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Abstract

Superconducting Josephson junction devices rank among the best candidates for realizing a
quantum computer. While the coherent control of quantum dynamics has been demonstrated
in these solid-state, macroscopic quantum systems, a major challenge has been to increase
the coherence times for these qubits. With an objective to reduce the level of readout-induced
decoherence, this thesis work focuses on a resonant readout scheme developed for a niobium
persistent-current (PC) qubit. This non-dissipative readout approach detects the flux state
of the qubit by sensing a change in the Josephson inductance of a SQUID magnetometer.
By incorporating the SQUID inductor in a high-Q resonant circuit, we distinguished the
flux states of the qubit as a shift in the resonant frequency at 300mK. The nonlinearity
due to the Josephson inductance has characteristic effects on the resonant behavior of the
readout circuit. We observed novel manifestation of this nonlinearity given the high quality
factor of the resonance. The readout circuit was characterized in the linear as well as the
nonlinear regime for its potential use as a bifurcation amplifier. Numerical simulations based
on Josephson-junction circuits were also performed to understand the observed nonlinearity
in the resonant behavior.
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Chapter 1

Introduction

Quantum computing offers great promises in solving classically intractable problems by har-

nessing the laws of quantum mechanics. While the laboratory realization of a real quantum

computer is actively pursued using different physical implementations, macroscopic quantum

systems based on superconducting circuits may have the ultimate advantage to be manipu-

lated and controlled in a desired manner for computation. It is truly remarkable that these

superconducting circuits of a length scale as large as tens of microns, artificially designed

and fabricated using standard integrated-circuit technology, can in fact behave quantum

mechanically in many ways similar to microscopic systems involving atoms, electrons or

photons.

Superconductors are one of the few examples where the large-scale behavior of the system

is described by the collective quantum behavior of the underlying microscopic particles. In a

superconductor, pairs of electrons known as Cooper pairs occupy the system’s ground state

and form a condensate described by a single macroscopic wavefunction. In the 1980’s, A.J.

Leggett proposed two classes of experiments to demonstrate the evidence of this macroscopic

wavefunction: macroscopic quantum tunneling (MQT) and macroscopic quantum coherence

(MQC) [1, 2, 3]. MQT phenomena involves the tunneling of the macroscopic wavefunction

across a barrier, and have been well observed in superconducting devices comprising thin

barriers such as Josephson junctions or SUperconducting Quantum Interference Devices

(SQUIDs). On the other hand, MQC phenomena are experimentally harder to observe.

They involve the coherent oscillation between two quantum states, and as Leggett put it,
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would be more “spectacular evidence” than MQT phenomena which are more “indirect and

circumstantial” [3].

Recent interests in quantum computation have lead to a vast amount of exciting achieve-

ment in the laboratory realizations of MQC in superconducting circuits. With advances in

techniques for fabrication and electronic noise control, macroscopic superposition of quan-

tum states and coherent oscillations have been demonstrated in different superconducting

circuit implementations. And just as important, it has also been shown that engineering has

a definite role to play in controlling the level of quantum coherence in these circuits.

Due to their macroscopic nature, superconducting circuits are more easily susceptible

to environmental noise. The problem of decoherence, where the system loses its quantum

information, is more severe for superconducting circuits than other implementations for

a quantum computer. However, the ultimate promise of the field is that if successfully

implemented, superconducting quantum computation can inherit the wealth of integrated-

circuit technology from the semiconducting industry. While the outcome for the race to build

a quantum computer remains too early to be foreseen, this “fat Schrödinger’s cat” certainly

earns a unique place in the race.

1.1 Quantum Computing

Quantum computation was originally proposed by R. P. Feynman in 1982 [4] for performing

simulations of quantum behavior. The idea of a quantum computer involves representing

bits of information in quantum systems. For instance, the up and down spins of an electron

can be used to represent 0 and 1. By maintaining these quantum bits, or qubits, a quantum

computer can make use of distinctively quantum mechanical phenomena such as superposi-

tion and entanglement of quantum states to operate on the data. Unlike classical bits, an

n-qubit register can be in a superposition of all of its 2n orthogonal eigenstates, and this

power of parallel processing offers exponential improvement in computational speed.

The field of quantum computing started to prosper in 1994 when P. Shor developed a

quantum algorithm and showed that a quantum computer only takes polynomial time to

factor an integer into its primes [5]. The same factoring problem takes exponential time
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for a classical computer, and in fact, the infeasibility for an ordinary computer to factor

a large number within a reasonable timescale is what modern cryptography techniques are

based. So far, the main advantages of quantum computers are known to be solving the

factoring problem, a related problem called the discrete-logarithm problem, and performing

quantum mechanical simulations. It is by no means intended to replace classical computers,

nor does it immediately address the problems related to chip miniaturization faced by the

semiconducting industry.

The main requirements for a viable physical implementation for a quantum computer

are outlined by DiVincenzo in five criteria [6]. These criteria are concerned with (1) qubit

existence: the physical system needs to be scalable with well-defined qubits; (2) qubit reset:

the qubit states can be initialized; (3) qubit coherence: qubits have long coherence times

compared to the gate time; (4) qubit control: universal gate operations between qubits

can be achieved by controllable interactions of the quantum systems; and (5) qubit read-

out: an efficient readout procedure exists for the specific qubit implementation. Based on

these criteria, there are currently numerous physical systems which are promising candi-

dates for implementing a quantum computer [7, 8]. Some of the examples are NMR, trapped

ions/neutral atoms, cavity QED, and superconducting devices.

The major challenge for implementing a quantum computer is to maintain quantum

coherence of the qubits long enough to perform useful calculations. The general rule of

thumb is that the coherence time should be 104 times longer than the gate time to allow

the incorporation of a quantum-error-correction algorithm. Decoherence of qubits is due

to sources of noise from measurement circuitry or background environment. Most of the

physical realizations of qubits are based on microscopic systems, such as spins of nuclei in a

liquid, or dipoles of trapped ions/ neutral atoms in vacuum. These qubits are naturally very

well isolated from their environment and have long coherence times. For instance, the typical

relaxation times for NMR are between 1-30 s, and the dephasing times are between 0.1-10 s

[9]. The main challenges for the microscopic implementations are scalability and to enhance

inter-qubit coupling to the level required for fast gate operations. The superconducting

approach, on the other hand, is scalable to large number of qubits. However, the relaxation

times are much shorter and are typically between 0.1 to 1µ s.
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1.1.1 Formulation of the readout problem

We will conclude the general discussion on quantum computing by discussing the challenge

of the qubit readout process. The readout circuitry provides a channel for extracting in-

formation from the qubit. However, noise and dissipation are also coupled to the qubit

through the same channel. The concern is that the readout process causes decoherence of

the qubit before its original state can be accurately measured and recorded. The design of

a good readout scheme presents us with the usual quantum mechanical dilemma. A readout

detector weakly coupled to the qubit has a small effect on decohering the qubit, yet the

measured signal can be too weak to be resolved by the measurement apparatus or within a

reasonable timescale. On the other hand, a strong coupling between the detector and the

qubit yields a strong signal but introduces severe decoherence on the qubit. Ideally, the

criteria for choosing and operating a readout detector are [10]:

• An ideal detector should be allowed to switch ON and OFF in a time period that

is short compared to the quantum dynamical timescale of the qubit. During the ON

stage, the detector should be coupled to the qubit to measure its state. During the OFF

stage such as in between measurements, the detector should be completely decoupled

from the qubit.

• The strength of the coupling during the ON state between the detector and the qubit

can be optimized. One should note that the stronger the coupling strength, the higher

the sensitivity of the detector, but at the same time the coupling should be weak

enough not to relax the qubit [11].

• The response time (the time needed for the information to be extracted from the

qubit) and the reset time (the time needed to prepare the detector before another

measurement can be made) should be fast compared to the qubit dynamical timescale.
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1.2 Quantum computing with superconductors

Superconducting Josephson junction circuits rank among the best candidates for realizing a

quantum computer. Unlike earlier implementations involving liquid-state NMR or ion traps,

these superconducting systems are solid-state in nature and utilize familiar electrical devices

controlled by voltages and currents. If successfully implemented, superconducting qubits

have the advantage of being fabricated using standard integrated-circuit techniques. The

integration permits control and readout circuitry to be incorporated on-chip, and provides

a manageable option for scaling up to a large number of qubits. However, the solid-state

systems are strongly coupled to the outside world. This posts a challenge as qubits must also

be sufficiently isolated from the environment so that they can maintain coherence throughout

the computation.

Charge qubits versus flux qubits

The types of superconducting qubits are categorized based on the ratio of the Josephson

energy EJ to the charging energy Ec of the qubit. The two main types are the charge qubits

(EJ/Ec ∼ 0.1) and the flux qubits EJ/Ec ∼ 100. A charge qubit, also known as the “Cooper-

pair box”, is defined by the presence or absence of a Cooper pair on a superconducting island.

For a flux qubit, the qubit states correspond to circulating currents in the clockwise and

counter-clockwise directions in a superconducting loop interrupted by Josephson junctions.

In particular, the 1-junction qubit is realized by the RF SQUID, while the 3-junction qubit

is usually referred as the persistent-current qubit (PC qubit). The work presented in this

thesis is based on the PC qubit system.

Coherent oscillations has been observed for a single charge qubit in 1999 [12], and with

recent improvement the relaxation time is on the order of 100 ns. Since then, coherent

oscillations [13], microwave spectroscopy [14] and gate operation [15] have been demonstrated

with two coupled charge qubits. For the flux qubit system, superpositions of quantum states

have been observed in the PC qubit [16] and the RF-SQUID qubit [18]. Coherent oscillation

of a single PC qubit has been observed in [17, 19, 20] with a relaxation time on the order of

100 ns-1µs. In general, flux qubits have longer coherence times due to their insensitivity to
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charge-based fluctuations.

It should be mentioned that quantum coherence has also been demonstrated in two other

types of superconducting qubit: the phase qubit (EJ/Ec ∼ 104) based on a single current-

biased Josephson junction [21, 22], and the “hybrid” charge-flux qubit (EJ/Ec ∼ 1) also

referred as the “quantronium” [23]. The hybrid qubit was designed so that during the qubit

precession, it is insensitive to both charge and flux noise, while at the readout stage it is

operated as a flux qubit.

Niobium-based versus aluminum-based qubits

The two common material choices for superconducting qubits are aluminum and niobium,

which are both low-temperature superconductors. The critical temperature Tc of niobium is

∼ 9K, and is higher than the Tc of aluminum which is ∼ 1.5K. The superconducting material

of choice is based on the following considerations:

1. Fabrication consideration for junctions: Devices based on aluminum can be de-

posited relatively easily using e-beam lithography and shadow evaporation. The min-

imum feature size for a Josephson junction is typically around 50 nm. Small junction

dimensions between 50-100 nm are needed for charge qubits to achieve a small EJ/Ec

ratio, and between 200-300 nm for flux qubits to enhance the coupling between the

ground and first excited states of the qubit for coherent oscillations to occur. On the

other hand, devices based on niobium are defined by optical lithography. The typical

feature size of the a junction is larger and on the order of 1 µm. Recently, MIT Lincoln

Laboratory has developed a niobium process which supports a minimum feature size

of 150 nm [57]. Calculations have shown that this corresponds to a reasonably large

coupling which could be of interests to flux qubit designs.

2. Fabrication consideration for circuit complexity: The shadow evaporation tech-

nique for fabricating aluminum circuits are impractical to have via structures (hence

no inductors) or to support complex circuits. On the other hand, the niobium fabri-

cation technology can easily integrate more complex circuitry on-chip. In particular,

it provides the option of incorporating rapid-single flux quantum (RFSQ) electron-
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ics for qubit readout and control; RFSQ have been developed based on the niobium

fabrication technology.

3. Quasi-particle consideration: In general, quasi-particles have a longer relaxation

time in niobium than in aluminum. This is undesired as the repetition rate of the

readout is limited by the relaxation time of the quasi-particles. In addition, quasi-

particles are a source of charge noise, and this poses a problem in particular for charge

qubits as they are more sensitive to charge-based fluctuations.

1.2.1 Motivation of this thesis

In the endeavor to increase the coherence times for superconducting qubits, it is generally

observed that the measurement results demonstrating the quantum dynamics of the qubit are

intervened by noise from the readout process itself. This is especially true for conventional

readout methods which are typically dissipative in nature and involve high levels of biases.

Recently, a considerable amount of effort has been done to develop a so-called dispersive

readout scheme, where the qubit is coupled to a resonator, and that the qubit state can be

detected as a shift in the resonant frequency of the resonator.

The work presented in this thesis focuses on the dispersive readout scheme developed

for a niobium persistent-current qubit. The conventional way to measure a PC qubit is

by coupling the qubit to a SQUID magnetometer which is operated as a switching current

detector. This approach involves high bias current and switches the Josephson junctions from

the superconducting state to the voltage stage. The proposed resonant readout detects the

qubit state by sensing a change in the Josephson inductance of the SQUID magnetometer,

which in turn is detected as a shift in the resonant frequency of a resonator. As a result, the

level of readout-induced decoherence on the qubit should be reduced.

Similar approach has also been investigated by [24, 25] for the PC qubit system, by [27]

for the hybrid qubit, and by [28] for the charge qubit. Quantum coherence of the qubit

has been demonstrated using the dispersive readout in [24, 27, 28], and the visibility of the

coherent oscillations as well as the coherence times are shown to be an improvement over

previous results based on the conventional readout schemes.
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This thesis work differs in a number of ways. First, our qubit and readout circuit were

fabricated out of niobium, whereas the implementations mentioned above were aluminum-

based. Second, we were able to achieve a high quality factor for the resonator by incor-

porating RF transformation network on-chip using the planarized niobium process. Third,

the nonlinearity due to the Josephson inductance of the SQUID has characteristic effects

on the resonant behavior of the readout circuit. We observed novel manifestation of this

nonlinearity given the high quality factor of the resonance. Numerical simulations were also

performed to understand the observed nonlinearity.

1.3 Overview of thesis

1.3.1 Persistent Current Qubit

The PC Qubit is a superconducting loop interrupted by three Josephson junctions, two

of which have the same critical current Ic while the third junction has a critical current

scaled down by a factor α [30, 31]. The circuit schematic of the qubit and the picture

of an actual device are shown in fig. 1-1. Each Josephson junction in the qubit loop is

φ1 φ2

( IC )
f

( αIC)

φ3

( IC )

(a)

10µmm

Qubit

Readout 

SQUID

(b)

Figure 1-1: (a) Schematic of the persistent current qubit. The symbol ‘X’ denotes a Joseph-
son junction. Junctions 1 and 2 have the same area while junction 3 is a factor of α smaller.
An external magnetic flux f threads the qubit loop and determines its operating point. (b)
Optical micrograph of a niobium qubit coupled to a readout SQUID fabricated at MIT
Lincoln Laboratory.

characterized by the variable ϕ, which is the gauge-invariant phase difference between the

two superconductors on each side of the tunnel junction. The current-phase relation and the
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voltage-phase relation for a Josephson junction are given by:

I = Ic sin ϕ (1.1)

V =
Φo

2π

dϕ

dt
(1.2)

where Φo is a flux quantum and has the value of h/2e = 2.0679× 10−15 Wb. To obtain the

Hamiltonian of the PC qubit system, we consider the Josephson energy EJ and the Coulomb

energy EC of the junctions, which are treated as the potential energy and the kinetic energy

of the system respectively. The potential landscape of the PC qubit is controlled by the

magnetic frustration f = Φext/Φo, as well as the fabrication parameter α. It corresponds

to a two-dimensional periodic potential for f near 1/2 and is shown in fig. 1-2. We are

mostly interested in the double well along the Loo −Roo trajectory, since tunneling between

neighboring unit cells is suppressed for the given design parameters. By treating the charging

energy of the junctions as the kinetic energy of a particle in this double-well potential, and by

considering the circuit quantum mechanically, it has been shown that the two lowest states

of the qubit can be designed to be oppositely circulating currents in the qubit loop.

ϕ1 / 2π

ϕ
2

/ 
2
π

Figure 1-2: Potential landscape U(ϕ1, ϕ2) of the PC qubit for f = 1
2

and α = 0.8. We
are mostly interested in the double-well potential along the Loo −Roo trajectory. Tunneling
between neighboring unit cells is suppressed for the given design parameters [30, 31].
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1.3.2 Conventional readout of Qubit States: Switching current

measurement

From the discussion above, we see that operating the qubit near an external flux bias near

f = 1
2

gives rise to a double well potential along the Loo-R trajectory, and the two lowest

energy states correspond to oppositely circulating persistent currents in the qubit loop. To

detect the state of the qubit, one notes that the flux of the induced current either adds to

or subtracts from the external flux, and thus by detecting the difference in the overall flux

sensed by a DC SQUID inductively coupled to the qubit, the states of the qubit can be

measured. The size of the flux generated by the persistent current in the qubit depends on

the strength of the coupling. The coupling in turn depends on the mutual inductance M

between the qubit and the SQUID, and the size of the persistent current IP within the qubit

loop. The range is usually between 0.001Φo to 0.01Φo.

|0>

|1>

I
bias

I1

I0

V
sg

Φ

I
bias V 

_

Figure 1-3: Left: The blue and red arrows represent the clockwise and counter-clockwise
circulating current states of the qubit. The qubit is inductively coupled to a SQUID magne-
tometer. Right: The SQUID IV characteristics over a cycle of the switching current readout.
The SQUID switches to the voltage state at a different critical current depending on the state
of the qubit. The proposed resonant readout approach keeps the bias current well below the
critical level (green block arrow).

The conventional scheme to operate the SQUID detector is the so-called switching current

readout. This detection scheme employs a non-shunted (underdamped) SQUID and uses the

property that its critical current is a function of magnetic flux. Typically, one ramps the

current through the SQUID and determines the qubit state either by directly measuring the
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switching current, or by detecting the presence or absence of a switching event (fig.1-3). This

approach involves high current bias and switches the SQUID from the superconducting state

to the voltage state. Calculations based on the spin-boson model have shown that the level

of decoherence increases with the amount of bias current that is passed through the SQUID

[32]. In addition, the switching action to the finite voltage state also excites a large number

of quasi-particles, which must then be allowed to relax to the superconducting state before

another measurement can be performed. This relaxation time can be fairly long and may

restrict the repetition rate of the measurements [33].

1.3.3 Principles of Resonant Circuit Readout

To reduce these sources of readout-induced decoherence, the research to be presented in this

thesis focuses on the implementation of a resonant readout technique for a PC qubit. The

main idea is to use the readout SQUID as a flux-sensitive inductor rather than a switching-

current detector. It will be shown that the Josephson inductance of a SQUID is a periodic

function of the magnetic flux which threads the loop. Thus, by incorporating the readout

SQUID in a high-Q resonant circuit, the state of the qubit can be determined from the

inductance of the SQUID, which in turn can be measured from the resonant frequency of the

readout circuit with high sensitivity. The main advantage of this non-dissipative approach

is that it biases the SQUID at low currents and does not require the SQUID to switch to

the voltage stage.

Josephson inductance of a SQUID

In section 2.3, we will show that a Josephson junction is inductive in nature, and that the

inductance is nonlinear and changes with the current bias through the junction. On the

other hand, the Josephson inductance of a SQUID is dependent on both the current bias Isq

and the flux bias Φext, and in the limit where the SQUID has negligible loop inductance, its

Josephson inductance can be expressed as:

LJ,sq =
Φo

2πIc(Φext)

ϕp

sin ϕp

(1.3)
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where Ic(Φext) = 2Ico cos(πΦext/Φo) can be considered as the effective critical current of the

SQUID, and ϕp = sin−1(Isq/Ic(Φext)) is the effective phase. Ico is the critical current of a

single junction. The current and flux dependence is plotted in fig. 1-4. While the Josephson

inductance always increases with the bias current, it can increase or decrease with the flux

bias due to the periodic dependence. Therefore, the Josephson inductance of the SQUID is

different depending on the flux state of the qubit.
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Figure 1-4: The Josephson inductance of a SQUID is nonlinear in the current bias and
the flux bias. Depending on the flux states of the qubit, the SQUID will have a different
inductance value.

Measurement Scheme for Resonant Circuit Readout

To apply the SQUID inductor as a magnetometer for qubit readout, we need to be able to

measure the change in Josephson inductance with high sensitivity. The idea is to incorpo-

rate the SQUID inductor in a high-Q resonant circuit, where a change in the inductance

corresponding to a transition between qubit states can be detected as a shift in the resonant

frequency. For illustrative purposes, we consider a simple parallel RLC resonant circuit. In

fig. 1-5, the SQUID is modeled as an ordinary inductor, and the resistance R represents the

parallel combination of the source and output impedances. The circuit is driven by an AC

source.
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Figure 1-5: A linear RLC resonant circuit in the parallel configuration.

The impedance Z(ω) of the network is:

|Z(ω)| = 1√
( 1

R
)2 + (ωC − 1

ωL
)2

=
R(ωωo

Q
)√

(ωo
2 − ω2)2 + (ωωo

Q
)2

(1.4)

where ωo is the resonant frequency given by

ωo =
1√
LC

(1.5)

and Q is the quality factor which characterizes the sharpness of the resonant peak. For a

parallel configuraion, Q is given by:

Q =
R

ωoL
= ωoRC = R

√
C

L
(1.6)

Experimentally, the change in the SQUID Josephson inductance can be detected as a

shift in the resonant frequency. The resonant frequency can be directly measured with a

spectrum/network analyzer. Alternatively, a more rapid readout can be performed by biasing

the resonant circuit at a single frequency fb near the resonant frequency. As illustrated in

fig. 1-6, the shift in the resonant frequency is detected as a difference in the output voltage

∆V . Note that ∆V is maximum when fb is close to fo, where V (ω) has the sharpest slope.
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Figure 1-6: Measurement scheme for the resonant readout. The change in resonant fre-
quency can be sensed as a change in the magnitude or phase of the output voltage at a
frequency bias fb. This provides a faster readout then measuring the resonant frequency
with a spectrum/network analyzer.

1.3.4 Experimental Realization

The design of the resonant readout circuit shown in fig. 1-7 has employed impedance trans-

formation and impedance matching techniques to achieve a high quality factor [35]. The

resonant frequency was designed to be 500 MHz with a Q on the order of 150. The device

was fabricated with a planarized Nb trilayer process at MIT Lincoln Laboratory [34]. The

inductors and capacitors were also fabricated on the same chip as the junctions. A device

micrograph is shown in fig. 1-8.
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Figure 1-7: Circuit schematic of the resonant readout circuit. Tapped-inductor and L-
match impedance transformations were employed to achieve a high quality factor [35]. The
components within the dotted box were fabricated on-chip.
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Figure 1-8: Optical micrograph of the actual device fabricated at MIT Lincoln Laboratory.
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Figure 1-9: A typical resonant spectrum as displayed on a spectrum analyzer. The resonant
frequency is around 420MHz, and Q is on the order of 1000. The data were taken at 300mK.
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The device was measured at 300mK in a He-3 cryostat. A typical spectrum of the

resonant readout circuit is shown in fig. 1-9. The resonant frequency was measured to be

about 420MHz while the quality factor Q was on the order of a 1000. We confirmed the

sensitivity of the readout circuit to distinguish the circulating-current states of the qubit.

The results are shown in fig. 1-10. When an external DC magnetic field was applied through

the SQUID, we observed a modulation of the Josephson inductance, which in turn was

manifested as a modulation in the resonant frequency of the readout circuit. At every 1.3

times the SQUID modulation period, a shift in the resonant frequency is observed. These so-

called qubit steps represent a qubit transition between oppositely circulating current states.

The shift in the resonant frequency is about 40 kHz, corresponding to a change in Josephson

inductance of 2 pH. Furthermore, a dip in resonant peak power is observed at the qubit steps.

This corresponds to broadening of the resonant spectrum.
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Figure 1-10: The lower plot (left axis) shows the modulation of the resonant frequency with
external magnetic field. The upper plot (right axis) shows the corresponding peak amplitude
of the resonant spectrum. The dip in peak power coincides with the qubit step. The data
were taken at 300mK.
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1.3.5 Resonant Readout in the Nonlinear Regime

As the bias current to the readout SQUID is increased along the supercurrent branch, the

SQUID inductance becomes increasingly nonlinear and has observable effects on the resonant

spectrum of the readout circuit.
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Figure 1-11: (a) Magnitude and (b) phase spectra of the resonant readout circuit as it makes
the transition from the linear to the nonlinear regime with increasing source power at Φ = 0.

Fig. 1-11 shows the magnitude and phase spectra of the readout circuit with increasing

level of input power at Φ = 0 (position [A], fig. 1-10). At this flux bias, the critical current

of the SQUID is maximum, and the SQUID essentially behaves like a single junction. The

magnitude spectrum evolves from a symmetric Lorentzian shape to an asymmetric shape

with a discontinuity. The asymmetric spectrum leans towards the lower frequency side,

indicating that the effective inductance over an oscillation period is higher. The phase

spectrum experiences a 180◦ shift at the resonant frequency. At low current biases and thus

in the linear regime, the phase shift is continuous with frequency and has a finite slope at

resonance that is limited by the quality factor. In the nonlinear case, the phase spectrum

exhibits a discontinuity similar to the magnitude spectrum.

At different flux biases, the shape of the resonant spectrum evolves from the linear to the

nonlinear regime in different ways. Fig. 1-12 compares the results at three different flux biases

with increasing input power. At Φ = 0.5 Φo (position [C], fig. 1-10), the resonant response
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is also linear in the low power limit. As the input power increases, the resonant spectrum

becomes increasingly asymmetric. However unlike the case at Φ = 0, the magnitude and

phase spectra bend towards the higher frequency side. The bend of the resonant spectrum

towards the higher frequency side suggests that the effective inductance of the SQUID over

an oscillation period decreases at this flux bias. Finally, intermediate behavior is shown for

Φ = 0.3 Φo (position [B]).
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Figure 1-12: Evolution of the magnitude spectrum with increasing input power. The data
are shown for three different flux biases: (A) Φ = 0, (B) Φ = 0.3 Φo, and (C) Φ = 0.5 Φo

1.3.6 Comparison of simulations with experimental data

One major focus of this thesis is to understand the nonlinear behavior of the resonant

circuit due to the SQUID inductor. The magnitude and phase spectra shown in fig. 1-13

were obtained based on the analysis of a single junction. The development of the nonlinear

behavior as the drive increases is compared to the experimental data at zero flux bias. The

discontinuity observed experimentally in the resonant spectra occurs in the bifurcation region,

over which the system has multiple solutions.

To analyze the resonant behavior of an AC-driven circuit comprising a SQUID, one needs

to numerically solve the differential equations governing the SQUID consistently with the

equations governing the rest of the circuit. The numerical simulations can be difficult due to

the complexity of the set of coupled differential equations. By developing and analyzing a

series of circuit models, we showed that the resultant nonlinear behavior is due to competing
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effects from the current bias and the flux bias of the SQUID. We were able to qualitatively

reproduce the data when the nonlinear effect was dominated by the flux bias. The results

shown in fig. 1-14 are based on a circuit model where the SQUID is coupled to an external

flux source which will be described in section 5.6.
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Figure 1-13: Comparison of the magnitude and phase spectra based on the simulations of a
single junction (top) with experimental data (bottom) as a function of increasing bias.
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Figure 1-14: Comparison of simulation results with experimental data of the nonlinear spec-
tra at different flux biases. The simulations were based on a circuit model in which the
SQUID is coupled to an external flux source. The simulation results qualitatively reproduce
the evolution of the peak bending from one frequency side to another.

1.4 Organization of Thesis

This thesis is organized in the following way: the first chapter has provided some background

information on quantum computing, with an emphasis on the superconductive approach to

implement qubits. An overview of the main results in this thesis work was also presented.

Chapter 2 begins with a discussion of the Persistent Current (PC) Qubit. We will derive

the Hamiltonian of the qubit, and show that the two lowest energy states correspond to

persistent currents circulating in opposite directions of the qubit loop. We will then switch

focus to the readout of the qubit states using a SQUID magnetometer. The conventional

readout scheme will first be discussed, followed by some recent experimental results that we

obtained based on this readout approach. We then motivate and discuss the principles of

the resonant readout scheme, which is the main focus of this work.

Chapters 3 and 4 are the experimental core of this thesis. Chapter 3 describes the
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experimental implementation of the resonant readout such as the design of the on-chip

resonant circuit, as well as the measurement setup for the electronics and the cryostat. An

overview of the niobium fabrication process at MIT Lincoln laboratory will also be discussed.

We then present the experimental results of qubit readout using the resonant scheme at

300mK. Chapter 4 focuses on the characterization of the readout circuit in the nonlinear

regime.

Chapter 5 is the simulations chapter which is closely tied to chapter 4. The focus of

chapter 5 is to understand the nonlinear resonant behavior of the readout circuit. Results

from numerical simulations based on resonant circuits comprising Josephson junctions will

be presented.

Finally, we conclude this thesis work in chapter 6 by highlighting some of the main results,

and by discussing the future direction of this work.
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Chapter 2

Readout Methods for Persistent

Current Qubits

Abstract

This chapter begins with a quantum mechanical description of the Persistent Current Qubit
(PC Qubit). The logical states of the qubit are represented by oppositely circulating currents
in the qubit loop. The focus of the discussion is then switched to the readout of the qubit
state using a SQUID magnetometer. We will first discuss a conventional method in which
the SQUID is operated as a switching-current detector. Some recent experimental results
based on this readout approach will be presented. We then motivate a dispersive resonant
readout scheme where we operate the SQUID magnetometer as a flux-sensitive inductor.

43
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2.1 Persistent Current Qubit

The design of the Persistent Current Qubit (PC Qubit) was originally proposed in [30, 31].

It is a superconducting loop interrupted by three Josephson junctions, two of which have

the same critical current Ic while the third junction has a critical current scaled down by

a factor of α ' 0.8. The circuit schematic of the qubit and the picture of an actual device

are shown in fig. 2-1. The main advantage of the PC qubit over its one-junction or two-

junction counterparts is that the loop area can be made small to minimize its coupling

to environmentally induced noise. The presence of the third junction contributes to the

inductance required to map the qubit energy to a double-well potential, which otherwise

needs to be contributed by a large geometric inductance in the qubit loop [18].

φ1 φ2

( IC )
f

( αIC)

φ3

( IC )

(a)

10µmm

Qubit

Readout 

SQUID

(b)

Figure 2-1: (a) Schematics of the persistent current qubit. The symbol ‘X’ denotes a Joseph-
son junction. Junctions 1 and 2 have the same area while junction 3 is a factor of α smaller.
An external magnetic flux f threads the qubit loop and determines its operating point. (b)
Optical micrograph of a niobium qubit coupled to a readout SQUID fabricated at MIT
Lincoln Laboratory.

Each Josephson junction in the qubit loop is characterized by the variable ϕ, which is

the gauge invariant phase difference between the two superconductors on each side of the

tunnel junction. The current-phase relation and the voltage-phase relation for a Josephson

junction are given by:

I = Ic sin ϕ (2.1)

V =
Φo

2π

dϕ

dt
(2.2)
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where Φo is a flux quantum and has the value of h/2e = 2.0679 × 10−15 Wb. It can be

derived from this relation that the energy of the junction is given by:

E = EJ(1− cos ϕ) (2.3)

where EJ is the Josephson energy equal to ΦoIc/2π.

2.1.1 Hamiltonian of PC Qubit

We will now consider the energy of the PC qubit system. We choose the potential energy to

be the sum of the Josephson energies of the three junctions in the qubit loop:

U(ϕ1, ϕ2, ϕ3) = EJ(1− cos ϕ1) + EJ(1− cos ϕ2) + αEJ(1− cos ϕ3) (2.4)

During operations, one applies an external magnetic flux which threads the loop. It is con-

venient to define a parameter f = Φext/Φo, where Φo is a flux quantum. It is essentially a

normalized flux and is sometimes known as the magnetic frustration. The fluxoid quantiza-

tion relation is given by:

ϕ1 − ϕ2 + ϕ3 = −2πf (2.5)

The loop inductance of the qubit is assumed to be negligible in the fluxoid relation. Notice

that the fluxoid quantization equation relates the phases of the junctions, so the potential

energy in eqn. 2.4 is reduced to a function of two variables ϕ1 and ϕ2:

U(ϕ1, ϕ2) = EJ(2 + α− cos ϕ1 − cos ϕ2 − α cos (2πf + ϕ1 − ϕ2)) (2.6)

The potential landscape is controlled by the magnetic frustration f = Φext/Φo, as well as

the fabrication parameter α. It corresponds to a two-dimensional periodic potential for f

near 1/2 and is shown in fig. 2-2 [31]. We are mostly interested in the double well along the

Loo−Roo trajectory. The tilt of the double well is controlled by the flux f, while the classical

energy barrier ∆U is controlled by α. The kinetic energy of a particle in this double-well
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potential corresponds to the charing energy of the capacitance across the junction:

T (ϕ1, ϕ2) =
1

2
CV 2

1 +
1

2
CV 2

2 +
1

2
αCV 2

3 (2.7)

=
1

2
C

(
Φo

2π

)2

[ϕ̇2
1 + ϕ̇2

2 + α(ϕ̇2 − ϕ̇1)
2] (2.8)

where we have used the Josephson voltage relation from eqn 2.2. With a change of basis

from {ϕ1, ϕ2} to {ϕp, ϕm}, where ϕp = (ϕ1 + ϕ2)/2 and ϕm = (ϕ1−ϕ2)/2, we can write out

the Hamiltonian of the qubit as:

H(ϕp, ϕm) =
P 2

p

2Mp

+
P 2

m

2Mm

+ EJ [2 + α− 2 cos ϕp cos ϕm − α cos(2πf + 2ϕm)] (2.9)

where the momenta are given by Pp = Mpϕ̇p and Pm = Mmϕ̇m, and the masses by Mp =

(Φo/2π)22C and Mm = (Φo/2π)22C(1 + 2α).

ϕ1 / 2π

ϕ
2

/ 
2
π

Figure 2-2: Potential landscape U(ϕ1, ϕ2) of the PC qubit for f = 1
2

and α = 0.8. We
are mostly interested in the double-well potential along the Loo −Roo trajectory. Tunneling
between neighboring unit cells is suppressed for the given design parameters [30, 31].

