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Abstract

This thesis investigates the three-dimensional mid-frequency (ka 0 O(1)) acoustic
scatter from large-scale features under the Arctic ice cover using an analytical model
and experimental data. A theoretical model is developed which contains all the rele-
vant physics of three-dimensional scatter. I derive the analytical solution for scattering
from a sphere attached to a thin, infinite, fluid-loaded elastic plate. This idealized
environmental model provides an understanding of the underlying physics of 3D scat-
tering, and is shown to be strongly frequency dependent. The analysis demonstrates
that the attachment of the plate to the sphere manifests itself in the scattered field in
a frequency selective manner. Moreover, it is also shown that the relative amplitudes
of excitation of flexural and in-plane (compressional and shear) modes in the ice plate
depend on both frequency and angle of incidence of the acoustic field.

Using the results from my theoretical investigation, I evaluate the scattering char-
acteristics of discrete large-scale features, or "hot spots", under the ice by analyzing
field data from CEAREX89 reverberation experiments. This analysis involves the
identification and isolation of protuberances under the ice, and subsequent evaluation
of their spatial scattering characteristics. I use a two-step Matched Field Processing
algorithm to solve this complex multi-parameter estimation problem. Using adaptive
array processing techniques, I obtain high resolution reverberation estimates. This
study also re-emphasizes the frequency selectivity of 3D scatter.

Finally, I compare results from the experimental investigations and the analytical
model. Comparisons in scattering levels between these two studies were not pos-
sible since the experimental data consists of contributions from multiple scatterers.
This was primarily due to the available experimental geometry. For certain frequency
bands, where scatter from a distinct feature is very prominent, there is some qual-
itative agreement between analytical predictions and experimental data. However,
within the enclaves of the available data, it was not possible to conclusively corrobo-
rate theoretical solutions with field data.

Thesis Supervisor : Henrik Schmidt
Title : Professor, Department of Ocean Engineering
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Chapter 1

Introduction

1.1 The Arctic Ocean Environment

The Arctic Ocean has historically been important for both economical and political

reasons. It is an abundant reservoir of natural resources like minerals, oil and natural

gas. Recently, it has found use in monitoring global climate change as demonstrated

by the joint US-Russian long-range propagation experiment in the Arctic [1, 2]. The

main idea behind that effort was to determine the feasibility of detecting global climate

change by measuring the temperature of the Arctic Ocean. The prediction of this

change involves monitoring the time it takes sound to travel thousands of miles. As

sound travels faster in warmer water, shorter travel times observed over long periods

of time would be an indicator of global warming.

Since the early 1960s, i.e., during the Cold War era, the Arctic Ocean has also been

of strategic importance. During this period there was substantial interest in under-

standing issues related to long-range submarine detection and identification. This is a

particularly difficult problem because of the complex nature of the boundaries of the

waveguide and the presence of various sources of noise, both natural and man-made.

Examples of man-made sources of noise include radiation from ship machinery and

submarines, while natural sources include the cracking of ice due to environmental



Sound Velocity Profile Arctic Ocean Waveguide

Figure 1-1: Characteristic Arctic Ocean sound velocity profile and corresponding
propagation paths in the waveguide. The upward refracting SVP causes sound to
repeatedly interact with the ice cover, distorting both amplitude and phase.

forces, and sounds from marine mammals. In contrast to signal propagation in the

open deep oceans, the problem in the Arctic Ocean waveguide is further complicated

by the presence of a 3.0 m thick floating ice-sheet. Much of the recent work has

been devoted to developing an understanding of scattering of sound waves from the

underside of this rough elastic interface.

It is natural to wonder why this is an important issue when considering propagation

of sound in the Arctic Ocean. The reason being that any long-range propagation model

must include the effects of interaction of the signal with the underside of the ice cover,

as it alters both its amplitude and phase. This arises due to the upward refracting

nature of the Sound Velocity Profile (SVP) in the Arctic Ocean waveguide which makes

any signal propagating over long distances repeatedly interact with the ice canopy as

shown in Fig. 1-1. At each interaction, the signal is partly reflected and scattered,
with simultaneous excitation of elastic waves in the ice plate. One therefore needs to

develop a good understanding of this interaction between the acoustic waves and the

rough interface to realistically model propagation in the Arctic Ocean waveguide.

ýiI OO WR" -*

s; ON %.



1.2 Thesis Problem and Related Previous Work

The goal of this thesis is to improve our understanding of low frequency scattering

of acoustic waves from the ice canopy in the Arctic Ocean. The Arctic ice cover

contains a wide spectrum of roughness extending from the minute deviations from

the plane surface hardly visible to the naked eye, to protuberances whose dimensions

are greater than the wavelengths of the acoustic signals typically used for long-range

propagation in the Arctic Ocean (f < 100Hz). A lot of work has been done in the

literature on scattering from rough surfaces. A good reference on wave scattering

from rough surfaces is the review paper by Ogilvy [3] which discusses the different

approaches, and their corresponding limitations for analyzing scattering. One can

attempt to understand the physics of scattering of sound from a multi-scale rough

surface like the Arctic ice canopy, by conveniently subdividing its roughness spectrum

into three main categories. Assuming A to be the wavelength of the acoustic signal, k

its corresponding wavenumber, and a to be the characteristic dimension of the scale

of roughness, we have the following three distinct regimes of roughness -

* Small scale (or very low frequency limit) : ka << 1

* Intermediate scale (or mid-frequency range) : ka - 0(1)

* Large scale (or very high frequency limit) : ka >> 1

There is a plethora of analytical tools available for the analysis of scattering from

small and large scales of roughness. Scattering from small scales of roughness can

be accurately addressed using the Method of Small Perturbation (MSP). A good

example of this approach is the recent work of Kuperman and Schmidt [4, 5]. This

method, which is valid for small scales of roughness and slope, applies a self-consistent

perturbation of the boundary conditions at the rough interface. The scattered field is

shown to be driven by the mean or coherent field. It is important to note that inherent

in this method is the capability to include the elasticity of the rough boundary.



One of the many possible ways of understanding scattering from relatively smooth,

large scale features is via the Kirchoff approach, or the tangent plane method [6], which

includes the capability of modeling scattering from elastic interfaces. This method

assumes that sound reflects locally at each point on the surface as if from an infinite

plane tangent to the rough surface at the point under consideration, i.e., the surface

should appear flat relative to the acoustic wavelength. In other words, the Kirchoff

approximation is valid when the condition kp sin3 0 >> 1 is satisfied, where 0 is the

local grazing angle, and p is the local radius of curvature. The properties of the infinite

plane are assumed to be same as those of the rough surface. This method works well

for scattering in directions close to the directions of specular reflection. However, as

discussed by Lepage [7], the Kirchoff method fails at shallow grazing angles where

the backscatter is over-estimated even for moderately rough surfaces. In the case of

penetrable boundaries, there is an additional constraint on the transmitted field which

must also satisfy the criteria stated above. This means that the transmitted field must

not propagate at zero grazing angles. Therefore, when the acoustic wave is incident

at; an angle corresponding to the critical grazing angle of the penetrable boundary,

strong discrepancies arise between the results from the Kirchoff formulation and the

exact solutions.

