
Building An Interactive Occupant Packaging Model With

Human Figure

by

Megan Cathleen Jasek

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1995

@ Megan Cathleen Jasek, MCMXCV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part, and to grant

others the right to do so.

A uthor v.. .-; ' ' " ,.................
Department of Elect cal Enginekrng and Computer Science

/ May 12, 1995

,~r)
Certified by

Sb David Zeltzer
Principal Research Stientist, Researc Laboratory of Electronics

Thesis Supervisor

Accepted by '......

Chairman, Department Com ittee

iASSACHUSETTS INSTU'ITT
OF TCHN~0LOGY

AUG 101995

.

F. R. Morgenthaler
on Graduate Theses

LIBRARIES rk E0

r

I

6 ki I

Building An Interactive Occupant Packaging Model With Human Figure

by
Megan Cathleen Jasek

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 1995, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The first Occupant Packaging Model (OPM) system was created. The OPM system is
a human factors analysis tool which allows industrial designers visual access to template
cockpits and AliasTM concepts in a three-dimensional interactive environment. For a com-
plete evaluation, it incorporates interaction with a computer human model and visually
displays simple human factors data. These four modules of OPM were implemented with
straightforward algorithms and provide a foundation for this type of tool. Expanding these
algorithms will provide industrial designers with a product that helps them improve con-
cept design through improved usability by examining human movement in the cockpit and
improved aesthetics by visualizing all cockpit objects together.

Thesis Supervisor: David Zeltzer
Title: Principal Research Scientist, Research Laboratory of Electronics

Acknowledgments

All of my co-workers at Delco were extremely pleasant and fun to work with. I would like

to acknowledge the leaders of the User Interface Development group, Kathy McCombs and

Mark Adamski, as well as the rest of the industrial designers for teaching me what design

means. I would like to thank Delco for its financial support during the first six months of

this project.

I would like to thank David Zeltzer for accepting the responsibility to supervise my thesis

and being the coolest supervisor I know. (Except for that one day when he threatened that

I would not graduate this term.)

The VETT lab has been a crutch to my experience. I especially appreciated the help

from Rakesh Gupta and Nick Pioch and the feedback and ideas from the rest of the lab

members.

I would also like to thank the fate of the world for giving me an outstanding life full of

opportunities and making me the luckiest woman in the world.

Finally, I would like to thank whoever is in change of the job market for making it

incredibly easy for me to find a job in my field this year.

Contents

1 Introduction 13

2 Related Work 15

3 OPM Requirements 19

3.1 Characterization of Users 21

3.2 Graphical User Interface (GUI) 21

3.3 Integrated Cockpit 22

3.4 Human Figure Model 23

3.5 Human Factors Data 24

3.6 OPM Requirements Summary 24

4 Code Structure and Design 27

4.1 The 3d Language 27

4.2 Modularization of Code 28

4.3 Coding Conventions 28

5 Interaction with the Alias Modeling System 31

6 Graphical User Interface 33

6.1 Design and Positioning of Windows 33

6.1.1 Main W indows 34

6.1.2 Information Windows 36

6.1.3 Color Scheme 37

6.2 Command Loop 37

6.3 Viewing Capabilities 38

6.4 Identifying Coordinates 39

6.5 U nits 39

6.6 H elp 40

7 The Integrated Cockpit 41

7.1 Cockpit Templates 41

7.1.1 Directory Structure of Components 42

7.1.2 File Capabilities44

7.1.3 Dimension Capabilities 46

7.2 Design Concepts 51

7.2.1 Loading and Removing Concepts 51

7.2.2 Internal Concept Structure 53

7.2.3 Translating and Rotating Concepts 53

7.2.4 Simple Alias Concepts 53

8 The Human Figure 55

8.1 Loading, Removing, and Translating the Human 55

8.2 Denavit-Hartenberg Specification 56

8.3 Animation 59

8.4 Collision Detection 62

8.5 Forward Kinematics 62

8.6 Inverse Kinematics 63

8.6.1 Calculation of the shoulder _elbowvector 64

8.6.2 Calculation of the arm angles 66

8.7 Anthropometry 69

8.8 Alias Figures 70

9 Human Factors Information 71

9.1 The Sight Cone 71

9.2 The Eyellipse 72

10 Evaluation 77

11 Future Work 79

11.1 Modular Enhancements 79

11.2 Summary of Enhancements 82

12 Conclusions 83

A Evaluation Forms 85

List of Figures

4-1 Modular dependency diagram for OPM code 29

6-1 Main windows of the graphical user interface 35

7-1 Cockpit with radio concept and Variables window 47

8-1 Large, male human model loaded into a cockpit 57

8-2 Transformation between joint n and n + 1 on a dhchain 58

8-3 Locations of the joints for the human figure 60

8-4 Arm vectors for inverse kinematic calculations 65

9-1 Sight cone added to an average, female human model in the cockpit environment 73

9-2 Close up view of the eyellipse added to an average, female human model in

the cockpit environment 75

List of Tables

7.1 Exact directory paths for the body components of a cockpit 43

7.2 Exact directory paths for the parts components of a cockpit 43

8.1 Definitions for Denavit-Hartenberg parameters 56

8.2 Denavit-Hartenberg parameters for the arms 61

8.3 Degrees of freedom for special forward kinematic functions 63

Chapter 1

Introduction

There is a new idea on the horizon of interior automotive electronic concept design called The

Integrated Cockpit. This notion strives to bring the design of all of the interior electronic

components of a car together with the cockpit itself. Currently, automotive industrial

designers are trying to synthesize this complicated world by studying the pieces separately.

It would be beneficial if they had a tool that enabled them to visualize their new designs

both individually and with the rest of the automobile interior.

Delco Electronics recognized opportunity and strived to create a visual tool so that

designers could capture all of their designs together in the cockpit and easily manipulate

them. In the process, they realized that they could also visualize other information in this

virtual world such as human factors and occupant packaging data. To make the picture

complete a computerized human model could be added with simple movement capabilities

to interact with the components of the cockpit and the new concept designs. There have

been few previous systems that have tried to integrate cockpits, design concepts, a virtual

human, and human factors data, let alone with a visual tool.

A tool like this will benefit the design process in multiple ways. First of all, it will

help the designers create more aesthetic and functional designs by enabling them to look

at all of the components in the cockpit simultaneously. Knowing how a human can interact

with what they build will facilitate more usable products. Secondly, it will bring gross

design errors to the forefront, so that they can be corrected before any prototypes are built.

Overall, it will save money by decreasing the number of prototypes that need to be built

while increasing the quality of interior component design.

This project broke new ground as it attempted to create the first OPM (Occupant

Packaging Model) system. The objective of this project was to build a human factors

analysis tool for the User Interface Development group at Delco Electronics in Kokomo,

Indiana. In designing this tool, attention was paid to the needs specific to Delco and

design issues were dictated and constrained by their desires and resources. The tool allows

the user to bring up a template of the cockpit of an automobile in a three-dimensional

interactive environment and load new design concepts from the Alias1 modeling system.

Human interaction with the cockpit and the new concepts can be effected by bringing a

human figure into the environment and performing simple manipulations. Furthermore,

simple human factors data can be visualized using the main menu.

The requirements, implementation, and evaluation of the OPM system are described in

the rest of this thesis. Chapter 2 outlines related work in the fields of human animation and

occupant packaging. The overall requirements and specifications are detailed in chapter 3.

Chapter 4 describes some general coding guidelines. The Alias modeling system and how it

relates to this project is described in chapter 5. The next chapter examines the function and

design of the graphical user interface. The features for the cockpit templates and the design

concepts are described in chapter 7. The implementation of the human figure including

the Denavit-Hartenberg specification, collision detection, forward and inverse kinematics,

and anthropometry are explained in chapter 8. Chapter 9 summarizes the human factors

information that can be visualized. Finally, the last three chapters include an evaluation of

the project, considerations for future work, and concluding remarks.

The following are conventions that will be followed throughout this thesis. The terms

user and designer will be used interchangeably to denote the users of the OPM system.

The term design concept also referred to as concept is defined as any interior automotive

electronic component design. The symbol 3d refers to the computer language in which the

OPM system was written, whereas, 3D refers to the three dimensions in the world. The

terms cockpit, template, and project will be used interchangeably to refer to a cockpit model

used in the OPM system.

1Alias is a trademark of Alias Research, Incorporated.

Chapter 2

Related Work

Delco's goal was to find a system that explored the use of graphical technology by integrating

cockpits and humans, but required a minimal investment of their resources. Through an

informal review of the present systems that do this kind of work, they found that the

currently available systems were incomplete, too complex, too expensive, or a combination

of all three. Consequently, they set out to build a system of their own.

Norman Badler and his colleagues at the University of Pennsylvania have done extensive

work in human figure animation. Badler has created the Jack system [BPW93] for work

with human factor analysis in its many different applications. The goal of the system was to

model a human figure with reasonable biomechanical structure and form and then use this

system in human factors applications ranging from population studies to comfort evaluation

of new products. The Jack system encompasses a wide range of aspects concerning the

human figure. On the most basic level it investigates how to model the human body.

The Jack model is complex because it includes a flexible torso that simulates a multi-

vertebra being and incorporates strength when moving and guiding body parts. In addition

to low-level modeling, Jack also deals with the spatial interaction of the human with its

environment including issues concerning the reachable space around the human. On a

higher level, it considers the coordinated tasks that the human can perform using its base

biomechanical movements including attempts to integrate behavioral control with human

action.

Jack provides a great deal of information about the shape and movement of a human

figure. Unfortunately, Jack is too expensive and too complex for use in this project. Based

on the needs of Delco the comprehensive capabilities of the Jack system are unnecessary.

Delco wanted to experiment with this type of technology to see if it were useful by creating

a simple prototype. If the benefits proved worthwhile, then more time and money would

be invested in this type of work. The project need only handle the form of the human and

its simplest biomechanical movements for Delco's purposes. An analysis of high- level tasks

and cognition would be extravagant.

Swetlana Gaffron did work that was similar to Badler's work in computer human ani-

mation with her Skillbuilder tool [Gaf94]. Her program was designed to provide a model

of a human figure that functions in a virtual world. It is an autonomous model that can

independently carry out movements in its environment. The goal of her work was to create

a library of motor programs that execute motor skills. When combined, these motor skills

created high-level actions, so the user could manipulate the human figure without having

to specify a large set of low-level data. Gaffron's project focused on enabling the computer

figure to reach, grasp, and manipulate a simple object.

Gaffron's work spends too much time coordinating high-level movements and is incom-

plete. Her figure can carry out tasks that are more complicated than the tasks needed for

this project and that only use one limb. She goes into much more depth when specifying

the actions that the figure will perform and has only created actions for a small part of the

human body.

In the mechanical engineering field, there is a group of software tools dealing with the

analysis of multibody systems that are used in modern mechanical computer-aided engineer-

ing (MCAE). Engineers can perform kinematic, static, and dynamic analyses of mechanical

systems. The oldest and most widely used of these programs is called ADAMS for Au-

tomated Dynamic Analysis of Mechanical Systems [Rya90O]. The program is designed to

characterize the overall motions of complex rigid and flexible mechanical systems. By ac-

curately predicting the interactions of subparts of new system designs, important analyses

can be made that highlight system design errors before expensive prototypes are built. The

ADAMS system uses the fast computational abilities of a computer to develop a mathe-

matical model for the system, formulate equations governing the behavior of this model,

and find a mathematical solution for the system. The inputs to the program consist of

descriptions and constraints of the subparts of the system being studied. Outputs include

positions, velocities, and forces of the components in the form of tables, figures, and graphs.

ADAMS also has an Android module that enables it to model a human figure to be used

for interaction with a multibody system.

Delco could have used ADAMS to set up a model of the cockpit of a car, convert new

automotive interior designs to be included with the cockpit, and create a human figure with

the Android module. ADAMS would have carried out the necessary human actions and then

given a detailed analysis of the motion of the system. Unfortunately, there is very little

motion that needs to be analyzed. A typical radio design does not have much movement

aside from turning a knob. The ADAMS system performs a great deal of mathematical

computation on the mechanical system that is unneeded for this project. Delco is more

interested in the display of human interaction with new designs and some of the specific

human factors data that is associated with it.

There are a number of other human movement systems that were not appropriate be-

cause they did not exhibit the desired behavior. For example, Thalmann and Magnenat-

Thalmann created the Human Factory which can perform automated walking and grasping

behaviors, but focuses on key frame-like animation that is better suited for making movies

than for real-time human interaction [MTT90, MTT91]. Finally, the PINOCCHIO system

described by Maiocchi and Pernici is capable of modeling realistic human movement. Since

this system relies mostly on pre-recorded human movements to control virtual characters,

it has a limited capability for describing interactions with other objects in a scene [MP90].