The relative size of the potential energy compared to the charging energy of the qubit

determines its quantum mechanical behavior. This is usually measured by the ratio EJ/Ec,
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where EJ = ΦoIc/2π is the Josephson energy and Ec = e2/2C corresponds to the coulomb

energy of a single charge. For the persistent-current qubit, EJ/Ec is about 100, in which

case we can say the flux/phase variable is well-defined. For the charge-based qubits, EJ/Ec

is usually on the order of 0.1, in which case the charge variable is well-defined.

To treat the PC qubit system quantum mechanically, we define the following operators

in phase space:

ϕ̂ = ϕ (2.10)

P̂ϕ =
h̄

i

∂

∂ϕ
(2.11)

which are analogous to the position operator x̂ = x and momentum operator P̂ = (h̄/i)∂/∂x

in real space. Thus the Hamiltonian operator for the qubit can be obtained based on eqn. 2.9:

Ĥ =
−h̄2

2Mp

∂2

∂ϕ2
p

− h̄2

2Mm

∂2

∂ϕ2
m

+ EJ [2 + α− 2 cos ϕp cos ϕm − α cos(2πf + 2ϕm)] (2.12)

The 2-d Schrodinger’s equation was solved numerically for the eigenenergies and eigen-

fuctions [31]. The wavefunction can be expressed as a superposition of plane waves, but for

the analysis here in phase space, it turns out to be more natural to have the basis functions

as impulses:

Ψ =
∑

n

cnφn (2.13)

φn = δ[ϕp − ϕpo]δ[ϕm − ϕmo] (2.14)

The first five energy states and the corresponding eigenfunctions for a qubit with parameters

α = 0.7, Ic = 0.5µA are shown in fig 2-4. The expectation value of the circulating current is

given by the slope of the energy levels in flux, 〈Ip〉 = ∂E/∂f . For values of f near 1/2, the two

lowest energy states have opposite slopes, corresponding to persistent currents circulating in

opposite directions in the qubit loop. These two persistent current states are chosen as the

logical states of the qubit.
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Figure 2-3: The eigen-energies for the five lowest states of a PC qubit near f=1/2. The
parameters used were Ic ≈ 0.5 µA, α = 0.7. The energy separation E1 − Eo at f=1/2 is
around 20MHz.
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Figure 2-4: Eigenfunctions for the five lowest states at f=1/2 for Ic ≈ 0.5 µA and α = 0.7.
The ground and first excited states are symmetric and anti-symmetric combinations of the
basis states that are localized in the left and right potential wells.
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2.1.2 Tight-Binding Model

In the tight-binding model, the wavefunction of the qubit is approximated by the first two

eigenfunctions in the double-well potential along the Loo − Roo trajectory in fig. 2-2. In

the cases for f < 1/2 or f > 1/2, the double well is tilted such that one well is higher

than the other. The first two eigenfunctions in these cases correspond to states localized in

the left and right potential wells. At f=1/2, the eigenfunctions are the symmetric and the

anti-symmetric combinations of the localized states. This is illustrated in fig. 2-5.

∆U

L              RL              RL              R L           RL           R

tilt

f < 1/2 f > 1/2f = 1/2

Figure 2-5: Illustration of the double well along the Loo−Roo trajectory. The classical energy
barrier ∆U is controlled by α, and the extent of the tilt is controlled by f. The eigenfunctions
approximated by the tight-binding model are shown with the vertical shift corresponds to a
difference in eigenenergies. The occupancy in the left and right well corresponds to oppositely
circulating current states.

If we choose the basis states to be the eigenfunctions localized in the left and right well,

the Hamiltonian of the PC qubit can be written as a 2 by 2 matrix:

HPC =


 ΦoIp(f − 1

2
) −τ

−τ −ΦoIp(f − 1
2
)


 (2.15)

where Ip is the classical circulating current of the qubit, and τ is the tunnel splitting

determined by the overlap between the eigenfunctions. We recognize that eqn. 2.15 has the

same form as the Hamiltonian for any two-level systems. We will therefore continue the

discussions below in a more general sense which applies to any two-level system.
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2.1.3 Coupling between qubit states

Probability exchange between the eigenstates of a qubit or any two-level system can be

induced by energetically coupling the two states. The states can be coupled either statically,

e.g., due to overlap of their probability density through a tunnel barrier; or dynamically,

e.g., due to a time-dependent sinusoidal drive. In this section, we will discuss both static

and dynamical coupling based on the analysis in [38].

Two-level system with static coupling

We assume the wave function of a two-level system with coupling has the general form:

ψ = C1(t)φ1 + C2(t)φ2 (2.16)

where φ1 and φ2 are the basis states of the problem when there is no coupling, in which

case the amplitude is simply given by Ci(t) = Cie
−i

Ei
h̄

t where Ci = 〈φi|ψ(0)〉. Note that

the probability density |Ci(t)|2 is time-independent. It will be shown that in the presence of

coupling, |Ci(t)|2 can be a function of time. First we solve the eigenstates and eigenenergies

of the coupled system. This is given by the time-independent Schrodinger’s equation:


 −∆ V

V +∆





 C1

C2


 = E


 C1

C2


 (2.17)

where we have defined the average energy Ē = (〈φ1|Ĥ|φ1〉 + 〈φ2|Ĥ|φ2〉)/2 to be zero. In

addition, the energy difference is ∆ = (〈φ1|Ĥ|φ1〉 − 〈φ2|Ĥ|φ2〉)/2, and the static coupling is

V = 〈φ1|Ĥ|φ2〉 = 〈φ2|Ĥ|φ1〉∗. The new eigenenergies are given by:

E− = −
√

∆2 + |V |2 E+ = +
√

∆2 + |V |2 (2.18)

and the corresponding eigenvectors in terms of the original basis set φ1 and φ2 are:

ψ− =


 C−

1

C−
2


 =


 cos θ

sin θ


 ψ+ =


 C+

1

C+
2


 =


 − sin θ

cos θ


 (2.19)
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where θ is defined by

sin 2θ = − V√
∆2 + V 2

cos 2θ =
∆√

∆2 + V 2
(2.20)

The time evolution of the wave function in the new eigen-basis has the form:

ψ(t) = C−ψ−e−i
E−
h̄

t + C+ψ+ei
E+
h̄

t (2.21)

where C− = 〈ψ−|ψ(0)〉 and C+ = 〈ψ+|ψ(0)〉.

Rabi Oscillation by static coupling

Consider the case when there is finite coupling in the system, and that the wavefunction is

initialized in one of the original basis states such that ψ(0) = φ1. It can be shown that the

time evolution of the probability in the original states φ1 and φ2 is given by:

P2(t) =
V 2

∆2 + V 2
sin2 Ωt

2
(2.22)

P1(t) = 1− P2(t) (2.23)

which means that the system makes partial oscillation between the two states at a frequency

Ω, which is often referred as the Rabi frequency :

Ω =
2
√

∆2 + V 2

h̄
(2.24)

In the limit that ∆ = 0, meaning that φ1 and φ2 were degenerate, then the oscillation becomes

a full transition between the two states, where the oscillation frequency Ω = 2|V |/h̄ is only

proportional to the coupling |V |. For instance, a π-operation is achieved when ψ(0) = φ1 is

flipped to ψ(t) = φ2 at t = π/Ω.

P2(t) = sin2(
Ωt

2
) (2.25)

P1(t) = cos2(
Ωt

2
) (2.26)



52 CHAPTER 2. READOUT METHODS FOR PERSISTENT CURRENT QUBITS

f

E
-

E

2τ

E
+

f=1/2

Figure 2-6: The two-level system representation of the PC qubit. The dotted line represents
the energy of the uncoupled states. In the PC qubit notation, τ plays the role of coupling V,
and f plays the role of the energy difference ∆. The tunnel splitting causes energy repulsion
at the anti-crossing at which the uncoupled qubit states would have been degenerate.

Two-level system with dynamical coupling

Oscillation between population of the two basis states can also be caused by time-dependent

sinusoidal coupling. Consider the case when the coupling V12 = Voe
jωt is induced by a

sinusoidal source:

H =


 −∆ Voe

jωt

Voe
−jωt ∆


 (2.27)

It can be shown that if the system is initialized in the original basis state φ1, then the

probability of the system being in φ2 is oscillatory in time and is given by [38]:

P2(t) =
(2Vo

h̄
)2

(ω − ωo)2 + (2Vo

h̄
)2

sin2 Ωt

2
(2.28)

where the Rabi frequency Ω now has the form:

Ω =

√
(ω − ωo)2 +

(
2Vo

h̄

)2

(2.29)
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and h̄ωo = 2∆ corresponds to the energy difference between the uncoupled states. When the

driving frequency ω matches the energy difference ωo, the dynamical coupling is on resonance,

and there will be a complete oscillation between the two states. When the driving frequency

is detuned from ωo, then the amplitude of the oscillation falls off according to the Lorentzian

lineshape.

Dynamical coupling of Qubit states for PC Qubit

For the PC qubit, population exchange between the two circulating current states can also

be induced by a sinusoidal drive. Experimentally, the coupling is provided by an AC flux

bias applied perpendicular to the SQUID loop. While some systems such as nuclear spins

are described by Hamiltonian given in eqn. 2.27, the dynamical coupling terms for the PC

qubit come in the diagonal instead of the off-diagonal terms. Recall from eqn. 2.15 that the

Hamiltonian of the PC qubit is given by :

H =


 ΦoIp(f − 1

2
) −τ

−τ −ΦoIp(f − 1
2
)


 (2.30)

where the flux bias f is now assumed to have both DC and AC components:

f = fdc + fac cos ωt (2.31)

Let

Fdc = ΦoIp(fdc − 1

2
) (2.32)

Fac = ΦoIpfac (2.33)

Then

H =


 Fdc + Fac cos ωt −τ

−τ −(Fdc + Fac cos ωt)


 (2.34)

It can be shown that as long as the static coupling τ is non-zero, the sinusoidal term Fac

can have similar effect as an off-diagonal coupling in eqn. 2.27. This involves transforming
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the Hamiltonian first from the lab frame to an eigenvalue frame for the undriven qubit,

then to a co-rotating frame with angular frequency ω. By further using the rotating wave

approximation (RWA) and keeping only the DC terms and neglecting the 2ω components,

one can obtain an effective Hamiltonian in the co-rotating frame given by [39, 40]:

Heff =
1

2


 −2

√
F 2

dc + τ 2 − h̄ω Fac sin θ

Fac sin θ 2
√

F 2
dc + τ 2 + h̄ω


 =

1

2


 h̄(ωo − ω) h̄ωnut

h̄ωnut −h̄(ωo − ω)




(2.35)

where the frequencies are given by:

ωnut =
Fac sin θ

h̄
(2.36)

ωo = −2
√

F 2
dc + τ 2

h̄
(2.37)

and

θ = tan−1

(
τ

Fdc

)
(2.38)

The nutation frequency ωnut is equivalent to the on-resonance Rabi frequency. Comparing

eqn. 2.36 with eqn. 2.24, the AC drive does induce a static coupling of size proportional to

the amplitude of the drive as well as the angle given by the ratio τ/Fdc. If the qubit state

is initialized to be [1; 0] which is the lower-energy eigenstate in the co-rotating frame, then

the probability of the qubit in the higher energy state in the co-rotating frame is given by

P2(t) =
ω2

nut

(ω − ωo)2 + ω2
nut

sin2 Ωt

2
(2.39)

with the Rabi frequency Ω being:

Ω =
√

(ω − ωo)2 + ω2
nut (2.40)

Probability between the first and second eigenstates in the co-rotating frame oscillates com-

pletely if the drive is on resonance. It can be shown that in the lab frame, the amplitude of

the oscillation does not rotate completely even if the drive is on-resonance.
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2.2 Readout of Qubit states: Switching Current Mea-

surement

In the previous section, it was shown that when the PC qubit is biased with an external flux

near f = 1
2
, the system is analogous to a particle in a two-dimensional double-well potential,

and the two lowest energy eigenstates correspond to opposite circulating persistent currents

in the qubit loop. These opposite circulating currents are chosen as logical states of the

qubit.

To measure the state of the qubit, one recognizes that the induced flux of the persistent

current either adds to or subtracts from the external background flux. The difference in the

overall flux can be sensed by a SQUID magnetometer. Thus by inductively coupling the

qubit to a readout SQUID, the state of the qubit can be detected. The size of the flux signal

detected by the SQUID depends on the mutual inductance M between the qubit and the

SQUID, and the size of the persistent current IP within the qubit loop. The range is usually

between 0.001Φo to 0.01Φo.

|0>

|1>

I
bias

I1

I0

V
sg

Φ

I
bias V 

_

Figure 2-7: Left: The blue and red arrows represent the clockwise and counter-clockwise
circulating current states of the qubit. The qubit is inductively coupled to a SQUID magne-
tometer. The bias current of the SQUID is ramped until the SQUID switches to the voltage
state. Right: Typical I-V characteristics for the readout SQUID, which is underdamped and
has a hysteretic response. Depending on the state of the qubit, the SQUID has a different
switching current.

The conventional method to operate the SQUID magnetometer for qubit state detection

is the so-called switching current measurement. So far, this has been the primary readout
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approach used to demonstrate quantum coherence of flux qubits [17, 20]. This measurement

scheme involves direct measurement of the critical current Ic of the SQUID, which is a

periodic function of the external flux. Depending on the qubit state, the readout SQUID

senses a difference in magnetic flux which corresponds to a different switching current value.

2.2.1 Switching current of a DC SQUID
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Figure 2-8: Flux dependence of Ic for a SQUID with different loop inductances. Ic is maxi-
mum at integrals of Φo, and is minimum at half integrals of Φo. The amount of modulation
of Ic decreases when the SQUID has a larger loop inductance.

For the case when the SQUID has negligible loop inductance, the critical current Ic is

given by:

Ic(Φ) = 2Ico

∣∣∣∣cos

(
πΦext

Φo

)∣∣∣∣ (2.41)

where Ico is the critical current of a single junction, and Φext is the external magnetic flux.

When the loop inductance of the SQUID has to be taken into consideration, one has to

simultaneously solve the current continuity equation (eqn. 2.42) and the fluxoid quantization

equation (eqn.2.43):

I = Ico sin ϕ1 + Ico sin ϕ2 (2.42)

0 = ϕ1 − ϕ2 +
2πLIco

Φo

(sin ϕ1 − sin ϕ2) +
2πΦext

Φo

(2.43)
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where ϕ1 and ϕ2 are the gauge invariant phases of each Josephson junction, and L is the loop

inductance of a SQUID arm. Ic can then by obtained numerically by maximizing eqn. 2.42

with respect to one of the phase variables ϕ1 or ϕ2. The flux dependence of Ic is plotted in

fig. 2-8 for a SQUID with different loop inductances. The critical current is suppressed to

zero at half integrals of Φo only when the loop inductance is zero.

Experimentally, the measured switching current of the SQUID is always less than Ic due

to thermal noise fluctuations [41, 42, 43]. By repeating the measurements of the switching

current many times, one usually obtains a switching current distribution with a standard

deviation that decreases with temperature. A fit to the shape of the switching current

distribution can be used to extract the temperature of the device.

2.2.2 Slow measurement of qubit: recording switching current ex-

plicitly

We will first describe a slow experimental scheme to measure the switching current. At t=0,

one linearly ramps the bias current through the SQUID to a value greater than Ic. Then a

counter is used to record the time elapse it takes for the SQUID to switch from the zero-

voltage state to the finite voltage state 1. Thus in this measurement scheme, one actually

measures a switching time which is then converted to a switching current according to the

ramp rate of the bias. This is depicted in fig. 2-9. Depending on the state of the qubit, one

measures a switching time of to or t1 which corresponds to a switching current of Io or I1.

The measurement timescale is on the order of 10 ms.

The switching current measurement is then repeated 1000 times to obtain a probability

distribution, from which the average switching current is determined. Fig 2-10 shows the

typical results for the average switching current as the magnetic flux is varied. The switching

current shows a similar periodic dependence with flux as in fig. 2-8, and the periodicity

corresponds to Φo for the SQUID. At every period of 1.5 Φo, discrete jumps in the switching

current were observed, and these corresponded to a small change in flux signal produced

1The counter starts timing at t=0, and stops when the SQUID switches and thus has a voltage above the
user-defined threshold, which is set slightly below the subgap voltage of the SQUID. The counter essentially
acts as a timer and a voltage comparator.
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by the qubit. These so-called qubit steps occur near a flux bias of f ∼ 1/2 for the qubit.

Referring to the double-well potential picture in fig 2-5, as f is changed near 1/2, the qubit

has to change from one circulating current state to another in order to follow the lowest

energy state of the system. This results in an overall change in flux signal detected as a

qubit step.

Slow Measurement Scheme
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Figure 2-9: Current bias scheme for the SQUID in the slow measurement. The current is
linearly ramped to sightly above the switching current level. Experimentally, we measure
the switching time which is then converted to a switching current according to the ramp
rate. Typical timescale is on the order of 10ms.
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Figure 2-10: Typical results for the mean switching current of a SQUID versus magnetic flux
bias. The steps in the plot correspond to when the qubit changes from one classical current
state to another. The results were taken at 300 mK. This particular SQUID sample has a
relatively large Ic, thus the size of the qubit steps are more easily observed [44].
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2.2.3 Fast measurement of qubit: recording the presence or ab-

sence of a switching event

In order to follow the quantum dynamics of the qubit, one has to be able to perform qubit

readout on a timescale faster than the coherence time of the qubit. We will now describe a

fast measurement scheme which can be performed on a µs timescale. The bias scheme for

the SQUID is depicted in fig. 2-11. The current pulse is first kept at a sample current Is for

20 ns, then decreased to a hold current Ih for about 20µs. The sample current was chosen to

be between the switching currents for the two qubit states Io and I1, such that if the qubit

is in the |0〉 state, a zero output voltage or an absence of a switching event will be recorded.

On the other hand, if the qubit is in the |1〉 state, a finite output voltage or a presence of

a switching event will be recorded. Thus the switching current is not measured explicitly

at each measurement, but can be obtained after a series of measurements as Is is gradually

increased over the range between Io and I1.

Fast Measurement Scheme

Ibias

1: V=0

0: V=Vsg

I
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20ns 20 s
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time

Figure 2-11: Current bias pulse for the SQUID in the fast measurement scheme. The bias
level is first held at a high sample current Is for 20 ns, during which the presence or absence
of a switching event is determined. The bias is then held at a lower hold current Ih for 20 µs
which allows the voltage signal to be read at a slower rate.

This can be illustrated more clearly by referring to fig. 2-12, which is a zoom-in on the

qubit step region obtained from the fast measurement scheme. We will first focus on the

qubit step background and will return to the pair of spectroscopy peaks in a subsequent

discussion. This 2-d plot shows data taken over the parameter space spanned by the sample
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current and the magnetic flux bias. A dark blue data point represents the absence of a

switching event (Psw = 0), and a dark red data point represents the presence of a switching

event (Psw = 1). Since the measurements were repeated 1000 times at a given sample current

and flux bias, a switching probability Psw can be obtained anywhere between 0 and 1. This

is indicated by the color axis. On the left side of the qubit step, the qubit is in the |1〉 state

which corresponds to a high switching current I1 for the SQUID. As the sample current Is

is gradually increased from below I1 to above I1, Psw gradually changes from 0 to 1 (from

blue to red). The actual value of I1 can be extracted from the level where Psw is near 50%.

Similarly, on the right side of the qubit step, the qubit is in the |0〉 state. The probability of

switching gradually changes from 0 to 1 as the sample current passes the level of I0. Note

that Psw is the cumulative distribution function, thus the probability of switching in an

interval ∆Is can be obtained from the derivative ∂Psw/∂Is.

The state of the qubit is measured during the sampling portion of the current pulse.

The pulse was then held at Ih for a longer time so that the output voltage can be detected

through the slow signal lines. This relies on the fact that after a switching event for an

underdamped SQUID, the current bias has to be decreased to zero before the voltage is also

returned to zero (see I-V curve in fig. 2-7). Using our experimental setup as an example, the

current bias is sent down a coaxial cable with a bandwidth of about 1GHz, while the output

voltage is detected through DC signal lines.

2.2.4 Qubit spectroscopy and coherent dynamics

Spectroscopy of Qubit states

In section 2.1.3, we have discussed that population transition between the 0 and 1 states of

the qubit can be induced by an AC flux bias fac cos ωt coupled to the qubit. In particular,

when the frequency of the AC drive matches the difference between the eigenenergies of the

qubit, population will oscillate coherently between the two qubit states, and this phenom-

enon is known as Rabi oscillation. Experimentally, the amplitude of the oscillation decays

exponentially with the time constant given by the coherence time of the qubit. If the mea-

surement of the qubit is not performed within the coherence time, the transitions become

incoherent in phase, and one will observe a population of 50% in both qubit states.
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Figure 2-12: Measurement of the qubit step using the fast measurement scheme. Data were
taken at dilution refrigerator temperatures ∼ 10mK. The pair of resonance peaks corre-
spond to incoherent excitation from the ground state to the first excited state by microwave
radiation at 3.25GHz. Spectroscopy of the qubit energy band structure was obtained by
varying the driving frequency and keeping track of the flux bias at which the resonance peak
occurred [45].

Referring back to the qubit step in fig. 2-12, the pair of resonance peaks correspond

to incoherent transition between the ground state and the first excited state induced by

microwave radiation. The resonance peak occurs when the energy difference between the

qubit states is matched by the driving frequency. Note that the population in the driven

states is in fact 50% as indicated by the color scale. Spectroscopy of the qubit energy band

structure such as that in fig. 2-3 can be obtained by varying the driving frequency and

keeping track of the flux bias at which the resonance peak occurs [45]. We observed avoided

crossing in the energy band between the third and fourth excited states E3 and E4
2.

2The avoided crossing between the ground state and the first excited state cannot be observed, given that
the persistent current vanishes at f=1/2.
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Quantum coherence of qubit: Landau-Zener transitions

When the qubit is driven by a strong AC flux bias fac cos ωt, such that fac is much larger

than the dc flux bias fdc, multiple-photon transitions between the qubit states were observed.

Fig. 2-13 shows the multiple resonance peaks where the n-th peak away from the qubit

step corresponds to an n-photon transition. In this strongly driven regime, the transition

between the qubit states occurs by means of Landau-Zener transition. It can be shown

that by transforming the qubit Hamiltonian to a nonuniform rotating frame 3, the effective

Hamiltonian has the form [46]:

Heff =


 −F −τe−inωtJn(λ)

−τe−inωtJn(λ) F


 (2.44)

where F = ΦoIp(fdc − 1/2). Note that the coupling between the qubit states has a Bessel

function dependence. As a result, the area under the n-th resonance peak varies with the

amplitude of the AC drive according to the Bessel function Jn(λ), where λ is the normalized

AC amplitude given by λ = ΦoIpfac/h̄ω, and n corresponds to the number of photons. A

fit to the inhomogeneous broadening of the resonance peaks can be used to extract the

coherence time of the qubit. The relaxation time T1 and the dephasing time T2 based on the

single-photon and the 5-th photon transitions are extracted to be on the order of 10 µs and

10 ns respectively [46].

Drawbacks of the Switching Current Readout

The switching current readout operates the SQUID magnetometer as a switching detector.

By explicitly measuring the switching current of the SQUID (for the slow scheme) or the

presence or absence of a switching event (for the fast scheme), the circulating current state

of the qubit can be determined. This approach involves high current bias which is on

the order of Ic, and it switches the SQUID from the superconducting state to the voltage

state. While quantum coherence of superconducting qubits have been demonstrated using

the switching current readout, the coherence times remain short and are on the order of 0.1

3The nonuniform rotating frame has an oscillating phase of λ sin ωt, where λ is the normalized AC
amplitude given by λ = ΦoIpfac/h̄ω. Conventional rotating frame has a phase of ωt



2.2. READOUT OF QUBIT STATES: SWITCHING CURRENT MEASUREMENT 63

Magnetic flux (a.u.)

-6 -4 -2 20 4 6
0

1

C
u

m
u

la
ti

v
e

 S
w

it
c

h
in

g
 D

is
tr

ib
u

ti
o

n4.0

3.9

3.8

3.7

S
Q

U
ID

 S
a

m
p

le
 C

u
rr

e
n

t 
(a

.u
.)

Figure 2-13: Multiple resonances corresponding to multi-photon transitions between the |0〉
and 1〉 states. The n-th resonant peak away from the qubit step corresponds to an n-photon
transition. The area under the n-th peak varies with microwave amplitude according to the
Bessel function Jn(λ), where λ is the normalized microwave amplitude given by ΦoIpfac/h̄ω.

to 1 µs [17, 21, 22]. The noise introduced through the readout circuitry is believed to be

one of the most dominant sources of decoherence. When evaluating the switching current

readout approach, one generally finds the following sources of decoherence to be addressed:

1. High bias currents through the readout SQUID are associated with high level of de-

coherence. To understand this, we know that the broadband noise from the bias lines

is introduced in the current that is symmetrically divided in the two branches of the

SQUID. The qubit, on the other hand, is coupled to the circulating current in the

SQUID loop. It has been shown that the symmetric current and the circulating cur-

rent are completely decoupled at zero bias current, and that the coupling strength is

directly proportional to the size of the bias current [32]. Since the switching current

readout involves high current bias, noise is coupled strongly from the bias lines to the

qubit.

2. The switching of the SQUID to the voltage state excites a large number of quasi-

particles, which must then be allowed to relax to the superconducting state before
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another measurement can be performed. This relaxation time can be fairly long and

may restrict the repetition rate of the readout [33].

3. As the current for the SQUID is rapidly ramped to a bias level on the order of Ic

during the fast measurement scheme, it introduces higher frequency components which

are also coupled to the qubit. This may cause undesirably excitation of the qubit into

the higher energy states. For our experiments, the waiting time between subsequent

measurements is usually on the order of 1 to 10 ms to ensure the qubit is completely

relaxed and initialized in the ground state [47].

2.3 Readout of Qubit States: Resonant Circuit Mea-

surement

The resonant readout was implemented to reduce the sources of readout-induced decoherence

for the qubit. The main idea is to operate the SQUID magnetometer as a flux-sensitive

inductor, rather than a switching-current detector. It will be shown that the Josephson

inductance of a SQUID is a periodic function of the external flux. Thus, by incorporating the

readout SQUID in a high-Q resonant circuit, the state of the qubit can be determined from

the inductance of the SQUID, which in turn can be measured from the resonant frequency

of the readout circuit with high sensitivity. Similar approaches have also been investigated

by [24, 25] for the flux qubit, [27] for the hybrid qubit, and [28] for the charge qubit.

This non-dissipative approach biases the SQUID at low currents and does not require the

SQUID to switch to the voltage stage. Some of the main advantages are:

1. The low current bias reduces the coupling between the symmetric and the circulating

currents of the SQUID, hence minimizes the noise from the bias lines coupled to the

qubit and decreases the level of decoherence.

2. Given that the SQUID does not switch to the voltage state, the number of quasi-

particles is drastically reduced.
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Figure 2-14: In the resonant readout scheme, the SQUID is operated as a flux-sensitive
inductor and is incorporated in a high-Q resonant circuit. A change in qubit state is detected
as a shift in the resonant frequency of the readout circuit. The advantage of this non-
dissipative scheme is that the current bias for the SQUID can be kept significantly below
the critical current level.

3. The resonant readout approach naturally provides a narrow-band filtered electrical

environment that shields the qubit from broadband noise.

2.3.1 Josephson inductance of a DC SQUID

V(t)(t)
ext

2(t)I(t)I(t)
1(t) V(t)

Figure 2-15: Circuit schematics of a single Josephson junction (left) and a SQUID (right).

Recall a Josephson junction is governed by the current-phase relation and the voltage-

phase relation:

I(t) = Ico sin ϕ(t) (2.45)

V (t) =
Φo

2π

dϕ(t)

dt
(2.46)

where ϕ(t) is the gauge-invariant phase of the junction. The constitutive relation for an
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inductor is given by

V (t) =
d[L(t)i(t)]

dt
(2.47)

where L × i corresponds to the flux through the inductor. This definition is applicable for

the general case when the inductor is nonlinear 4. If we substitute in the current and voltage

relations from eqns. 2.45 and 2.46 into eqn. 2.47, we obtain

Φo

2π

dϕ

dt
=

d[LJIco sin ϕ]

dt
(2.48)

The Josephson inductance LJ of the junction can thus be extracted to be:

LJ =
Φoϕ

2πIco sin ϕ
(2.49)

where ϕ is given by sin−1 (I/Ico). The above derivation of the Josephson inductance can be

extended to the case of a SQUID. If we assume the SQUID has negligible loop inductance,

then it essentially behaves like a single junction with an effective gauge invariant phase ϕp

and an effective critical current Ic = 2Ico| cos(πΦext/Φo)|, where ϕp = (ϕ1 +ϕ2)/2 and Φext is

the external flux through the SQUID. The Josephson inductance of the SQUID is obtained

as follows:

LJ =
Φoϕp

4πIco cos
(

πΦext

Φo

)
sin ϕp

(2.50)

The current and flux dependence is plotted in fig. 2-16. Note that the current dependence

for the SQUID is the same as that for a single junction. While the Josephson inductance

always increases with the bias current, it can increase or decrease with the flux bias due to

the periodic dependence. A more thorough analysis of Josephson inductive elements will be

presented in section 5.1.

4Alternatively, the time-varying inductance can be defined using V (t) = L(t)(dI(t)/dt). The Josephson
inductance extracted according to this definition is LJ = Φo/(2πIco cos ϕ) which is also commonly used.
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Figure 2-16: The Josephson inductance of a SQUID is nonlinear in the current bias and the
flux bias. The inductance is different depending on the flux state of the qubit.

2.3.2 Linear RLC resonant circuit

To operate the SQUID magnetometer as a flux-sensitive inductor for qubit readout, we need

to be able to measure the change in Josephson inductance with high sensitivity. This can be

achieved by incorporating the SQUID inductor in a high-Q resonant circuit, where a change

in inductance corresponding to a transition between qubit states can be detected as a shift

in the resonant frequency.

The following analysis reviews some of the basics of a linear resonant circuit [49, 50]. As

discussed in the previous section, the SQUID Josephson inductance is in fact nonlinear with

the current bias as well as the flux bias. Nevertheless, the analysis here for linear resonant

circuits applies to the case when the bias current is low compared to the critical current, and

also provides a good starting point to illustrate some general concepts. Analysis of nonlinear

resonant circuits comprising a SQUID requires solving the differential equations governing

the SQUID as well as the rest of the circuit. This will be the main focus of chapter 5.

In fig. 2-17, the SQUID is shown as a linear inductor in a parallel RLC circuit. The

parallel configuration is chosen over its series counterpart, because one can show that the

series case is easily overdamped unless the resistance R is very small. The resistance R
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represents the parallel combination of the source and output impedances. The circuit is

driven by a sinusoidal current source.

CR
Is(t)

L
Vo(t)

Figure 2-17: A linear RLC resonant circuit in the parallel configuration.

The impedance Z(ω) of the network is given by:

Z(ω) =
1

1
R

+ j
(
ωC − 1

ωL

) (2.51)

Let the input current be Is = Im cos ωt and the output voltage be Vo = Vm cos(ωt + θ). The

output voltage is given by IsZ, from which we can see the magnitude and phase are:

Vm =
Is√

( 1
R
)2 + (ωC − 1

ωL
)2

(2.52)

θ = − tan−1 R

(
ωC − 1

ωL

)
(2.53)

The resonant frequency ωo of the circuit is defined as the frequency at which the im-

pedance is purely resistive, and is given by:

ωo =
1√
LC

(2.54)
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The quality factor Q characterizes the sharpness of the resonant peak. The following sum-

marizes several equivalent definitions of Q that are often come across:

1. For a parallel configuration, Q is defined as the ratio of the reactive to the resistance

at resonance 5:

Q =
R

ωoL
= ωoRC = R

√
C

L
(2.55)

2. Ratio of the resonant frequency to the bandwidth:

Q =
ωo

β
(2.56)

where the bandwidth β is the frequency range at which the amplitude of the output

voltage is Vm/
√

2. For a parallel circuit, β is given by 1/RC

3. Ratio of the total energy stored in the capacitor and the inductor to the dissipated

energy in the resistor over a cycle:

Q = 2π

(
CI2

mR2/2

I2
mR/2fo

)
(2.57)

4. In the time domain, Q is related to the ringing time required for the circuit to reach

steady state. A resonant circuit grows or decays to 1/e ∼ 37% of its steady state

amplitude in Q/π cycles. For a resonant readout circuit with fo at 500MHz and a Q

of 1000, the time for it to reach 1/e of its steady state amplitude is:

τ =
Q

π

1

fo

= 0.6µs (2.58)

5For a series configuration, Q is defined as the ratio of the resistance to the reactance
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Q-enhancement of resonant currents

Consider the current through the inductor and the capacitor at resonance:

Ic =
V

Zc

= jωoCRIm = jQIm (2.59)

IL =
V

ZL

=
ImR

jωoL
= −jQIm (2.60)

Note that the currents through C and L are equal in magnitude and 180o out of phase.

Therefore at resonance, while the current from the source entirely flows through the resistor,

there is a large amount of “stored” current which circulates in the resonating loop. The

amplitude of this circulating current is Q times the source current.

Effect of Q on the phase spectrum

The quality factor Q defines the sharpness of the magnitude spectrum of the output voltage.

We will now comment on the effect of Q on the phase spectrum. First, we can rewrite

eqn. 2.53 in terms of Q and ωo:

θ = − tan−1

(
ω2 − ωo

ωωo

)
Q (2.61)

dθ

dω
|ω=ωo = −2Q

ωo

(2.62)

The slope of the phase spectrum at ωo is thus related to Q. As the Q of the circuit

increases, the slope at ωo becomes sharper. The effect of Q on the magnitude and phase

spectra is illustrated in fig. 2-18.
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Figure 2-18: Left: The magnitude spectrum of the output voltage. Q is defined as ωo/β,
where the bandwidth β is the frequency range at which the amplitude of the output voltage
is dropped by 1/

√
2. Right: The effect of Q on the phase spectrum. As Q increases, the

slope of the spectrum at ωo increases. (Q3 > Q2 > Q1)

2.3.3 Measurement scheme for Resonant Readout

The resonant readout circuit is essentially a parallel RLC resonant circuit with the inductor

replaced by a SQUID magnetometer. The Josephson inductance of the SQUID is nonlinear

with the current bias as well as the flux bias. Upon a change in the state of the qubit, the

corresponding change of the Josephson inductance causes a shift in the resonant frequency,

which can be detected as the qubit signal.