Finally, there is the intermediate regime, when the dimensions of the scatterer

are comparable with the wavelength of the acoustic waves, where no such traditional

analytical tools apply. This is the regime (ka , 0(1)) which is much less understood,

and there is considerable effort underway to further our knowledge of physics of the

scattering phenomena. One of the earliest attempts by researchers in this field was

to model these features as, for example, a hemispherical protuberance on an infinite

plane. This is the classic Burke-Twersky approach [8, 9] or the boss model approach,

where the rough surface is modeled as a random array of scatterers of simple geometric

shapes. Chu and Stanton [10] have found reasonable agreement between the Burke-

Twersky theory and high frequency laboratory measurements of sound scattered by a

continuously rough pressure-release surface. However, the main drawback of the boss

model is that it ignores the elasticity of the rough surface, and provides no insight



into the physical processes, and wave mechanisms involved in the scattering of sound

by the ice.

More recently, with the availability of faster and more sophisticated computers,

some researchers have devoted their efforts on the computational approach which may

basically be divided into the following two types -

* Boundary Element Method (BEM) formulation of the boundary conditions sur-

rounding the facet.

* Finite Difference (FD) approach which solves the elastodynamic equations nu-

merically.

Both the BEM and FD, although computationally very intensive, allow for arbitrary

scales of roughness and slope, and can be used to model scattering from a single

isolated feature. A good 2D example of the BEM approach is the recent paper by

Gerstoft and Schmidt [11], which combines Schmidt's Global Matrix approach with a

boundary element formulation of the boundary conditions on a contour surrounding

the facet. Regarding the FD approach, a contemporary example is the recent work of

Fricke [12, 13] who implemented a 2D version of the FD approach to model scattering

from isolated features like ice keels. He was able to demonstrate that elasticity of the

ice plays an important role in defining the beampattern of the scattered field. Fricke

also used the FD approach to hypothesize that new, fluid-like keels which do not

support shear, dominate the scattering loss from Arctic ice. However, Lepage [7] later

disputed this hypothesis by demonstrating that scatter into flexural and horizontally

polarized shear (SH) modes must be considered for realistic attenuation mechanisms

for coherent loss in the Arctic Ocean. It is worthwhile to note that SH modes come

into play only in 3D formulations of scattering, once again emphasizing the need to

consider the three-dimensionality of the scattering problem.
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Figure 1-2: Model geometry for acoustic scattering from a three-dimensional feature
under the ice cover.

1.3 Approach

The main focus of this thesis is to consider scattering from a three-dimensional feature

or protuberance under Arctic ice as shown in Fig. 1-2. From the above discussion, it

is evident that there are various options available to do this. One could possibly run

a 3D version of either FD or BEM to synthesize the scattered field from a discrete

isolated scatterer. On the other hand, one could conduct experiments, in the field or

in the laboratory, and develop analytical models to help explain the data. Recently,

there have been attempts to numerically model three-dimensional fluid-elastic inter-

face scattering using the FD approach [14]. However, that analysis demonstrated the

infeasibility of this method due to requirements of extensive computational facilities.

There have also been attempts at 3D modeling using a boundary integral equation

formulation [15]. Due to computational limitations, that analysis was restricted to

scattering from a compact feature on a rigid boundary. Both these examples demon-

strate the severe limitations imposed on numerical modeling within the confines of the

presently available computational facilities. Therefore, I choose to make my analysis



more tractable by resorting to the latter approach in this thesis, where I will analyze

field experimental data, and simultaneously develop a theoretical model to assist in

the evaluation of three-dimensional scatter.

This thesis, therefore, may be viewed to consist of three main parts. In the

first, I develop the analytical model and conduct a theoretical investigation of three-

dimensional scatter. This analysis has a twofold objective. While providing an un-

derstanding of acoustic scatter from a large impedance discontinuity on an infinite,

submerged plate, it will also aid in modeling the scattering pattern from under-ice

features. This knowledge will be exploited in the second part, where I carry out an

experimental evaluation of scattering using field data. The Matched Field analysis

that will be conducted there requires a model of the replica fields. As the exact replica

fields are computationally involved to compute, my theoretical analysis will guide me

in developing an approximate model of the scattering pattern from Arctic ice features.

In the final stage of this thesis, these two parts will come together, and I will compare

my results from these two independent investigations. This will provide us with a

complete understanding of the underlying wave phenomena, and will help us develop

an appreciation of how the idealized environmental realizations compare with physical

reality.

1.4 Organization of this thesis

The organization of this thesis is as follows. I begin with Chapter 2, where I derive

the analytical solution for scattering from a thin, infinite, fluid-load plate with a three-

dimensional protuberance whose dimensions are comparable with the wavelength of

the incident acoustic waves. The canonical problem of scattering of acoustic waves

from thin, infinite, elastic plates has been previously studied by many researchers in

Structural Acoustics [16, 17, 18, 19, 20]. There have also been numerous efforts in

the past to model scattering from a ribbed plate [21, 22], where the size of the rib

was assumed to be small compared to the wavelength of the incident acoustic wave.



More recently, Guo [23] addressed the problem of scattering from an infinite, elastic

plate loaded with fluid on one side and and a semi-infinite plate on the other. These

studies reveal that an impedance discontinuity in the canonical geometry of a flat plate

produces significant scattering into the fluid by both supersonic and subsonic waves in

the plate. Additionally, subsonic waves get coupled into the plate by interaction of the

acoustic wave with the impedance discontinuity. However, these studies were primarily

two-dimensional in nature. Therefore, my theoretical investigation is an attempt to

make forays into analytical modeling of three-dimensional impedance discontinuities.

Next I move on to analyzing experimental data. This will be the theme in Chapters

3 and 4, where I evaluate the scattering characteristics of large-scale features observed

in the Arctic ice environment. This analysis involves the identification and isolation

of "hot spots" under the ice canopy, and subsequent evaluation of their scattering

patterns. We use the Matched Field Processor in a two step algorithm to solve this

complex parameter estimation problem. In Chapter 3, I conduct a preliminary anal-

ysis of the field reverberation data, and discuss issues related to data conditioning,

including source and array localizations. This will lead me to Chapter 4, where I

solve the first step in the global parameter estimation problem, and identify discrete

scatterers under the ice. My analysis in Chapter 2 will establish that I can model

the features as point radiators with a quadrupolar scattering pattern. Fricke [13, 24]

has demonstrated that the scattering pattern from a two-dimensional protuberance on

an elastic plate in this frequency regime resembles a deformed quadrupole, especially

near grazing angles of incidence. Moreover, the validity of this assumption for a 3D

scattering scenario will also be confirmed by my analytical realizations of scatter from

an isolated protuberance under ice. The use of this assumed scattering pattern will

then provide me with a rough map of the under surface of the ice cover. My results

will demonstrate that satisfactory results can be obtained with this assumption. This

Chapter also estimates the global scattering characteristics of the ice cover.

