
The Design and Implementation of an I/O Controller

for the 386EX Evaluation Board
by

Marcus-Alan Gilbert

Submitted to the Department of Electrical Engineering and Computer Science in Partial
Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical

Engineering and Computer Science at the Massachusetts Institute of Technology
May 1995

Copyright © 1995, Marcus-Alan Gilbert. All rights reserved

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis document in whole or in part,

and to grant others the right to do so.

Author , (C 'U f' • • -.

Department of Electrical Engineering and Computer Science
- May 19, 1995

Certified by.
_ I \i.

Accepted by

Richitil DAThornton
r visor

F.R. Morgenthaler
Chairman, Department Com•tte on Graduate Theses

1MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

AUG 1 01995

LIBRARIES

jaarker ~a

The Design and Implementation of an I/O Controller

for the 386EX Evaluation Board
by

Marcus-Alan Gilbert

Submitted to the
Department of Electrical Engineering and Computer Science

May 18, 1995

ABSTRACT

This report describes an extension of the development system for MIT's Microprocessor
Design Lab, course 6.115. The current development system for 6.115 is the 386 EX
evaluation board. The current development system has been extended by having the
68HC 11 microcontroller control peripheral devices. The original intention was to develop
such a system around the PowerPC line of processors, however the availability of the
386EX evaluation board, and its adoption into 6.115 led to its being the choice for the
extension. The results of this initial development work are the creation of a
microprocessor based system that is capable of processing data directly from an analog to
digital converter under 68HC1 l's control. The software development has been done in C,
80x86 assembly, Max-Forth, and 68HC11 assembly. This report also includes sections
that extend the prototype system to a PowerPC implementation.

Thesis Supervisor: Richard D. Thornton
Title: Professor Electrical Engineering and Computer Science

Table of Contents

1 Introduction 1

2 Background 4

3 The Peripheral Processor 6

3.1 68HC11 Evaluation Board - NMIX/T-0020 68HC11 6

3.2 The 68HC11 microcontroller 11

3.2.1 The 68HC11 Functional Units 11

3.2.2 The Synchronous Serial Peripheral interface Unit (SPI) 11

3.2.3 The Serial Communications Unit (SCI) 12

3.2.4 The Analog to Digital Converter 13

3.2.5 The Parallel Ports 14

3.2.6 The Central Processing Unit 16

3.3 The PC Connection 16

4 Analog Anti-Aliasing Low Pass Filter 17

5 The Host Processor Section 18

5.1 Memory 19

5.1.1 Programming Flash Memory 20

5.2 Peripheral Connectors 20

115.3 PC/104 Bus 20

5.4 Programmable Logic devices 21

5.5 Asynchronous Ports 21

5.6 386 EX 22

5.6.1 Parallel Ports 23

5.6.2 DMA Unit 24

5.6.3 Chip Select Unit 24

5.6.4 Interrupt Control Unit 24

5.6.5 The Analog Devices 7847 25

6 System Software and Algorithms 26

6.1 68HC11 Routines 27

6.2 386 EX Register Initialization 30

6.3 The DSP Algorithms 32

6.3.2 Correcting for Errors in the Output Signal 38

6.3.3 Testing the DSP Algorithms 40

6.4 Putting it all Together 44

7 System Enhancements 46

7.1 Analog to Digital and Digital to Analog Enhancements 46

7.2 Peripheral Processor enhancements 46

7.2.1 The 68HC16 47

7.2.2 The 8051 47

7.2.3 The Need for Two Asynchronous Ports 47

7.3 Host Processor Enhancements 48

7.3.1 The PowerPC 601 48

7.4 Other issues 49

7.4.1 DMA 49

7.4.2 Serial as Opposed to Parallel Operation 49

7.4.3 Improving the Software 50

7.4.4 Programming the EPROM 50

8 Alternative Methods 51

8.1 Academia 51

8.1.1 University of Alberta 51

8.1.2 Rensselaer Polytechnic Institute 52

8.1.3 A Simulator for Teaching 52

8.2 Equipment 52

8.2.1 Hardware 52

8.2.2 Alternative Software 53

9 Results and Conclusion 54

10 Acknowledgments 56

11 Appendix 57

11.1 References 58

11.2 Contact Personnel 61

11.3 68HC11 Register Descriptions 64

11.4 386EX Register descriptions 65

11.5 386EX Memory Map 66

11.6 68HC11 Memory MAP 67

11.7 Code Listings 68

11.8 Schematics 69

List of Illustrations

Figures

Figure 1: A Microcontroller Controlling Data Flow from Three peripherals to the Host
processor

Figure 2a: Mode 1, Code Load

Figure 2b: Mode 2, Data Acquisition

Figure 3: The NMIX-0020 Evaluation Board

Figure 4: DB9 to J6 Connections

Figure 5: The J5 to LS244 to J2 Connections

Figure 6: Effective Decoder Selections, with Jumpers A and B in:

a) 8K

b) 16K

c) 32K position

Figure 7: DB9 Connection from PC to Evaluation Board

Figure 8: The Sallen-Key Circuit

Figure 9: Desired Frequency Response

Figure 10: The 386 EX Board Functional Units

Figure 11: DB9 with Rx and Tx Connections Swapped

Figure 12: The 386EX Functional Components

Figure 13: Parallel Port Connection to D/A

Figure 14: 7847 In Uni-Polar Mode

Figure 15: Latch Control Logic for the 7847

Figure 16: Discrete Time Frequency Responses

Figure 17: Continuous Time Frequency Responses

Figure 18: Fixed Point Filter Coefficients

Figure 19: Redesigned Low Pass Filter

Figure 20: a) An example of Over and UnderShoot

b) Output after Adjustment

Figure 21: The Frequency Responses of the Uni-Polar (DC Added) Test Vectors

Figure 22: The 386 EX Program Flow Chart

Tables

Table 1: DB9 to J6 Connections and Signal Names

Table 2: Software Tests without Board

Table 3: Software Tests with Evaluation Board

Table 4: Software Tests with Evaluation Board Connected to the 68HC11

Code Samples

Example 1: 68HC 11 Register Initialization

Example 2: A Forth Word Definition

a) with a built in assembler

b) without an assembler

Example 3: Enabling the Expanded I/O Addresses

Example 4: An Array of Floating Point Coefficients

Example 5: An Array of Fixed Point Coefficients

Example 6: Accomplishing the Multiplies and Adds in the Convolution

Notational Convention Guide

Most of the text in this document will appear in the default text font however there will
be certain instances where this is not the case. These include:

Register Names and Signal Names will appear in caps such as, REMAPCONFIG, AN1.
Active low signals will have the '/' character. For example, /WE.

Data values and memory addresses will use this font OxFF.
Hexadecimal numbers will appear as Oxdd, where d is a hex digit.
Binary Numbers will be pre-pended with Ob as in Ob 1110 .

References to the World Wide Web will appear in italicized font,
http://www.powerpc.com.
When a World Wide Web Site appears in the reference section the following format will
be used.
<Author's last name, Author's first name (if known)>. <Title as it appears at the top of the
browser window> <URL>,<Year of last known modification>.

Usenet newsgroups will be designated by the following font: comp. arch. embedded

Source code will appear as such: for (i=0; i<7; i++)
When specific code variables are referred to in the text they appear in italicized font,
x_buffer.
Data types will appear as unsigned long

1 Introduction

This report describes current work toward a hybrid development system based on

MIT's Microprocessor Project Lab, 6.115. The current development work focuses on

extending the current development system, which is centered around the 386EX

processor. The purpose is to use the microcontroller to pass data to the processor so that

it can execute a data processing algorithm.

The current development system for 6.115 utilizes the 386 EX evaluation board.

This has been a substantial improvement over the previous HP64000 system. The current

system provides a contemporary development platform from which students can learn to

use microprocessors. Current development has concentrated on a design objective that

attempted to accomplish one goal, to create a system that is suitably generic to allow

different host processors to be utilized in development. The first of these goals has been

realized with the advent of the new development system. However, much of the work this

term has focused on the second of these goals.

To create a system that is suitably generic to allow different host processors to be

utilized, we have chosen to use the following approach. We have a low-cost

microcontroller to handle I/O and data collection and have the main processor process the

data (see figure 1). The original intent was to have the host processor be from the Power

PC family. With the Power PC, we have a processor that is suitably fast to execute DSP

algorithms comparably to DSP processors. However, because of its availability and it

design for embedded applications, the 386 EX was chosen as the host processor. The

68HC 11 provides the peripheral micro-controller functions for the new

Figure 1: A Microcontroller Controlling Data Flow to the Host processor

development system. The 68HC 11 was chosen for the abundance of software and cross

development tools available. It was also chosen for the availability of on chip peripherals

including RAM, ROM, asynchronous ports, and an Analog to Digital Converter (A/D).

The 68HC 11 Evaluation Board (EVB) that was used in the prototype development system

contains an RS-232c level converter, several connectors, a small proto-board in addition

to glue logic and system memory.

Originally there were supposed to be two modes of operation: code load, and data

acquisition. In code load mode the peripheral micro-controller programs the host

processors' ROM with instructions downloaded from the PC (see figure 2a). The host PC

would connect to the 68HC 11 via the comm port. With the advent of cross-development

tools available for the PC it is feasible that the user can write and compile the program on

the PC and then transfer the Intel Hex file from the PC to the development system even if

the target is of a different processor family'. This mode does not appear in the current

development system because of the code size necessary to hold the HEX file and calculate

its checksum. (See System Enhancements)

I Alternatively, one could use a development system that has the same processing core as the target
system. The main advantage to this being that the user need not worry about compatibility across
platforms, and further run-time errors could be substantially reduced by running the program on the host
computer.

1. Hex File Downloaded 2. Hex File programmed
via PC Comm Port tnrough 386EX Comm

Port 2

68HC1 1Evaluation 386 EX Evaluation
Board Board

Figure 2a: Mode 1, Code Load

Figure 2b: Mode 2, Data Acquisition

In the data acquisition mode, the peripheral microcontroller provides data for the

host microprocessor to manipulate (see figure 2b). The 68HC11 connects to the 386 EX

evaluation board via the 386 EX expansion bus. It is conceivable that the host

microcontroller would access other processors in a similar manner. For this

implementation the data source is the Analog to Digital Converter contained within the

68HC 11. The current design is meant to be flexible enough to allow the utilization of

other peripherals and not meant to be restricted to the A/D. After the 386 EX has

processed the data it sends the calculated output to the AD 7847 Digital to Analog

Converter.

The following section further describes some of the background leading to the

creation of the prototype system. Section 3, describes the operation of the 68HC 11

evaluation board, section 4 details the anti-aliasing low pass filter. Section 5 discusses the

implementation of the 386EX and its evaluation board and the operation of the 7847

under the control of the 386 EX, section 6 highlights the software written for the system

and explains the DSP algorithms used to test the development system. Section 7 suggests

possible alternatives and enhancements to the development system including those

implementations that use the PowerPC 601. Section 8 mentions other microcontrolled

applications in both industry and academia.

2 Background

The previous system under use in 6.115 lab was the HP-64000-UX Microprocessor

Development Environment system. The system included the 68000 in-circuit emulators

and diskless, networked HP workstations. The performance was suspect to say the least,

although development was done the proven architecture of the 68000, the supporting

workstations were slow and suffered from intermittent crashes. In addition, the former

system was archaic and costly to maintain. The emulation pods were beginning to show

signs of wear from repeated use. Also under the former system it was necessary for

students to hand wire the peripheral components, which led to wasted time correcting

wiring mistakes. This time could be better spent doing useful hardware and software

development. In addition to wasting time doing mindless hand wiring, students were not

exposed to microprocessors of contemporary design (e.g., 68030, '040, 386). The 68000

has been a formidable design that has been around for well over a decade, however

students in the 6.115 class were not being exposed to current development tools and more

recently designed microprocessor architectures2 . At the end of 1993 it was clear that a

solution utilizing current hardware was necessary. [1]

Although microprocessor designs and development tools have changed

rapidly in the recent years, the objectives of the course have remained the same. The

current and former objectives of 6.115 are, as reported in the Course plan: Hardware

Engineering, Software Engineering, and Technical Skills. The current development

system, the 386 EX evaluation board allows students to satisfy these goals while relieving

students of the tedious tasks involved with hand wiring a system. The specific details of

such a newer system are currently being investigated, however one of the essential

2 It should be noted however, that the experiences with the HP development system are the result
of our use of an out of date system and not a reflection of HP's inadequacies in the microprocessor
development arena. In fact a newer version of the 64000 system has been proported to be more than
adequate for development purposes. See the industry reference section.

components of an autonomous system is the capability to download programs from

various sites, presumably PCs.

With this background, development work during the spring of 1994 utilized the

existing HP64000 system to create a microprocessor based EPROM programmer capable

of running programs downloaded from the PC. The evaluation system consisted of three

sub-systems, the Microprocessor and lower memory, the multi-function peripheral, and

the upper (EPROM) memory. The distinction between upper and lower memory is that

lower memory contained instructions and data necessary to program the upper memory

EPROM. Lower memory also contained the necessary vector to begin instruction

execution at the upper EPROM's (memory mapped) address. It was originally planned to

extend such a system from a 68000 based system to a 68040 (and possibly beyond) to

even a 80x86 based system capable of downloading and subsequently running programs

in embedded applications. [2]

During the fall of 1994, the microprocessor design lab received 386 EX evaluation

boards and several Pentium systems. With the presence of an up to date development

platform the design objective had to be changed from one of the construction of an

immediate system to an objective that seeks to have an extendible architecture that can

evolve to include newer microprocessors as the appear.

According to B. Furht and the W.A Halang in A Survey of Real Time Systems the

next generation of real-time systems will be based on open systems. They assert:

Open real-time computer concepts are based on hardware architectures which
use off-the-shelf standard microprocessors, standard real-time operating
systems, standard communications protocols, and standard busses.

With this perspective in mind, the author has sought to create, and illustrate how one

might design a generic system. [3]

There still exists a need to continually improve the microprocessor project lab with

current processors and allow for an open architecture for other processors. To this end,

we contemplated doing development work with the PowerPC line of RISC architectures.

The current set of RISC architectures and modern microprocessors can execute DSP

algorithms suitably fast. Modern CISC architectures are also reported to perform native

signal processing. [4][5] The first of the PowerPC processors, the 601, was released in

1992. There is beginning to be a abundance of development tools for the 601 (see

Alternative Equipment). Specifically, the author would have liked to obtain the 601

System Design Kit with its associated peripherals. Unfortunately, time and finances did

not allow us to use such a system. Future development work, should be aimed at

obtaining such a system. [6] [7]

The focus here has been to extend the 386 EX evaluation board to a system

in which a peripheral processor controls I/O, in the form of signal data. There are a large

number of systems that utilize such an approach as to use one or more microcontrollers

for peripheral processing and to utilize a more powerful CPU for core processing. It is

hoped that the 386EX- 68HC11 system can be further developed into other systems such

as a PowerPC-68HC11 system.

3 The Peripheral Processor

The peripheral processor section consists of a 68HC11 evaluation board and two LS244

Octal buffers. The 68HC11 evaluation board contains the necessary level converters and

peripheral chips to allow connection to the PC (via a DB9 connector and serial cable) and

to 386 EX expansion bus. The LS244 buffer provides the signal strength to drive data

onto the 386 EX expansion bus.

