + µa

)
H0

]
4

3
πa3 = −2πa3µ0H

2
0

µa − µ0

µa + 2µ0

(B.6)

However, the application of Eq. B.3 and brute force integration over all space of the

field in Eq. B.5 yields,

∆W =
2

3
πa3µ0H

2
0

µa − µ0

µa + 2µ0

(B.7)

This discrepancy in magnitude and sign seems paradoxical since Eq. B.4 was derived
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from Eq. B.3. In reality, the apparent discrepancy results from the violation of the

assumption about the rate of decay of the magnetic fields at infinity being greater

than 1
r3/2 . Paris and Hurd’s Example 6-2, page 287, poses a constant magnetic field

at infinity which in turn means infinite potential at infinity. This contradicts the

assumptions of the derivation of the formula for the change in magnetic energy on

page 284. To resolve the paradox, this Chapter begins by investigating the limit

of the field solution of a sphere of linear magnetic material in a finite-sized source

of uniform magnetic field as the field source radius goes to infinity. Subsequently,

Sec. B.3 extends the energy analysis to non-linear materials with any magnetization

constitutive law but particularly examines solutions for materials with magnetization

characteristics described by the Langevin equation. Computing the magnetic energy

storage in many of the ferrofluid problems requires this extension of the energy formula

to non-linear materials for large magnetic fields beyond the initial linear region. The

results, however, are very general and hold for any system with non-linear magnetic

materials.

B.2 Linear magnetic material

To find the initial magnetic fields before the introduction of the sphere of magnetic

material we solve the two-region problem illustrated in Fig. B-1. The figure shows a

surface current K0 = Ni0
2b

sin θiφ on the surface of a sphere of radius r = b [14]. Such a

current distribution results from tightly winding a current-carrying coil so that the N-

turns are uniformly distributed in z. A spherical shell with such a current distribution

is called a “flux ball” and is a convenient way of making a uniform magnetic field

within a spherical coil (See video [27]). The regions inside and outside the flux ball

in Fig. B-1 have the magnetic permeability of free space µ0.

B.2.1 Magnetic field solution

We begin the solution of the outlined magnetic field problem by noting that the mag-

netic fields inside and outside the spherical coil are curl-free (i.e., ∇×H0 = 0) because
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there are no volume current densities in either of the two regions. Consequently, we

can define a magnetic scalar potential ψ such that,

H0 = −∇ψ0 (B.8)

and the magnetic potential ψ0 satisfies Laplace’s Equation.

∇2ψ0 =
1

r2

∂

∂r
r2∂ψ0

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂ψ0

∂θ
= 0 (B.9)

where we assume axisymmetric fields, so that ψ0 does not depend on the azimuthal

angle φ.

r

θ

b

µ0

µ0

K

z

= Ni0sin θ iφ
2b

Figure B-1: Two-region geometry, before the introduction of a sphere of magnetic
material, illustrating the surface current distribution at r = b.

Initially the magnetic fields must satisfy the boundary conditions at r = b,

ir × [H0(r = b+) − H0(r = b−)] = Ni0
2b

sin θiφ

ir · [B0(r = b+) − B0(r = b−)] = 0
(B.10)

where the tangential component, Hθ, of the magnetic field intensity at the r = b
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boundary is discontinuous in the surface current and the normal component of the

flux density, Br, is continuous.

The field solution to this problem is given by,

H0(r, θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ni0
3b

iz ; r < b

Ni0b2

6r3 (2 cos θir + sin θiθ) ; r ≥ b

(B.11)

The magnetic field inside the flux ball is uniform and z-directed. Outside the flux

ball, the magnetic field intensity is inversely proportional to r3 and has a dipole

dependence with equivalent moment m = 2
3
Ni0πb2. The magnetic field intensity far

away from the flux ball drops to zero rapidly as 1
r3 .

Fig. B-2 illustrates the flux ball after a sphere of magnetizable material with

permeability µa and radius a, with a < b, is brought inside it. Initially, the sphere of

magnetizable material was unmagnetized and far away from the flux ball (where H =

0). To find the magnetic fields after the introduction of the sphere of magnetizable

material, we must solve the three-region problem shown in Fig. B-2, where,

µ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

µa ; r < a

µ0 ; r > a

(B.12)

To use the energy method to compute the mechanical work necessary to introduce

a sphere of magnetic material into the flux ball, we must require no additional energy

flow through the electrical terminals (i.e., we must consider an isolated system). This

means that the net flux linked by the coils, λ, must remain constant as the magnetic

sphere is brought inside the flux ball. Since by definition λ = Li, the current after

the introduction of the magnetic material, i, must decrease from the initial current i0

to account for the increase in flux ball winding inductance. The relationship between

i and i0 that maintains the flux linkage constant is derived in Sec. B.2.2.