Chapter 5 contains the second step in the global estimation problem where I eval-

uate the spatial scattering characteristics of these isolated features. The analysis is



made manageable by limiting the number of unknowns defining the nature of the

scattered field. Simultaneously, I will compare the experimental results with those

from an approximate theoretical formulation. The two separate investigations, though

not directly comparable, will corroborate the physical mechanisms involved in three-

dimensional scatter.

As a bonus, I have also derived the Greens functions for ring tractions in a solid

unbounded elastic medium using spherical coordinates. Though not directly applicable

to my theoretical formulation, this analysis which is presented in Appendix A of this

thesis, aids in the derivation of the solutions to the plate-sphere coupled problem. The

explicit analytical solutions presented there are useful when modeling the interaction

between coupled structures using the full three-dimensional elastodynamic equations.

This Appendix is a complete entity in itself, and I have included it in its entirety for

future reference.



Chapter 2

Acoustic scattering from a three

dimensional protuberance on a

thin, infinite, submerged elastic

plate

2.1 Introduction

In this Chapter, I develop the analytical solution for scattering from a thin, infinite,

submerged elastic plate with a three-dimensional protuberance whose dimensions are

comparable with the wavelength of the incident acoustic waves (ka 0, O(1)). The

solution developed in this Chapter is "exact", and later in Chapter 5, I shall use an

approximation of this model to represent scattering from a protuberance under the

Arctic ice sheet. The size of the protuberance is large enough so that it can support

elastic waves which can resonate, and additionally radiate into the fluid.

I begin by parameterizing the various wave phenomena involved in the scattering

process in Section 2.2. Section 2.3 formulates the exact scattering problem using the

Eulerian approach. In Section 2.4, I solve the decoupled constituent problems of the
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Figure 2-1: Schematic representation of source, plate and sphere geometry. The inci-
dent field excites waves inside the sphere and the plate, which then couple back into
the surrounding acoustic medium.

free submerged sphere, the elastic plate, and the sphere excited by ring coupling forces

and bending moment. Section 2.5 contains results from the analysis where I evaluate

the attachment ring kinematics, the backscattered pressure, and the bistatic scattering

pattern for scatter from the three-dimensional protuberance.

2.2 Parameterization of the Problem

Before formulating the problem of three dimensional scatter, I begin by parameterizing

the wave phenomena involved in the scattering process. Fig. 2-1 shows the interaction

between the incident sound field due to a point source and the plate-sphere coupled

structure. The incident field excites elastic modes in the plate by phase-matching [25].

In general, assuming the plate to be thin, both compressional and flexural waves could

be excited in the plate. With our plate parameters and frequencies of interest, only

the lowest order plate modes are excited. These plate waves then travel towards the

plate-sphere junction while radiating back into the fluid by phase-matched leakage.

At the junction, they interact with the sphere and are (i) partially reflected back, (ii)

partially converted into waves of other types, (iii) excite elastic waves in the sphere,

and (iv) diffract into the fluid by scattering at the junction. Simultaneously, the
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incident acoustic field excites the shear and compressional waves in the solid sphere,

which then (i) radiate back into the fluid, (ii) excite structural waves in the plate,

and (iii) diffract into the fluid by scattering at the junction. The total displacement

components of the plate (subscripted with p) and sphere (subscripted with s) at the

attachment ring can therefore be expressed as a sum of two components - one due to

excitation by the acoustic wave (subscripted with a) and the other contribution due

to the excitation by coupling forces and bending moment (subscripted with c) at that

attachment ring, i.e.,

Up,t = Up,a + Up,c

US,t = Us,a + uS,C , (2.1)

where up,t and u,,t represent the total displacements of the plate and sphere respec-

tively, at the attachment ring.

It must be pointed out that in the formulation above I have neglected the con-

tribution from the specular reflection from the side of the plate which may easily be

added (e.g., see Ref. [25]). Once we have identified all the wave constituents that

enter into the scattering scenario, I can then proceed to synthesize the total scattered

field at the observer in terms of the contributions arising from the plate waves, and

those due to the elastic waves in the sphere. The contributions from the plate waves

excited by the incident field consist of (i) direct leakage of plate waves into the fluid

by phase-matching, and (ii) diffraction of plate waves at the plate-sphere junction into

the fluid. Similarly the elastic waves in the solid sphere contribute to the scattered

field by (i) radiating back into the fluid, and (ii) diffracting into the fluid at the junc-

tion. The direct leakage of the plate waves and the radiation of the sphere modes

can be easily computed by solving the canonical problems of an infinite submerged

plate and the solid elastic sphere fully submerged under water. The solutions to both

these constituent problems is well known, and therefore, I will present the significant

results in an Appendix. Finally, just as I expressed the displacements in terms of two

components, I express the total scattered pressure (pt) in the fluid as a sum of the



contributions from the plate and sphere excited by the acoustic wave, and the coupling

forces as

pt = Ps,a + Ps,c + Pp,a + Pp,c (2.2)

2.3 Coupling Formulation

The formulation for scattering from coupled elastic structures has been previously

studied in great detail [26, 27, 28], where the Eulerian formulation was used to de-

compose the coupled structure into its decoupled constituents, with their interactions

being accounted for by coupling forces and moments at the attachments. It was also

shown that when the size of the attachments is small compared to wavelength, the

junction could then be approximated as a point or ring junction as appropriate to

the problem under consideration. If the attachment area is larger, then this may be

viewed as a first order approximation to the exact solution.

The methodology of this approach is as follows. First, one must solve for the

dynamics of the decoupled constituents independently. However, one needs to add

some unknown source terms to account for the coupling at the attachment. In general,

one expands these source terms in terms of coupling forces and moments depending

on the characteristics of the attachment junctions. For example, if we have a pinned

joint we need to retain only forces, whereas for a clamped joint, the analysis must

include both forces and moments. These are in turn then determined by matching

the kinematics of the constituent structures at the attachment junction, for example,

displacements and slopes. This yields a set of algebraic equations which can then be

solved for the unknown coupling forces and moments.

At this juncture, it is worthwhile to point out that for an arbitrary attachment

between two structures, three components of stress and three displacement compo-

nents must be matched at that junction. This is a complex problem to solve since the

stress distribution at the junction is not known a priori. A possible solution proce-

dure would involve making assumptions regarding the form of the stress distribution
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Figure 2-2: Coupling forces and bending moments involved in characterization of the
attachment ring. The forces and moments for the plate are shown in their positive
sense

in terms of some unknown coefficients, and then solving the boundary conditions for

those unknown constants. Thus, in my model, where the thickness of the plate is

small but not negligible compared to wavelength, I should match stresses at the plate-

sphere junction. However, I choose to make the analysis more tractable by matching

equivalent forces and moments (or integrated stresses) at the junction modeled as a

ring of zero width. This is also consistent with the use of thin plate theory for the

plate. Moreover, structural continuity requirements will be satisfied since I constrain

the displacements and slopes at the junction.

The dynamics of the plate at the attachment junction are characterized by in-plane

and out-of-plane motions. Out-of-plane displacements are produced by including a

vertical shear force (fe) and a bending moment (Mb), while in-plane displacements

are obtained by including the radial (fR) and circumferential (f,) in-plane forces in

the analysis. Fig. 2-2 shows the junction between the plate and the sphere with the

various coupling forces and moments. Also shown in the figure is the unknown stress

distribution that exists at the coupling junction.