3 .1 68HC11 EVALUATION BOARD - NMIX/T-0020 68HC11

The NMIX/T-0020 68HC11 evaluation board contains the 68HC11, RAM, level

converters, glue logic, and a prototyping area. It also contains connectors for an LCD

display and a 4x5 keypad interface. The board was purchased from New Micros, Inc.

(see 68HC11 FAQ). The board has three 28 pin JEDEC (Joint Electronic Devices

Engineering Council) sockets, and several connectors. The connectors that were used in

this implementation were J6, and J5 (see schematics and figure 3).

Figure 3: The NMIX-0020 Evaluation Board

The J6 connector is used for serial communication between the host PC and the

68HC 11 evaluation board. The J6 connector is attached to the DB9 connector as shown

in figure 4. Pins 5 and 6 provide serial out and serial in, respectively. Pin 8 provides the

case and electrical grounds. The Clear to Send (CTS) and Request to Send (RTS) signals

from the PC are tied together. The Data Terminal Ready (DTR) and Data Select Ready

(DSR) from the PC are also tied together (see PC section).

J6A)C0nector

Sedal Data From 68HC11 EVB

Serial Data to 68HC11 EVB

DB9 Connector

Figure 4: DB9 to J6 Connections

J5 Connector on 68HC1 1
FVR

J2 Connector on the 386
FY FVR

Figure 5: The J5 to LS244 to J2 Connections

J3
8K RAM

8K EEPROM

BASIC ROM
(Optional) ICL232

I J4 J6

r I

I I

The J5 connector provides data for the 386 EX evaluation board. Three of the

68HC 11's Parallel ports are connected to the J5 connector. These parallel ports can be

used as either inputs or outputs. These include Ports A, D, and E. Port D and A are used

to provide data for the 386 EX evaluation board, in data acquisition mode. The connector

pins 3-6 on J5 (which represent Port D) connect to the expansion bus of the 386 EX and

provide the lower nibble of data. Connector pins 7, 8, 12, 13 , which represent Port A bit

3, 4, 6, and 7 respectively, form the higher nibble of data (see figure 5). Port A also

provides the status signal for the indication that an A/D conversion has completed and the

sample is ready. Port A pin 3 provides the active high, RDY signal. Port E pin 1, of the J5

provides the analog input signal for the internal A/D.

The output signals from the 68HC11 can only sink 1.6 gA to ground while

preventing the package pin from rising above logical level zero, or .4 V. Similarly the

68HC11 can only source .8 gA at the logical one value of 4.5 V. These current levels are

only sufficient enough to drive one TTL gate. Consequently an LS244 octal buffer has

been added to provide adequate signal levels for the 386 EX evaluation boards.

Level conversion from the High Density Complementary Metal Oxide

Semiconductor (HCMOS) signals to TTL levels is accomplished via the ICL232. The

ICL232 provides the receiver/ transmitter pair for the serial in and serial out for

connection to the PC. There is an additional receiver/transmitter pair that can be utilized

for the serial communication (for Programming the Flash Memory) of the 386 EX EVB.

For RS232C communication the logical one is represented by a -3V to -15V signal,

conversely a logical zero is represented by a 3V to 15V signal. The ICL232 Vdd and V,
supply voltages are 5V and OV respectively, the higher voltages for RS232 communication

are generated via an internal charge pump.

Glue logic provides the chip selects for the three 28 pin JEDECS. The three 28

Pin JEDECS occupy slots U3, U4, U5. Theses slots are used to provide the additional

RAM, EPROM, and ROM respectively. The chip selects for the sockets are generated by

the 74HC 138. When the jumpers A and B are in the 8K position, all three address lines

are brought to the decoder. This means that each of the eight generated chip selects

represent a single 8k byte segment out of the 64K memory map. When jumpers A and B

are in the 16K position, address lines A15 and A14 are brought to the decoder. The A13

address line is held high. This means that the upper four generated chip selects represent a

single 16K byte segment out of the 64K byte memory map. When jumpers A and B are in

the 32K position, address line A15 alone controls the part. The A14 and A13 lines are

held high. Each of the two upper chip selects represent a 32K byte segments out of the

64K memory map. [8]

a) b)

Figure 6: Effective Decoder Selections, with Jumpers A and B in: a) 8 K b) 16 K c) 32 K
position

There are two other signals that control the decoder: Address Strobe (/AS) and

the on board memory Disable (IMEMDIS). The /AS signal must be active low before any

chip selects are enabled. This is the processor's signal indicating the address on the bus is

valid for the off-chip memory. The /MEMDIS signal allows an off-board open collector

source to disable the on board decoder, so off board components can usurp a memory

segment from on board memory, even if the entire 64K is filled with RAM on the main

board.

For this implementation, the default 8K addressing scheme was utilized, which required

A and B jumper settings to be set in the 8K configuration. It was decided that the Forth

language would be used, thus nullifying the need for external ROM memory. This

configuration allows a user program to reside in EEPROM memory.

The 68HC11 EVB communicates with the PC through the comm port as shown in

see figure 7.

- -

D B9Caib

I-srssrr------

I ::'::::'' E ::uhimmhiii:: I: ":':' t L: ::::::::.:::::·::;·:- ···--::: ··::::: ·.::_

Figure 7: DB9 Connector attachment from PC to Eval Board

Data Carrier Detect
Receive Data
Transmit Data
Data Terminal Ready
Signal Ground
Data Set Ready
Request To Send
Clear To Send
No Connection

DCD
Rx
Tx
DTR
GND
DSR
RTS
CTS
NC

1
2
3
4
5
6
7
8
9

Table 1: DB9 to J6 Connections and Signal Names

3 .2 THE 68HC11 MICROCONTROLLER

The 68HC11 microcontroller was chosen as a host processor because of its simple

instruction set its availability of on-board peripherals, specifically an on-board analog to

digital converter (A/D). There is also an abundance of hardware and software

development tools available for this microcontroller. The 68HC11 is an 8-bit data, 16-bit

address microcontroller. The instruction set is similar to earlier 68xx designs. Depending

on the flavor the 68HC11 (denoted by the suffix or prefix, i.e. 68HC11) there are a

7
6

8

Im

---------- --

variety of on chip peripherals that are available. These include EEPROM/OTPROM (One

Time programmable read only memories), RAM, digital I/O, timers, synchronous and

asynchronous communication channels and an A/D converter. The board from New

Micros uses the F68HC11FN. The 68HC11 Frequently Asked Questions (FAQ)

describes the different flavors of the 68HC11. The F68HC11FN was produced by

Motorola specifically for New Micros. The F68HC11FN is functionally equivalent to the

68HC1 1E9. This flavor of the 68HC1 1 contains 8 Kbytes ROM which contain the

Max-Forth Kernel, 256 bytes of internal RAM, an 8 bit 8 channel A/D, 1 synchronous

serial port, and 1 asynchronous serial port. [9]

There are four modes of operation of the 68HC11, these include: single chip,

expanded, multiplexed, special bootstrap and special test. Single-chip mode allows the

microcontroller to run with out external data paths. The New Micros Board has

configured the 68HC11 to run in expanded, multiplexed mode. This mode allows the

microcontroller to access off-chip devices. It provides an external data and address bus.

The other two modes are special variations on the first two modes.

3 .2.1 The 68HC11 Functional Units

The functional units of the 68HC11 include: the Synchronous Peripheral Interface (SPI),

the Serial Communications Interface (SCI), the A/D, EEPROM, the Parallel ports and the

Central Processing Unit. The SPI provides the protocols necessary for synchronous

communication with the peripherals. The Serial Communications Interface could provide

the signals for serial communication with the 386 EX during code load mode and is also

used by the Max-Forth Kernel. The parallel ports provide the data and control signals for

the 386 EX during data acquisition mode. The A/D digital converter converts the

continuous time input waveform to discrete time digital signals. The Central Processing

Unit would provides the arithmetic ability necessary for the calculation of the HEX file

checksum during the code load mode, and executes the instructions necessary to control

the A/D during data acquisition mode. The following sections provide a brief overview of

each functional unit and its associated registers.

3 .2.2 The Synchronous Serial Peripheral interface Unit (SPI)

The synchronous serial peripheral interface is one of the two serial communications

channels on the 68HC 11. The subsystem allows the 68HC 11 to communicate with

synchronous peripherals. The SPI provides fully duplex transfers as data can be both

shifted in and shifted out on the two different serial lines. For this implementation, the SPI

is not currently used. However, the SPI unit could be used to transfer data from a

synchronous serial A/D such as the Analog Devices 7869 (see Section 7). This would

utilize the MISO (Master In Slave Out) and MOSI (Master Out Slave In) pins which are

also the Port D pins PD3 and PD2. The SCK and /SS pins which are pin PDO and PD1,

would also be used in this sort of implementation.

The serial peripheral unit is basically a shift register. The SPI synchronous clock

register (SCK) controls how the bits are shifted out at what phase relative to the clock.

There are four different combinations of the serial clock phase and polarity. These include

the four combinations of clock high/low and polarity/zero. If clock high is selected, the

data is transmitted in (out) on the low to high transition of SCK, conversely if clock low is

selected data is transmitted on the high to low transition. The polarity designation has to

do with the placement of the bits relative to the assertion of the /SS signal.

3 .2.3 The Serial Communications Unit (SCI)

The serial communications unit provides asynchronous communications with the 68HC 11.

The SCI is a fully duplex UART, that uses NRZ (non-return to zero) format. The NRZ

format utilizes one start bit, eight or nine data bits and one stop bit. The synchronous

communications unit, is controlled by five registers: BAUD, SCCR1, SCCR2, SCSR,

and SCDR. Port D lines 1 and 0 provide the transmit (Tx) and receive (Rx) signals

respectively, for the serial communication unit.

The BAUD register selects the baud rate for asynchronous communications and

contains a couple of bits for factory testing.

The SCCR1, or SCI control register 1 has three bits associated with the 9 bit data

transmit format. The WAKE bit selects in which manner the receiver will wake up. The

remaining 4 bits are reserved and have no function.

The SCCR2, SCI control register 2, contains most of the SCI controls. The most

significant four bits control the enabling of interrupts for the SCI interrupts. An interrupt

can occur when a transmission buffer is empty, a transmission completes, when the receive

buffer has been filled or the Rx line has become idle. Idle is defined as the line staying at a

logic level 'high' for the duration of the transmission.

The SCI status register provides information with regard to conditions in the

reciever/transmitter. The SCI status register tells whether or not: the transmit data

register is empty, if the transmission has completed, if the receive data register is full, an

idle line has been detected, or whether data has overrun the receive register. Framing

errors and noise detection are also reported in the status register.

The SCI data register is a dual function register that provides a location to write

data to be transmitted and read data to be received. Writing to this particular address,

0xB024, accesses the Transmit Data register, whereas a read to this address accesses the

Receive Data register.

The Max-Forth kernel uses the SCI for communication with the PC. It enables the

SCI and sets the Baud Rate to 9600 baud. It is therefore necessary for the I/O routines

for the Max-Forth Kernel to be remapped in order to serially communicate with the 386

EX in mode 1. It is also necessary to reset the baud rate to 19200. (See section 7)

3 .2.4 The Analog to Digital Converter

The 8-bit, 8-channel Analog to digital converter on the 68HC11 provides the data for the

386 EX to process. The A/D is a successive approximation type. The A/D timing is

synchronized with either the system E clock or with the internal oscillator. The A/D

conversion takes about 32 E clocks. This implementation uses the E clock with a
frequency of 2 MHz. At that clock speed the A/D has a sampling frequency of =_

62.5 kHz. By the Nyquist criterion, this yields a maximum input signal frequency of 31.25

kHz. To ensure that high frequency signals do not enter the A/D, the input signal is

placed on the sampling channel, AN 1 after passing through an anti-aliasing low pass filter

(see Anti-Aliasing Filter Section). The Analog to Digital converter is controlled by the

A/D control/status register, ADCTL. The ADCTL, selects the mode of operation for the

A/D, selects the channel(s) to be used for conversion, and indicates whether or not a

conversion has completed. The operation of the A/D is also effected by the OPTION

register. The outputs of the A/D are contained in registers ADR3-0.

The are two different scan modes, and two different channel modes in which the

A/D can operate. The first scan mode is continuous in which the A/D continually

performs conversions. The second scan mode, is single. In this mode the A/D performs

four conversions and then sets the conversion complete flag. No other conversions are

performed until the A/D control register is written. The first channel mode is single. In

single channel mode conversions are made only from a single channel. In multiple channel

mode the conversions are taken from a group of 4 different channels.

In the current implementation, the A/D runs in continuous mode and the data

output registers ADR3-ADRO are read successively to obtain the signal values. The data

signal is represented as a unsigned fractional result of a comparison with V, and VR. A

signal whose voltage of equal value to V,, would yield a result of OxFF in one of the

ADR registers. Similarly, a signal whose voltage measured the same as VRL would yield a

result of Ox00 in the ADR registers. On the NMIX-0020 board, the V, signal is

connected to Vdd (5V) and the VRL signal is connected to ground. After a signal has been

sampled the output value from the ADR registers is passed on to the Port D and Port A

data bus (see following Section).

The OPTION register also affects the operation of the A/D. The option register

enables or disables the A/D circuitry. This register also selects whether the internal

oscillator or the system E clock will be used. In addition this register can select whether

or not to have a delay after the A/D starts converting. This delay is used to allow the

internal oscillator to stabilize. However this system uses the external E clock and the

internal oscillator is not used.

3 .2.5 The Parallel Ports

The 68HC11 has 40 I/O pins, grouped as five 8-bit ports. These five ports have

multiplexed functionality. This functionality includes, timers, serial channel, A/D

functionality, as well as general purpose input/output port functions. The functionality of

these pins is determined by a register block. At start up this register block is located at

address Ox1000, however the Max-Forth operating system remaps this to address OxB000.

There are nine registers that control the five ports (A-E), they reside in locations

OxB000-OxBOOA.

The first port, Port A can be used for general purpose I/O or for use with the timer

as a combination of input compares, output captures and a pulse accumulation. When

Port A functions as general I/O, the first 3 pins PAO-2 are inputs only, while pins PA4-6

are dedicated outputs. Pin 7 and Pin 3 can be configured as either an inputs or an outputs.

The values of these port pins can be accessed by reading the Port A register. Similarly the

values on the Port A outputs can be altered by writing to the Port A register. For, this

implementation Pin 7 and Pin 3 were configured as outputs.

The Port A pins connected to the J5 connector. The output pins PA7, PA6, PA5,

PA4, and provide the higher nibble of the byte wide result from the A/D. PA3, provides

the RDY signal for the 386EX to acknowledge (see figure 5).

The next port, Port B can have all of its pins set as general purpose outputs.

However in the expanded/multiplexed mode of operations the 68HC11 uses this port for

the high byte of the address bus. Consequently Port B is not connected to any of the port

connectors and is not used for general purpose I/O.

The pins of Port C, are capable of being configured to be either inputs or outputs.

The direction of these pins in controlled by the Data Direction register, DDRC. In

expaned/multiplexed mode Port C takes on the multiplexed role of either the low byte of

the address bus or it provides the data bus. Therefore, Port C is also not used for general

purpose I/O.