Delco Electronics and General Motors are continuously doing work in occupant packag-

ing'. Ron Roe investigated the development and application of SAE (Society of Automotive

Engineers) tools used in occupant packaging [Roe91]. His work describes how these tools

are used to define spatial constraints for occupants in motor vehicles. In order for the

vehicle to be designed correctly, it is necessary to establish the available interior space

and arrange the interior components using safety requirements for each of the occupants

of the vehicle based on vehicle type. Roe also explains how these spatial requirements are

calculated and how the human beings for which they are designed are measured. Some

of the available occupant packaging tools that are used for spatial measurement include

the H-point machine, eyellipses 2 , head position contours, and hand control reach envelopes.

Roe emphasizes the need to continue developing occupant packaging data and to compile

1The study of comfortably fitting (packaging) human beings (occupants) into automobiles.2The word 'eyellipse' was formed by combining 'eye' and 'ellipse'.

the current set of data that already exists.

This project uses some of the tools and definitions described by Roe and attempts to

visualize this data.

Chapter 3

OPM Requirements

The idea for this project was generated by the User Interface Development group at Delco

Electronics. The program was a supplementary project in the group intended to be an

experiment to survey the capabilities of graphical technology. As a cooperative student at

Delco, I was given the challenge of exploring the possibilities for this technology and thus

had a large amount of freedom to design the system according to my inclinations.

The OPM system was designed to visually synthesize the integrated cockpit, human

figure interaction with that cockpit, and human factors data. The visual aspect of the

system was implemented through a graphical user interface. Cockpit and concept features

are available to incorporate the integrated cockpit. Human figure interaction is provided

through a computer model of a human figure and features that allow movement of this

figure. Human factors features allow for the display of human factors data.

The following describes a typical session an industrial designer might have involving the

OPM system. The process starts with the Alias modeling software. Using Alias, the user

creates a new automotive design concept that combines the radio with the cellular phone.

The concept is unique because it is twice the height of a standard double DIN' radio and it

integrates two features into one unit. The concept is saved from Alias to a polygon format

and then converted to ascii format to be used by the OPM system. To begin, a template

cockpit and the new concept are loaded into the 3D environment of OPM. The radio unit is

rotated and translated to a user-chosen position. OPI (the Occupant Packaging Individual)

is loaded into the scene as a large, male human model. By maneuvering the positions of

'Double DIN standard radio size is 180 mm wide, 100 mm high, and 165 mm deep.

OPI's arms, the designer can understand if OPI can reach the new concept with his hand.

The reachability of the concept by a small, female can also be checked by loading a different

human model. Should the designer wish to add another concept to the scene or move the

current one, he or she can optimize placement of this concept by knowing which regions OPI

can see best. These regions are identified by defining a sight cone for the system that enables

the user to visualize what OPI can see in a specific viewing radius. During this process, the

user can use the mouse to change the view point of the scene to look at any aspect of the

cockpit or concept from different angles. The designer also begins to understand what the

new concept will look like among the components of the cockpit and with other concepts.

This system is composed of four different parts.

1. The graphical user interface (GUI)

2. The manipulation and storage of cockpits and concepts

3. The interaction with a computerized human figure model

4. The visualization of human factors data

The focus of the project is for the user to experience the consequences of the ensemble of

these four subprojects. Even though complex descriptions exist for these parts individually,

only simple ones were implemented so that users could understand what happens when they

are brought together. In the future more complicated algorithms could be implemented. In

summary, the important idea is having all of these elements in the same place at the same

time, not how complex the elements are individually. In addition to focusing on simple

algorithms, the implementation also meets the requirements of the designers at Delco, but

was designed to be flexible should those requirements change. The requirements focus

around the ease of use by end users, modeling the four parts described above, and handling

output from the Alias modeling system.

The subsequent sections of this chapter describe the requirements of the OPM system

specified by the industrial designers at Delco Electronics for each of the four modules of

the program. Following the requirements is a brief overview of the implementation of each

module.

3.1 Characterization of Users

The users of the OPM system will be the industrial designers at Delco. According to

Cotterman and Kumar in User Cube: A Taxonomy of End Users [CK89] they are classified

as (0, 0, 0.3) on the User Cube, which means that they will be end-users of the system

and have some control over the resources used in developing OPM, but will not be heavily

involved with the computer development or operation of the system. Consequences of this

on system design are that if something were to go wrong with the operation, development, or

maintenance of OPM, there would always be a way in which the user could get help or start

over. In addition, most of the users are not frequent users of the UNIX 2 operating system.

Since OPM was built for a UNIX system, any references to directories, other UNIX-specific

items, or computer science jargon will have to be thoroughly explained in help sections

or avoided completely. On the other hand, since they are industrial designers whose work

commonly consists of representing ideas visually, it is expected that it will be easy for them

to understand the graphical tools of the system. Finally, the users are human beings which

means that it will be common for them to make mistakes when carrying out system tasks.

Therefore, it is important to have the ability to reverse actions or cancel them completely

and give warnings indicating an input error.

3.2 Graphical User Interface (GUI)

The requirements for the user interface were as follows. On the most basic level it needed to

be easy for the designated users to use and have easy access to the information of the OPM

system. The users wanted a large three-dimensional space for viewing graphical system

objects. They also expressed a need to have viewing capabilities to enable the user to zoom

in on a particular component in the cockpit or rotate the view of the cockpit. Viewing needs

also included the ability to click to a head-on view of one of the three major planes. Since

the system functions in three dimensions, there also needed to be some form of quantitative

measurement, so that the user has a sense of where particular coordinates are in the scene.

The user interface has been designed so that it is as friendly as possible, so that the

industrial designers can use it to its potential. Its three major parts are the main menu,

2 UNIX is a trademark of American Telephone and Telegraph Company.

the auxiliary information windows, and the Display window. The main menu is a long, thin

window that runs horizontally across the top of the screen and displays buttons for the major

functions of the system. The auxiliary information windows take up the the right one-fifth

of the screen and can display three different kinds of information. Dimensioning information

for the cockpit is displayed in the Variables window. Location information is displayed in the

Locators window. This window provides output from the locators feature which enables the

user to graphically show a point in the coordinate space of the Display window, move this

point around, and create more points. Essentially, the window shows a list of coordinates of

user-specified points; their locations are shown graphically in the Display window. The third

information window displays information about the design concepts loaded into OPM. The

rest of the screen consists of the Display window which provides a large space for viewing

cockpits and concepts, so that the user can use an extensive portion of the screen to look

at objects. Other windows that pop up as a result of one of the system features are placed

in convenient positions so as to allow the user to see the necessary information to use the

feature. In general any new windows are brought up in the lower left corner of the screen

and help windows are brought up directly above the feature windows. Viewing capabilities

are handled by a button on the menu that allows a user to go into Mouse mode which gives

them the capability to use the mouse to change the view of the scene or to click the view

to look head-on at the X-Z, X-Y, or Y-Z planes.

3.3 Integrated Cockpit

The designers needed to view the whole cockpit including design concepts, so that they can

move towards a more integrated approach to concept design. This would help them move

away from the idea of designing the parts outside of the cockpit without taking the rest of

the interior into account. An essential part of this idea was to view the cockpit visually in

three dimensions. Certain features were required to be included in the cockpit. In addition

to the standard seats and body parts, the designers requested the rear-view mirror, the

acceleration pedals, and a console. It would be helpful if the user could see the dimensions

of the car and were able to modify them to correspond to a particular automobile model.

The car used for this project is the 1993 Chevrolet Cavalier. Most likely templates will be

created for each name plate (by the designers). The current name plates include Chevrolet,

Cadillac, Buick, Geo, Oldsmobile, Saturn, and Pontiac. In addition to modification in the

OPM system, the user requested modification of any of the cockpit components in Alias, so

that they could be custom designed in the 3d environment. Generally, the user needed the

ability to load or remove a default template and save modified templates under an original

name. On the concepts side, the user needed to be able to load and remove concepts created

in Alias into one or more cockpits. After loading, the user needed to translate and rotate

the design concepts. For the most part the designers will be looking at radio panel and air

control cluster designs.

The capabilities for handling cockpit templates were designed to be flexible. The user can

load the template cockpit into the three-dimensional Display window and then modify and

save this cockpit in a different directory. To facilitate modification, the common dimensions

of the cockpit are displayed in the Variables window. More than one template can be loaded,

so that the user can evaluate the same concept in many different cockpits. In addition to

being able to modify the cockpits in the 3d environment the user can also modify the

template parts in Alias and then load the new parts into 3d. (The user has to be aware that

the name of the object that is being modified cannot be changed.) This allows the user to

create elaborate templates if necessary, but since the common case will be to use a simple

template that is the default.

Concepts can be loaded and removed in the same manner as cockpits. More than one

concept can be loaded into a cockpit and the user can load a concept into multiple cockpits

in one step. The concepts cannot be changed in the 3d environment. In order to change

a concept it must be modified in Alias and then converted back to the OPM format. The

OPM is designed for use with simple Alias designs that contain on the order of fifty polygons.

This specification should not be problematic because the level of detail that needs to be

displayed is low. One cannot see a great level of detail in 3d, so many of the polygons would

be wasted anyway.

3.4 Human Figure Model

The requirements from the designers for interaction with a human figure were relatively

simple. The user needed to load a human figure into the driver's seat of the cockpit in the

sitting position. It would be beneficial if the figure could be minimally translated backward

or forward in the seat. The figure should also be able to perform simple forward kinematic

tasks and make other simple body movements. It was essential that there be multiple sizes

of both male and female figures.

A male or female human figure of large, average, or small size can be loaded into the

environment. The human being has both forward and inverse kinematic capabilities. The

forward kinematic capabilities include being able to move each joint of the figure in any of

the planes that it has valid movement. Some of the other forward kinematic procedures

include grasping the steering wheel and reaching for a certain object. The inverse kinematic

procedures allow the user to tell the human figure to move its arm to a certain point in

space or to move its arm as close to an object in the template as it can. Movement of the

human figure around the scene is also available in a limited manner.

3.5 Human Factors Data

The designers suggested that it would be useful to be able to identify the sight regions that

the driver could see best and looked at most frequently. It would also be useful to have

the standard eyellipse calculated and displayed for a particular human being in a particular

automobile.

There is no real limit to the amount of human factors data that can be represented in

this project. Two tools were chosen for illustration purposes. A sight cone was implemented

that shows the cone of vision that is most comfortable for the average human being. The

dimensions of this cone can be modified to create a customized object. The other informa-

tion that is represented is the eyellipse. A dialog box allows the user to characterize the

eyellipse according to General Motors' standards.

3.6 OPM Requirements Summary

The user should be able to:

* Easily use OPM even if he or she is not a UNIX user

* Have a large viewing space

* Change the view point during a session

* Locate coordinates in three dimensions

* View the cockpit and concepts together

* Include specific cockpit components such as seats and mirrors

* Modify and save dimensions of cockpits

* Customize cockpit components in Alias

* Load design concepts created in Alias

* Translate/rotate design concepts

* Load a human driver of different sizes

* Modify the positions of the body parts of the human model

* Identify sight regions

* Locate eyellipses

Chapter 4

Code Structure and Design

The OPM project runs on a Silicon Graphics machine with the UNIX operating system.

Because of its speed requirements, it runs best on an Indigo2 Extreme or an Onyx. These

media were chosen because of the resources available at Delco Electronics. In order to use

OPM, the user must have access to the source code of the OPM system which is stored in

the directory /usr/people/megan/cockpit. To boot the program, the user types OPM.

4.1 The 3d Language

About 95% of the OPM code was written using the 3d Virtual Environment/Dynamic Sim-

ulation Language [ZC92]. This language, which was developed at MIT, allows application

developers to easily design and implement virtual environment interfaces, develop inter-

active simulations, and specify behaviors for virtual worlds. 3d uses tcl (tool command

language) and tk which were developed at Berkeley [Ous94] for an interpreted, rapid pro-

totyping front-end. Tcl is a scripting language whose syntax is similar to that of a UNIX

shell. Tk is an extension to tcl which allows for construction of MotifTM user interfaces.

The tcl foundation enables developers to use the 3d language to quickly create prototypes

of new virtual world applications. Because of its interpreter, a designer can easily debug

procedures in tcl and then implement them to run faster in C. 3d extends tcl by adding

commands for objects, viewing, lighting, rendering, numerical math, matrices, and Denavit-

Hartenberg joint notation. The data types supported in 3d include strings, objects, and

Denavit-Hartenberg chains.

4.2 Modularization of Code

The OPM system consists of approximately 16,000 lines of code broken up into twenty-eight

tcl files and four C files. Each file contains a group of procedures that relate to a specific

topic. For example, the cockpit .tcl file contains all of the code that defines the features

that manipulate cockpits. The twenty-six application specific files are shown in the modular

dependency diagram (MDD) in Figure 4-1.