The displacements of the sphere due to the incident acoustic wave (us,,) will be

E·8



found in subsection 2.4.1, and may be expressed as

us,a = E E Gmis,a eim  (2.3)
m=-oo n=lml

where uis,a are the displacements of polar order n and azimuthal order m, and Gm

is defined later in eqn. (2.17). Here the 'hat' notation is used to denote dependence

on the azimuthal order m only. Similarly, the plate displacements due to the incident

acoustic wave may be expressed in the form

o00

Up,a= ~ i peimsC  (2.4)
m= -oo00

From the analysis of the governing equations of motion of the elastic plate (see sub-

section 2.4.2), we may write the displacements of the plate due to the ring forces and

bending moments as
00

up,c= AE ^ipeim'  , (2.5)
m=-o00

where A• = Zp/27r and f denotes the Fourier Transform of the vector of coupling

forces and is a function of the Fourier (azimuthal) order m only. Z, is the influence

matrix for the plate and may be interpreted as being the admittance or mobility matrix

relating forces and moments to velocities and rotation rates. It is given by

P11 P12  0 0
A A

P21  P22  0 0
0 0 P33  P34

0 0 P4 3 P44

fR

A (2.6)

Mb

The upper-right and lower-left quarters of the influence matrix are 0 since the in-plane

motions are decoupled from the out-of-plane motions in thin plate theory, as shown
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later. For the sphere, the resultants act in the opposite direction, and we will have

00 1 0
us,= 2E E amnjs -,e m

m=-oo0 n=I ml

A.

(2.7)

where
2n + 1 (n - m)!

amn 2 (n+m)!

and u,,c is the displacement of the sphere due to the ring forces and bending moments.

Note that I have implicitly assumed that f, acts in an opposite sense to fp. Z, is the

influence matrix for the sphere (derived in subsection 2.4.3), and is given by
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S14
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534

544
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Mb

(2.8)

Here the 'tilde' notation is used to denote dependence on both the polar order n and

the azimuthal order m. Matching displacements at the attachment ring yields

up,a + up,C = T [Us,a + us,c]

Us,a- T - 1up,a = T-'up,C - US,

where T is the transformation matrix from spherical to

both displacements and forces, and is given by

A

fR

Mb

sin 7

0

cos 7

0

cos

0

- sin 7

0

cylindrical coordinates for

7^
fr

f(P

fo0

Mb

(2.10)

(2.9)



Here 7 is the polar angle at the junction ring. Inserting eqns. (2.5) - (2.7) into

eqn. (2.9), we can write

T. - T-' TP = T-' Af, - LAXf, • (2.11)

Now inserting f. = Tf, into eqn. (2.11), we have

s - T-T1 i = [T-' 1A T -A^,]

and therefore, the coupling forces are found to be

S = [T-1 AT - A,] -1  - T-' T,] (2.12)

Then using eqns. (2.5) and (2.7) , we can finally solve for the displacements u,,, and

Up,c.

2.4 The Decoupled Constituent Problems

In my formulation, I need to determine the kinematics of the plate and sphere at the

attachment ring. This is done by solving each of the decoupled constituent problems

separately. In the following sub-sections, I shall determine the displacement of the

sphere at the coupling junction due to the incident acoustic wave (u,a) in subsection

2.4.1, and the influence matrices for the plate (Zp) and the sphere (2,) in subsections

2.4.2 and 2.4.3 respectively. The total scattered field is then synthesized in subsection

2.4.4.

2.4.1 The free submerged sphere

Scattering of acoustic waves by a solid elastic sphere submerged in a fluid is well

understood [29, 30, 31, 32]. However, previous analyses were limited to plane waves

incident along one of the coordinate axes, or axisymmetric point source loadings [33],
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Figure 2-3: Geometry for scattering from a submerged solid elastic sphere due to an
incident point source field.

which simplified the algebra considerably. In my case, I need to compute the scattered

field and displacement fields along a ring on the sphere due to a point source located at

an arbitrary position (ro, 00, po) as shown in Fig. 2-3. The sphere is assumed to have

material properties (AX, pl, pi) and is of radius a, while the surrounding fluid medium

has material properties (Ao, po = 0, po), where A and p are Lame constants, and p is

the density of the material. The equations governing the motions of a homogeneous

isotropic elastic solid are given by

82U
(A 1 + 2/i)VV. --•V x V x u + plf = pi 2  , (2.13)

where u is the displacement vector, f is the body force per unit mass of material, and

the Laplacian operator in spherical coordinates is given by

210 (20) 1 0( \ 1 0
V 2r r2 sinO 8 i r 2 si n8 2

Following [34], I write the displacement potential in terms of three scalar fields, 4, b

and 2, i.e

u= V + V x (^,r) +V x V x (^,r) , (2.14)



where the first term is the longitudinal part of the solution, and the other two are

the transverse parts. Assuming an exp (-iwt) harmonic time dependence (suppressed

henceforth), the potentials may be shown to satisfy the following Helmholtz equations

(V2+a) = 0 ,
( p200= 0

(V2+,)x = 0 , (2.15)

where al = w/c,, and fl = w/cp denote the wavenumbers for the compressional and

shear waves respectively, and ca and cp are compressional and shear wave speeds

respectively, with

Ca , =p --

Also, I have normalized the potential J by the shear wavenumber 3 as X = P; so

that the dimensions of 0, rV, and rX are the same. Expanding the potential func-

tions which satisfy eqn. (2.15) in terms of Spherical Bessel functions in r, associated

Legendre functions in 0, and Fourier series in Wp, I can find the resulting stress and

displacement components. However, as discussed in Appendix A, these stresses and

displacements contain a mixed dependence on the order of the associated Legendre

functions Pm(cos 0) and P,ý- (cos 9). Therefore, following Appendix A, I shall instead

satisfy the boundary conditions with transformed stress and displacement components

which decouple in order n.

I begin by expanding the Helmholtz potentials for the incident, scattered and

interior fields in terms of spherical waves as

, = E E Ga'j,(aor)Pm(cos9)e 'mr ,
m=-oo n=Iml

O = Z AmnGd h(aor)Pm(cos )ei••
m=-0o n=ImI

,- = Z BmnGmj,(air)Pnm(cos O)eimw
m=-oo n=lml



O = Z S CmnGjmn(,3ir)P,~(cos O)e) e m

m=-oo n=ImI

X = D GmGj n( r)PT (cosO)eim' , (2.16)
m=-oo n=lml

where I have used the compact notation h0) h, to denote spherical Hankel functions

of the first kind. The subscripts i and s denote the incident and scattered fields

respectively, and r denotes the field inside the solid, and

Gm = pw ao Po a, h,(aoro)Pm(cos Oo)e -im (2.17)

Here po is the amplitude of the incident pressure at the surface of the sphere and amn,,

was defined earlier. The scattered pressure is given by p,,a = po W 2 ,, and our notation

for negative orders m for the associated Legendre functions Pn-m is as follows

P-m(cos 0) = (-1)m (n- )! (COS
(n + m)!.