Experimentally, the resonant frequency can be directly measured with a spectrum/network

analyzer. This measurement scheme is especially useful in the initial stage when the resonant

behavior of the readout circuit is to be characterized. This will be the main focus of chap-

ter 3. An alternative measurement scheme is to bias the readout circuit at a single frequency

near the resonant frequency. As illustrated in fig. 2-19, rather than detecting the qubit signal

as a shift in the resonant frequency, it is detected as a difference in the magnitude or phase

of the output voltage. This measurement scheme allows the readout to be carried out on a

faster timescale. The time-resolved scheme will be revisited in chapter 6.
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|V|
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|0 |1
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|0 |1
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Figure 2-19: Measurement scheme for the resonant readout. The change in resonant fre-
quency can be sensed as a change in the magnitude or phase of the output voltage at a
frequency bias fb. This provides a faster readout then measuring the resonant frequency
with a spectrum/network analyzer.

2.4 Summary

In this chapter, we have focused on the two readout methods for the persistent current

qubit. The conventional switching current measurement detects the qubit state by directly

measuring the switching current, or by detecting the presence or absence of a switching event.

The spectroscopy of qubit states as well as Landau-Zener transitions between the qubit states

were demonstrated. Yet, the drawbacks of the switching readout scheme motivates the need

for a dispersive readout scheme. The proposed resonant readout operates the SQUID as

an inductor, and the qubit states are detected as a change in the Josephson inductance,

and thus a shift in the resonant frequency of a resonator. We will present the experimental

realization of the new resonant readout in the next chapter.



Chapter 3

Experimental Realization of the

Resonant Readout

Abstract

In this chapter, we present the experimental realization of the resonant readout for qubit
measurements. The resonant circuit was designed to operate at RF frequency. The on-
chip fabrication parameters for the circuit elements will also be presented. The sample was
measured at 300mK, and the experimental results confirmed the sensitivity of the resonant
readout to distinguish the two classical qubit states as a shift in the resonant frequency.

73
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3.1 Design of Resonant Readout Circuit

3.1.1 Resonant circuit design criteria

In the resonant readout scheme, the SQUID magnetometer is operated as an inductor and

is incorporated in a resonant circuit. The qubit states are distinguished as a shift in the

resonant frequency of the readout circuit. We will begin this section by discussing the

circuit design of the resonant circuit. In particular, the three main considerations for the

design are the resonant frequency, the quality factor of the resonance, as well as the size of

the Josephson inductance of the SQUID.

Resonant Frequency of the readout circuit

The resonant frequency of the readout circuit should be designed such that it is away from

the frequencies which can cause undesired qubit transitions. This is particularly true since

the readout circuit will be driven near its resonant frequency. Ideally, the resonant frequency

should be lower than the frequency corresponding to the tunnel splitting between the ground

and first excited states of the qubit. The tunnel splitting is usually around 1GHz, which sets

the upper bound for the design. At the same time, the frequency cannot be set arbitrarily

low, as it would require a large resonating capacitor which could be challenging to implement

on-chip. Based on these considerations, the resonant frequency was chosen to be 500 MHz,

which is in the radio frequency (RF) regime.

Quality Factor: RF impedance transformation & impedance matching techniques

Considering that the qubit signal is to be detected as a shift in the resonant frequency,

the resonant circuit should be designed with a high quality factor to achieve high readout

sensitivity. Recall that the quality factor Q for a parallel RLC circuit is given by:

Q = R

√
C

L
(3.1)

Thus the higher the effective resistance, the higher the quality factor. Our readout circuit

design does not require any resistors, thus the effective resistance is simply given by the
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parallel combination of the input and the output impedances of the measurement electronics.

Given that the typical impedance of RF electronics is 50 Ω, the resulting quality factor could

be very low without any transformation network. This is usually referred to as the loading

effect.

The loaded-Q of the circuit can be increased by employing RF transformation techniques

to step up the effective resistance as seen by the resonant circuit [51, 52]. The transformation

network is usually designed for a particular frequency of interest, and thus the performance

is expected to drop as the operating frequency moves away from the design frequency. For

our design, we have employed the tapped-inductor transformer on the output side of the

circuit. In fig. 3-1, RL represents the load impedance from the output electronics such as an

amplifier. It can be shown that the load resistance RL is transformed to a higher effective

resistance RT according to the ratio of the inductances:

RT = RL

(
L1 + L2

L2

)2

(3.2)

LT = L1 + L2 (3.3)

The above equations are valid in the limit that the Q of the circuit is much larger than 1. In

the general case, the expressions are more complicated, and the full derivation can be found

in appendix A.

L1

RL
L2

tapped-inductor

LT
C C RT

equivalent

Figure 3-1: Illustration of the tapped-inductor transformer and its equivalent circuit. The
load resistance RL to stepped up to a higher effective resistance RT according to the ratio
of the inductances L1 and L2.
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While the load impedance is transformed from 50 Ω to a higher resistance RT according

to the tapped-inductor transformer, the input impedance is yet to be matched for maximum

power delivery. Recall that for DC circuits, maximum power is transferred to the load

when the source resistance is equal to the load resistance. For AC circuits, maximum power

transfer occurs when the source impedance is matched to the complex conjugate of the load

impedance. Here, the design is simpler since the impedances to be matched are real. We

have employed an L-match impedance network to match the 50 Ω source resistance to the

transformed output resistance RT . The name of the network is given for its L-configuration in

the circuit schematic. Like the impedance transformer, the matching network is also designed

at a particular frequency, which is chosen to be the resonant frequency of the circuit. Fig. 3-2

shows the schematic of the readout circuit with the matching network incorporated. The

output side has been replaced by the equivalent circuit for the tapped-transformer.

Vin(t)

L-match

network
50

LT RT Vo
C

Figure 3-2: Schematic of the readout circuit with the matching network incorporated. The
output side has been replaced by the equivalent circuit for the tapped-transformer. An
L-match impedance matching network is shown.

In summary, we have employed the impedance transformation and impedance matching

networks to increase the effective resistance of the resonant circuit near the resonant fre-

quency, and thereby raising the loaded quality factor. It should also be kept in mind that

while a high-Q resonance provides a high readout sensitivity, yet the circuit will require a

longer response time to reach steady state. The response time of the readout circuit should

be shorter than the coherence time of the qubit.
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Typical values for the SQUID Josephson inductance

Recall that the Josephson inductance LJ of a SQUID is nonlinear, and its value changes

with the current and flux biases through the SQUID. For circuit design purposes, it is useful

to estimate LJ by:

LJ =
Φo

2πIc

(3.4)

=
Φo

2π(2Ico)
=

Φo

4πJcA
(3.5)

where Ico is the critical current of a single junction and is determined by the fabrication

parameters Jc and A, which in turn are the critical current density and the area of the

junction, respectively. Note that LJ is inversely proportional to the critical current Ic. For

our fabrication parameters, Ic is typically between the range of 1 to 10 µA, which corresponds

to LJ between 0.03 nH to 0.3 nH. Since the shift in the resonant frequency corresponding to

the qubit signal is proportional to the absolute change in the inductance value, one may

want to maximize LJ by pushing for the smallest junctions available in a fabrication run.

However at the same time, the size of the critical current determines the upper bound of

the bias current through the SQUID. Thus one should also be aware that measurements for

SQUIDs with small critical currents have a smaller signal to noise ratio.

3.1.2 Actual circuit design for Resonant Readout

One of the actual designs for the resonant readout circuit is shown in fig. 3-3 [35]. The

resonant frequency was designed to be 500MHz with a loaded quality factor of 150. The

SQUID was approximated by a linear inductor of LJ = 0.2 nH. In this circuit design, the

resonating loop is formed by LJ , the bias inductor L2, and the parallel combination of C1

and C2. Rs and RL represent the 50 Ω input and output impedances from the RF electronics,

and no resistors were fabricated on-chip. The tapped-inductor transformer formed by L2 and

LJ steps the output resistance from 50 Ω to 1 kΩ at the resonant frequency. On the input

side, L1 and C1 forms an L-match network which matches the 50 Ω source resistance to the

transformed output resistance. To reduce the plasma frequency of the SQUID, each junction
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L1

C1 C2

L2

L-match tapped-inductor

RS

RL

Figure 3-3: Actual circuit design for the resonant readout readout. The SQUID was ap-
proximated by a linear inductor LJ . L1 and C1 are part of the L-match network, while L2

and the SQUID LJ form the tapped-transformer. The component values are LJ = 0.2 nH,
L1 = 69nH, L2 = 0.78 nH, C1 = 1.4 pF, and C2 = 100 pF. The junctions of the SQUID are
each shunted by a 5 pF capacitor (not shown). The components within the dotted box were
fabricated on-chip.

is shunted by a 5 pF capacitor. The simulated circuit response is shown in fig. 3-4. The size

of the qubit flux signal is estimated to be 10 mΦo, which corresponds to a shift of 1MHz in

the resonant frequency.

It should be mentioned that the bias inductor L2 was included in the design for two

purposes. First, it is part of the tapped-inductor transformer. Second, given the small

value of LJ , keeping the resonant frequency near 500 MHz without the bias inductor would

have required a large capacitor which could be challenging to implement on-chip. However,

the presence of L2 is expected to reduce the sensitivity of the resonant frequency upon a

change in the flux signal. This is because LJ now contributes to only a fraction of the total

inductance in the resonating loop, and the change in overall inductance is now given by

∆LJ/(LJ + L2), where ∆LJ is the change in the Josephson inductance due to the measured

flux change.

On-chip versus Off-chip implementations

There are two approaches to realize the resonant readout circuit. One approach is to have

the qubit and SQUID fabricated on-chip, and the rest of the reactive elements implemented
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Figure 3-4: Simulated transfer function for the circuit schematic in fig. 3-3. The resonant
frequency is designed to be 500MHz, and the quality factor is 150. The size of the qubit
flux signal is estimated to be 10 mΦo, which corresponds to a shift of 1MHz in the resonant
frequency [35].

off-chip with surface mount components. The off-chip approach is more conservative as it

only requires the SQUID and qubit to yield. However, the RF performance of the resonant

circuit is expected to be affected by circuit parasitics from the surface mount components,

or wirebond and solder connections between the chip and the off-chip components.

For better RF performance, an alternative approach is to have the complete resonant

circuit fabricated on-chip. Not only that circuit parasitics can be drastically reduced, one

can also benefit from the high quality factor of the capacitors and inductors fabricated

out of superconductors. However, this was a more aggressive approach as it relied on the

reactive elements (as well as the Josephson elements) to yield and that their circuit values

be reasonably close to the design.

It should be noted that the capability to fabricate capacitors and inductors on the same

chip as the Josephson junctions is a major advantage of the niobium fabrication process.

On the other hand, aluminum samples are fabricated using the shadow evaporation process

which does not support via structures, and thus making it infeasible to implement spiral

inductors.
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3.1.3 Superconducting Device Fabrication

The superconducting devices measured within the scope of this thesis were fabricated in a

planarized niobium trilayer process at MIT Lincoln Laboratory [53]. The particular fabri-

cation run in which the resonant readout samples were fabricated is referred to as QC4.

The following is a brief description of the different layers available in the process for circuit

design. The cross section of the chip is shown in fig. 3-5.

M5 Nb

I3 

via

M4 Nb

M2 Nb

M3    Nb/Al/AlOxI2 via

R1 Pt/Ti

SiO  500nm2

Si

SiO  400nm2

SiO  600nm2

M6 

Au/Pd/Ti

Figure 3-5: Cross section of the finished chip for the QC4 process, showing the deposition
of the different layers. The Josephson junctions are defined by M2 and M3; capacitors are
defined by M2 and M4, and the spiral inductors are realized in M2 [53].

M2 is a superconducting layer made out of niobium. It generally serves as a lower wiring

layer. This layer forms the base electrode of the Josephson junction and the base

electrode of a capacitor. The specifications for M2 allows a smaller spacing between

adjacent features than other wiring layers, and thus is also a good choice for laying out

spiral inductors.

M3 is also a superconducting layer. It defines the area of the junction and serves as its

counter electrode. The aluminum oxide layer (AlOx) which is the tunneling barrier
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of the junction is defined between M2 and M3. After M3 is deposited, the junction

is anodized and protected by a NbOx layer. This anodization process improves the

uniformity of the current density Jc [34].

M4 is a superconducting layer which serves as the middle wiring layer. It is used to connect

the integrated circuit elements to the contact pads. M4 is also used as the upper

electrode of a capacitor.

I2 is the first via layer which allows contact between M2 and M4. When defining the wiring

for a Josephson junction or a capacitor, a via in I2 is always needed to get contact

with the bottom electrode M2.

R1 is the resistor layer made out of 90% platinum and 10% titanium in thickness.

M5 is a superconducting layer generally used as a ground plane. For our designs, ground

planes are not included such that external magnetic field can be coupled to the samples.

I3 is the second via layer which allows contact between M4 and M5.

M6 defines the gold contact pads

The main descriptions and the thicknesses of the layers are summarized in the following

table:

Layer Thickness [nm] Description Minimum feature

size [µm]

M2 150 Nb Base electrode of junction 1.0

M3 250 Nb/2AlOx/5Al Counter electrode of junction 0.7

M4 250 Nb Wiring layer 1.0

M5 400 Nb Wiring layer/ optional ground plane 1.0

M6 50Au/400Pd/35 Ti Gold contact pad 10

R1 90Pt/10 Ti Resistor 2.5

I2 – via between M2 and M4 0.8

I3 – via between M4 and M5 1.0
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3.1.4 Fabrication Parameters for on-chip circuit elements

This section summarizes the fabrication parameters for the circuit elements in fig. 3-3. The

parameters were based on a critical current density Jc of 1.5 µA/µm2 for the QC4 fabrication

run1. For our designs, we have assumed that the actual dimensions of the Josephson junctions

are smaller than the layout dimensions due to an effect called “undercutting”. The range of

the undercut is expected to be between 0.2− 0.6 µm, and we have assumed an undercut of

0.4 µm for our designs.

PC Qubit and SQUID Parameters

The fabrication parameters for the PC qubit and the SQUID are summarized in the tables

below. The Josephson junctions were defined by the M2 and M3 layers. For the PC qubit,

two of the junctions have the same size with layout dimensions of 1.0 × 1.0 µm2. The third

junction is smaller with layout dimensions of 0.9 × 0.9 µm2. The junction capacitance is

assumed to be 50fF/µm2. In the summary table, the expected dimensions are based on a

0.4µm undercut, and the estimation of α, EJ , and Ec are based on the expected dimensions

of the small junction and a Jc of 1.5 µA/µm2. The junctions of the SQUID are laid out to be

1.5× 1.5 µm2. The linewidths of the qubit and SQUID loops are both 0.8µm. The self and

mutual inductances of the qubit and the SQUID are calculated using FASTHENRY which

is a three-dimensional inductance extraction program [54].

Qubit Parameters

Large Josephson junction layout: 1× 1 µm2

(expected: 0.6× 0.6 µm2)

Small Josephson junction layout: 0.9× 0.9 µm2

(expected: 0.5× 0.5 µm2)

Loop area 18.0 × 18.0 µm2

Loop inductance 55 pH

α 0.7

EJ = ΦoIco/2π 1.2× 10−22J

Ec = q2/2C 1.0× 10−24J

EJ/Ec 120

1The actual critical current density was later measured to be 1.2 µA/µm2 based on process testing results
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SQUID Parameters

Josephson junction layout: 1.5× 1.5 µm2

(expected: 1.1× 1.1 µm2)

Loop area 20.8 × 20.8 µm2

Loop inductance Ls 65 pH

Josephson inductance LJ = Φo/(2πIc) 0.2 nH

βL = 2πLsIc/Φo 0.35

Mutual inductance M to qubit 30 pH

Ratio of SQUID to Qubit loop areas 1.3

Spiral Inductors

The inductors were implemented with square spirals in the M2 layer. The linewidth and

the inter-winding spacing of the spirals are 1 µm. The value of the inductors was estimated

using the simulation program FastHenry. The layout of a 69 nH inductor is shown in fig. 3-6.

Some useful strategies for designing spiral inductors can be found in [55, 56].

69nH inductor

Figure 3-6: Layout of a square spiral with estimated inductance of 69 nH. The linewidth and
inter-winding spacing are both 1µm.

Capacitors

The capacitors were made out of Nb electrodes using the M2 and M4 layers. The dielectric

consists of 50 nm of Nb2O5 and 200 nm of SiO2 with the layers being on top of each other. We

can estimate the overall capacitance by treating the dielectric as two capacitors in parallel.

Nb2O5 has a dielectric constant of εr = 42, which is much larger than the dielectric constant
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of silicon εr = 3.9. Thus the capacitance is dominated by the contribution from SiO2. The

estimated capacitance/area is 0.17 fF/µm2.

Overall circuit layout

The layout of the overall resonant circuit is shown in fig. 3-7. The configuration of the layout

is very similar to the circuit schematics in fig. 3-3. Each color represents a layer definition.

The spiral inductors are shown in yellow (M2) and the capacitors are in yellowish green

(M2+M4). We have laid out two SQUIDs next to each other, but only one of the SQUIDs

is connected for a given chip by means of two supplementary wiring layers. Waveguide

structures were not incorporated on-chip due to limitation in chip space, but were included

in the PCB board to which the chip is mounted. For completeness, a optical micrograph of

an actual device is also shown.

capacitors

Spiral inductors

200 µ m

Qubit &

readout SQUID            

Chip Layout:

Optical micrograph of actual sample:

capacitor

Figure 3-7: Top: Layout of the resonant readout circuit as shown in the XIC design tool.
The SQUID and qubit structures are located between the two square capacitors. Bottom:
optical micrograph of an actual fabricated device.
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Development of the deep sub-micron (DSM) process

Since the QC4 process, Lincoln Laboratory has recently developed a deep sub-micron (DSM)

process which supports smaller Josephson junctions with minimum layout dimensions of

200 nm. This corresponds to a minimum electrical feature size of less than 100 nm after

process bias. In addition, spiral inductors with 0.5 µm linewidth and inter-winding spacing

have also been demonstrated. The process also supports two kinds of capacitors: a low-k

dielectric capacitor with SiO2 (εr ∼ 4) and a high-k dielectric capacitor with NbOx (εr ∼ 40)

[57].

3.2 Measurement Setup

3.2.1 Cryostat

Most of the data presented in this chapter were measured in a sorption pumped helium-3

cryostat (Oxford Heliox) at MIT Lincoln Laboratory. The cryostat has a base tempera-

ture of 253mK. Typically, the temperature rises steadily from 253mK to 258mK over the

course of 3 days, at which point the cryostat has to be re-condensed in order to reach base

temperature. This allows a reasonable time period for systematic measurement scans to

be completed within a single cool-down. At temperatures near 300 mK, the thermal en-

ergy is large compared to the energy separation of the qubit states under consideration, i.e.

kBT À hν, where kB is the Boltzmann constant and ν is the frequency of transition between

the 0 and 1 states. Thus the energy of the qubit is not expected to be quantized for these

measurements, and the two qubit states correspond to classical persistent current states in

the qubit loop.

The helium-3 cryostat is equipped with 2 semi-rigid coaxial cables for RF measurements,

as well as 4 soft-coax lines for shielded DC measurements. The schematic representation of

the signal lines in the cryostat is shown in fig. 3-9.
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Figure 3-8: Schematic of the electronic setup at the different temperature stages of the Heliox
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for characterization of the sample as well as external magnetic flux bias.
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RF coaxial cables: attenuators as thermal anchors and for noise reduction

The RF coaxial cables are equipped with SMA connectors and have a 20GHz bandwidth.

They were installed with attenuators at the 1K and the 300mK temperature stages. In-

stalling attenuators on the coax at certain temperature stages of the cryostat is a standard

technique to ensure proper thermalization. While the outer conductor of the coax is usually

well-anchored and thermalized, the cooling of the inner conductor happens by means of con-

duction through the dielectric of the coax. Typical dielectric such as teflon tends to contract

more than the outer conductor at low temperatures and thus provides poor thermalization

for the inner conductor. Attenuators are essentially resistive network which link the inner

and outer conductors both electrically as well as thermally.

The second purpose of installing the attenuators at cryogenic temperatures is to reduce

Johnson-Nyquist noise (or thermal noise) generated by room-temperature electronics. Recall

that the Johnson noise power is given by

Pn = 4kBT∆f (3.6)

or equivalently the root-mean-square (r.m.s.) voltage/current across a resistor R due to

thermal noise are:

Vn =
√

4kBTR∆f In =

√
4kBT∆f

R
(3.7)

where kB is the Boltzmann constant, and ∆f is the bandwidth. While the resistors in the

attenuators can also introduce thermal noise, the level of noise is smaller given that the

attenuators are at a colder temperature. The amount of attenuation required at a certain

temperature stage Ta can be estimated by:

dB = 10 log
Tb

Ta

(3.8)

where Tb is the previous, higher temperature stage. The following table summarizes the

attenuation between common temperature stages for a helium-3 cryostat and a dilution

refrigerator. One can provide more attenuation to further improve the noise as long as
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(1) the cryostat has enough cooling power at that certain temperature stage to handle the

dissipation from the attenuator; and (2) if the attenuators are mounted on the output lines,

that the output signal is still large enough to be detected after the attenuation.

Ta Tb Attenuation

300K 1K -25 dB

1K 300mK -5 dB

1K 10mK -20 dB

The inner and outer conductors of the cables were made out of stainless steel (instead of

copper) to reduce thermal conduction between the room temperature and base temperature

stages. Stainless steel is a poor conductor, and for our setup, there is in fact an additional

10 dB attenuation distributed along the cable at 500MHz. Alternatively, one may choose

beryllium-copper as the inner conductor for better electrical conduction.

DC signal lines

While the two RF cables were used for the resonant readout, two of the DC lines were

used to characterize the I-V properties of the SQUID junctions, and to provide an optional

DC bias to the SQUID during the readout. The remaining two DC lines were used for the

external magnetic flux bias. The DC lines were filtered with copper powder filters at the

300mK stage [58, 59]. These are custom-made microwave filters that are used at cryogenic

temperatures. A copper powder filter is essentially made out of a long wire which is wound in

a coil surrounded by stainless steel or copper powder. The oxide on the powder provides the

shunting capacitance, while the coil provides the series inductance. The filters have low-pass

characteristics, with typical cutoff frequencies between 50MHz to 1 GHz. The maximum

attenuation stays below -100 dB at least up to 20GHz.

A bias-tee was mounted at the He-3 stage to combine the RF and DC signals before

sending them to the device. It should be noted that the soft-coaxes were made out of high

resistive material, and undesired heating effect was observed in the data when large bias

currents were sent down the magnet lines.
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RF package for housing sample

The sample was mounted on a chip carrier, which in turn is soldered on a printed-circuit

board (PCB). The PCB substrate uses the standard FR-4 as a dielectric with εr = 4.5 at

500MHz. Coplanar-waveguide structures were incorporated on the PCB board. The sample

was housed inside a flat cylinder which acts as an RF package. The largest dimension of the

package is the diameter of the cylinder which is 3 cm, and this dimension corresponds to a

wavelength of 10GHz. Low frequency noise below half of this wavelength (5GHz) should

be shielded out by the package. Thus the dimension of the package is small enough for our

purpose, given that the frequency of interest is around 500MHz.

A superconducting magnet coil was wrapped around the outside of the RF package to

provide the external flux bias.

3.2.2 RF Electronics

The RF electronics were set up to measure the transmission characteristics of the resonant

readout circuit. We used a spectrum analyzer 2 equipped with a tracking generator to mea-

sure the magnitude spectrum of the resonant circuit, while the phase spectrum was measured

with a network analyzer 3. We preferred the spectrum analyzer over the network analyzer

for magnitude measurements, given that the spectrum analyzer typically has a better noise

figure and is more advantageous to detect small signals. The transfer characteristics of the

resonant circuit were obtained by sweeping the source frequency over a span of 0.6 MHz

around the resonant frequency. To improve the signal to noise ratio, we used a narrow res-

olution bandwidth (RBW) typically of 3 kHz, and averaged each spectrum 100 times. The

signal from the resonant circuit was then amplified at room temperature with a low noise

amplifier 4 with a gain of 50 dB and a noise figure (NF) of 1.45 dB at 500MHz. The external

magnetic flux bias was provided by a DC current source 5.

2Agilent E4407B ESA series Spectrum Analyzer, 9 kHz to 26.5GHz
3HP 8720B Network Analyzer, 130 MHz to 20 GHz
4MITEQ Inc., model no. AM-1309
5Yokogawa Corporation of America, DC source model 7651
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3.3 Experimental Results

3.3.1 Observation of resonant characteristics

We measured the transmission characteristics of the readout circuit at 300mK. Typical mag-

nitude and phase spectra are shown in fig 3-10. Based on a Lorentzian fit to the magnitude

spectrum near resonance, the resonant frequency for this particular spectrum is extracted to

be 419.69MHz with a quality factor of 7000.

Based on the circuit design, the expected resonant frequency was 500MHz, and the

expected Q was 150. Thus the actual resonant frequency is lower than the expected resonant

frequency, while the quality factor is more than 10 times larger. This was likely due to

discrepancies between the actual and estimated values for the on-chip reactive elements.

In particular, the high quality factor could be resulted if the spiral inductor which forms

part of the tapped-inductor transformer is two to three times larger than the simulated

value. However, one cannot determine the actual value of the elements without separate test

structures.

Fig. 3-11 shows a typical magnitude spectrum displayed on the spectrum analyzer. This

particular spectrum was measured at a higher input power. The log plot reveals an anti-

resonance dip which occurs near the resonant peak. As a result, the resonant spectrum

appears to be tilted. The anti-resonance could be due to parasitic capacitive coupling be-

tween the input and output ports on the PCB substrate. The size of the anti-resonance dip

becomes more prominent with higher input power.
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Figure 3-10: Typical magnitude and phase spectra of the readout circuit measured with
a network analyzer. The inset shows a Lorentzian fit to the magnitude spectrum near
resonance. The resonant frequency for this particular spectrum is extracted to be 419.69MHz
with a quality factor of 7000.
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Figure 3-11: A typical magnitude spectrum of the readout circuit as displayed on the spec-
trum analyzer. An anti-resonance dip was observed near the resonant peak. The size of the
anti-resonance dip becomes more prominent with higher input power.
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3.3.2 Readout of Qubit states

When an external DC magnetic field was applied through the SQUID, we observed a mod-

ulation of the Josephson inductance, which in turn was manifested as a modulation in the

resonant frequency of the readout circuit. The resonant frequency shows a periodic depen-

dence with flux, and the periodicity corresponds to Φo for the SQUID. The results are shown

in fig. 3-12.

At every 1.3 times the SQUID modulation period, a shift in the resonant frequency

is observed. These so-called qubit steps represent a qubit transition between oppositely

circulating current states, and occur near flux biases of half a flux quantum or f = 1/2 for

the qubit. As the flux is swept pass f = 1/2, it is more energetically favorable for the qubit

to change from one circulating current state to another in order to stay in the ground state.

The periodicity of the qubit steps (corresponding to a flux quantum for the qubit) and the

periodicity of the SQUID lobes (corresponding to a flux quantum for the SQUID) are related

by the ratio of their loop areas, which was defined by the fabrication parameters.
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Figure 3-12: The lower plot (left axis) shows the modulation of the resonant frequency with
external magnetic field. Qubit steps are found at 0.18mA and -0.495mA. The upper plot
(right axis) shows the corresponding peak power of the resonant spectrum. The dips in peak
power coincide with the qubit steps. The input power was -62dBm. For this particular
magnet coil, the magnet current to flux conversion was 0.051mA/Φo.
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Fig. 3-12 also shows that near the qubit step region, the peak power of the resonant

spectrum decreases (red plot). The dip in the peak power corresponds to broadening of the

resonant spectrum. In fact, the size and the feature of the dip vary with the input power for

the readout circuit. This will be re-visited in the next section. It should also be mentioned

that the parabolic-like background observed in the frequency modulation curve in fig. 3-12

was due to undesired heating from the magnet current in the soft coax lines. The heating

effect causes an increase in the resonant frequency, and is more significant at high magnet

current biases.

Zoom-in on qubit steps
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Figure 3-13: Dense scan near the qubit step at -0.495mA (left) and 0.18mA (right). The
step at 0.18mA corresponds to a frequency shift of ∆f = 40 kHz at position (b), while the
step at -0.495mA corresponds to a shift of of ∆f = 20 kHz at position (c). The feature at
position (a) is reproducible and can only be seen in this particular qubit step.

We performed a dense scan near the qubit steps at -0.495mA and 0.18 mA with a higher

resolution in magnet current. This is shown in fig. 3-13. The step at 0.18mA corresponds

to a frequency shift of ∆f = 40 kHz at position (b), while the step at -0.495 mA falls on a

less sensitive region of the SQUID modulation curve and corresponds to a change of ∆f =

20 kHz at position (c). We estimated the coupled flux to the SQUID due to the circulating

current of the qubit to be MIp, where M is the mutual coupling between the SQUID and
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the qubit, and Ip is the circulating current estimated by the critical current of the smaller

junction. The qubit states will be separated by twice this flux signal, which is estimated to

be 0.01Φo based on the fabrication parameters. From the experimental data, we extracted

the flux signal to be 0.02 ± 0.005Φo, which is reasonably close to the expected value. The

corresponding change in the Josephson inductance is estimated to be 2 pH (1% change).

Referring to fig. 3-13, the qubit step at 0.18mA shows some distinct feature at position

(a) which was not observed at the other step. While the origin of this feature was not fully

characterized and understood, it could be due to inter-well resonant tunneling to the higher

energy levels of the qubit as observed in [21].

Comparison with dilution refrigerator data

The data presented so far were measured at 300 mK. We have also performed similar measure-

ments at dilution refrigerator temperatures ∼ 10mK, and the results are shown in fig. 3-14.

The purple plot shows the flux-dependence of the resonant frequency from the resonant read-

out using the RF signal lines, while the red plot shows the flux-dependence of the SQUID

switching current measured with the DC lines. Comparing the results from the two read-

out methods, we first found that the qubit steps were observed using the resonant readout,

but the switching current measurement was not sensitive enough to detect any qubit steps.

Second, the periodicity of the switching current modulation is 0.96 times smaller than the

periodicity of the frequency modulation. This was accountable for the overall shift between

the two plots in the current axis. The reason for this difference in periodicity is not fully

understood.

Finally we shall compare the resonant readout data at 10mK in fig. 3-14 with the 300mK

results in fig. 3-12. The maximum amount of frequency modulation for both sets of data is

around 0.4 MHz (419.3 - 419.7 MHz vs. 418.55 - 418.85MHz). However there is an overall

shift of 0.75MHz in the resonant frequency. This could be due to the difference in the

temperatures, or due to the different experimental setup. The parabolic background due to

undesired heating in the helium-3 cryostat was no longer evidenced in the dilution refrigerator

data.
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Figure 3-14: Comparison between the two readout methods at 10mK. The qubit steps were
observed using the resonant readout (purple plot) but not the switching current readout (red
plot). For this particular magnet coil, the magnet current to flux conversion is 4.51mA/Φo

based on the frequency modulation data, and is 4.32mA/Φo based on the switching current
modulation data. The periodicity for the latter is 0.96 times smaller.

2d and 3d Frequency modulation graphs with shape of resonant spectrum

So far, we have been focusing on the detection of the qubit state by keeping track of the

resonant frequency of the readout circuit. For completeness, we will now show the flux-

modulation of the overall resonant spectrum. Figs. 3-15 and 3-16 are from the same set

of data as in fig. 3-12. A slice along the frequency axis corresponds to a single resonant

spectrum at a certain flux bias. The amplitude of the spectrum is indicated by the color

axis. The location of the qubit steps are more clearly indicated by the dip in the peak power

or equivalently the broadening of the spectrum. In addition, it can be seen from the plots

that the shape of an individual resonant spectrum is similar to the one shown in fig. 3-11,

with an anti-resonance dip occurring near the resonant peak. The anti-resonance effect also

accounts for the general tilt of the spectrum.

We will return to a more thorough discussion about the shape of the resonant spectrum in

chapter 4. It will be shown that as we increased the input power to the resonant circuit, the

Josephson inductance of the SQUID became more nonlinear, and had characteristic effects

on the shape of the resonant spectrum.
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Figure 3-15: 2d frequency modulation graph showing the overall magnitude spectrum of the
readout circuit. The amplitude of the spectrum is indicated by the color axis. The qubit
steps are indicated by the broadening of the spectrum. The anti-resonant dip can also be
seen near the resonant peak.

Figure 3-16: 3d frequency modulation graph with the qubit steps indicated by the dips in
the peak power.
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Readout of Qubit State using Phase measurements

The qubit measurement results presented so far were obtained by measuring the magnitude

spectrum of the readout circuit with a spectrum analyzer. We have also measured the

transmission characteristics of the readout circuit with a network analyzer and obtained the

phase spectrum, and the qubit steps can also be detected from the phase measurements.

Fig. 3-17 shows an example of data taken near the qubit step at 0.1mA 6. A vertical slice

along the frequency axis corresponds to an individual phase spectrum. With reference to

the color axis, the phase of the resonant spectrum changes from 90o below the resonant

frequency (red data points) to −90o after the resonant frequency (dark blue data points),

and the 180o phase drop occurs near the green region. At the qubit step, the shift in the

resonant frequency is about 40 kHz. It can also be seen that between the magnet current

bias of 0.05mA to 0.1mA, the phase spectrum is broadened. This was also evidenced in the

magnitude spectrum and corresponded to the dip in the peak power.

Figure 3-17: Detection of qubit step using the phase measurement. The phase of the readout
circuit is given by the color axis. The shift in the resonant frequency is about 40 kHz. The
input power for this data set was -62dBm.

6This data set was taken in a different cool-down, and the sample was subjected to a slightly different
amount of background flux. Thus the location of the qubit step has moved from 0.18 mA as shown in fig. 3-13
to 0.1 mA. The location of the qubit step relative to the SQUID modulation curve was still the same.
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3.3.3 Effect of input bias level on readout of qubit state

In this section, we want to characterize how the qubit measurement can be affected by the

level of input power to the resonant readout. For instance, we are interested to see how the

size of the qubit step (i.e., shift in the resonant frequency), as well as the broadening of the

spectrum near the qubit step region (i.e., dip in the peak power) changes with input power.