The solution must satisfy Laplace’s equation (Eq. B.9) in regions r < a, a < r < b
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Figure B-2: Three-region geometry after the introduction of a sphere of magnetic
permeability µa requiring satisfaction of boundary conditions at r = a and r = b.

and r > b with the following set of boundary conditions,

ir × [H(r = b+) − H(r = b−)] = Ni
2b

sin θiφ

ir · [B(r = b+) − B(r = b−)] = 0

ir × [H(r = a+) − H(r = a−)] = 0

ir · [B(r = a+) − B(r = a−)] = 0

(B.13)

The magnetic field is then given by,

H(r, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ni
3b

(
3µ0

2µ0+µa

)
iz ; r < a

Ni
3b

[
cos θ

(
1 + 2a3

r3
µa−µ0

2µ0+µa

)
ir − sin θ

(
1 − a3

r3
µa−µ0

2µ0+µa

)
iθ

]
; a < r < b

Nib2

3r3

[
1
2

+ a3

b3
µa−µ0

2µ0+µa

]
(2 cos θir + sin θiθ) ; r > b

(B.14)

where again the solution in the innermost region is a uniform z-directed magnetic
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field and the outermost region has a dipole field decay with magnetic moment m =

4πNi
3

(
1
2

+ a3

b3
µa−µ0

2µ0+µa

)
iz. The field in the region a < r < b has both uniform and

dipole magnetic field components.

B.2.2 Constant flux condition

Rather than hold the current i constant, to compute the change in energy the flux

linkage λ must be held constant. This insures that the system under consideration

is isolated so that no additional electrical energy goes through the terminals from a

source when the magnetizable sphere is introduced.

λ0 = λ (B.15)

Initially, before the introduction of a sphere of magnetic material into the flux

ball, the magnetic flux linked by a coil loop on the spherical shell located at an angle

θ is simply given by the product of the uniform flux density inside the sphere (r < b)

and the area of a circle with radius b sin θ,

Φ0(θ) = µ0|H0(r < b, θ)|2 [π(b sin θ)2
]

= µ0
Ni0
3b

πb2 sin2 θ (B.16)

The total flux linkage is the integral of flux per coil multiplied by the coil density

integrated over the whole shell, as given by the expression,

λ0 =

∫ π

0

Φ0(θ)
N

2
sin θdθ =

∫ π

0

µ0
N2

6
i0πb sin3 dθ =

2πb

9
µ0N

2i0 (B.17)

Similarly, after the introduction of a sphere of magnetic material inside the flux

ball we integrate the magnetic fields given by Eq. B.14 to find the flux linked by the

flux ball winding,

Φ(θ) =

∫ 2π

φ=0

∫ θ

0

µ0{H(r = b) · ir}b2 sin θ′dθ′dφ

= πbµ0
Ni

3

(
1 +

2a3

b3

µa − µ0

2µ0 + µa

)
sin2 θ (B.18)
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The flux linkage is given by,

λ =

∫ π

0

Φ(θ)
N

2
sin θdθ =

2π

9
bµ0

(
1 +

2a3

b3

µa − µ0

2µ0 + µa

)
N2i (B.19)

The constraint that λ = λ0 relates the currents as,

i =
1

1 + 2a3

b3
µa−µ0

2µ0+µa

i0 (B.20)

As a check, note that λ = λ0 and i = i0 when µa = µ0.

B.2.3 Mechanical work

The difference in the total energy stored in this electrically isolated system equals

the mechanical work required to move the magnetic material from the zero magnetic

field region far away from the flux ball to the uniform magnetic field region inside the

flux ball.