Following Ref. [35], four boundary conditions need to be satisfied at the fluid-

solid interface - (i) continuity of normal displacement, (ii) continuity of normal stress

(pressure) (iii) vanishing of the shear stress rGo at the boundary, and (iv) vanishing

of the shear stress 7,, at the surface of the sphere. The tangential stresses T7, and

Tr, are coupled in the polar order n, and the azimuthal order m. Since both must

vanish at the surface of the sphere, any linear combination of these stresses must also

be identically zero there. As described in Appendix A, I can alternatively prescribe

the vanishing of the transformed stress components which are decoupled between the

orders n and m. Then, using (2.16) and the expressions for displacements and stresses

from Appendix A, the boundary conditions yield a system of equations which can be

solved for the four unknown constants Amn, Bmn, Cmn and Dmn (See Appendix B.2

for details). Finally, I can write the displacement components fi,a, at the attachment

ring, r = a and 0 = y, on the free submerged sphere due to the incident acoustic wave



1 n(n + 1)
i, = Bmn {nj(ala) - aajn+l(aa) + Dmn n P(cos)Sa " 01 ji((la) P (cOos) ,J

ito = Bmnin(acxa) + Dmn- {(n + 1)j(P31a) - P3ajin+(13ia)} Pm(cos 9)

+Cmnjn(/la) -m m (cos0) ,
sin--

1r O a1 m O 0=-

(2.18)

where
d n+m-I-rn
LP (cos )]0= = ncot7Ps(cosi) - s P,-1(cosY)

2.4.2 Thin elastic plate vibrations

Consider a thin infinite circular elastic plate of thickness h with an interior annulus of

radius b = a sin -, and completely submerged in fluid. Here -y is the azimuthal angle

on the sphere at which the sphere is attached to the plate and a is the radius of the

sphere. The elastic plate is assumed to have material properties (A2, /2, P2) which

could possibly be the same as those of the attached sphere (A1, /1, pi) while, as before,

the fluid medium has material properties (Ao, 1o = 0, po). I assume the plate to be

thin so that its flexural motions are decoupled from its extensional and shear motions.

Moreover, using thin plate theory is consistent with my model of the plate-sphere ring

attachment junction where I apply equivalent coupling forces and bending moments.

Also, assuming a 3.0 m thick ice sheet, thin plate theory is applicable for frequencies

less than about 100 Hz (see Ref. [20]). It must also be pointed out here that the exact



Figure 2-4: Geometry for a fluid-loaded elastic plate of thickness h excited by ring
forces and bending moment at the interior annulus of radius b.

decoupled problem required to be solved as per my formulation is that of an annular

plate completely submerged in water. For low frequencies, I assume that the fluid

filling the annulus of the plate will not significantly alter the results of the analysis of

plate vibrations presented in the following sections.

In-plane (compressional and shear) Motions

The extensional and shear motions of the plate can be formulated in terms of the

in-plane displacement components, vR and v,, in the radial and azimuthal directions

respectively, which in turn can be expressed in terms of two potential functions F and

Q [36, 37] which satisfy the wave equations

V2 + r2p = 0

V2Q + 72n = 0 . (2.19)

Here r = w/c,, 7r = w/c,7 are the wavenumbers of the compressional and shear waves

respectively, c, and c, are the compressional and shear wave speeds,

)(2 + 2/p2 •2
c F = , c, = (2.20)P2 P2

Y



It must be noted. here that fluid-loading changes the speed of the compressional modes

by a very small amount as shown by Langley [18]. However, this component is ex-

tremely small for our parameters of interest and I shall disregard this correction.

The in-plane displacements can then be expressed in terms of the two displacement

potential functions as

Or 1 i0
v +

W=a (2.21)

Note that there is no z dependence in these expressions since the plate is assumed to

be thin. For R > a, the solutions are

P(R,p0) = 2i H Hm,(R)eim,0
m=-oo

1 00
Q7(R, p) -= M Z C2Hm(rR)eim'w" (2.22)

where I have used the compact notation Hm1) = Hm to denote cylindrical Hankel

functions of the first kind. The two unknown coefficients C1 and C2 are determined

from the boundary conditions at R = b. Assuming the stresses nRR and TrR are

uniformly distributed over the inner circular edge of the plate, force equilibrium yields

fRR f (2.23)
2rrbh ' = 2rrbh

Matching these stresses at the inner annulus of the plate, yields a set of equations for

the constants C~ and C2, and therefore the elements Aij (i, j = 1,2). Details of this

analysis and appropriate results are given in Appendix B.3.1.



Out-of-plane (flexural) Motions

The transverse displacement w(R, p), of the fully submerged plate satisfies the PDE

[16, 20]
V4w- kw =- P2 p z= - Pi- KJ= , (2.24)

where pl and P2 are acoustic fields in the lower and upper semi-infinite fluid media re-

spectively. kf = (pshw2/D) 1/4 is the flexural wavenumber of the free plate in vacuum,

h is the thickness of the plate, D = Eh 3 /12(1 - v2), and E and v are the Young's

modulus and Poisson's ratio, respectively. As in the case of in-plane motions, I begin

by decomposing the ýo dependence into angular harmonics, and then solve eqn. (2.24)

in terms of cylindrical Hankel functions and modified Bessel functions as

100
w(R,(p) = 2 E [3Hm(+lR ) +  4Km((yR) eim  (2.25)

(f is the flexural wavenumber in the submerged plate in the low-frequency limit ap-

proximated by [18, 20]

2Po 1/4
f - kf 1 + p oh 2 k (2.26)

I account for the coupling forces and bending moments via the boundary conditions

at R = b. From Ref. [38], the boundary conditions are given by

Mb fA
Mr = , I 2w (2.27)

27rb '' (2.27)b

where Mr is the bending moment, and V, is the Kelvin-Kirchoff reaction at the interior

edge of the plate. Matching these at the inner annulus of the plate, yields another set

of equations for the constants C3 and C4, and therefore the elements Pij (i,j = 3,4).

Details of this analysis and appropriate results are presented in Appendix B.3.2.



Plate displacements due to incident acoustic wave

For the sake of completeness of my analytical formulation, I need to evaluate the

displacement components in the plate due to the incident acoustic field due to a point

source in the fluid. In general, the components of Y, may be found by carrying out an

analysis similar to the one described in the previous subsections. We can expand the

incident and scattered fields, as well as the plate displacement components, in terms

of cylindrical waves. In general, at low frequencies. both compressional and flexural

modes can be excited in the infinite submerged plate, with the supersonic longitudinal

wave being excited due to Poisson's effect. Therefore, both these plate modes need

to be retained in this analysis. Note that the in-plane shear modes are not excited

as their motions do not couple into the fluid. The Fourier coefficients corresponding

to these can then be found by matching the boundary conditions at the fluid-elastic

interface. It is imperative to include this component to find the exact solution to

this coupled scattering problem. However, the flexural modes, being subsonic in this

frequency regime, do not radiate from the plate by phase-matching [39], creating only

an evanescent wave field near the surface of the plate.