Port D can be used for either general purpose I/O or it can be used for

asynchronous or synchronous serial communications. The direction of the 6 lower bits is

determined by the Port D data direction register, DDDR. The upper two bits of Port D

are used for handshaking control for Ports B and C, these bits are unavailable for general

I/O. These pins are not connected to J5. The lower two bits PD1, and PDO provide the

transmit (Tx) and receive (Rx) signals respectively for the serial control interface.

Because Max-Forth uses the SCI for its I/0 routines when communicating with the

terminal, the two bits PD1 and PDO are also unavailable for general 1/O, however they are

connected to J5. In this implementation the remaining 4 bits, PD2-PD5 provide 4 bits of

data for the sampled value obtained from the A/D.

Port E pins provide either analog or digital inputs to the 68HC 11. These pins can

function as either input channels for the internal A/D or they can be used as general

purpose digital inputs which can be read by accessing the Port E register. All of the Port

E pins are connected to J5. The current prototype system uses Port E pin 1 (also known

as AN 1), for the analog signal input to the A/D.

3 .2.6 The Central Processing Unit

The 68HC11 CPU includes two 8 bit general purpose registers (A & B) that can be

grouped into one 16 bit accumulator. It also includes two 16 bit index registers, which are

used to access memory in index addressing mode. There is also a stack pointer, a program

counter and a condition code register. Each instruction consists of an 8-bit opcode

followed by one or more bytes of address/data information. The instruction set of the

68HC 11 includes bit manipulation instructions, 16 bit divide instructions, and exchange

instructions.

The A/D access routine was coded in 68HC 11 assembler to take advantage of the

performance increase from using assembly language and forego the overhead associated

with using Max-Forth. (See software section) [10]

3 .3 THE PC CONNECTION

The PC connects with the ICL232 Level converter via a DB9 connector and cable

(See figure 7). The cable connects to the serial port3 of the host PC. A non-handshaking

protocol, in which the CTS (Clear to Send) and RTS (Request to Send) are tied

together, has been chosen to transfer data from the PC to the 68HC11 EVB. In this

protocol, DTD (Data Terminal Detect), DTR (Data Terminal Ready), and DSR (Data Set

Although this implementation used the 9 Pin RS232 port, it is also possible to use the 25 Pin
connection with the appropriate DB25 connector.

16

Ready) are also tied together. The Max-Forth Operating System does not make use of

these signals. The integrity and validity of the data can be verified by the Max-Forth

system response.

The program commands were transferred from the PC through the comm port

using the Maxtalk communications package. The command line would appear like this:

maxtalk2 program.4th

However, any communications package which is capable of uploading and downloading

files and can transfer data at 9600 baud will be sufficient for communications with the

EVB. The above example shows how Maxtalk uploads files. Maxtalk can also save a log

of the terminal session by using the following redirection:

maxtalk2 > program.log

There are a couple of more things to note however. The communications package used

must have the ability to wait for each echoed character and be able to wait at the end of

line for the 'Line Feed' character (ASCII OxOA or Ctrl-J)[11]

4 Analog Anti-Aliasing Low Pass Filter

Figure 8 : The Sallen-Key Circuit

In order to prevent high frequency components present in the analog signal from aliasing

the sampled signal, it is necessary to construct a low pass filter. This filter consists of a

Sallen Key circuit as shown in figure 8. This is a type of second order Butterworth filter.

L

This unit gain low pass filter has a cutoff frequency, f, of 7 kHz, when the passive

elements have the following values: C1=C2=.015gF, R3=R4=7kQ, R2=2.4kQ, R1=lkQ.

7 kHz was chosen as the cutoff frequency because the A/D (as it is run in this

implementation) can only sample signals up to 7 kHz without aliasing. The active element

in the circuit is the low noise, low offset voltage operational amplifier (OP27). It is

suggested, however due to the variability of these resistor values that 10K and 1 K Pots be

used to tune the filter. The passive element values were chosen using the techniques of

Hilburn and Johnson. [12]

I I

1

IH(s)I

f,= 7kHz

Figure 9 : Desired Frequency Response

5 The Host Processor Section

The host processor sections consists of the Intel 386 EX evaluation board from Intel and

the 7847 Digital to Analog converter from Analog Devices. The 386 EX evaluation board

includes memory, peripheral headers, programmable logic devices, in addition to the 386

EX microprocessor. (See figure 10) An overview of the major components used in the

implementation will be given, for a more detailed discussion of the functional units please

see the 386 EX hardware reference and the 386 EX evaluation board manual. [13][14]

L~u cm.*d

RD

C.*dew

0~

I XJ3

BE---

___mI
FLASH MEMORY SLOT

I SIMM SLOT I

Figure 10: The 386 EX Board Functional Units

The Evaluation Board

5 .1 MEMORY

There are three different types of memory on the 386 EX Evaluation Board. These

include SRAM, DRAM, and flash memory. The system SRAM is 32 Kbytes. The

primary purpose use of the SRAM is to support the System Management Mode (See 386

EX Section). The SRAM can be used for other purposes, however care must be taken to

ensure that the SRAM does not lie in the address space for the system DRAM. In this

implementation neither the System Management Mode nor the SRAM is used.

The DRAM memory occupies slot US4 with a single sided 1 Mbyte SIMM.

Additional Memory can be added by using single sided SIMMs with larger capacity, e.g. a

1 Mbyte x 32 SIMM and 4 Mbyte x 32 SIMM would increase the DRAM memory size to

4 Mbytes and 16 Mbytes respectively. The user must select single sided SIMMs as double

sided SIMMs require two additional row address strobes, RAS that the board does not

support. Access to the DRAM is provided by two wait states at the 25 MHz Operation.

The Flash memory on the evaluation board consists of the 512 Kbyte Flash 28F400

BX Memory. Access to the device is controlled by two chip selects /UCS and /C6. /UCS

is used to access the entire 512 Kbyte array, while /C6 can only access the lower 256

Kbytes of the array. The 28400 BX is operated in a 16 bit wide (word) configuration by

tying its /BYTE line high and tying its address AO input to the 386 EX's Al output.

Access to the FLASH is also set for 2 wait states at 25 MHz operation.

5 .1.1 Programming Flash Memory

The Flash 28F400BX has the capability to be in-socket programmed. This means that it

can be programmed from the comm port. This capability is provided by programming the

'boot block' section with a program that sets up the serial ports and provides instructions

for programming the EPROM. The boot block is a special section of the EPROM that is

write protected and cannot be in-socket programmed. The port 1.5 pin (/PRGEN)

controls the voltage on the V, pin of the EPROM. When /PRG_EN is active (low) the

Voltage on the Vp goes to 12 V. The RAMWE signal which is connected to the write

enable pin (/WE) on the EPROM also controls the writing of the EPROM.

The Flash Memory actually consists of seven separately erasable and

programmable blocks, including the 16K write protected boot block. The Command

User Interface (CUI) provides the interface between the microprocessor and the internal

flash memory. Program commands and be executed by writing to the CUI. In addition to

the /WE signal there is also /OE, /CE, and I/BYTE. The /OE signal allows the driving of

output signals. The chip enable signal activates the internal logic, decoders, and sense

amplifiers. The /BYTE signal indicates whether or not the Flash operates in byte wide

mode. On the evaluation board the BYTE signal is wired high indicating that the FLASH

is configured for 16 bit wide operation. In addition to these signals the /RP reset/ deep

power down signal controls whether or not the any block EPROM can be written to, and

it also locks the boot block. On the evaluation board, this signal is wired to +12V

indicating that the boot block is write protected. For more information about the 28F400

Flash memory refer to its data sheet. [15]

5 .2 PERIPHERAL CONNECTORS

The peripheral connectors on the evaluation board include two 32x2 D type connectors,

J2 and JP7, and one 20x2 connector, J1. The J1 and J2 connectors are of the PC/104

standard. One of the larger connectors, JP7 is used to allow the connection of the D/A to

Parallel Ports 1 and 3, similarly the other large connector J2, provides the lower byte of

the expansion bus and is connected to the Port A and D lines from the 68HC11 (see

schematics or figure 5).

5 .3 PC/104 BUS

The PC/104 bus has been designed for embedded applications that allow a high degree of

compatibility with existing Industry Standard Architecture (ISA) bus designs. The J1 and

J2 connectors have the same logic signals as the ISA architecture present on the PC/AT.

The arrangement of the connectors as shown on figure 10 occupies less space and

consumes less power than the AT ISA implementation, and allows the cards to be stacked.

This arrangement is geared towards embedded applications where power and space

constraints are of concern.

5 .4 PROGRAMMABLE LOGIC DEVICES

The programmable logic devices provide control signals for the EVB and the 386 EX.

There are 3 different PLDs. The Local Bus PLD controls the operation of the local bus,

generation of the 01 clock signal, and generation of the data and expansion bus enables.

The Memory Control PLD generates access signals for the Flash Memory and DRAM,

including the /RAM_WE signal which connects to the Flash and the SRAM. The

Expansion Bus PLD decodes memory and I/O accesses. It provides the correct strobes

for these addresses that correspond to the expansion bus.

5 .5 ASYNCHRONOUS PORTS

There are two serial port connectors present on the 386 EX evaluation board. COM1 is a

male DB9 connector that is configured for Data Carrier Equipment (DCE) . It has the

RS232 functionality of a modem or serial port with all the status and control signals

connected to the processor.

COM2, is a female DB9 connector that is configured for Data Terminal

Equipment (DTE) operation. It has uses only two signals, Rx and Tx. The Rx and Tx

lines have been swapped to allow communication with the PC or other peripheral device

with a serial connection (see below). This port is used for debugging.

PC

COM2

Figure 11 : DB9 with the Rx and Tx connections swapped.

5 .6 386 EX

The 386 EX consists of the 386 SX processing core and several on chip peripheral units

that have been added to facilitate the creation of embedded applications. These include:

the DMA Unit, Bus interface unit, Chip Select Unit, JTAG test Unit, Clock and Power

Management Unit, DRAM Refresh Unit, Watchdog Timer Unit, Serial Communications

Unit, Timer Unit, and the Interrupt Control Unit (ICU), as shown below. Design

considerations may warrant the use of the Chip-select Unit, the DMA unit, ICU, or the

Synchronous Serial I/O Unit (see Section 7). The Asynchronous Serial Unit is also used

by the iRMX Operating System, for debugging purposes.

Figure 12: The 386 EX Functional Components

5 .6.1 Parallel Ports

The 386 EX has 3 general purpose I/O ports, consisting of eight pins each. However,

most of these I/O pins are multiplexed with other functions such as asynchronous serial

I/O. In fact, the asynchronous communications clock, COMCLK is multiplexed with Port

3 pin 7. COMCLOCK connects to the 1.8432 MHz generator and cannot be used for

general purpose I/O. In this implementation Port 3 pins 0-6 are used to provide the 7 bits

of data for the Analog Devices 7847 Digital to Analog converter (D/A). Port 1 pin 7

provides the MSB of data to the D/A. After the byte of data has been placed on the input

pins of the 7847, the data is latched by asserting the write signal. Port 1 pin 6 provides the

write signal for the 7847.

DB3-0

DB10-DB4

D/A
DB11
/WR

' Port3.6-0

, Portl.7
,_ Port1.6

Figure 13: Parallel Port Connection to the D/A

5 .6.2 DMA Unit

The DMA unit has two channels, 0 and 1, which operate independently of each other.

Each channel can function in one of several operating modes, and can transfer data of byte

or word widths. The bus arbiter is also a part of the DMA unit. It receives requests from

the DRAM refresh controller, and the external Bus Master, in addition to the two DMA

channels.

The channel consists of three items: the Requester, the Target and the Byte count.

These items are identified by the registers that define the memory or I/O device

requesting DMA service (the Requester). The Requester is the only item that can initialize

or end a DMA process. The Target (address) is the area of memory with which the

requester wishes to exchange data. The Byte count indicates the amount of data to be

transferred.

The DMA Unit includes features not found in the 8237 DMA family, however it

can be configured to behave in a 8237 like manner.

5 .6.3 Chip Select Unit

The Chip Select Unit can generate up to eight different chip selects. A chip select is

configured by assigning a series of addresses to a given chip select. These addresses are

the higher order 11 bits of a 26 bit address, the lower 15 bits are masked out. Thus, each

chip select is assigned a block of memory. Whenever the selected region of memory is

referenced by the 386 EX address lines, the chip select for that region is asserted. This can

be used to memory map I/O or other peripheral devices without the need for external glue

logic.

5 .6.4 Interrupt Control Unit

The Interrupt Control Unit (ICU) consists of two cascaded 8259A modules. The ICU

supports up two 16 interrupt requests (8 internal, 8 external). Interrupt requests are put

in the Interrupt Request Register which contains one bit for each interrupt request signal.

A corresponding bit is set for each interrupt request. If a conflict exists, the priority

resolver chooses which request has the highest priority. The priority resolver controls the

interrupt request line to the CPU. Additional interrupt requests can be serviced by the

addition of externally cascaded 8259A's. In the original implementation the ICU was

configured to service an interrupt initiated by the INT5 signal. However interrupt latency

limited signal responses to 8 kHz, without invoking the DSP routine. A polling approach

was subsequently chosen to initiate the transfer of data between the 68HC 11 and the 386

EX processor board.

5 .6.5 The Analog Devices 7847

The 7847 is a 12 bit parallel D/A. It consists of two separate D/A's, channel A and B.

The D/A has two ways of formatting the results. A digital conversion can have either a

bi-polar 2's complement arrangement or the 12 bits of data can represent an unsigned

number. Because the nature of the 68HC11 A/D is uni-polar, it has been chosen to

operate the D/A in uni-polar mode as shown in figure 14. Also since the AID in the

68HC11 is 8-bit wide the 7847 is in fact used as a 8-bit D/A with the four least significant

bits grounded.

15V

Vout-5V

Figure 14: 7847 In Uni-polar Mode

Data can be latched in one of two ways. Either the /WR signal can be held low and a low

to high transition on the corresponding Chip Select (/CSA or /CSB) will cause data to be

latched. Similarly, the Chip select can be held low and a /WR signal transition from low to

high will cause data to be latched, as shown below.

/CSA

/WR

Figure 15: Latch Control Logic for the 7847

In this implementation, the chip selects for A or B are driven low, and a conversion is

initiated by transitioning the write signal, /WR. At this time data is then latched, and a

conversion is begun. The /WR signal is controlled by Port 1 pin 6 from the 386 EX as

shown in figure 13. The bandwidth of the 7847, is 110 kHz. This is significantly higher

than the A/D, however there is some latency involved with the 386EX and the separated

parallel port interface. However the majority of the time between outputs is spent

calculating the filtered output. In lab tests, with the split byte arrangement (the

arrangement where the input data is spread across Ports 1 and 3 of the 386 EX) the signal

could be changed at a frequency of 341 kHz. However, this was without the calculation

of DSP algorithm, the true bandwidth of the system is much lower.