∆W = W − W0 (B.21)

where W corresponds to the energy stored in the magnetic field after the introduction

of the magnetic material inside the flux ball. This field is described by the solution

in Eq. B.14 which must be integrated over all space,

W = 1
2
(µa|H(r < a, θ)|2) 4

3
πa3 + π

∫ π

0

[∫ b

a
µ0|H(r, θ)|2r2 sin θdr +

∫∞
b

µ0|H(r, θ)|2r2 sin θdr
]
dθ

(B.22)

The magnetic energy stored in the magnetic fields of Eq. B.11, where the magnetic

material is far away from the magnetic field of the flux ball is given by,

W0 =
1

2

[(
µ0|H0(r, θ)|2

) 4

3
πb3 + 2π

∫ π

θ=0

∫ ∞

r=b

µ0|H0(r, θ)|2r2 sin θdrdθ

]
(B.23)

Integrating the expressions for W and W0 and substituting into Eq. B.21 yields,

∆W =
−2a3b3µ0 (µa − µ0)π

2a3(µa − µ0) + b3(2µ0 + µa)

(
Ni0
3b

)2

(B.24)
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where the relationship between i and i0 given by Eq. B.20 was substituted into Eqs.

B.22-B.24. Note that this result is identical to the answer given by applying the Paris

and Hurd formula of Eq. B.4 to the flux ball problem using the field solutions in Eqs.

B.14 and B.11,

∆W = −1

2

∫
Va

(µa − µ0)H · H0dv =
−2a3b3µ0 (µa − µ0) π

2a3(µa − µ0) + b3(2µ0 + µa)

(
Ni0
3b

)2

(B.25)

Furthermore, taking the limit of the result in Eq. B.24 as b −→ ∞, Ni0
3b

−→ H0 leads

to the expression,

∆W = −2πa3µ0(µa − µ0)H
2
0

(2µ0 + µa)
(B.26)

which agrees with the expression for the amount of work required to introduce a

sphere of magnetizable material with permeability µa into a uniform magnetic field

H0 computed by Paris and Hurd using Eq. B.4.

B.3 Nonlinear magnetic material

In this section we follow the same procedure as outlined in Sec. B.2 to find the

magnetic fields before and after the introduction of a sphere of non-linear magnetic

material. We begin by solving the three-region problem illustrated in Fig. B-2 where

the innermost sphere consists of a non-linear magnetic material with a magnetization

curve that follows the Langevin relation (Eq. B.33). The flux density in this problem

is given by,

B =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

µ0(M + H) ; r < a

µ0H ; r > a

(B.27)

We then use the field solution to compute the change in the energy of the flux ball

system after the magnetic material is introduced inside the flux ball.
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B.3.1 Magnetic field solution

In the absence of volume current flow (J = 0), the magnetic field intensity remains

curl-free. Therefore, a scalar potential ψ exists and can be defined similar to the

linear case in Section B.2.1

∇×H = 0 −→ H = −∇ψ (B.28)

The magnetic flux density must always have zero divergence according to Gauss’ law,

∇ ·B(H) = 0 (B.29)

where, unlike the derivation in Sec. B.2.1, we no longer restrict the constitutive

relationship between B and H to be linear,

B = µ0(M(H) + H) (B.30)

Substitution of the constitutive relationship (Eq. B.30) into Eq. B.29 yields,

(∇ · M(H) + ∇ · H) = 0 (B.31)

The divergence of M(H) in the first term in Eq. B.31 generally takes a nonzero

value over a region of space unless the magnetic field intensity is uniform in that

region. In the sphere of material inside the flux ball the magnetic field intensity has

to be spatially uniform and z-directed by symmetry regardless of whether the sphere’s

magnetic material is linear or non-linear (i.e., H(r < a, θ) = Haiz). Consequently, the

magnetization of the sphere is also uniform and z-directed M = Maiz. Thus, in the

case of the flux ball problem, Laplace’s equation applies in the sphere of non-linear

magnetic material as well as in the free space regions,

∇ · M = 0,∇ · H = 0 −→ ∇2ψ = 0 (B.32)
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The non-linear magnetization characteristic M(Ha) of the sphere is modeled by the

Langevin relation,

M(Ha) = Ma(Ha)iz = Ms

(
coth(βHa) − 1

βHa

)
iz (B.33)

where Ms is the saturation magnetization and β = µ0Ms

nkT
, with n equal to the number

of magnetic dipoles per unit volume, k the Boltzmann constant, and T is the absolute

temperature in Kelvin.