Anticipating the problem of scattering from a protuberance under the ice canopy in

the Arctic Ocean, my primary interest is to model the direct scatter of acoustic waves

from the protuberance. In the real scattering scenario, the flexural and compressional

modes that couple into the ice would have encountered a multitude of such protuber-

ances while traveling towards the one of interest to me. At each such interaction, they

would undergo mode conversion and transmission, thereby causing a loss in energy in

the modes. It is a formidable task to keep track of all such interactions.

Secondly, as I will demonstrate later (see Fig. 2-17), the displacement components

at the attachment ring due to these acoustically excited modes is extremely small

(less than -80 dB) compared to those excited by the coupling forces and moments.

Therefore, it is justified to ignore this contribution when synthesizing the total scat-

tered field. This has the additional advantage of making the analysis more tractable.

Therefore, setting the plate displacement vector up,a to be identically zero, eqn. (2.12)



simplifies to

= = [T-' A, T - A^]-' 7 (2.28)

2.4.3 Solid elastic sphere kinematics

In developing the solutions for the displacement components on the sphere excited

by surface ring tractions, I will follow the approach detailed in Appendix A, by first

eliminating the mixed dependence of the tractions and displacements on terms con-

taining P•, and P,m•1 using the linear transformation described there. Next I expand

the radiated and interior Helmholtz potentials in terms of Spherical Harmonic Waves

(SHW) as

OS = Imnhn(oor) , r = Jnjn(air)
r = Kmnjn(/ir) , )r = Lmnjn(air) , (2.29)

where the SHW decomposition is defined as

(n,, m) = e-imdcp g(, p)P,(cos 9) sinOd ,
1 m

0g(, ) = m 0. Im amn(n, m)Pm(cos 0)
m=-oo ,=lml

The coefficients I',, Jmn, Kmn and Lmn for the ring traction loads f , with components

(f,-, fe, fo, Mb), are found by matching the stresses at the attachment ring (r = a, 0 =

-) for each constituent traction load individually. The traction loads at the attachment

ring are represented as

7 (a 0,09,) = f,(9) a - (2.30)2xa2 sin 0

Expanding both sides in terms of SHW, and balancing tractions yields expressions for

the amplitudes of the potentials Imn, Jmn, Kmn and Lmn. The details of this analysis

and the appropriate results have been outlined in Appendix B.4.



2.4.4 Total scattered pressure

As discussed earlier, the total scattered pressure is the sum of two contributions -

one due to the incident acoustic wave, and the other due to the forced motions of

the sphere. The compressional modes are weakly coupled to the fluid, while the

flexural modes produce an evanescent field in the fluid. Therefore, assuming we are

far enough from the plate, the contribution due to the latter can be neglected. Ignoring

the radiated field due to the compressional mode, the contributions from the plate due

to pp,a and pp,c can be identically set to zero. The contributions from the sphere

consist of the component due to the acoustic field (Ps,a) which was found in subsection

2.4.1, and that due to excitation by the coupling forces and bending moment. The

displacement components due to the forced excitation of the sphere were evaluated

in subsection 2.4.3. The radiated pressure due to the latter is computed by summing

up the contributions from the sphere excited by the ring coupling forces and bending

moment as
100 00

Ps,c = 27r E E amnZmnh,(aor)Pm(cosO)eim , (2.31)
m=-oo n=lml

where

Imn = pow 2 [Imn,l + Imnlf + Imn]i + Im·lnjb] (2.32)

2.5 Results

In this Section, I present the results from my analytical model of scattering from the

three-dimensional protuberance on the thin infinite fluid-loaded elastic plate. For the

purpose of illustration, I choose the material for the model to be solid ice of density pi

= P2 = 910 Kg/rn3 , compressional wave speed Cp = 3500 ms - 1, and shear wave speed

C, = 1600 ms-1. The ice plate is assumed to be 3.0 m thick and attached to a sphere

of radius 10.0 m along its equator (7 = 90.00). The coupled structure is completely

submerged in water of density 1000 Kg/m 3 and sound speed 1460 ms - 1. The sphere

is placed at the origin of the coordinate system and the point source is positioned at



r = 780.0 m, 0o = 130.00 (or 40.00 grazing) and ýp = 0.00 which corresponds to X =

-600 m, Y = 0.0 m, Z = -500 m in Cartesian coordinates.

2.5.1 Benchmarking via sanity checks

Before presenting results from this three-dimensional scattering scenario, it is impera-

tive that I validate my analysis by running some sanity checks on my analytical model.

This is especially important since I have no benchmark solutions for three-dimensional

scattering available for comparison. Therefore, I present three cases to validate my

theoretical model.

Rigid and pressure-release spheres

The first test case that I consider is the backscattering form function and scattering

beampatterns from both rigid and pressure-release spheres. I obtained these by con-

sidering the limiting case of elastic spheres. The rigid sphere is obtained by letting the

material properties of the elastic sphere attain very high values, while the pressure-

release sphere is obtained in the limit of vanishing material properties. I now consider

the backscattering form function and the bistatic beampattern from these spheres.

(i) Backscattering form function

The backscattered pressure from the rigid solid sphere is shown by the dashed line

(- -) in Fig. 2-5. The results have been computed up to a ka value of 10, and I have

therefore summed 40 orders to obtain the scattered pressure. For low frequencies,

in the Rayleigh scattering regime, the scattered field is dominated by the monopole

and dipole terms, which have the same dependence on ka. In the high-frequency

or Kirchoff-geometric acoustics scattering regime, the scattered field approaches the

constant value of 1, i.e., the reflection coefficient from a plane rigid boundary. In the

intermediate frequency range, we observe the characteristic oscillatory behavior of the

scattered field. This is the regime where the resonances of the sphere characterize the

scattered field. As discussed in [20], this phenomena can be interpreted in terms of



Plane-wave backscattered pressure
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Figure 2-5: Backscattered pressure from rigid (denoted by the dashed line (- - ))
and pressure-release (solid line (-)) spheres computed using matrix inversion from
my theoretical model. In the intermediate frequency range, the rigid sphere displays
the characteristic oscillatory behavior due to interference between the specular and
creeping waves.

creeping waves, which travel around the sphere, and then combine with the specular

either destructively or constructively producing the characteristic interference pattern.

The backscattered pressure from a pressure-release sphere has also been plotted in

Fig. 2-5 as the solid line (-). We observe that the scattered field reaches a maximum

value at very low frequencies as the sphere essentially radiates like a monopole, and

then as frequency increases, uniformly tends to the value of 1, i.e., the reflection coef-

ficient from a plane pressure-release surface. The plot in Fig. 2-5 compares extremely

well with that published in literature, for example Fig. (2a) in Ref. [31], and Fig. (Ila)

in Ref. [20]. Therefore, my first sanity check validates my analysis in these limiting

cases of backscatter.

