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Abstract

Data flow concepts are used to generate a unified hardware/software model of dispersed
physical systems which are prone to faults. Fault propagation is restricted to occur only
through the data exchange mechanisms between independent modules. A powerful fault
model, token fragments, is used to express vagaries of such exchanges in the presence of
faults. The need for source congruence among inputs to similar fault-free modules is
established, and procedures are developed for both the construction and analysis of
congruence schemata in the presence of faults. The need for nondeterminate operators is
justified for real-time systems, and a method for maintaining source congruence is presented
for such systems. Events are defined as the receipt of tokens by operators, and a technique
for minimizing the time-skew between similar events, synchronization, is developed.
Applications are explored and bounds are given for the minimum number of independent
hardware modules that are required for correct system operation in the presence of a
specified number of faults.
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Chapter One

Introduction

The direct replication of digital modules, known as modular redundancy, is a popular

technique for improving the reliability of digital systems [1] [2] [3]. Most implementations are

for real-time control systems, such as aircraft, spacecraft, and critical process control. In

these systems, a loss of computational capability can directly lead to substantial financial and

human costs. In applications of interest, the probability that the system will catastrophically

fail, due to loss of control functionality, must be less than one part in 109 per operational hour.

Despite the diversity of applications and the frequency of attempts, there is a paucity of

theory and practice for the analysis, design, and development of highly reliable digital

systems. In fact, the vast majority of approaches are ad hoc and suffer from serious

theoretical shortcomings.

Basic results associated with aspects of redundant computation and computer

synchronization, however, have been developed in the excellent work of Lamport, Shostak,

and Pease [4] [5], and Davies and Wakerly [6]. These results have been correctly exploited

only by a minority of fault-tolerant system designs, notably SRI's SIFT computer system [7],
and C.S. Draper Laboratory's FTMP [8]. A paper design of a packet switch communication

architecture by Clement Leung of M.I.T. [9] contains some improvements and restrictions, but

is rooted in substantially the same principles.

Unfortunately, no uniform theories for the systematic analysis and construction of general

redundant systems has evolved from these efforts. An engineer interested in constructing a

fault-tolerant system faces a bewildering array of ideas and choices [10] [3], most of them

incorrect. Even the above implementations are burdened by excessive complexity or

synchronization requirements (e.g., FTMP), or severe inefficiencies (e.g., SIFT). A simple yet

provably correct engineering model for the design and analysis of highly reliable redundant

digital systems is clearly called for.



1.1 The Data Flow Approach

The correct design of a fault-tolerant system must consider the interactions of algorithms

with imperfect hardware. The problem is not separable. Algorithms must be sensitive to

aspects of the hardware while hardware design must provide the resources for the correct

execution of the algorithms. This report develops a unified framework for the synthesis and

analysis of highly reliable redundant systems.

Unfortunately, commonly used models of computation do not mesh well with models of

distributed physical resources and communication interconnection. While von Neumann

models and associate imperative languages have, in general, been very successful, the

rigorous extension of these models to distributed programs is often intractable. Data flow

computation models [11] [12], however, provide a very well-suited framework on which to

impose the necessary hardware abstractions of physical dispersion and interconnection. In

addition to unifying the hardware and software under a single analytic paradigm, data flow

inherently lacks any requirements for centralized and/or synchronous control.

The problem in fault-tolerance is to specify the interconnection and communication

between computational elements. Data flow is the disciplined study of such interconnections.

One expects that data flow languages and graphs can provide a rigorous foundation on which

to formulate and implement fault-tolerant systems.

In the proposed hybrid model, data flow operators are grouped into sets called fault sets

which correspond to the physical processing sites which fail independently of each other.

Edges in the dataflow graph which connect fault sets are called interconnection links. Faults

may propagate from one fault set to another only through corrupted data on the

interconnection links. That is, a fault in set .A can only. cause erroneous operation in a set S
by giving the operators in S 'bad' data, not by changing the functionality of S.

This model allows complete data flow analysis of fault-propagation. Outputs from fault sets

which are assumed to have failed are replaced with an arbitrary stream of special tokens
called token .fragments. Similarly, the hardware designer can extract the driving design
features of the distributed system: .the number and nature of independent modules that need
to be designed, and the nature and topology of the interconnection.

In this work, we restrict our ability to detect and isolate faults through the application of



redundancy. In other words, we test the validity of an output by comparing it for an exact
match with a redundant output. We term any redundant system in which redundant outputs

may be bit-for-bit compared to detect failures as congruent. This is to be contrasted with

more semantically rich tests such as reasonableness tests which attempt to determine

whether an output is "reasonable" given some knowledge of the function and inputs.

We assert that congruent active redundancy has the lowest semantic content and offers the

highest reliability of any fault detection and isolation scheme for deterministic systems. In

fact, we are able to transform any data flow program into a redundant model which can be

implemented to yield a prescribed level of reliability.

This ability is not as trivial as it might seem at first glance. Informal reasoning about

redundant systems has often proven disastrous. There are many systems which have been

built and plan to be built [13] [14] [15], and yet do not meet the necessary conditions of this

theory. As a result, the systems may possess single point failures which invalidate analysis of
effectiveness.

1.2 Problem Development

Chapter Two lays the framework for the simplex source programs, programs which

assume a perfect machine, that will be transformed into a redundant model, a data flow
language with hardware abstractions The source program is given in the form of a directed

graph. These graphs are interpreted as a recursive connection of monotone and continuous

functions. The functions are the graph nodes and map histories of data on the input edges to

histories of data at its outputs. A complete partial ordering is imposed which is a naturally

extended prefix ordering of these histories. The notions of fault sets and interconnection

links are also developed and a general fault model, token fragments, is introduced.

Chapter Three develops construction rules for correct fault-tolerant graphs. The need for

input congruence is established. This is a statement that all fault-free redundant graphs must

have identical inputs for the outputs to be identical. A canonical model schema, known as a

congruence schema, is developed. This schema guarantees input congruence for a specified
number of independent failures.



Chapter Four presents techniques for incorporating nondeterministic operators. Such
operators are necessary for "time-out" tests, which are essential in real time systems. The

concept of an event, the receipt of a token by an operator, is introduced. Correct

implementation of nondeterministic functions is cast as a problem of generating a consistent

time-total ordering of selected events at redundant sites. A completely distributed

synchronization technique is developed which, without the need for a system of global clocks,

interactively bounds the time-skew between similar events.

Chapter Five examines applications. This includes models for cross-strapped sensors

which may be independently "read" by several processing sites, physical clocks and time
scheduling. Several current high reliability systems are briefly critiqued using the theory
developed in this report.



Chapter Two

Simplex and Redundant Programs

Our goal is to take an arbitrary (but well-formed) dataflow program, the simplex source,

make it redundant, and impose the necessary restrictions on the physical implementation so

that it is fault-tolerant. The source program is given in the deterministic language Lo, and the

programmer assumes that it will operate on a perfect machine. To make it tolerate hardware

faults, the source program is replicated, and the resulting redundant program is described by
the language Ro. Finally, Ro programs are augmented with the salient features of a physical

implementation: the effects of a fault, the ability to physically isolated selected operators, and

aspects; of the data communication protocol between processing sites which fail

independently of each other. The result is a model of the fault-tolerant system to be

implemented.

This chapter presents the syntax and semantics of the languages Lo and Ro , and presents
abstractions of the physical implementation. Later chapters will give the transformation

algorithms that take simplex source programs and translate them into a model of system that

will continue correct operation in the presence of a specified number of faults.

2.1 Source Language, Lo

The following syntax and semantics for the source language, Lo , are largely due to Kahn

[16] and Manna [17]

We are given the source as a simplex program.

Definition 2-1: A simplex source program is a program that is written in the
source language Lo, and which assumes it is operating on a perfect machine.

The whole problem is that physical machines are not perfect, they are prone to faults. Our

techniques need not bother the source program writer, however. They can automatically
transform a simplex source program into a redundant one which operates correctly in the



presence of a specified number of independent faults.

It is important to separate the problem of the correctly executing program from the
correctly executing system. For instance, we can offer no assurances that the source
program is correctly written and will yield meaningful results. Nor can we guarantee the
correct operation (or failure detection) of an input since the generating sensors are usually
stochastic and can not be directly compared. Any sensor testing must be done by the
program since the semantics are too rich to characterize here. We shall only generate a
reliable vehicle on which to execute the program.

2.1.1 Syntax

A source program schema is an oriented graph with labeled nodes and edges. Incoming
edges which have no source node are called inputs. Outgoing edges with no destination
node are called outputs. An example is shown in Figure 2-1.

2.1.2 Semantics

We shall treat the information flowing on the edges as tokens in the usual data flow sense.
Suppose that each token (a real, integer, function, etc.) is an element of the set D. We let a
denote the empty token. The sequence of all tokens which are generated on an edge shall be
called the history of the edge. All Finite sequences are naturally extended to denumerably
infinite sequences by appending w's. Let the set of all such denumerably infinite sequences
be denoted by Da.

Definition 2-2: A complete partial ordering on D' is defined as follows. Let a
and b be any two distinct non-null elements of D. A partial order - of elements in
D is given by

1. aCa

2. 'Ca

3. a [b and b (a

We now define the ordering on Da:
Let a E Do = <(a,a 2 ...>; b E D4 = (bl,b2 ... >

Then a Qb r a, b Vj.



,.inputs

.............. inputs

h

outputs.:: .........

Figure 2-1: Example Source Program Schema

Definition 2-3: An n-input, p-output function, f, is a mapping from histories of
the input edges to histories of output edges (Figure 2-2)

fl: Dol X Do2 X ... X Don, Do

f2: Do, X D02 X ... X Don - Do

fp: Do, X D(2 X ... X Don- Do

A C B => f(A) Q f(B) I

where the partial order for an ordered set of sequences is defined as the
conjunction of partial orders for each corresponding sequence.

'··''''-'''
° . ..,o . ..

Definition 2-4: An n-input, p-output function, f, is monotone
of input sequences A = <a, , a 2 , . . . , a n> and B = <b1 , b2 , . . . , b n>

if for any two sets



i2

inputs

outputs

f maps histories of inputsto histories of outputs

Figure 2-2: An n-input p-output Function

The function is continuous iff it is monotone and for any ordered sequence of
histories A1 C A2  ...

f[lub(A1 C A2 C ...)] = lub[f(A) f(A) ...].
where lu b is the least upper bound of the sequence.

We restrict all source programs to be a recursive construction of monotone and continuous
operators. In concrete terms:

1. Functions must be determinate, i.e., independent of the relative times of arrival of
tokens at the inputs.

2. Monotonicity restricts functions to monotonically adding information at its output,
i.e., a function may not revoke a token once it has been output.

3. Continuity prevents a function from sending output only after receiving an infinite
amount of input.

It should be noted that we allow the more general class of functions which map histories of
tokens rather than just tokens. This permits functions which have internal "state".



We have introduced all of this structure primarily to exploit the important property that a
source program schema consisting of recursive connections of monotone and continuous

functions is itself monotone and continuous [16].

2.1.3 Input Robustness of Lo Programs

Even though the simplex source programmer is not concerned with failures of the machine

which is executing the program, he must deal with the possibility that certain inputs to the
program are erroneous. That is, it is the responsibility of the source program to produce
meaningful results even when certain of the inputs have failed. Usually, this is done by
employing redundant inputs to measure those quantities which are of vital importance to the
correct operation of the system. Other times, the malfunctioning of the input may sacrifice
system performance, but operation is still within acceptable bounds so we shall say the
program is producing meaningful results. In any case, Lo programs must have the ability to
deal with certain combinations of erroneous or meaningless inputs.