The solution to the field problem with non-linear material must satisfy the bound-

ary conditions,

ir × [H(r = b+) −H(r = b−)] = Ni
2b

sin θiφ

ir · [B(r = b+) −B(r = b−)] = 0

ir × [H(r = a+) − H(r = a−)] = 0

ir · (B(r = a+) − B(r = a−)) = 0

(B.34)

The solution to Laplace’s equation and to the boundary conditions in terms of the

operating value of uniform magnetization of the inner sphere Ma is,

H(r, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ni
3b

− Ma

3

)
iz ; r < a

cos θ
(

Ni
3b

+ 2a3

3r3 Ma

)
ir − sin θ

(
Ni
3b

− a3

3r3 Ma

)
iθ ; a < r < b

b3

3r3

(
Ni
2b

+ a3

b3
Ma

)
(2 cos θir + sin θiθ) ; r > b

(B.35)

Note that this solution is the superposition of the fields of the flux ball current winding

and a uniformly z-directed magnetized sphere of radius a.

To find the operating value of the magnetization of the non-linear magnetic ma-

terial Ma, we note that the magnetic field intensity inside the sphere of material is
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Load line
Magnetization curve

Operating point

βHa

βNi
3b

βNi
3b

Figure B-3: Graphical solution to the transcendental relation in Eq. B.37. A non-
linear magnetic material with a Langevin magnetization characteristic is introduced
into the uniform field region inside a flux ball.

related to the externally applied magnetic field intensity Ni
3b

by the expression,

H(r < a, θ) = Haiz =

[
Ni

3b
− Ma(Ha)

3

]
iz (B.36)

Substitution of the constitutive relation of Eq. B.33 in Eq. B.36 leads to the non-

dimensional equation,

β

(
Ni

3b
− Ha

)
= χm

(
coth βHa − 1

βHa

)
(B.37)

where the magnetic susceptibility χm = βMs

3
is the Langevin susceptibility at low

magnetic fields. Eq. B.37 is transcendental and has no closed form solution. It can,

however, be easily solved graphically or numerically for βHa and the corresponding

value of Ma(βHa). The left hand side of the equation is a linear function of βHa

and is called the load line, whereas the right hand side is a non-linear function of

βHa and is called the magnetization curve. Fig. B-3 illustrates a graphical solution

method where the left-hand and right hand sides of Eq. B.37 are plotted separately

as functions of βHa. Eq. B.37 can also be solved numerically by iteration. Once
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the magnetization Ma inside the sphere of non-linear material is known, it can be

substituted into Eq. B.35 to find the magnetic field everywhere in space. Fig. B-4

shows the plots of the magnetic field intensity inside the sphere of magnetic material as

a function of externally applied magnetic field intensity for room temperature water-

based, oil-based and fluorocarbon based ferrofluids. As expected, the predictions of

the linear and non-linear magnetization models are near identical for low values of

applied magnetic field and differ for higher applied field intensities as the Langevin

curve approaches saturation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0
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0.4

0.6

0.8

1

1.2

1.4

Ni/(3bM
s
) 

H
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/M
s 

MSG W11 Langevin model
MSG W11 linear model
EFH1 Langevin model
EFH1 linear model
NBF−1677 Langevin model
NBF−1677 linear model

Figure B-4: The intensity of the uniform magnetic field inside the sphere of magnetic
material in the flux ball system (these results are independent of the non-dimensional
geometric parameter a

b
) for linear (solid line) and non-linear (dashed line) Langevin

magnetization models as a function of applied external magnetic field. The linear
and non-linear model-predicted curves converge for low intensities of applied mag-
netic field and differ for higher applied magnetic field intensities as expected for
room temperature MSG W11 water-based, EFH1 oil-based, and fluorocarbon-based
ferrofluid.

B.3.2 Constant flux condition

To ensure that the system under consideration is isolated we have set the current

before and after the introduction of the non-linear material so that the flux linked by
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the flux ball winding remains constant,

λ0 = λ. (B.38)

In Sec. B.2.2, Eq. B.17 we showed that before the introduction of a sphere of

magnetic material into the flux ball, the flux linkage is given by the expression,

λ0 =

∫ π

0

Φ0(θ)
N

2
sin θdθ =

2πb

9
µ0N

2i0 (B.39)

Similarly, after the introduction of a sphere of non-linear magnetic material inside

the flux ball we integrate the magnetic fields given by Eq. B.35 to find the flux linked

by the flux ball winding,

Φ(θ) =

∫ 2π

φ=0

∫ θ

0

µ0ir · H(r = b)b2 sin θ′dθ′dφ = πb2µ0

(
Ni

3b
+

2a3

3b3
Ma

)
sin2 θ (B.40)