Each box in the figure has the name of one of the source code files of the project. An

arrow going from box A to box B means that the code in the file of box A depends on

the code of box B. The main file is gui.tcl. Notice how it depends on the code for all

of the main features of the project. It brings up the main windows of the application and

initializes all of the necessary variables. The code for most of the features can be handled

in two or three files. However, about one third of the code is involved in creating and

manipulating the human figure. As a result the human.tcl file depends on eleven other

files. The other six tcl files that are not shown in the MDD contain helper code. These

are general procedures that do things like identify if a number is an integer or display an

information window.

4.3 Coding Conventions

All procedures written for the OPM system begin with the requires, modifies, and effects

clauses [LG86] which exist as comments in the code. This is a software engineering technique

used to specify functions. By keeping code documented in this way it is easy to see how

data is manipulated throughout the application. The requires clause lists any conditions

which must be true before the procedure is entered. In general, it is best to eliminate these

clauses when possible, so that code can be re-used at any time without first satisfying certain

conditions. The modifies clause describes any data structures that are changed during the

execution of a procedure. Finally, the effects clause indicates how the data structures are

changed and what value the procedure returns. Comments are also included throughout

the code.

Figure 4-1: Modular dependency diagram for OPM code

29

Chapter 5

Interaction with the Alias

Modeling System

The OPM system was designed to be used in conjunction with the Alias modeling software

(AutoStudio version 5.1). Delco Electronics has just purchased two copies of the Alias

software to be run on their Indigo2 Extreme and Crimson Elan Silicon Graphics machines.

The company is trying to convert to the Alias system for some of its concept design work.

The Alias product is a widely used modeling software package. As their slogan suggests, it

allows the user to convert creative ideas into perfect surfaces. Anything from the simplest

black box to the most detailed automobile can be created with Alias through a menu of

primitive objects and surface building tools. The cockpit template, the human figure, and

all of the design concepts were created with Alias.

Objects created in Alias are converted into 3d format. First, an obj directory is created

with the UNIX mkdir command in the project directory of the project. Second, the objects

of the project are converted into polygons in the Alias environment with the Alias create

polygons feature. These polygons are saved to a file in the OBJ format (Wavefront format)

in the newly created obj directory. The files can be converted to .asc files which the

3d language accepts using the objto3d command written by Rakesh Gupta. (Note: as

long as an obj directory exists containing the .obj files, they will be converted to .asc

files automatically when the project is loaded into OPM, so the user does not have to be

concerned with the conversion.) Finally, the .asc files can then be loaded into the 3d

environment using the menu functions of OPM. It is assumed that concept designs that

are created in Alias for use with the OPM system will consist of a moderate number of

polygons, so that the 3d environment will not be slowed down.

Currently the cockpit template is a set of simple cubes and cylinders that are saved in

the main OPM directory and that cannot be overwritten by any of the users of the program,

so that there will always be an original cockpit template that can be loaded. Since the focus

of this project is on the human interaction and the design concepts it is not anticipated

that the designers will desire a detailed, complicated cockpit template. However, should a

designer need to enhance one of the objects of the template, there is a way that this can be

done. The user can copy the entire directory of cockpit objects to a newly created directory.

Then any of the cockpit objects can be loaded back into Alias, modified, converted, and

saved in this new directory. The directory can then be loaded into the OPM program and

any modified objects will be available.

Chapter 6

Graphical User Interface

The graphical user interface (GUI) encompasses the windows of the application, how those

windows are positioned and colored, and how the user can use the mouse and the keyboard

to communicate with the OPM system. The main requirements for this section are that the

user be able to easily access the features of the system, easily view the necessary objects at

the appropriate times, quickly manipulate the view point to view the scene from different

angles, and effectively locate coordinates in three dimensions.

6.1 Design and Positioning of Windows

The windows of the application were arranged so that the Display window (the window

that shows the 3D viewing environment) occupies as much space as possible at all times.

This enables the user to see the most information in the scene. The five main windows of

the application are the Display window, the main menu, and the three auxiliary windows-

Variables, Concepts, and Locators. Figure 6-1 shows a picture of the main windows. These

windows never change size or position when the system is running because they are the

base windows of the program. The other windows of the application are called information

windows and are categorized as one of three types-feature windows, warning windows, and

fyil windows. The positioning and size of these windows depends on the type of window and

the context in which the window is being used. These windows may also contain interactive

items in them so that the user can communicate with the program. Buttons that the

'For your information.

user presses with the mouse and entry boxes in which the user types data are examples of

interactive items.

6.1.1 Main Windows

The main menu is a narrow window about two centimeters high that runs from the upper

left corner about three quarters of the way across the screen (see Figure 6-1). It provides

access to the features of the project. The features are broken down into seven categories and

are labeled starting from the left-Cockpit, Human, Concept, Variable, Locator, View, and

Help. Each of these features will be explained in detail in remaining sections. By clicking

the mouse over one of the these words the user pops up a menu displaying the features of

that category. The user can activate a feature by moving the mouse over its name. Not

all features can be activated at all times. If a feature needs certain information that is not

currently available, then that feature is disabled in the main menu, so that the user cannot

use it. When the appropriate information becomes available, the feature is enabled. This

prevents users from activating features at incorrect times.

The three auxiliary windows are positioned lengthwise on the right of the screen as

shown in Figure 6-1. Their position and shape were chosen so that they were on the side

and out of the way, yet had enough length to display a long list of elements when the need

arose. They take up about one-quarter of the viewing space. All of these windows give

information about the objects that are displayed in the Display window. The windows are

needed because it would be difficult to display text in the Display window especially since

the view of the window can be alternated causing the text to become unreadable. Each

element in each of these windows is associated with a color. The same color is also mapped

to the element in the Display window, so that it is easy to identify the element in the

Display window. The three windows are stacked on top of one another to conserve space.

When a feature does something that is related to the information of a particular auxiliary

window, that window is raised to the forefront, so that the user can see it. Using the mouse

the user can highlight the elements in the windows. The highlighted elements are called

the selection which is sometimes used to send certain elements as input to other functions.

Auxiliary windows also contain scroll bars so that a large number of elements can be stored

in the window.

A brief description of each auxiliary window follows. More information about these

Num-g-q.

Figure 6-1: Main windows of the graphical user interface

windows will be given in later sections. The Variables window displays information about

the dimension variables of the cockpit such as their name, value, unit of measure, and the

color associated with them. The Concepts window displays the names of the concepts that

are loaded in the environment and the colors that are associated with them. The Locators

window displays the X, Y, and Z coordinates for the locators that are currently in use.

The Display window takes up the rest of the screen (almost 75% of the screen area)

and shows all loaded objects in the 3d environment. It is the standard window that the 3d

language generates and is positioned in the lower left corner (see Figure 6-1).

6.1.2 Information Windows

The position and size of feature windows can vary. The position is determined by what

information the user needs to see on the screen to use the feature. If the user does not

need to see anything or needs information from one of the auxiliary windows, then the

window is placed in the lower left corner of the screen over the Display window. If the user

needs to see information in the Display window, then the feature window is placed in the

lower right corner of the screen covering the bottom portion of the auxiliary windows. The

size of these windows is determined by how much information is displayed by the feature.

More complicated features usually have larger windows and some features require more than

one window at more than one location. The feature windows contain button, entry, label,

listbox, and scale widgets that the user can manipulate with the mouse and keyboard. In

general the window has OK and Cancel buttons at the bottom of it, but there are a few

exceptions to this rule. The OK button executes the feature with the given input. A feature

can be canceled without modifying the system by pressing the Cancel button. The feature

windows sometimes obtain input from the auxiliary windows via the selection.

The size of warning and fyi windows varies with the message that they display, but they

are usually relatively small. These windows typically have a short message on the top and

an OK button at the bottom. Warning windows are always located in the same position

in the lower left corner of the screen and flag the user that a mistake was made. Usually

this mistake comes from entering incorrect input. Sometimes it will result from a file access

error. In any case, the user is warned of the error through the text message and is given

instructions on how to continue. The program will not continue until the user presses the

OK button. Many warning windows are used with features that have a lot of user input.

The 'fyi' in fyi window stands for 'for your information'. These windows simply confirm

actions that the OPM system has taken or lets the user know that it is processing data.

They are typically used with features that take a lot of time, so that the user is not anxious

that the system has crashed. When an fyi window is used for confirmation it is located in

the same position as the warning windows, however, when it is used to give feedback on

what the system is currently processing it is located in the middle of the screen so that it

gets the users attention.

6.1.3 Color Scheme

The colors for the application were chosen so that most of the background would be a

dark color (dark forest green) and the foreground, such as text, would be a light color

(off-white). When choosing colors for interfaces, it is best to avoid combining colored text

with a colored background. Neutral text on a colored background gives maximum legibility

[JMF94]. Minimizing the number of colors used is also wise because too many colors can

distract the user. Following these principles, there are just two additional colors in the

general interface-the selection color is navy blue and the highlighting color is dark red.

The colors that are used in the Display window and the auxiliary window are a subset

of the colors in the rgb. txt file for the machine. They were chosen so that they would show

up well against the background and so there would be a reasonable difference between each

color. (They are stored in the file /usr/people/megan/cockpit/src/color/rgb.txt.) To

display a color in the Display window the color needs to be in the form of a list of the red,

green, and blue components of the color. Each component is a number between zero and

one inclusive. To display a color in an auxiliary window the color needs to be in the form

#redgreenblue. The pound sign indicates that it is a color and each component is given in

hex. There is a conversion procedure that converts from one format to the other.

6.2 Command Loop

Since it is not required that the user close one feature before starting another feature, the

windows of many features can be on the screen at the same time. In order to handle all of

these windows at the same time, a command loop was created that waits for an action from

any feature window. When an action occurs, it is processed by the appropriate procedure

in the command loop. Should the user ever need to break out of this loop the Break feature

of the Cockpit menu is provided.

6.3 Viewing Capabilities

The viewing capabilities are handled by the View menu. The view consists of two parts-the

view point and the lookat point. The view point is the point from which you are looking

and the lookat point is the point to which you are looking. The vector that goes from one

to the other is called the view normal.

The View menu contains seven features. The From Human feature changes the view

point to be in the center of the human figure's eyes. (There is only one view point, so stereo

vision cannot be implemented.) The system goes into a mode so that the user can use the

first mouse button to change the lookat point giving the effect of looking around in the

cockpit. The initial lookat point is set so that the user is looking down the normal line of

sight of the human model which is 100 down from a line extending from the eyes parallel

to the ground. The user can use the Reset button to get back to this vantage point and

the Quit button to exit the mode. For convenience this mode is also exited when the user

brings the mouse over the auxiliary windows.

The Mouse feature allows the user to use the mouse to manipulate the view. The first

button is used to tumble (rotate) the view by keeping the lookat point the same, but rotating

the view point. By pressing the second button the user can zoom the view in and out. The

third mouse button is used to track (translate) the view by moving the lookat point and

keeping the view point static. The Reset button brings the view back to its original vantage

point. This feature was implemented so that if the user manipulated the view in such a

way that he or she could not find the desired view, then the view could be reset and redone.

Mouse mode is exited by pressing the Quit button or by moving the mouse over the auxiliary

windows.

The next three view features allow the user to click the view so that the view normal is

perpendicular to a pair of axes. For example, if the user selects the X-Z Plane feature then

the view normal would be set so that it was perpendicular to the X-Z plane. Analogous

explanations exist for the X- Y Plane and Y-Z Plane features.

The Axes feature allows the user to display a set of coordinate axes located at the origin.

The Axes feature is a checkbutton which means that repeatedly selecting this option toggles

the axes on or off. Each axis is displayed in the Display window. The direction that the

long bar is pointing (and where the letter is displayed) is the positive direction for that axis.

When the last feature of the menu, Render, is invoked the scene in the Display window

is rendered. This function keeps everything looking clean in case there are ever any extra

color bits left in the Display window.

6.4 Identifying Coordinates

The next of the three auxiliary windows is the Locators window. A locator is a small,

colored, sphere object in the Display window. The coordinates of this sphere and its color

(chosen from the rgb. txt file discussed above) are shown in the Locators window. The user

can add locators with the Add feature. Every locator starts out at the origin, but the user can

change its coordinates with the Modify feature. This feature allows modification by entering

coordinates and then absolutely translating the locator according to those coordinates. The

user can also move the locator by adjusting three sliders for the X, Y, and Z values. The

sliders always start out at zero, but can move in the positive or negative direction. When

a slider is moved a distance k, the appropriate coordinate of the locator is changed by k

units and then the slider springs back to the zero position. This enables a finite slider to

be used to move the locator an infinite distance. Locators can be easily removed with the

Remove feature by double clicking on the appropriate locators in the Locators window. The

last two features of the Locator menu are Clear Selection, which clears the selection of the

Locators window, and Show Window, which raises the Locators window to the forefront of

the auxiliary windows.