All L0 programs assume well-formed tokens at the inputs, whether these sequences are
meaningful is extremely context sensitive. We attempt to characterize these semantics in a
neutral way, the valid input space for Lo programs.

Definition 2-5: For any Lo program with n inputs the valid input space is
Tp C DjI X Dw2 X ... X D'n such that if the histories on inputs to the program
<I.I, i2 ,..., in>) E rp then the outputs of the program are meaningful.

The explicit determination of Vp is usually intractable. Instead, we are only interested in the
structure of 1p for our analysis. We seek the ability of an L0 program to produce meaningful
results when certain inputs are replaced with an arbitrary history. That is, the correctness of
the program is insensitive to certain combinations of arbitrary input failures. For example,
suppose the program requires temperature data and employs a triple redundant sensor. The
temperature used is the median value of the three readings. Thus if two sensors are
functional, we can substitute arbitrary failures for the third sensor and the program should still
produce meaningful results (if the temperature is differentiated a better filter is required.
However, the results may not be identical to the unfailed case.



This structure is characterized by an abstraction of the valid input space.

Definition 2-6: The robust input failure direction set, Vp, for an Lo program P
with n inputs, describes all combinations of inputs which can be replaced with
arbitrary histories and still be elements of ip. That is,

<I, k> E Vp if for any <vl, v2,..., v1,..., Vk,...Vn> that correspond to fault-free
inputs,

then <vl, v2,...,dl,..., dk,...vn> E rp VdI,dk E D'.

This simply says that if (I, k> E, then the program will produce correct outputs when all inputs

are fault-free except I and k, which may be replaced by arbitrary sequences.

2.2 A Language to Express Redundancy: Ro

The source language has no constructs for expressing redundancy or physical

implementation. Therefore, we cannot meaningfully ask the question: Is a given Lo program

fault-tolerant?

Ultimately, we will take a source program, replicate it, disperse the replicated copies to

independent processing sites, and provide the necessary "glue" to ensure that all fault-free

copies will produce identical outputs. The first step is to express the process of replication

and provide the operators required for connecting redundant programs together. We do this
in a language called Ro. Our automatic procedures for making a program fault-tolerant are

transformations from Lo to Ro .

2.2.1 Ro Program Graphs

We simply present Ro here with a minimum of justification for the extra operators we have
added. There are four elements in the language Ro:

1. Program instances, which are complex nodes corresponding to the simplex
source program,

2. Voters, which output tokens that correspond to a majority of input tokens,

3. Restoring Buffers, which are simply identity operators but will have certain signal
restoring properties given later, and

4. Edges, which connect together the program instances, voters, and restoring
buffers.



Definition 2-7: A Ro program is a directed graph of recursive connections of
Lo program instances, voters, and restoring buffers.

We note that Ro programs have the same semantics of Lo programs, given no failures.

2.2.2 LI) Program Instances

We need a way to represent the replication of Lo programs. Because Lo programs are

monotone and continuous functions of their inputs to outputs, we can collapse the entire

source program, say P, into a single node and still maintain the semantics of Lo. The

incoming edges to a node P are the inputs to the program P, while the outgoing edges

correspond to the outputs. Each instance of P in an Ro program is an instance of P. The level

of redundancy in Ro is simply the number of instances of P.

2.2.3 Voters

We will often have a need to reduce a set of redundant streams of tokens down to a single

stream. The resolution of the redundant copies is done by a majority operator, or voter, which

is a monotone and continuous Ro function. An example is shown in Figure 2-3.

abc

Voter: o:= a if a=b
else b if b = c
else c if c = a

err otherwise.

Figure 2-3: 3-Input Voter

Note that a p-input voter is defined as:

output : = inputi if input i is equal to at least 1 + p div 2 other inputs,
error if there is no such input.

That is, the output is the majority of the inputs, an error value if there is no majority, or w if the

decision is not possible with the available inputs. It is easy to verify that this function is

monotone and continuous.



2.2.4 Restoring Buffers

A restoring buffer is simply the identity function for well-formed tokens. Later, we shall

require restoring buffers to have particular implementation properties. Its schematic

representation is shown in Figure 2-4.

R Restoring Buffer: o := I

0

Figure 2-4: Restoring Buffer Schematic

2.2.5 External Inputs and Redundant Outputs

We shall say that any edges in an Ro program which have no source node are the external
inputs to the program, while edges that have no destination node are outputs. Those outputs
which correspond to similar edges from redundant program instances are called redundant
outputs. In general, the external inputs to an Ro program correspond to those inputs of a
simplex source program if it were operating on a perfect machine.

2.3 Abstracting the Implementation: Fault Models, Fault
Sets, and Links

Even though Ro can represent the replication of Lo source programs, we still cannot tell
whether an Ro program is fault-tolerant. Since our formulation of faults includes anomalous
system behavior due to hardware failures (we assume the source program is correctly
written), we can discuss the fault-tolerance of a program only after certain important
characteristics of the implementation are known. When an Ro program has been augmented
with the necessary abstractions we call it a model of the system to be implemented.



Our assumptions of the underlying implementation are as follows:

1. Operators may be grouped into fault sets which correspond to dispersed physical
sites which fail independently of each other.

2. Communication between fault sets is restricted to occur only through
interconnection links, which have two important properties:

a. The interconnection topology is fixed. A destination fault set always knows
the source of incoming information.

b. Information only flows in the direction of the edges. A faulty destination set
cannot induce a source set to fail via link which is directed from source to
destination.

3. Faults propagation between fault sets can only occur through the exchange of
information on interconnection links, and the range of possible data that faulty set
may produce is totally captured by the fault model of token fragments

Briefly, the semantics of a fault are characterized by the fault model of token fragment.
Tokens and token fragments are the only method for communicating information, and thus
control, between fault sets, and they travel only along interconnection links.

2.3.1 Fault Sets

Implementing an Ro program requires the mapping of the function nodes and edges onto
specific hardware. Any hardware is suceptable to threats [3]. These are stresses which
produce anomalous (i.e., non-functional) conditions. Threats may manifest in many forms:
normal environmental threats such as component aging, abnormal environmental threats
such as transients, or software/hardware design flaws. Faults are the anomalous conditions
resulting from threats. A fault model is a functional description which captures important
aspects of expected faults.

Any hardware design must assess the class of threats which the redundancy will be
expected to handle. We then partition the system into independent fault sets, each set having
independent failure statistics from the others. Formally,

Definition 2-8: A fault set .A is a collection of nodes and edges and a failure
rate XA such that,

1. A threat which effects the set can cause a malfunction of any and every
node or edge in the set.



2. Given fault sets A and S with failure rates XA, X1 respectively. The joint
failure rate (i.e., the probability that both 4A and S will fail within a unit time
interval) is given by XAB = XAX B.

2.3.2 Interconnection Links

Fault sets abstract our intuitive notion of physical isolation. Generally speaking, functions
implemented on one processor will be in a different fault set from functions implemented on
another, if suitable isolation (e.g., electrical and electro-optical isolation) is engineered
between the processors. If these processors exchange information then the malfunction of
one processor, by generating faulty results, might very well cause the other to compute
irrational results. The second processor is still fully functional (e.g., it can still add). The
primary goal of fault-tolerant system design is to prevent the malfunctioning of a limited

number of units to cause other healthy units to obtain incorrect results.

Clearly the way a malfunctioning unit may influence good units is through the exchange of
data and the exercise of control. Data flow models have the virtue that there is no separate
control mechanism. Thus all effects of a malfunctioning unit upon good ones can be
expressed purely in terms of information exchanges. This leads to the second important
feature of Ro models:

Definition 2-9: The edges which join nodes which are in different fault sets are
called interconnection links. These links are abstractions of the real
communication medium. We demand two implementation properties of these links,
however:

1. The source of information (i.e., which fault set) is always known by a good
destination fault set. Specifically, we do not allow outputs from set A to be
confused with outputs from set S when used as inputs to any good set C.

2. Information only flows in the direction of the edge. If handshaking is used,
we cannot permit a faulted destination set to interfere with a good source
set's ability to communicate with other good sets.1

These two properties, although seemingly benign, are essential for correct system operation.
The communication mechanisms must be carefully engineered to ensure that they are met.

1We can certainly include handshaking in our dataflow but this will tend to obscure its generality. In any case, one
will quickly determine that condition (2) has to be met by the handshaking protocol so we are better off assuming that
it is met a priori.



Figure 2-5 shows how fault sets and interconnection links are designated on an Ro

program. For convenience, fault sets are labeled 1 thru n, where n is the total number of fault
sets in the model. This is an important number to minimize since the engineering and
implementation of fail-independent modules may be quite costly.

;;, external
inputs

;. fault sets

Figure 2-5: Sample Ro Program

2.3.3 Fault Models

Since two fault sets may influence each other only through data transmitted on
interconnection links, a fault model need only be concerned with characterizing the data
produced by a faulted set. We must not only capture a faulted set's ability to put out
erroneous or spurious tokens, or no tokens at all, but also the possibility of complete
corruption of signal protocols.



We shall say that "tokens" transmitted in the latter case are not well-formed. Our fault model
is as follows:

Definition 2-10: If a fault set A. is faulted then we replace the histories of each
output edge with an arbitrary sequence of tokens called token fragments, E =
<e1,e2,e 3,...>. A fragment is characterized by the rather insidious properties:

1. ej E DUU {} V j.

2. ej, [ ej2  for any two receivers, 1 and 2.

Property (1) states that the outputs of a faulted source set can be any arbitrary sequence of
well-formed tokens. Property (2) captures the characteristics of tokens which are not well-
formed. That is, two independent observations (receptions) made of the same token ej may
differ in their interpretation. This is an essential feature of digital communications which are
made through noisy channels with insufficient noise margins. In this case two receivers may
extract different values from the communicated data.

This ability for a failed transmitter to "lie" to unfailed receivers is the most overlooked yet
potentially catastrophic failure mode of all digital systems. As such, further discussion is
merited.

Disbelievers protest that "that will never happen. How can two units reading the same wire
get different results?". This ignores some very common failure modes of all physical
communication schemes.

Figure 2-6 shows the connection of three fault sets, A., 9, and C. The interconnection link
contains two physical wires, a data line and a clock line. Assume that the data line is
sampled whenever the clock line makes a low to high transition. If A fails in such at way that
the signals on the data line become marginal (i.e., somewhere between the logical 0 voltage
and the logical 1 voltage) then S and C could obtain a different value for any bit. A's failure
might be as simple as a bad solder joint on a pullup resistor or a failing output transistor. In
any case, this event seems quite probable and it must be considered in the analysis of any

high reliability system.

Even if heavy coding is used (e.g., Cyclical Redundancy Checks) there is still the possibility
that the receivers will get different results. S might be able to recover the signal from the noise
while C might detect an unrecoverable error. The results are still different.



The need for source congruence is probably the leading driver of a correct fault-tolerant
implementation. It is also the most overlooked by the engineering community.
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Figure 2-6: Inconsistent Reception of a Token Fragment

2.3.4 Restoring Buffers Revisited

Now that the concept of a token fragment has been defined, the implementation

requirements of restoring buffers can be presented. We desire functions which can take a

sequence of token fragments as inputs, and output an arbitrary sequence of well-formed

tokens. That is, we desire functions that can map



Any function which has this property is called restoring.