Power dependence of qubit step

We performed qubit measurements with different input power to the resonant readout, and

the corresponding frequency modulation curves are shown in fig. 3-18. The general obser-

vation is that when the input power to the readout increases, the amount by which the

frequency is modulated over a flux quantum decreases. This turns out to be directly related

to the shape of the resonant spectrum which changes with input power due to the nonlin-

ear effects of the SQUID inductance. As the input power increases, the resonant spectrum

evolves from being symmetric to being asymmetric, with the tip of the spectrum bending to

either the lower or higher frequency side depending on the flux bias. In the case when the

flux bias is at integrals of Φo , i.e. at the top of the frequency modulation curve, the spectrum

bends such that the resonant frequency is lower. In the opposite case when the flux bias is

at half integrals of Φo, i.e. at the bottom of the frequency modulation curve, the spectrum

bends such that the resonant frequency is higher. As a result, the overall modulation in the

resonant frequency with flux is reduced according to the extent of the bending. This will be

made more clear as we focus on the nonlinear effect on the resonant spectrum in chapter 4.

Another interesting observation in fig. 3-18 is that the frequency modulation curves for

different input power meet periodically at the inflection points. The inflection points cor-

respond to places where the curvature of the frequency modulation curve changes sign, or

equivalently, when the second derivative d2fo/dΦ2 equals zero. It will later be shown that the

asymmetric resonant spectrum changes from bending towards one frequency side to another

at the inflection points.
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Figure 3-18: Modulation of the resonant frequency of the readout circuit with magnetic
flux at various input power. The amount by which the frequency is modulated over a flux
quantum is reduced as the resonant circuit enters the nonlinear regime. The polarity of the
bending changes at the inflection points which are marked by circles. The hump features for
the -58 dBm data are related to the qubit steps at 0.18 and -0.495mA.

Zoom-in on qubit step region

As we zoom in near the qubit step at 0.18mA in fig. 3-18, the effect of different input power

on the size of the qubit step can be observed more clearly. This is shown in fig. 3-19. For

power levels below -62 dBm, the shift in the resonant frequency is observed, yet the the size

of the shift is slightly scaled down due to the overall reduction in the frequency modulation

as mentioned previously.

In the limit of high input power, the qubit step is eventually washed out. This is due

to the fact that the nonlinear resonant spectrum changes its bending direction from one

frequency side to another, and that this particular qubit step is located near an inflection

point and thus is gradually “closed up”. However, it will be shown that there is still a range

of input power over which one can operate, such that the resonant spectrum has entered

the nonlinear regime, but the nonlinear effect is not strong enough to wash out the qubit

step. Qubit steps that are located far enough away from an inflection point should not be

distorted by the nonlinear effect even at high input power.
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Figure 3-19: A zoom-in of fig. 3-18 near the qubit step at 0.18mA. For power levels below
-62 dBm, the shift in the resonant frequency is observed. In the limit of high input bias, the
qubit step is eventually washed out.

Broadening of resonant spectrum near qubit-step region

It was shown earlier that near the qubit step, both the magnitude and the phase spectra of

the readout circuit were broadened. This was observed in fig. 3-12 as a “dip” in the peak

power of the magnitude spectrum. We further investigated the dependence of the dip with

input power, and the results are shown in fig. 3-20. For low input power (below -68 dBm),

the resonant peak power remains fairly constant, and there is no dip at the qubit step. As

one increases the power, the size of the dip gradually grows and reaches a maximum of

-2.6 dB at input power of -61 dBm. In the limit of high power, the dip gradually evolves into

a plateau-like feature.

The width of the dip/plateau is plotted as a function of input power in the top plot of

fig. 3-21. The data were best fit with a power functional form y = yo +Axn (red line), where

the fitting parameters were yo, A and n. The fitted value of n is 0.467, which means that

the width of the dip grows with the square root of the input power, i.e. the input voltage.

We re-plotted the data against the input voltage and confirmed a linear fit. This is shown

in the bottom plot of fig. 3-21.
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Figure 3-20: The dip feature in the peak power as a function of increasing input power.
The dip grows in size and gradually evolves into a plateau-like feature. The dotted lines
approximate the overall change of the width.

The broadening of the resonant spectrum could be due to Landau-Zener transitions

between the ground and excited states of the qubit. The transition is driven by the RF bias

to the readout circuit, which in turn could be coupled to the qubit. As a result, the qubit

experiences an RF flux bias on top of the DC flux bias. Near f ∼ 1/2 for the qubit, the RF

flux bias drives the qubit back and forth through an avoided crossing. For each sweep, there

is a probability for the qubit to be excited to the higher energy state. Since the Landau-

Zener tunneling is a non-adiabatic process, the dissipation is manifested as a decrease in the

Q or equivalently the broadening of the resonant spectrum. These preliminary results are

consistent with the Landau-Zener transition data observed in [37] for the large bias limit.
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3.4 Summary

In this chapter, we have presented the experimental implementation of the resonant scheme

for qubit measurement. We have achieved a high quality factor for high readout sensitivity

by employing impedance transformation techniques in the resonant circuit design, as well as

by fabricating all the circuit elements on-chip. Experimental results at 300 mK confirmed

the sensitivity of the readout circuit to distinguish the classical circulating-current states

of the qubit. The qubit transition was detected as a shift in the resonant frequency from

both magnitude and phase measurements. It will be made more clear in chapter 4 that as a

function of input power, one can identify the linear, nonlinear, as well as the hysteretic bias

regimes. The results are summarized below:

Power [dBm] Regime Qubit step observed

P ≤ −71 linear yes

−70 ≤ P ≤ −60 nonlinear yes

−59 ≤ P ≤ −54 hysteretic washed out

One could operate the readout circuit in the linear or nonlinear regime, but the qubit

step is washed out in the hysteretic regime. Operating the resonant readout circuit in the

linear regime has the advantage of keeping the bias current low and reducing the level of

decoherence on the qubit. On the other hand, the readout circuit operated in the nonlinear

regime can potentially be used as a bifurcation amplifier [48]. The characterization of the

readout circuit in the nonlinear regime will be presented in chapter 4.
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Chapter 4

Characterization of the Resonant

Readout in the Nonlinear Regime

Abstract

The nonlinearity due to the Josephson inductance of the SQUID has characteristic effects
on the resonant behavior of the readout circuit. We observed clear manifestation of this
nonlinearity given the high quality factor of the resonance. In this chapter, we present the
characterization of the readout circuit as the input bias is increased from the linear to the
nonlinear regime. The readout circuit biased in the nonlinear regime for qubit readout has
the potential use as a bifurcation amplifier.
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4.1 Introduction

This chapter is a continuation of the experimental discussions. So far, we have presented data

at 300 mK demonstrating that the circulating-current state of the qubit can be detected by

a SQUID inductor incorporated in a resonant circuit. By measuring the resonant frequency

of the readout circuit, qubit transition between opposite states can be observed as a shift in

the resonant frequency. We will now shift our focus to characterizing the resonant behavior

of the readout circuit in the nonlinear regime. Recall from section 2.3.1 that the Josephson

inductance of a SQUID is nonlinear: the inductance increases with the current bias, and

is also a periodic function of the external flux bias. When the input power of the readout

circuit is kept low, the SQUID essentially behaves as a linear inductor. As the input power

increases, the effective inductance over an oscillation period can either increase or decrease

depending on its functional form with the current and flux biases. This nonlinearity in the

Josephson inductance have characteristic effects on the resonant spectrum of the readout

circuit.

4.2 Resonant behavior in the nonlinear regime

Case when Φ = 0

We will first consider the case when the DC flux bias is zero, at which point the SQUID

essentially behaves like a single junction. The critical current of the SQUID, and thus the

resonant frequency of the readout circuit are both at the maximum. This corresponds to the

top of the frequency modulation curve in fig. 3-12.

The magnitude and phase spectra of the readout circuit are shown in fig. 4-1 as a function

of increasing input power. In the low power limit, the resonant response of the readout

circuit is linear. The magnitude spectrum has a symmetric Lorentzian shape, while the

phase spectrum experiences a 180o phase drop near the resonant frequency, and the phase

shift has a slope limited by the quality factor Q.

As the input power increases, the nonlinearity of the readout circuit also increases. Both

the magnitude and phase spectra become asymmetric and have a lower resonant frequency.
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The lower resonant frequency indicates that the effective Josephson inductance over an os-

cillating period is higher. In the limit of high power, the magnitude spectrum exhibits a

discontinuity near the resonant frequency, where the system jumps from the lower stable

branch to the higher stable branch. The nonlinear phase spectrum also exhibits a disconti-

nuity similar to the magnitude spectrum.
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Figure 4-1: Evolution of the magnitude and phase spectra of the resonant readout circuit
with increasing input power at Φ = 0. The power ranges over -65 dBm to -50 dBm. The
nonlinear resonant peak bends to the lower frequency side, indicating that the effective
SQUID inductance is higher near the resonant frequency.

Case when Φ = 0.5 Φo and 0.3 Φo

At different flux biases, the shape of the resonant spectrum evolves from the linear to the

nonlinear regime in different ways. Fig. 4-2 compares the results at three different flux biases

with increasing input power. At Φ = 0.5 Φo, the resonant response is also linear in the low

power limit. As the input power increases, the resonant spectrum becomes increasingly

asymmetric. However unlike the case at Φ = 0, the magnitude and phase spectra bend

towards the higher frequency side. The higher resonant frequency indicates that the effective

Josephson inductance over an oscillating period is lower. The spectra corresponding to

the highest input power also exhibit a discontinuity near the resonant frequency. However,
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Figure 4-2: Magnitude and phase spectra of the readout circuit at three different flux biases.
The magnitude spectra were measured with a the spectrum analyzer, while the phase spectra
were measured using a network analyzer. The spectra evolve from being symmetric in the
linear regime to being asymmetric in the nonlinear regime. The self-resonance effect which
occurs near the resonant frequency accounts for the general tilt in the spectra.

the system now falls from the higher stable branch to the lower stable branch. Another

interesting observation is that the magnitude spectrum at Φ = 0 and 0.5 Φo resemble mirror

images of each other about a vertical axis. On the other hand, the phase spectra are mirror

imaged first about a vertical axis, then about a horizontal axis.

The resonant spectrum evolves continuously with the flux bias. In particular, the asym-

metric spectrum changes from bending towards the lower frequency side at Φ = 0, to bending

towards the higher frequency side at Φ = 0.5 Φo. The intermediate behavior is best captured

at Φ = 0.3 Φo as shown in fig. 4-2. As the input power increases, the nonlinear magnitude

spectrum first bends towards the lower frequency side, then gradually evolves into a charac-
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teristic shape with two discontinuities near the resonant frequency, once when the magnitude

is increasing and once when the magnitude is decreasing. Similarly, the phase spectrum also

shows two discontinuities at the same frequency locations, with a partial phase drop at each

discontinuity.

It should be mentioned that the magnitude spectra at Φ = 0.5 Φo in the high bias limit

are interfered by the self-resonant dip which occurs just above the resonant frequency. The

transmitted signal at the anti-resonance is very small, and hence the phase experiences a

significant amount of noise near that region. The anti-resonance effect also accounts for a

general tilt in the spectra at different flux biases.

Finally, we shall summarize two more important observations regarding the nonlinear

resonant spectrum based on fig. 4-2.

1. The discontinuity in the nonlinear spectrum where the system jumps from the lower/

higher stable branch to another suggests that multiple solutions occur near that frequency.

It will be made clearer from the simulation results that there is in fact a range of frequencies

over which the system has two stable solutions (and one unstable solution). The range

of frequencies over which multiple solutions occur is referred to as the bifurcation region.

Depending on the direction of the frequency sweep, hysteretic behavior in the resonant

spectrum can be observed. This will be presented in section 4.4. The hysteretic behavior also

accounts for the reason why the amount of bending in the resonant spectrum at Φ = 0.5 Φo

is significantly larger than at Φ = 0.

2. The onset of nonlinearity in the spectrum occurs at a lower input power level for

Φ = 0.5 Φo. This could be due to the fact that the critical current of the SQUID is more

suppressed at Φ = 0.5 Φo, and thus for the same bias current Irf , the ratio of Irf/Ic is higher.

As a result, the Josephson inductance has a stronger nonlinear effect.

For completeness, the general evolution of the nonlinear spectrum with magnetic flux

is summarized again in fig. 4-3 for a constant input power. The resonant frequency of the

readout circuit is modulated periodically with flux, and the spectrum is shown at 0.1Φo step

between 0 and 0.5 Φo.



110
CHAPTER 4. CHARACTERIZATION OF THE RESONANT READOUT IN THE

NONLINEAR REGIME

419.1 419.2 419.3 419.4 419.5 419.6 419.7 419.8
−75

−70

−65

−60

Frequency [MHz]

O
ut

pu
t P

ow
er

 [d
B

m
]

Magnitude Spectra

419.1 419.2 419.3 419.4 419.5 419.6 419.7 419.8
−100

−50

0

50

100

Frequency [MHz]

P
ha

se
 [d

eg
]

Phase Spectra

Φ = 0.5Φ
o

Φ = 0.4Φ
o

Φ = 0.3Φ
o

Φ = 0.2Φ
o

Φ = 0.1Φ
o

Φ = 0

Figure 4-3: As the magnetic flux bias is varied between Φ = 0 to 0.5 Φo, the resonant
frequency as well as the shape of the resonant spectrum is modulated. The input power for
this data set was at -56 dBm, where the resonant circuit was biased in the nonlinear regime.

4.3 Quantifying the amount of nonlinearity in the res-

onant spectrum

In this section, we want to characterize how the resonant frequency of the nonlinear resonant

spectrum changes with increasing input power. In order words, we want to quantify the

amount of bending in the nonlinear resonant spectrum. This allows us to compare the

experimental data with the simulation results in chapter 5.

In fig. 4-4, the magnitude spectra were measured in 1 dB step in input power to the

readout circuit. The results are shown for various flux biases. To determine the resonant

frequencies of the spectra, we first performed a polynomial fit (shown as red line) to the data

measured at low input power levels, given that those spectra were more affected by noise

fluctuation. The resonant frequency was then determined by the location of the resonant

peak, which are marked by circles in the figure.
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Figure 4-4: Transition of the resonant spectrum from the linear to the nonlinear regime
at different flux biases. The characterization was performed in 1dB step between -74 dBm
to -54 dBm in input power. The resonant frequency is determined by the location of the
resonant peak, and are marked by the circles. The red lines represent the polynomial fits for
the spectra measured at low input power.
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To quantify the amount of bending, we introduce a parameter which normalizes the

resonant frequency of the nonlinear spectrum fn, relative to the linear spectrum fo:

δω =
ωn − ωo

ωo

=
fn − fo

fo

(4.1)

where experimentally, fo is determined as the resonant frequency of the spectrum measured

at the lowest power in fig. 4-4. This corresponds to -74 dBm. Note that the sign of δω

serves as an indication of the polarity of the bending. A positive δω corresponds to the

nonlinear spectrum bending to the higher frequency side, and a negative δω corresponds to

the spectrum bending to the lower frequency side.
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Figure 4-5: Normalized resonant frequency δω plotted as a function of input voltage/current
for different flux biases. A positive/negative δω corresponds to the nonlinear spectrum
bending to the higher/lower frequency side. The transition from the linear to the nonlinear
regime occurs at IN = 2.8 × 10−4

√
mW , which corresponds to -71 dBm. The red lines are

exponential fits but are intended for guiding purposes only.

The normalized frequency δω is then plotted as a function of input power in fig. 4-

5. The x-axis is the square root of the linear input power, which is proportional to the

voltage/current bias. The different markers represent the various flux biases. At Φ = 0.5 Φo
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(top plot), δω is increasingly positive, corresponding to the magnitude spectrum bending

further to the higher frequency side with increasing input bias. On the other hand, at Φ = 0

(bottom plot), δω becomes increasingly negative, corresponding to the magnitude spectrum

bending further to the lower frequency side with increasing input bias. δω varies at a slower

rate for Φ = 0, indicating that the amount of bending |δω| is larger at Φ = 0.5 Φo than at

Φ = 0 for a given input bias. Based on the simulation results shown in fig. 5-15, δω as a

function of input bias does not have a simple functional form. The red lines in the figure

are exponential fits and are intended only for guiding purposes. Finally at intermediate

flux biases, δω shows an undulating behavior, corresponding to the magnitude spectrum

constantly varying the polarity of its bending.

Referring to fig. 4-5, we have defined the linear region as the range of input bias over which

the resonant spectra have the same resonant frequency fo within experimental uncertainty.

On the other hand, the nonlinear region is the input range over which the resonant spectra

are asymmetric, and the resonant frequencies are different from fo. The transition from

the linear to the nonlinear region occurs at the bias level of IN = 2.8 × 10−4
√

mW , which

corresponds to -71 dBm in input power.

4.4 Hysteresis of Resonant Spectrum

Recall that in the limit of high input power, the nonlinear resonant spectrum exhibits a dis-

continuity near the resonant frequency. The discontinuous edge corresponds to the boundary

of a bifurcation region, which is the frequency range over which multiple solutions of the sys-

tem exist. In the experiment, we measured the resonant spectrum by sweeping the driving

frequency. Within the bifurcation region, the system settles in the solution branch based

upon the previous solution, which in turn is determined by the direction of the frequency

sweep. In this section, we will present the hysteretic resonant behavior of the readout circuit

which was obtained when we swept the driving frequency in both the forward and backward

directions.
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Modification of the measurement scheme

Modern spectrum and network analyzers are designed to perform measurements by only

sweeping forward in frequency, i.e. from low to high frequency. To perform hysteresis

measurements, we introduced an additional RF signal generator1 which could be controlled

independently from the spectrum analyzer. This particular RF generator supports a setting

such that the amplitude of the source is not reset upon stepping to a new frequency, which

is important in order to obtain the hysteretic behavior. The measurement sequence involved

sending a CW input signal to the readout circuit, and then measuring the output signal

at the same frequency with a spectrum analyzer. This produces one frequency point on

the resonant spectrum. To obtain an overall spectrum, the RF source was programmed to

take frequency steps near the resonant frequency in the forward direction from low to high

frequency, then backward from high to low frequency. We chose a frequency step of 3 kHz

and a span of 0.6 MHz.

Hysteretic resonant behavior

Fig. 4-6 shows the hysteretic magnitude spectra as displayed on the spectrum analyzer for

flux biases at Φ = 0 and 0.5 Φo. The direction of the frequency sweep is indicated by the

white arrow. The yellow and blue branches correspond to the two stable branches, while the

white dotted branch (predicted by theory) is unstable and cannot be measured without the

implementation of a feedback scheme.

1Agilent E8257C PSG Analog Signal Generator, 250 kHz to 20 GHz
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Figure 4-6: Hysteretic behavior of the magnitude spectra at Φ = 0 (left) and Φ = 0.5 Φo

(right) as displayed on the spectrum analyzer. The yellow trace corresponds to the forward
frequency sweep, while the blue trace corresponds to the backward frequency sweep. The
unstable branch represented by the white dotted line was not measured experimentally.

For completeness, fig. 4-7 summarizes the hysteretic behavior at six different flux biases

at 0.1Φo step between Φ = 0 and 0.5 Φo. The blue line represents the forward frequency

sweep, and the red line represents the backward frequency sweep. As labeled in the figures,

we define fb to be the frequency at which the resonant spectrum jumps from the lower to the

higher stable branch, while ft corresponds to the frequency at which the spectrum falls from

the higher to the lower stable branch. According to eqn. 4.1, we can define the normalized

frequencies:

δωt =
ωt − ωo

ωo

=
ft − fo

fo

(4.2)

δωb =
ωb − ωo

ωo

=
fb − fo

fo

(4.3)

The extent of the bifurcation region is given by |ft − fb|, with the exception of Φ = 0.3 Φo,

in which case the bifurcation regions could be too small to be measured given the chosen

frequency sensitivity.
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Figure 4-7: Hysteretic behavior at six different flux biases between Φ = 0 and 0.5 Φo. The
extent of the bifurcation region is given by |ft − fb|. At Φ = 0.3 Φo, we expected two
bifurcation regions corresponding to the two discontinuous edges. However, the bifurcation
regions were too small to be captured with the chosen frequency sensitivity.

The extent of the bifurcation region was then characterized as a function of input power.

Fig. 4-8 shows the plots of δωb and δωt versus the square root of the input power, which is

proportional to the voltage/current bias. It can be seen that the hysteretic behavior occurs

when the input bias is above a threshold IH . For Φ = 0.5 Φo, IH is about 8.9× 10−4
√

mW

which corresponds to -61 dBm in power. For the other flux biases, IH is slightly higher and

is about 1.12 × 10−3
√

mW corresponding to -59 dBm in power. Recall from fig. 4-5 that

the onset of nonlinearity actually occurs at -71 dBm. Therefore, hysteretic behavior is not

observed until the input bias is high enough to cause a strong nonlinear effect. Comparing

the results for different flux biases, we can observe that the extent of the bifurcation region

is the largest at Φ = 0.5 Φo for a given input bias.
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Figure 4-8: A plot of δωt and δωb as a function of input power for different flux biases. The
input power ranges from -66 dBm to -55 dBm in 1 dB step. The extent of the bifurcation
region corresponds to |δωt − δωb|. Hysteretic behavior is observed only when the resonant
spectrum is highly nonlinear. This occurs when the input bias is above the threshold IH as
labeled in the figures.
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4.5 Discussion

In this chapter, we have observed and fully characterized the nonlinear resonant behavior

due to the Josephson inductance of the SQUID. The resonant spectrum evolves from being

symmetric to asymmetric with increasing level of nonlinearity. The polarity of the asymmet-

ric spectrum is also different depending on the magnetic flux bias. In addition, we performed

hysteresis measurements and quantified the extent of the bifurcation region in the spectra.

The focus of chapter 5 will be to explain the nonlinear resonant behavior based on results

from numerical simulations.

The resonant readout circuit operated in the linear regime has the advantage of keeping

the bias current low and reducing the level of decoherence on the qubit. On the other hand,

the readout circuit operated in the nonlinear regime can potentially be used as a bifurcation

amplifier [48]. This is best illustrated in fig. 4-9, which shows the detection of the qubit

signal at a frequency bias fb. Given the discontinuity of the asymmetric spectrum, one could

achieve a better sensitivity when the circuit is biased in the nonlinear regime.

Nonlinear regime|V|Linear regime|V|

freqfreq

|0 |1

VB

|0 |1

VA

fbfb fo

VB > VA

Figure 4-9: Illustration of the nonlinear resonant circuit used as a bifurcation amplifier. The
change of voltage signal ∆VB in the nonlinear case is larger than ∆VA given the discontinuity
of the asymmetric spectrum.



Chapter 5

Simulations of Nonlinear Resonant

Behavior in Josephson-junction

Circuits

Abstract

The goal of this chapter is to simulate and understand the observed nonlinear resonant
behavior of the readout circuit presented in chapter 4. This chapter begins with a discussion
of the inductive nature of Josephson elements, followed by an analysis of a single Josephson
junction demonstrating the bifurcation phenomenon of the resonant spectrum. To investigate
the flux dependence of the resonant behavior, we analyze AC-circuits comprising a SQUID
inductor by numerically solving the differential equations. Based on the simulation results,
it was suggested that the observed nonlinearity was caused by an oscillating flux that was
coupled to the SQUID, rather than the oscillating current bias.

119
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Organization of this chapter

This simulation chapter has been organized in the following way. In section 5.1, a Josephson

junction and a SQUID are introduced as nonlinear inductive elements. The purpose is to

derive an expression for the Josephson inductance of a SQUID but only in certain biasing

limits. Section 5.2 then focuses on the resonant behavior of a single junction; the simplicity

allows us to solve the problem analytically and demonstrate the bifurcation phenomenon

in the nonlinear resonant spectrum. As we further analyze resonant circuits comprising a

SQUID, our approach is to build up a series of resonant circuit models with increasing level

of complexity. The results based on three circuit models will be presented in sections 5.4

to 5.6. This approach allows us to gradually include the essential physics to reproduce the

nonlinear resonant behavior as observed in the experiment.

5.1 Josephson inductive elements

5.1.1 Josephson inductance of a single junction

(t)I(t) V(t)

Figure 5-1: Circuit schematic of a Josephson junction.

Josephson junction elements are inductive in nature. This can be derived from the current-

phase relation and the voltage-phase relation governing a single junction:

I(t) = Ico sin ϕ(t) (5.1)

V (t) =
Φo

2π

dϕ(t)

dt
(5.2)
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where Ico is the critical current of the junction. Thus, the current of the junction is nonlinear

in the gauge-invariant phase ϕ, while its voltage is proportional to the time derivative of the

phase. Recall that the constitutive relation for an inductor is given by

V (t) =
d[L(t)i(t)]

dt
(5.3)

where L × i corresponds to the flux through the inductor. This definition is applicable for

the general case when the inductor is nonlinear 1. If we substitute the current and voltage

relations from eqns. 5.1 and 5.2 into eqn. 5.3, we obtain

Φo

2π

dϕ

dt
=

d[LJ(t)Ico sin ϕ]

dt
(5.4)

The Josephson inductance LJ of the junction is extracted to have the following closed-form:

LJ =
Φoϕ

2πIco sin ϕ
(5.5)

where ϕ is given by sin−1 (I/Ico). The current-bias dependence of LJ is shown in fig. 5-2.

It can be seen that LJ increases with the bias current through the junction as long as the

current is below the critical current. Once the current is above Ico, the junction is no longer

purely inductive [61, 62]. For small bias currents where I/Ico ¿ 1, ϕ/ sin ϕ in eqn. 5.5 is close

to unity. In this limit, the junction essentially behaves as a linear inductor with inductance

given by Φo/(2πIco).

5.1.2 Josephson inductance of a SQUID

The above derivation can be extended to extract the Josephson inductance LJ for a SQUID.

First, we should note that a SQUID is described by two types of inductances: the Josephson

inductance LJ contributed from the Josephson junctions, as well as the loop inductance Ls

determined by the geometrical property of the SQUID loop. Unlike the loop inductance,

the Josephson inductance is nonlinear and varies with the biasing conditions for the SQUID.

1Alternatively, the time-varying inductance can be defined using V (t) = L(t)(dI(t)/dt). The Josephson
inductance extracted according to this definition is LJ = Φo/(2πIco cos ϕ) which is also commonly used.
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Figure 5-2: Josephson inductance of a single junction as a function of current bias. For
I/Ico ¿ 1, the inductance can be approximated by Φo/(2πIco).

The ratio of the two inductances is usually referred as βL, and is a useful parameter to gauge

the behavior of the SQUID.

βL =
Ls

LJo

(5.6)

=
2πLsIc

Φo

(5.7)

where Ls is equal to 2L for the SQUID circuit shown in fig. 5-3, Ic is the critical current of

the SQUID given by the sum of the critical currents for both junctions, and LJo is a constant

given by Φo/(2πIc).

For the most general case where the parameters of the SQUID are not restricted by any

assumptions, the behavior of the SQUID has to be solved numerically based on the current

continuity equation and the fluxiod quantization equation, and the Josephson inductance

LJ does not have a closed-form expression. Here, we simplify the problem by assuming the

SQUID has negligible loop inductance and symmetric junctions. The current going through
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Figure 5-3: Circuit schematic of a SQUID with finite loop inductance

the SQUID is given by

I = Ico sin ϕ1 + Ico sin ϕ2 (5.8)

= 2Ico sin ϕp cos ϕm (5.9)

where we have defined ϕp = (ϕ1 + ϕ2)/2 and ϕm = (ϕ1−ϕ2)/2. Intuitively, the outer phase

variable ϕp is associated with the current bias through the SQUID, while the inner phase

variable ϕm is associated with the flux bias through the SQUID loop. The voltage across

the SQUID is given by:

V =
Φo

2π

dϕp

dt
(5.10)

Following a similar derivation as eqn. 5.4 for the single junction, we substitute the voltage

and current expressions from eqns. 5.9 and 5.10 in eqn. 5.3 to obtain:

LJ =
Φoϕp

4πIco cos ϕm sin ϕp

(5.11)

Note that ϕp and ϕm are related by the Fluxoid equation:

0 = ϕm +
2π

Φo

LIco sin ϕm cos ϕp +
πΦext

Φo

(5.12)

where Φext is the magnetic flux threading the loop, and L corresponds to half the loop



124
CHAPTER 5. SIMULATIONS OF NONLINEAR RESONANT BEHAVIOR IN

JOSEPHSON-JUNCTION CIRCUITS

inductance. Since we have assumed the SQUID has negligible loop inductance, ϕm is simply

given by −πΦext/Φo. Thus, eqn. 5.11 can be re-written as:

LJ =
Φoϕp

2πIc(Φext) sin ϕp

(5.13)

where Ic(Φext) is the effective critical current given by Ic(Φext) = 2Ico cos(πΦext/Φo), and ϕp

is the effective phase given by ϕp = sin−1[I/Ic(Φext)]. Comparing eqn. 5.13 with eqn. 5.5,

we see that LJ of a SQUID has the same bias-current dependence as a single junction, but

it is also a function of the flux bias. The current and flux dependence is plotted in fig. 5-4.

While the Josephson inductance always increases with the bias current, it can increase or

decrease with the flux bias due to the periodic dependence.

Finally, in the limit that the current bias is small, ϕp/ sin ϕp in eqn. 5.13 will be close to

unity, and LJ will be dominated by the nonlinearity due to the flux bias:

LJ =
Φo

2πIc(Φext)
(5.14)
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Figure 5-4: The current and flux dependence of the Josephson inductance of a SQUID. The
Josephson inductance always increases with the bias current, but it can increase or decrease
with the flux bias due to the periodic dependence.
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5.2 Analysis of an AC-driven Josephson junction using

the Harmonic Balance approach

In this section, we will analyze the behavior of a Josephson junction driven by an AC current

source. A single junction described by the RCSJ model exhibits resonant behavior similar to

a SQUID shunted by an external capacitor and resistor. The simplicity of a single junction

compared to a SQUID allows us to capture the effects of the Josephson inductance, and still

be able to express the nonlinear behavior analytically using the harmonic balance approach.

R C vi

Figure 5-5: RCSJ model of a single junction driven by a sinusoidal current source.

5.2.1 Nonlinear Resonant Behavior

The circuit model of the junction is shown in fig. 5-5. In the case when it is driven by a

sinusoidal current source I(t) = I sin ωt, the system is governed by a second-order nonlinear

differential equation:

I sin ωt =
C Φo

2πIc

d2ϕ

dt2
+

Φo

2πIcR

dϕ

dt
+ sin ϕ (5.15)

where ϕ is the gauge invariant phase, and I is the amplitude of the current source normalized

with respect to the critical current of the junction Ic. We have used the voltage-phase relation

V =
Φo

2π

dϕ

dt
(5.16)
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The differential equation in 5.15 has the same form as the equation of motion for a driven

pendulum with damping. The sine term contributes to the nonlinearity. We want to solve

for the magnitude and phase of the junction voltage as a function of the driving frequency.

First we assume the trial solution for ϕ to be in the form:

ϕ = A sin(ωt + θ) (5.17)

where A is the magnitude and θ the phase shift with respect to the sinusoidal drive. The

assumptions we have made with the trial solution are as follows: (1) it does not contain

transient components as we are interested only in the steady state solution; (2) the solution

is primarily made up of the fundamental frequency. Given the nonlinear nature of the circuit,

we expect the true output to contain frequency components other than the driving frequency.

Nevertheless, the results from the numerical simulations suggested that the fundamental

frequency is the most dominant, followed by the third harmonic which is reasonably small

and can be omitted for first approximation. With ϕ evaluated, the voltage across the junction

can be calculated:

V =
Φo

2π

dϕ

dt

= Aω
Φo

2π
cos(ωt + θ) (5.18)

Using the harmonic balance approach, we substitute the trial solution in 5.17 in the differ-

ential equation 5.15. First we evaluate

d2ϕ

dt2
= −Aω2 sin(ωt + θ) (5.19)

dϕ

dt
= Aω cos(ωt + θ) (5.20)

sin ϕ = sin(A sin(ωt + θ))

=
∞∑

n=−∞
Jn(A) sin n(ωt + θ)

= 2J1(A) sin(ωt + θ) + 2J3(A) sin 3(ωt + θ) + . . . (5.21)
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Note that we have expanded the nonlinear term sin ϕ in a series of Bessel functions. The

expansion into Bessel functions conveniently groups the same harmonics together, and thus

is advantageous over Taylor series. We shall be keeping only the terms of the fundamental

frequency in eqn. 5.21. Substituting expressions 5.19- 5.21 in the differential equation gives:

I sin ωt = (−aAω2 cos θ − bAω sin θ + 2cJ1(A) cos θ) sin ωt

+ (−aAω2 sin θ + bAω cos θ + 2cJ1(A) sin θ) cos ωt (5.22)

where the constants a,b, and c are given by the circuit parameters.

a =
CΦo

2πIc

=
1

w2
o

(5.23)

b =
Φo

2πIcR
= τRC (5.24)

c = 1 (5.25)

Equating the sine and cosine terms on both sides of eqn. 5.22 yields two equations:

0 = (2cJ1(A)− aAω2) sin θ + bAω cos θ (5.26)

I = (2cJ1(A)− aAω2) cos θ − bAω sin θ (5.27)

Our goal is to solve for the transfer functions A(ω) and θ(ω). However, this requires solving

for an unknown embedded in the Bessel function. Instead, we could solve for ω(A) and θ(A).

First, we rearrange eqn. 5.26 and obtain:

sin θ

cos θ
=

bAω

aAω2 − 2cJ1(A)
(5.28)

or sin θ =
bAω√

[aAω2 − 2cJ1(A)]2 + (bAω)2

(5.29)

cos θ =
aAω2 − 2cJ1(A)√

[aAω2 − 2cJ1(A)]2 + (bAω)2

(5.30)
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Substituting eqns. 5.29 and 5.30 into eqn. 5.27 gives:

−
√

[aAω2 − 2cJ1(A)]2 + (bAω)2 = I (5.31)

Squaring both sides of the equation,we obtain a biquadratic equation in ω.

(a2A2)ω4 + (b2A2 − 4aAcJ1(A))ω2 + (4c2J1
2(A)− I2) = 0 (5.32)

Let

α = a2A2 (5.33)

β = b2A2 − 4aAcJ1(A) (5.34)

γ = 4c2J1
2(A)− I2 (5.35)

The roots of the biquadratic equation (ω2)± can be evaluated over a range of A:

(ω2)± =
−β ±

√
β2 − 4αγ

2α
(5.36)

Imaginary roots corresponding to the discriminant in eqn. 5.36 being negative are rejected.