The flux linkage is given by,

λ =

∫ π

0

Φ(θ)
N

2
sin θdθ =

2

3
µ0Nπb2

(
Ni

3b
+

2a3

3b3
Ma

)
(B.41)

The constraint that λ = λ0 leads to,

i0 = i +
2a3

b2N
Ma (B.42)

Note that this result reduces to Eq. B.20 in the linear limit where Ma = 3(µa−µ0)
2µ0+µa

Ni
3b

.

B.3.3 Mechanical work

The energy density wa for a non-linear material with a Langevin magnetization char-

acteristic is given by the expression,

wa =

∫ B

0

H · dB = B · H −
∫ H

0

B · dH

= BaHa − µ0

∫ Ha

0

[
Ha + Ms

(
coth(βHa) − 1

βHa

)]
dHa (B.43)
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Eq. B.43 integrates to the energy density inside the sphere of non-linear magnetic

material. The energy density outside the sphere is the usual expression for free space,

so that the energy density as a function of r is given by the expression,

w(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

µ0H2
a

2
+ µ0HaMa − µ0Ms

β
ln
(

sinh βHa

βHa

)
; r < a

1
2
µ0|H(r > a, θ)|2 ; r > a

(B.44)

Thus the value of βHa found by solving Eq. B.37 also determines the energy density

in the nonlinear material. Once the magnetic field is known for all r, the total energy

can be computed by integrating the magnetic energy density over all space.

W = wa

(
4
3
πa3
)

+ 2π
∫ π

0
1
2
µ0

[∫ b

a
|H(r > a, θ)|2r2dr +

∫∞
b

|H(r > b, θ)|2r2dr
]
sin θdθ

(B.45)

The total energy after the introduction of the magnetic material is given by,

W = −µ0
π

9

[
2a3Ma(Ma − 2

Ni

b
) − b (Ni)2 + 4a3 M2

s

χm

ln

(
sinh βHa

βHa

)]
(B.46)

From Eq. B.23 the total energy before the introduction of the magnetic material is

given by,

W0 =
1

9
µ0πbN2i20 (B.47)

The difference in energy yields the mechanical work necessary to introduce a ball of

non-linear magnetic material into the uniform field region of a flux ball,

∆W = −2

9
πa3

[
µ0

(
1 + 2

a3

b3

)
M2

a +
2µ0M

2
s

χm
ln

(
sinh βH

βH

)]
(B.48)

Note that as expected this expression reduces to Eq. B.24 in the linear limit where

Ma = 3(µa−µ0)
2µ0+µa

Ni
3b

. Fig. B-5 shows a comparison of the total energy stored in the flux

ball system as a function of applied magnetic field intensity for non-linear and linear

models of the three different types of ferrofluids we use in our experiments. Again,

the predictions of the linear and non-linear models agree for low values of applied
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magnetic field intensity and differ for higher values of applied field.
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Figure B-5: The energy stored in the flux ball system (with a
b

= 1
4
) for linear (solid

line) and non-linear (dashed line) magnetization models. The top pair of curves cor-
responds to water-based ferrofluid, the middle pair to oil-based ferrofluid and the
bottom pair to fluorocarbon based ferrofluid. As expected the non-linear model-
predictions agree with the linear model predictions for low intensities of applied mag-
netic field.

The change in energy due the introduction of a non-linear magnetic material of

volume Va can also be computed by the following integral over the finite volume Va,

∆W = −1

2

∫
Va

(
H0 · B −H · B0 + H · B − 2

∫ B

0

H · dB
)

dv (B.49)

The derivation of this result is included in Sec. B.4. For the flux ball problem the

general expression of Eq. B.49 simplifies to,

∆W = −1

2

∫
Va

(
µ0(H0 − Ha)Ma + 2µ0

∫ Ha

0

MadHa

)
dv (B.50)

Using the field solutions in Eq. B.35 and the condition set by Eq. B.42 the expression
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for energy difference ∆W evaluates to,

∆W = −1

2

[
1

3
µ0M

2
a

(
2
a3

b3
+ 1

)
+

µ0M
2
s

3χm
ln

(
sinh βHa

βHa

)]
4

3
πa3 (B.51)