We remark that the design of a restoring function is totally dependent upon the signal
protocols used in the system. It is, however, usually simple to create and often involves just
clocking the inputs into latches.2 Restoring buffers will be used liberally in our solutions.

2.4 Summary

We have presented a very powerful, albeit determinate, language in which to express
simplex source programs, the programs we shall implement on our fault-tolerant hardware.
The language is characterized by recursive connections of monotone and continuous
functions which map histories of tokens at inputs to histories of tokens at outputs.

The language, Ro, is an extension of Lo , and can express redundant instances of Lo

programs. We then augment Ro programs with abstraction of those hardware features which
have an effect on the fault-tolerance of the system. An augmented Ro program is called a
model of the system.

In the absence of failures, the semantics of Ro and Lo are identical. We use fault sets to
model failure-independent hardware modules, and interconnection links to model the
interconnection of the modules.

A fundamental property of our approach is that fault propagation from bad modules to good
is purely through the communication of data from the bad to the good. We argue that a totally
general fault model for such data exchanges is characterized by arbitrary sequences of token
fragments.

The following chapters will show how to construct correct fault-tolerant systems using Ro
models.

2We don't mean to treat this property lightly. If self-clocking asynchronous protocols are used, restoring functions
require a great deal of care in design. It is often argued that such functions can never be fully realized, for even
fault-free versions may contain metastable states. While we admit that this may be true, we assert that careful
engineering can reduce the probability of such states to approximately the physical failure rate of the device.



Chapter Three

Making Simplex Programs Fault-Tolerant

This chapter presents procedures for transforming simplex Lo source programs to Ro

redundant programs, and then imposes the necessary implementation restrictions.

The objective is to meet a given reliability specification for the target system. This
specification can be given in two forms. The fail operability form is an integer specifying the
number of independent fault set failures that can be tolerated while still maintaining correct
system operation. The second form is the aggregate system reliability. This is a real number
specifying probability of correct system operation over some interval of time.

We first precisely define what is meant by correct system operation. This definition relies
on the concepts of congruent histories and congruent sets of arcs. It is shown that

comparison monitoring in the most powerful test for congruence which is possible in Ro.

Procedures are developed which transform Lo programs into Ro programs and meet a given
fail-operability requirement. We show that the problem of input congruence, ensuring that all
fault-free redundant graphs have identical inputs, is the driver for correct system design. Ro

schemata are presented which guarantee input congruence in the presence of faults. The
properties of these schemata are explored in detail.

Finally, we give a graph coloring algorithm for determining the fail-operability, the
aggregate system reliability, and for exposing critical failure paths.

3.1 Overview of the Lo to Ro Transformation

Our principal approach to improving system reliability is through modular redundancy.
Modules correspond to fault sets that contain program instances.

Suppose the Lo program, P, as shown in Figure 3-1, is given along with a fail-operability
goal of 1. That is, the implementation should be able to tolerate any single fault and remain



operational. Thus P will have to be triplicated in Ro where each instance of P is in an
independent fault set.

external inputs
S......... .. o............... ,.

output

Figure 3-1: Example Source Program

The output devices are given the burden to resolve the redundant outputs from the three
instances of P. This resolution will be through bit-for-bit comparisons of the three output lines
so it is required that

(C1) Outputs from all fault free instances of P agree bit-for-bit.
Because all Ro program fragments are continuous and monotone functions, a sufficient
condition to satisfy C1 is

(C2) Similar inputs to all fault free instances of P agree bit-for-bit.

We call this the input congruence condition. It will become clear that ensuring input
congruence is the leading driver in correct fault-tolerant system design. Unfailed outputs
must also be correct, where correctness is relative to the original Lo program. As shown in
Figure 3-2, the external inputs must be delivered to each Ro instance of P such that C2 is
satisfied and

(C3) The inputs applied to any fault free instance of P must be valid inputs for P
in LO.

It is implicitly assumed that a full set of unfailed external inputs form a valid input set for P,



and that replacing certain inputs by arbitrary sequences of well-formed tokens also forms
valid input sets. That is, P should contain algorithms for identifying or tolerating a faulty
external input. This property is captured in P's robust input direction set Vp.

C2 requires all instances of P in Ro to have the same inputs while C3 requires this input set
to be meaningful. We satisfy both conditions in Ro, by requiring all inputs to all instances of P
to be identical to the external inputs to the program. The external inputs themselves are
subject to failure but, as previously noted, it is P's responsibility to operate correctly in the
presence of external input failures. We only guarantee to deliver these inputs, what ever they
may be, identically to all fault-free instances of P.

S.... .... : ,etInI nIIp uI.... .... .... . . ..... . 1 ........... external inputs

I
I
I
I
i

I
i

I

L.

redundant outputs

Figure 3-2: General Topology for Triplex P

Figure-3-3 illustrates an initial solution. Here the inputs are simply distributed to the
independent instances of P. The problem is in the failure of an external input. In the simplex



assumptions of Lo , P could still produce correct3 results even in the presence of selected
input failures. Now when we fail an input each P will produce correct results but the results
may not be the same since a failed external input, being modeled by an arbitrary history of
token fragments may be interpreted differently by each instance of P.

.................................................................................................................... 
..............

redundant outputs

Figure 3-3: Hazardous Distribution of External Inputs

Clearly the problem with an external input failure is not that it can deliver an arbitrary

3This doesn't mean the results will be the same as if the input is operating correctly: the outputs of P are
dependent upon the inputs. In the event of an input failure that P can tolerate, the outputs may change somewhat
but they are still acceptable and so P operates correctly.

eternal
puts



sequence of tokens, but that the value of these sequences is dependent upon the receiver.
This happens when signal protocols are violated and the tokens are not well-formed, as

motivated in Chapter 2. To solve this problem we need functions which, when fault-free,

produce only well-formed tokens. Restoring buffers have this capability.

Our solution involves distributing each external input to three restoring buffers. The outputs

of the buffers are exchanged and independently resolved at the input to each instance of P.

Figure 3-4 illustrates the use of restoring buffers and voters to consistently replicate an

external input. The graph is similarly replicated for the remaining two external inputs. This
triplex realization of P can tolerate any single failure, and still yield at least two correct and

identical outputs.

The operators within the box in Figure 3-4 are an example of a congruence schema. The

following sections will develop machinery for the creation and analysis of congruence
schemata, as these are the distinguishing features of a correct fault-tolerant system design.

3.2 Bit-for-Bit Agreement and Congruence

Bit-for-bit agreement among redundant outputs is an imposing goal of modular redundant

designs. Formulations of redundant systems where only approximate agreement among

redundant outputs is required makes it substantially more difficult, if not impossible, for output
devices to generate correct commands. In our case, any single bit disagreement between two
redundant outputs will always imply a fault in one, or both, sources. Combinations of pairwise
comparisons of outputs will be used to isolate and mask faults. Isolating a fault means to

correctly determine which fault set has faulted. Masking a fault stops the bad data produced

by a faulted set from propagating through the system. Selecting the median value of three
signals, for example, will only mask a bad signal. Multiple pairwise comparisons, voting, of

the same signals, if applicable, will both mask and isolate the bad signal.

This section formalizes the concepts of bit-for-bit agreement and pairwise comparison tests
in terms of Ro .
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3.2.1 Congruent Sets

Here we precisely define bit-for-bit agreement in the semantics of Ro . We shall say that two

histories are congruent if they are the same point in D". A set of edges form a congruent set

if the corresponding histories are all congruent. Formally,

Definition 3-1: Histories a,b E D~ are congruent, a - b, iff

a b and bC a.

Definition 3-2: Edges e1, e2, ..., e, with histories el, e2, ... , en form a
congruent set iff

ei = ej Vi,j.

We will sometimes talk of a congruent set of histories which we mean to read: the edges

corresponding to these histories form a congruent set.

3.2.2 Congruence Tests

Since we shall use pairwise comparison to isolate and mask faults it is important to

precisely understand the properties of this test. We wish to destroy the notion that such

comparisons and associated majority logics are heuristic. Rather, they form a rigorous basis

for provably correct fault-tolerant systems. The pairwise comparison test of two histories is

defined as the weak equality function for Ro .

Definition 3-3: A pairwise comparison test of two histories a = (a1, a2, ...),
b = (bl, b2, ...) is the weak equality function on each element: at = bi is

1. w1  if a, or bi is w

2. true, if ai is b,

3. false1  otherwise.

We write a # b if (ai = bi) is falsei for any i and a = b otherwise.

We now prove that a pairwise comparison test is the strongest test for congruence that can be

formulated in Ro .

Theorem 3-1: For any two histories a and b:

1.a* b ' = a b

2. There is no Ro schema which decides a = b.



Proof:

1. a b => 3 ai, bi # 3 ai =bi = a Si b.

2. By contradiction. Suppose there exists a continuous and monotone function
F(a,b) which decides a = b. That is, F generates falsei whenever ai 1b, or
bi [ai and true i otherwise. Let a, = (1, 1, ... ), a, = (w, o .. .) then
<a,, a,> E <a,, a1> =: F(a,, a,) C F(a., a1 ) since F is monotone.

However, F(a., a,) = <true, true,...> and F(a,, a1) = <false, false,...>.
And <true, true,...) > <false, false,...>.

This implies that F is not monotone. Therefore, no such function exists in Ro.
0

In some sense this exposes an inherent weakness in the seemingly powerful formulation of
Ro . That is, Ro programs lack the ability to detect missing tokens. Detection requires a
nondeterministic merge, which is not a function in Ro . Such merges will be allowed in R1,
which will be presented in the next chapter. When nondeterministic operators are permitted,
the problem of creating congruent sets is considerably more difficult, and a total ordering of
system events, synchronization, is required.

3.3 Testing R0 Models for Correctness

The ultimate measure of the systems which we produce is a probability of correct
operation. Correctness of an Ro program is defined in terms of its outputs, and whether the
redundant outputs are congruent with respect to the same edges in a perfect Lo simplex
program.

3.3.1 Input Robustness and Correct Operation of Ro Programs

When we transform an Lo program to Ro we group the inputs into fault sets which
correspond to the implementation. Any input from a good fault set is assumed to lie in the
valid input space of the Lo program. Correct operation of an Ro program is readily defined.

Definition 3-4: An Ro implementation of an Lo program P is correctly
operating if a majority of redundant outputs form a congruent set with the outputs
of a perfect simplex version of P.

That is, all fault-free instances of P must be driven with inputs that are elements of Yp and



all fault-free redundant outputs must be identical. We can assure congruent outputs of all

fault free instances of P by providing congruent inputs. We can't test for membership to Ip
directly, but we can use the fact that if all but inputs j, k, I,... are congruent with fault free

external inputs and <j, k, I,..> E Vp then the inputs are in the valid input space 1(p.

3.3.2 Fail-Operate Specification

The fail-operability specification is now easy to precisely formulate given the definition of

correct system operation.

Definition 3-5: An Ro implementation of the program P with n independent
fault sets is fail-opt if for any f fault sets with output edges replaced by arbitrary
sequences of token fragments, the system continues correct operation.

In our models, fault sets can influence one another only through the exchange of data on

output edges, and we suggest that arbitrary sequences of token fragments completely

characterize the range of these failures. Our definition of fail-operability describes precisely

the number of independent fault set failures that can be tolerated by a given implementation.

Thus we believe that the above definition completely captures the meaning of "fault

tolerance". Later, we shall give a graph coloring procedure for determining the fail-

operability figure for any Ro program.

3.3.3 Aggregate System Reliability

The primary reason that a system should tolerate faults is that individual component or

module reliability is insufficient to meet a system reliability specification. It is of utmost

importance, then, that we are able to extract an aggregate system reliability number for our

implementation.