6.5 Units

All coordinates and measurements are currently displayed in millimeters. However, the

dimension variable exists in the source code that allows everything to be converted to

centimeters. Internally, all quantities are stored in centimeters because those are the units

of the 3d language. It is only the display of these numbers that is put in a specified unit.

This convention makes it easy to maintain consistency and correctness of object lengths.

6.6 Help

The Help menu is the last menu on the main menu. It is a cascaded menu with an entry for

each feature of the OPM system. When the user activates one of these features a window

pops up. This window is always the same size and is always located just below the main

menu on the left-hand side. The position was carefully chosen to be clear of any feature win-

dow, of the cascaded Help menu button, and of the main menu and auxiliary windows. Each

help window contains an OK button that the user clicks when finished viewing it. The con-

tents of the window are the contents of a file in the /usr/people/megan/cockpit/src/help

directory that is named after the feature. The window contains a scroll bar so that the entire

file can always be viewed.

Chapter 7

The Integrated Cockpit

Moving towards an integrated approach to cockpit design means taking the whole cockpit

into account when designing concepts. Understanding what the other components of the

cockpit look like and how they function enables designers to create better and more func-

tional concepts. The OPM system allows the designer to initialize a cockpit to particular

dimensions and then to add new design concepts and view the scene as a whole unit.

The specifications for this section require that the user be able to view the cockpit and

concepts in one three-dimensional environment, so that the designer gets the feeling of an

integrated cockpit. It is necessary to have certain cockpit components visible in the mock-up

of the cockpit such as seats and mirrors to make the cockpit model closer to that of a real

automobile. So that concepts can be evaluated in many different styles of cars, it is required

that the user be able to modify the dimensions of template cockpits and save these changes

for later use. The user should also be able to customize cockpit components in Alias and

then load them back into 3d with the same name. Finally, to facilitate evaluation of new

design concepts, the user needs to be able to load, rotate, and translate objects created

with Alias.

7.1 Cockpit Templates

The first step to analyzing a design concept is to create a cockpit with which it can be

integrated. With the OPM system a variety of cockpits can be loaded and viewed in the

Display window.

7.1.1 Directory Structure of Components

As mentioned earlier in chapter 5, most of the cockpits that will be used will be modeled

with the Alias modeling software and then converted to a format that the 3d language can

understand. However, a user can also create a cockpit via any other method such as creating

objects using the 3d language. As long as the user ends up with all of the objects in .asc

files (that the 3d language accepts), the cockpit can be loaded into the OPM system. No

matter how the cockpit is created, its directory structure must be correct, so that OPM

knows where cockpit objects reside and it can keep track of the dimensions of these objects.

The number and names of cockpit components are fixed; the asc files that make up these

components must be stored with a certain directory structure.

Any cockpit to be loaded into the OPM system must reside in an asc directory, but

this directory can be nested anywhere in the UNIX directory hierarchy (e.g. /usr/people/

megan/cockpit/asc). The idea of having a special directory name, asc, where all files to

be loaded into OPM are stored stems from the fact that most projects that will be loaded

will have been created in Alias. As a feature of the Alias system, each Alias project has a

directory of its own in the user's user.data directory which contains many subdirectories

for the project (for wire files, lighting and such). To make things simple an asc directory is

created along with the project's other subdirectories to hold the .asc files for that project.

Another benefit of having a unique directory name is that if no asc directory exists for an

Alias project, OPM knows to check for an obj directory and convert any files there to . asc

files and create an asc directory in which to put them.

As a method of organization the cockpit objects are stored in a hierarchical directory

system. The two top levels of the hierarchy are the body and parts categories and subdi-

rectories body and parts must exist in the asc directory. The body directory stores all of

the body objects of the cockpit like the roof, floor, and grill. The exact paths for the body

objects are shown in Table 7.1.

To complete the cockpit, the parts directory stores all of the other parts of the cockpit

such as the console, seats, and steering wheel. Some parts are broken down further into

more subdirectories. The exact paths for the parts objects are shown in Table 7.2.

The directory structure of the asc files is important because they are loaded into OPM

in the exact same structure that exists in their asc directory. The purpose of this fixed

Table 7.1: Exact directory paths for the body components of a cockpit

Component Name Directory

Floor .../asc/body/floor

Grill .../asc/body/grill

Hood .../asc/body/hood

Pedal Board ... /asc/body/pedalboard

Roof ... /asc/body/roof

Windshield ... /asc/body/windshield

Table 7.2: Exact directory paths for the parts components of a cockpit

Component Name Directory

Console ... /asc/parts/console/back
.../asc/parts/console/front

Brake Pedal .../asc/parts/pedals/brake/pedal
.../asc/parts/pedals/brake/stem

Gas Pedal ... /asc/parts/pedals/gas/pedal

.../asc/parts/pedals/gas/stem
Rear View Mirror ... /asc/parts/rear-mirror/mirror

... /asc/parts/rearumirror/stem
Driver's Seat .../asc/parts/seats/driver/cushion

.../asc/parts/seats/driver/support
Passenger's Seat .../asc/parts/seats/passenger/cushion

.../asc/parts/seats/passenger/support
Steering Wheel ... /asc/parts/steer-wheel/wheel

.../asc/parts/steerwheel/column

directory structure is so that the OPM system knows where to look for the components

of the cockpit (when it calculates dimensions of the automobile, as explained in section

7.1.3). Other benefits of the rigid structure are apparent. By having a directory for each

part, the part can consist of a variable number of objects, so the user is free to modify the

part without restraint. Substitutions for any of the asc files in a component's directory

can be made. This can be done by creating totally new asc files or by loading the existing

files back into Alias, modifying them, and converting them back to asc format. Another

positive side effect of the directory structure is that in the common case the user will not

be modifying the components at all, so for maximum efficiency it is best to have a system

where the default is no user activity.

7.1.2 File Capabilities

The file capabilities of OPM are similar to those of other systems that have input/output

through files. The OPM system provides load, save, and remove features and a feature to

exit the system completely. That action is invoked through the Quit feature of the Cockpit

menu.

Loading Cockpits

Loading a cockpit into the OPM system means loading an asc directory that has the proper

directory structure (explained above) of cockpit components. All of the components must

have asc files that represent them. The user can load a cockpit using the Load feature of

the Cockpit menu in two different ways. A new set of files for a cockpit can be loaded from

a given directory, or a cockpit that has already been loaded, but is currently hidden, can

be redisplayed.

Loading a new set of files requires that the user specify the directory from which to

load files and provide a local project name. The user inputs the complete path name of the

asc directory of the cockpit project. A local project name must be created by the user, so

that the OPM system will have a way to refer to the cockpit throughout its lifetime. User-

specified local names should be chosen so that the corresponding project is easily identified.

The template cockpit model is stored in the /usr/people/megan/user.data/cockpit/asc

directory.

To avoid confusion and to maintain simplicity in implementation, the OPM system will

only display one cockpit at a time. This cockpit is internally referred to as the current

cockpit and all features and functions are applied to it. After an initial cockpit is loaded

and the user would like to load another cockpit, instead of removing the original cockpit

the user can hide it, so that it can be displayed later. When using the Cockpit->Load

command, if hidden cockpits exist they are listed out for the user. Loading one of these

hidden projects requires that the user pick the cockpit to be viewed from the list. The

current cockpit is reset to this cockpit.

Since only one project can be displayed at a time, when the user wants to load multiple

cockpits, he or she has to tell the OPM system what to do with the current cockpit. The

user can choose to remove the cockpit completely from the system which involves deleting

all of the component objects from the 3d environment. Another option is to hide the cockpit

to be used later which involves unposting all of the cockpit objects, but they still exist in

the 3d environment.

Once a cockpit is loaded into the 3d environment and the current cockpit is set, the

OPM system makes all of the objects transparent to a moderate degree. This ensures that

the user can see other objects that will be displayed in the cockpit like design concepts or

cockpit dimensions. Also, distinguishing a current cockpit enables all of the other features

of the main menu that interact with cockpits.

Saving and Removing Cockpits

As will be explained in section 7.1.3, the cockpit can be modified to a certain degree by

changing the dimensions of the components. Once this is done, the user may desire to

store this customized cockpit. This is possible by using the Save feature of the Cockpit

menu. Using this feature the user can save any of the cockpits that are loaded in the 3d

environment at one time. (This includes hidden cockpits.) Before executing the function

the user must specify the exact directory to which to save a cockpit. A default directory is

suggested to the user by OPM which is the directory to which the cockpit was last saved or

if this is the first save, it is the directory from which the cockpit was loaded. However, the

user is free to change this directory to any directory for which he or she has write access.

The Save Current feature of the Cockpit menu is provided so the user can effortlessly

save the current cockpit. When this command is invoked the current cockpit is saved

to the directory to which it was most recently saved. If it has never been saved, then OPM

uses the directory from which it was loaded (as long as the user has appropriate write

permissions).

Removal of cockpits is available using the Remove feature of the Cockpit menu. Invoking

this command brings up a list of cockpits that are currently loaded in the 3d environment.

The user can choose one or more of the these cockpits to be removed from OPM.

7.1.3 Dimension Capabilities

One of the most important features of the OPM system is the ability to control the dimen-

sions of cockpits. This capability is handled through the Variables window and the features

of the Variable menu. A list of variables is displayed in the Variables window which consist

of three types of values-distances between components, angles of components, and dimen-

sions of components (see Figure 7-1). These types were chosen because they cover the most

common measurements that a user would want to modify. They were broken down into

groups because OPM handles each type differently. For each variable a color, name, value,

and units are shown in the window. As an aid to the user, names for variables were cho-

sen so that they correspond to what the variable represents. There are approximately 75

predefined variables and each can be displayed in the 3d environment in the Display win-

dow by selecting the variable from the Variables window. (Selecting simply means clicking

above the variable name.) The color of the variable in the Display window corresponds to

its color shown in the Variables window making it easy to identify variables in the Display

window especially when more than one variable is displayed. Variables can be removed from

the Display window using the Clear Selection feature of the Variable menu. This feature

deselects all variables thus removing them from the Display window.

Variable Types

One type of variable maps out distance throughout the cockpit. It typically represents

the distance from one component to another or from one point in the cockpit to another.

Names for these variables are determined by which components they connect. The first

part of their name corresponds to the initial point of the distance while the second part of

their name corresponds to the destination point of the distance. For example, the variable

roojjfloor is the distance from the roof to the floor. To modify a distance variable the user

can sometimes choose how much to move the first component during the modification and

Figure 7-1: Cockpit with radio concept and Variables window

47

how much to move the second component. OPM determines if the user gets this option by

whether or not the component is an anchor component or not. (Anchor components are

explained below.)

Another type of variable is the dimension variable. This variable represents one of the

X, Y, or Z dimensions of a component in the cockpit. Naming combines component and

axis. The first part of the name consists of the component name and the second part of

the name consists of the dimension (X, Y, or Z). For example, the variable rooAx displays

the length of the roof in the X direction. (The X and Z dimensions for angled cockpit

components can sometimes be confusing and will be explained below.) As with the distance

variables, sometimes OPM gives the user the option of choosing how to modify the variable.

In this case, the user can choose how much to modify the variable in the positive direction

and how much to modify it in the negative direction.

The third and final type of variable is the angle variable. This variable represents an

angle in one of the cockpit components. The first part of its name is the component and

the second part specifies that it is an angle. For example, the variable hoodlang represents

the angle of the hood. These variables can only be modified in one way, so the user has no

choice about how to modify them.

New Variables

Although there are many predefined variables, the user may want to see a measurement

that is currently not accounted for. Therefore the OPM system has functionality that allows

enhancement of the variable database. With the Add feature of the Variable menu, the user

can add variables to the Variables window in two ways. The user can redisplay a hidden

variable or add a completely new variable. A hidden variable is one that has previously

been removed from the Variables window.

OPM gives the user a limited capability to add new variables to the system. The

limitation exists for simplicity of implementation. With each new variable, OPM needs a

procedure that indicates how to display the new variable and how to modify it. It would be

complicated to create a procedure to modify a new variable because OPM needs to know

which other cockpit objects are associated with a variable and that would require much user

input. Therefore, new variables cannot be modified. However, there are general procedures

that exist to display variables, so only variables that can use these general procedure can

be added. This narrows the type of variables that can be added down to distance variables.

There is currently no way to save the new variables that are created to be used in a later

OPM session.

The user creates new distance variables by selecting the points which define the variable.

OPM gives the user a list of possible starting points for the variable. Once an origin point

is chosen, the user chooses the destination point from another list created by the OPM

system. OPM then suggests a name for the new variable, but the user can change this name

to anything. A color is assigned to the new variable and its name and value are displayed

at the bottom of the Variables window. The customized variables will be distances parallel

to the X, Y, or Z axis; the user cannot create a variable that runs on a diagonal. (This is

also due to simplicity of implementation.)