ω± can be further obtained by taking the positive square root of ω2
±

ω±(A) = +
√

(ω2)± (5.37)

After we have solved for ω±, we use eqn. 5.30 and eqn. 5.18 to solve for the phase θ(ω) and

magnitude |V (ω)| of the junction voltage, respectively.
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Figure 5-6: A series of magnitude spectra |V (ω)| with increasing current bias I. For small
values of I, the spectrum has a symmetric shape similar to the linear resonant circuit. As the
bias current increases, the spectra become more asymmetric with a lower resonant frequency.
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Figure 5-7: Phase spectra θ(ω) with increasing current bias.
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A series of magnitude and phase spectra of the junction voltage for increasing values of

the biasing current I are shown in figs. 5-6 and 5-7. For small values of I with respect to

Ic, the magnitude resonant spectrum has a symmetric Lorentzian shape similar to the linear

resonant circuit. As the bias current increases, the spectra become more asymmetric with

the maxima bending towards the lower frequency side. This bending towards the lower

frequency indicates that the effective inductance over an oscillating period increases. The

phase spectra also evolves as a function of increasing current bias, exhibiting a 180o shift

near the resonant frequency with a slope limited by the quality factor in the linear regime,

and becoming multi-valued with increasing bias similar to the magnitude spectra.
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Figure 5-8: Illustration of the bifurcation region in a nonlinear magnitude spectrum. The bi-
furcation region is bound by ωtip and ωbend, over which there are two stable solution branches
marked by [a2,a3], [a4,a6] and one instable branch marked by [a3,a6].

The region over ω/ωo where multiple solutions occur is referred to as the bifurcation

region. The bifurcation region for the resonant spectrum is denoted by the shaded region

bound by points a2, a3, a4, and a6 in fig. 5-8. Of the three solution branches within the

bifurcation region, the two branches marked by [a2,a3] and [a4,a6] are stable, while the

instable branch is marked by [a3,a6]. If the system initially starts at point a1 and is driven
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by increasing frequency, the resulting spectrum will be described by the path a1-a2-a3-a4-

a5. On the other hand, if the system is then driven by decreasing frequency from a5, the

resulting spectrum will follow a different path a5-a4-a6-a2-a1. Thus, hysteretic behavior will

be observed, and the amount of hysteresis corresponds to the extent of the bifurcation region.

The nonlinear resonant behavior shown in fig. 5-8 has been demonstrated experimentally

in a single junction [63], and in a stripline resonator based on a superconducting NbN granular

film with nonlinear inductance due to weak links [64]. Furthermore, the resonant behavior

of an LC circuit comprising a varacter diode also demonstrates similar characteristics 2 [65].

5.2.2 Quantifying the Bifurcation Phenomenon

In this section, we want to develop a tool for quantifying the amount of nonlinearity in the

resonant circuit by mathematically describing the extent of the bifurcation region in the

resonant spectra. In particular, we want to characterize how the positions of a3 and a6 in

fig. 5-8 change with increasing current bias I to the junction. Considering the hysteresis

picture described in the previous section, a3 corresponds to the discontinuous point at which

the forward spectrum jumps from the lower to the higher stable branch. Similarly, a6

corresponds to the point at which the backward spectrum falls from the higher to the lower

stable branch. Quantifying the nonlinearity in this way allows us to compare the simulation

results with experimental data.

High-frequency bound of bifurcation region

To find the high frequency bound ωbend of the bifurcation region, we first recognize that it

occurs at the point where the derivative of ω−(A) is zero (a3 in fig. 5-8). From eqns. 5.36

and 5.37, we first obtained a simplified expression for ω−(A):

ω−(A) =

[(
4acJ1(A)− b2A

2a2A

)
−

(
b4A2 − 8ab2cAJ1(A) + 4a2I2

4a4A2

) 1
2

] 1
2

(5.38)

2The capacitance is nonlinear with the voltage across the diode. The diode capacitance can be approx-
imated by Cd(v) = Cd(0)/

√
(1− v/Vϕ), where Cd(0) is the differential capacitance at v=0, and Vϕ is the

contact potential of the PN junction.
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Let

u(A) =
4acJ1(A)− b2A

2a2A
(5.39)

v(A) =
b4A2 − 8ab2cAJ1(A) + 4a2I2

4a4A2
(5.40)

ω−(A) and its derivative can be written as:

ω−(A) = (u−√v)
1
2 (5.41)

ω−
′
(A) =

1

2
(u−√v)−

1
2

(
du

dA
− 1

2
√

v

dv

dA

)
(5.42)

where

du

dA
= −2cJ2(A)

aA
(5.43)

dv

dA
=

2b2cA2J2(A)− 2aI2

a3A3
(5.44)

and we have used the identity (J1(A)/A)′ = −J2(A)/A. Eqns. 5.41 and 5.42 are shown in

fig. 5-9. Setting the derivative in eqn. 5.42 to zero and letting the solution be Abend, or simply

Ab:
du

dAb

− 1

2
√

v

dv

dAb

= 0 (5.45)

Squaring both sides of eqn. 5.45 , we obtain a biquadratic equation in I in terms of Ab:

(
4

a4(Ab)6

)
I4 +

(−8cJ2(Ab)[b
2 + 2acJ2(Ab)]

a5(Ab)4

)
I2 +

(
32b2c3J1(Ab)J

2
2 (Ab)

a5(Ab)3

)
= 0 (5.46)

Let

D1 =
4

a4(Ab)6
(5.47)

D2 =
−8cJ2(Ab)[b

2 + 2acJ2(Ab)]

a5(Ab)4
(5.48)

D3 =
32b2c3J1(Ab)J

2
2 (Ab)

a5(Ab)3
(5.49)
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Figure 5-9: ω−(A) and ω−
′
(A) in eqns. 5.41 and 5.42 respectively. The point a3 of the

bifurcation region illustrated in fig. 5-8 corresponds to when ω−
′
(A) is zero.

Our goal is to use eqn 5.46 to solve for Ab(I), which describes how the point at which

the derivative of ω−(A) is zero changes as a function of bias current. However given that Ab

is embedded in a Bessel function, it is mathematically easier to solve for I(Ab) instead. This

is given by the negative root of the biquadratic equation:

I(Ab) =

(
−D2 − (D2

2 − 4D1D3)
1
2

2D1

) 1
2

(5.50)

Note that while an analytical expression is obtained for I(Ab), it is not feasible to extract

an analytical expression for Ab(I) or ωb(I) due to the Bessel function dependence. It will be

seen later that this poses a challenge when we try to fit the experimental data. Figs. 5-10

shows the results for Ab(I) and wb(I) calculated numerically over a range of I. We have

introduced a parameter δωb which normalizes ωb relative to the resonant frequency of the

linear spectrum ωo:

δωb =
ωb − ωo

ωo

(5.51)
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where ωo is given by:

wo =
1√
LJC

=

√
2πIc

ΦoC
(5.52)
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Figure 5-10: Top: Ab calculated as a function of bias current I given by eqn. 5.50. Bottom:
δωb calculated based on eqns. 5.50 and 5.41. Note that the range of I/Ic for both figures is
restricted to be between Imin and Imax. Imin corresponds to the onset of the bending of the
spectrum, below which ω

′
(A) doesn’t have a zero crossing. Imax is a constraint imposed by

the low frequency bound of the bifurcation region (see fig. 5-11).

Low-frequency bound of bifurcation region

The low-frequency bound of the bifurcation region corresponds to the tip of the resonant

spectrum (position a6 in fig. 5-8). It occurs when the discriminant in eqn. 5.36 is zero. Let

the solution be Atip and ωtip (or simply At and ωt), our goal is to solve for their dependence

with bias current.

β2 − 4αγ = b4At
4 − 8ab2cAt

3J1(At) + 4a2At
2I2 = 0 (5.53)

I =

√
8ab2cAtJ1(At)− b4At

2

4a2
(5.54)
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At(I) based on eqn. 5.54 is plotted in fig. 5-11. Referring to the figure, I is restricted to be

less than Imax. For values of I above Imax, the discriminant is always above zero and does

not have a zero-crossing. In addition, values of At > At(Imax) have to be rejected to keep the

function single-valued. The normalized frequency δωt(I) = (ωb(I) − ωo)/ωo is also plotted

in fig. 5-12.
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Figure 5-11: At as a function of current bias I [eqn. 5.54]. The discriminant has a zero-
crossing only for values of I below Imax. Values of At > At(Imax) have to be rejected to keep
the function single-valued.
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Finally, we have combined the results for the high frequency bound δωb from fig. 5-10

and the low frequency bound δωt from fig. 5-12. This is shown in fig. 5-13. ωt corresponds

to the “tip” of the resonant spectrum, and ωb corresponds to the “inside bend” where the

spectrum is momentarily vertical. The extent of the bifurcation region is defined by |ωb−ωt|.
We observe that δωt increases faster than δωb with input bias. In other words, the extent of

the tip of the spectrum grows faster than the inside bend.
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Figure 5-13: A plot of δωt and δωb as a function of increasing bias current to the junction.
The extent of the bifurcation region is defined by |ωb − ωt|. A general observation is that
δωt increases faster than δωb with input bias.

5.2.3 Comparison of Simulations with Experimental Data at Φ = 0

In this section, we compare the nonlinear resonant behavior simulated for a single junction

with the experimental data for the SQUID resonant circuit. At zero flux bias, a SQUID

essentially behaves like a single junction, thus we shall expect the characteristics of the

readout circuit at Φ = 0 to be comparable to the simulations. The basis for comparison will

be on (1) the shape of the resonant spectra and (2) the amount of nonlinearity characterized

by δω as a function of input bias.
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(1) Comparison based on shapes of resonant spectra
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Figure 5-14: A side-by-side comparison between the simulation results for a single junction
(top), and the experimental data for the readout circuit at Φ = 0 (bottom). The observed
evolution of the spectra from the linear to the nonlinear regime is qualitatively similar to
the simulations.

A side-by-side comparison between the simulation results and the experimental data at

Φ = 0 is shown in fig. 5-14. The series of resonant spectra correspond to increasing current

bias for the simulations, and increasing input power for the data. The observed evolution of

the spectra from the linear and the nonlinear regime is qualitatively similar to the simula-

tions. In particular, the nonlinear spectra are asymmetric with a lower resonant frequency,

indicating that at Φ = 0, the effective Josephson inductance over an oscillation period in-

creases just like a single junction. The discontinuity observed in the data occurs when the

system jumps from the lower stable branch to the higher stable branch over the bifurcation
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region. Since the data were obtained by driving the readout circuit with increasing frequency,

only the high-frequency bound of the bifurcation region was captured.

(2) Comparison based on the amount of nonlinearity in resonant spectra

Next, we compare the amount of nonlinearity in the resonant circuit as a function of input

bias. Fig. 5-15 is a zoom-in of fig. 5-13. We shall define three biasing regions: the linear, the

nonlinear, and the hysteretic regions. The definitions are summarized in the following table.

0 0.2 0.4 0.6 0.8 1

x 10
−3

−6

−5

−4

−3

−2

−1

0
x 10

−3

δω
 (

no
rm

al
iz

ed
)

I/Ic

δω
bend

δω
tip

I
H

Hysteretic Region Nonlinear Region Linear Region 

I
N

Figure 5-15: Graphical illustration of the linear region, the nonlinear region, and the hys-
teretic region. IN labeled in the figure marks the transition from the the linear to the
nonlinear region, while IH marks the transition from the nonlinear to the hysteretic region.

Linear Region The resonant spectrum is linear and has a symmetric shape,

(I < IN) with a resonant frequency of ωo.

Nonlinear Region The resonant spectrum starts to become asymmetric,

(IN < I < IH) but remains single-valued and is characterized by a

single resonant frequency different from ωo.

Hysteretic Region The resonant spectrum is asymmetric with a well-defined

(I > IH) bifurcation region where multiple solutions exist.

The spectrum is characterized by ωtip and ωbend.
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IN corresponds to the threshold bias where the spectrum makes the transition from the

linear to the nonlinear region, where as IH marks the transition from the nonlinear to the

hysteretic region.

Fig. 5-16 shows the experimental data of δωt and δωb at Φ = 0 obtained from the hystere-

sis measurement discussed in section . Comparing the trend of δω with the simulations, we

find that the transition from the nonlinear to the hysteretic region occurs near the input bias

of IH ∼ 1.12 × 10−3
√

mW , which corresponds to -59 dBm in input power. In fig. 5-17, the

data were obtained by sweeping the driving frequency in the forward direction only, so only

δωb was captured. The measurements extend into the range of low bias, which shows the

transition from the linear to the nonlinear regime at IN ∼ 2.8 × 10−4
√

mW corresponding

to an input power of -71 dBm. The value of IN was determined based on a more complete

set of data at various flux biases presented previously in fig. 4-5.
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Figure 5-16: Data for δωt and δωb obtained from both forward and backward frequency
sweeps over input power of -66 dBm to -55 dBm. This set of data was previously presented
in fig. 4-8.
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Figure 5-17: Data for δωb at Φ = 0 obtained from a forward frequency sweep over input
power of -74 dBm to -54 dBm. This set of data was previously presented in fig. 4-5.

5.3 Introduction: Numerical Simulations of Resonant

Circuits comprising a SQUID Inductor

In the previous section, the simplicity of a single junction allows us to solve the resonant

behavior analytically. To analyze the resonant behavior of an AC-driven circuit comprising

a SQUID, one needs to numerically solve the differential equations governing the SQUID

consistently with the equations governing the rest of the circuit. The numerical simulations

can be difficult due to the complexity of the set of coupled differential equations. This

is especially true when the circuit model needs to include the asymmetry of the SQUID

junctions, as well as the self inductance and mutual coupling between the circuit loops.

Special care has to be taken to ensure that (1) the variables used are the state variables,

which correspond to the minimal number of variables necessary to describe the system [66];

(2) the differential equations are normalized, as well as scaled properly with time [appendix];

(3) if possible, the highest derivative of the equations are of the same order. Otherwise, one

runs into a set of differential-algebraic equations (DAEs) [70] which are numerically more
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challenging to solve.

The approach that we have taken is to develop a series of circuit models which in general

has increasing level of complexity. Here, we will present the results based on three circuit

models. The first model was developed based on a phenomenological approach. This so-

called “toy model” helps us identify the essential physics that is needed to reproduce the

nonlinear resonant behavior as observed in the experiment. It is particular useful for us to

present the toy model here as a tool to explain things in an intuitive and qualitative manner.

The other two models which follow are more detailed and can better represent the actual

readout circuit.

In simulating the nonlinear behavior of these resonant circuits, an important idea to keep

in mind is that the observed nonlinearity of the SQUID is the result of a competing effect

between its two biasing parameters: an oscillating current bias and an oscillating magnetic

flux bias. These two parameters can have similar or opposite effects on the nonlinearity

depending on the value of the DC flux bias.

5.4 Toy resonant model– a phenomenological approach

C LJ( ext
)R

I(t) VL

Figure 5-18: Circuit schematic of the toy resonant model driven by a sinusoidal current
source. The SQUID is represented by a flux-dependent inductor LJ with inductance given
by the functional form in eqn. 5.55. LJ is subjected to an external flux Φext which has a DC
component as well as an oscillating component.

The circuit schematic of the toy resonant model is shown in 5-18. The SQUID is shown

as a nonlinear inductor shunted by an external capacitor and a resistor. The circuit is driven

by a sinusoidal current source I(t) = I sin ωt.



142
CHAPTER 5. SIMULATIONS OF NONLINEAR RESONANT BEHAVIOR IN

JOSEPHSON-JUNCTION CIRCUITS

There are two important properties of the toy model:

1. The Josephson inductance of the SQUID is modeled by a flux-dependent nonlinear

inductor LJ(Φext) which has an analytical form.

2. The external flux Φext that is coupled to the inductor has a DC component, as well as

an AC component that is proportional to its self-induced flux ΦL.

5.4.1 Mathematical Analysis

First, we model the Josephson inductance LJ of the SQUID by an analytical form:

LJ(Φext) =
Φo

2πIc(Φext)
(5.55)

where

Ic(Φext) = Ico

√
2[(1 + cos

(
2πΦext

Φo

)
+ (

∆I

Ic

)2(1− cos

(
2πΦext

Φo

)
)] (5.56)

Eqn. 5.56 is a general expression for the critical current of a SQUID with asymmetric junc-

tions of critical currents Ico±∆I [71]. It has assumed the SQUID has negligible loop induc-

tance. In the limit that ∆I = 0, then the equation reduces to Ic(Φext) = 2Ico cos(πΦext/Φo)

used in eqn. 5.13. With reference to eqn. 5.14, eqn. 5.55 gives the Josephson inductance of

a SQUID of critical current Ic(Φext) in the limit that the current bias is small compared to

the critical current. While the assumptions that the SQUID has negligible loop inductance

and that the bias current is small may not necessarily be true for the actual circuit, being

able to describe the SQUID inductor with an analytical expression provides a good starting

point. In addition, the fact that eqn. 5.55 does not include the current dependence allows

us to isolate out the nonlinear effect solely due to an oscillating magnetic flux, which turns

out to be very useful.

Fig. 5-19 shows the dependence of LJ as a function of magnetic flux for different amount

of critical-current asymmetry ∆I as given by eqns. 5.55 and 5.56. To help our subsequent

discussion about the shape of the modulation curve, we keep track of the positions of the

inflection points on the curve, i.e. when the curve changes its concavity. The inflection point
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Figure 5-19: Dependence of LJ as a function of magnetic flux for different amount of critical-
current asymmetry ∆I as given by eqns. 5.55 and 5.56. The asymmetry reduces the amount
of modulation of LJ with flux, and it also changes the positions of the inflection points
denoted by the circular markers.

occurs when the second derivative of LJ(Φext) is zero:

d2LJ(Φ)

dΦ2
= 0 (5.57)

The inflection points are marked in fig. 5-19. We observed that the inclusion of the asymme-

try in the junctions has two effects on the shape of the modulation curve: (1) it reduces the

amount of modulation of LJ with flux; (2) it changes the positions of the inflection points.

The resonant frequency of the circuit is given by 1/2π
√

LJC and is plotted in fig. 5-20 for

different amount of asymmetry. A side-by-side comparison with the experimental data based

on the shape of the modulation curve and the positions of the inflection points suggests that

the asymmetry of the junctions are around ∆I = 0.5 Ic, and this is the value that we will

use for the simulations 3.

3In practice, the amount of asymmetry in the fabricated junctions may not be so large, but this value
captures the behavior of the data with the toy model.
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Figure 5-20: Side-by-side comparison of the frequency modulation data with the calculations.
The locations of the inflection points suggest that ∆I = 0.5Ic.

We now solve the differential equations governing the resonant circuit in fig. 5-18. It is a

second-order nonlinear differential equation in the variable ΦL

I sin ωt = C
d2ΦL

dt2
+

1

R

dΦL

dt
+

ΦL

LJ(Φext)
(5.58)

where ΦL is the flux through the SQUID inductor given by LJ × IL, and Φext is given by

Φext = Φdc + Φac (5.59)

Φac = αΦL (5.60)

which has a DC component, as well as an AC component that is proportional to ΦL with

proportionality constant α. This brings us to the second property of the toy model: as ΦL

gets large near the resonant frequency of the circuit, the amount of external oscillating flux

that is coupled to the SQUID also increases, and thus the Josephson inductance becomes

more nonlinear. Moreover, the effective inductance over an oscillation period can either

increase or decrease depending on the DC flux bias.
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5.4.2 Simulation Results

Time-domain results

A typical time signal of the output voltage VL(t) = dΦL(t)/dt is shown in fig. 5-21. The

particular driving frequency was at ωs = 0.9 GHz, and the flux bias was Φ = 0.5 Φo. The

Fourier transform analysis of the steady state solution reveals that the signal is primarily

made up of the fundamental frequency ωs (at 0.9 GHz), followed by the third harmonic 3 ωs

(at 2.7 GHz) which is six orders of magnitude smaller.

Similarly, the time signal of the inductance LJ(t) is shown in fig. 5-22. Also referring

to the illustration in fig. 5-25, LJ(t) oscillates around the maximum value of 0.1432 nH at

Φ = 0.5 Φo. The dominant frequency component of LJ is twice the driving frequency 2ωs

(1.8 GHz), which is because the functional shape of LJ(Φext) is symmetric about 0.5 Φo.
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Figure 5-21: Time domain signal and Fourier components of VL at a driving frequency of
0.9GHz and Φ = 0.5 Φo. It is dominated by the odd harmonics.
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Figure 5-22: Time domain signal and Fourier components of LJ . It is dominated by the DC
component and the even harmonics.

Frequency Spectra

By solving the differential equations for VL at different driving frequency ωs, we obtain

the resonant spectrum of the circuit. In fig. 5-23, the power dependence of the magnitude and

phase spectra are shown for three flux biases at Φext = 0, 0.3 Φo and 0.5 Φo. The simulation

results demonstrate qualitative resemblance to the experimental data presented in fig. 4-2 in

the following ways:

1. The magnitude and phase spectra evolves from a symmetric shape to an asymmetric

shape with increasing bias. The spectra bends towards the lower frequency side at Φ = 0,

and towards the higher frequency side at Φ = 0.5 Φo.

2. The magnitude spectra at Φ = 0 are similar to those at Φ = 0.5 Φo, only that they are

mirror imaged about a vertical axis. On the other hand, the phase spectra at the two flux

biases are mirror imaged first about a vertical axis, then about a horizontal axis.

3. At Φ = 0.3 Φo, the magnitude spectra at the two highest input biases exhibit two

discrete jumps, once at a lower frequency when the magnitude is increasing, and another



5.4. TOY RESONANT MODEL– A PHENOMENOLOGICAL APPROACH 147

at a higher frequency when the magnitude is decreasing. Similarly, the phase spectra also

show two discontinuities at the same frequency locations. A partial phase drop occurs at

the low-frequency discontinuity, while most of the phase drop occurs at the high-frequency

discontinuity.
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Figure 5-23: Simulation results for the magnitude and phase spectra based on the toy res-
onant model at three different flux biases. The simulations qualitatively reproduce the
experimentally observed behavior presented in fig. 4-2.
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The flux dependence of the simulated spectra are shown in fig. 5-24 in steps of 0.1 Φo.

The results also compare well with the data shown in fig. 4-3.
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Figure 5-24: Evolution of the nonlinear magnitude spectrum with magnetic flux. The current
bias used in the simulations was I/2Ico = 0.1. The results are comparable with the data in
fig. 4-3.

5.4.3 Observations based on the “toy model”

Based on the simulation results from the “toy model”, we identify the following factors that

are important to explain the resonant behavior of the readout circuit:

1. The dominant nonlinear effect of the SQUID inductance is caused by an oscillating

magnetic flux, rather than an oscillating current bias. This is quite an unexpected result

given that experimentally, the external flux that was applied to the circuit was strictly DC.

One possibility is that this oscillating flux was mutually coupled to the SQUID from a

neighboring loop in the actual circuit. In particular, the flux induced in the resonating loop

which comprises the SQUID inductor and the capacitor could be quite significant. This is

especially true when the driving frequency is near the resonant frequency, at which point

the current circulating in the resonating loop is Q times the size of the driving current (Q

enhancement effect).
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2. The critical-current asymmetry of the SQUID junctions affects the shape of the LJ

vs. Φext modulation curve, which in turn determines how the resonant spectrum evolves

with magnetic flux. A value of ∆I = 0.5 Ico was used to reproduce the data with the toy

model. As illustrated in fig. 5-25, LJ is minimum at Φ = 0, thus the AC modulation of

LJ about this DC bias will result in a higher effective inductance. This corresponds to a

resonant spectrum which bends towards the lower frequency side. On the other hand, LJ is

maximum at Φ = 0.5 Φo, the AC modulation of LJ about this bias results in a lower effective

inductance. This corresponds to a resonant spectrum bending towards the higher frequency

side. The locations of the inflection points determine when the resonant spectrum makes

the transition from bending towards one frequency side to another.
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Figure 5-25: Illustration of how the effective inductance can increase or decrease depending
on the DC flux bias.

These factors will be incorporated in the real circuit model which will be presented in

the next section. It should be commented that the nonlinearity is manifested as a bend

in the resonant spectrum because the nonlinear effect is significant only when f is close to

the resonant frequency fo. In the limit that f is far away from fo, the nonlinear spectrum

becomes similar to the linear case.
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5.5 Circuit model with internally coupled flux

The circuit model presented in this section attributes the nonlinear resonant behavior to an

oscillating flux that is coupled from the resonating loop to the SQUID. The circuit schematic

is shown in fig 5-26. The SQUID is represented by the loop on the far right, with the two

Josephson junctions each represented by the RCSJ model. The SQUID is shunted by a

load capacitor CL and a load resistor RL. We take into account the loop inductance of the

SQUID which is given by La, as well as the loop inductance of the resonating loop Lb. The

mutual inductance between the two loops is given by |Mab| = κ
√

LaLb, where the coefficient

of coupling κ is between 0 and 1 based on the fact that the energy stored in the coupled

inductors must be non-negative. The SQUID loop is threaded by flux Φa while the resonating

loop is threaded by Φb. The flux through loops c and d are not of interest in this problem.
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Figure 5-26: Schematic of the circuit model in which the SQUID is coupled to an oscillating
flux from the resonating loop. La is the loop inductance of the SQUID, while Lb is the loop
inductance of the resonating loop.

5.5.1 Mathematical Analysis

The expressions for Φa and Φb are given by:

Φa = Laia + Mabib + Φext,a (5.61)

Φb = Lbib + Mabia + Φext,b (5.62)
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where the flux in each loop is given by the sum of the self induced flux, the mutual coupled

flux, and the external DC flux bias. We allow the external flux to be different due to difference

in the loop areas. In addition, the SQUID is assumed to have asymmetric junctions with

parameters defined as:

Ico1 = Ico + ∆I Ico2 = Ico −∆I (5.63)

C1 = C + ∆C C2 = C −∆C (5.64)

R1 = R + ∆R R2 = R−∆R (5.65)

We will analyze the circuit in terms of loops and mesh currents, rather than branches

and nodal voltages. This turns out to be a more natural approach when self-induced flux

and mutual-coupled flux are involved. The circuit dynamics are described by a system of

nonlinear differential equations governing the SQUID as well as the rest of the resonant

circuit. First we write out the constituent relations for the circuit elements in terms of the

variables {ϕ1, ϕ2, Vc}, which are the gauge invariant phase across junctions 1 and 2, and the

voltage across CL respectively.

Constituent Relations

Junction 2 : ia = Ico2 sin ϕ2 + Φo

2πR2

dϕ2

dt
+ C2Φo

2π
d2ϕ2

dt2

Junction 1 : ib − ia = Ico1 sin ϕ1 + Φo

2πR1

dϕ1

dt
+ C1Φo

2π
d2ϕ1

dt2

CL : ic − ib = CL
dVc

dt

RL : id − ic = Vc

RL

The relations for junctions 1 and 2 state that the current through each junction is given

by the sum of the currents through the Josephson branch, the resistive branch, and the

capacitor branch in the RCSJ model.
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Equations of Motion

First we perform a change of variables from {ϕ1, ϕ2, Vc} to {ϕp, ϕm, ϕc} so that the variables

have the same unit:

ϕ1 = ϕp + ϕm (5.66)

ϕ2 = ϕp − ϕm (5.67)

Vc =
Φo

2π

dϕc

dt
(5.68)

In terms of these variables, one may find it intuitive to think of the circuit as a parallel

combination of three Josephson junctions characterized by ϕp, ϕm and ϕc. In this way, RL

and CL can then be treated as the resistive and capacitive branches of the RCSJ model for

junction ϕc (Josephson branch is omitted). The circuit dynamics are governed by a set of

three nonlinear differential equations.

1. Current Continuity Equation

I sin ωt = 2Ico sin ϕp cos ϕm +
ΦoR

π(R2 −∆2
R)

dϕp

dt
+

CΦo

π

d2ϕp

dt2
+

Φo

2πRL

dϕc

dt
+

CLΦo

2π

d2ϕc

dt2
+ f1

(5.69)

2. Fluxoid Quantization Equation (Loop b)

0 = ϕc − ϕp − ϕm − 2πLbib(ϕp, ϕm)

Φo

− 2πMabia(ϕp, ϕm)

Φo

− 2πΦext,b

Φo

(5.70)

3. Fluxoid Quantization Equation for SQUID (Loop a)

0 = 2ϕm − 2πLaia(ϕp, ϕm)

Φo

− 2πMabib(ϕp, ϕm)

Φo

− 2πΦext,a

Φo

(5.71)

where f1 in the current continuity equation includes terms due to the asymmetric junction

parameters:

f1 = 2∆I sin ϕm cos ϕp − Φo∆R

π(R2 −∆2
R)

dϕm

dt
+

∆CΦo

π

d2ϕm

dt2
(5.72)
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and ia(ϕp, ϕm), ib(ϕp, ϕm) are given by the constituent relations discussed previously.

The fluxoid quantization equations in eqn. 5.70 and 5.71 are in fact integrals of Kirchoff’s

Voltage Law (KVL) for the corresponding loops, with the constant of integration given by

the DC flux Φext threading the loop. The integration constants result in a DC offset to the

solutions for ϕp, ϕm and ϕc. In particularly, according to eqn. 5.71, Φext,a causes a DC offset

in ϕm and to certain extent ϕp due to asymmetry. On the other hand, simulation results

show that Φext,b in eqn. 5.70 causes a DC offset only in ϕc without changing ϕm or ϕp.

Therefore, we could have replaced equation 5.70 with its KVL equivalent and still be

mathematically correct. This is because the physical parameter of interest Vc is only depen-

dent on the derivative dϕc/dt, and will not be affected by a DC offset in ϕc. The resultant

set of equations are known as differential-algebraic equations (DAEs), given that equations

for loop b and loop a will be differed by an order of integration. While certain ode solvers

in Matlab such as ode15s and ode23t can deal with DAEs, they are numerically more chal-

lenging to solve. Thus we have adopted the way to write out the differential equations as

shown above.

Physical Parameters

(a) Output voltage

Vo(t) =
Φo

2π

dϕ2

dt
=

Φo

2π

(
dϕp

dt
− dϕm

dt

)
(5.73)

(b) Capacitor voltage

Vc(t) =
Φo

2π

dϕc

dt
(5.74)

(c) SQUID circulating current (Averaged difference of junction currents)

Icir =
IJJ1 − IJJ2

2
(5.75)

(d) SQUID bias current (Sum of junction currents)

Isq = IJJ1 + IJJ2 = ib (5.76)

where the junction currents IJJ1 and IJJ2 are given by the constituent relations.
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(e) Flux induced in SQUID

Φinduced = LaIcir (5.77)

(f) Flux coupled to SQUID

Φcoupled =

(
|Mab| − La

2

)
ib =

(
|Mab| − La

2

)
Isq (5.78)

where Mab is negative, and La, Lb are positive. Mab is negative such that the direction of

the coupled flux in the SQUID is opposite to the direction of the self-induced flux in the

resonating loop, and vice versa. When defining the flux coupled to the SQUID, one needs

to subtract the contribution due to the common arm inductance La/2 from the total mutual

coupling Mab. We have assumed the arms of the SQUID to be symmetric.

Comments on competing nonlinear effects:

The nonlinearity of the Josephson inductance is caused by current biases: Isq and Icir, as

well as the flux biases: Φcoupled and Φinduced. The competing effects between the current

and the flux biases determine the resultant resonant behavior of the circuit. By varying

the relative sizes of the signals, we should be able to control the relative strength of the

competing effects. In particular, Isq and Φcoupled are related by the mutual inductance Mab

between the SQUID and the resonating loops. It will be shown that by gradually increasing

the size of Mab, the nonlinear effect due to the oscillating flux can be made more prominent.
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Numerical Simulations of ODEs

Solving differential equations numerically requires normalizing the equations to be unitless.

The time variable also needs to be scaled with respect to the largest characteristic time of the

circuit to ensure the proper time step was taken by the ode solver to capture the dynamics

of the circuit. For a thorough discussion on scaling differential equations for numerical

simulations, please refer to appendix B.

The differential equations in 5.69 to 5.71 were coded in Matlab as equivalent system of

first-order differential equations in the form

Mẋ = f(x, t) (5.79)

where x are the variables of the equations and ẋ correspond to its derivatives:

x =




ϕc

ϕ̇c

ϕp

ϕ̇p

ϕm

ϕ̇m




ẋ =




ϕ̇c

ϕ̈c

ϕ̇p

ϕ̈p

ϕ̇m

ϕ̈m




(5.80)

M is a 6×6 mass matrix. We have added in the terms due to asymmetry of the junctions.

M =




ϕ̇c ϕ̈c ϕ̇p ϕ̈p ϕ̇m ϕ̈m

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

Φo

2πRLIc

ΦoCL

2πIc

a1Φo

πRIc

CΦo

πIc
− a1Φo

π∆RIc

∆CΦo

πIc

0 0 a1(d1 − d2
∆R

R
) d1C + d2∆c a1(d2 − d1

∆R

R
) d1∆c + d2C

0 0 a1(b2 − b1
∆R

R
) b1∆c + b2C a1(b1 − b2

∆R

R
) b1C + b2∆c




(5.81)
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f(x, t) =




ϕ̇c

ϕ̇p

ϕ̇m

I
Ic

sin ωt− sin ϕp cosϕm − 2∆I

Ic
sin ϕm cos ϕp

ϕp + ϕm − ϕc − 2πd1
Φo

(Ico sin ϕp cos ϕm + ∆I sin ϕm cos ϕp)− 2πd2
Φo

(Ico sin ϕm cos ϕp + ∆I sin ϕp cosϕm) + 2πΦb

Φo

−ϕm − 2πb1
Φo

(Ico sinϕm cos ϕp + ∆I sin ϕp cosϕm)− 2πb2
Φo

(Ico sin ϕp cosϕm + ∆I sin ϕm cosϕp) + πΦa

Φo




(5.82)

where Ic = 2Ico, and the constants are given by:

a1 =
1

1− (
∆R
R

)2 (5.83)

d1 = −(2Lb + Mab) d2 = Mab (5.84)

b1 =
La

2
b2 = −

(
La

2
+ Mab

)
(5.85)

d1, d2, b1, b2 have unit of inductance, and a1 is unitless.