Theorem 3-2: Given an Ro program with n fault sets and failure rates X1, X2,...,
•n. The aggregate system failure rate Xs, can be determined by the following
algorithm.

Initialize sys: = 0.

For all f: 0 < f < n test the system for correct operation against failures of each
combination of f units. If the system does not correctly operate then update
Xsys "= Xsys + Xil Xji2...j(1-kl)( 2)... (1-k(nkf)) where the Xis correspond to
each of the f fault sets that are assumed failed and the XkS correspond to the
remaining n-f fault free sets.

Proof: Unique combinations of fault set failures form disjoint and exhaustive



sets. (There are 2' of them.) Therefore the probability of any combination
occurring in a set of combinations is the sum of the probability of occurance of
each combination in the set. In our case the set of interest is defined by the
attribute of correct system operation.

Since the underlying events are all independent, the probability of occurance of
any combination is the product of the unreliability, X, of each failed set times the
product of the reliability, 1- , of the remaining fault free sets.
0

Note that dominating terms in the sum reveal the critical failure paths of the system. The

procedure, although correct, is much more exhaustive than it needs to be, given the

domination of these terms. It is possible to extract these paths to obtain a good

approximation of the unreliability of the system. Our intent here is to show that our model

provides unambiguous information for extracting the aggregate system reliability.

It is possible to lend a probabilistic structure to Vp which describes the coverage of input

failures by P. This would include the probability of misdetection and false alarms. Such

additional information is easily incorporated into our model.

3.4 Required Level of Redundancy

It is important to determine the number of independent instances of a program4 which are

needed to meet a given fail-operability goal. Each instance is "expensive" in that it

represents real computation and physically separate pieces of hardware. Thus we would also

like to know what price we are paying for the modular redundancy approach. Are there any

other approaches that yield analytically correct results but with less hardware?

By the definition of system correctness, a majority of redundant outputs must be congruent

and correct. An arbitrary fault can cause an output to not be congruent and, more

importantly, faulty outputs can "collude" to form congruent sets of their own. So if input

congruence and correctness are satisfied for each fault-free unit, to tolerate f independent

faults requires, in our case,

p Ž 2f + 1,

4Instances are independent only if they are implemented in separate fault sets.



where p is the number of independent instances of the Lo source program P. Clearly, even in

the presence of f faults, a majority of fault-free units are producing congruent outputs. Thus

application of pairwise comparison tests to all pairs of outputs will always resolve a correct

output.

This also implies that n, the total number of fault sets is bounded by

n >p>2f + 1

If n ) p then the remaining n - p fault sets are not directly associated with the computation of

P, but with some other function or with the external inputs. The p sets associated with the

computation of P are the "processors". Thus we conclude that we need a minimum of

p = 2f + 1 independent sites computing P.

This constraint may seem excessive. However, the following result from testing theory [18]

shows that this is indeed a minimum for the correct isolation of f failures using any test.

Theorem 3-3: [Preparta et al., 1967] Any system S composed of n independent
units can correctly isolate f simultaneous faulty units by mutual testing only when
n > 2f + 1.

Mutual testing is where unit A can apply a test to unit B to diagnose faults in B. If A is itself

faulty then the result of the test is arbitrary. In our case, we say that a unit is faulty when its

output ceases to be congruent with other good units. Thus our test, the weak equality test of

two histories a = b, is a reflexive test. Unit A tests unit B through the same test as B tests A.

In any case, this theorem establishes the bound on p to be at least 2f + 1. Since we can meet

this bound strictly, majority logics are in fact optimal in terms of the number of cotesting units

required.

Unfortunately, the number of independent fault sets, n, required to maintain congruent

inputs to all fault-free instances of P is strictly greater than p. This is not a result of testing

theory, however. One quickly finds that the hardware, e.g., testing theory approach to fault-

tolerant system pays little attention to the types of algorithms that will be implemented.

Similarly, the algorithmic approach often misrepresents or ignores important aspects of

hardware design.

Maintaining congruent input sets falls in the "algorithmic" side of reliable system research,

and is often called the Byzantine Generals Problem. Results here [4] [5] show that the

number of independent processors, p, required to maintain congruent inputs to all fault-free

processors is p > 3f + 1.



Theorem 3-4: [Pease et al., 1980] A system S composed of n independent units
can ensure congruent edges in all fault-free units only when n > 31 + 1.

The two results seem to be contradictory, however, both are correct within their assumptions.

The elements of the theories which apply to our model reduce to

p>2f + 1

n >3f + 1

Thus p independent instances of P are required to correctly isolate any f faults in the

computation of P. The remaining n -p fault sets are required to maintain congruent inputs to

p processing sites. We note that most fault-tolerant systems which employ congruent

processing have 2f + 1 processing sites but rarely have the 3f + 1 fault sets required for

correct distribution of external inputs. Therefore, these systems contain failure modes

whereby the occurance of f simultaneous faults can cause a complete system failure.

3.5 Ro Schemata For Congruent Inputs

In this section Ro schemata are developed which guarantee congruent distribution of a

simplex input in the presence of a given number of faults. As previously illustrated, the

congruent distribution of a single simplex source of data is the driving requirement for correct

fault-tolerant system operation. In particular, when the simplex source is itself faulted,

inconsistent views of the value of the source are possible unless some congruence schema is

employed.

Definition 3-6: CfPis a p-input, p-output Ro congruence schema if distribution
of a simplex source to all p inputs guarantees a congruent representation of the
input at all outputs in the presence of I independent faults, including the simplex
source.

Figure 3-5 gives a schematic representation of a Cpcongruence schema.

For example, the solution presented in the overview, Figure 3-4, constructed a C3

congruence schema which successfully delivers an external input to the three instances of P
in the presence of any single failure.
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Figure 3-5: Schematic for a CfCongruence Schema

3.5.1 Cj Schemata

A CV' schema can tolerate a simplex source failure or a set of internal, i.e., inside Cý, failures

and still deliver congruent results to the p outputs. The properties and construction of such

schemata are important in that, in this section, we develop Cfschemata, those which deliver p

congruent outputs in the presence of f faults, from recursive constructions of Cq schemata.

Figure 3-6 gives the canonical implementation of a CP schema.

The numbers by the input and output arcs designate the fault sets to which the associated

operator, a restoring buffer or voter, belongs.



Inputs

Congruent Outputs

Figure 3-6: Canonical CP Schema

Because each output is used to drive an instance of P, the output fault sets, i.e., the fault
sets corresponding to the voters, are usually the same as the instance of P to which they are
connected. When the source is originating from a different set than any of the output sets,
fault sets of input restoring buffers may be paired with fault sets of the output buffers. We call
this, see Figure 3-7, a minimal realization of the schema, because the total number of fault
sets required is a minimum with respect to theorems 3-3 and 3-4. We now give several
important properties of Cq schemata, either canonical or minimal.

Property 3-5: All C' schemata are monotone and continuous.
This trivially follows from the fact that both restoring nodes and voters are monotone and
continuous functions. Direct consequences of 3-5 are

Property 3-6: A CP schema always produces outputs when no input is a.
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Figure 3-7: Minimal Cq Schema Assuming Independent Source

Property 3-7: If a majority of the p inputs are wi for some i then all fault free
outputs are wi.

These properties will be exploited in the next chapter but we note that property 3-7 alludes to

the most serious limitation of Ro. That is, it is impossible to detect the divergence of a simplex

source. Clearly, the divergence of a source is quite a common failure mode and almost all

failure detection and isolation algorithms for external inputs require a "time-out" test. This

test is not available in Ro because such tests are nondeterministic and therefore not functions

of histories of inputs to histories of outputs. However, the structures developed here will be

extensively exploited in the construction of congruence algorithms for nondeterministic

systems. •

The following properties are extremely useful in constructing general Cfpschemata. They

apply to both canonical and minimal implementations. The positive ones are:



Property 3-8: A CP schema will always produce congruent histories at fault-
free outputs whenever there are no more than (p div 2) - 1 failed restoring buffers
and the inputs to no less than (p div 2) + 1 of the fault free buffers form a
congruent set.

In other words, this property guarantees congruent outputs whenever the inputs are

congruent and a majority of the restoring buffers are fault-free. The other interesting positive

property is when token fragments are applied to all inputs, as in the case of a failed simplex

source.

Property 3-9: A CP schema will always produce congruent histories at fault-
free outputs whenever all restoring buffers are fault-free. This is true for any set of
inputs including arbitrary streams of token fragments.

The central negative property of Cq schemata is:

Property 3-10: A CP schema may fail to produce congruent histories at fault-
free outputs whenever a majority of the inputs do not form a congruent set and any
single restoring buffer is failed.

This the negative dual of property 3-9. That is, in the presence of a simplex source failure,

congruent, outputs are assured if and only if all restoring buffers are fault-free. Figure

3-8 gives an example of property 3-10 for a C3 schema. In this example the simplex source is

failed along with one of the restoring buffers. Since the outputs of any bad fault set can be
replaced with an arbitrary sequence of tokens, we give such sequences which can cause

complete disagreement at all fault-free outputs.

We therefore conclude the following important design rule.

Lemma 3-1 1: The fault set of a simplex source driving a Cq schema can never
be the same as any restoring buffer.

The important design consequence is when external inputs are brought directly to one of the
p processing sites. This would correspond to the standard sort of input device hooked up to a
computer. In this case the computer which reads the device and sources the information to

the rest of the system cannot participate in the congruence schema.5  Whenever this
technique is used, as is often the case, a failure of the source computer will imply a failure of

the external input. If the processor failure rate is much higher than that of the source, then
the source is often routed to multiple processors. This technique is called cross-strapping
and requires that each strap be treated as a different, but related, external input. Such

5f course, it will want one of the outputs from the schema and thus the associated voter will most likely be
implemented by the sourcing processor.



simplex source

ults

Inconsistent Outputs

Figure 3-8: Failure of a C3 Schema with Two Faults

models for cross-strapped sensors will be given in Chapter 5.

3.5.2 CfCongruence Schemata

Here we present recursive algorithms for generating Cfschemata from C•1 schemata. We
expose an inherent tradeoff between the number of independent fault sets required to
implement a schema versus the number of exchanges of information which must occur.

Minimum Fault Sets. In this recursion, the number of fault sets are kept at the theoretical

:. ................... ......................................... ................... .....................



minimum. To keep the results as clear as possible we assume that p is a minimum, p = 2f + 1.
Thus the total fault sets will be n = 3f + 1. Consider the simplex source to be in a unique fault
set, although possibly the same as one of the output fault sets. The following algorithm
constructs a correct congruence schema with 3f fault sets.

Theorem 3-12: A Cf congruence schema can be constructed from C%.1schemata with a minimum number of independent fault sets as follows (see Figure
3-9).

Let each Cf-, schema be minimal and denote the 3f - 3 fault sets associated with
the ith schema as io, ii,..., i(31.4). Cascade 3f Cq 1 schemata where the outputs of
the schema i are fed to the inputs of schema i + 1. The inputs to schema 0 are the
inputs to Cfwhile the outputs of schema 3f - 1 are the outputs of C. Assign the 3f
fault sets so schema i uses sets i to (i + 3f -4) mod 3f.

Proof: By Induction. Our basis step is property 3-8 and property 3-9. This
defines Cf.