Variable Removal

If the user has no more need for a variable, he or she can remove it using the Remove

feature of the Variable menu. This feature allows the user to double click on variables from

the Variables window and have them removed. Variables are never completely removed

from the OPM system, however, so that their display and modify procedures are preserved

should the user ever want to see them again. They are only hidden. The user can redisplay

them using the Variable->Add feature.

Variable Modification

The Modify feature is one of the most important features of the Variable menu allowing the

user to modify any of the variables created by the OPM system. With this feature the user

selects one or more variables from the Variables window to modify. Then the OPM system

displays the current value of the variable and allows the user to input a new one. After a new

value is input, OPM modifies the necessary objects and moves the necessary components to

effect the modification. To ensure that any modifications are realized throughout the rest

of the system, recalculation of variable values is done.

Random modification to arbitrary parts of the cockpit can result in unrealistic versions

of cockpit components. During modification objects can be lengthened and shortened so

that they are hanging out in space nowhere near the rest of the components. Consequently,

care must be taken to keep cockpit components in appropriate and realistic positions. Some

restrictions on modification are built in to the system in the form of constraints and links.

These restraints exist only for objects that need to stay connected to another object or have

to be in a certain position relative to another object.

Constraints exist for some of the component objects that make sure that the variable

does not negate any other variable of the cockpit. Constraints keep all distance variable

values positive. For example, if the user were trying to modify the grill to pedal board

distance, constraints would keep OPM from moving the grill beyond the pedal board thus

making that distance negative.

Links also exist among component objects. A link designates that an object moves

every time another object moves thus keeping all of the components in the cockpit in their

corresponding positions. For example, a link exists between the driver's seat cushion and

the driver's seat support. Any time the driver's seat cushion is extended in the positive

X direction, the driver seat support moves with it. This way the driver's seat support is

always at the same point relative to the driver's seat cushion. Different links exist for when

objects move in the positive or negative direction along a given axis.

As another means for keeping the component objects linked, the OPM system has

anchored the floor component and the pedal board component. These objects never change

position. Their dimensions can be changed, but they always stay in the same place. If they

are part of a distance variable, then when that variable is modified the other component is

always moved to accomplish the change.

Internal Variable State

A list of variables is internally stored in the OPM system that it tries to calculate when a

new cockpit is loaded so that OPM always knows what variables to create. Since variables

are usually distances between two points in the scene, OPM first calculates a series of

points and stores them in the pts array. For example, a point could be the most negative Y

coordinate of one of the components. These points are calculated by executing procedures

that look through the directories of the components. If a directory that it expects does not

exist, then the point is set to null. The values for the variables are then calculated using

these points. If a variable needs a point that has a value of null, then that variable is

skipped. The pts array is also useful because some variables use the same points in their

calculations. Since all the points are stored, no point has to be recalculated (wasting time)

if it is used by more than one variable.

Since data is associated with each variable, the variables are stored in the vars array.

For each variable, information such as which points it consists of, whether it is displayed in

the Variables window or not, and its value and dimension is stored. Constraints and links

are also stored in this array.

Internally a distinction is made between cockpit components that are aligned with the

X, Y, and Z axes and those that are at an angle to one of the axes. Examples of aligned

objects are the roof and floor while angled objects would be the hood and windshield.

Aligned objects are easy to modify and move around because their dimensions can be

calculated by finding the most extreme points of the object that lie in the directions of the

axes. This cannot be done with angled objects, so problems arise.

For each angled object an angle and a pivot are stored. These are calculated when the

cockpit is loaded and are stored in the pts array. The angle for a variable is its clockwise

rotation around the Y axis (if you are looking at a cockpit with its grill to the left). The

pivot for a variable is the point in the middle of the bottommost edge of a component.

Pivots are needed to change the angle variables of a cockpit.

The only confusing thing for the user about angled objects is that their X and Z di-

mensions are defined as if the object were rotated counterclockwise around its Y axis by

its angle (defined above and stored in the pts array). The X dimension corresponds to the

width of the object and the Z dimension corresponds to its length.

7.2 Design Concepts

A cockpit alone provides little feedback for design concept evaluation. It is necessary to

integrate design concepts into the 3d environment. OPM provides methods to examine one

or many design concepts in a particular cockpit.

7.2.1 Loading and Removing Concepts

Because no integrated cockpit evaluation could be done without a cockpit and a concept, a

concept is a dependent form. It cannot exist unless there is at least one cockpit loaded. As

with cockpits, most of the design concepts that will be loaded into the OPM system will

have been created in Alias and the converted to asc files. However, for concepts there is

no formal directory structure required because the concept is treated as one unit and none

of its subparts are ever accessed. Only a directory containing the asc files for a concept is

needed. This directory can contain only files or it can have subdirectories of files for the

concept. OPM recursively loads concepts, so any hierarchy of subdirectories can exist.

The same two ways of loading a cockpit exist for loading concepts as described in section

7.1.2. This is because the organization of a cockpit and a concept is the same. (They both

consist of subdirectories of asc files.) The user can load a concept using the Load feature of

the Concept menu from a totally new set of files in a directory or he or she can load hidden

concepts. A concept is considered hidden if it is not displayed in the current cockpit.

To facilitate analysis of a concept in multiple automobile environments, a concept can be

loaded into any number of cockpits chosen by the user when loading a concept. Any number

of concepts can be loaded into a single cockpit, but when the user is loading a new set of

files only one concept can be loaded at a time. However, multiple hidden concepts can be

loaded into a cockpit.

Since concepts can be moved around in the cockpit, it is necessary to specify the position

of a concept when it is loaded into a cockpit. The user inputs a position upon loading a

concept by entering the X, Y, and Z coordinates at which the concept should be loaded.

The user can decide on these coordinate by first using the features of the Locator menu

described in section 6.4.

After a concept is loaded a color is assigned to it by the OPM system. To keep the

user informed about which concepts are loaded each concept is displayed in the Concepts

window. The window has an entry for each concept that consists of its name and associated

color. If the concept is displayed in the current cockpit, then its color is visible in the

Concepts window. Otherwise, its color is hidden.

Unlike cockpits, concepts are not made transparent to any degree because they are

usually small relative to cockpits and there will not be any objects loaded within them.

Concepts are considered to be one entity to OPM. Their individual parts are not recognized.

Using the Remove feature of the Concept menu, OPM provides an easy way to remove

concepts. When this command is invoked the user is shown a list of loaded cockpits (in-

cluding hidden ones). The user then chooses from the Concepts window which concepts

to remove from which cockpits. This function guarantees that if a concept is chosen to

be removed from a cockpit, then after the function exits, the cockpit will not contain the

concept. (This means that if the concept never existed in the cockpit and the user tries to

remove it, nothing will happen.)

7.2.2 Internal Concept Structure

The OPM system keeps track of concepts by storing them in the concepts array. Each

element of the array stores a list of information about a concept such as its color, the

directory from which it was loaded, and a boolean indicating whether or not it is displayed

in the current cockpit. The concepts array and Concepts window are updated every

time the current cockpit is changed.

7.2.3 Translating and Rotating Concepts

Because of their small size and relatively large number of objects, the user cannot modify

a concept or any of its parts with the OPM system. All modification must be done with

Alias. However, the user can move the concept around in the 3d environment.

Using the Translate feature of the Concept menu, the user can move concepts to new

positions. The same translation features are available as with the Locator->Modify com-

mand. The user has a choice of translating by typing in new X, Y, Z coordinates or by

using sliders to change the coordinates. All translations are done in real-time, so the user

had instant feedback for his or her actions.

Using the Rotate feature of the Concept menu, the user can rotate a concept about its

own axes. A rotation can be performed by changing the number of degrees that a concept

is rotated about its X, Y, and Z axes. This rotation is stored as a triplet (X, Y, Z). The

position in which the concept was loaded had rotation triplet (0, 0, 0).

7.2.4 Simple Alias Concepts

As was briefly mentioned in chapter 5, the OPM system works best when the concepts that

are loaded into it contain as few polygons as possible. The more polygons that are loaded,

the slower the system will go. Most concepts that will be evaluated will have been modeled

from the Alias system. However, since so little detail from these models will show up in the

3d environment, sometimes it will be more efficient to create a rough approximation to the

concept using the 3d language itself and using that model with OPM.

Chapter 8

The Human Figure

The occupant packaging model is not complete with just cockpits and concepts. In order

to understand how these things will be used by a human user, a human model needs

to be introduced into the scene. However, many things need to be taken into account

when modeling a human being. It is not a problem of simply displaying the body parts,

but also a problem of animating the parts and enabling the user interactive manipulation.

When taking the latter into consideration questions involving Denavit-Hartenberg notation,

forward and inverse kinematics, and collision detection need to be answered.

The requirements for this phase of the project insist that the user be able to load a

human driver of different sizes that sits in the driver's seat of the cockpit and to be able

to modify the positions of the body parts of the human model. The OPM system allows

the user not only to add one of several male or female human models, but also to have

control over the movements of the figure. The internal code for human figure modeling and

movement is the most complicated of the entire OPM system.

8.1 Loading, Removing, and Translating the Human

A human figure can be loaded into the OPM system using the Load command from the

Human menu. The user can choose a male or a female human in sizes small, average, or

large. The figure is displayed graphically in the Display window sitting in the driver's seat

of the current cockpit. (See Figure 8-1.) When the load feature is finished, the rest of the

features of the Human menu are enabled. Any of the human figures add about 50 objects

to the scene, so it will slow the system down somewhat. The human is removed using the

Table 8.1: Definitions for Denavit-Hartenberg parameters

Remove feature of the Human menu. Invoking this command removes the human from the

Display window and disables all of the features of the Human menu except for the Load

feature.

Initially, the human is loaded at a specific point. However, using the Translate feature

of the Human menu, the user can move the human around in the scene, but it cannot be

rotated. I do not expect that the user will have to move the human around that often and

when it is moved it should not have to be moved very far because the cockpit seats are

not that big. The project is intended for human interaction with the human sitting in the

driver's seat. No collision detection is provided for this feature, so the user has the freedom

to move the human anywhere in the scene.

8.2 Denavit-Hartenberg Specification

A human figure can be animated by creating a series of kinematic chains that specify where

the joints of the body are and how they should be moved. A kinematic chain consists of

a fixed coordinate frame, called the base, hitched to a series of links connected by rotary

joints [Fer86]. Each joint has a unique coordinate frame associated with it and the joint

at the end of the last link is called the end effector. The Denavit-Hartenberg notation

provides a method to represent the kinematic relationship between a pair of adjacent links

of a kinematic chain [Pau81]. The notation requires four parameters which determine the

relative orientation and position of the coordinate frames attached between links (see Table

8.1). Kinematic chains defined by this notation will be referred to as dhchains.

Consider the coordinate frame at link n with axes (xn, Yn, zn) as shown in Figure 8-2.

Determining the coordinate frame for link n + 1 means rotating the frame at link n by

On around the zn axis and moving distance dn along the zn axis creating an intermediate

Dhparameter Definition

On Rotation around zn axis
dn Distance along zn axis
an Distance along Xno axis
an Rotation around zno axis

Figure 8-1: Large, male human model loaded into a cockpit

57

zno

Figure 8-2: Transformation between joint n and n + 1 on a dhchain

coordinate frame (XnO, Yno, ZnO). The next step is moving distance an along the Xne axis

and rotating a, around the XnO axis creating coordinate frame (xn+l, yn+1, zn+l).

The transformation between adjacent coordinate frames of two links can be expressed

by the following 4x4 matrix [Gaf94].

cos Oi - sin Oi cos ai sin Oi sin ai ai cos Oi

sin Oi cos Oi cos ai - cos Oi sin ai ai sin Oi
Ai = (8.1)

0 sin ai cos ai di

0 0 0 1

Using the above matrix it is possible to determine the absolute transformation between

links n and m where n > m by multiplying the matrices of each joint in between them as

in the following equation.

Mn = Mm -Am+, -Am+2 " ... An-1 -An, (n > m) (8.2)

Controlling the joint angles (especially On) and the position of the end effector of the

dhchain produces motion. By modifying the On parameter, the link n is rotated about the

Zn- 1 axis.

The 3d language has several commands that enable an application designer to easily use

the Denavit-Hartenberg notation. It provides commands to create dhchains (dhcreate) and

-1

change their 9 values (dh and dhtheta), so that the links of the chains can be moved. Com-

mands to retrieve and set the base and end effector of a dhchain (dhsetbase, dhgetbase,

and dhgetee) are available. Finally, to provide absolute transformations for all links using

just the dhparameters, 3d provides a command (dhmatrix) that returns the matrix Mi.

8.3 Animation

A simple human being can be modeled using kinematic chains of only revolute joints. The

human figure of the OPM system was defined using fifteen dhchains. The joint locations

for these chains are shown in Figure 8-3. Each chain has a base point followed by a series of

links and joints ending with an end effector. The dhchain for the spine is the base chain for

the whole body. All of the other chains begin from one of the joints on the spine dhchain;

therefore, the base of the spine is considered the base of the whole body. Attached to the

spine are dhchains for the arms and legs. To allow the thumbs and fingers to move, there is

a dhchain for each thumb and each finger attached to the end of the palms. These chains

provide simple movement for the human figure. It cannot move each of the vertabrae of the

spine and none of its body parts change shape during movement, so there is no illusion of

real human skin.