This result agrees with the result obtained by integrating the energy density over all

space given by Eq. B.48. Furthermore, in the limit of b −→ ∞ and Ni0
3b

−→ H0, the

constant flux condition in Eq. B.42 becomes,

i = i0 (B.52)

Consequently, the transcendental relation in Eq. B.37 becomes,

β (H0 − Ha) = χm

(
coth βHa − 1

βHa

)
(B.53)

The energy needed to introduce a sphere of non-linear Langevin magnetic material

of radius a into an infinite z-directed uniform field H0 is,

∆W = −1

2

[
1

3
µ0M

2
a +

µ0M
2
s

3χm

ln

(
sinh βHa

βHa

)]
4

3
πa3 (B.54)

This expression also reduces to Eq. B.26 in the linear limit where Ma = 3(µa−µ0)
2µ0+µa

Ni
3b

and Ha is given by Eq. B.5 for r < a.

B.4 Energy considerations in non-linear magnetic

media

In this section we consider the amount of work required to introduce a material

with a non-linear magnetization characteristic into the field of a fixed distribution

of short-circuited, current-carrying loops of perfectly conducting wires. Each per-

fectly conducting short-circuited loop links a constant magnetic flux regardless of

the configuration of magnetic materials and other sources of magnetic field in the

system. With constant flux the system remains thermodynamically isolated and no
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power flows through the electrical terminals when the configuration of the magnetic

materials changes.

V1

S1

V2

S2

in1

in

Sp

Sp

Magnetic material

short-circuited loop

short-circuited loop

of current

of current

Linear magnetic material

Figure B-6: Schematic for change in energy calculations when linear or non-linear
magnetizable media with volume V1 is introduced into a volume V2 of linear media.
In order to impose a constant flux constraint the sources of magnetic field are short-
circuited current loops while the current density J = 0 in the volume.

Fig. B-6 shows a volume V1 of non-linear magnetic material that was introduced

into a region of linear magnetic material V2 with short-circuited current-carrying loops

of perfectly conducting material. The flux linkages of such magnetic field sources are

fixed. The energy before the introduction of the magnetic material is given by the

integral expression,

W1 =
1

2

∫
V

H1 · B1dv (B.55)

where V = V1 + V2; H1 = −∇ψ1 and B1 = µ0H1 represent the initial field variables.
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After the introduction of the magnetic substance the energy is given by,

W2 =
1

2

∫
V2

H · Bdv +

∫
V1

{∫ B

0

H · dB
}

dv (B.56)

where H = −∇ψ and B represent the new field variables. The energy change resulting

from the introduction of the magnetic substance is,

∆W = W2 − W1

=
1

2

∫
V2

(H · B− H1 · B1)dv +

∫
V1

{∫ B

0

H · dB− 1

2
H1 ·B1

}
dv (B.57)

The first integral term in Eq. B.57 extending over volume V2 can be rewritten as,

1

2

∫
V2

(H · B −H1 ·B1)dv =
1

2

∫
V2

(H + H1) · (B −B1)dv

= −1

2

∫
V2

∇(ψ + ψ1) · (B − B1)dv (B.58)

where we recognize that in the linear material in V2, H1 · B = H · B1. Using the

vector identity,

∇ · fA = A · ∇f + f∇ · A (B.59)

the last integral term in Eq. B.58 can be further simplified,

−1
2

∫
V2

∇(ψ + ψ1) · (B − B1)dv

=
1

2

∫
V2

{(ψ + ψ1)∇ · (B − B1) −∇ · [(ψ + ψ1)(B − B1)]} dv

= −1

2

∫
V2

∇ · [(ψ + ψ1)(B −B1)]dv (B.60)

where we have used the fact that ∇·B = 0 and ∇·B1 = 0 to eliminate the ∇·(B− B1)

term. Using the divergence theorem on the result of Eq. B.60 leads to the integral,

−1

2

∫
V2

∇ · [(ψ + ψ1)(B −B1)]dv = −1

2

∮
Σ

(ψ + ψ1)(B −B1) · indS (B.61)

where the integrand (ψ+ψ1)(B−B1) · in is evaluated over the closed surface Σ which
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forms the boundary of volume V2, including the surface S1 which bounds the volume

V1, the surfaces Sp, bounding the current source coils, and the outer surface S2. If the

outer boundary S2 expands to infinity so as to include all space, the integrand vanishes

faster than the surface area and the integral goes to zero. The integrand over the

surfaces Sp, bounding the current-carrying loops, vanishes because (B − B1) · in = 0

on Sp since the normal component of the magnetic flux density must always be zero

on the surface of a perfect conductor. The only remaining non-zero term is the surface

integral over S1,

−1

2

∮
Σ

(ψ + ψ1)(B −B1) · indS =
1

2

∫
S1

(ψ + ψ1)(B − B1) · in1dS (B.62)

where we note that in1, the positive normal to the surface S1, points in the opposite

direction from the normal in to surface Σ.