Suppose a C1, schema has the properties; (1) Congruent inputs yield congruent
outputs with p div2 - 1, or fewer, internal faults; and (2) Fragmentary inputs yield
congruent outputs with f -2, or fewer, internal faults. Then our theorem holds for
Cf p> 2f + 1, if

(1) Congruent inputs yield congruent outputs with p div 2 - 1, or fewer internal
faults. This is easy to show and corresponds to the case where the simplex source
is fault free. Because p div 2 - 1 > f then C.1, stages will produce congruent
outputs with congruent inputs even with all f faults concentrated in one stage.
Therefore Cf will produce congruent outputs from congruent inputs in the
presence of any f internal faults.

(2) Fragmentary inputs yield congruent outputs with f - 1, or fewer internal faults.
If all f - 1 faults are concentrated in a Cf-, stage where the inputs are not congruent
then outputs may also not be congruent since a Cfl can guarantee congruent
outputs from incongruent inputs with at most f - 2 internal faults. However, if the
inputs are congruent then the f - 1 faults can be tolerated and the outputs will be
congruent. It is clear from the permutation strategy that, a stage with f - 1 internal
faults will always be either preceded or followed by a stage with not more than f - 2
internal faults. Thus, congruent outputs are assured.

Although this construction requires a minimum number of independent fault sets, the amount
of information exchanged between fault sets grows exponentially. Lamport [5]gives an
equivalent minimum fault set construction with slightly less communication since he allows p
to decrease at every stage. A bound for the amount of information to exchange for a
minimum realization, however, has not been established. In any case the number of
exchanges (i.e., number of C, operations grows something like p!/(p - f)!.
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Minimum Stages. The number of C, exchanges (staoextremely high in the minimum fault

set case. Researchers in this area have been driven by the minimum fault set requirement

under the assumption that each set represented a "computer", in the sense of being able to

support P. This is not necessary in our case for we have shown that the total number of

processors required is only 2f + 1 whereas a minimum fault set approach views each fault set

as a processor and requires 3f + 1 processors. We still need 3f + 1 fault sets for congruence

maintenance but the remaining f sets need only be restoring buffers, so the implementation

cost is not nearly as high. If we are willing to add more fault sets than the minimum required,

the system takes on much more regularity and the amount information exchanged is

substantially reduced.

Theorem 3-13: A Crschema can be constructed by cascading f independent
Cq schemata (see Figure 3-10). Independence means that no two restoring buffers
share a fault set.

Proof: Each CP schema can tolerate f restoring buffer faults when their inputs
are congruent. If the simplex source is failed then fragmentary inputs are only
made congruent by a stage with no faulty restoring buffers. We are guaranteed at
least one Cp with no restoring buffer faults since f - 1 faults are distributed over f
independent stages. All stages following the fault-free one will give congruent
outputs even with up to f restoring buffer failures.

Note that the number of extra fault sets grows like pf = 2f2 + f while the number of
exchanges only grows like f. Compare this to the minimum fault set implementation that
requires a total of 3f + 1 fault sets, but performs 31f! exchanges. Also note that the additional
sets for the minimum stage construction are quite simple, e.g., single chip, collections of
restoring buffers and voters. There is also the advantage that the stages form a physical
pipeline and may integrate very well with packet routing techniques for interconnecting
processing sites.

3.5.3 Remarks

It should be clear that congruence maintenance is an extremely demanding function for a
fault-tolerant system, especially one that can tolerate more than a single failure without
reconfiguration. Since all simplex sources must be distributed by congruence schemata the

system design will be heavily influenced by these burdensome requirements. Practical
solutions for real-time systems will need special hardware support in the communications
system to support such transactions. It is reasonable to expect that our fault-tolerant design
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methodology, being founded in data flow analysis, will implement well on systems which are

operated on data flow principles. Especially since we share the mutual problem of efficiently

routing large quantities of information to physically dispersed and independent processing

sites.

3.6 Sequential Faults

We have implicitly assumed that all faults, up to f, occur simultaneously. While this gives

the most robust solution, it is also a reason why the number of exchanges and fault set

requirements grow so rapidly with f.

Sometimes it is possible to tolerate sequential faults by using one level of exchange and

reconfiguring after a fault is detected. This reconfiguration consists, quite simply, of ignoring

faulty units. Examination of the f = 2 and higher algorithms reveals that their complexity is

due to not knowing the placement of the faults, and worse case conditions must be

accounted. Thus, sequential systems isolate each fault as it occurs, and then mask the bad

unit. If the isolation and reconfiguration can occur fast enough, the system need only be able

to tolerate a single unknown fault at a time. In this case p grows like 2 + f and n > p + 1.

There is a penalty, of course. If a fault is not located before a second fault occurs then the

whole system is likely to fail. The difficulty is uncovering latent faults in the system. These are
faults which have occurred but have not been detected since the failure mode has not yet

been excited by the normal operation of the system. Intermittent faults are also extremely
difficult to both detect and correctly isolate. Thus, sequential systems, although very
attractive engineering solutions require special consideration and do not yield the level of
confidence of systems designed on simultaneous fault models.

Sequential models can be analyzed under our theory by simply considering the system to
be a sequence of I = 1 models. The probability of correct transition to the next model after a
fault can represent the coverage of fault isolation tests. The case where the transition is not
made means just keeping the current model and determining the effects, usually fatal, of a
second error. Sequential machines must still provide a majority of congruent and correct
outputs.



3.7 Graph Coloring Algorithm

This section provides some very simple tools for coloring the interconnection links of an Ro

graph to determine the effects of a given combination of failures.

The interconnection links are given two colors. All sequences of well-formed tokens are

assigned a shade of blue, one shade corresponding to each point in D', and all sequences of

token fragments, e.g., those links sourced from failed sets, are colored red. Red sequences

are irreproducible and dependent upon the receiver so we only need one shade. Note the

following properties:

Property 3-14: A fault-free restoring buffer transforms a blue input edge to a
blue output edge of the same shade. A red input edge is transformed to a blue
output edge of arbitrary shade.

Property 3-15: A fault-free voter yields a blue output edge of the same shade
as a majority of same shaded input edges. If no majority exists, the output is
colored dark blue corresponding to the error token, unless any input is red, in
which case we color the output red.

The voter property is somewhat conservative, but the exceptions detract from the simplicity of

the algorithm. The following algorithm always rejects an incorrect graph under a given
combination of assumed faults:

Color all links sourced from faulted sets red. Color all fault-free external inputs
unique shades of blue.

Continue to color the graph according to the properties above. Make sure to
assign the outputs of each restoring buffer driven by a red edge a unique shade of
blue.

For each instance of P if any input is red, color the output red. If the inputs
colored dark blue do not form an entry in Vp, color its output red. For all other
instances assign unique values of blue to the output edges, except that two fault-
free instances with identical input shading should have identical output shading.

If a majority of redundant outputs have the same shade of blue, then the system
is guaranteed to operate correctly with respect to this output.

The correctness of the algorithm follows directly from the coloring properties above and the

fact that Ro schemata are pure functions which map histories of inputs to histories of outputs

and therefore may be independently colored. The most valuable application of this tool is

establishing the effects of failed simplex sources, since these conditions are clearly the litmus
test for any fault-tolerant design.



Chapter Four

Nondeterminism and Synchronization

The fundamental shortcoming of Lo is the inability to detect the divergence of a simplex
source. One often wants to place a "reasonable" amount of time to wait for a token from a
source. If this time is exceeded then the source is considered timed-out and possibly faulty.

This test, a time-out test, is clearly nondeterministic; the same test made at different space
or time points could yield different results. For instance, a particularly malicious failure of the
source could deliver a token arbitrarily close to its time-out limit, and thus induce certain sites
to correctly receive the token while others would declare it timed-out.

The correct generation of a time-out test has three features:

1. Fault free sources will never time-out.

2. The results of the test must be generated in a bounded amount of time.

3. The results of the test must be consistent at all redundant sites.

If such a time-out test can be correctly performed on a system then the implementation of
general nondeterministic functions is straight-forward. A more powerful'source language that
includes nondeterministic functions, L1, can then be supported.

In this chapter we formulate the problem of nondeterminism in terms of time orderings of
events, which are the receipt of tokens by operators. The outputs of nondeterministic
programs, in general, are dependent upon a perceived time-total ordering of events. Thus
outputs of redundant programs can be congruent only if the time-total orderings generated by
each independent processing site are consistent. For a system to correctly support
nondeterministic functions it must be able to generate a consistent total ordering of selected
events at all redundant sites within a bounded amount of time.

The amount of time required to perform this ordering is directly related to the relative skew
between similar events at redundant operators. In general, skews among similar events may



grow excessively large or even unbounded. Thus mechanisms must be provided to keep

these skews within predetermined bounds. If the skew among similar events is guaranteed

never to exceed such a bound, the events are said to be synchronized.

We begin by formalizing the concepts of events and their time orderings. The source

language is extended to include nondeterminism. We then develop congruence schemata

which not only deliver congruent outputs but do so in a bounded amount of time, even if the

source has diverged. These schemata support the generation of correct time-out tests. We

then show, using these schemata, how to support general nondeterministic functions where

no prior orderings of inputs are known for the fault-free case.

We conclude by developing synchronization techniques to interactively minimize the skew

between similar events in redundant processing sites, and thus improve the efficiency of

time-out tests while also supporting the needs for real-time systems. A self-clocking

technique is presented that can remove the skew from congruent edges in a completely

decentralized manner, without the need of a central system of synchronized clocks.

4.1 Events

An event is simply the receipt of a token by an operator. By "receipt" we mean detection of

the token at the input. The absolute time of the event is not important and, in a distributed

system, is a meaningless measure. Instead, our models for nondeterminism and theories of

synchronization rest on partial and total time-orderings of events [19].

Definition 4-1: For any input a to operator f, the event e(ai) occurs when the a1
token is received by f.

The important relationship between events and correct system operation is in the ordering

of events. With respect to a single operator, which we consider a point, a time-partial

ordering of events is unambiguously obtained.

Definition 4-2: For any two inputs a and b to an operator f, the time-partial
ordering <f is given by

a, <f bl if e(ai) occurs before e(bl)

We write a <f b if a, <f bi is true for all j.



We actually need a slightly stronger formulation of event ordering to meaningfully resolve

system synchronization issues. Data dependencies and timing analysis will help extend a time

ordering with respect to a single operator to time orderings with respect to a group of

operators.

Clearly, there will be events which occur with respect to different operators and cannot be

related by such dependencies or a priori timing analysis. These events are called

simultaneous. It is important that the redundant program instances be able to generate a

consistent ordering of simultaneous events in order to ensure congruent outputs.

Definition 4-3: A time-total ordering of events e(al), e(a2),..., e(an) is
al < a2 < ... < an if whenever e(ai) occurs before e(ai) then a, < ak

There are obvious ambiguities in the ordering of simultaneous events. The generation of

orders within this degree of ambiguity is usually done through some sort of priority scheme
but this does not concern us here. The important attribute of our system is the ability to

generate a consistent total ordering of events at redundant processing sites within a bounded

amount of time.

4.2 Nondeterministic Source Language, L,

By nondeterminism we mean that the histories of the outputs of an operator is not just a
function of the histories of the inputs, but also dependent upon the relative order of arrival of

the individual tokens at the inputs. The extension of Lo to include nondeterminism is simple.
However, many of the nice properties of recursive interconnection of such operators are

destroyed. For instance, we can no longer obtain congruent outputs from redundant
instances of general L1 programs by simply providing congruent inputs. A stronger time
ordering is required at the inputs to each nondeterminsitic operator, not just the inputs to the
program. Maintaining such conditions is "expensive" in terms of information exchanges
between redundant graphs. Thus, nondeterminsitic operators should be sparingly employed.