Circuit parameters

Critical current for junction Ico = 2.3µA

Resistor across junction R = 500Ω

Capacitor across junction C = 5 pF

Load resistor RL = 500Ω

Load capacitor CL = 100 pF

Loop inductance of SQUID La = 60 pH

Loop inductance of resonating loop Lb = 800 pH

Mutual coupling |Mab| = 50pH to 150 pH (κ ≈ 0.22 to 0.68)

Asymmetry of junctions ∆I/Ico = 0.5

The values were based on the fabrication and design parameters of the actual circuit. The

loop inductances and the mutual coupling were estimated based on the FastHenry simulator

[54] and were likely to have discrepancies from the actual values.
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5.5.2 Simulation Results

The nonlinear magnitude and phase spectra for Vo are shown in fig. 5-27 for different flux

biases between Φ = 0 to 0.5 Φo. The size of the mutual coupling used was |Mab|=50pH

(κ ≈ 0.22). Comparing the shapes of the magnitude spectra with the previous results based

on the phenomenological model in fig. 5-24, we can see that the evolution of the spectrum

demonstrates a similar trend, varying from bending towards the lower frequency side at

Φ = 0 to bending towards the higher frequency side at Φ = 0.5 Φo. However, the transition

of the bending no longer occurs at Φ = 0.3 Φo, but instead happens only when the flux bias

is very near Φ = 0.5 Φo.

0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56
10

−7

10
−6

10
−5

Flux Dependence of V
o
 for I/2I

co
 = 4e−3, M = −50pH

Frequency [GHz]

M
ag

ni
tu

de
 o

f V
o [V

], 
lo

g 
sc

al
e

0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56
−1.5

−1

−0.5

0

0.5

1

1.5

Frequency [GHz]

P
ha

se
 o

f V
o [r

ad
]

Φ = 0.5Φ
o

Φ = 0.4Φ
o

Φ = 0.3Φ
o

Φ = 0.2Φ
o

Φ = 0.1Φ
o

Φ = 0

Figure 5-27: The evolution of the nonlinear spectrum with magnetic flux based on the circuit
model with internally coupled flux. The mutual coupling between the resonating loop and
the SQUID was |Mab| = 50 pH. The transition of the bending occurs very near Φ = 0.5 Φo.

Subsequent simulation results showed that by increasing the size of the mutual inductance

Mab, and thereby enhancing the nonlinear effect due to the oscillating flux over that due to

the bias current, the resonant behavior became increasingly similar to the results based on

the phenomenological model. Fig. 5-28 shows the simulation results when the size of |Mab|
was increased from 50 pH to 150 pH. The onset of transition for the bending now occurs at
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Φ = 0.4 Φo.
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Figure 5-28: Evolution of magnitude spectrum with magnetic flux with the mutual coupling
is increased to |Mab| = 150 pH. The onset of transition is now evidenced at Φ = 0.4 Φo.

While enhancing the effect due to the oscillating flux by increasing the mutual inductance

Mab is useful for proof-of-principle purposes, a value of |Mab| = 150 pH corresponds to a

coupling constant of κ = 0.68, and is physically unlikely given the geometrical arrangement

of the loops in the actual circuit. In the following section, we discuss certain modifications

made to the circuit model to allow the possibility that the observed nonlinearity could be

due to oscillating flux originated from a different source.
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5.6 Circuit model with externally coupled flux
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Figure 5-29: Circuit schematic of the resonant model in which the SQUID is coupled to a
dependent flux source.

5.6.1 Analysis and Simulation Results

The results from the circuit model with internally coupled flux suggested that with the

circuit parameters that we used, the amount of oscillating flux that was being coupled

from the resonating loop to the SQUID was not enough to reproduce the observed resonant

behavior. In particular, the values for La, Lb, and the mutual inductance Mab used were

probably not accurate enough to model the actual values. To deal with the uncertainties

in the inductance values, we will discuss a circuit model here where the SQUID is coupled

externally to a dependent flux source. The circuit schematic is shown in fig. 5-29.

For this circuit model, we set the loop inductance of the resonating loop (previously

referred as Lb) to be zero. The loop inductance of the SQUID (previously referred as La) is

given by 2L, where L is the inductance of each arm. The circuit is governed by the current

continuity and the fluxoid quantization equations. The mathematical analysis of the circuit

is similar to the previous analysis for previous circuit model, and the full analysis can be

found in appendix D.



160
CHAPTER 5. SIMULATIONS OF NONLINEAR RESONANT BEHAVIOR IN

JOSEPHSON-JUNCTION CIRCUITS

The essence of the model is that the external flux which comes in the fluxoid quantization

equation for the SQUID has the form:

Φext = Φdc + Φcoupled (5.86)

Φcoupled = MsqIsq (5.87)

which has the same form as eqn. 5.78 for the previous model. The size of the coupled

flux is made to be proportional to the bias current Isq through the SQUID. First, we will

use the modified circuit model to reproduce the resonant behavior obtained previously for

different values of mutual inductance. To establish a basis for comparison, we recognize that

the fluxoid equation for the SQUID will be equivalent for both circuit models (eqns. 5.71

and D.26) if we set

Msq = |Mab| − La

2
(5.88)

where Msq is the total mutual coupling |Mab| minus the contribution due to the common

arm inductance La/2. The results are shown in fig. 5-30. As we increase the size of Msq, we

observe a similar enhancement of the nonlinear effect due to the oscillating flux coupled to

the SQUID. In particular at Msq = 20pH, the transition of the peak bending occurs when

the flux bias is very near Φ = 0.5 Φo, and this is comparable to the previous results shown

in fig. 5-27. At Msq =120 pH, the transition occurs at Φ = 0.4 Φo, which is similar to the

case shown in fig. 5-28.

As we further increase the size of the mutual coupling Msq, the transition of the peak

bending is gradually moved to the flux bias of Φ = 0.3 Φo. This is shown in fig. D-5. The

flux dependence of the resonant spectra now demonstrates qualitative resemblance to the

experimental data shown in fig. 4-3. The comparison between this set of simulation results

with the data will be presented in the next section.
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Figure 5-30: Resonant behavior with different magnetic flux biases based on the modified
circuit model with externally coupled flux. The simulations are shown for two values of
mutual coupling Msq, which should give equivalent results as figs. 5-27 and 5-28.
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Figure 5-31: Simulation results for Msq = 1nH. The onset of transition occurs at Φ = 0.3 Φo

as observed in the experiment.
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5.6.2 Comparison of simulations with experimental data

Comparison based on shapes of resonant spectra

We will compare the experimental data with the simulation results obtained based on the

modified circuit model in which the SQUID is externally coupled to a dependent flux source.

Fig. 5-32 is a side-by-side comparison between the nonlinear magnitude and phase spectra

at various flux biases.
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Figure 5-32: Side-by-side comparison between simulations based on the modified circuit
model and the experimental data previously shown in fig. 4-3.
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The major observations are summarized below:

1. The simulations successfully reproduced the general shape of the spectra as the flux

bias was varied from Φ = 0 to 0.5 Φo. Both the data and simulations showed that the

nonlinear magnitude spectrum gradually evolved from bending towards one frequency side

to another, with the transition occurring around Φ = 0.3 Φo. The phase spectra also showed

qualitative resemblance to the data.

2. The quality factor Q of the simulated peaks were on the order of 100, while the Q of

the actual circuit was as high as 7000. Due to the Q-enhancement effect, the current going

through the SQUID is Q times higher than the driving current at the resonant frequency.

Thus the higher the Q, the larger the AC modulation of the SQUID inductance near the

resonant frequency, and the more prominent the nonlinear resonant behavior. However

with the simulation method that we used, it was numerically challenging to simulate and

characterize circuits with extremely high Q, partly because the frequency resolution is limited

by the step size of the driving frequency, and also because a large Q circuit would take a

long time to reach steady state and make the simulations more computationally intensive.

3. The fractional change in resonant frequency as the flux is varied from 0 to 0.5 Φo

is about 200 MHz/475MHz (∼ 40%) for the simulations, and about 0.4MHz/419.4MHz

(∼ 0.1%) for the data. This means that in the simulations, the contribution of the Joseph-

son inductance in the overall loop inductance for the resonance is a lot larger than in the

actual circuit. This was done on purpose so that the nonlinear effect due to the Josephson

inductance can be more easily observed without being limited by the frequency resolution

of the simulations.

4. In the measurements, an anti-resonance occurred at proximity to the resonant peak,

causing the magnitude spectra to appear tilted. The phase spectra were also affected by a

large amount of noise in the anti-resonance region due to the small transmitted signal. The

anti-resonance effect was likely due to capacitive parasitics in the experimental configuration

and was not modeled in the simulations.
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Comparison based on the extent of bifurcation region as a function of input bias

Next, we will characterize the extent of the bifurcation region as a function of input bias.

To do that, we simulated the hysteretic behavior of the spectrum by stepping the driving

frequency in both the forward and backward directions, and by ensuring that the initial

conditions used for the next frequency point were the solutions obtained for the previous

frequency point. As illustrated in fig. 5-33, we define the frequency at which the resonant

spectrum jumps from the lower to the higher stable branch as ωbend, and the frequency at

which the spectrum falls from the higher to the lower stable branch as ωtip.
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Figure 5-33: Simulations of hysteretic resonant behavior at various flux biases. ωbend is
defined as the frequency at which the resonant spectrum jumps from the lower to the higher
stable branch, whereas ωtip is the frequency at which the spectrum falls from the higher to
the lower stable branch.

Similar to the earlier analysis for a single junction (eqn. 5.51), we normalize ωtip and ωbend

with respect to the resonant frequency of the linear spectrum ωo:

δωtip =
ωtip − ωo

ωo

(5.89)

δωbend =
ωbend − ωo

ωo

(5.90)
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Note that the sign of δω serves as an indication of the polarity of the bending. A

positive δω corresponds to the nonlinear spectrum bending to the higher frequency side, and

a negative δω corresponds to the spectrum bending to the lower frequency side. In addition,

the extent of the bifurcation region is given by |ωtip − ωbend|.
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Figure 5-34: Extent of bifurcation region as a function of input bias for the simulations (top)
compared with the hysteresis data (bottom). The data were previously presented in fig. 4-8.

In fig. 5-34, δωtip and δωbend were plotted as a function of input bias. We shall first focus

on the flux biases at Φ = 0 and Φ = 0.5 Φo. Both the simulations and the data show a

similar trend, with ωtip growing at a faster rate than ωbend. When comparing the input-bias

dependence, we first locate in the figures the threshold point where ωbend and ωtip deviate,

marking the beginning of the hysteretic region. This provides a reference point for us to

relate the size of the driving current for the simulations, to the size of the input power for

the experimental data. A qualitative comparison seems to suggest that the data corresponds
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to a zoom-in of the simulations near the onset of the hysteretic region.

For the case when Φ = 0.3 Φo, the simulations results are very different from the data.

The data capture the fact that the resonant spectrum is constantly flipping from bending

towards one frequency side to another as the power is gradually increased (see fig. 4-2).

However as for the simulations, the spectrum bends only to the lower frequency side at

the intermediate biases. Only at the highest bias that the transition of the peak bending is

manifested. It is likely that simulations performed at a nearby flux bias other than Φ = 0.3 Φo

could better reproduce the data.
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5.7 Discussion

In this chapter, we have simulated the resonant behavior of various circuits comprising

Josephson junctions. The goal was to reproduce the observed resonant behavior of the

readout circuit, and thereby understanding the nonlinear mechanism which governs the

circuit behavior.

First, we analyzed the resonant behavior of a Josephson junction using the harmonic

balance approach. The simplicity of the single junction allowed us to obtain an analytical

solution for the nonlinear resonant behavior, revealing both the stable and the unstable

solutions of the bifurcation region (fig. 5-8).

We then proceeded to the simulations of resonant circuits comprising a SQUID. We

simulated the circuits from first principles by solving the differential equations governing the

SQUID and the rest of the circuit numerically. Our approach was to build up a series of

resonant circuit models, three of which have been discussed in detail. The first model, i.e.,

the toy model, was based on a phenomenological approach where we replaced the SQUID by a

nonlinear inductor described by an analytical expression. The nonlinear inductor was a valid

approximation for the SQUID inductance within certain biasing and parameter constraints.

In the second model, we attribute the nonlinear resonant behavior to the flux coupled from

the resonating loop to the SQUID. We were able to demonstrate the competing effects due to

the current and flux biases using this model. However, based on the circuit parameters that

we used, the amount of nonlinearity due to the coupled flux was not enough to reproduce

the data. We then discussed a third model where the SQUID is coupled externally to a

dependent flux source. This approach allowed us to increase the size of the coupled flux

without being constrained by the uncertainties in the inductance values of the circuit. We

were able to qualitatively reproduce the resonant behavior in the data with the simulation

results.

The following is a complete list of circuit models that we have analyzed. Circuits 2 and

3 were not discussed in this chapter but can be found in appendix D.
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Observations based on the simulation results

The simulation results lead to the following suggestions about the actual circuit:

1. The nonlinear resonant behavior was due to an oscillating flux that was being coupled

to the readout SQUID. We showed that the AC modulation from this oscillating flux can

result in a higher or lower effective Josephson inductance depending on the DC flux bias,

hence causing the flux-dependent resonant behavior that was observed experimentally. The

size of this oscillating flux is proportional to the bias current through the SQUID, and is

estimated to be on the order of 0.1 Φo near the resonant frequency. The source of this

oscillating flux likely originates from the resonating loop. However, due to uncertainties in

the actual on-chip values for the capacitances and inductances, as well as numerical limitation

to simulate circuits with very high Q-factor, we were only able to reproduce the experimental

results with an unexpectedly large mutual coupling.

2. The simulations also suggested that the junctions of the readout SQUID have asym-

metric critical currents. Junction asymmetry was one of the possible explanations given the

shape of the frequency modulation curve with magnetic flux. We showed that the amount of

asymmetry has an effect on the curvature as well as the position of the inflection points on the

frequency modulation curve. The amount of asymmetry was estimated to be ∆I = 0.5 Ico,

and is likely to be too large to be practical. Given that the SQUID junctions were designed

to be 1.5 × 1.5 µm2, the maximum asymmetry was estimated to be at most 20 % based on

process testing results.

Recommended future work:

The following experiments are recommended to address some of the issues raised by the

simulations:

1. Design new resonant readout samples where the readout SQUID has known junction

asymmetry. One can perform a systematic characterization of how the resonant behavior

changes with different amount of asymmetry. The fabrication process at Lincoln Lab can

now make junctions with sub-micron resolution, and should provide the required junction

resolution for this experiment.
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2. To eliminate undesired flux being coupled from the resonating loop to the readout

SQUID, we have designed a new circuit where the resonating capacitor is split and placed

on both sides of the SQUID. Thus, the resonating loop is also split symmetrically, and any

induced flux on one side will be canceled out by a similar amount of flux on the other side.

This design has been fabricated at Lincoln Lab and is awaiting to be tested. This will be

further discussed in section 6.2.3.

3. Test structures for on-chip capacitors and spiral inductors are important to charac-

terize the actual value of the circuit elements. Given the complexity of the readout circuit

design, this will help explain the resultant resonant frequency as well as the quality factor

of the circuit. Knowing the values of the lumped elements will also help estimating the loop

inductances and mutual inductances between the loops.
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Chapter 6

Conclusions and Future work

6.1 Conclusions

In this thesis, I have developed a resonant readout scheme for a niobium persistent cur-

rent qubit. This dispersive readout approach is expected to be an improvement over the

conventional readout scheme in reducing the level of decoherence on the qubit. Minimizing

readout-induced decoherence is an important step towards improving the measured coher-

ence times for superconducting qubits, and thereby demonstrating the feasibility of using

macroscopic solid-state systems as building blocks for a quantum computer.

The first part of this thesis focused on the experimental implementation of the resonant

readout scheme. This involved designing a high-Q resonant circuit to be coupled to the

qubit, developing an experimental procedure for RF testing at cryogenic temperatures, and

characterizing the behavior of the resonant circuit at different biases for qubit readout. The

major experimental results were:

• We have confirmed the high sensitivity of the resonant readout at 300mK by distin-

guishing the circulating current states of the qubit as a shift in the resonant frequency

of the readout circuit.

• We have demonstrated the possibility of implementing a high-Q readout circuit using

impedance transformation techniques, and by fabricating all the circuit elements on-

chip. The capability to incorporate the necessary circuitry on-chip with available
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fabrication technology is an important advantage for niobium-based qubits.

• We have observed novel manifestation of the nonlinearity due to the Josephson in-

ductance of the SQUID. Not only that the resonant spectrum of the readout circuit

became asymmetric in the nonlinear regime, the polarity of the asymmetry evolved

periodically as a function of DC magnetic flux bias to the SQUID.

In the second part of the thesis, I focused on the numerical simulations of the resonant

behavior of circuits comprising a SQUID inductor. I simulated the circuits from first prin-

ciples by solving the differential equations governing the SQUID and the rest of the circuit.

Our approach was to build up a series of resonant circuit models with increasing level of

complexity, and gradually include the essential physics to reproduce the nonlinear resonant

behavior as observed in the experiment. The major results were:

• Based on the simulations, the experimentally observed nonlinearity was due to an

oscillating flux that was coupled to the readout SQUID. The source of this oscillating

flux was likely originated from the resonating loop.

• The simulations also suggested a significant amount of asymmetry in the critical cur-

rents of the SQUID junctions. The suggested level of asymmetry was needed to explain

the data within the circuit models, but is likely to be too large for the actual sample

based on process testing results.

• The simulation techniques developed for solving differential equations of resonant cir-

cuits comprising a SQUID inductor could be applied in the future for circuits with

different configurations.

To further advance the thesis project to the next level, future experiments will involve

probing the quantum dynamics of the qubit with the resonant readout technique at dilution

refrigerator temperatures. The coherence times of the qubit can then be compared with

previous results using the switching current readout. Some preliminary experimental work

has been carried out and will be presented in the following section.
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6.2 Future Work

One of the future goals is to employ the resonant readout scheme for probing the quantum

dynamics of the qubit at dilution refrigerator temperatures. The main objective would be to

perform similar qubit experiments discussed in section 2.2.4, and to compare the coherence

times of the qubit with previous results from the switching current readout. The following

sections discuss the preliminary work which has been carried out to achieve this goal. This

mainly involves (1) the development of a time-resolved measurement scheme, and (2) an

improved electronic setup designed for the low temperature stages of the dilution refrigerator.

6.2.1 Time-resolved Resonant Readout

In the time-resolved scheme, the resonant readout is biased at a single frequency near the

resonant frequency. The qubit signal is detected as a difference in the magnitude or phase of

the output voltage, rather than a shift in the resonant frequency. The following discussion

focuses on the implementation of the fast readout scheme, and is not intended to be specific

for a certain experiment. The generic pulse sequence for the rapid measurement scheme is

shown in fig. 6-1. The readout is to be performed on a µs timescale.

The qubit dynamics are controlled by microwave pulses, with a frequency typically be-

tween 1-40GHz. The readout pulse is of frequency ∼ 500MHz near the resonant frequency

of the resonant circuit. Depending on the state of the qubit, the voltage response of the

readout circuit will be different. The response time τss of the resonant circuit depends on

the quality factor Q, and is estimated to be 0.6 µs for a Q on the order of 1000.
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Figure 6-1: Pulse sequence of the time-resolved resonant readout. The spectrum analyzer is
shown operated with the gated-time measurement. The fast measurement scheme is to be
performed on a µs timescale.
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Pulse spectrum measurement vs. Gated time measurement

To measure the voltage response, the spectrum analyzer is first put in zero span about the

frequency of interest. Then there are two choices with the detection modes of the spectrum

analyzer: pulse spectrum measurement [77] and gated time measurement [78]. The first way

is to have the spectrum analyzer detecting for a period of N × T, where N is the number of

repeating pulses, and T is the period of the pulse train (see fig. 6-1). The amplitude of the

voltage measured at the analyzer will be reduced by the duty cycle of the pulse train:

VSA =
Aτ

T
(6.1)

where A is the original amplitude of the voltage response, and τ/T is the duty cycle of

the pulse train. This option may be less desirable if the waiting time between subsequent

measurements is relatively long, and thus the signal will be reduced significantly by the low

duty cycle.

An alternative option is to perform gated time measurements with the spectrum analyzer,

where one can control the window of time when the spectrum analyzer is detecting. This

is illustrated in the pulse sequence in fig. 6-1. The minimum gate length for our spectrum

analyzer model is 300 ns 1, which should be reasonably fast enough as a start. However, one

should be aware that there is a charging time for the filter associated with the resolution

bandwidth (RBW) given by τRBW = 1/RBW . As illustrated in fig. 6-1, the time elapse

between the beginning of the signal of interest and the start of the gate time should be

longer than the setup time (SUT), where SUT = 2× τRBW .

6.2.2 Low-temperature electronic setup for dilution refrigerator

The proposed electronic scheme for the dilution refrigerator experiments is shown in fig. 6-2.

This is similar to the 300 mK setup in fig. 3-8. The main improvement to the electronic setup

will be the addition of a low-noise cryogenic amplifier 2 at the 4 K stage. The amplifier design

is based on HEMT transistors. It has a gain of 36 dB with noise temperature of 1.0 K at

1Gated time option for Agilent E4407B ESA series Spectrum Analyzer, 9 kHz to 26.5 GHz
2QCA-U-430-2Z01 Cryogenic Amplifier, 340MHz to 520 MHz
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430MHz when tested at 15K. The improved noise performance allows signals to be detected

with fewer numbers of averaging in a spectrum analyzer. It may even allow the possibility

of detection using a fast oscilloscope 3 in the time domain. The fast oscilloscope does not

have as narrow a resolution bandwidth as the spectrum analyzer, and thus is less sensitive

in detecting small signals.

To reduce the noise introduced by the cryogenic amplifier back on the sample, a standard

technique is to include an isolator 4 between the amplifier and the device. The isolator is a

passive, non-reciprocal microwave device which allows signal to flow in one direction only.

Typical isolators work at frequencies higher than at least 100MHz.
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DC lines
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Package
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Cryogenic
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Figure 6-2: The proposed electronic scheme for experiments in the dilution refrigerator. The
main improvement is the low-noise cryogenic amplifier at the 4K stage, and the isolator
which prevents noise to be fed from the amplifier to the device.

3Tektronix TDS 7104 Digital Phosphor Oscilloscope, 1GHz bandwidth
4Nova Microwave Inc., 0042IAS Isolator, 350MHz to 500 MHz
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6.2.3 Testing of new symmetric circuit design

With the goal to minimize oscillating flux coupled from the resonating loop to the readout

SQUID, we have designed new resonant circuits with a symmetric configuration. One of

such symmetric designs is shown in fig. 6-3. With a comparison to the earlier QC4 design

in fig. 3-3, the resonating capacitor is split and realized by C2 on both sides of the SQUID.

Thus, the resonating loop is also split symmetrically, and any induced flux on one side will

be canceled out by a similar amount of flux on the other side. In addition, the new circuit

schematic employs an L-match impedance network on both the input and the output sides,

while the tapped-inductor transformer is eliminated.
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2
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Figure 6-3: Circuit schematic of the symmetric resonant circuit design. The resonating
capacitance is provided by C2 on both sides of the SQUID. L-match impedance network are
employed on the input and output sides. The component values are LJ = 0.2 nH, L1 = 69nH,
L2 = 0.78 nH, C1 = 1.4 pF, and C2 = 50pF. The junctions of the SQUID are each shunted
by a 5 pF capacitor (not shown). The components within the dotted box were fabricated
on-chip.

C1+C2 C1+C2

L1 L1L2

Figure 6-4: Layout of the symmetric circuit as shown in the XIC design tool.
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The layout of the circuit design is shown in figure 6-4. Devices have been fabricated in

the DSM fabrication run at Lincoln Laboratory and are awaiting to be tested. In addition,

test structures for on-chip capacitors and spiral inductors were also incorporated on-chip

(fig. 6-5). Being able to determine the actual values of the on-chip circuit elements will be

important to understand the resultant resonant behavior of the readout circuit.

open short

Calibration: open Calibration: short

Inductor Capacitor

Figure 6-5: Examples of test structures for a spiral inductor and a capacitor. The top
structures are to be used as calibration standards for open and short circuits.



Appendix A

Analysis of Tapped-inductor

Impedance Transformation

Abstract

The circuit design of the resonant readout in fig. 3-4 has employed the tapped-inductor

transformation technique to achieve a high quality factor. This appendix provides a deriva-

tion of the design equations in 3.2 and 3.3.
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TRANSFORMATION

The tapped-inductor transformation is shown in fig. A-1 with a resonating capacitor. The

transformer is usually used to raise R2 to a higher resistance RT at the resonant frequency,

and thus raising the Q of the resonator. We want to derive the equations relating RT to R2,

given the design parameters L1 and L2. The design equations can be obtained by converting

the tapped configuration to its equivalent RL shunt using series-parallel transformations of

impedances.

L1

R2L2

tapped-inductor

LT
C C RT

equivalent

Figure A-1: [left]: Configuration of a tapped-inductor transformation shunted by a resonant
capacitor; [right]: Equivalent circuit

We begin by establishing some formula required for series to parallel transformation and

vice versa:

X
s

R
s

x
p R

p

Figure A-2: Series to parallel transformation. The reactive element could be either an
inductor or capacitor, with X = ωL for an inductor and X = −1/ωC for a capacitor

The reactive element is shown here as an inductor, but in reality can either be an inductor

(X = ωL) or a capacitor (X = −1/ωC). First, we note that the Qs of the series and parallel

network are given by:
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Qs =
|Xs|
Rs

Qp =
Rp

|Xp| (A.1)

=
ωLs

Rs

=
Rp

ωLp

(A.2)

We can assign a Q to the network as one can imagine connecting a capacitor to the ports

as in fig. A-1. In that case, ω will be set to ωo, and the formula will be consistent with those

for a series and parallel RLC circuit. Note that at resonance, the reactance of the capacitor

and the inductor are equal, i.e. woL = 1/woC.

If we claim that the series and the parallel networks are equivalent, the Qs of the two

networks must also be equal. Therefore, we obtain the following Q-invariance relation which

will be used later for the conversion:

Qs = Qp (A.3)

ωLs

Rs

=
Rp

ωLp

We then write out the impedances of both the series and parallel networks:

Zp =
jωLpRp

jωLp + Rp

= Rp(
ω2L2

p

R2
p + ω2L2

p

) + jωLp(
R2

p

R2
p + ω2L2

p

) (A.4)

Zs = Rs + jωLs (A.5)

By equating Zp with Zs, we can convert from a parallel to a series network according to the

equations:

Rs = Rp(
ω2L2

p

R2
p + ω2L2

p

) = Rp(
1

Qp
2 + 1

) (A.6)

Ls = Lp(
R2

p

R2
p + ω2L2

p

) = Lp(
Qp

2

Qp
2 + 1

) (A.7)

We have used the fact that Rp/ωLp is simply Qp. From the Q-invariance principle in
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TRANSFORMATION

eqn. A.3, the same equations can also be used when converting from a series to parallel

configuration. We can conveniently interchange Qs and Qp depending on the conversion we

are performing. The formula are summarized below:

parallel → series : Rs = Rp(
1

Q2 + 1
), Xs = Xp(

Q2

Q2 + 1
)

series → parallel : Rp = Rs(Q
2 + 1), Xp = Xs(

Q2 + 1

Q2
)

For a high Q circuit where (Q2 + 1) ≈ Q2, we can make the following useful approxima-

tions:

Rs ≈ Rp

Q2

Xs ≈ Xp

Now we will proceed to analyze the tapped-inductor transformation. Our goal is to obtain the

transformation relation by relating R4 to R2 in terms of L1 and L2. The steps of conversion

are shown in fig. A-3.
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Figure A-3: Converting a tapped-inductor configuration to a simple inductor-resistor shunt

From step 1 to 2: (parallel to series)

L2
′ = L2(

Q2
2

Q2
2 + 1

) = L2(
R2

2

R2
2 + ω2L2

2

) (A.8)

R2
′ = R2(

1

Q2
2 + 1

) = R2(
ω2L2

2

R2
2 + ω2L2

2 ) (A.9)
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Step 2 to 3:

L3 = L1 + L2
′ (A.10)

R3 = R2
′ (A.11)

Step 3 to 4: (series to parallel)

L4 = L3(
Q3

2 + 1

Q3
2 ) =

R3
2

ω2L3

(
ω2L3

2

R3
2 + 1) (A.12)

R4 = R3(Q3
2 + 1) = R3(

ω2L3
2

R3
2 + 1) (A.13)

If we assume the Q of the circuit is high, we can make the approximation that (Q2 +1) ≈
Q2. In this case, we can make some significant simplifications:

L4 ≈ L1 + L2 (A.14)

R4 ≈ R2

(
L1 + L2

L2

)2

(A.15)

So the transformation factor in the case of Q2 >> 1 is given below. Note that the expression

does not depend on the operating frequency.

R4

R2
= (L1+L2

L2
)2 (A.16)

Without the high-Q approximation, the transformed resistance and inductance are re-

lated to the original parameters by:

L4 =
R2

2( ω2L2
2

R2
2+ω2L2

2 )2

ω2(L1 + L2(
R2

2

R2
2+ω2L2

2
))


ω2(L1 + L2(

R2
2

R2
2+ω2L2

2
))2

R2
2( ω2L2

2

R2
2+ω2L2

2 )2
+ 1


 (A.17)

R4 = R2(
ω2L2

2

R2
2 + ω2L2

2 )


ω2(L1 + L2(

R2
2

R2
2+ω2L2

2
))2

R2
2( ω2L2

2

R2
2+ω2L2

2 )2
+ 1


 (A.18)
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Appendix B

Scaling ODEs for Numerical

Simulations

Abstract

When solving a set of differential equations numerically, it is oftentimes necessary to

scale the time variable with respect to the largest characteristic time of the circuit. This

ensures that the ode solver takes the appropriate time step to capture the dynamics of

the system. This appendix illustrates the techniques to scale differential equations with

two simple examples: a linear RLC circuit, and a single Josephson junction represented by

the RCSJ model. It then discusses the scaling for the differential equations governing the

resonant readout circuit presented in section 5.5.
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Simple parallel RLC circuit

For a simple parallel RLC circuit driven by a current source, the differential equation is given

by:

I = iL +
L

R

diL
dt

+ LC
d2iL
dt2

(B.1)

The coefficient of the first derivative has unit of time, and is the characteristic time for the

inductor and resistor:

τL =
L

R
(B.2)

The coefficient of the second derivative has unit of (time)2, and is the product of the char-

acteristic times for L-R and R-C:

τLτRC =
L

R
(RC) = LC (B.3)

Thus equation B.1 can be rewritten as:

I = iL + τL
diL
dt

+ τLτRC
d2iL
dt2

(B.4)

To scale the equations for numerical simulations, we first write the equation in terms of

normalized quantity:

1 = ĩL + τL
dĩL
dt

+ τLτRC
d2ĩL
dt2

(B.5)

where ĩL = iL/I

Then we need to scale the time variable according to the characteristic times of the equation.

Our goal is to scale time t to a dimensionless quantity τ such that:

t = Aτ (B.6)

dx

dτ
= A

dx

dτ
(B.7)

where x is the dependent variable (in this case x = ĩL) of the differential equation, and A is
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a scaling parameter which has the unit of time. The independent variable of the differential

equation will be scaled from t to τ as follows:

1 = ĩL +
τL

A

dĩL
dτ

+
τLτRC

A2

d2ĩL
dt2

(B.8)

There are two choices of A given the equation has two characteristic times. First we choose

A to be the characteristic time τL, then the coefficient of the first derivative term will be

unity after the scaling:

A = τL (B.9)

1 = ĩL +
dĩL
dτ

+
τRC

τL

d2ĩL
dτ 2

(B.10)

This will be useful for the case when the coefficient of the last term τRC/τL ¿ 1, which

means the dynamics of the system is governed by the combination of L and R.

The other choice of A is such that the coefficient of the second derivative term is unity:

A =
√

τLτRC (B.11)

1 = ĩL +
τL√

τLτRC

dĩL
dτ

+
d2ĩL
dτ 2

(B.12)

1 = ĩL +
1

Q

dĩL
dτ

+
d2ĩL
dτ 2

(B.13)

where Q = R
√

C/L which is the quality factor for a parallel circuit. This way of scaling the

equation is useful when τRC/τL À 1 or in other words, when the Q of the circuit is high.

The dynamics of the system is governed by the combination of R and C.

Single Josephson Junction

The differential equation of a Josephson junction represented by the RCSJ model driven by

a current source I is given by:

I = Ic sin ϕ +
Φo

2πR

dϕ

dt
+

CΦo

2π

d2ϕ

dt2
(B.14)
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where ϕ is the gauge-invariant phase of the junction. We first normalize the equation by Ic:

I

Ic

= sin ϕ +
Φo

2πIcR

dϕ

dt
+

CΦo

2πIc

d2ϕ

dt2
(B.15)

if one linearizes the equation so that sin ϕ ∼ ϕ with the assumption that ϕ is small, then

equation B.15 has the same form as eqn. B.5. The linearization of the equation is not

necessary for the discussion here. We recognize that Φo/2πIc is the Josephson inductance

of the junction. Thus the equation can be further rewritten in terms of the characteristic

times:

I

Ic

= sin ϕ + τLJ

dϕ

dt
+ τLJ

τRC
d2ϕ

dt2
(B.16)

Similar to the regular RLC resonant circuit, we can scale the time variable of the equation

into a dimenionless quantity by a choice of A so that t = Aτ . Again, A has the unit of time,

and there are two ways to scale the equation depending on the choice of A.

A = τLJ
(B.17)

I

Ic

= sin ϕ +
dϕ

dτ
+

τRC

τLJ

d2ϕ

dτ 2
(B.18)

where the coefficient of the first derivative is unity, and the coefficient of the second derivative

gives the ratio of the time constants. This ratio τRC/τLJ
is a measure of the importance of

the capacitance, and is also known as the Stewart-McCumber parameter, βc. This way of

scaling the equation is useful when βc ¿ 1 and that the dynamics of the system is governed

by the combination of L and R.

The other choice of A is:

A =
√

τLJ
τRC (B.19)

I

Ic

= sin ϕ +

√
τLJ

τRC

dϕ

dτ
+

d2ϕ

dτ 2
(B.20)

(B.21)
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which is useful when βc À 1 and that the dynamics of the system is governed by the

combination of R and C.