Body joints like the shoulder and hip need to be defined as spherical joints. These joints

can be described by using three revolute joints at the same coordinates on a dhchain. Each

of the three joints allows movement in one of the three planes (X-Y, X-Z, Y-Z). A dummy

joint is one that is never used to move a link of a dhchain. These joints are sometimes

needed to get rotation in the proper plane for a certain joint since the a parameter only

rotates around one axis (the X axis).

To create a dhchain for a part of the human figure the positions of the body joints

(shoulder, elbow, wrist) need to be calculated. This is done through a series of procedures

when the human figure is loaded and the joints are stored in the joints array for later

use. In general the joints procedures find the intersection between two body parts and then

locate a point near the center of that intersection. After the body joints are calculated, the

dhchains can be created. The dhparameters for the arm dhchain are given in Table 8.2. The

symbols dx, dy, and dz represent distances between the body joints of the human being and

differ depending on the size and gender of the figure.

Figure 8-3: Locations of the joints for the human figure

60

Table 8.2: Denavit-Hartenberg parameters for the arms

After the dhchains for the entire body are created, the OPM system uses the dhmatrix

command (to calculate Mi) to transform the body parts to their correct positions in the

body. When body parts need to be moved, OPM can use the procedures created (using the

dhtheta command) to carry out movement by each of the body joints of the human.

The coordinate frames at each of the joints of the dhchains are defined so that the

minimal number of joints are used. Therefore, the joint angles are arbitrary to the end

user. If using the 0 angles, it will not be obvious to the user whether to move the joint

angle in the positive or negative direction to get it to move in the desired way. To solve this

problem a set of q angles have been created whose movements are more intuitive to the user.

For example, the ¢ angle for all of the joints in their original positions is zero. Furthermore,

for each joint, any movement in, upward, or to the right is considered a positive angle

movement; everything else is considered a negative movement. The OPM system keeps a

table of the relationship of the 0 and € angles of each joint. The conversion formula between

the two is as follows.

0 = -. drc + off (8.3)

A value for drc and off is stored for each joint in the dhc.joints array. This array also

stores the joint limits for each of the joints of the dhchains that effect body movement. The

Dh Joint Joint
Chain Number Name 0 r a a Movement
Arm 0 Chest 0 0 0 90 Moves chest in X-Y plane

1 0 0 0 90 Moves chest in X-Z plane
2 Shoulder 0 dz dx 90
3 90 0 0 90 Rotates shoulder in X-Z plane
4 90 0 0 90 Rotates shoulder in Y-Z plane
5 0 0 0 270 Rotates shoulder in X-Y plane
6 Elbow 270 dx dz 0
7 90 0 0 90 Rotates elbow in Y-Z plane
8 90 0 0 0 Rotates elbow in X-Y plane
9 Wrist 0 dz dx 90

10 90 0 0 90 Rotates wrist in X-Z plane
11 0 0 0 0 Rotates wrist in Y-Z plane
12 0 dx dz 90
13 End Effector 0 dy 0 0

limits describe the approximate physical limits of human movement and were formulated

by speculation and [Zel81].

8.4 Collision Detection

Automatic collision detection is named as such because a computer program automatically

detects when two objects in a scene will hit each other and by controlling the movement of

the objects prevents a physical collision. Visual collision detection, on the other hand, leaves

prevention up to the user, and means that all objects are free to move to any position and

orientation in a scene and the user of the program is responsible for controlling movement

to prevent collisions if that is what is intended. The OPM system uses visual collision

detection. The original proposal stated that an automatic collision detection algorithm

would be created, but due to the lack of speed of this algorithm this idea was aborted. The

user is now responsible for preventing objects from interfering with one another. He or she

is aided in this task by the viewing capabilities of the system. Using the mouse the user

can quickly adjust the view point of the scene and discover if two objects have collided.

8.5 Forward Kinematics

Forward kinematics relates joint angle rates and position to end effector rates and position

[Rib82] of a kinematic chain. By modifying the joint angles, the position of the end effector

can be changed. The OPM system allows the user to move body parts to new positions by

altering their joint angles. The Forward Kinematics feature of the Human category allows

the user to effect forward kinematics in two ways. In joint mode the user is given a list of all

of the body joints of the human figure. The user can choose a body joint to modify and use

sliders to change the joint angles. Up to three joint angles are provided for each body joint

depending upon in which planes the joint can move. However, in special mode the user can

choose from five forward kinematic procedures: grasp with both hands, reach with left arm,

reach with right arm, position left leg, and position right leg. These functions provide sliders

for the user to change the specific degrees of freedom (DOF) for each function (see Table

8.3). For example, with the grasp with both hands function the user indicates the angles in

which to wrap the fingers, wrap the thumb, and angle the thumb.

An additional feature that OPM provides to adjust the human figure is the Reset feature

Table 8.3: Degrees of freedom for special forward kinematic functions

Function DOF 1 DOF 2 DOF 3 DOF 4

Grasp with both hands Wrap fingers Wrap thumb Angle thumb
Reach with left arm Arm side Arm forward Arm twist Move elbow
Reach with right arm Arm side Arm forward Arm twist Move elbow
Position left leg Leg side Leg forward Move knee Move ankle
Position right leg Leg side Leg forward Move knee Move ankle

of the Human category. It allows the user to reset the whole body to its original sitting

position.

8.6 Inverse Kinematics

Inverse kinematics (IK) also relates joint angle rates and positions to end effector rates and

position, only instead of giving the joint angle as the input and outputting the end effector

position, the end effector position is given and the joint angles are output. Typically, inverse

kinematics is done using the inverse of the Jacobian matrix [Rib82]. (This matrix describes

the relationship between joint angle rates and end effector position.) However, when there

are more degrees of freedom than there are input arguments (end effector orientation), then

the problem is kinematically redundant, the Jacobian is not square, and no inverse can be

found. Other methods are then used for inverse kinematics. In this case the kinematic chain

is simple, so IK was done using algebraic equations. For the inverse kinematics that were

used with the OPM system, four angles are calculated using a series of equations that are

described in later sections. The inputs to the IK algorithms are the X, Y, and Z coordinates

for the end effector of the arm dhchain and a variable called the armpose parameter that

controls the height of the elbow. This parameter is needed because the linkage has more

than three degrees of freedom and is thus redundant with respect to the position goals.

Hence, there are multiple solutions and the arm.poseparameter is used to pick one of

these solutions.

The IK functions for OPM can be invoked using the Inverse Kinematics feature of the

Human menu. The options for this feature allow the user to choose to manipulate the right

or left arm. They also allow the user to choose to have the selected limb reach a point

or an object. If the user would like to reach a point, he or she types in the X, Y, and Z

coordinates of the point. If the user wants to reach an object a list of objects is displayed

from which the user chooses. In either case the arm.poseparameter is set to a value from

zero to one using a slider. The OPM system then tries to move to the point or to one of

the faces of the selected object, respectively.

Internally, the IK procedures were implemented using the same equations as [Gaf94].

The calculations are done in two major steps.

1. Calculation of the shoulderelbow.vector.

2. Inverse kinematic calculation of the upper and lower arm angles.

The input to these procedures are a goal point (a list of X, Y, and Z coordinates) to which

to move the end effector of the hand and a value for the arm-pose-parameter (a value

between zero and one).

8.6.1 Calculation of the shoulder _elbowvector

The first step to finding the arm angles is calculating the shoulder_elbow.vector or sev.

This vector is shown in Figure 8-4 along with the other arm vectors.

The shoulder and the goal point are fixed, but the positions of the elbow and wrist will

most likely have to change for the arm end effector to reach the goal point. Therefore, the

shouldergoal_vector can be calculated by subtracting the goal point from the position

of the shoulder joint. The magnitude of sgv is also fixed and can be calculated by finding

the distance between the shoulder joint and the elbow joint. To calculate the se'v the angle

between the se'v and the sg'v needs to be calculated. This is done using the law of cosines

with the following formula.

"- =arccos ' v l2 + Is'v '2 - leg'v 12 (8.4)

The magnitude of eg'v is fixed as the distance from the current position of the elbow

joint to the current position of the end effector (retrieved with 3d command dhgetee) if the

hand angles do not change.

All solutions for se'v lie on a circle with radius Isevl around the shoulder joint. It is

shown below how to calculate the Z coordinate, zse..

sgv

GOAL POINT

LDER JOINT

ELBOW JOINT

OINT

wgv

Figure 8-4: Arm vectors for inverse kinematic calculations

Once ze,,, is known the X and Y coordinates can be solved using the following two

equations.

s l2 = sev + Ysev + Zsev (8.5)

(8.6)Is'vllIsfyvI cos-y = Xsevsgv + YsevYsgv + ZsevZsgv

The first equation is the definition of the magnitude of a vector and the second equation

is the definition of the dot product of two vectors. Solving these equations gives two solutions

for Xsev.

k1 kl1 2

Xsev = ± - k2
2 4

k1 = 2 sgv (zsev Zsgv - Is'v ISgv I cosY)
Xgv + Ygv

(8.7)

(8.8)
where

2- +2 (8.9)k2 s8vls| vlcosCy(s(vIs v cosy - 2zsevzsgv) + z2ev(g + z -9 i| (8.9)
2 9, + y2,

Of the two solutions for xsev the larger value is always chosen. This creates the more

natural position for the arm with the elbow turned away from the body. A value for Ysev is

then calculated by plugging xsev into equation 8.5. Again two solutions will be produced.

The one that is chosen is the one that makes the angle between se'v and sgv closest to the

value (y) that was calculated before.

Using the notion that the root argument in equation 8.7 must be greater than or equal

to 0 a range of possible zsev values is computed. The arm.pose-parameter is then mapped

to this range. A value of 0 for this parameter sets zsev equal to Zsevmin and a value of 1 for

this parameter sets zsev equal to ZseVmax.

8.6.2 Calculation of the arm angles

In order to calculate the arm angles (shoulder.xy, shouldery.z, shoulderxy, and el-

bow_yz) for the new orientation of the arm, inverse kinematic calculations must be im-

plemented. A separate calculation is used to find the upper arm angles (shoulderx_y,

shoulder_y.z) and the lower arm angles (shoulder x_y and elbow_y.z), but they both use the

same principles.

If the dhmatrix, Mm, is known for one of the joints m of a dhchain and part of the

dhmatrix Mn of a joint n which is further down the same dhchain is known, then equation

8.2 (page 58) can be used to calculate the joint angles in between m and n. By multiplying

both sides of equation 8.2 by the inverse of Mm as follows

M, 1 -Mn = Am+1 - Am+ 2 -An-1 -An, (n > m) (8.10)

a set of trigonometric equations can be formulated to find the joint angles. The specific

calculations are described below.

Calculation of the upper arm angles

The upper arm angles correspond to joints 3 and 4 on the arm dhchains. By using equation

8.10 the following formula is established,

M2-1 • M4 = A3s A4 (8.11)

A 3 and A 4 can be found using matrix 8.1 (page 58) and the dhparameters,

A3 j
83

-C 3

0

0

84

-C4

0

0

(8.12)

where ci denotes cos 8i and si denotes sin Oi.

The previously calculated shoulder-elbowvector maps to the Z axis of the coordinate

frame at joint 4 of the arm dhchain. Therefore, the third column of dhmatrix M4 should

contain the shoulder_elbow-vector as follows.

M4=

sevx

sevy

sevz

0

(8.13)

The third column of the matrix on the left-hand side of equation 8.11 now looks like

this,

M2-1 -.• 8ev (8.14)

setting this value to be G and calculating the third column of the right-hand side of equation

8.11 (by multiplying matrices A 3 and A 4) the following equation is created.

Go

G1

G2

0 1=C384

-C4

0

(8.15)

Solving this equation gives two solutions for 83 and 04.

04a = arccos (-G 2), 84b = - arccos (-G 2) (8.16)

3a -= arccos I 03b = - arccos 0 (8.17)(sin 04) (Sin 04

Between the two solutions for 94 one is chosen by using the joint limits defined for 04. If

both solutions are outside of the joint limits, then the user is notified that the angle is out

of range and that inverse kinematics cannot be performed for the specified goal point. If

both solutions are valid, then the one that is closest to the the current value of 04 is chosen.

To find 83, the joint limits are also checked. Again, if both are out of range, then the user

is notified. If both are in range, then the value closest to the current value of 03 is used.

Calculation of the lower arm angles

Calculation of the lower arm angles (shoulder.xy and elbowy.z) is very similar to the

above calculation. The lower arm angles correspond to joints 5 and 7 of the arm dhchain.