Definition 4-4: An n-input, p-output function, f, is a mapping from time-
ordered histories of the input edges to histories of output edges.

fl: DOj X Dw2 X ... X D'n X O --+ D"

f2: Dwl X Dw2 X ... X D'n X O D'

fp: D4I X Dw2 X ... X Dwn X O -+ Dw

Where 0 is the set of all time-partial orderings of the receipt of tokens at the input
of f.

There are two nondeterministic operators of particular interest. Figure 4-1 shows the

nondeterministic merge places tokens at the output in the same order in which they were

received at the inputs without transformation. A consuming merge is a nondeterministic filter

which places the first arriving token at the output while consuming the token of the same

sequence index on the other arc.6

Nondeterministic Merge Consuming Merge

Figure 4-1: Two Nondeterministic Operators

It will often be convenient to decompose L1 programs into Lo fragments connected by simple

edges and nondeterminsitic merges; see Figure 4-2. We will then provide algorithms for

ensuring congruent outputs of redundant L1 programs by ensuring congruent inputs to all Lo
fragments and the same time-partial ordering to all redundant merges.

6A consuming merge can be implemented using a nondeterministic merge and a counter. We include it as a
separate primitive for clarity.



L 1 Program

Figure 4-2: Decomposition of Programs into Lo Fragments

4.3 Nondeterminism in R,

R1 is extended in the same way as L1. That is, we assume L1 to be a subset of R1 in the

same way as Lo is a subset of Ro. In addition to the fault sets and interconnect links we
further require, in certain cases, timing information for particular operators and interconnect
links. These will be absolute bounds on the computation and transmission delays of the
operators and links.

Definition 4-5: For any operator or interconnect link the minimum and
maximum latency Otmin and. 8tmax will be the minimum and maximum input to
output delays, respectively, during fault-free operation.

This information need not be provided for all operators, but will be essential for the correct
generation of time-out tests of divergent simplex sources. In some cases we will only use the

....................................................................................................... ...........................



skew or relative difference between redundant instances of operators. In these cases only the

weaker conditions of worst case skews need be given.

4.4 A Priori Orderings

In establishing a consistent total ordering of events we have distinguished between two

classes: those events that can be ordered a priori in the fault-free case, and those events that

are simultaneous. Events for which we have prior orderings are special in that a departure

from the ordering during actual execution can only occur through a fault, somewhere, in the

system. The prior ordering is derived either from data dependencies or by timing analysis.

Figure 4-3 contrasts the two derivations.

a

Dependency

path a

a < b

path b

Timing

Figure 4-3: Prior Orderings from Dependencies and Timing
Paths

The data dependency ordering is a static property of the topology and operators. In this
case we can write a < b because bi is dependent upon ai for all i. In the timing relation we



can write a < b only when

Matmax,path a < Itmin,path b. (4-1)

Violation of a data dependency is a departure from the static functionality of the graph, and

is completely captured in the fault model of the last chapter. Event orderings from timing

analysis are much more implementation sensitive, but are essential for the correct

construction of time-out tests. We shall show that the ability to establish a priori bounds on

the time to perform a congruent distribution of a simplex source is the primitive property

which distinguishes synchronous systems. By this we mean that the congruence schema

must produce some (congruent outputs by a given time. That is, congruence schemata

cannot have divergent outputs even in the presence of divergent inputs.

The creation and support of other constructs, such as clocks and non-deterministic

merges, follow naturally from the bounded distribution-time property.

4.4.1 Timing Races

The generation of a time-out test reduces to a fundamental timing race, as shown in Figure

4-4. This Figure represents the primitive time-out test for the source S. Imagine a trigger

token, represented on dashed arcs,7 is dropped into the top of the graph. A timing race

ensues between the two sides. If we know that tmax, s is strictly less than 8tmin,delay than we

should always get (in the fault-free oaWes's at the output. If S should fail such that its output

diverges, then we will get T at the output. Clearly, in the presence of a failure of S, we are

guaranteed a token at the output within 8 tmax,delay + 8tmax,c seconds. The design problems

are to

1. Determine 8 tmin,delay and employ a suitable number of redundant tests such that a
fault-free source is never timed out;

2. Consistently distribute the results of the test to all fault-free sites using the test;

3. Generate the appropriate trigger tokens in a fault-tolerant manner and within
acceptable skews to meet 1.

The generation of independent,trigger tokens with acceptable skews is a problem of

7There could have been two different sources, e.g. clocks, for these triggers. This requires the skews between the
arrival of the triggers to be known, a problem dealt with in a subsequent section.
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Figure 4-4: Time-out Test as a Timing Race

synchronization. The determination of the value of the delay is readily obtained if neither path

has cycles and the worst case skews between the triggers are known. The following section

solves the problem of generating consistent time-out tests among redundant processing sites.

4.4.2 Bounded-time Congruence Schemata

. This subsection gives construction rules for congruence schemata which not only

guarantee congruent outputs in the presence of a specified number of faults, but also

guarantee outputs within a bounded amount of time. That is, these schemata are capable of

the correct generation of time-out tests for simplex sources.

Figure 4-5 shows an initial attempt. Here the source is distributed by a Cpschema, so that

we are assured congruent versions of the source at all fault-free outputs of the schema, given

no more than f faults. Time-out tests are then performed independently at each processing

site. Thus, each program will have some value for the source within a bounded amount of

time.
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time-bounded outputs

Figure 4-5: Hazardous Redundant Time-out Test

Although all the histories of the redundant edges feeding the consuming merge are

congruent, there is no guarantee that the individual tokens arrive in the same order. Suppose
that the source fails in such a way to output a token very close to the time-out limit. In this
scenario, different tests may give different results. The source may barely arrive in time at
some sites while at others the time-out tokens preceded it. The results of the test must be
consistent at all processing sites.

A refinement of the approach in Figure 4-5 might be to exchange the results of each test
and then arbitrate among them. The resolution of the different tests must be done in such a
way that a good source is never timed-out. Therefore, we can declare a source timed-out only
when a majority of the tests are timed-out. In the ambiguous case where the outcome of the

P
Cf



test is arbitrary (we assume this can only happen when the source is faulty), it can be argued

that, the tests being a binary decision, we must have a majority of one result or another. This

works only when the source is faulty or a minority of the tests are faulty. If the source is faulty

and a single test diverges, then all voters may diverge, and we are back where we started:

time-out tests must be made on the time-out testsl

The proper place to perform the time-out tests is in the congruence schemata itself. To do

so, we introduce a modification to the restoring buffer as shown in Figure 4-6.

data

time-out
time-out

Figure 4-6: Restoring Buffer with Time-out

The buffer restores the input data and merges it through a consuming merge with time-out

tokens on the trigger input. We will assume that, under fault-free conditions, the data tokens

always arrive before the time-out tokens, data < time-out. Thus the output is normally just

the stream of data tokens. This new restoring buffer not only restores the signal protocols

but, in some sense, restores the timing relationships between individual tokens. We note that

the time-out concept is easily extended to a time-window that imposes a restriction on the

minimum time between source tokens.

Figure 4-7 shows the use of these new buffers to generate a canonical TrCiP schema. It is

easy to see that fragments placed at the inputs still yield arbitrary, but well-formed and



congruent, sequences of tokens at the outputs. Importantly, we are guaranteed outputs

within a bounded amount of time under the exact same conditions that Cf schemata (see

chapter 3) produce congruent outputs. Figure 4-8 shows the standard representation of a TCq
schema.

Inputs
S......... ........................ ,,......... .. °................... ,...... o...... ,....................................... .. .... ..

Congruent Outputs

Figu re 4-7: A Canonical Bounded-Time rCP Congruence Schema

The construction bounded-time congruence schemata that work correctly in the presence

of f faults follows the same recursions employed in section 3.5.1. The proof of correctness
follows by induction on the following T-Cf properties (compare to properties 3-8 and 3-9).

Property 4-1: A TCP schema will always produce congruent histories at all
fault-free outputs in a bounded amount of time, whenever there are no more than
(p div 2) - 1 failed restoring buffers or associated time-out sequences, and the
inputs to the (p div 2) + 1 remaining fault-free buffers form a congruent set.

Property 4-2: A rCq schema will always produce congruent histories at fault-
free outputs in a bounded amount of time whenever all restoring buffers and
associated time-out sequences are fault-free. This is true for any set of inputs
including arbitrary streams of token fragments or any combination of divergent
inputs.
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Figu re 4-8: Standard Representation of a Canonical -rC~ Schema

It has been tacitly assumed that we are able to correctly generate the time-out sequences at
all fault-free restoring buffers, a nontrivial assumption. We address this problem in the
following section on synchronization. Before presenting the synchronization problem,
however, we first introduce the prerequisite machinery for the consistent ordering of
simultaneous events.

4.5 Simultaneous Events

Suppose we are given a nondeterministic merge in an L1 program with no prior information
on the ordering of inputs. We say that the associated events are simultaneous. To maintain

congruent outputs of the merge we must require

(M 1 ) All similar inputs to fault-free merges must form a congruent set;

(M2) All similar fault-free merges have the same time-partial orderings on the
inputs.

It is actually easier to first consider the problem of constructing a congruent consuming



merge. Remember that a consuming merge forwards the first-arriving token on one edge and

subsequently consumes the corresponding token on the other edge if and when it arrives.

Figure 4-9 shows our approach to maintaining congruent outputs of redundant consuming

merges.

Inputs

constal
functio

'Tria,

to all other sites from all other sites

Figure 4-9: Correct Implementation of Redundant Merge

The two incoming edges are routed to a trial merge and the result of this trial merge is
exchanged through a TCe schema to all other redundant merges. Similar trial merges are
performed at each redundant site and their results are exchanged. All trial outputs are voted,
and the input in the majority is selected for output. Thus, each site has consistent information
of the results of each trial merge. In the event of a lack of a majority, i.e., the events are
indistinguishably close, the left or right input is arbitrarily selected. We guaranteed that all
voters have exactly the same input arguments within a bounded amount of time since the



inputs were distributed by TCfcongruence schemata. Also, when an input is selected we are

guaranteed that all fault-free merges actually have a token on the corresponding arc.

One can view each trial merge as an independent external input or "sensor". The output of

the sensor is either 'left' or 'right'. If there is no ambiguity, (e.g., there is only a 'left' input),

then all fault-free tests will agree, and we will select the correct edge for input. If there is

ambiguity, (i.e., there are tokens on both inputs) then we randomly8 pick a side and we are still

assured of a token at the selected input.

General nondeterministic R1 functions can be implemented in a similar fashion. Thus an

L1 program can be decomposed into L, fragments connected by nondeterministic functions

as shown previously in Figure 4-2. We obtain congruent outputs of the corresponding

redundant Ro fragments by providing congruent inputs. Congruent inputs, in turn, are

guaranteed by the replacement of the nondeterministic functions with their congruent

counterparts, and by the distribution of external inputs with rCfschemata.

We note that our approach to resolving nondeterminsitic merges is similar to the

synchronizing merge developed by Leung [9]. In our solution, however, only 2f + 1 merges

are employed, whereas Leung requires 3f + 1.

4.6 Synchronization

Up to now we have assumed that the time-out sequences have been correctly generated.

The efficiency of an R1 system is intimately related to how close (in time) similar events

among redundant processing sites occur. The greater the potential skew, the greater the

uncertainty of the relationship between similar events, and thus the larger the delay required

for correct time-out tests. We need some way of keeping these events aligned. If similar

events are guaranteed to occur within a predetermined amount of time, then these events are

synchronized. The closer the alignment the greater the degree of synchronization of the

system.