(ii) Bistatic Beampattern

Now consider the bistatic scattering beampattern from the rigid and pressure-

release spheres for a non-dimensional frequency of ka = 0.2 as shown in Fig. 2-6. The

figure on the left for the rigid sphere agrees extremely well with that presented in, for

r
c
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Pressure-release sphere (ka = 0.2)

900.035 901.2
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Figure 2-6: Bistatic scattering beampattern from rigid and pressure-release spheres
for ka = 0.2. The acoustic wave is incident from the left, and therefore backscatter is
to the left and forward to the right. The contour levels are plotted in terms of linear
magnitude.

example, Fig. (6.2.6) of Ref. [40]. At this low frequency, when the acoustic wavelength

is much larger than the dimension of the sphere, we get very high backscatter and very

low forward scatter. This is due to the fact that the total scattered field consist of a

monopole and dipole term, in fact the directivity being of the form (1.5 cos 0 - 1.0).

On the other hand, the pressure-release sphere behaves more like a monopole, with

alternating compressions and expansions of the spherical surface, thereby re-radiating

a spherical wave back into the acoustic medium.

Ice sphere

The next example I consider is that of scattering from a solid elastic ice sphere. Fig. 2-

7 shows the form function computed from Faran's [30] and Hickling's [31] results, and

my formulation for the free sphere. We observe that the two plots are in excellent

agreement in both magnitude and location of the peaks and valleys in the form func-

tion, thereby validating my analysis once again. It is interesting to note that when I

plotted the form function using the material properties of ice given by Hickling [31],

Rigid sphere (ka = 0.2)

1



Backscattered pressure from matrix inversion

ka

Backscattered pressure from Faran/Hicklings analysis
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Figure 2-7: Backscattered pressure from an ice sphere computed using coupling for-
mulation (upper figure) and from Faran/Hickling's analysis (lower figure). The levels
are in terms of linear magnitude.

the form function looks different compared to that presented here. This is especially

noticeable in reference to the sharp peak at ka - 5.7. My analysis suggests that it

corresponds to the contribution due to the Rayleigh wave which is supersonic with

respect to the fluid with the material properties used by me, while it is subsonic with

the material properties used in his analysis.

Coupling formulation with vanishing plate thickness

Finally, I present the case when the thickness of the attached plate in my coupling

formulation is vanishingly small. Then, the contributions from the coupling forces

and bending moment must also be vanishingly small, and the plate-sphere coupled

model should reduce to that of the free sphere only. Therefore, letting the radius of

the sphere remain 10 m as before, and choosing a plate of thickness 2 mm, I obtain

the results shown in Fig. 2-8. The figure shows the backscattered pressure due to

the free submerged sphere only, as well as the total sum of contributions from all the

attachment forces and moments. As expected, the contributions from the coupling

forces and moments are negligibly small compared to that from the free sphere, in



Backscattered pressure from the 3D protuberance (40.0 deg.)
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Figure 2-8: Validation of analytical model. Backscattered pressure from the three-
dimensional protuberance for source located at 0 o = 130.00, and in the limit of van-
ishing plate thickness. The dashed line (- -) represents the sum of the contributions
from the coupling forces and bending moment while the solid line (-) represents the
backscattered pressure from the fully submerged sphere only.

fact lower by about 50 - 60 dB. Similar results are obtained by making the plate very

soft by considering the limit of vanishing wave speeds and material density. These

limiting benchmark solutions, therefore, once again validate my coupling formulation.

2.5.2 Examples

I now return to the three-dimensional scattering problem and present some results

from my analytical formulation. The results presented here basically consist of three

main parts. In the first part, I shall compute all the kinematic and dynamic quantities

associated with the interaction between the plate and the sphere for a fixed angle of

incidence. The second part illustrates the dependence of the excitation of the elastic

modes in the plate for varying angles of incidence of the acoustic field. Finally, I discuss

the three-dimensional scattering patterns from the plate-sphere coupled model.

I'

I \ ,\ ,-
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Figure
130.00.
dotted

Coupling forces and bending moment at attachment ring (40.0 deg.)

2-9: Coupling forces and bending moment at the attachment ring for 00 =
The solid line (-) represents fR, the dashed line (- -) f,, while the dashed-

line (-.) denotes Mb (re 1 Nm).

Plate displacement components at attachment ring (40.0 deg.)
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Figure 2-10: Plate displacement components at attachment ring for 00 = 130.00. The
solid line (-) represents UR and the dashed line (- -) represents u,. uW is negligible and
is not shown here.



Source at 00 =: 130.00 (40.00 grazing)

Fig. 2-9 shows the coupling forces and bending moment at the point ((p = 0.00)

oin the attachment ring (^y = 90.00) as a function of the non-dimensional frequency

parameter ka, where k is the acoustic wavelength in water and a is the radius of the

sphere. Examination of the figure reveals that the radial in-plane force fR is the more

strongly excited compared to the vertical force f, and the bending moment Mb, and

has resonances at ka values of 2.3, 3.7 and 4.6. The azimuthal force f, has a node at

this point, and therefore its magnitude is extremely small and does not appear in this

plot. The amplitude of excitation of the in-plane forces is much higher than the vertical

force f, and the bending moment Mb as the attached plate primarily constrains the

motions of the sphere in the horizontal plane at the attachment ring. As a result, the

radiated field due to the interaction forces should be dominated by contributions from

forces in the (p and R directions. That this is the case will become evident from my

analysis that I will present a little later.

The displacement components of the plate at the same point on the attachment

ring are shown in Fig. 2-10. Once again we observe the resonances in the radial

displacement component vR at ka of 2.3, 3.7 and 4.6. At low frequencies (ka < 0.6) the

out-of-plane displacements are higher in magnitude than the in-plane displacements.

However, as the impedance of the plate to vertical motions increases with frequency,

we observe the roll-off in amplitude of the out-of-plane motions. Also, since the flexural

waves are subsonic in this frequency regime, they do not couple to the surrounding

fluid and only produce an evanescent field in the fluid in the vicinity of the plate.

Once again, the azimuthal displacement component v, has a node at this location and

therefore does not appear in this plot.

To develop a better understanding of the spatial structure of the coupling forces and

displacements at the junction, I also computed these quantities for select frequencies

at the attachment ring. Fig. 2-11 shows the plate displacement components and the

coupling forces as a function of the azimuthal angle p on the attachment circle for ka

= 1.0. This figure clearly illustrates the nodal structure of the azimuthal displacement



Plate displacement components at attachment ring (ka = 1.0, 40.0 deg.)
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Figure 2-11: Plate kinematics at the attachment ring for 00 = 130.0', ka = 1.0. The
upper figure shows the plate displacement components at the attachment ring, with
the solid line (-) representing VR, the dotted line ( ... ) denoting ve, the dashed line (- -)
w. The lower figure shows the coupling forces and bending moment at the attachment
ring, with the solid line (-) representing fR, the dotted line (...) denoting f,, the
dashed line (- -) J~, and the dashed-dotted (- .) denoting Mb (re 1 Nm).



component v, which is antisymmetric with respect to the coordinate (p, whereas the

radial displacement component nR is symmetric. While v, displays deep nulls at

the nodes of the displacement fields, the nulls in vR are less prominent. Also note

that at 00 azimuth, the radial displacement component is about 3 dB higher than the

vertical displacement component w. However, if we were to compute the average the

displacements at the junction, we would observe that the two displacements are of the

same order of magnitude. The out-of-plane displacement due to the flexural wave is

more or less constant around the circumference of the junction.