The following equation is used in the solution.

M41 M13 = A5 - A6 A As A9 Alo -All A12 A13 (8.18)

The hand angles remain constant so matrices As through A 13 will not change during the

calculation and can be replaced with the variable Atemp where Atemp = A 8 -As Alo -All -A1 2 "

A 13 . The goal point (90, 91, 92) maps to the last column of dhmatrix M 13 . After substituting

this goal point and multiplying matrices A 5, A 6, and A 7 equation 8.18 becomes,

Cgo c5c 7 -s5 -c5c7 -d 6s5

* * * gI 8587 C5 -85C7 d6c 5 At (8.19)
M4-1. = • Atemp (8.19)

*9(J g2 C7 0 S7 a6

0 0 0 1 0 0 0 1

The elements of the Atemp matrix are defined as follows,

too tol t02 to3

Atemp = t11 2 13 (8.20)
t20 t21 t22 t23

0 0 0 1

By setting the fourth column of the matrix on the left-hand side of equation 8.19 to be

G (which equals M 1 g) then the fourth column of equation 8.19 is as follows,

Go 1 (c5c7t03 -- 5t1 3 - C5C7t23 - d6s 5

G1 asS 7to3 + 5t13 -s5C7t2 3 + d6c5j= (8.21)
G2 c7to3 + 87t23 a6

1 1

This equation yields solutions for sin 07 and sin 05

(G2 - a6) 23 t3 t2 - (G2 - a6) 2 03
sin07a,b t23 t3•t (8.22)

-Gk2 klJ-G + k 2 + k22 (8.23)
sin 95a,b =kl + 22 (8.23)

where,

kl = t13 + d6, k2 = cos 07t23 - sin 7t03 (8.24)

Since the arcsin function will output two angles, the above equations yield four solutions

for each 0. Of the four solutions, only two will be valid when checked with one of the

equations of 8.21. Of these two the one is chosen that is within the the joint limits for that

angle. As with the previous calculation, if both angles are within limits, then the one is

chosen that is closest to the current joint angle.

8.7 Anthropometry

The OPM system gives the user access to six differently sized human models-small, average,

and large males and females. The models were scaled from two original models of a male

and a female human adult. The scale lengths were obtained from the Human Scale 1/2/3

Manual [DTB85]. The small figure corresponds to a 2.75 percentile person, average to a 50

percentile person, and large to a 97.5 percentile person. Internally, the OPM code contains

procedures that scale the original figures. These procedures take, as input, values for the

lengths of the X, Y, and Z dimensions of the body parts. Each of the parts is then scaled

to correspond to the input dimensions and then new body part files are written. These files

are saved and are the ones that are loaded when the user loads a human figure into OPM.

By saving the files I made a space/time trade off. I could have also decided to allow the

program to compute the scaling at run time and only stored the original files. I chose to

store the files and save time (instead of space) to make it fastest for the end user.

8.8 Alias Figures

The model of the human figure for the OPM system was originally taken from the Alias

modeling software. The compact disc that stores the Alias Library contains models of

commonly used objects including mannequins of male and female human beings. Just like

anything else modeled in Alias these figures were converted to asc files and used with the

OPM system.

I made four small modifications to the Alias human model. The largest change was the

addition of a jointed hand. I also shortened the top of the thigh, so that the thigh would

not protrude from the buttocks when the hip angles were changed. The forearm also needed

a similar modification, so that the forearm would not jut out through the palm. The final

alteration was to separate the skull and the neck into two objects. This required shortening

the neck that was attached to the skull and creating a very simple neck object from a

cylinder. Other than these changes the human figure of the OPM system is equivalent to

the Alias model.

Chapter 9

Human Factors Information

Integrating human factors data is the final phase of the OPM system. Many different forms

of data could be featured in the OPM system, but only two types were implemented. At

the request of the industrial designers at Delco, this beta version visually displays the sight

cone and the eyellipse.

9.1 The Sight Cone

It is clear that the position of the driver and the design of the vehicle play a large part

in determining what the driver can see. Vehicle design (including the placement of design

concepts) must integrate both human and engineering factors [Has93]. It is desirable that

the driver concentrate on the road directly in front of him or her as much as possible.

Therefore, it is important that design concepts be located in positions that are easy for

the driver to see. To position these objects effectively, the vehicle designer must know the

comfortable or effective region of sight of the driver.

Displays in the automobile should be located for maximum comfort and efficiency of

eye movement. The human eye has a maximum rotation of 400 upward, 200 downward

off the normal line of sight and a rotation of 350 right and left [CK72]. (The principle, or

normal, line of sight is defined to be 100 to 150 downward from a horizontal line extending

outward from the head at eye level.) Within these ranges, researchers have found that a

very effective place for displays is directly in front of the operator within a 300 circular cone

around the principle line of sight [Woo81l]. This 300 region describes the optimum cone of

vision. However, some research has indicated that the most effective visual regard is in the

shape of an oval, as opposed to a circle, around the normal line of sight [SM87].

No matter how its size and shape are defined, the sight cone allows the user to visually

understand what the human figure can see in the cockpit for a particular viewing region

without turning the head. This region is defined by the vertical span (amount of total

up/down movement), horizontal span (amount of total left/right movement), start angle

(normal line of sight, angle off of the eye-level horizontal line), and the length of the cone.

These parameters allow the user to be very flexible with the size and shape of the sight

cone. The user can set up a viewing region that represents the comfortable human sight

range or the maximum human range. A more oval sight cone is also possible by setting the

vertical and horizontal span differently.

A sight cone can be added to the OPM system with the Add Sight Cone feature in

the Human category (see Figure 9-1). The user sets the four parameters described above

through a dialog box. Once loaded, the sight cone is transparent with respect to the other

objects in the cockpit so that other objects can be seen through the sight cone. It is also

colored red, so any object that is tainted red can be seen by a human figure within this

viewing range. The user can manipulate the view point to see exactly what falls within the

cone. When the user is done with the sight cone, it can be removed with the Remove Sight

Cone feature of the Human category.

9.2 The Eyellipse

The eyellipse is defined in [SAE92] as an elliptical contour that allows an experimenter

to analyze where drivers' eye locations will be, so he or she can know what a driver can

see. There is a contour for each eye and the dimensions and location of these contours

need to be determined by the experimenter. According to [SAE92], the dimensions of the

eyellipse are determined by two factors-the percentile (95th or 99th) to be used and the

occupant packaging variable L23 [Roe91] (normal driving and riding seat track travel, the

two categories used are 100-133 millimeters and greater than 133 millimeters). For example,

if eyellipse were to be built for the 95th percentile with L23 greater than 133 millimeters,

then the X, Y, and Z axes for the eyellipse would have lengths 199, 105, and 86 millimeters,

respectively. Determining the location of the eyellipse consists of finding the locations of

the centroids for the left and right contours. The centroids are usually 65 millimeters apart

Figure 9-1: Sight cone added to an average, female human model in the cockpit environment

and are located near the position of the left and right eyes of the human figure.

The OPM system allows the user a flexible method to create eyellipse for different

percentiles, of different sizes, and in different locations (see Figure 9-2. To add an eyellipse

the user invokes the Add Eyellipse feature from the Human category. The user can then

choose a 95th or 99th percentile eyellipse and whether the occupant packaging variable L23

is between 100-133 millimeters or above 133 millimeters. For the four combinations of these

two parameters OPM outputs the default axis lengths given in [SAE92]. However, the user

can also set these lengths to other values.

Once the size has been determined the user needs to resolve where the centroid of the

left and right eyellipse should be placed. To aid the user, OPM creates a yellow and blue

sphere to represent these centroids visually in the scene and starts them off in positions near

the left and right eyes, respectively. (The human figure is made transparent so that the

centroid objects can be seen. The figure is made opaque again once the feature is exited.)

The user is free to move the centroids around the scene. The coordinates for each are always

displayed along with the distance between them. Once these positions are set the eyellipse

are created (a yellow object for the left eye and a blue object for the right). As with the

sight cone the objects are transparent relative to the other objects in the scene. When

finished the user can remove the eyellipse using the Remove Eyellipse feature of the Human

category.

Figure 9-2: Close up view of the eyellipse added to an average, female human model in the
cockpit environment

75

........ ... 11.1 1.1 M - N

Chapter 10

Evaluation

An informal evaluation of the OPM system was conducted to understand how effective the

tool will be and to obtain feedback from the users. Three paid domain experts from the

Mechanical Engineering Department at MIT completed an evaluation task and a question-

naire. All subjects were familiar with human factors and user interface issues. Both forms

are included in Appendix A. The evaluation task consisted of thirteen steps that illustrated

the power of the system. Basically, the subject was asked to load a pre-made cockpit, radio

concept, and human figure into the system and then use the viewing capabilities and the

forward and inverse kinematic features to analyze if the human could see and reach the

radio at different locations.

The following summarizes the results of the questionnaire. Subjects were asked to

comment on all four aspects of the system: GUI, integrated cockpit, human interaction,

and human factors data.

Overall the GUI was coherent and easy to use corresponding to the requirements earlier

stated. Subjects thought that the windows were sized properly and placed in effective

positions. They found that they could quickly manipulate the view point with the mouse.

Although the current system of highlighting objects in the auxiliary windows is acceptable,

subjects felt that ideally pointing at objects in the Display window would provide a more

direct and intuitive method of selecting objects. Also, at some points it was hard to tell

if the program was computing something. Although feedback windows were provided for

features that took a long time, a working cursor symbol was suggested as an additional cue

for the user.

The integrated cockpit features were also satisfactory. Subjects had no trouble loading

cockpits and concepts and felt that they could easily move the concepts around in the

Display window. Comments were made about the fact that currently, concepts are treated

as just one object. Possibly in the future, concepts, like cockpits, could be broken down into

their different components (e.g. buttons, knobs) so that the human figure could interact

with the individual elements of concepts. Furthermore, a critique about cockpit modification

hinted that it was difficult to identify which variables were which in the Display window;

however, after variables were discriminated it was easy to modify the them and this feature

was very useful.

In terms of human figure movement, subjects found both forward and inverse kinematics

worked well and they could easily make the human figure do what they wanted.

Finally, on the human factors side, subjects liked the sight cone, but said that at times

it was difficult to figure out where this cone intersected other objects.

Some general essay questions were also posed. This revealed that the project did demon-

strate the possibilities of this technology and that it was a great start toward integrating

the cockpit and the human driver. At this point subjects thought that the most useful part

of the project was the manipulation of the cockpit and the ability to change its dimensions.

Cockpit mock-up and analysis were suggested as possible uses for the product. Further-

more, designers of workstations, control panels, and office environments might also benefit

from the tool. On the other hand, subjects commented that it was not that good for human

performance evaluation, executing very detailed human figure movement, or making more

than one human movement at a time. To increase its usefulness in this realm the ability to

analyze the different kinematic trajectories for human movement would have to be added.

Overall the comments were positive for this tool being a prototype product for a more

advanced tool. People were excited about visually seeing many disciplines together.

Chapter 11

Future Work

There are three levels of future work. The first level deals with the global structure and

design of the program while the second level deals with enhancing the simple algorithms

for currently existing features to be more complex and comprehensive. The last level deals

with the addition of completely new features for the system. Each of these levels will be

discussed in association with the four major areas of the OPM system: the user interface,

the integrated cockpit, the human interaction with other objects, and the human factors

data.

11.1 Modular Enhancements

On the first level the GUI could be improved by following two principles-make things

more mouse driven and display as much information as possible in the Display window.

The system is almost completely mouse driven already, but several improvements could be

made. The user should be able to point and select any object in the Display window and

then be able to apply features to that object. This would eliminate the need to highlight

elements in the auxiliary windows. Ideally, the auxiliary windows should be eliminated. All

of the information that they contain could be drawn out visually. Each variable, concept,

and locator would be labeled as such next to the appropriate object in the Display window.

A method would have to be devised, so that the text could be rotated quickly when the

view point changed, so that the user could always read it. The second level brings up an

enhancement to one of the essential features of the GUI-changing the view point. Currently,

the view point is modified by first entering Mouse mode through the main menu and then

using the mouse to modify the view. Modes can be frustrating for the user because he or

she can forget which mode is activated and get confused. The mode can be eliminated by

detecting when the mouse is over the Display window and enabling mouse view point change

at that time. For the final level, the industrial designers proposed some additional features

for the GUI. These included creating a 2D viewing capability where a slicing plane was

chosen and the view was collapsed so that just the information on that plane was displayed.

The designers cited that sometimes the information displayed in the depth dimension gets

in the way. They also suggested that the scene could be enhanced with real world objects

outside of the cockpit like pavement, grass, and trees. Possibly the user might like to light

the scene to create a day and night mode, so that designs could be evaluated as if it were

night time. This would involve turning on the lights in the inside of the car including the

lights which backlight the design concept faceplates. It might also be helpful if the user

could control the transparency of objects in the 3d environment, so that he or she could see

objects inside of other objects.