Resonant Resonant Circuit

The differential equations governing the resonant readout circuit presented in section 5.5 are

given in eqns. 5.69 to 5.71. They are reviewed below (assuming no asymmetry):

KCL

I sin ωt = Ic sin ϕp cos ϕm +
Vc

RL

+ CL
dVc

dt
+

Φo

πR

dϕp

dt
+

CΦo

π

d2ϕp

dt2
(B.22)

where Ic = 2Ico. Normalize the equation by Ic:

Ĩ sin ωt = sin ϕp cos ϕm +
Φo

2πIcRL

dϕc

dt
+

ΦoCL

2πIc

d2ϕc

dt2
+

Φo

πIcR

dϕp

dt
+

CΦo

πIc

d2ϕp

dt2
(B.23)

where Ĩ = I/Ic and Vc = Φo

2π
dϕc

dt
. From the coefficient of the derivative terms, we recognize

four characteristic times:

(1) τLJ ,R/2 = Φo

πIcR

(2)
√

τLJ ,RτR,2C =
√

CΦo

πIc

(3) τLJ ,RL
= Φo

2πIcRL

(4)
√

τLJ ,RτR,CL
=

√
CLΦo

2πIc

(B.24)

KVL

−f(ϕp, ϕm) = −Vc +
Φo

2π

dϕp

dt
+

b1pΦo

2πR

d2ϕp

dt2
+

b1pCΦo

2π

d3ϕp

dt3
+

b2Φo

2πR

d2ϕm

dt2
+

b2CΦo

2π

d3ϕm

dt3

(B.25)

where b1p and b1m and b2 have unit of inductance, and

f(ϕp, ϕm) = b1pIco(cos ϕp cos ϕm
dϕp

dt
− sin ϕp sin ϕm

dϕm

dt
)

+ b2Ico(cos ϕp cos ϕm
dϕm

dt
− sin ϕp sin ϕm

dϕp

dt
) (B.26)
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Normalize the equation by IcR:

− f̃(ϕp, ϕm) = − Φo

2πIcR

dϕc

dt
+

Φo

2πIcR

dϕp

dt
+

Φob1p

2πIcR2

d2ϕp

dt2
+

Φob1pC

2πIcR

d3ϕp

dt3

+
Φob2

2πIcR2

d2ϕm

dt2
+

Φob2C

2πIcR

d3ϕm

dt3
(B.27)

where Ṽc = (2π/Φo)Vc and f̃(ϕp, ϕm) = f(ϕp, ϕm)/IcR. There are five characteristic times

(1) τLJ ,R = Φo

2πIcR

(2)
√

τLJ ,RτL1,R =
√

Φob1p

2πIcR2

(3) (τLJ ,RτL1,RτR,C)1/3 = (Φob1pC

2πIcR
)(1/3)

(4)
√

τLJ ,RτL2,R =
√

Φob2
2πIcR2

(5) (τLJ ,RτL2,RτR,C)1/3 = (Φob2C
2πIcR

)(1/3)

(B.28)

Fluxoid Equation

0 = ϕm +
πIc

Φo

(b2 sin ϕp cos ϕm + b1m cos ϕp sin ϕm)

+
b2

R

dϕp

dt
+ b2C

d2ϕp

dt2
+

b1m

R

dϕm

dt
+ b1mC

d2ϕm

dt2
− πΦext

Φo

(B.29)

Characteristic times are:

(1) τL2,R = b2
R

(2)
√

τL2,RτR,C =
√

b2C

(3) τL1m,R = b1m

R

(4)
√

τL1m,RτR,C =
√

b1mC

(B.30)

In our simulations, we normalized the time variable with respect to the largest charac-

teristic time.



Appendix C

Summary of Equations governing a

SQUID

i
cir

ext

1

i
1

i
sq

(t) v(t)
2

i
2

L L

Figure C-1: Circuit schematic of a SQUID circuit driven by an AC current source.

Assumptions

The SQUID has symmetric arms each of inductance L, thus Lloop = 2L.

The SQUID has symmetric junctions each with critical current of Ico

Conventions

ϕp =
ϕ1 + ϕ2

2
(C.1)

ϕm =
ϕ1 − ϕ2

2
(C.2)

Icir = Φinduced/Lloop (C.3)
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Current in each arm:

i1 = Ico sin ϕ1 +
Φo

2πR

dϕ1

dt
+

CΦo

2π

d2ϕ1

dt2
(C.4)

i2 = Ico sin ϕ2 +
Φo

2πR

dϕ2

dt
+

CΦo

2π

d2ϕ2

dt2
(C.5)

Sum and Difference of Currents:

i1 + i2
2

=
Ico

2
(sin ϕ1 + sin ϕ2) +

Φo

2πR

d

dt

(
ϕ1 + ϕ2

2

)
+

CΦo

2π

d2

dt2

(
ϕ1 + ϕ2

2

)
(C.6)

= Ico cos ϕm sin ϕp +
Φo

2πR

dϕp

dt
+

CΦo

2π

d2ϕp

dt2
(C.7)

i1 − i2
2

=
Ico

2
(sin ϕ1 − sin ϕ2) +

Φo

2πR

d

dt

(
ϕ1 − ϕ2

2

)
+

CΦo

2π

d2

dt2

(
ϕ1 − ϕ2

2

)
(C.8)

= Ico sin ϕm cos ϕp +
Φo

2πR

dϕm

dt
+

CΦo

2π

d2ϕm

dt2
(C.9)

Note: Icir ≡ (i1 − i2)/2 for the case of equal arm inductances.

Current Continuity Equation with AC drive

isq(t) = 2

(
i1 + i2

2

)
(C.10)

= 2Ico cos ϕm sin ϕp +
2

R

Φo

2π

dϕp

dt
+ 2C

Φo

2π

d2ϕp

dt2
(C.11)

Fluxoid Quantization Equation for an AC drive

0 = −ϕ1 + ϕ2 − 2π

Φo

Li1 +
2π

Φo

Li2 − 2π

Φo

Φext (C.12)

0 = −
(

ϕ1 − ϕ2

2

)
− 2π

Φo

L

(
i1 − i2

2

)
− π

Φo

Φext (C.13)

0 = ϕm + L

(
2π

Φo

Ico sin ϕm cos ϕp +
1

R

dϕm

dt
+ C

d2ϕm

dt2

)
+

πΦext

Φo

(C.14)
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Definition of Voltage across a SQUID

i
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ext
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1

R1 C1 R2C2
V
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a6
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Isq(t)

Figure C-2: Circuit diagram of a DC SQUID driven by an AC source. The SQUID has arm
inductances L1 and L2, and junctions represented by the RCSJ model. The voltage across
the SQUID is represented by the voltmeter reading.

Our objective is to find the voltage across a DC SQUID, which is represented here by

the voltmeter reading. Our approach to find the voltage is to go around a closed loop. In

this case, the two possible loops are a1-2-3-4-5-6 or a1-2-7-8-5-6, and both should give the

same result. When going around the loop, we take into account any voltage across a lumped

element, as well as the induced EMF due to any time-varying flux that is enclosed in the

voltmeter loop according to Faraday’s Law.

Note that in the circuit model for the DC SQUID, L1 and L2 are loop inductances

that are used to model flux generated in the SQUID loop (and possibly in nearby loops).

Physically, these inductors are traces and do not have any internal winding. Thus there is

no localized flux associated with the inductors, and the voltage (i.e. induced EMF) across

the inductors themselves are zero. Nevertheless, the induced EMF due to the time-varying

flux contributed by these inductors in the SQUID loop needs to be taken into account. The

difference between the cases when the inductors represent loop inductance or actual windings

is illustrated in fig. C-3. The SQUID circuit under consideration belongs to the case shown

on the left of fig. C-3.

For this discussion, we restrict the external flux Φext in the circuit diagram be DC only.

Therefore the only AC flux will be due to the induced flux caused by the AC driving current.

Referring to fig. C-2, we express the voltmeter reading by going around a closed loop.
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V=0V=0

i(t) i(t)V1
V2

di
V L

dt

di
V L

dt

Figure C-3: [Left]: Inductors represent loop inductance and contributes flux only in the loop.
V1 is given by dΦ

dt
, where Φ = 2Li. [Right]: Inductors are made up of physical windings, and

generate flux both locally and also mutually coupled to the loop. V2 is given by dΦ
dt

+ 2Ldi
dt

,
where Φ = 2Mi, and M is the mutual coupling between the windings and the loop.

Loop a1-2-3-4-5-6: let V = Va

Va − Φo

2π
ϕ̇2 = 0 (C.15)

Va =
Φo

2π
ϕ̇2 (C.16)

Note that this path does not enclose the SQUID loop, so there is no time-varying flux, and

Va is simply equal to the junction-2 voltage. For this discussion, we have ignored any flux

contribution of L1 and L2 outside of the SQUID loop.

Loop a1-2-7-8-5-6: let V = Vb

Vb − Φo

2π
ϕ̇1 − dΦ

dt
= 0 (C.17)

Vb =
Φo

2π
ϕ̇1 + 2L

d

dt

(
i1 − i2

2

)
(C.18)

Note that Vb is equal to the junction-1 voltage, as well as the induced emf due to the time-

varying flux in the SQUID loop.
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Summary:

V =
Φo

2π
ϕ̇2

or V =
Φo

2π
ϕ̇1 + 2L

d

dt

(
i1 − i2

2

)

It is always good to check that the derivative of the fluxoid quantization equation is consis-

tent with the voltage equation:

Fluxoid Equation:

0 = −ϕ1 + ϕ2 − 2π

Φo

L1i1 +
2π

Φo

L2i2 − 2πΦext

Φo

(C.19)

Voltage Equation

Va = Vb (C.20)

0 =
Φo

2π
ϕ̇2 − Φo

2π
ϕ̇1 − L

di1
dt

+ L
di2
dt

(C.21)

Finally, note that:

Va 6= Φo

2π
ϕ̇2 + L

di2
dt

(C.22)

Vb 6= Φo

2π
ϕ̇1 + L

di1
dt

(C.23)
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Appendix D

Analysis of Resonant Circuit Model

with Externally Coupled Flux

Abstract

In this appendix, we present the mathematical analysis for the circuit model presented

in section 5.6. The analysis for circuit models 2 and 3 in section 5.7 will also be discussed.
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APPENDIX D. ANALYSIS OF RESONANT CIRCUIT MODEL WITH EXTERNALLY

COUPLED FLUX

D.1 Resonant circuit with Asymmetric SQUID

icir

ext

2
i(t) v(t)

i2i1

1

CL RL

IC IR
Isq

L1 L2

R1
R2 C2C1

Figure D-1: Resonant circuit comprising an asymmetric SQUID. The external flux bias Φext

is assumed to be strictly DC.

In this section, we will present the analysis for circuit models 2 and 3 in section 5.7.

The resonant circuit in D-1 corresponds to circuit model 2 when the SQUID has symmetric

junctions, and corresponds to circuit model 3 when we assume the SQUID to have asym-

metric junctions. The analysis below has included the terms due to the asymmetry, which

can be set to zero for the symmetric case. The SQUID parameters due to the asymmetry

are defined as follows:

Ic1 = Ico + ∆I Ic2 = Ico −∆I (D.1)

C1 = C + ∆C C2 = C −∆C (D.2)

R1 = R + ∆R R2 = R−∆R (D.3)

In addition, we have allowed the possibility that the loop inductance of the two arms are

asymmetric. However, inductance asymmetry was not needed to explain the nonlinearity in

the resonant behavior observed experimentally. In the simulations, we always set ∆L to be

zero.

L1 = L + ∆L L2 = L−∆L (D.4)
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Variables

ϕp =
ϕ1 + ϕ2

2
ϕ1 = ϕp + ϕm (D.5)

ϕm =
ϕ1 − ϕ2

2
ϕ2 = ϕp − ϕm (D.6)

Current in each arm

i1 = Ic1 sin ϕ1 +
Φo

2πR1

dϕ1

dt
+

C1Φo

2π

d2ϕ1

dt2
(D.7)

= (Ico + ∆I) sin ϕ1 +
Φo

2π(R + ∆R)

dϕ1

dt
+ (C + ∆c)

Φo

2π

d2ϕ1

dt2
(D.8)

i2 = Ic2 sin ϕ2 +
Φo

2πR2

dϕ2

dt
+

C2Φo

2π

d2ϕ2

dt2
(D.9)

= (Ico −∆I) sin ϕ2 +
Φo

2π(R−∆R)

dϕ2

dt
+ (C −∆c)

Φo

2π

d2ϕ2

dt2
(D.10)

Sum and difference of junction currents

i1 + i2
2

= Ico sin ϕp cos ϕm +
ΦoR

2π(R2 −∆R
2)

dϕp

dt
+

CΦo

2π

d2ϕp

dt2

+ ∆I sin ϕm cos ϕp − Φo∆R

2π(R2 −∆R
2)

dϕm

dt
+

∆CΦo

2π

d2ϕm

dt2
(D.11)

i1 − i2
2

= Ico sin ϕm cos ϕp +
ΦoR

2π(R2 −∆R
2)

dϕm

dt
+

CΦo

2π

d2ϕm

dt2

+ ∆I sin ϕp cos ϕm − Φo∆R

2π(R2 −∆R
2)

dϕp

dt
+

∆CΦo

2π

d2ϕp

dt2
(D.12)

SQUID Current

Isq = i1 + i2 = 2Ico sin ϕp cos ϕm + 2∆I sin ϕm cos ϕp

+
2ΦoR

2π(R2 −∆R
2)

dϕp

dt
+

2CΦo

2π

d2ϕp

dt2
− 2Φo∆R

2π(R2 −∆R
2)

dϕm

dt
+

2∆cΦo

2π

d2ϕm

dt2
(D.13)



202
APPENDIX D. ANALYSIS OF RESONANT CIRCUIT MODEL WITH EXTERNALLY

COUPLED FLUX

We will now analyze the resonant circuit shown in fig. D-1. The current continuity

equation and the fluxoid equations are given below:

Current Continuity Equation

I sin ωt = Isq + Ic + IR (D.14)

where Isq is given by eqn. D.13, Ic and IR are expressed in terms of the SQUID voltage:

IR =
Vsq

RL

=
Φo

2πRL

(
dϕp

dt
− dϕm

dt

)
(D.15)

Ic = CL
dVsq

dt
=

CLΦo

2π

(
d2ϕp

dt2
− d2ϕm

dt2

)
(D.16)

where

Vsq =
Φo

2π

(
dϕp

dt
− dϕm

dt

)
(D.17)

Eqn. D.14 becomes:

I sinωt− 2Ico sinϕp cosϕm − 2∆I sinϕm cosϕp =

+
(

ΦoR

π(R2 −∆R
2)

+
Φo

2πRL

)
dϕp

dt
+

(
CΦo

π
+

CLΦo

2π

)
d2ϕp

dt2

−
(

Φo∆R

π(R2 −∆R
2)

+
Φo

2πRL

)
dϕm

dt
+

(
∆CΦo

π
− CLΦo

2π

)
d2ϕm

dt2
(D.18)

Fluxoid Quantization Equation

0 = ϕm +
2πL

Φo

(
i1 − i2

2

)
+

2π∆L

Φo

(
i1 + i2

2

)
+

πΦext

Φo
(D.19)

ϕm +
πΦext

Φo
+

(
2πLIco

Φo
+

2π∆L∆I

Φo

)
sinϕm cosϕp +

(
2πL∆I

Φo
+

2π∆LIco

Φo

)
sinϕp cosϕm

=
(

L∆R

R2 −∆R
2 −

∆LR

R2 −∆R
2

)
dϕp

dt
− (L∆c + ∆LC)

d2ϕp

dt2

−
(

LR

R2 −∆R
2 −

∆L∆R

R2 −∆R
2

)
dϕm

dt
− (LC + ∆L∆c)

d2ϕm

dt2
(D.20)
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Coding in Matlab

We will code the differential equations in eqns. D.18 and D.20 in the form:

Mx′ = f(t, x) (D.21)

where x is the vector of dependent variables, and x′ is the vector of corresponding derivatives:

x =




ϕp

dϕp

dt

ϕm

dϕm

dt




x′ =




dϕp

dt

d2ϕp

dt2

dϕm

dt

d2ϕm

dt2




(D.22)

M is the mass matrix defined as:




1 0 0 0

0 0 1 0

ΦoR
π(R2−∆R

2)
+ Φo

2πRL

2CΦo+CLΦo

2π
−

(
Φo∆R

π(R2−∆R
2)

+ Φo

2πRL

)
∆CΦo

π
− CLΦo

2π

L∆R−∆LR
R2−∆R

2 − (L∆c + ∆LC) ∆L∆R−LR
R2−∆R

2 − (LC + ∆L∆c)




(D.23)

where the 3rd row corresponds to the current continuity equation, and the 4th row corresponds

to the fluxoid quantization equation.

In addition, f(t,x) is given by:

f =




dϕp

dt

dϕm

dt

I sin ωt− 2Ico sin ϕp cos ϕm − 2∆I sin ϕm cos ϕp

ϕm + πΦext

Φo
+

(
2πLIco

Φo
+ 2π∆L∆I

Φo

)
sin ϕm cos ϕp +

(
2πL∆I

Φo
+ 2π∆LIco

Φo

)
sin ϕp cos ϕm




(D.24)
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Simulation Results

When we set the junction asymmetry to zero, the results for the nonlinear resonant

spectrum of the circuit at various flux biases are shown in fig. D-2. The spectra bend to the

lower frequency side, indicating that the effective inductance is always higher. This occurs

because the nonlinear effect is due to the oscillating current bias through the SQUID, rather

than an oscillating flux bias.
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Figure D-2: Simulation results for circuit model 2 in section 5.7. Nonlinear resonant spectra
at different flux biases bend only to the lower frequency side. The nonlinear effect is due to
the oscillating current bias through the SQUID.

As we introduced asymmetry to the critical currents of the SQUID junctions, the amount

of induced flux in the SQUID loop increases due to the asymmetry. However, this effect is

significant only when the flux is near Φ = 0.5 Φo. The resonant spectrum bends towards the

higher frequency side near Φ = 0.5 Φo, when the nonlinear effect due to the induced flux

dominates over that due to the current bias. This is shown in fig. D-3.
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Figure D-3: Simulation results for circuit model 3 in section 5.7. The SQUID junctions are
assumed an asymmetry of ∆I = 0.5 Ico. The induced flux due to the asymmetric junctions
becomes significant only near Φ = 0.5 Φo, and causes the resonant spectrum to bend towards
the higher frequency side.

D.2 Resonant circuit with externally coupled flux

To increase the nonlinear effect due to an oscillating flux, the SQUID is coupled to an external

flux source as shown in fig. D-4. The externally coupled flux is given by

Φcoupled = MsqIsq (D.25)

where Msq models the mutual coupling between the SQUID and the dependent flux source,

and Isq is given by eqn. D.13. The current continuity equation in eqn. D.18 remains the

same, while we need to modify the fluxoid equation in D.20. This is given in eqn. D.26.
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Figure D-4: Circuit schematic of the resonant model in which the SQUID is coupled to a
dependent flux source.

Fluxoid Quantization Equation with Mutual Coupling to Resonating Loop
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(D.26)

Again, it should be noted that in the simulations, ∆L is set to zero. Eqn. D.26 can be

expanded into:
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(D.27)

The last row of the mass matrix in eqn. D.23 needs to be modified:

[
L∆R−∆LR−MR

R2−∆R
2 − (L∆c + ∆LC + MC) M∆R+∆L∆R−LR

R2−∆R
2 − (LC + ∆L∆c + M∆c)

]

(D.28)
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In addition, the last row of f(x,t) in eqn. D.24 now becomes:

ϕm +
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2πLIco
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+
2π∆L∆I

Φo

)
sin ϕm cos ϕp +

(
2πL∆I

Φo

+
2π∆LIco

Φo

)
sin ϕp cos ϕm

+
2πMIco

Φo

sin ϕp cos ϕm +
2πM∆I

Φo

sin ϕm cos ϕp

(D.29)

The resultant resonant spectra are shown in fig. D-5 for an asymmetry of ∆I = 0.5 Ico,

and a mutual coupling of Msq = 1nH. The nonlinear effect due to the coupled flux dominates,

and the nonlinear spectrum now evolves from bending towards one frequency side to another.

This is consistent with the observations from the experiment.
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Figure D-5: Simulation results for Msq = 1 nH. The onset of transition occurs at Φ = 0.3 Φo

as observed in the experiment.
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Resonant Readout of a Persistent Current Qubit
Janice C. Lee, William D. Oliver, Terry P. Orlando, and Karl K. Berggren

Abstract—We have implemented a resonant circuit that uses a
SQUID as a flux-sensitive Josephson inductor for qubit readout. In
contrast to the conventional switching current measurement that
generates undesired quasiparticles when the SQUID switches to
the voltage state, our approach keeps the readout SQUID biased
along the supercurrent branch during the measurement. By in-
corporating the SQUID inductor in a high-Q resonant circuit, we
can distinguish the two flux states of a niobium persistent-current
(PC) qubit by observing a shift in the resonant frequency of both
the magnitude and the phase spectra. The readout circuit was also
characterized in the nonlinear regime to investigate its potential
use as a nonlinear amplifier.

Index Terms—Nonlinear oscillators, persistent-current qubits,
resonant circuits, SQUIDs.

I. INTRODUCTION

QUANTUM computation with superconducting flux qubits
commonly relies on DC SQUID magnetometers for qubit
readout. While the coherent control of quantum dynamics

has been demonstrated in several flux-qubit systems [1]–[3], a
major challenge has been to reduce the level of decoherence
of the qubit state caused by the readout circuit. In the case of
persistent-current qubits, the conventional SQUID switching-
current readout has several drawbacks. To distinguish the flux
state of the qubit, one typically ramps the current bias through
the SQUID and records the presence or absence of a switching
event. Decoherence due to this readout process occurs mainly in
three ways: (1) nonzero SQUID currents result in SQUID-po-
tential asymmetries, which remove the first-order current-noise
isolation and are thereby associated with higher levels of deco-
herence (e.g. through the mutual coupling of broadband noise
from the SQUID bias lines to the qubit loop) [4]; (2) the gener-
ation of quasiparticles from the SQUID switching events limits
the repetition rate of the readout; and (3) the undesired excita-
tion of the qubit into higher energy states during the ramping or
switching of the SQUID.
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Fig. 1. a) The SQUID Josephson inductance is a periodic function of the
external magnetic flux. The figure shows the qubit-mediated Josephson
inductance for the two flux states (j0i and j1i) at a flux bias near 0.7 � .
b) Dependence of the Josephson inductance on the bias current. A small
current bias corresponds to a linear inductance, i.e., independent of current
(boxed region). Increasing current bias causes the SQUID inductor to behave
nonlinearly, which has observable effects on the resonant spectrum.

Fig. 2. a) A generic parallel RLC circuit, in which the inductor is realized by
a SQUID, with its Josephson inductance being mediated by the qubit. b) The
transition between qubit states is detected as a shift in the resonant frequency.

To address in part these sources of readout-induced decoher-
ence, we have experimentally implemented a resonant readout
technique that only requires the readout SQUID to be biased
at low currents along the supercurrent branch. The low current
bias tends to maintain the first-order noise isolation, helping to
minimize the level of decoherence of the qubit. Since the SQUID
does not switch to the voltage state, the number of quasiparticles
is also drastically reduced. In addition, the resonant readout
approach utilizes a narrow-band filter that shields the qubit
from broadband noise. Similar resonant readout approaches
have been demonstrated in [5] and [6], and the implementation
has been extended to the nonlinear regime in [7].

The principle of the resonant readout technique for the persis-
tent-current qubit is to determine the flux state of the qubit by
measuring the Josephson inductance of the readout SQUID. As
illustrated in Fig. 1, the SQUID Josephson inductance is non-
linear: it is a nonlinear and periodic function of the external mag-
netic flux (used here to detect the qubit state), as well as a non-
linear function of the bias current (used here to control the degree
of nonlinearity in the resonant circuit). To measure the Josephson
inductance with high sensitivity, we incorporate the SQUID in-
ductor in a high-Q resonant circuit. The change in Josephson in-
ductance corresponding to a transition between qubit states is
detected as a shift in the resonant frequency (Fig. 2).

1051-8223/$20.00 © 2005 IEEE
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Fig. 3. Circuit schematic of the resonant readout circuit. Tapped-inductor and
L-match impedance transformations were employed to achieve a high quality
factor. The component values are L = 69 nH, C = 1:4 pF, C = 100 pF,
L = 0:78 nH. The junctions of the SQUID are each shunted by a 5 pF
capacitor (not shown). The components within the dotted box were fabricated
on-chip.

II. RESONANT CIRCUIT DESIGN AND FABRICATION

A. On-Chip Resonant Circuit Design

The circuit design of the resonant readout circuit is shown
in Fig. 3. The components within the dotted box were imple-
mented on-chip. The qubit is inductively coupled to the readout
SQUID inductor, which in turn is incorporated in a parallel res-
onant circuit. To achieve a high quality factor, a tapped-inductor
impedance transformation was employed to step-up the output
impedance seen by the oscillator at its resonant frequency. The
SQUID inductor is part of this tapped-inductor configuration.
An L-match network was also used on the input side to match
the input impedance to the transformed output impedance. The
transformations were designed to yield a resonant frequency

and a quality factor [8].

B. Device Fabrication

The device was fabricated with a planarized Nb trilayer
process at MIT Lincoln Laboratory [9]. The PC qubit is a
superconducting loop interrupted by three Josephson junc-
tions. Two of the junctions have the same size with nominal
dimensions of . The third junction is smaller
with nominal dimensions of . The junctions of
the readout SQUID are . Based on the results
of the process tests, the current density was approximately
120 . The dimensions of the qubit loop and the SQUID
loop are and respectively,
with an estimated mutual inductance of 30 pH. The inductors
were square spirals with a linewidth and spacing of 1 . The
capacitors were made out of Nb electrodes, with the dielectric
layers being 50 nm of and 200 nm of . A device
micrograph is shown in Fig. 4.

III. MEASUREMENT TECHNIQUES

The device was measured in a refrigerator at MIT
Lincoln Laboratory. The DC lines were made from shielded
soft-coaxes and were filtered at the pot sample stage with
copper powder filters. The RF lines were attenuated at both the
1 K and stages. A bias-tee was mounted on the sample
stage to combine the DC and RF signals. While the RF lines
were used for the resonant readout, the DC lines were used to
characterize the I-V properties of the SQUID junctions and to
provide the option of additional DC bias to the SQUID. The
chip was mounted on a PCB substrate with coplanar-waveguide

Fig. 4. Optical micrograph of the actual device fabricated at MIT Lincoln
Laboratory.

Fig. 5. Circuit schematic of the experimental setup.

structures and was housed inside an RF package. A supercon-
ducting coil was wrapped around the outside of the RF package
to provide the external flux bias. An additional thermometer
was mounted directly on the package to monitor the sample
temperature.

A schematic of the experimental implementation is shown in
Fig. 5. The frequency spectra of the readout circuit were mea-
sured with a network analyzer and/or a spectrum analyzer as
a function of the input power from a tracking generator. The
signal frequencies were centered about the resonant frequency
and within a span of 0.6 MHz. Each spectrum was acquired with
a RBW of 3 kHz and then averaged 100 times. The signal from
the resonant circuit was amplified at room temperature with a
50 dB LNA before being measured.

IV. EXPERIMENTAL RESULTS

A. Readout of Qubit States

The resonant frequency of the readout circuit was measured
to be about 420 MHz while the quality factor Q is on the order
of a thousand. The observed Q is higher than the designed value;
the discrepancy was likely due to the higher inductances of the
spiral inductors. The resonant spectra were modulated with an
external magnetic field. The periodic modulation of the resonant
frequency and the corresponding peak amplitude are shown in
Fig. 6. A discontinuity in the frequency is evidenced at every 1.3
periods of the SQUID lobe (lower trace, Fig. 6). These steps cor-
respond to transitions of the qubit between opposite flux states,
while the periodicity is determined by the ratio of the SQUID to
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Fig. 6. The lower plot (left axis) shows the modulation of the resonant
frequency with external magnetic field. Qubit steps corresponding to transitions
between opposite flux states were observed at every 1.3 periods of the SQUID
lobe. The upper plot (right axis) shows the corresponding peak amplitude of
the resonant spectrum. The dip in peak power coincides with the qubit step.

Fig. 7. Observation of the resonant peak power with increasing input power
near a qubit step. The source power ranges from �68 dBm to �50 dBm in 1
dB step. A dip starts to develop at the flux value corresponding to the position
of the qubit step, and is gradually washed out with increasing power.

qubit loop areas. The shift in the resonant frequency was about
40 kHz, corresponding to a change in Josephson inductance of
2 pH. While the data shown in Fig. 6 were obtained by mea-
suring the magnitude of the resonant spectra, we have also de-
tected the state of the qubit by measuring the phase of the reso-
nant readout circuit with comparable sensitivity.

A dip in resonant peak power was also observed to coincide
with the qubit steps (upper trace, Fig. 6). This dip corresponds
to a broadening of the resonant spectrum (not shown). To further
understand the nature of the dip in the resonant peak power, we
performed the measurements over a range of input power near
one of the qubit steps (Fig. 7). For low current amplitudes, the
resonant peak power remains fairly constant, and there is no dip
at the qubit step. As one increases the current amplitude, the
size of the dip grows and is eventually washed out at the highest
biases. For all values of current amplitudes, the qubit step in
the resonant frequency was still clearly observed. These pre-
liminary results are consistent with the Landau-Zener transition
data observed in [10] in the large bias limit. The temperature
dependence of the results is to be further explored at dilution
refrigerator temperatures.

Fig. 8. Magnitude and phase measurements of the resonant readout circuit
in the linear and nonlinear regimes at the top of the SQUID lobe. In the linear
case, the magnitude spectrum has a symmetric Lorenzian shape, while the
phase at resonance is continuous with a slope limited by the quality factor Q. In
the nonlinear case, the magnitude and phase spectra have two stable branches,
resulting in a discontinuity. The theoretical predictions are shown in dotted line
for the phase spectra.

B. Nonlinearity of Resonant Readout Circuit

As the bias current through the SQUID is increased along
the supercurrent branch, the Josephson inductance becomes in-
creasingly nonlinear and has observable effects on the reso-
nant circuit spectra. Fig. 8 shows the behavior of the magni-
tude and phase spectra with increasing input power at the top of
the SQUID lobe (position [A], Fig. 6). The magnitude spectrum
evolves from a symmetric Lorenzian shape (linear oscillator)
to an asymmetric shape with a discontinuity (nonlinear oscil-
lator). The resonant spectrum leans toward lower frequencies,
indicating that the effective inductance over an oscillation pe-
riod is higher with increasing current bias. On the other hand,
the phase experiences a 180 shift at the resonant frequency. At
low current biases and thus in the linear regime, the phase shift
is continuous with frequency and has a finite slope at resonance
that is limited by the quality factor. In the nonlinear case, the
phase spectra exhibit a discontinuity similar to the magnitude
spectra. The discontinuity corresponds to a bifurcation point at
which the nonlinear resonant circuit has two stable solutions.
Since the data shown in Fig. 8 were only measured with a for-
ward frequency sweep (i.e., from low to high frequencies), the
spectra exhibit only one of the two stable branches.

Fig. 9 shows the hysteretic magnitude spectra with both
stable branches measured using forward and backward fre-
quency sweeps. The third branch (displayed as a white dotted
line) is unstable and inaccessible without the implementation of
a feedback scheme. The behavior of the spectra at two different
magnetic field biases is also shown in Fig. 9. The spectrum
evolves from leaning toward the lower frequencies to leaning
toward the higher frequencies as the flux bias changes from the
top to the bottom of the SQUID lobe.

The characterization of the readout scheme presented here
involved measuring the magnitude or phase spectra and, sub-
sequently, identifying the qubit transition as a shift in the res-
onant frequency. While this approach was beneficial for char-
acterizing the resonant readout circuit, its implementation as a
qubit readout scheme will likely involve pulsing the resonant
circuit at a single frequency near the resonant frequency. Pulsing
allows for a temporal resolution of the qubit state measurement,
and the qubit state would be determined as a change in either the
output amplitude or phase within the pulse. The circuit quality
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Fig. 9. Hysteretic behavior of the resonant spectrum was observed when the
readout circuit was operated in the nonlinear regime. The results are shown for
two magnetic flux biases: top [A] and bottom [B] of the SQUID lobe. The two
stable branches were measured directly. The unstable branch was not measured,
but is illustrated with a white dotted line.

factor will determine the rate at which this information can be
obtained. From this perspective, the readout circuit operated in
the nonlinear regime has the potential to be used as a nonlinear
amplifier. One can choose to bias near the discontinuity point
and benefit from the high sensitivity [7].

V. CONCLUSION

We have implemented a resonant readout scheme for the per-
sistent-current qubit by using the readout SQUID as a flux-sen-
sitive inductor. This approach only requires low current biases
through the SQUID and reduces the level of decoherence of the
qubit as induced by the readout process. The results presented
were measured from an on-chip niobium device at 300 mK, and
thereadoutschemewasconfirmedtohave thesensitivity todistin-
guish the two qubit states. The readout circuit was also character-
ized in both the linear and nonlinear regime. Future experiments
involving the spectroscopy of the qubit states using the resonant
approach will be performed at dilution refrigerator temperatures.
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antagonized when added in combination (Fig.

4E). The TNFþEGF and TNFþinsulin treat-

ments were distinctly separated from one

another: EGF appeared to antagonize TNF-

induced apoptosis by specifically reducing the

projection along the stress-apoptosis axis 1

without any change along axis 2 (Fig. 4E); in

contrast, insulin actively promoted prosurvival

signaling along axis 2 while also inhibiting

stress-apoptosis signaling along axis 1. There-

fore, analyzing the multi-input stimuli through

these model-derived biological ‘‘basis axes’’

(Fig. 4D) helped to reveal the different

network strategies used by EGF and insulin

to antagonize TNF-induced apoptosis.

Finally, to determine the contributions of

TNF-induced autocrine circuits in the model,

we mapped the TNFþC225 and TNFþIL-1ra

treatments (Fig. 4F). The projection of TNF

along the stress-apoptosis axis (Fig. 4F) was en-

forced by the autocrine circuits, which increased

the contribution along axis 1 and decreased the

contribution along axis 2. This is consistent with

the notion that regulated autocrine circuits

provide microenvironment-dependent feedback

to cells during phenotypic decision processes,

such as death-survival (11, 32). Furthermore, it

illustrated directly that effects of complex en-

vironmental stimuli were entirely contained

within the two canonical basis axes distilled

from the original 660-dimensional signaling

metric space by the PLS model (Fig. 4D).