The V ddand V,,power supplies for the 7847 are +15 V and -15V respectively. For

this implementation it was chosen to make Vef -5V since the uni-polar mode of operation

makes Vo= <bit9 aue> xV. This gives a signal with a range from 0 to 5V, which also

matches the operation of the 68HC1 l's A/D. [16]

6 System Software and Algorithms

The system software for the 68HC 11 performs register initialization functions. These

functions include initializing the port I/O registers, and configuring the A/D on the

68HC11. These initialization functions are coded directly in Forth and subsequently

interpreted by the resident Forth interpreter. The 68HC 11 software must also read the

samples from the A/D and send them to the parallel ports. However, because the timing

of the section is critical, this software is coded in 68HC11 assembler.

The system software for the 386 performs two functions. The first of which will

be to set up the necessary registers for the polling algorithm, and the I/O pins. The second

function of the software will be to execute a Digital Signal Processing (DSP) algorithm.

Both of these functions are programmed in C, with in-line assembler where necessary.

The DSP algorithm used to test the development system consists of three separate

filters. After the A/D converter maps the signal to the discrete-time domain, the signal is

filtered using one of three filters. The three filters consist of low, mid-band, and high pass

filters. These originally consisted of 33-point finite impulse response (FIR) filters. The

original low pass filter was the same filter used in the 6.115 class and the other filters were

designed using Matlab. However, the processing time associated with the 33 point FIR

filter was found to be to large and the filter size we first reduced to 27 points and

subsequently to 13 points. The three (FIR) filters were then redesigned using Matlab.

6 .1 68HC11 ROUTINES

The 68HC11 from New Micros, contains the MaxForth Kernel in its ROM memory. The

MaxForth kernel contains an interpreter to allow Forth commands to be typed in

interactively or downloaded through the PC communications program. The Forth

interpreter resident in the 68HC 11 kernel is adequate for tasks which are not time critical,

so the register initialization is written directly in Forth code.

Forth was created in the early '70s by Charles Moore after he became frustrated

with conventional languages inability to allow control over a computer system that

executed some real time task4.

The Forth language differs from most languages in that it contains elements from

both compilation and interpretation. Forth also combines elements from assembly and

high level language. Forth differs from other languages in that its functions ('words') are

defined based on definitions of other words. This is opposed to constructing new

functions by simply listing other functions. Also Forth is a stack based language.

Parameters passed to words are explicitly placed on the stack, in what has come to be

known as post fix or reverse polish notation. Definitions can be in terms of other words or

as we will see later, machine code. When defined in terms of other words these words in

turn must be looked up to find the machine code that corresponds to that word. Forth

jumps from one word definition to the next since the word definition consists essentially of

the addresses of other words. [17] [18] [19]

When Max-Forth interacts with the terminal it operates in interpretive mode. The

definitions of words can be interactively entered into the interpreter. However, after the

definition of these words has been entered into the dictionary, the words can be

subsequently used without the need to retype the definition.

The Forth programs written for this system perform two actions. First the

programs perform register initializations and then they also collect data from the A/D and

subsequently send this data across the Ports to the 386 EX.

The Forth register initialization code does four things. It sets Ports A and D to

transfer the byte of data from the A/D, and it powers up and configures the A/D. The

initial block of registers sits at Ox1000, however the Max-Forth kernel remaps these

addresses to the OxB000 offset. The initialization of the registers uses the C !, command.

This command is a byte write to memory. The user first puts the byte value on the stack

then puts the address to which the byte is to be written on the stack and then the user

issues the C! command. For example, the following code selects single, continuous mode

and channel AN1 for A/D operation:

21 B030 C!

The A/D control register, ADCTL is located at address OxBO30 in the 68HC 11 memory

map. The Hex value of 0x21, indicates that bit positions 5 and 1 should be set. When bit

This task incidentally was the control of Radio Telescopes

28

position 5 is set continuous mode is selected. The lower nibble value of 1 indicates that

first channel should be used for conversion. Other register initializations use the same C !

word command.

88 B026 C! (Set Bits 7 and 3 to outputs)
FF B009 C! (Set Port D 0-7 for outputs)
21 B030 C! (Continuous, single channel set AN1)
80 B039 C! (Turn on A/D use external clock)

Example 1: 68HC1 Register Initialization

For a more detailed discussion of the registers involved please refer to the Appendix

section.

The performances requirements of A/D control routine necessitate that the routine

be coded in 68HC11 assembler. The ADR1 register must be successively read to obtain

the successive A/D values when running in continuous mode. Unfortunately, there is no

way to know when one register contains valid data and when the next register is being

filled. So the approach used is to get the data out of the first register and then wait until

64 cycles later to again get data out of the first register. This increases the sampling

period by a factor of 4 from 16 gs to 64 js, thus the maximum allowable input frequency

is now 1.= 7.8125 kHz. It is desirable to obtain frequency samples at a rate that would

correspond to the A/D bandwidth, however that rate at which samples appear on the port

output lines has to be slow enough to allow the 386 EX to calculate the filtered response.

In the original implementation, the four registers were read successively. However,

because of the number of instructions in the acquisition loop exceeded thirty two, after

several samples had been collected the acquisition routine would fall behind the A/D and

the next sample read would actually reflect the incorrect sample. For example, suppose

that when the A/D was on sample 10 and the acquisition routine was 4 samples behind the

A/D, at sample 6. After a while, when the A/D is on sample 17 and the acquisition

routine may be on sample 12. Thus the distance between the A/D has changed. If this

happens three more times the values output from the acquisition routine will no longer

represent sequential samples as the A/D has overlapped the acquisition routine and

overwritten the next sample in the sequence.

In order to read these values at 128 clock intervals it is necessary to use 68HC11

assembler. Unfortunately, the Max-Forth kernel does not have an in-line assembler as do

other popular implementations of Forth. For example consider the two following code

segments:

CODE-SUB GA2D
LDX #$B030

LABEL: LDAA $01,X
STAA $B000
TAB
ANDB $OF
LSLB
LSLB
STAB $B008
INCX
XGDX
ANDB $F3
XGDX
BRA LABEL
RTS

END-CODE

CODE-SUB GA2D
CE C, B030

#$B030)
A6 C, 01 C,

LABEL:LDAA $01
B7 C, B000 ,

$B000)
16 C,
C4 C,

$OF)
58 C,
58 C,
F7 C,

$B008)
08 C,
8F C,
C4 C,

$F3)
8F C,
20 C,

LABEL)
39 C,

END-CODE

OF C,

8008

F3 C,

EC C,

Example 2: A Forth word definition a) with a built in assembler b) without an
assembler

With Max-Forth code the user must explicitly specify the op-codes involved with the

assembler routine, as shown in Example 2B. In the original implementation the code

appeared as above, however when the need for a down sampled A/D arouse the code had

to be modified with a more time consuming acquisition loop. The current configuration

pads the loop with store instructions.5

6 .2 386 EX REGISTER INITIALIZATION

In order to use the functional units on the 386 EX processor it is necessary to write to

registers that initialize and configure the units. The first step in accomplishing this is to

5 The STAA (store accumulator A) instruction was chosen as opposed to the standard NOP
because it consumes more time (4 clocks as opposed to 2 for the NOP) , thus there are less instructions to
be added. Less instructions added reduces the likelihood of making errors. See the code listings in the
Appendix

(LDX

(
,X) (STAA

(TAB)
(ANDB

LSLB)
LSLB)
STAB

INCX)
XGDX)
ANDB

(XGDX)
(BRA

RTS)

enable the expanded I/O in the memory space. The expanded memory space contains all

of the registers necessary for utilization of the parallel ports, interrupt control unit, and the

DMA unit. In order to enable the expanded I/O space, the following assembly code is

necessary :
mov ax, 8000h /* This will be REMAPCONFIG */
xchg al, ah
out 23h, al /* high byte to 23h */
xchg al, ah
out 22h, al /* low byte to 22h */
out 22h, ax /* Word to 22h */

Example 3: Enabling the Expanded I/O Addresses

The REMAPCONFIG register controls the access to the expanded I/O space. (See

Appendix) Most of the code for the initialization of the registers was written in assembler

by using the following series of commands:

mov dx, <Port Address>
mov ax, <Port, value>
out ax, dx// Places the Word value contained in ax at

<Port Address>

The values can also be read out of the registers with the following instructions:

mov dx, <Port Address>

in ax,dx // ax now contains the value at <Port

Address>

The first unit that we must set up is the parallel ports. In order to set up the parallel ports

it is necessary to write to three registers, PxLTC, PxDIR, PxCFG, where x is a number

from 1 to 3 indicating the port number. The PxCFG register controls whether or not the

Port is controlled by an internal peripheral or configured for I/O mode and subsequently

controlled by the PxLTC and PxDIR registers. The PxDIR register selects whether each

pin on the port is an output or a high-impedance input. The PxLTC, data latch register

controls the values driven to the pin. If the pin has been configured as an output, writing a

one or a zero to the corresponding bit in the register changes the value on the pin

accordingly.

In this implementation Port 3, pins 0-6 were selected as outputs. The author

would have like to use pin 7 as well, however on the Evaluation Board pin 7 is connected

to the COMCLOCK which is used for asynchronous communications, therefore it cannot

be used for bi-directional I/O. Port 1 pins 6 and 7 were also used as outputs, and Port 2

pin 1 was used as an input. Pin 7 was used to drive the most significant data bit on the

D/A. Pin 6 was used to drive the /WR line of the D/A. Because of the unavailability, of

Port 3 pin 7, it is necessary to distribute the byte of information calculated by the DSP

routine across Port 3 and Port 1. Also care must be taken to ensure that the Port 1 pin 6

bit does not get written at inopportune times because it controls the start of a conversion

of the D/A. In order to accomplish this spread of the byte, the byte is written to the Port

3's data register, P3LTC, unaltered. Then the signal byte is ANDed with 0x80 and

subsequently written to the P1LTC data register. This masks out the least significant 6

bits allowing the most significant bit of data to pass through. It also sends the Port 1, pin

6 bit low. The reader will recall that D/A conversion is begun on a low to high transition,

thus it is necessary to have the /WR signal low before a conversion can be initiated. One

would have to be cautious about transitioning the write signal and the most significant bit

at the same time, however in lab tests the correct values were written to the D/A. This is

due to the fact that the actual write of data occurs during the low to high transition of the

/WR signal. The write is accomplished by sending the Port 1 pin 6 write signal high by

ORing the value 0x40 with the value currently contained in the Port 1 data register. The

OR is necessary because the value on the DB 11 (Port 1 pin 7) should not change when the

/WR signals transitions to the high value. This process continues as other bytes are

written.

6 .3 THE DSP ALGORITHMS

The DSP algorithm used to test the development system consists of three separate filters.

The A/D converter can map the signal to the discrete-time domain, with a sampling

frequency of 62.5 kHz. By the Nyquist criterion, input signals up to 31.25 kHz can be

successfully converted without aliasing. However, the calculation of the DSP algorithm

takes processing time, this processing time limits the rate at which data can be presented

to the 386 EX. Originally, it was thought that the 386 EX could compute the convolution

in the 16 ýts sample time. However experimentation revealed that the original C algorithm

(See eval.c in the code listings) took 390 gs to compute an output. The C algorithm was

abandoned and the routine coded in assembler and the size of the filter reduced to 27

points, this reduced the output calculation latency to 120 gs. It was then decided to

further reduce the filter size to 13 points so that the latency time would be -60 gs, which

would correspond to the 64 gs reduced sampling period of the 68HC 11. This resulted in a

maximum input frequency of 7.8125 kHz.

The signal is filtered using one of three filters. The three filters consist of a low,

band, and high pass filters. These are 13-point finite impulse response filters. The discrete

time frequency responses are shown in figures 16 a-c, the cor responding continuous time

domain frequency responses are shown in figure 17 a-c.

Redesigned (firl) Low Pass Filter Frequency Response

The original (firl) Mid-Band Filter Freq Responses

0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9

Figure 16 a-c Discrete Time Frequency Responses

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.9

The original (fir) High Pass Filter Freq Responses

v

1 · · · · · · · --· ·

o | I | Ii

Scaled, Redesigned, and Rounded Low Pass Flter Freq Responses
3O I 1

0 1 2 3 4 5 6 7 a

Scaled and Rounded Band Pass Filter Freg Responses

0 1 2 3 4 5 6 7 8
f (WIz)

Figure 17 a-c Continuous Time Frequency Responses

The coefficients for most of these filters were designed using the Matlab function

firl () which creates a filter based on the Windowing algorithm. The original low pass

filter was the filter used in 6.115 during the fall of 1994. As the reader will notice the low

pass filter has a gain of .8, and passes signals up to .2 7t (discrete time, 1.6 kHz continuous

time) in frequency. The band pass filter passes filters from .2 to .6 7t (1.6 to 4.6 kHz) with

unity gain, and the high pass filter passes the .6 to 7t (4.6 to 7.8 kHz) frequencies with

unity gain. The coefficients for these filters are all fractional values, which requires either

a floating point algorithm or a fixed-point algorithm that includes scaling and rounding.

The actual filter values are shown on the next page in figure 16 a-c.

S (arz)

Scaled and Rounded High Puass Filter Freq Responses

30(1 ' ' '

r_

[20] [2

Redesigned Low Pass Filter Corfficients

Reeine Mi-an PssAlerCoffoet

n

Redeigned Mi-Band Pa Filter Coeffi•ient

iSO

0 2 4 6 8 10

0 2 4 6 8 10 12
n

Redesigned Low Pass Filter Coefficents

-i0
0 2 4 a

n
8 10 12

Figure 18: a-c Fixed Point Filter Coefficients

The first approach that was used was the floating point algorithm, in which the

appropriate filter is chosen and its fractional coefficients are represented by a decimal

value. Matlab has calculated these coefficients out to the fourth decimal place (the

original low-pass filter has six significant digits). The fractional values are held in array of

floats, which represent the filter values to the fourth decimal point, as shown below.

float hm[N] =

{ // floating pt
-.0006, .0000,

.0000,

filter

0009,

weights

-. 0059,

-.0058, .0330, .0440, -.0138,

-.1504,

-.2360, .1145, .3995,

.0250,

.0030,
.0000, -.0138,

-.0088, -.0059,

.0440,

.0009,

for mid-range filter

-.0088, .0030,

.0000, .0250,

.1145, -.2360, -.1504,

.0330, -.0058, .0000,

.0000, -.0006

9TI

so I T .-

_,' I
_

Example 4: A Array of Floating point coefficients

The second approach used was to use a fixed point representation. With this

approach, it was necessary to scale the filters by 256 (=28) thus making the fractional

values greater than one. After the values were scaled they were then rounded to allow a

representation of the values as discrete integers. The low-pass filter was redesigned

because it originally had a higher number of significant digits. The original filter was

redesigned using the same Windowing algorithm as the band and high pass filters. The

resulting unity-gain filter was then scaled and rounded as the other filters. The scaled

filter values are represented as an array of shorts, which represents the filter values as

fixed-point quantities as shown below.

short hm[N] =

{// fixed pt. filter weight factors for mid-band

filter

-1, 0,

0, 26,

0,
-14, 45,

-1};

1,

-154,

-6,
-242,

34, -6,

-9,
117,

3,

409,

0,

117,

-6,
-242,

0, 3, -9, -6,

Example 5: A Array of fixed point coefficients

The original (from 6.115) and Redesigned Low-Pass Filter Freq Responses

Figure 19: Redesigned Low Pass Filter Frequency Response

34,

-154,

45, -14,

26,

1, 0,

Fixed point was pursued as an alternative, because the 386 EX (whose CPU is

functionally equivalent to the 386 SX) does not have a floating-point unit. As this is the

case, it then becomes necessary to either have a non-floating point algorithm or to set a

flag on the compiler to generate floating point emulation code. In either situation a certain

degree of precision is lost, however using a floating point emulating code tends to increase

code size, which would hamper performance. In the first few tests it took time 450 Rs to

calculate one filter output with the fixed-point algorithm. This subpar performance was

from calculating a 33-point FIR and functional overhead. Also most of the code at this

time was still in C, with only the D/A routine in assembler (this was later reduced to 350

ts at which time it was decided to abandon C). The floating point algorithm was only in

DOS only tests because they would have added even more overhead to the DSP

algorithm. It is doubted that it would have offered any performance improvement over

fixed point as the EX has no native floating point unit. What the floating point algorithms

did offer however, was provide a basis from which to judge the accuracy and

completeness of the outputs from the fixed point algorithms. This suspect performance

was the bottleneck of the system as the 68HC11 was producing A/D data at a rate of 16

gs. [22]

6 .3.1ACCOMPLISHING FILTERING THROUGH THE CONVOLUTION

The filtering was accomplished by calculating the convolution sum, I xn x kr- ,for each

output value. After the input filter value (represented by an unsigned char) has been

passed into the function this value is cast into a signed short and goes into the x_buffer.