8Some scheme other than random may be employed, such as priority encoding, to resolve the ambiguous case.
This is application dependent, but any algorithm which consistently selects one or the other inputs is valid.



4.6.1 Event Skews

One must take care to define the time relation of events independent of some global notion

of time. Otherwise, a view of synchronization is developed which is stronger than we need and

perhaps unrealizable in a distributed system. The following definition of skew yields valid

results in Newtonian frames of reference.

Definition 4-6: The skew, 8, among a congruent set of similar events is the
maximum time between the first occurring event and the last occurring event that
would be measured by any fault-free observer.

We will sometimes speak of skews between a set of edges or tokens. Since events are defined

only by the receipt of tokens by operators, this usage is imprecise. In all cases, we take this to

mean the events which would occur if we connected an operator to the specified edges.

Definition 4-7: A set of similar events are synchronized just in case there exists
a finite prior bound, 8ff, for the skew of those events associated with fault-free sets

4.6.2 Self-Synchronizing Schemata

In this section we expose properties of Cq schemata which can aid in the synchronization of

selected redundant edges. Significant features of this technique are

1. The resulting skew after a self-synchronizing exchange is independent of the
skew prior to the exchange.

2. The exchanges are supported by Cprather than TCfschemata.

3. Any selected set of congruent edges may be synchronized in a totally
decentralized fashion without the need of physical clocks.

The technique is similar to a more specific mutual feedback clocking algorithm first

developed by Davies and Wakerly [6]. Figure 4-10 shows the implementation of our technique

to align similar edges in a general fail-op f graph. Edges to be synchronized are exchanged

and voted and then delayed according to the maximum skew expected between redundant

sites. The resulting edges are realigned to the maximum skew in the congruence schema

rather than the skew in the incoming edges.

The correctness of this implementation exploits the following interesting timing properties
of CP congruence schemata. Note that these are not bounded-time schemata.

Definition 4-8: The induced skew, a, of a fault-free CP schema is the maximum
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Figu re 4-10: Self-Synchronization of Redundant Edges

time-skew among the output tokens when the input tokens have zero input skew.

Property 4-3: A fault-free Cqschema with induced skew a will, given a majority
of the inputs form a congruent set, produce output tokens of skew a, independent
of the input skew.

Clearly, if all restoring buffers are fault-free then all voters obtain the same tokens within

skews that are determined solely by the CP schema itself. Thus, all voters fire at roughly the

same time and any additional skew is induced by the differences between the individual
voters. Therefore, the output skew is simply the induced skew of schema, independent of the

input skew. If some of the restoring buffers are faulty then we can bound the worst-case skew



at the outputs of all unfailed voters as follows.

Property 4-4: A CP congruence schema with induced skew, a, given any
majority of fault-free restoring buffers driven by congruent inputs with skew 8ff, will
produce congruent outputs at all unfailed voters with skew no greater than a + 6ff.

In other words, a Cq schema with a minority of faulty restoring buffers cannot increase the

original skew of the good input data by any more than the schema's induced skew.

The proof of this property is straight-forward. All voters will receive the data originating

from fault-free restoring buffers with approximately the same skew. The voters cannot fire,

however, until a majority of inputs are present. Thus, they cannot fire until at least one token

from a fault-free buffer is received, and may have to wait until the tokens from all fault-free

buffers are received. Therefore, the worst possible scenario of colluding and lying faulty

restoring buffers can induce selected voters to fire on the receipt of the first fault-free

restoring buffer token, while others are forced to wait until the last token is received. Because

the maximum skew among inputs to any majority of fault-free restoring buffers is bounded by
8ff, by assumption, the maximum skew among fault-free outputs is bounded by a + 8ff.

Theorem 4-5: Suppose the self-synchronizing schema shown in Figure 4-10 is
implemented with a minimum stage Cfschema. If each constituent CP schema has
an induced skew of a, then the outputs will be synchronized within skew of (f + 1)a,
given no more than f internal faults.

Proof: There are a total of f + 1 independent exchanges, each with induced
skew a. Thus, in the presence of no more than f faults we are guaranteed at least
one fault-free exchange. By property 4-3 the outputs of this exchange will have
skew a, independent of the input skew. By property 4-4 the subsequent faulty
exchanges can only increase this skew by a at each stage. Since there may be as
many as f faulty subsequent stages, the total accumulated skew must be less than
a + fa = (f + 1)a.
O.

The delays introduced after the exchange are selected to allow all fault-free redundant
graphs to have produced an input to the schema before the computation proceeds. This

prevents any timing. races that could be generated by a cyclic graph from "leaving behind"

the slower computation sites, since the schema only needs a majority of congruent inputs to
fire. The delays are simply equal to the value of the worst case input skew 8ff that can be
expected among all fault-free inputs.

The determination of suitable delays is easy for acyclic subgraphs. In the case of a cyclic
subgraph, the cycle should be broken and then reformed so that the looping variables are



realigned through a self-synchronizing exchange. We assert that it is possible to generate

automatic procedures for the insertion of self-synchronizing schemata, given just the simplex

source program and the difference 8tmax - 6tmin for each operator.

4.6.3 Latency

The amount of time it takes to perform a correct time-out test or to synchronize a set of

edges is directly proportional to the sum of the worst case skew, 8ff, and the total delay of a

the congruence schema.

This total delay, the latency, relates to the efficiency of the system, and defines, to a certain

extent, the finest grain computation cycle which can be supported by the system. For high

performance control systems such as aircraft flight control, the latency should be under one

millisecond to prevent an excessive domination of redundancy overhead. Similarly, latencies

lower than approximately 100 microseconds are less than what is required. Clearly, the

degree of system synchronization and the implementation technology of the congruence

schemata (hardware versus software) will have the largest impact on the system latency.

4.7 Remarks

The ability to consistently order events and the ability to bound the maximum skew among

similar events are the key attributes of a system which can successfully support
nondeterminism. It has been shown that the ability to generate a congruent set of edges with

congruence schemata is an essential feature of correct systems, and can be the dominating

factors in the system's efficiency.

This theory allows two fundamental questions to be answered about a fault-tolerant system

design. Is it correct? That is, are the minimum number of fault sets present, are congruence

schemata implemented, is the synchronization technique hazard free? If the system passes

these tests, is it efficient? What is the maximum skew and the total latency? Many

engineering decisions can be simplified if the fault-tolerant designer keeps these questions in
mind.



Chapter Five

Applications

A primary application of the theory developed in this research is the provably correct

implementation of highly reliable real-time control systems. In these systems, a loss of

computational capability, even for a fraction of a second, can directly lead to substantial

financial and human costs. This chapter presents some specializations of our theory to the

needs of such systems.

There are two distinguishing features of real-time control systems that have a direct effect

on the formulation of our system models: the extensive use of stochastic input devices (e.g.,

analog sensors), and the requirement that certain computations must occur at predetermined

intervals of time. This chapter develops sensor models for those classes of input devices

which are frequently employed, and investigates the construction of physical clocks which

time-regulate the flow of computation. We conclude with a critical discussion of current

fault-tolerant control systems which both meet and, fall short of, the theoretical requirements

for correct system operation.

The author has directly applied this theory to his design and analysis of the communication

and synchronization subsystems of two recent fault-tolerant control systems targeted for flight

control of high performance aircraft. The C.S. Draper Laboratory FTP is quadraplex fail-op2

(sequential) that employs four tightly synchronized M68000-based microprocessors to give

the user a transparent simplex programming environment [10]. The Honeywell M2FCS, in

contrast, is a distributed, data synchronized multiprocessor system which exploits self-

checking processor pairs as the fundamental fault-isolation unit [20] [21]. The models
developed in this report proved valuable in clarifying subtle engineering design decisions that

might otherwise compromise the high levels of reliability desired.



5.1 Sensor Models

This section specializes the theoretical concept of an external input to represent the kinds

of input devices most often found in real-time control systems. We show how sensors that are

"read" are easily represented by demand driven models. Cross-strapping techniques which

provide redundant interconnect links are also modeled. Finally, we discuss the architectural

implications of a sensor which is directly connected to processing site, (e.g., through an I/O

card), before being distributed through a congruence schema.

5.1.1 Demand Driven Sensors

In our abstraction of external inputs, they seem to spontaneously produce tokens for the

consumption of the program. Most inputs in control systems are treated in a more imperative

fashion. When a value is required it is "read" from the device. This operation, in the case of

analog sensors, is the reading of a conversion latch from an analog-to-digital converter. An

acceptable way to model this operation in our source language is through the use of demand

driven sensors. As shown in Figure 5-1, the external input is modeled in the source language

L1 by a stochastic function (the sensor) which produces data whenever any type of token, the

demand or trigger, is placed at its input. Note that the sensor is not a pure function in the

sense of our languages since it does not determinately map time-partial ordered sequences of

inputs to sequences of outputs.9 Instead, the value of the output is a function of the absolute

time (relative to the sensor) at which the trigger token was detected.

Figure 5-2 shows how this model is translated into R1. The voter resolves redundant

demand streams from the p processing sites to a single demand stream. The resulting output

is distributed to the redundant processing sites through a TCf schema. The value of delay

required is equal to
8tmin,delay = Stmax,V + 8 tmax,sensor + 8tmax,links + 8fft

Where Sff is the maximum skew expected among all fault-free demand streams. It often

happens that 8ff completely dominates this sum. In tightly synchronized systems such as the

FTP, the maximum expected skew is less than one microsecond and the total exchange

latency is approximately 5 microseconds. In contrast, the SRI SIFT system has considerably

91f it did, it would be a most uninteresting sensor
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Figu re 5-1: Simplex Model for a Demand Driven Sensor

more skew and an (unacceptable) latency of well over a millisecond.

5.1.2 Processor Hosted Sensors

In the above sensor model it is assumed that the sensor fault set contains the necessary

hardware for the conversion of the analog sensor output to a well-formed token. Sensors are

usually not this sophisticated. Instead, the analog-to-token conversion is usually hosted at

one of the redundant processing sites. That is, the analog signals are typically routed to

analog-to-digital converters on input/output boards on the backplanes of digital processors.

This brings up an interesting architectural issue of how to correctly distribute this class of

inputs. The data from the sensor must be correctly distributed for input to all other

processing sites. Thus, as shown in Figure 5-2, the data must be routed through a

congruence schema. Note that the output edge of the sensor is actually a member of the fault

set corresponding to one of the instances of P (the one that had the conversion hardware).

Recalling design lemma 3-11, we cannot let this fault set participate in the restoring



Figure 5-2: R1 Model for a Demand Driven Sensor



operations in the congruence schema. Up to now, in designing a minimum fault set

congruence schema, we allowed all target sets to participate in the exchange. We can still

allow all the other processing sites to perform restoring functions except the host of the

sensor.

We might be tempted to introduce a new fault set which assumes the remaining restoring

function. Typically, all processing sites will host sensors, so this additional set must somehow

be multiplexed to support the restoring functions for any host processor which must be

excluded. This is certainly possible to do. However, we gain much more regularity by
completely divorcing the restoring function from the processing sites. The FTP system does

precisely this and the restoring functions, with time-outs, are called interstages. Topology

and fault set assignment are shown in Figure 5-3. Here, a departure from a 3f + 1 fault set

minimum has yielded a much higher performance and regular system.