Using the divergence theorem to write Eq. B.62 as a volume integral over V1 leads

to the expression,

1

2

∫
S1

(ψ + ψ1)(B −B1) · in1dS =
1

2

∫
V1

∇ · {(ψ + ψ1)(B −B1)}dv (B.63)

The geometric identity in Eq. B.59 can be used to rewrite the integral over V1,

1
2

∫
V1
∇ · (ψ + ψ1)(B − B1)dv = 1

2

∫
V1
{(B− B1) · ∇(ψ + ψ1) + (ψ + ψ1)∇ · (B −B1)}dv

(B.64)

The integrand of the second term in this expression ∇ · (B −B1) is zero and ∇(ψ +

ψ1) = −(H + H1). This leads to rewriting the first term in Eq. B.57 as an integral

over volume V1,

1

2

∫
V2

(H · B− H1 · B1)dv = −1

2

∫
V1

(B −B1) · (H + H1)dv (B.65)

Returning to the expression for the energy difference in Eq. B.57, we can use the
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relation in Eq. B.65 to rewrite ∆W in terms of an integral over V1,

∆W = −1

2

∫
V1

{
(B− B1) · (H + H1) −

(
2

∫ B

0

H · dB− H1 · B1

)}
dv (B.66)

The resulting expression for the energy required to introduce the magnetic substance

is given by the following integral over the volume V1,

∆W = −1

2

∫
V1

{
H1 · B −H · B1 + H · B − 2

∫ B

0

H · dB
}

dv (B.67)

Note that although Eq. B.67 was derived for fields excited by a configuration of

perfectly-conducting, current-carrying short-circuited loops the result holds for any

thermodynamically isolated magnetic system (i.e., the flux at the electrical terminals

is held constant). The integration in Eq. B.67 extends over a finite volume of space,

unlike Eq. B.57 where the integration is over all space, which greatly facilitates the

computation of energy in problems of interest, especially when studying ferrofluids in

applied magnetic fields.

The derivation in this section and final expression in Eq. B.67 mirror the deriva-

tion and expression for the “Co-energy of a Magnetic body in a Magnetostatic Field”

by Stratton [47]. Stratton’s expression for the co-energy change is given by,

∆W ′ =
1

2

∫
V1

{
H1 · B −H · B1 − H ·B + 2

∫ B

0

H · dB
}

dv (B.68)
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Appendix C

Taylor-Couette flow measurement

and verification of the DOP2000

ultrasound velocimeter

C.1 Theory

We used the DOP2000 ultrasound velocimeter to measure the flow of a viscous fluid

between two long concentric cylinders as illustrated in Figure C-2. The fluid is driven

by the rotation of the inner cylinder while the outer cylinder remains stationary. This

flow is known as Taylor-Couette flow and for low Reynolds numbers it has the velocity

distribution given by the analytical expression [48],

Vφ(r) = ΩRi

Ro

r
− r

Ro

Ro

Ri
− Ri

Ro

iφ (C.1)

C.2 Experimental setup

The ultrasound probe is inserted into the outer cylinder wall at an angle α = 25◦ from

radial direction ir. The probe issues an ultrasonic beam and measures the component

of fluid velocity parallel to the direction of the beam at every point along the beam.