Originally the x_buffer was an array of shorts that contained the 33 most recent filter

values. Later the number of samples was reduced to 27, to decrease the amount of

processing time spent calculating the output. And then subsequently reduced to further to

13. The newest value is in the 13th position and the oldest is in the 1st. For the fixed

point algorithms the filter coefficients had to be scaled and rounded to be represented as

integers. A scale factor of 256 was chosen to allow an integer representation. This value

made it convenient to adjust the result after the convolution had been computed. After the

necessary multiplies and adds have been accumulated, the value is divided by 256.

However this not totally correct as a divide by 256 might not give the correct answer (see

next section).

for (k = 32, acc = 0; k > -1; k--)

{
switch (fil_typ)

{

case ' ' :

acc += hl[k] * x_buffer[k];

/* compute next output */

break;

case 'm' :

acc += hm[k] * x_buffer[k];

break;

case 'h' :

acc += hh[k] * x_buffer[k];

break;

Example 6: Accomplishing the Multiplies and Adds in the Convolution

6 .3.2 Correcting for Errors in the Output Signal

As was mentioned before the various filters in the previous sections filter different spectra

contained within the bandlimited 7.8125 kHz signal. However after the filtering has been

accomplished a few adjustments have to be made with regard to the outputs. First it must

be ensured that the output filter values are unsigned integers with a value in the range

from 0 to 2556. The output values must be formatted in this way because in the current

configuration an unsigned 8 bit signal goes in to the filter and unsigned 8 bit signal comes

out.7 In the lowpass filter case this problem manifests itself in the form of over and

6 This was a design decision. One could just as easily operated the 7847 D/A in bi-polar mode,
however you would still have the dynamic range of 255 only your output values can now be signed values
from -127 to 127. This is a bit confusing however, as the input signal does not directly correspond to the
output signal. If this you choose to do this then you have to remember that the input DC signal value of
2.5V (0x77) when passed through the low pass filter would give an output value of zero.

38

undershoot that appears within the signal, if left unchecked this can map the output signal

into undesirable domains. The problem is that when overshoot or undershoot occurs the

values held in the extended precision signed long variable gets erroneously truncated.

For example if the variable value is a slightly negative number say -1 then it will get

mapped into 255 as, -1 =Obllllllllllllllllllll11111111 (32 1's in the binary

representation) when truncated gets translated to Ob 11111111 (an unsigned 8 bit binary

representation of 255. Similar results happen with numbers greater than 255. The figure

below illustrates the effects of under and over shoot with out preventative measures. To

calculate the output from the low pass filter, the following algorithm is used. When the

program detects that a long value is negative this filter output value is rounded to zero.

When the program encounters a number greater than 255 the output is set to 255.

The mid band and high pass filters also suffer from these endpoint problems

however because of the nature of the input signal they have to be handled differently.

They have to handled it differently because the output long value values look drastically

different from their lowpass counterparts. The input signal is unsigned which means it has

an inherent DC component. After this signal passes through either of the midband and

high pass filters the DC component has been removed. Thus the output signal has no

offset and will have a signed value that will oscillate about zero. To maintain consistency

between the input and output signals it is necessary to rectify this output value before it is

passed to the D/A. Ordinarily, this can be accomplished by adding 127 to the result of

filtering, however the mid and the band pass filters are also susceptible to overshoot and

undershoot errors. It is therefore possible that the output filter value have a range beyond

{ 127, -127}. When these values are greater than 127 and less than -127 they are rounded

to 255 and 0 respectively.

7 Alternatively you could have an extended precision D/A, with a larger supply voltage which
would allow signals larger than 5 Volts to appear on the output. This would also require sending a block
of data that was more than a byte wide.

Figure 20: a) An example of clipped over and undershoot b) Output after adjustment

6 .3.3 Testing the DSP Algorithms

In order to test the frequency responses, that were calculated by Matlab and entered into

the DSP program, we had a series of test vectors. The first series of test vectors

represented signals that alternated from -1 to 1, and consequently did not have a DC

component. However the first test vector in that series was a vector of all ones, which is a

DC signal. With these bi-polar and DC values the validity was tested for the filter values.

At this time, floating point programs were being run directly as the software was being

tested on the host PC, which was either a 486 DX2 or a Pentium which include a floating

point unit. Thus, we could get decimal values in our results.

The next step was to present more realistic test vectors to the DSP engine. Since, the

values would have come out of an uni-polar A/D, it was decided that the test vectors

should reflect that fact. The values would also range from 0 to 255, and any fractional

(less than one output) would need to be counted as zero. The test vectors were then

changed to range from 0 to 255 and changed the program to handled output rounding.

At this time, floating and fixed point representations were both utilized in the testing

process. It was also necessary to modify the program to reflect the fact that we were

doing filtering of signals that contained DC components. And further that this DC

component should be present in the output signal.

Constant Test Vector Freq Responses

0 011 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ax 10 Low Frequency Test -ector Freq Responses

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10 Mid-Band Frequency Tet Vector Freq Responses

01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 10L High Frequency Test Vector Freq Responses

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 21: a-d The Frequency Responses of the Uni-polar (DC Added) Test Vectors

It then was then time to run the programs on the evaluation board. The first series

of tests were run as MS-DOS programs. In order to run the program on the evaluation

board it became necessary to remove the user interface functions such as printf () and

scanf () . We also had to compile the floating point programs using floating point

emulation. The input and output values could be accessed by using the Concurrent

Sciences Softscope Debugger.

The Softscope Debugger is a MS-Windows based program that runs on the host

machine and communicates with the target (386 EX EVB) board through the

communications port. It allows for trace executions, breakpoints, memory dumping and

other debugging functions. [C1]

After the algorithm results had been verified using the debugger, the D/A functions

were added to allow the filtered values to appear as analog outputs. An oscilloscope was

then used to verify the results of filtering.

The following tables show the different test programs used for debugging the DSP

algorithm.

Tes Nme Pol-1-Iy f Rprsctaioi ep-ceiiatonofMiselanou
Floating Point

Floating Point

Fixed Point

Fixed Point

Floating Point

Floating Point

Fixed Point

Floating Point

Low Pass Filter only

All 3 Filters

Output scaling

Required rounding

Table 2: Software Tests without Evaluation Board

fireval.c Bi-Polar Floating Point Floating Point Same as firl without
printf and scanf
functions

evalwbrd.c Uni-Polar Fixed Point Floating Point Output scaling
eval.c Uni-Polar Fixed Point Fixed Point Required rounding*

Table 3: Software Tests with Evaluation Board

firl.c

fir2.c

fixfilt

floatfilt

Bi-Polar

Bi-Polar

Uni-Polar

Uni-Polar

Unipolar A/D
samples

UniPolar A/D
samples

UniPolar A/D
samples

Fixed Point

Fixed Point

Fixed Point

Fixed Pt. 13 Pt FIR

Fixed Pt. 13 Pt. FIR

Fixed Pt. 13 Pt. FIR

Low Pass Filter
Output adjustments*

Mid-Band Filter
Output adjustments*

High Pass Filter
Output adjustments*

*Listing available in the Appendix

Table 4: Software Tests with Evaluation Board Connected to the 68HC11

6 .4 PUTTING IT ALL TOGETHER

After the DSP algorithms were debugged it was now time to add the functionality

to accept signals from the 68HC11. This functionality includes accessing the expansion

bus and polling the I/O lines for the assertion of the RDY signal.

In order to get the data at the correct times, it is necessary to configure one of the

I/O ports' for input. This implementation uses a polling approach to detect the assertion

of the RDY signal. The RDY signal connects to Port 2 pin 1. As shown in the figure

below, the program waits until a zero is detected before searching for the one (RDY signal

asserted). It does this to ensure that the current sample is the next sample in the sequence,

not the same sample as before.

lowpv2.c

midbpv2.c

highpv2.c

Alternatively the high byte on the expansion bus could be used.

44

Test Name Polarity of Test Vectors Filter Coefficients Miscellaneous
Test Vectors

Figure 23: The 386 EX Program Flowchart

According to the 386 EX Evaluation board Manual in order to access the

expansion bus it is necessary to access address Ox0100000 or higher. In order to generate

this large address it is necessary to have this region of memory defined by a segment

contained in the 386 EX global descriptor table (GDT). To accomplish this, the system

call rqe_create_discriptor is called with the appropriate parameters to create an

entry in the GDT. This function returns a selector, this selector is used to indicate a

segment. When it is time to access data on the expansion bus the appropriate segment

must be used, as the segment containing Ox0100000 is not a part of the code and data

segments. To do this the ES register is loaded with the selector returned by the system

call. The memory reference is then made by using an offset for that selector as follows:

mov al, es:O // Get a byte of data at offset of the segment

The data is now ready to be read into the x_buffer and the resulting filtered output can be

calculated and sent to the D/A. [23][24]

7 System Enhancements

This section suggests specific designs that could be beneficial to performance or

architecture of the prototype system. It includes both specific components and alternative

implementation strategies for an improved system.

7 .1 ANALOG TO DIGITAL AND DIGITAL TO ANALOG ENHANCEMENTS

The A/D converter in the 68HC11 is adequate but the use of a higher performance A/D

might be beneficial to the overall design. The Analog Devices AD7869 and AD7870 both

offer improved performance'. The 7869 features a synchronous serial interface that

eliminates the need for parallel wires, and offers 83 kHz full power bandwidth. It is a

complete A/D and D/A system. The 7869 offers improved 14 bit resolution. The A/D

and D/A can operate independently of each other allowing access from different

processors. The serial interface of the 7869 can be accessed in either asynchronous or

synchronous manners.

The 7870 is a 12 bit A/D, that provides a 50 kHz full power bandwidth. It also

offers the added versatility of being used in either a serial or parallel fashion.

Either of these configurations would necessarily require the use of control signals

from the 68HC11. However, since the 68HC11 no longer needs to provide the byte wide

sampling data the I/O port lines are free to provide control signals in either asynchronous

or synchronous (with the use of the 68HC1 l's SPI) fashion. The choice of mixed signal

components need not be restricted to these. The 7870 and 7869 are only two examples of

possible implementations.

7 .2 PERIPHERAL PROCESSOR ENHANCEMENTS

Although its popularity and ease of use has made the 68HC 11 the choice for the

implementation of the development system, there are other microcontroller's that offer

other advantages. These include the Motorola 68HC16 and the 8051 from Intel.

9 The author does not intend to endorse Analog Devices' products, it is the intention of the author
to illustrate alternative approaches. These two devices are products about which the author is familiar.

46

7 .2.1 The 68HC16

The Motorola 68HC16 is a 16 bit architecture that offers a full set of 16 bit instructions.

It also features a higher resolution, higher performance, A/D, than its HC11 8 bit

predecessor. The A/D can produce a result in 4 (2 MHz) clock periods which results in a

8 Rs sample time. This results in a 62.5 kHz bandwidth. The 68HC16 also features a

larger on-chip memory capacity. The HC16 offers increased performance with its

instruction prefetch and pipelined execution. For DSP applications, the 68HC16 contains

multiply and accumulate (MAC) registers and a 36 bit accumulator. Depending upon the

application the 68HC 16 might offer a good enough performance, not to merit the use of a

host processor.

7 .2.2The 8051

The 8051 is an 8 bit microcontroller originally developed by Intel. It is now manufactured

by different companies. Its popularity exceeds that of the 68HC11, well over 126 million

units were shipped in 1993. Like the 68HC 11 the 8051 comes in various flavors, with

differing combinations of memory, general purpose I/O, and serial ports. Some variants of

the 8051 operate at clock speeds of up to 40 MHz and perform 10 MIPs. There are two

advantages to using the 8051. First, it handles interrupts efficiently and quickly.

Secondly, it has a boolean processor which is beneficial in applications were bit control is

needed. [25]

7 .2.3 The Need for Two Asynchronous Ports

In order to offer the ability to communicate directly with the PC and the Host processor at

the same time, it is imperative that the peripheral processor have two asynchronous ports.

The ports would be used simultaneously without the need for multiplexing the serial

channel, which requires coordination from the host processor. With the added capacity

offered by the extra port, the peripheral processor could conceivably be able to download

the HEX or S19 file, perform checksums, and transmit the file to the peripheral processor

without the need to wait until the entire file has been transmitted from the PC. Also in a

debugging environment it would be beneficial to have some way to observe the state of

the peripheral processor while the communication between it and the host processor is

taking place.

7 .3 HOST PROCESSOR ENHANCEMENTS

As indicated by the mediocre performance in the calculation of a filtered output, the Host

processor is the bottleneck of the system. One of the limitations of the current system is

the processing core as evidenced by its performance in executing a DSP algorithm l°.

Alternative processing cores would offer higher performance in the calculation of DSP

outputs. Specifically, the PowerPC line of processors from Motorola.

7 .3.1 The PowerPC 601

The PowerPC is a pipelined, superscalar RISC processor. It offers branch prediction,

floating point unit, and shared memory access. The 601 is the first in the line of PowerPC

processors from IBM and Motorola. The 601 includes floating point operations that

include a multiply-add mechanism that is particularly beneficial for DSP applications.

Accessing to the system interface for the 601 is provided by an external arbitration

mechanism. The 601 also includes support for shared memory in the form of the Modified

Exclusive Shared Invalid (MESI) protocol and external control of the on-chip cache. The

PowerPC 601 offers several control signals that allow for bus arbitration. In a

microcontrolled application it is suggested that the peripheral processor use the data

arbitration signals: /DBG data bus grant, /DBWO data bus write only, and the data bus

busy DBB, status signal in addition to other signals which support data bus tenure. For

more information please refer to the 601 User's Manual.