5.1.3 Sensor Cross-Strapping

It often happens that the inherent reliability of the sensor is much higher than the processor

which is hosting it. If the sensor is feed only through this processor then its failure rate is
approximately that of the host processor. To recover the original sensor reliability, the

outputs are often routed to several processing sites in a technique called cross-strapping. In

this case, if a single analog-to-digital conversion or the associated processor fails, the sensor

data is still available to the system. To correctly model such a connection we must

conceptually view the sensor as several highly correlated sensors sharing the same fault set

(see Figure 5-4). The multiple sensors will tend to converge to the same value as the skew

among the demand streams decrease. In general, even with zero skew, these results will
never be precisely the same due to broad spectrum white noise induced on the analog lines.

Thus a blending algorithm must be supported within P to resolve a best estimate of the
sensed value from the several read. Of course, each independent value must be distributed to

all users through a congruence exchange. We note that even the hosting processor cannot

use the value directly; it must always use the exchanged value to ensure consistent
information throughout the system. Due to the heavy input/output demands of most real-time
control systems, the throughput of the system may become heavily dependent upon the
efficiency of congruence exchanges.
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5.2 Physical Clocks

Physical clocks and corresponding schedulers are essential for real-time control systems

where certain operations, such as sampling sensors, must occur at specified times and at

regular intervals. Figure 5-5 shows a sample L1 program where clocks have been introduced

to regulate the system behavior. A timebase puts out regular ticks and feeds a finite state
machine sequencer, the scheduler. The scheduler sends trigger tokens to gates which have

been installed on various edges. These new dependencies are the sequencing constraints.

When translating this structure to an R1 model we must ensure that tokens are at the inputs

to all gates before the corresponding triggers arrive. This analysis can be carried out for
acyclic subgraphs, but is difficult, if not Turing-unsolvable, to bound the computation time for
an arbitrary collection of operators. Fortunately, in real-time systems the programs which
require tight sequencing have execution times which in fact are independent of the inputs.

Once these times have been established and the sequencer designed, the redundant



Figure 5-5: Absolute Clocking of a Program

sequencers must be kept aligned to a prescribed timing skew. That is, we must somehow

keep the timebases aligned.

This problem is very easy to solve using self-synchronizing schemata. As shown in Figure

5-6, the, outputs of the schema is feed through a delay which is approximately equal to the

period of the desired clocks. The actual period is found by summing this new delay with the

latency of the schema. Many other approaches are possible. Daly, Hopkins and McKenna

[22], for example, show how to keep independently running oscillators aligned through a

fault-tolerant phase-locked loop. We note that the analysis of phase-locking techniques are

greatly simplified if one can assume that all oscillators have the same relative phase

information as all other oscillators. This, in turn, is easily assured through the use of the

correct congruence exchange mechanisms for the distribution of phase information.



Figure 5-6: Physical Clocks from a Self-Synchronizing Schema

5.3 Critique of Current Systems

Many systems which claim to be "fault-tolerant" are not so in the very strong sense in

which we use the word. Most systems do not employ active redundancy or comparison

monitoring. Instead, they rely on a spectrum of self-test, encoding, re-try, and reversion
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modes, to detect and isolate hardware faults. Overall, an aggressive application of these

techniques can expect to cover (correctly isolate and reconfigure against) about 95-98% of

the failures that occur. The actual reliability of .a given computation is not significantly

enhanced, but the total "up-time" of the system can be substantially improved. We term such

systems high availability rather than high reliability. Systems like the Tandem Non-Stop,

Stratus, and CMU's C.mmp and C.m fall into this category, and all contain single-point

hardware failure modes.

Systems which employ active congruent redundancy, on the other hand, attempt to

improve the short-term reliability of the system rather than its long-term availability, although

high availability may be a consequence. We briefly examine four such systems. Two of them,

SRI's SIFT and Draper Laboratory's FTMP, meet the conditions of our theory, but suffer from

excessive inefficiencies and complexity, respectively. The other two systems, the NASA/IBM

Space Shuttle System, and CMU's C.vmp are theoretically deficient, and we point out a few of

the single-point failure modes.

5.3.1 SIFT

The Stanford Research Institute's SIFT (for Software Implemented Fault Tolerance)

computer system is a theoretically aggressive approach to construct a provably correct fault-

tolerant computer system [7]. A fully interconnected (cross-linked) set of 4 or more fairly

conventional processors are configured into a fault-tolerant system using software to

implement the various aspects of the redundancy management (see Figure 5-7).

This project is largely responsible for recognizing the hazards of source inconsistency,

(SIFT's term for the problem of distributing a simplex source) and for generating the

algorithms which correspond to our minimum set congruence schemata [4]. Although

theoretically correct, the system suffers from severe inefficiencies.10  Examination reveals

that the latency of the congruence schemata is excessively high (approximately 3

milliseconds for a useful computation cycle). In large part this is a consequence of the

unnecessary software complexity of the processor exchanges, and the fact that all restoring

functions are performed by the processors themselves. The system is therefore compelled to

10Real-time throughput is about an order of magnitude lower then that required for safe flight control.
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support 3f + 1 independent processors, rather than the 2f + 1 in our formulation. The

project failed to recognize the costs of maintaining congruent edges among redundant

processing sites.

We assert that a data flow approach to the generation of the congruence schemata and the

synchronization algorithms, along with a little extra hardware (for restoring buffers) would

dramatically improve the performance of this system.

5.4 FTMP and FTP

The C.S. Draper Laboratory FTMP [8] was designed as direct competitor to the SIFT
system. A very different hardware-intensive approach was taken. The design is based upon
triads of independent processor-cache memory modules and common memory modules
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which communicate via redundant serial busses.

In sharp contrast to the SIFT system, the FTMP requires highly specialized and custom

engineered processors and memories. This is primarily due to the extremely high degree of

synchronization of the modules: all processor microcycles are slaved off of a redundant set of

phase-locked oscillators. Thus, all redundant data transfers are in synchronism, so a triad

looks like it is a single machine. The Bus Guardians prevent a single module from containing

complete control of the communication system. (The direct links in the SIFT system avoid this

problem, but are less flexible.)

Although the throughput of the system is adequate for its intended aircraft control

application, the system is very complex; an undesirable attribute for a system which must be

provably correct. This complexity was recognized by the designers, and a second generation

machine, the FTP, was developed. The FTP consists of a single triad (or quadruple) of

processor/memory units, as shown in Figure 5-3. The FTP also continues the philosophy of

microcycle synchronization of the redundant processors. The claim is that this gives a

transparent (i.e., simplex von Neumann) programming model for the machine. The high

degree of synchronization is required to maintain this illusion, owing to the strong, implicit

time-ordered control structure of von Neumann processors.

The problem with the high degree of synchronization is not necessarily the difficulty of

maintaining a high frequency fault-tolerant clock. Instead, excessive burdens are placed on

the design of the independent processing modules. That is, each module must take exactly

the same number of microcycles when performing any instruction. This requires that all

operations in the processor are deterministically derived from the processor clock. This is

counter to strong trends in processor design. For instance, refresh mechanisms for dynamic

memories usually work on an asynchronous cycle-steal basis. Dynamic memory error

correction or internal bus retry strategies cannot be employed due to their inherent

nondeterminism.

The most serious problem occurs with interfacing the processors to I/O devices. Here a

designer is faced with two relatively unattractive alternatives: (1) extend the synchronization

to the I/O device, which requires custom design of each device, or (2) treat the device as an

asynchronous peripheral, in which case interrupts (ugh!!) or software polling algorithms must

be employed. For example, connecting a disk controller illustrates this problem.



Synchronizing the disk to the processor microclock is hopeless. This would require

synchronizing both the platter rotation and the access arm, or by always waiting a worst case

amount of time. Data could not be directly DMAed into memory since this would knock the

processor out of synchronization. Polling the disk buffer for the next word would be

exceptionally inefficient. The only tractable solution is to build a fault-tolerant DMA network

that must not only steal the same microcycles from each processor, but also distribute the

DMA data in a congruent manner. Similar problems exist in trying to expand the number of

processors for parallel computation, and the system quickly assumes the complexity of the
FTMP.

FTMP and SIFT both suffer from the problem of supporting parallel computation (of which

redundant computation is a special case) on von Neumann machines. An implementation will

most likely be either inefficient or require excessive synchronization and associate complexity

of design.

5.4.1 The Space Shuttle System

The Space Shuttle computer system [13] consists of five central processors, 24 1/O and
interprocessor communication buses, and several remote terminal data multiplexing and

display modules. In full configuration, four of the processors, are in tight synchronization,
executing approximately the same instruction at approximately the same time. The fifth

processor is an independently programmed back-up which may be switched in by the crew in

the event of a total failure of the primary four. The system contains theoretical deficiencies

and thus possesses potential single-point failure modes. Figure 5-8 [23] is a simplified block

diagram of the system. The Multiplexing DeMultiplexing Units (MDMs) collect sensor data
from around the ship. A device is read by the processors by writing a channel I/O command

to the appropriate MDM. The MDM actually only responds to one command even though all
processors send out the command. Thus, only one processor actually causes the device to
be read, the processors are synchronized enough so that each processor thinks that it issued

the command. The data from the MDM is sent directly to each processor, there is no
congruence exchange.

Thus, there exists the possibility that a faulty MDM, putting out marginal signals, could issue
inconsistent data to each processor. This problem was recognized, but unfortunately too late
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Figure 5-8: Simplified NASA/IBM Space Shuttle Computer System

to provide the necessary extra processor bandwidth to perform the congruence exchange. A

"fix" was given whereby the incoming data are checked for parity, etc., then this parity data is

exchanged before a block of data is used. If any processor claims that the parity is bad then

they all ignore the data. If the same single processor claims the data is bad for some number

of successive transfers, then this processor is considered failed. This still does not work. (1)

The parity data is not passed through a congruence exchange, (2) A bad MDM could force

two processors to receive bad data, thus resulting in two processors being thrown out. We

have informally learned that (2) actually occurred during a ground test where a technician

neglected to install the proper termination on an MDM bus. In this case, two of the processors
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were situated at the correct position on the bus so that the resulting reflections were canceled

out, two others were not so fortunate and were dropped by the system. All one can do is hope

that this does not occur in flight.

We also note that the Shuttle System faces the same expansion problems as the FTP, and

the system is already extremely overloaded.

5.4.2 C.vmp

The C.vmp computer system was developed at Carnegie-Mellon University in connection

with C.mmp and Cm* computer systems. The trial configuration consists of of three DEC

LSI-11 processors which have a voter inserted within the Q-bus, as shown in Figure 5-9. The

voter can work in a "feed-through" mode which allows the processors to work essentially

uncoupled, or in a "voting" mode which votes Q-bus data both directions (memory-to-

processor and processor-to-memory transfers). The voter offers a single-point failure for the

system, which the authors, of course, recognize [14]. However, their solution to the problem

is questionable.

The nonredundant portion of the voter does not represent a reliability
"bottleneck",... [T]he voter may be totally triplicated if desired. With voter
triplication even the voter can have either a transient or a hard failure and the
computer will remain operational.

The authors underestimate the implications of their assertion. The single voter would

unambiguously restore a bad signal protocol on a single bus. But in the triplicated case, if we

attempt a simplex I/O transfer from a faulty device, there exists the possibility that each voter
will see the transfer differently and the resulting data will be incongruent, ultimately leading to

a complete crash. Moreover, it may be impossible to construct a congruence schema given
the fault set assignments in the system. It is also extremely doubtful that the complex Q-Bus

asynchronous protocols could be independently implemented by each of the three voters.

Some form of tight synchronization would be required.
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