From Figure C-2 we see that the radius r at a point on the ultrasound beam path is
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Ultrasound probe

Stand

Sample fluid

Figure C-1: Experimental apparatus for Taylor-Couette flow measurement with ul-
trasound velocimeter.

given by,

r =

√
(x2 + (Ro sin α)2) (C.2)

and the direction vector iφ at a point on the ultrasound beam path is given by,

iφ =
−Ro sin α

r
ix +

x

r
iy (C.3)

To obtain the velocity component parallel to the ultrasound beam, we substitute

relationships C.2 and C.3 into Eq. C.1, which leads to the expression

Vx(x) = −ΩRiRo sin α
Ro

Ri
− Ri

Ro

(
Ro

(x2 + (Ro sin α)2)
− 1

Ro

)
ix (C.4)

where Vx(x) is the component of the fluid velocity measured by the ultrasound probe.
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Figure C-2: Taylor-Couette geometry for flow profile measurement experiment. The
inner cylinder rotates and drives the fluid flow whereas the outer cylinder remains
stationary.
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C.3 Experimental results

We measured Taylor Couette flows with water and transformer oil. The dimensions of

the experimental apparatus and physical properties of water and oil are summarized

in Table C.1 for reference.

Significant inertial effects in the water flow experiments result in the disagreement

between theory and experiment in Figs. C-3 to C-5. The high calculated Reynolds

numbers for these experiments (RE =
ρΩR2

i

η
= 611, 366 and 244 respectively) explain

the departure from the analytical expression for a viscous-dominated flow profile

predicted by Eq. C.4. The low viscosity of the water prevents us from operating the

experiment at lower Reynolds number regimes without reducing the rotation rate of

the inner cylinder by a factor of a hundred.
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Figure C-3: Taylor-Couette flow for water between two concentric cylinders. Inner
cylinder rotates at 50 rpm and outer cylinder is stationary, leading to a Reynolds

number RE =
ρΩR2

i

η
= 611. The dashed curves surrounding the time-average measured

flow velocity are plus and minus one standard deviation away.

The results for the transformer oil, however, agree with the theory of Eq. C.4

better at the same rotation rates. The viscosity of the oil is 20 times that of water,

which leads to lower Reynolds numbers for the same inner cylinder rotation speeds.

The Reynolds numbers calculated for the velocity profiles shown in Figs C-6 to C-11
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Figure C-4: Taylor-Couette flow for water between two concentric cylinders. The
inner cylinder rotates at 30 rpm and the outer cylinder is stationary, leading to a
Reynolds number RE = 366
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Figure C-5: Taylor-Couette flow for water between two concentric cylinders. The
inner cylinder rotates at 20 rpm and the outer cylinder is stationary, leading to a
Reynolds number RE = 244
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are RE = 27.5, 16.5, 11.0, 6.60, 3.30, and 1.65 respectively. Note that the figures

show that experimental data agree with theory progressively better as the Reynolds

number is reduced.

Cylinder geometry
Ri Inner radius 10.8 [mm]
Ro Outer radius 28.7 [mm]
α Probe angle 25◦

Water properties (room temperature)
η Dynamic viscosity 1.0 × 10−3 [Ns/m2]
ρ density 1000 [kg/m3]

Oil properties (room temperature)
η Dynamic viscosity 0.020 [Ns/m2]
ρ density 900 [kg/m3]

Table C.1: Summary of the dimensions of the Taylor-Couette flow experiment and
material properties for water and oil at room temperature.
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Figure C-6: Taylor-Couette flow for oil between two concentric cylinders. The inner
cylinder rotates at 50 rpm and the outer cylinder is stationary, leading to a Reynolds
number RE = 27.5
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Figure C-7: Taylor-Couette flow for oil between two concentric cylinders. The inner
cylinder rotates at 30 rpm and the outer cylinder is stationary, leading to a Reynolds
number RE = 16.5
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Figure C-8: Taylor-Couette flow for oil between two concentric cylinders. The inner
cylinder rotates at 20 rpm and the outer cylinder is stationary, leading to a Reynolds
number RE = 11.0
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Figure C-9: Taylor-Couette flow for oil between two concentric cylinders. The inner
cylinder rotates at 12 rpm and the outer cylinder is stationary, leading to a Reynolds
number RE = 6.60

252



−25 −20 −15 −10 −5 0 5 10 15 20 25

−6

−5

−4

−3

−2

−1

0

x [mm]

V
x [m

m
/s

]

Figure C-10: Taylor-Couette flow for oil between two concentric cylinders. The inner
cylinder rotates at 6 rpm and the outer cylinder is stationary, leading to a Reynolds
number RE = 3.30
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Figure C-11: Taylor-Couette flow for oil between two concentric cylinders. The inner
cylinder rotates at 3 rpm and the outer cylinder is stationary, leading to a Reynolds
number RE = 1.65
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