Motorola and IBM have announced embedded control version PowerPCs. These

include the 403 (from IBM) and the 515 (from Motorola). Also, there are, circa March

1995, new flavors of the 601, the 603e and the 602. The 602 was initially was originally

10 This is not exactly fair, the purpose of the 386 EX is not DSP applications. Rather it was
intended to be used in embedded applications.

marketed as an embedded version of the 601. But its current features illustrate its ability

as a fully fledged general purpose processor. There is also the 403 from IBM which is an

embedded control version. The embedded control versions of the PowerPC line are

favored for a microprocessor project lab for their reduced complexity. Details of these

events can be found at the PowerPC World Wide Web site and obtained via the PowerPC

newsletter. [26]

7 .4 OTHER ISSUES

7 .4.1 DMA

In this implementation the DMA, could have been used to allow the 68HC11 to place data

in the memory of the 386 EX. The purpose of using the DMA unit will be to allow the

68HC11 to transfer data from its A/D directly into the 386 EX's memory. DMA accessing

would avoid the overhead of interrupt processing. However the 386 EX would have to be

aware of when new sampled data has arrived. A suggested implementation, would be to

have the 68HC 11 request a transfer from DREQO using the RDY signal and receive the

/DACKO, acknowledge signal on one of the port input pins. It could be done using the

general purpose I/O ports of the 68HC11. Even though Furht and Halang renounce the

use of DMA in their Survey of Real-Tme Systems, because it alters system behavior, DMA

could be a viable alternative to the polling or interrupt driven implementation.

7 .4.2 Serial as Opposed to Parallel Operation

As suggested in the Analog to Digital section there could be architectural reasons why a

serial connection (asynchronous or synchronous) between the host and peripheral

processors might be beneficial. Although the 386 EX evaluation board required the use of

the comm port to program the EPROM it need not be that way, the host processor might

require a parallel connection to the PC. In any event, having one parallel or one serial

connection might be beneficial in that the user may not have enough parallel ports for

parallel communications or enough serial ports for serial communication. For more

information about the discussion of parallel vs. serial computation, the reader is

encouraged to read M. Boasson's Dreams and Realities in Distributed Real-Time

Systems. [27]

7 .4.3 Improving the Software

Most of the code for the critical sections of the program in which the filtered output was

calculated and subsequently sent to the D/A was coded in assembler. It is doubted that

any significant performance increases would come using the same algorithm and coding in

a different manner or language. However, the calculation of a filtered output using a

13-point FIR and the direct time domain computation of the convolution may have not

been the best algorithm. Other approaches to filtering could be investigated such as

decimation-in-time, decimation-in frequency, or even direct computation of the Fast

Fourier Transform (FFT). The implications surrounding these methods are beyond the

scope of this thesis however there has been mention of calculation of the FFT via an

80x86 machine. [28]

7 .4.4 Programming the EPROM

It was noted in the Introduction that the ability to program the host processor's program

memory would be very beneficial. It is possible that the user could dynamically change the

algorithm or program associated with the host processor. It would also be of importance,

to be able to debug and alter programs without having to remove the host processor's

connection to the peripheral processor. The ability to change and alter programs, in the

host processor's program memory, whether it be RAM or ROM is paramount for any

practical system.

With regard to the 386 EX Flash memory, the programming of this EPROM

requires a fairly lengthy program, that can poll the comm port, send the appropriate

FLASH programming commands, and have the ability to calculate the checksum. This

information must be transmitted at 19200 baud. To program this amount of detail would

be difficult and rather mundane in assembler and the use of the Forth language might incur

unacceptable performance. The interested reader is encouraged to examine the

iboot. exe file at the Intel BBS for C programs that perform the above operations on

the 80x86 platform. [C2]

8 Alternative Methods

This section describes alternative strategies to the prototype system just described. It is

divided into two sections: Academia and Equipment. The Academia section describes

other classes and teaching methodologies at other universities for microprocessor and

embedded control. The Equipment section focuses on other hardware and software

development tools that could be used to teach embedded control or implement embedded

control systems.

8 .1 ACADEMIA

There are a variety of methods for teaching the concepts involved with embedded control.

However by nature of the subject much of the coursework emphasizes application over

theory. A few of the examples of teaching are presented here.

8 .1.1 University of Alberta

The university of Alberta been developing a microprocessor development laboratory based

on the 68000. They had found that a Senior level course, which used the 6809

microprocessor to be inadequate. For the final project in this course, students were

required to build an application based on the 6809 system they had constructed thoughout

the term. Apparently this was frustrating and non-constructive as they spent much of the

time debugging the base system. The department of electrical engineering then decided to

use the more powerful 68000 microprocessor. If the students would have been led to

build a base system around the 68000 the class would have been even more unsuccessful

due to the increased complexity of the 68000. So it was decided that the electrical

engineering department design their own base system and distribute kits containing the

base system to the students. This system uses the VME bus. [29]

8 .1.2 Rensselaer Polytechnic Institute

At RPI, there is a course for engineering majors called Laboratory Introduction to

Embedded Control (LITEC). In this course the basic concepts of embedded control are

taught and students are required to counteract an embedded control system and are

encouraged to add their own contributions to the system. The development platform for

this class are the MacIntosh Quadras and the target system is the Motorola 68HC 11.

They are currently exploring the use of the Neuron microcontroller family for future

implementation in the class. [P1]

8 .1.3 A Simulator for Teaching

Eugene Styer, with the Department of Math, Statistics and Computer Science at Eastern

Kentucky University has developed a simulator designed to allow students to work with

simulated I/0 devices as part of a larger simulator. The creation of the simulator came

about as the result of the Styer's attempt to provide a broader view of the computer with

input/output devices and not strictly a CPU and assembly code based simulator. The

machine that the system simulates is a 16 bit, with 16 registers and a 64Kbyte address

space.[30]

8 .2 EQUIPMENT

8 .2.1 Hardware

HP Systems

It must be mentioned that much of the motivation for this project came about as a result of

our frustration associated with the older HP64000 Development System. However,

according to Mark Brindle the more recent set of HP development tools are quite useful.

He reports that the HP64700 emulators have an ANSI-C that is geared specifically toward

embedded development. These systems emulate the 68000 and the embedded control

683xxx series processors, and include the standard debugging tools such as trace, memory

emulation, and state/timing analysis. [P2]

Hallmark Reference Designs

Hamilton Hallmark's Reference Technical Support Center does work with various

manufacturers to produce reference designs based on the latest technologies. The most

recent design was the H4T that utilized the Intel 386 EX. Hamilton Hallmark provides the

design documentation, including schematics free of charge. According to Wayne Diener,

the H4T is a battery operated hand held device with an LCD display, FLASH Memory and

an embedded DOS application. Hamilton Hallmark is also planning to make an embedded

application reference design with the PowerPC. [P3]

PC/104 Bus

As was mentioned earlier the PC/104 bus is an emerging standard in the arena of

embedded applications. There are a number of vendors who offer various cards

conforming to the PC/104 bus standard. Perhaps some implementation of the 6.115

development system could be placed on one of more of these cards with the host

processor and peripherals on one card and the core CPU on the other.

PC/104 is a consortium started by Ampro, and contains well over 100 companies

now. The PC/104 cards measure 3.6" x 3.8", and has signals which are the logical

equivalent of a 16 bit ISA bus. There is a multitude of processor, networking and I/O

boards available.

[C3]

8 .2.2 Alternative Software

Concurrent Sciences

The operating system used on the 386 EX evaluation board was the Intel iRMX

multi-tasking system. In conjunction with the iRMX system, the Softscope Debugger was

used. Softscope also features a native debugger that does not require the Intel iRMX OS

operating system. This would be an excellent selection for those users who do not require

the use of a multi-tasking operating system. The Csi-Monitor for this version takes up

only 8Kbytes of memory in the 386 EX Flash EPROM.

[P4]

QNX OS

QNX is a realtime operating system that offers a 10Kbyte microkernel. It has built-in

distributed processing and a scaleable OS that allows for the coordination of hundreds of

processors or a minimum size configuration for embedded applications. QNX offers a

host of TCP/IP utilities and supports NFS, remote procedure call and Simple Network

Management Protocol (SNMP). What is particularly attractive about QNX is it would

allow the 386EX system to boot from a network. This provides isolation as it is not

connected to the PC comm port. [C4]

9 Results and Conclusion

The focus of this project has been to illustrate the use of microcontrollers to control

system peripherals and handle system I/O while allowing a more powerful processor to

manipulate and process this data. A further goal has been to show how the current

microprocessor Lab, 6.115 might evolve over the years by offering alternatives to the

current development system. The current development system could be extended by

using off the shelf components and readily available parts. To this end the author has

illustrated an extendible architecture by implementing a system that uses a microcontrolled

unit for the collection of data, and a more powerful processor for the manipulation of that

data. The task for the processor was the filtering of data using a DSP algorithm. The

performance of this specific implementation of the processing system is adequate to show

that the 386 EX evaluation board can be extended. However the performance was by no

means stellar. The processing system was able to perform filtering on signals bandlimited

to approximately 8 kHz. The type of filtering it was able to perform was reasonable. At

the 8 kHz band limit it could perform low, mid range, and high pass filtering via a 13 point

type I FIR. An example of a filtered output appears below, note that the lowpass filter

does not pass the high frequency components at the edge of a square wave.

Consequently, the output signal is not as sharp as the input. The mediocre performance of

the system is not do to an inadequacy of design but rather the result of using a general

purpose processor for a specific task. However, the goal was to illustrate how one might

use a reconfigurable architecture to accomplish some task. And this goal has been

accomplished more than satisfactorily.

Figure 23: The Low Pass Filtered Output from a Square wave

10 Acknowledgments

Much of the material for the research of the embedded systems has come from the

Internet. The usenet news groups comp. arch. embedded, comp. sys. powerpc

have proved particularly helpful in finding material for this development system. The

comp. arch. embedded was also beneficial in seeing what other universities and people

in industry are doing with embedded systems and microprocessors. The PowerPC mailing

list has provided an ample amount of information on the Power PC.

Special thanks goes to Aaron Schultz, a 6.115 T.A. for his tireless support of the 386EX

development system and his useful instructions regarding its use. Special thanks, are also

in order for Marty Hughes, who has been instrumental in providing support for the lab

facilities. The author would also like to extend gratitude to Adi Askenazi for his

instructions on the use of the Evaluation Board and the iRMX operating system, and

Steve Jones for his assistance and encouragement with the 386 EX applications

programming. Beth Frey has provided excellent technical support of Concurrent Science's

Soft Scope Monitor. The author would also like to thank New Micros technical Software

technical support for their assistance with the Forth Operating System.

11 Appendix

11.1 REFERENCES

11.2 CONTACT PERSONNEL

11.3 68HC11 REGISTER DESCRIPTIONS

11.4 386EX REGISTER DESCRIPTIONS

11.5 386EX MEMORY MAP

11.6 68HC11 MEMORY MAP

11.7 CODE LISTINGS

11.8 SCHEMATICS

References

[1] HP64000 Development System Reference, Hewlett-Packard, 1988.

[2] Gilbert, Marcus-Alan. The Design and Implementation of an EPROM
Programmer and Development System, 1994.

[3] B. Furht, W.A. Halang. A Survey of Real-Time Computing Systems.
International Journal of Mini & Microcomputers, Vol. 16 No. 3, 1994.

[4] PCI Quick Reference Guide. Intel Fax Back Doc 7279. Intel Corporation, 1994.

[5] 82430 FX PCI Chip Set Product Overview. Intel Fax Back Doc 7089. Intel
Corporation, 1994.

[6] PowerPC News:Power PC 601 . Information available at
http://power.globalnews.com/articles/4995.htm, IBM Corporation, 1995.

[7] PowerPC 601 Risc Microprocessor User's Manual. Order Number
MPC601UM/AD Rev 1, Motorola Corporation, 1995.

[8] NMIX/T-0020 Hardware Manual. New Micros, Inc. 1993

[9] Hersch, Russ. The 68HC11 FAQ. Posted at regular intervals to the following
newsgroups: comp.realtime, comp.robotics,

sci.electronics,
comp.answers and sci.answers. 1995.

[10] The Motorola M68HC11 Reference Manual, Order Number M68HC11RM/AD
Rev 3. Motorola, 1991.

[11] The UMMAX Forth Version 3.3 Reference Manual. New Micros, Inc. 1993

[12] Hilburn, John and David E. Johnson. Manual of Active Filter Design.
McGraw-Hill, New York, 1993.

[13] The 386 Embedded Microprocessor Hardware Reference, Order No:
272485-000. Intel Corporation, 1994.

[14] The 386 Evaluation Board Manual, Order No. 272525-002.
Intel Corporation, 1994.

[15] The 28F400BL-T/B, 28F400BL-T/B, 4 MBIT (256K x 16, 512K x 8) Low
Power Boot Block Flash Memory Family. Order No. 290450-004. Intel

58

Corporation, 1994.

[16] The AD7837/AD7847 Complete, Dual 12-Bit MDACs. Analog Data, Vol II pg.
2-681-2-692 . Analog Devices, 1994.

[17] Matthews, John. Forth Applications in Engineering and Industry. Ellis
Horwood Ltd, West Sussex, England. 1989.

[18] Kail, P.A.C. Forth: A Complete Course in the Forth Programming Language.
Kogan Page Ltd. London. 1989.

[19] Tracy, Martin, Anita Andersen and Advanced MicroMotion, Inc. Mastering
Forth. Simon & Schuster, Inc. 1989.

[20] Oppenheim, Alan v. and Ronald W. Schafer. Discrete Time Signal Processing.
Prentice Hall, Englewood Cliffs, NJ. 1989

[21] Siebert, William. McC. Circuits, Signals and Systems. McGraw-Hill
Cambridge, MA 1985.

[22] Sigmon, Kermit. Matlab Primer, 4e. ISBN# 0-8493-9440. CRC Press, Inc.
1994

[23] The Inte1386 SX Microprocessor Programmer's Reference Manual.
Order No. 240331-002. Intel Corporation, 1991.

[24] iRMX EMB Operating System, System Calls Dictionary. Order No.
619204-001. Intel Corporation, 1994.

[25] Hersch, Russ. The 8051 FAQ. Posted at regular intervals to the following
newsgroups: comp.sys.intel, comp.realtime,

comp. robotics,
comp.lang.forth and sci.electronics. 1995

[26] PowerPC News. Available at http://www.power.globalnews.com or via
electronic mail at add@power . globalnews . com, 1995.

[27] Boasson, M. Dreams and Realities in Distributed Real-Time Systems.
International Journal of Mini & Microcomputers. Vol. 17, No. 1, 1995.

[28] Dobbe, Iwan edited by Bruce Scheier. Faster FFTs. Dr. Dobb's Journal. Vol. I
Issue 2. February, 1995

[29] Digital Labs. http://nyquist.ee.ualberta.ca/digital/digital.html, 1995.

[30] Styer, Eugene. On the Design and Use of a Simulator for Teaching Computer
Architecture. SIGCSE BULLETIN. Vol. 26 No. 3 Sept. 1994.

Company Contacts & Contact Personnel

This section lists some of the contacts, the author has made while gathering information

for this document.