In summary, by using a systems approach

that combines quantitative experiments with

data-driven modeling, we identified two ca-

nonical axes—a stress-apoptosis axis and a

survival axis—that together constitute a mo-

lecular basis set for the signaling network that

controls apoptosis. These axes capture the

dynamic intracellular signal processing of

diverse stimuli, including autocrine-feedback

circuits. Our work illustrates how a complex

signaling network can be reduced empirically

to a much simpler computational model that is

directly tied to biological mechanism.
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Mach-Zehnder Interferometry
in a Strongly Driven

Superconducting Qubit
William D. Oliver,1* Yang Yu,2 Janice C. Lee,2 Karl K. Berggren,2

Leonid S. Levitov,3 Terry P. Orlando2

We demonstrate Mach-Zehnder–type interferometry in a superconducting flux
qubit. The qubit is a tunable artificial atom, the ground and excited states of
which exhibit an avoided crossing. Strongly driving the qubit with harmonic
excitation sweeps it through the avoided crossing two times per period. Because
the induced Landau-Zener transitions act as coherent beamsplitters, the ac-
cumulated phase between transitions, which varies with microwave amplitude,
results in quantum interference fringes for n 0 1 to 20 photon transitions. The
generalization of optical Mach-Zehnder interferometry, performed in qubit
phase space, provides an alternative means to manipulate and characterize the
qubit in the strongly driven regime.

The development of artificial atoms with lith-

ographically defined superconducting circuits

presents a new paradigm of quantum solid-

state physics (1), allowing the realization and

exploration of new macroscopic quantum

phenomena (2–9), and also holding promise

for applications in quantum computing (10).

Of the various effects demonstrated with

qubits, the most important are time-dependent

coherent phenomena. Those include the ob-

servation of Rabi oscillations in charge, flux,

and phase qubits (2, 5–9), entanglement of

two qubits (11), coherent oscillation (12) and

bifurcation (13) in multilevel systems, and the

demonstration of basic elements of coher-

ent control (14–16). Artificial atoms strongly

coupled to photons have opened the arena of

Bcircuit quantum electrodynamics[ (c-QED)

(17, 18).

Here, we demonstrate an application of

superconducting qubits to quantum physics,

realized in a strongly driven flux qubit and

described in terms of a Mach-Zehnder (MZ)

interferometer. The conventional MZ setup

REPORTS
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uses two beamsplitters: The first divides an

optical signal into two coherent waves that

travel along paths with different effective

lengths, and the second recombines and

superposes these waves, leading to quantum

interference fringes in the measured output

signal. In a driven qubit, according to an

idea discussed by Shytov et al. (19), the

beamsplitters can be realized by Landau-

Zener (LZ) transitions at a level avoided

crossing. Over one oscillation period of the

driving field, the qubit is swept through the

avoided crossing twice (Fig. 1A). Starting

from the marker, at the first LZ transition

(time t
1
), the ground state k0À is split into a

coherent superposition of the ground and ex-

cited states, k1À and k0À, which, after evolving

independently and accumulating a relative

phase Dq
12

, interfere at the second LZ

transition (time t
2
). The corresponding qubit-

state energy evolution (first period, Fig. 1B)

between the recurrent LZ transitions (shaded

region) provides a phase-space analog to

the two arms and the beamsplitters of an

optical MZ interferometer (top left, Fig. 1B).

The interference phase

Dq12 0
1

I

Z t2

t1

eðtÞdt; eðtÞ 0 ek0ÀðtÞ j ek1ÀðtÞ

ð1Þ

where I 0 h/2p, h is the Planck constant, and

e is the energy difference between states k0À
and k1À, depends on the magnitude of the qubit

energy detuning excursion for times t
1
G t G t

2
.

The interference fringes in the occupation prob-

ability correspond to integer and half-integer

values of Dq
12

/2p. Known as St[ckelberg os-

cillations with Rydberg atoms (20, 21), this

mechanism can be applied to quantum con-

trol (22).

The qubit MZ interferometer differs in a

number of ways from an optical interfer-

ometer. First, instead of a photon, the in-

terferometry is performed with the use of

the quantum state of a qubit. Second, in the

qubit, we have the interference of paths in

phase space rather than in coordinate space;

the phase Dq
12

(Eq. 1) is determined by the

qubit level splitting, which plays the role

of the optical path length. Finally, because

they are more fragile than photons and easier

to decohere, qubit states can be manipulated

in a coherent fashion only at relatively short

time scales.

We used a periodic driving signal, a har-

monic variation of the qubit detuning e(t)

H 0 Y
1

2
ðDs x þ eðtÞs zÞ;

eðtÞ 0 e0 þ Arf coswt ð2Þ

where D is the tunnel splitting, sx and sz

are Pauli matrices, e
0

is the detuning pro-

portional to dc flux bias, and A
rf

is the

radio frequency (rf) field amplitude pro-

portional to the rf flux bias (23). In this case

(Fig. 1B), we have cascaded LZ transitions

which occur when the driving amplitude ex-

ceeds detuning, giving rise to the interference

fringes at A
rf
9 ke

0
k (Fig. 1C). Although the

phase Dq
12

equals the shaded area in Fig.

1B and is dependent on A
rf

, the total phase

gained over one period, q 0 E1/I^Xe(t)dt 0
2pe

0
/Iw, equals the difference of the

shaded and unshaded areas and is in-

dependent of A
rf

. As consecutive pairs of

LZ transitions (consecutive MZ interfer-

ometers) interfere constructively when q 0
2pn, the fringes will appear around the

resonance detuning values

e0;n 0 nhn ð3Þ

where n 0 0, 1, 2, I and n 0 w/2p. Another

interpretation of this condition is that the

sequential LZ transitions excite multipho-

ton resonances.

Although coherent multiphoton reso-

nances between discrete states of an rf-

driven charge qubit have been reported (5, 24)

and multiphoton transitions used to drive

Rabi oscillations in a flux qubit (25, 26), in

these works as well as in the earlier work

on quantum dot systems (27, 28), only a

few photon transitions could be observed,

with coherence quickly weakening as rf am-

plitude increased (29). In contrast, we were

able to observe coherent resonances of very

high order, up to n 0 20, which requires

driving the system at a high rf amplitude.

The fringes for high n are as clear as those

for n ; 1, indicating that the qubit preserves a

substantial amount of coherence even in the

strongly driven regime.

We realized a tunable artificial atom with

a niobium persistent-current qubit (Fig. 2A),

a superconducting loop interrupted by three

Josephson junctions (30). When the qubit

loop is threaded with a magnetic flux f
q
,

F
0
/2, the system exhibits a double-well

potential-energy landscape (fig. S1). The

classical states of the wells are persistent

currents I
q

with opposing circulation, de-

scribed by energy bands Te
0
/2 0 TI

q
F

0
df

q

linear in the flux detuning df
q
K f

q
j F

0
/2.

The double-well barrier allows quantum

tunneling of strength D, opening the avoided

Fig. 1. MZ interference in a strongly driven
qubit. (A) Starting at the dot marker, the qubit
state is swept by an rf field. After an LZ
transition at the first avoided crossing (time t1),
the resulting superposition state of k0À and k1À
(dashed lines) accumulates a phase Dq12 (shaded
region) and interferes at the return LZ transition
(time t2). The qubit state is subsequently driven
away from the avoided crossing and then returns
to the starting flux position. This single period of
qubit evolution is a single MZ interferometer.
Depending on the interference phase Dq12,
amplitude may build in the excited state. a.u.,
arbitrary units. (B) The corresponding qubit
energy variation induced by a periodic rf field,
Eq. 2, results in an equivalent optical cascade of
MZ interferometers (MZ#1 to #3, top) with
resonance condition Eq. 3. (C) The population of
the qubit excited state, Eq. 6, as a function of rf
amplitude Arf and detuning e0. Note the
interference fringes (I to VI) at Arf 9 e0 and the
multiphoton resonances at e0 0 nhn.
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crossing near df
q
0 0 (Fig. 1A). Detuning

the flux tilts the double well and, thereby,

modifies its eigenenergies and eigenstates.

The qubit states are read out with a dc

superconducting quantum interference de-

vice (DC-SQUID), a sensitive magnetome-

ter that distinguishes the flux generated by

the circulating currents. The device was fab-

ricated at MIT Lincoln Laboratory (23).

Fig. 2. Multiple resonances in a strongly driven
flux qubit. (A) Circuit schematic of the three-
junction flux qubit (inner loop) with circulating
current Iq and the DC SQUID readout (outer
loop); Josephson junctions are indicated with
an �. A time-dependent flux f(t) º e(t) threading
the qubit is a sum of the flux bias due to the dc
current Ib and a pulsed ac current at frequency n
irradiating the qubit and driving transitions
between its quantum states. The SQUID is
shunted by two 1-pF capacitors to lower its
resonance frequency. Resistors mark the envi-
ronmental impedance isolating the SQUID. (B)
The time sequence for the rf pulse (duration
1 ms and rf-source voltage Vrf) and SQUID sam-
ple current Is. A repetition period of 5 ms allows
for equilibration between trials. (C) A cumulative
switching-probability distribution of the qubit as
a function of Is and the qubit flux detuning dfq

under rf excitation at Vrf , 0.12 Vrms and n 0 1.2
GHz. Multiphoton transitions are observed be-
tween the qubit states k0À and k1À and are
symmetric about the qubit step (dfq 0 0 mF0).
a.u., arbitrary units. (D) The 1D switching
probability Psw extracted from (C) (dash-dotted
line scan).

Fig. 3. Multiphoton interference fringes show a
Bessel staircase. Switching probability Psw is
plotted as a function of qubit flux detuning dfq
and voltage Vrf at frequency n 0 1.2 GHz. n-
photon resonances are labeled 1 to 20. Each n-
photon resonance exhibits oscillations in Psw
resulting from a MZ-type quantum interference
that results in a Bessel dependence Jn(l), where
l is the rf amplitude scaled by hn (Eq. 4).
Roman numerals mark the interference fringes
of Jn(l) (solid white lines). The n-photon
resonances are symmetric about the qubit step
(0 mF0). (Inset) Close-up of the n 0 4 photon
resonance.
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We drove transitions between the qubit

states by applying a 1-ms rf pulse (Fig. 2B)

at frequency n and rf-source voltage V
rf

(31). After a short (,10-ns) delay, we read

out the qubit state by driving the DC-

SQUID with a 20-ns Bsample[ current I
s

fol-

lowed by a 20-ms Bhold[ current. The SQUID

will switch to its normal state voltage V
s

if

I
s
9 I

sw,0
(I

s
9 I

sw,1
), corresponding to qubit

states k0À and k1À. By sweeping the sample

current and flux detuning while monitoring

the presence of a SQUID voltage over many

trials, a cumulative switching-distribution

function was generated, revealing the Bqubit

step[ (Fig. 2C). At specific values of flux

detuning, the rf field at n 0 1.2 GHz be-

comes resonant with the energy level sep-

aration, allowing n-photon absorption, Eq. 3;

this results in a partial population transfer

between the qubits states, manifest as reg-

ularly spaced Bspikes[ in Fig. 2C. We ob-

tained one-dimensional (1D) scans of the

Bswitching probability[ P
sw

(the population

of state k0À) shown in Fig. 2D by following

a flux-dependent sample current I
sw,0

G I
s
G

I
sw,1

(dash-dotted line in Fig. 2C). Such 1D

scans were then accumulated as a function

of the rf source parameters V
rf

(Fig. 3) and

n (fig. S2).

The switching probability P
sw

(color

scale in Fig. 3) versus qubit flux detuning

df
q

and voltage V
rf

at frequency n 0 1.2

GHz is shown in Fig. 3 (23). The n-photon

resonances, labeled by n 0 1 to 20, exhibit

MZ interference fringes (I to VI) as a

function of V
rf

. The fringes exhibit a Bessel-

function dependence, J
n
(l), so we call the

steplike pattern in Fig. 3 a BBessel stair-

case.[ For each of the n-photon resonances,

we took a higher resolution scan (e.g., Fig.

3 inset) and fitted the resonance areas and

widths in Fig. 4 (23).

Multiphoton transitions at the resonances

(Eq. 3) in the strong driving regime, kA
rf
k,hn d

D, occur by means of fast LZ transitions.

The notion of quasi-stationary qubit levels

TE1/2^(e2
0
þD2)1/2 is inadequate in this re-

gime and, instead, we use a different ap-

proach, transforming the Hamiltonian (Eq.

2) to a nonuniformly rotating frame, H 0
ej(i/2)f(t)sz

H ¶e(i/2)f(t)sz
, where f(t) 0 lsinwt

with dimensionless rf-field amplitude

l 0 Arf=hn ð4Þ

The rf field disappears from the detuning

term, reappearing as a phase factor of the

off-diagonal term: H ¶ 0 jE1/2^(e
0
sz þ

Dejif(t)sþ þ h.c.), where h.c. is hermitian

conjugate. Given that D ¡ hn, near the nth

resonance nhn ; e
0

we can replace the

phase factor ejif(t) by its nth Fourier har-

Fig. 4. Analysis of the resonance area and width. (A) Resonance area An
versus voltage Vrf for the n 0 1 and n 0 5 photon transitions. The Bessel
dependence Jn(l) is observed over several lobes. The data are best fit by
functions that include decoherence (blue line) rather than omit it (red

line). (Insets) Decoherence becomes more pronounced as photon number
increases. (B) The resonance width wn versus voltage Vrf for n 0 1 and n 0
5 also exhibits a Bessel dependence. (C and D) The area (C) and the width
(D) plotted for resonances n 0 1 to 9 and n 0 19.
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monic, J
n
(l)ejinwt, where J

n
is the Bessel

function. The resulting effective Hamiltonian

H ¶ , H
n

is of a Brotating-field[ form

H n 0 j
1

2

e0 ejinwtDn

einwtD�
n je0

0
@

1
A ð5Þ

where D
n
0 DJ

n
(l). The resonance approx-

imation (Eq. 5) describes transitions at an

arbitrary ratio A
rf

/hn. Standard Rabi dy-

namics analysis of the Hamiltonian (Eq. 5)

with the initial state k0À gives the time-

averaged occupation probability of the ex-

cited state P(n)
sw

0 E1/2^ kD
n
k2/((e

0
jnhn)2þkD

n
k2).

This expression predicts Lorentz-shaped

resonances of width de 0 kD
n
k. The result,

a sum of independent contributions with

different n,

PSW 0
1

2

X
n

kDnk
2

ðe0 j nhnÞ2 þ kDnk
2

ð6Þ

is displayed in Fig. 1C. The agreement

with the observed resonances is notable:

The oscillations in rf power, described by

J
n
(l), accurately predict both the overall

profile of the fringes (Fig. 3) and the fine

details, such as positions of the nodes

(Fig. 4).

In the frequency dependence of P
sw

for

voltages V
rf

0 71 mV
rms

and V
rf

0 7.1

mV
rms

(fig. S2), the resonances approach

the qubit step as frequency decreases, in

accordance with the linear energy versus

flux-detuning dependence. MZ interference

fringes are again visible. The number of

resonances increases at low frequencies, due

primarily to the frequency dependence of

l and in lesser part, a frequency-dependent

mutual coupling.

Our analysis of peak profile accounts

for the relaxation and dephasing, as well

as for the inhomogeneous broadening due

to low-frequency noise. These effects can

be separated from one another by con-

sidering the peak areas A
n
, which, in con-

trast with the widths of the resonances

w
n
, are not affected by inhomogeneous

broadening. The standard Bloch approach

yields

An 0
T1D2

n

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1T2D2

n þ 1

q ;

wn 0
1

pT �
2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1T2D2

n þ 1

q
pT2 ð7Þ

where T
1,2

represents the longitudinal and

transverse relaxation times, and T
2
* de-

scribes the inhomogeneous broadening.

These are aggregate relaxation times aver-

aged over the periodic qubit detuning,

which, in the operating limit e
0
d D, tends

to overestimate T
1

and underestimate T
2

compared with their values at the avoided

crossing.

Figure 4A shows the Bessel dependence

of the n 0 1 and n 0 5 resonance areas fit

by Eq. 7 including (blue) and omitting

(red) times T
1,2

. The corresponding reso-

nance widths and their fittings are shown

in Fig. 4B. Figure 4, C and D, show the

resonance area and width, respectively, for

10 resonances, including n 0 19. Fitting the

areas and widths yields self-consistent

estimates: T
1
, 20 ms, T

2
, 15 to 25 ns,

T
2
* , 5 to 10 ns, and D/I , (2p)4 MHz.

The T
1
, T

2
, and D estimates are similar to

those reported by Yu et al. (26). The nearly

linear behavior at the nodes of J
n

(Fig. 4A)

indicates that the decoherence is small

compared with the splitting: T
1
T

2
(D/I)2 ,

250 for n 0 1 and decreases slightly for n 0
5. The fit/data discrepancy for the first

fringe for n 0 1, which disappears as n

increases, is traced to È20% thermal

population of the excited state because of

its proximity to the qubit step (supporting

online material text).

This MZ interferometry technique can

be applied to qubit characterization and

model validation, two increasingly im-

portant research areas in quantum infor-

mation science. In addition to coherence

times, which can be obtained by multiple

means, MZ interferometry allows the di-

rect calibration of the microwave ampli-

tude driving the qubit through the Bessel

argument l; we found the rf mutual cou-

pling (TSD) to be M
q
0 100 T 2 fH over all

20 resonances. The agreement between the

two-level Hamiltonian in Eq. 2 and the

observed resonances n 0 1 to 10 in Fig. 3 is

notable. The MZ technique also reveals

shortcomings of the two-level model at

strong driving. For example, the influence

of a second MZ interferometer at the

avoided crossing between the first and

second excited states results in the moir2-

like pattern observed for resonances n 9
12. Also notable is an observed (È0.1

GHz) shift in the resonance positions at

strong driving EFig. 3 inset^. Both effects

require the presence of higher excited

states modeled by the full qubit Hamil-

tonian (26, 30). The high stability and

coherence of the strongly driven qubit,

even at n 0 20 photon transitions, illus-

trates not only the potential for nonadia-

batic control methods (22), but also

indicates the high potential of niobium

devices fabricated in a fully planarized,

scalable process for superconductive quan-

tum computation.
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Energy Relaxation Time between Macroscopic Quantum Levels
in a Superconducting Persistent-Current Qubit
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We measured the intrawell energy relaxation time �d ’ 24 �s between macroscopic quantum levels
in the double well potential of a Nb persistent-current qubit. Interwell population transitions were
generated by irradiating the qubit with microwaves. Zero population in the initial well was then
observed due to a multilevel decay process in which the initial population relaxed to lower energy levels
during the driven transitions. The decoherence time, estimated from �d within the spin-boson model, is
about 20 �s for this configuration with a Nb superconducting qubit.

DOI: 10.1103/PhysRevLett.92.117904 PACS numbers: 03.67.Pp, 03.65.Yz, 85.25.Cp, 85.25.Dq

Recent successes with superconducting qubits (SQs)
have enhanced the feasibility of implementing quantum
computing (QC) with Josephson devices [1–9]. Rabi os-
cillations, which are a preliminary requirement of QC,
have been reported in charge, phase, and flux qubits [3–
8]. However, the systematic experimental investigation
of decoherence, which is a key issue for SQs, is sparse
so far due to the challenge of the time resolution of the
measurement. Although long decoherence times have
been demonstrated in some special configurations
[4,5,8,10], the limiting source of decoherence in the SQs
remains unidentified. On the other hand, the decoherence
time for SQs, including energy and phase relaxation
times, is predicted to be proportional to the level of
dissipation, which results from the coupling between the
qubits and the environment [11,12]. Therefore, quantify-
ing the dissipation is extremely useful in the design of
qubits from various new materials, because it indicates
whether the dissipation is at least low enough to make
error-tolerant QC feasible. Previous methods to deter-
mine the dissipation of devices are either applicable at
relatively high temperatures [10] or rely on indirect mea-
surements of switching probabilities [13]. In addition, all
long decoherence times (�1 �s) reported have been ob-
tained in NbN and Al SQs [4,5,8,10]. It is important to
know whether a promising decoherence time can be
achieved in Nb-based SQs, which has a more mature
fabrication capability. In this Letter, we present time-
resolved measurements of the intrawell relaxation time
�d in a Nb persistent-current (PC) qubit. We found that
�d ’ 24 �s. The corresponding phase-decoherence time
within a spin-boson model (SBM) is inferred to be longer
than 20 �s. These long decoherence times indicate a
strong potential for QC employing Nb-based SQs.

A PC qubit is a superconducting loop broken by three
underdamped Josephson junctions (JJs) [Fig. 1(a)]. Two
JJs are designed to have the same critical current, and
the third one is designed to be � times smaller. For 0:5<

�< 1 and with an externally applied magnetic field close
to a half-flux quantum �0=2, the system is analogous to a
particle in a two-dimensional potential well with eigen-
energies calculated in Ref. [14]. However, the lowest
relevant states effectively reflect a particle in a one-
dimensional double-well potential with quantized energy
levels shown in Fig. 1(b), and whose classical states in
each well correspond to macroscopic persistent currents
of opposite sign [15]. The potential shown in Fig. 1(b) can
be tilted by changing the frustration fq, the magnetic flux
threading the loop in units of �0. The two classical states
are coupled via quantum tunneling through the barrier
between the wells. In addition, the system can interact
with a monochromatic electromagnetic (microwave)
field, and microwaves with frequency matching the en-
ergy level spacing can generate transitions between the
two macroscopic quantum states, namely, photon-
induced transitions (PITs) [2,8].

The samples used in this study were fabricated at MIT
Lincoln Laboratory in a Nb trilayer process [16]. The
critical current density is Jc � 370 A=cm2. The critical
currents of the large and small JJs in the qubit, deter-
mined from thermal activation studies [17], are Ic ’ 1:2
and 0:75 �A, respectively (� ’ 0:63). The qubit energy

FIG. 1. (a) Schematic of the PC qubit surrounded by a readout
dc SQUID. (b) Schematic of the qubit’s double-well potential
with energy levels for an applied frustration close to 0:485�0.
Microwaves pump the qubit from the lowest level of j1i (j1i0) to
the third excited level of j0i (j0i3), then decay to the second
excited level of j0i (j0i2) with a rate d.
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level structure calculated using qubit parameters is shown
in Fig. 2 of Ref. [14]. The persistent current in the qubit
loop can be read out by a dc SQUID which surrounds the
qubit. For our device parameters [14,17], the persistent
current will generate an additional magnetic flux of
�3 m�0 in the SQUID, resulting in a 0:3 �A change in
the switching current Isw of the SQUID that can be easily
detected at T < 50 mK. The sample was mounted on a
chip carrier that was enclosed in an oxygen-free-copper
sample cell and thermally anchored to the mixing cham-
ber (MC) of a dilution refrigerator. The devices were
magnetically shielded by four cryoperm-10 cylinders
surrounding the inner vacuum can. All electrical leads
that connected the SQUID to room temperature elec-
tronics were carefully filtered by electromagnetic inter-
ference filters (at 300 K), RC filters (at 1.6 K), and copper
powder filters (at 15 mK). Microwaves were injected to
the qubit via a separate semirigid cryogenic coaxial cable
with 20 dB attenuators at the 1 K pot and the MC.
Battery-powered low-noise preamplifiers were used for
all measurements. The diagnostic tests performed on JJs
indicated that there was no significant extrinsic noise in
our system.

Spectroscopy of the qubit energy levels was achieved
using microwave pulses to produce PITs. For each mea-
surement trial (Fig. 2), we first prepared the qubit in state
j1i by tilting the potential (i.e., applying frustration) to a
regime where the system has a single well and then wait-
ing a sufficiently long time. After the qubit had relaxed to
its ground state, the potential was tilted back to the frus-
tration where it was to be measured. At low temperatures,
the qubit will have a finite probability of remaining in j1i,
which is effectively metastable on the time scales consid-
ered in this Letter. We then applied microwaves with du-
ration time tpul, inducing transitions between states j1i
and j0i. After the microwaves were shut off, the bias cur-
rent of the SQUID was ramped through values slightly
higher than its critical current Ic0. The qubit state (j0i or
j1i) was then read out from the current at which the
SQUID switched to a finite voltage state [0 or 1 in
Fig. 2(d)]. For a fixed frustration, this procedure was
repeated more than 103 times to minimize the statistical
error. A histogram of Isw clearly shows the probability
distribution of the qubit state occupation. Shown in Fig. 3
are contour plots of the switching-current histograms
obtained by scanning the frustration at T � 15 mK.
Each vertical slice is a histogram of Isw, and the color
represents the number of switching events (proportional
to the switching probability). A bimodal structure in the
switching-current distribution, caused by the opposite
persistent current of the qubit, was observed at fq �
0:485�0. The lower branch represents the qubit in the
j0i state, and the upper branch represents the qubit in the
j1i state. The substantial population in state j1i demon-
strates that we had successfully prepared the qubit in j1i,
because, near fq � 0:485�0, the qubit had a much higher
single-well ground-state energy in j1i than that in j0i.

However, the energy barrier height and width relative to
the lowest energy level of state j1i, denoted as j1i0, were
small enough so that the qubit had a large probability of
tunneling to j0i. The leftmost tip of the higher branch
marked a fixed frustration point fq � 0:484�0, below
which it was impossible for the qubit to stay in j1i,
because the potential becomes essentially a single-well
j0i state. Microwaves, with frequencies matching the
energy difference between j1i0 and one of the levels of
j0i, were used to generate transitions between states j1i

FIG. 2. Time profiles of (a) bias frustration, (b) microwave
amplitude, (c) SQUID bias current, and (d) SQUID voltage for
one measurement trial. 0 and 1 indicate that the qubit states (j0i
or j1i) result in different Isw.
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FIG. 3 (color). Contour plots of the switching current distri-
bution (a) without microwaves and with microwaves at
(b) � � 6:77, (c) 7.9, and (d) 9.66 GHz. In each plot, the left-
most tip of the upper branch corresponds to a fixed frustration
point fq � 0:484�0. Without microwave irradiation, the popu-
lation in the upper branch (state j1i) decreased continuously to
zero as the frustration decreased from �0=2. Microwaves
pumped the population from state j1i to state j0i at the resonant
frustration, the bias point at which the microwave frequency
matched the energy level spacing between two states. The white
arrows indicate that the resonant frustration moves toward
�0=2 with increasing microwave frequency, in agreement
with the qubit energy structure [Ref. [14]].
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and j0i. The most striking feature of the contour plots is
that a population ‘‘gap’’ (i.e., zero population region) in
the j1i branch was created by the microwaves [Figs. 3(b)–
3(d)]. With increasing microwave frequency, the gap
moved away from the tip, as expected from the energy
level structure [Ref. [14]]. The quantitative agreement
between the gap position and the energy level structure
confirmed that the gap resulted from the microwave PIT
between the two macroscopic quantum states j1i0 and j0i3
(the third excited energy level of the state j0i). We believe
that the PIT here was an incoherent process, because the
microwave pulse duration was 600 �s, much longer than
the estimated decoherence time (0:1–100 �s) [2,8,15].
Additionally, no periodic variation of population with
varying pulse duration (for long pulses) was observed.
In a simple two-level system, observing such a gap would
be unexpected for an incoherent transition, since the
population in the lower level (j1i0) should always be larger
than 0.5 in that case [18]. In order to address this gap
phenomenon in our multilevel system, a multilevel pump-
decaying model is introduced.

For simplicity we considered only three levels, the
initial state j1i0, the j0i3 state to which radiation induces
a transition, and the state j0i2 to which the population of
j0i3 decays. More accurately, the state j0i3 decays to j0i2,
j0i1, and j0i0, but, for ease of calculation, we collectively
label these states as j0i2 with an overall effective intrawell
decay rate d � 1=�d. The temporal evolution of the
three-level system under microwave irradiation is thereby
described by the following three coupled rate equations:

dP10

dt
� �1P10 	 
1 	 2�P03; (1)

dP03

dt
� 1P10 � 
1 	 2�P03 � dP03; (2)

dP02

dt
� dP03; (3)

in which P10, P03, andP02 are the occupation probabilities
of levels j1i0, j0i3, and j0i2, respectively. 1 is the stimu-
lated transition rate between j1i0 and j0i3, and 2 is the
spontaneous relaxation rate from j0i3 to j1i0. Generally,
for a given system, 1 is proportional to the microwave
power Prf , and 2 can be considered to be a constant [18].
For the initial condition P10
0� � 1, with P03
0� �
P02
0� � 0, Eqs. (1)–(3) can be solved analytically. For
1 * d, which is satisfied in our experiment, the proba-
bility of finding the qubit remaining in the state j1i0 at
t > 1=
21 	 2 	 d� is given by

P10
t� � a1e
�t=�0 ; (4)

where a1 depends weakly on the microwave power and
can be considered as a constant in the relevant time scale,

�0 ’ 
2	 2=1��d � 
2	 2=APrf��d; (5)

and A is the coupling constant between the micro-
wave source and the qubit. The physical picture of the
three-level pump-decaying process is that microwaves

populate the highest level with a population P03 / 1=

2	 2=1�, which decays to the lowest level with a
rate d. Therefore, the effective decay rate of the popu-
lation of the initial state is given by Eq. (5), and with t
sufficiently long, P10
t� ! 0; this agrees with the experi-
mental observations.

A significant impact of Eqs. (4) and (5) is that �d can be
determined by measuring P10
t�. Because Isw of j0i is
smaller than that of j1i, pumping the system from state
j1i to state j0i will generate a dip in the Isw average as a
function of frustration, and the dip amplitude is propor-
tional to 1� P10. Figure 4 shows the dip amplitude as a
function of the microwave irradiation time tpul. The nomi-
nal power of the microwave source was Prf � 31:3 �W.
The time constant �0, obtained from a best fit, is 130�
20 �s. We emphasize that �0 is not equal to �d, but, rather,
it depends on 2=1. For large Prf (i.e., 1 � 2), �0 will
saturate to 2�d. For 1 � 2, we are able to determine �d
by measuring the Prf dependence of �0. Shown in Fig. 5
is �0 measured at various Prf . �0 saturates at about 50 �s
for Prf > 0:2 mW. By adjusting 2=A and �d as fitting
parameters, we obtained �d ’ 24:3� 2:7 �s from a best
fit to Eq. (5), which is consistent with dc tunneling
spectroscopy measurements [14]. This long intrawell en-
ergy relaxation time is of the same order of magnitude
as the reported energy relaxation times in NbN and
Al-based qubits [4,5,8,10]. Note that 2 is another im-
portant parameter which determines interwell energy
relaxation. Unfortunately, we could not directly extract
2 from the fitting, because we do not know the coupling
constant A. Future experiments in which microwave cou-
pling is independently characterized should allow the
extraction of 2.

The primary effect of the environmental dissipation on
the intrawell dynamics of the PC qubits is that, at low
temperature (kBT � level spacing), the width of an ex-
cited level with energy En is given approximately by d ’
En=Q, where Q is the quality factor of the classical small

FIG. 4 (color online). The amplitude of the microwave reso-
nant dip as a function of microwave duration tpul. The micro-
wave frequency ��9:66GHz and nominal power Prf �
31:3�W. The solid squares are experimental data and the
line is a best fit to an exponential decay. The inset shows the
resonant dips at tpul � 0:2, 0.5, 0.8, and 1 ms, from top to
bottom.
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oscillation in the potential well [19]. From �d we deter-
mined Q� 5� 105, close to the value obtained from
thermal activation measurements at intermediate tem-
peratures 0.3–1.2 K [17]. Note that Q is proportional to
the subgap resistance, which ideally depends on the tem-
perature as �e�s=kBT [20], where �s is the superconduct-
ing gap voltage. The temperature independence of Q
suggests the presence of additional environmental sources
of dissipation [15].

This long intrawell relaxation time is important for
experiments in QC in two ways. First, the lower two
energy levels in the left well, j0i0 and j0i1, could them-
selves be used as the two qubits states, with a third state
j0i3 used as the readout state. Because our PC qubit had
no leads directly connected to it and the magnetic cou-
pling circuit is optimally designed to lessen the effects of
the electromagnetic environment, the PC qubit is much
less influenced by this environment than are other similar
single-junction schemes [5,6,9]. Second, if we assume
that the environment can be modeled as an Ohmic bath,
as in the SBM, then we can estimate the decoherence
times of a PC qubit in which the qubit states are those of
opposite circulating current [2,8,15]. The energy relaxa-
tion and phase-decoherence times are given in the SBM
for an Ohmic environment by [11]

��1
relax ’ ��Lsin

2��E= !h; (6)

��1
’ � ��1

relax=2	 2��LkBTcos2�= !h; (7)

where �E is the energy difference between levels in
opposite wells, � � tg�1
�=�E� is the mixing angle, �
is the tunneling amplitude between the wells, and �L �
1=Q is the quantum damping parameter [19] which we
estimate using our measured Q value. For our Nb PC
qubit operating with opposite circulating currents states
(for instance, biased near fq � 0:485�0, where � �
2 GHz and �E � 4 GHz), a conservative estimate gives
�relax * 30 �s and �’ * 20 �s at 15 mK. We emphasize
that an Ohmic environment model may not adequately
describe all sources of decoherence; these times must be
viewed as estimates pending experimental verification.
Nonetheless, for a typical Rabi frequency % � 1 GHz,

we obtained a quantum quality factor > 104, larger than
the oft-quoted basic requirement for error-tolerant QC.
Considering the attractiveness of Nb-based SQs from the
point of view of robust and well-developed fabrication
methods, these times indicate that they are a promising
candidate for realizing a scalable quantum computer.

In summary, we directly measured the intrawell re-
laxation time of a Nb-based PC qubit by generating PITs
between macroscopically distinct quantum states. A
multilevel decay process was observed with an intrawell
relaxation time of about 24 �s and a Q factor of greater
than 105, indicating that these intrawell levels are well
isolated from the environment and are themselves a good
qubit candidate. Likewise, these measurements suggest
that the flux qubits operating between wells could also
have sufficient decoherence times, demonstrating good
prospects for well-fabricated Nb junctions, with their
more mature technology, to be used as SQs.
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