In terms of the integrated cockpit on the global level of future modification, an extreme

expansion would include the addition of an object building facility for the 3d environment,

so that the user could easily add other simple components to the cockpit like another mirror

or a dashboard. This feature will accommodate the changes to the automobile cockpit of

the future. On the enhancement level, capabilities with measurement could be much more

general. The user should be able to create, name, and modify any length in the cockpit

instead of just particular variables (as described in section 7.1.3). The functionality to save

new variables should also exist by allowing the user to create a variables file to be saved

with the cockpit, so that users do not have to keep recreating the variables that they need.

Adding functionality might include enabling the user to modify Alias designs in 3d and then

convert them back to a format that Alias accepts. The user should also be able to identify

all the components of a concept, so that the human figure can interact with individual parts

of the concept; currently a concept is treated as just one object.

Global rework for the human model functionality incorporates what one of the eval-

uation subjects stated. Currently, the OPM system does not effectively evaluate human

performance during interaction with cockpit objects. To improve this, all of the kinematic

trajectories for any movement of body parts would have to be considered instead of the

present method of considering only one. For example, when OPI is moving its arm to reach

an object, each of the paths that the arm could move on should be accounted for.

On the second level of ideas for the future are the following. Currently, the human

figure is very simple in most aspects; it has a very simple Denavit-Hartenberg structure and

performs very simple forward kinematic movements. No attention is paid to coordinated

movement leaving these things up to the user. This area could be expanded by adding

things like coordination of movement and some task level motor programs, so that the

human figure could be made to do more complicated actions. Also real human movement

could be incorporated. This would include adding real human joint limits. Along the

same lines, the inverse kinematics algorithms are very simple. Inverse kinematics is only

implemented for the arms. IK could be expanded to the legs, hands, and fingers to provide

greater flexibility in the control of the movement of the human figure by the end user.

Automatic collision detection could also be implemented, so that the user can be assured

that the human will never put its hand through another object in the scene.

A final enhancement applies to the scalability of OPI. Currently, there are six sizes of

humans that can be loaded. Possibly the user would like to change the scaling on some or

all of the parts of OPI. Maybe the user would want a person with a long torso and short

legs for example. The user should be able to click on the part of the body to be changed

and then scale that part in the X, Y, and Z dimensions. In terms of added features, the

human can be made to do many things that will be beneficial for identifying the space

that is available for design concept placement that the human can reach. For example, the

Sweep Volume feature could be created. When turned on this feature would allow OPI to

visually communicate to the user the space that OPI could reach. When OPI moves one of

its limbs, any of the space that is touched could be highlighted, so that the user could see

exactly the reach zone that OPI contained.

The human factors side of the OPM system could be modified globally in several ways.

Algorithms that perform human factors analysis could be included. For example, algorithms

could be written that give a human factors score for the placement of new components and

concepts in the vehicle that indicate how well the human driver would be able to see and

reach this component. Other information could also be provided such as information about

how big a font needs to be if it is a certain distance away.

Examining the second and third levels of future work reveals the following. The human

factors data that is currently visualized includes only two pieces of data-the sight cone

and the eyellipse. This area could be expanded to the nth degree. First of all, much

more occupant packaging information and SAE definitions could be incorporated into the

program. For example, the SAE standard coordinate system could be used. There exists

many other SAE documents that describe standards for occupant packaging and automobile

design. There is a book [GM88] that contains all of the occupant packaging variables that

are used by designers to create new cockpits and concepts; these could be incorporated

visually.

11.2 Summary of Enhancements

The enhancements for all modules of the system are summarized below.

* Make the GUI completely mouse driven

* Display as much information as possible graphically

* Create a build object facility for the 3d environment

* Improve human performance evaluation

* Incorporate human factors analysis algorithms

Chapter 12

Conclusions

As is supported by its evaluation, the first OPM system was successful. It met its objective

of designing a human factors analysis tool to be used by industrial designers to analyze new

design concepts. Delco's requirements and resource needs were attended to throughout the

entire project. The implementation works well using the 3d language and the IRIX operating

system on Silicon Graphics machines, however, other languages and systems could probably

be used for future versions.

The tool allows the user access to template cockpits and Alias concepts in a three-

dimensional interactive environment. It also incorporates interaction with a computer hu-

man model and human factors data. Although the algorithms and data used were straight-

forward, the system demonstrated that this will be a useful tool should it be expanded

in the future. This expansion would require rewriting the core algorithms for each of the

system modules. For a complete tool it would take many more programmers, more time,

and more money.

A tool like this will enhance the industrial design industry extensively. Designers can

now produce more visually harmonious concept designs that are more functional because

they can see the entire cockpit and its components in one environment. Functionality and

usability will be increased by understanding the possible actions a human can take with

cockpit components. On the financial side, design errors will be flagged, so that they can

be corrected before expensive prototypes are built.

Appendix A

Evaluation Forms

Occupant Packaging Model Evaluation Task

Please complete the following evaluation task and fill out the associated questionnaire.

You will be asked to carry out a series of steps that demonstrate the important features

of the Occupant Packaging Model (OPM) system. If you do not understand how to use a

feature, use its Help button for instructions.

1. Start the OPM system by typing OPM.

2. Using the Load feature of the Cockpit menu, load a pre-made cockpit from the Alias

directory /usr/people/megan/userdata/cavalier/asc. Enter 'cavalier' into the PROJ-

ECT box.

3. Using the Modify feature of the Variable menu, modify the height (z dimension) of

the pedal_board to be 610.00 mm.

4. Using the Load feature of the Concept menu, load a pre-made concept from the Alias

directory /usr/people/megan/user_data/radio/asc into the cavalier cockpit at point

(470, 0, 760). Enter 'radio' into the PROJECT box.

5. Using the Rotate feature of the Concept menu, rotate the radio concept by 900 around

its z axis (so that it faces front).

6. Using the Load feature of the Human menu, load a large, male human figure.

7. Using the Inverse Kinematics feature of the Human menu, test if the human can reach

the radio concept with his right arm.

8. Using the Translate feature of the Concept menu, move the radio to the coordinates

(650, -300, 760).

9. Using the Inverse Kinematics feature of the Human menu, test (again) if the human

can reach the radio concept with his right arm.

10. Using the Add Sight Cone feature of the Human menu, add a sight cone to the scene.

11. Using the Forward Kinematics feature of the Human menu, move the head around

the neck joint, so that it is rotated 240 in the Y-Z plane and 360 in the X-Y plane.

12. Using the Mouse feature of the View menu, check to see if the human can see the

radio with his head in this position by rotating the view point.

13. Using the Quit feature of the Cockpit menu, exit the system.

Occupant Packaging Model Evaluation Questionnaire

This questionnaire will be used in the evaluation of the Occupant Packaging Model

(OPM) system as a simple prototype human factors analysis tool. Please fill it out after

you have completed the evaluation task. There are two parts to the survey. The first series

of questions asks you to rate system performance on a scale from 1 to 5. The second series

of questions asks you to make comments on system performance.

Part 1

Please rate the following on a scale from 1 to 5. For items that you rated with a 1 or 2

please suggest improvements in the space provided.

5 Excellent

4 Good

3 Average

2 Fair

1 Poor

N Not applicable or don't know

Graphical User Interface

1. How satisfactory was the size of the Display window; did you feel like you could see

everything that you needed to see?

2. How satisfactory were the mouse viewing capabilities; could you quickly and easily

change the view point with the mouse?

3. How satisfactory were the help sections; did you feel like you understood how a com-

mand worked after you read its help section?

Integrated Cockpit

1. How satisfactory were the components (e.g. pedals, console, mirror) provided in the

template cockpit; were there any other cockpit objects that you would have liked to

see?

2. How satisfactory was the ability to identify specific dimensions of the cockpit; by

using the Variables window could you easily figure out which variables corresponded

to which dimensions in the cockpit?

3. How satisfactory did the system modify cockpit dimensions; could you easily make

any necessary changes?

4. How satisfactory was the manipulation of concepts; could you easily translate and

rotate concepts to new positions?

Human Figure

1. How satisfactory were the forward kinematic capabilities; could you accurately ma-

nipulate the body joints to new positions?

2. How satisfactory were the inverse kinematic capabilities; could you accurately manip-

ulate the arm end effectors to new points?

Human Factors

1. How satisfactory were the sight cone features; could you identify what the human

figure could see?

Part 2

Please answer the following questions based on your knowledge of the OPM system.

1. Was there anything that you found unsatisfying about learning the graphical user

interface (GUI)?

2. Was there anything that you found unsatisfying about using the GUI?

3. Do you think that the idea of bringing the integrated cockpit, a human figure, and

human factors data together in a three-dimensional environment is useful?

4. Can you think of any problems that this type of tool (either this simple form or an

extended version) is good for?

5. Can you think of any problems is it not good for?

6. How effective is this project as a prototype human factors analysis tool?

7. Do you think that this project demonstrated the possibilities of this technology?

References

[BPW93] Norman I. Badler, Cary B. Phillips, and Bonnie L. Webber. Simulating Humans:

Computer Graphics Animation and Control. Oxford University Press, New York,

New York, 1993.

[CK72] Harold P. Van Cott and Robert G. Kinkade. Human Engineering Guide to Equip-

ment Design. American Institutes for Research, Washington, DC, 1972.

[CK89] William W. Cotterman and Kuldeep Kumar. User cube: A taxonomy of end

users. Communications of the ACM, 32(11):1313-1320, November 1989.

[DTB85] Niels Diffrient, Alvin R. Tilley, and Joan C. Bardagjy. Humanscale 1/2/3 Manual.

The MIT Press, Cambridge, Massachusetts, 1985.

[Fer86] Alejandro J. Ferdman. Robotics techniques for controlling computer animated

figures. Master's thesis, Massachusetts Institute of Technology, Department of

Architecture, September 1986.

[Gaf94] Swetlana Gaffron. Skillbuilder: A motor program design tool for virtual actors.

Master's thesis, Massachusetts Institute of Technology, Department of Mechanical

Engineering, February 1994.

[GM88] General Motors, Warren, MI. Motor Vehicle Dimensions Procedures Manual, 11

edition, 1988.

[Has93] Christine M. Haslegrave. Visual aspects in vehicle design. In Brian Peacock and

Waldemar Karwowski, editors, Automotive Ergonomics, chapter 4, pages 79-86.

Taylor & Francis, Bristol, Pennsylvania, 1993.

[JMF94] Richard Jackson, Lindsay MacDonald, and Ken Freeman. Computer Generated

Color. John Wiley & Sons, Chichester, England, 1994.

[LG86] Barbara Liskov and John Guttag. Abstraction and Specification in Program De-

velopment. The MIT Press, Cambridge, Massachusetts, 1986.

[MP90] R. Maiocchi and B. Pernici. Directing an animated scene with autonomous actors.

In N. Magnenat-Thalmann and D. Thalmann, editors, Computer Animation '90,

pages 41-60, Tokyo, 1990. Springer-Verlag.

[MTT90] N. Magnenat-Thalmann and D. Thalmann. Synthetic Actors in Computer-

Generated 3D Films. Springer-Verlag, Berlin, 1990.

[MTT91] N. Magnenat-Thalmann and D. Thalmann. Complex models for animating

synthetic actors. In IEEE Computer Graphics and Applications, pages 32-44,

September 1991.

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, Mas-

sachusetts, 1994.

[Pau81] R. Paul. Robot Manipulators: Mathematics, Programming, and Control. MIT

Press, Cambridge, Massachusetts, 1981.

[Rib82] Eric A. Ribble. Synthesis of human skeletal motion and the design of a special

purpose processor for real-time animation of human and animal figure motion.

Master's thesis, The Ohio State University, Department of Electrical Engineering,

June 1982.

[Roe91] Ron Roe. Occupant Packaging. General Motors Systems Engineering Center,

Troy, Michigan, March 1991.

[Rya90] R. R. Ryan. Adams - multibody system analysis software. In Multibody Systems

Handbook, pages 361-402. Springer-Verlag, Berlin, Germany, 1990.

[SAE92] Motor vehicle drivers' eye locations-sae j941. SAE Recommended Practice, June

1992.

[SM87] Mark S. Sanders and Ernest J. McCormick. Human Factors in Engineering and

Design. McGraw-Hill Book Company, New York, New York, 1987.

[Woo81] Wesley E. Woodson. Human Factors Design Handbook. McGraw-Hill Book Com-

pany, New York, New York, 1981.

[ZC92] David Zeltzer and David Chen. The 3d virtual environment and dynamic sim-

ulation system. Computer graphics and animation group technical report, Mas-

sachusetts Institute of Technology, Media Lab, August 1992.

[Zel81] David Zeltzer. Computer Graphics. PhD thesis, Ohio State University, Depart-

ment of Computer Science, September 1981.