[Cl] Concurrent Sciences. Inc.
P.O. Box 9666
Moscow, Idaho 83843
(208) 882-9774

[C2] The Intel BBS. (916) 356-3600

[C3] The PC/104 Consortium.
849B Independence Avenue
Mountain View, CA 94043.
Phone: (415)903-8304
Fax: (415)967-0995

[C4] QNX Software Systems, Ltd.
175 Terrence Matthews Crescent
Kanata, Ontario, Canada K2M 1W8
(613) 591-0931 FAX (613) 591-3579

[P1] Paul Kulp
Doctoral Candidate, Computer Engineering
Rensselaer Polytechnic Institute
kulpp2@rpi.edu

[P2] Mark Brindle
Hewlett-Packard Little Falls Site
brinde@lf.hp.com

[P3] Wayne Diener - Technical Programs Manager
Hamilton Hallmark (an Avnet Company)
3011 South 52nd St.
Tempe, AZ 85282
wdiener@tsc.hh.avnet.com

[P4] Beth Frey
Technical Support
bf@consci.com

tel: 208-882-0445

Relevant 68HC11 Register Descriptions

A * indicates this bit position is reserved and not used.

Register Name Bit Position Hex

Address

7 6 5 4 3 2 1 0

PortA OxB000

PA7 PA6 PA5 PA4 PA3 PA2 PAl PAO

This register is used to read and write port A, the first 3 lines PAO-PA2 are configured for output only, the
PA6 and PA5 lines are dedicated outputs and the PA7 and PA3 lines can be configured as either inputs or
outputs.

PortD OxBOO8

* * PD5 PD4 PD3 PD2 PD1 PDO

The Port D data register is used to read and write Port D. Bits 0-5 can be used for general I/O while the

top bits are reserved.

DDRD OxBOO9

* * Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit O

The Port D data direction registers is used to indicate, whether an I/O pin is an input or an output. A zero
in the corresponding bit position indicates that the Pin is an input and conversely a one designates an
output.

PACTL OxBO26

DDRA7 PAEN PAMOD PEDGE DDRA3 * RTR1 RTRO

Bit 7 DDRA7 controls the direction of Port A pin 7. When this bit is set pin 7 is an output and when it is

cleared pin 7 is an input. The PAEN, PAMOD, PEDGE control the Pulse accumulator. DDRA3 functions

similar to DDRA7 as it controls the I/O status of Port A pin 3.

IADCTL OxBO30

CCF * SCAN MULT CD CC CB CA

The CCF indicates that a conversion has completed when this bit is set. The SCAN bit selects one of the

modes or operation. When the SCAN bit is set the A/D runs in continous mode and the registers are

successively rewritten. When this bit is clear the A/D only makes four conversions. The MULT bit

indicates whether there is one channel or a group of channel being converted. The CD-CA bits are used

to select the channel or channels for conversion.

ADRx, x=1-4

OxBO31-34

I Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

The A/D data registers, these registers contain the eight bit result of an A/D conversion.

OPTION

ADPU CSEL IRQE DLY CME * CR1 CRO

The ADPU, A/D power up determines whether the A/D is powered up or powered down. When this bit is

set the A/D circuitry is enabled, and when ADPU is cleared the A/D is powered down.

The CSEL Bit determines whether or not the system E clock or the internal A/D oscillator will be used.

When this bit is set the internal oscillator is used for A/D conversion. Conversely, when this bit is cleared

the external clock is used.

386EX Register Descriptions

Register Name Bit Position

7 6 5 4 3 2 1 0

PxLTC

Bit7 Bit 6 Bit5 Bit4 Bit3 Bit2 Bit1 BitO

Port Latch Register, when the corresponding pin is configured as an output this bit controls what value is

driven to that output. When, the pin is configured other wise written a one to this bit causes the Pin to be

an input, and written a zero causes it to be a open collector output.

PxCFG

Pin7 Pin6 Pin 5 Pin 4 Pin 3 Pin 2 Pin Pin 1

Pin configuration, designates whtehr or not the associated pin will be driven by an internal peripheral or

controled by the PxLTC and PxDIR registers. Setting the bit causes the corresponding pin to be

controlled by an internal peripheral, and clearing this bit causes the pin to be controlled by the PxLTC and

PxDIR registers.

PxDIR

Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin O

The port data registers designates whether or not the PIN will be an input or an output setting the

corresponding bit selects and output and clearing the bit selects an input.

PxPIN

Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0

These read-only regisisters return the value on the pin associated with the bit.

68HCll Memory Map

Hex Address
FFFF

E000

B7FF

C000

B7FF

B600

Max Forth Operating
System ROM

Extemal RAM

Remapped Register Block
8000

FF
Intemal Ram 256 bytes

00 (Forth System Varibles)
00

Size

8Kbytes

8Kbytes

512 bytes

386 EX Memory Map

Hex Address

3FFFFFF

3FE0000

3F80000

OFFFFFF

0100000

000000

16 K Boot Block

Flash Memory
512KBytes

Expansion Bus

1 MB DRAM

Code Listings

The following is a listing of the program files. These include c and Forth files.

test.asm
(This code will run at exactly 128 clocks, = sampling frequency / 4)

LDX #$B030)
LABEL: LDAA $S01,X)
TAB)
ANDA #$FO
ANDB #$OF; Set RDY signal low, mask high nibble for B)
STAA $B000 ; Send High nibble and Low RDY)
LSLB ; Shift them up two places)
LSLB
STAB $B008 ; Store the low nibbles in Port D)
ADDA #08 ; assert RDY bit)
STAA $B000 ; Send the active RDY)
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
BRA LABEL)
RTS)

HEX
CODE-SUB GA2D

CE C, B030
A6 C, 01 C,
16 C,
84 C, FO C,
C4 C, OF C,
B7 C, B000 ,
58 C,
58 C,
F7 C, B008 ,
BE C, 08 C,
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
B7 C, B000
20 C, 9F C,
39 C,

END-CODE

init.4th
(4th program to initialize registers)

COLD
HEX
88 B026 C! (Set Bits 7 and 3 as to an outputs)
FF B009 C! (Set Port D 0-7 for outputs)
21 B030 C! (Continous, single channel set AN1)
80 B039 C! (Turn on A/D use external clock)

eval.c
'/ eval.c This evaluates all of the filters by having different test vectors
'/ and the different filtering coefficients
'/ May 16, 1995 Marcus-Alan Gilbert

'define N 33 i* number of h weighting factors */

tinclude <stdio.h>
:include <rmxemb.h>
:include "regadd.h"

long next_yFIR(unsigned char, char, short[]);
void send_to_d2a(long, char);
void init_386(void);

// FIR function
// D2A function
// initialize function

void main(void)

char filter_type = '1', data_type = '1';
int i;
unsigned char a[256];
long value;
short x_buffer[N]; // buffer for storing N most recent inputs

for (;;)
// Generate the different test vectors
// h - high frequency test vect, m - midband test vectors
// 1 - low freqency test vect, c - DC test signal

switch(datatype)

case 'h':
for (i = 0; i < 256; i++) a[i) = (i%2 ? 255 : 0); break;

case 'm':
for (i = 0; i < 256; i++) a[i) = ((i/4)%2 ? 255 : 0); break;

case '1':
for (i = 0; i < 256; i++) a[i] = (i/200 ? 255 : 0); break;

case 'c':
for (i = 0; i < 256; i++) a[i] = 128; break;

default: assert_error_flag(); continue;

init_386();
for(i=0;;i+,)

Since i is an unsigned char it should reset */
after 255. Which is nice because the filter */
will think the signal is repeating, which it */
is basically but we don't have to have an */
infinite array */

value = nextyFIR(a[i], filter_type, xbuffer);
send_to_d2a(value, filter_type);
if(i == 255) i = 0; // Reset i

.ong nextyFIR(unsigned char next_x, char fil_typ, short x_buffer[])
/* FIR filter */

/* compute next output from next input */
short k: * index counter */
long acc; " accumulator */
char b; * reorder index */

filter weighting fators for low pass filtershort hl[N] =

A. - -

eval.c
-1, - , 2, 4, 6, 5,
41, 95, 149, 190, 205, 190,

-21, - , , , ,

, - 0, -21,
149. 95, 41,
2, 0, -1);

-28, - , 280,
C, -13, -28,

= { 1 filter weighting

-242, 117, 409, 117, -242,
0, 3, -9, - , 1,

= {
-3,
92,
0,

" filter weighting
2, 3, -8, 0,

-307, 409, -307, 92,
- , 3, 2, -3,

fators

-154,
0,

fators
15,
59,
0,

for mid-ranre filter
34, 45. -1. %,
26, 0, -I , 45,
-1};

for high pass filter
-13, -17, -, 0,
-67, 0, 3-, -17,
2};

for(b=0; b< 33; b++) xbuffer[b] = xbuffer[b+l];
// Shift every body to left

x_buffer[32] = next_x; // The newest goes in the 33rd pzst:ion

for (k = 32, acc = 0; k > -1; k--)

switch(fil_typ){

return acc;

// I am pulling another trick here
// You are supposed to multiply the

// newest x by the first h, but : am
case '1': // multiplying the last h. The first

/* and last h's are the same because the */
/* filter is symmetric */

acc += hl(k] * xbuffer[k];
break;

case 'm':
acc += hm[k] * xbuffer[k];
break:

case 'h':
acc += hh[k] * x_buffer[k];
break;

// acc represents the sum of the partial multiplies

void send to d2a(long num, char fil_type)
{
long val;
unsigned char go;

val = num/256;
if(filtype == '1')

else

// DC rectification

if(val < 0) go = 0; // In the low pass filter if val
else go = val; / is negative it is only slightly so

/ set zero

if(val > 127) go = 255;. If we are in the mid or hand pass
(val < -127) go = 2; / filters then values go silzhtiy below

else -127 or slighlty above 12
Sf so round appropriately

val -= 127; If not add the dc signal rack
go = va-;}

asm

short
-i,

26,
34,

short
2,

-67,
-13,

-154,
-6,

hhl N]
0,

59,
15,

~3ii~B~

eval.c
mov dx,P1LTC
and al,80h /* Mask Out lower bits leaving, only the top bit
out dx, al
or al,40h /* Send Write High *
out dx, al

void init_386(void)

asm{

ck -/

ogramming the PROM */

* The first thing we have to do is to enable
expanded I/O space. /

mov ax, 8000h /' This will be REMAPCONFIG */
xchg al, ah
out 23h, al /* high byte to 23h */
xchg al, ah
out 22h, al " low byte to 22h
out 22h, ax " Word to 22h r/

/* Now set the P3 and latch values */

mov dx, P3LTC
mov al, 0
out dx, al

/* Now set I/O port direction for output. *
/* Register P3DIR and PlDIR *

mov dx, P3DIR
mov al, 00h
out dx, al

mov dx, PIDIR
mov al, 00h
out dx, al

* Set Port Mode Configuration for Port 3 */
* Register P3CFG "

mov dx, P3CFG
mov al, 80h BE its 0-6 are for outputs Bit 7 is for :he com cl:

out dx, al

mov dx, P1CFG
mov al, 3Fh /* Bits 6,7 are used for control, bit 1-5 are for Pr

out dx, al

II
s·

:5

highpv2.c
/ High Pass Filter Version 2
/ Program to produce output based upon a
// 13-pt FIR
/ Marcus-Alan Gilbert 5/16/95

#include "reg_add.h"
#include <rmxemb.h>
#define N 13

void init_386(void);

main()

short x_buffer[N), hh[N] = [/* filter weighting fators for high pass filter

1, 0, -6, 9, 18, -72, 132, -72, 18, 9, -6, 0, 1
};

init 386(); // Initialize input pins
asm

zerodetect:
mov dx, P2PIN
in al,dx
and al, 0x02
jz one_detect
mov al, OxFF
mov dx, P2LTC
out dx, al
imp zero_detect

onedetect:
mov dx,P2PIN
in al,dx /* xor al, 01h */
and al,0x02
jnz sample / jnz sample
mov dx, P2LTC
mov al, OxFE
out dx, al
imp one_detect

mov si, 0
mov bx, 0
mov cx, 0
for_loopl:

next:

// Data is Ready

cmp si, (2*N)
je done
mov ax, x_buffer[s:-2]
mov x_buffer[si],ax
cmp si, (2*(N-1))
ji next
mov al, [es:0C
mov ah,
mov x_buffer[si ,ax

Imul hh[si
add cx,ax
adc bx,dx

4_ 4
Neccessary to get over flow fr:

m low bi:

sample:

done:

gazL.ve

to be rectified

norect:

pos:

data to the D/A

over:

check:

highpv2.c
MDP for_loopl

zest bx.0xFFFF

z pos
zest ch,0x80
-r.z norect
.-ov ai., 0

.-..p check

and ch,Ox7F
.ov al,ch
r=.p check

mov cl,0
xchg cl,ch
mov al,cl

test al,0x80
-jnz over
add al, 127
jmp check

mov al, 255

mov dx, P3LTC
out dx, al
mov dx, P1LTC
and al, 80h
out dx, al
or al,40h
out dx, al
-mp zero_detect

// Test to see if it is ne

/ It is posit:-e
// It is too negative

// Its too negative and need

/ Quick div by 256

// Now its time to send the

// It is too positive

void init_386(void)

SELECTOR sel; // Selector for the Segment that contains the address of the expansion bu
s

INT_1.6 exp_ptr; // Exception pointer

sel = rae_create_descriptor(Ox01000, O . &exp_ptr);

mov ax, sel
mov es, ax

asm

/* The first thirn we have to do is to enable
expanded 'O space.

mov ax, 8000h - This will be REMAPCONFIG
xchg al, ah
out 23h, al ' high byte to 23h */
xchg al, ah
out 22h, al) low byte to 22h *
out 22h, ax - Word to 22h */

asmi

highpv2.c

/* Now set the P2 latch values */

mov dx, P2LTC
mov al, 0
out dx, al

/* Now set I/O port direction for output.
/* Register P2DIR */

mov dx, P2DIR
in al,dx
and al,0xFC // Preserve direction of higher order bits
or al, 0x02 // Put P2.0 as output and P2.1 as input
out dx, al

/* Set Port Mode Configuration for Port 3 */
/* Register P3CFG */

mov dx, P2CFG
in al,dx
and al,0xFC ,/ And Mask to allow P2.7-P2.2 to remain in same st

ate
out dx,al // and put pin 1 and pin 0 in I/O mode

_asm{
/* The first thing we have to do is to enable

expanded I/O space. */

mov ax, 8000h /* This will be REMAPCONFIG "/
xchg al, ah
out 23h, al /* high byte to 23h '
xchg al, ah
out 22h, al /* low byte to 22h */
out 22h, ax /* Word to 22h */

/* Now set the P3 and latch values */

mov dx, P3LTC
mov al, 0
out dx, al

/* Now set I/O port direction for output.
/* Register P3DIR and P1DIR */

mov dx, P3DIR
mov al, 00h
out dx, al

mov dx, PlDIR
mov al, 00h
out dx, al

/* Set Port Mode Configuration for Port 3
/* Realster P3CFG */

mov dx. P3CFG
mov a>. 80h /* Bits 0-6 are for outputs Eit 7 is for the com cic

ck *
out dx, al

midbv2.c
// Mid Band Pass Filter Version 2
/ Program to produce output based for an AD7847 basedupon a

// a 13-pt FIR
Marcus-Alan Gilbert 5/16/95

4include "reg add.h"
#include <rmxemb.h>
#define N "3

void init_386(void);

main)

short x_buffer[N], hm[N] =

init_386 () ;
asm

0, 0, 2, -25, -53, 30, 111, 30, -53 , -25, 2, 01;
Initialize input pins

zero detect:
mov dx, P2PIN
in al,dx
and al, 0x02
jz one_detect
mov al, OxFF
mov dx, P2LTC
out dx, al
jmp zerodetect

onedetect:
mov dx,P2PIN
in al,dx * xor al, 01h */
and al,0x02
7nz sample // jnz sample
mov dx, P2LTC
mov al, OxFE
out dx, al
imp one detect

Data is Ready

cmp si, (2*N)
je done
mov ax, xbuffer[si+2]
mov x_buffer[si],ax
cmp si, (2*(N-1))
1 next
mov al, [es:0]
mov ah, 0
mov x buffer[si],ax

imul hm[si]
add cx,ax
adc bx,dx

tmp for_ioopl

Neccessar- -o age over flow -r

sample:

mov si,
mov bx, C
mov cx, o
for loopl:

next:

m low bit

to be rectified

norect:

pos:

DiA

over:

check:

midbv2.c
-z pos
test ch,0x80
-nz norect
mov al, 0

// It is positive
// It is too negative?

// Its too negative and need

nmp check

and ch,Ox7F
mov al,ch
ime check

mov cl,0
xchg cl,ch
mov al,cl //

test al,0x80
inz over
add al, 127
jmp check

// Quick div by 256

Now its time to send the data to the

// It is too positive

mov al, 255

mov dx, P3LTC
out dx, al
mov dx, P1LTC
and al, 80h
out dx, al
or al,40h
out dx, al
imp zerodetect

void init_3S6(void)

SELECTOR sel; // Selector for the Segment that contains the address of the expansion bu
s
"INT_16 exp_ptr; // Exception pointer

sel = rqe_createdescriptor(0x01000l , O , &exp_ptr);
asm {

mov ax, sel
mov es, ax

asrr.
'* The first thing we have to do is to enable

expanded I/O space. '/

mov ax, 8000h '* This will be REMAPCONFIG */
xchg al, ah
out 23h, al * high byte to 23h */
xchg al, ah
out 22h, al - low byte to 22h *
out 22h, ax - Word to 22h */

/* Now set the P2 latch values */

midbv2.c
mov al, 0
out dx, al

/* Now set I/O port direction for output. */
/* Register P2DIR *

mov dx, P2DIR
in al,dx
and al,0xFC
or al, 0x02
out dx, al

// Preserve direction of higher order bits
// Put P2.0 as output and P2.1 as input

/* Set Port Mode Configuration for Port 3 */
/* Register P3CFG */

mov dx, P2CFG
in al,dx
and al,OxFC // And Mask to allow P2.7-P2.2 to remain in same st

out dx,al // and put pin 1 and pin 0 in I/O mode

/* The first thing we have to do is to enable
expanded I/O space. */

mov ax, 8000h /* This will be REMAPCONFIG */
xchg al, ah
out 23h, al /* high byte to 23h */
xchg al, ah
out 22h, al
out 22h, ax

/* low byte to 22h
/* Word to 22h */

/* Now set the P3 and latch values */

mov dx. P3LTC
mov al, 0
out dx, al

/* Now set I/O port direction for output. */
/* Register P3DIR and PlDIR "/

mov dx, P3DIR
mov al, 00h
out dx, al

mov dx, P1DIR
mov al, 00h
out dx, al

/* Set Port Mode Ccnfiguration for Port 3
'* Register P3CFG *

mov dx, P3CFG
mov al, 80h /* EBis 3-6 are for outputs Bit 7 is for the com clo

out dx, al

ate

_asmn

lowpv2.c
Low Pass Filter Version 2
Program to produce output for the AD7847 based upon a

/ a 13-pt FIR
/ 5/16/95 Marcus-Alan Gilbert

;znclude 'reg add.h"
•#nclude <rmxemb.h>
#define N 13

void init__86(void);

main()

short x_buffer[N] ,
hl [N

-1, 0, 4, 15, 33, 49, 56, 49, 33, 15, 4, 0, -1

init 386(); // Initialize input pins
asm

zero detect:
mov dx, P2PIN
in al,dx
and al, 0x02
jz onedetect
mov al, OxFF
mov dx, P2LTC
out dx, al
jmp zero_detect

one detect:
mov dx,P2PIN
in al,dx /* xor
and al,0x02
-nz sample //
mov dx, P2LTC
mov al, OxFE
out dx, al
jmp one_detect

sample:
mov si, 0
mov bx, 0
mov cx, 0
for_loopi:

al, 01h */

Ready to obtain sample

cmp si, (2*N)
je done
mov ax, x_buffer[si+2]
mov x_buffer[si],ax
cmp si, (2*(N-1))
jl next
mov al, [es:01
mov ah, 0
mov x buffer[si],ax

imul hl[si]
add cx,ax
adc bx,dx
Inc si

pos:

check:

jmp zero_detect

lowpv2.c
xchg cl,ch
mov al,cl
test bx,OxFFFF
jz check
jns pos
mov al, 0 //
jmp check

mov al, 255

mov dx, P3LTC
out dx, al
mov dx, P1LTC
and al, 80h
out dx, al
or al,40h
out dx, al

Its negative

void init_386(void)

SELECTOR sel;// Selector for the Segment
// of the expansion bus

UINT_16 exp_ptr; // Exception pointer

that contains the address

sel = rqecreate_descriptor(0x0100000, 0, &expptr);
_asm {
mov ax, sel
mov es, ax

/* The first thing we have to do is to enable
expanded I/O space. */

mov ax, 8000h /* This will be REMAPCONFIG */
xchg al, ah
out 23h, al /* high byte to 23h */
xchg al, ah
out 22h, al /* low byte to 22h */
out 22h, ax /* Word to 22h */

/* Now set the P2 latch values */

mov dx, P2LTC
mov al, 0
out dx, al

/* Now set I/O port direction for output. */
/I Register P2DIR *

mov dx, P2DIR
in al,dx
and al,OxFC // Preserve direction of higher order bits
or al, 0x02 // Put P2.0 as output and P2.1 as input

_asm{

V

asmt

lowpv2.c
/* Set Port Mode Configuration for Port 3 */
/* Register P3CFG *

mov dx, P2CFG
in al,dx
and al,OxFC
out dx,al

/* The first thing we have to do is to enable
expanded I/O space. */

mov ax, 8000h /* This will be REMAPCONFIG */
xchg al, ah
out 23h, al /* high byte to 23h */
xchg al, ah
out 22h, al /* low byte to 22h */
out 22h, ax /* Word to 22h */

/* Now set the P3 and latch values */

mov dx, P3LTC
mov al, 0
out dx, al

/* Now set I/O port direction for output. */
/* Register P3DIR and P1DIR */

mov dx, P3DIR
mov al, 00h
out dx, al

mov dx, PlDIR
mov al, 00h
out dx, al

/* Set Port Mode Configuration for Port 3 */
/* Register P3CFG */

mov dx, P3CFG
mov al, 80h
out dx, al

mov dx, P1CFG
mov al, 3Fh
out dx, al

filters.m
% Matlab file for Frequency Response values based on the 68HC11 A/D,
% and the test vector frequency values.

% Marcus-Alan Gilbert 5/16/95

actionl='print -deps filterl.eps;'
action2='print -deps filter2ac.eps;'
action3='print -deps filter3ac.eps;'
action4='print -deps filter4ac.eps;'
action5='print -deps filter5ad.eps;'
action6='print -deps filter6ac.eps;'

! rm filter.dia
diary filter.dia
diary on;
echo on;

figure(l); clf;

% Original Low Pass Filter coefficients from 6.115 course

hi = [-.0098732 -.0112578 -.0113833 -.0104106 -.0076728 -.0035061 .0025324 .0098510
.0186274 .0280183 .0379873 .0475351 .0565439 .0640174 .0699282 .0734527 .0748049

.0734527 .0699282 .0640174 .0565439 .0475351 .0379873 .0280183 .0186274 .009
8510 .0025324 -.0035061 -.0076728 -.0104106 -.0113833 -.0112578 -.00987321;

% Frequency Responses

[HL, Wi = freqz(hl, 1, 4096);

% The Redesign of the original Low Pass Filter to have the same number
% of significant digits and the same number of coeffiecients as the
% other firl designed filters

hlred = firl(12, .2);

[hrFT, W1 = freqz(hlred, 1, 4096);
Wk = 0:4095;
plot(W/pi, abs(HL), '-', W/pi, abs(hrFT), ':');
title('The original (from 6.115) and Redesigned Low-Pass Filter Freq Responses');
set(gca, 'Fontname', 'Symbol');
xlabel('w'); set(gca, 'Fontname', 'Helvetica');
ylabel('IH(e^jw) I');

legend('-', 'Original Filter', ':', 'New Filter');
eval(actionl);

% Redesigned Filters based upon the Matlab firl functions
% and their corresponding frequency responses, to create a 13 pt. FIR
% filter

figure(2);clf;

hm = firl(1! , [.2 .6]);
[HM, W] = freqz(hr., 1, 4096);
hh = firl(12, .6, 'high');
[HH, W1 = freqz(hh, 1, 4096);

filters.m

subplot(3,1,2);
plot(W/pi, abs(HM), '-');
title('The original (firl) Mid-Band Filter Frea Responses');set(gca, 'Fontname','Symbol');x
label('w');set(gca, 'Foncname', 'Helvetica');ylabel('IH(e^jw) I');

subplot(3,1,3);
plot(W/pi, abs(HH), '-');
title('The original (firl) High Pass Filter Freq Responses');set(gca, 'Fontname','Symbol');
xlabel('w');set(gca, 'Fontname', 'Helvetica');ylabel('IH(e^jw) ');

orient tall;
eval(action2);

% Shift Cut the bits of significance and round result for a fixed point
% computation.

hlnew = round(256 * hl_red);
hm_new = round(256 * hm);
hh_new = round(256 * hh);

hl-new
hm_new
hhnew

figure(3);clf;

% Scaled and rounded frequency responses

[hlnFT, W] = freqz(hlnew, 1, 4096);
[hmnFT, W] = freqz(hmnew, 1, 4096);
[hhnFT, W] = freqz(hh new, 1, 4096);

subplot(3,1,1);
plot(W/pi, abs(hlnFT), '-');
title('Scaled, Redesigned, and Rounded Low Pass Filter Freq Responses');set(gca,'Fontname'
,'Symbol'u;xlabel('w');set(gca, 'Fontname', 'Helvetica');ylabel('IH(e^jw)I');

subplot(3,1,2);
plot(W/pi, abs(hmnFT), '-');
title('Scaled and Rounded Band Pass Filter Freq Responses');set(gca, 'Fontname','Symbol');x
label('w';;set(gca, 'Fontname', 'Helvetica');ylabel('IH(e^jw) ');

subplot(3,1,3) ;
plot(W/pi, abs(hhnFT), '-');
title('Scaled and Rounded High Pass Filter Freq Responses');set(gca,'Fontname','Symbol');x
label('w',;set(gca, 'Fontname', 'Helvetica');ylabel('IH(e^jw) ');

% Check to make sure that rounded performance is satisfactory
% In the software for the 386EX these values will be divided by 256 =
% 2^8
orient tall;
evai(action3);

figure(4);clf;

% Correspcnding Continuous Time Frequency Responses
% This helps us evaluate filter performance

subplot(3,1,l);

....

filters.m
set(gca,'FontAngle', 'italic');xlabel('f (kHz)');
set(gca,'FontAngle','normal');ylabel('IH(e^j2pi*f) !');

subplot(3,1,2);
piot(W/pi*7.2125, abs(hmnFT), '-');
title('Scaled and Rounded Band Pass Filter Freq Responses');set(gca,'FontAngle','italic');
xlabel('f (kHz)');set(gca, 'FontAngie', 'normal');yiabel(' IH(e^j2pi*f) ');
subplot(3,1,3,,;
plot(W/pi'7.2125, abs(hhnFT), '-');
title('Scaled and Rounded High Pass Filter Freq Responses');set(gca,'FontAngle','italic');
xlabel('f (kHz)');set(gca, 'FontAngle', 'normal');ylabel(' H(e^j2pi*f) ');

orient tall;
eval(action4);

figure(5);cif;

n = 0:12;

subplot(3,1,4);
stem(n, hl_new);
title('Redesigned Low Pass Filter Coefficients');xlabel('n');ylabel('hl[n]');

subplot(3,1,2);
stem(n, hm_new);
title('Redesigned Mid-Band Pass Filter Coefficients');xlabel('n');ylabel('hm[n]');

subplot(3,1,3);
stem(n, hhnew);
title('Redesigned Low Pass Filter Coefficients');xlabel('n');ylabel('hh[n]');

orient tall:
eval(action5);
figure(6);clf;

% Uni-polar Test Vector Frequency Responses

n = 0:255;
constftest = ones(32);
[cFT, Wi = freqz(constftest, 1, 4096);
lowftest = round(255.^(cos(pi*floor(rem(n/40,2)))));
[1FT, WI = freqz(lowftest, 1, 4096);
midftest = round(255.^(cos(pi*floor(rem(n/4,2)))));
[mFT, W1 = freqz(midftest, 1, 4096);
highftest = round(255.^(cos(pi*floor(rem(n,2)))));
[hFT, W] = freqz(highftest, 1, 4096);

subplot(4,1.) ;
plot(W/pi, azs(cFT), '-');
title('Constant Test Vector Freq Responses');set(gca,'Fontname','Symbol');xlabel('w');set(
gca, 'Fontname', 'Helvetica');ylabel(' !H(e^jw) i');

subplot(4,1,2);
plot(W/pi, abs(lFT), '-');
title('Low Frequency Test Vector Freq Responses');set(gca,'Fontname','Symbol');xlabel('w')
;set(gca, 'Fontname', 'Helvetica');ylabel(' IH(e^jw) ');

subpioz 4, 1,
piot(W/pi, azs(mFTI, '-')
title('Mid-Band Frequency Test Vector Freq Responses');set(gca,'Fontname','Symbol');xlabel
ý'w');set(gca, 'Fontname', 'Helvetica');ylabel(' H(e^jw) I');

filters.m
title('High Frequency Test Vector Freq Responses') ;set(gca, 'Fontname', 'Symbol') ;xlabel('w'
);set(gca, 'Fontname', 'Helvetica');ylabel(' IH(e^]w) ');
orient ::all;
evai(ac ion6) ;

echo off;
diary off;

l
f 4 ot,

Schematics

The schematic below illustrates the connections between the 386 EX EVB and the

68HC11 Evaluation Board. Detailed schematics of these board follow.

J2

LS244

ULLC- L14'LL
i -- --- ----

t; iT -1(

f-

-ri --r
___ i'__ I --

e ~i

ri l (oI .., . ;.:o':-,•_ • ' ,

Ill)l• _•- :J-= •)-

B =le e~e~;rsa~ r·o
I;;

u Y "-" "O'"""'~"---rrrrr~rr~··~~ ~ ·-

`i 1TTr;~t'l'lsfz=~'i ~"~~'

lii~.LI H

h

°- -" -' - -

)Il- 1i
:iL-- T-

I

"

rdi

-3rl
i i

J.:

t ;

•..•

•.E

A

~~U

* I'

* Iii

rr r

-I -1,

A~ -

z
0
H

1

K i

A!

~ih·I

I i:l " P'~I