The coupling forces and bending moment are shown in the lower part of Fig. 2-

11. The structure of these dynamic quantities closely resembles that of the kinematic

quantities plotted in the upper part of the figure. This is not surprising since there is

a direct relationship between up,c and fp via the influence matrix Z,. The magnitudes

of excitation of the vertical force f, is on average 5-7 dB lower than the in-plane force

fR. Also, observe that the magnitude Mb is about 10 dB lower than fR suggesting

that the contributions to the radiated field due to Mb will be less significant compared

to that due to f..

Fig. 2-12 shows the plate displacements and forces around the circumference of the

junction for a higher frequency, i.e., ka = 2.3. Note that this frequency corresponds

to the first resonance observed in the plate displacement components in Fig. 2-10.

Consistent with our observations there, we notice that the in-plane displacements are

significantly higher (by about 20 dB) than the vertical displacement component w.

This is due to the fact that at this frequency, the excitation forces strongly excite the

compressional resonances of the sphere. The radial motion of the compressional mode

then, in turn, couples to the in-plane motions of the plate. Also shown in the lower

part of the figure are the forces and bending moment at the ring. Observe that the

difference in magnitude of excitation of the radial force fR is 30 dB higher than f,

as compared to 15 dB in Fig. 2-11 at p = 0.00. Also, as in the case of ka = 1.0, we

observe that the amplitude of excitation of the bending moment is 10 dB lower than the

vertical force f,. The interesting point to note here is that as we move up in frequency,



Plate displacement components at attachment ring (ka = 2.3, 40.0 deg.)
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Figure 2-12: Plate kinematics at the attachment ring for 80 = 130.00, ka = 2.3. The
upper figure shows the plate displacement components at the attachment ring, with
the solid line (-) representing vR, the dotted line ( ... ) denoting v,, the dashed line (- -)
w. The lower figure shows the coupling forces and bending moment at the attachment
ring, with the solid line (-) representing fR, the dotted line ( ... ) denoting f,, the
dashed line (- -) fe, and the dashed-dotted (- .) denoting Mb (re 1 Nm).
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Contributions to backscattered pressure from the forces and moments (40.0 deg.)
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Figure 2-13: Individual contributions to backscattered pressure from the coupling
forces and bending moment. The solid line (-) represents the contribution due to fR,
the dashed line (- -) due to f,, while the dotted line (...) corresponds to fe, and the
dashed-dotted line (-.) represents that due to Mb.

the number of nodes in the displacement components increase. This is understandable

since for higher frequencies, the contributions from the higher azimuthal orders m

become more dominant.

Thus far I have concentrated my analysis on the kinematics and dynamics of the

attachment junction. It is also instructive to consider the relative importance of these

forces and displacements to the total radiated pressure. Therefore, in Fig. 2-13 I have

plotted the individual contributions to the backscattered pressure resulting from these

excitations. The figure reveals that below ka of 2.0, the contributions from all the

forces are comparable in magnitude. However, above a ka value of 2, the dominant

contribution arises from the in-plane forces (fR and f,), and are higher than that from

the the vertical force (fe). This is to be expected since the attached plate primarily

constrains the in-plane motions of the sphere. This is because the impedance of the

plate with respect to in-plane motions is much higher than the out-of-plane motions.

Also, note that the contribution from the bending moment is the weakest being about

30 dB lower than the radial force fR at most frequencies.



Backscattered pressure from the 3D protuberance (40.0 deg.)
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Figure 2-14: Backscattered pressure from the three-dimensional protuberance for
source located at 0o = 130.00. The continuous line (-) represents the total backscat-
tered pressure from the coupled model while the dashed line (- -) represents the
backscattered pressure from the fully submerged sphere only.

Fig. 2-14 shows the total backscattered pressure from the three-dimensional pro-

tuberance, the solid line being the sum of the contributions from the free submerged

sphere and all the forces and the bending moment, whereas the background field due

to the fully submerged elastic sphere only is represented by the dashed line. As the

radial force is the dominant contributor, we observe its characteristic structure in the

total backscattered field. Note that the attachment of the plate to the sphere results in

a modulation of the form function of the free sphere by the kinematics of the sphere at

the attachment ring. The resonance structure is due to standing waves set up inside

the sphere when excited by the coupling forces and bending moment. The location

of the peaks agrees with the values computed by setting Ao = 0 in eqn. (B.5). An

important conclusion from this figure is that the attachment of the plate to the sphere

is a frequency selective process and is manifested in the scattered field at certain

frequencies only.



Contributions to backscattered pressure from the forces and moments (15.0 deg.)
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Figure 2-15: Individual contributions to backscattered pressure from the coupling
forces and bending moment for 00 = 105.00. The solid line (-) represents the contribu-
tion due to fR, the dashed line (- -) due to f,, while the dotted line (...) corresponds
to fe, and the da,shed-dotted line (-.) represents that due to Mb.
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Figure 2-16: Backscattered pressure from the three-dimensional protuberance for
source located at 00 = 105.00. The continuous line (-) represents the backscattered
pressure from the! coupled model while the dashed line (- -) represents the backscat-
tered pressure from the fully submerged sphere only.



Source at Oo = 105.00 (15.00 grazing)

Fig. 2-15 shows the individual contributions to the backscattered field from the cou-

pling forces and bending moment for a shallower grazing angle of incidence (90 =

105.00 or 15.00 grazing). A closer comparison of these results with those presented

earlier in Fig. 2-13 for 90 = 130.00 reveals that the qualitative nature of the contribu-

tions from the coupling forces is not altered by changing the angle of incidence. This

result is reinforced when we plot the total backscattered field as shown in Fig. 2-16.

We observe that for small frequencies (ka < 3.0) there is almost no difference between

the results for the two different grazing angles of incidence. At higher frequencies,

the resonances that we observed in the 40.00 incidence case are not as prominent

here. The conclusion then is that for low frequencies the backscattered pressure is not

qualitatively affected by changing the angle of incidence. However, there is a caveat

to be noted here. As my results in the next section will demonstrate, although the

total backscattered pressure remains almost unchanged, the physics of the interaction

between the plate and sphere are significantly modified.

Plate-sphere interaction dynamics as a function of grazing angle of inci-

dence

It is informative to consider the dynamics of the attachment junction as a function of

grazing angle of incidence. This will illustrate the relative importance of the different

elastic modes that get excited in the plate for different angles of incidence. Simultane-

ously, this will also demonstrate the relative importance of the elastic modes excited

in the plate via ,direct acoustic excitation and those due to the coupling forces and

moments.

The displacement fields of an infinite, fluid loaded plate excited by a point monopole

source in the fluid have been previously investigated in detail by, for example, Lang-

ley [18]. Langley computed the in-plane and out-of-plane displacement fields for the

case of the point source positioned axisymmetrically, i.e., there is no dependence on
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Figure 2-17: Plate displacement components at attachment ring due to acoustic ex-
citation for 00 = 95.00, 135.00, and 179.00. The solid line (-) represents VR and the
dashed line (- -) denotes w. This figure illustrates that the displacement components
at the attachment ring due to the acoustically excited modes is negligible compared
to those due to coupling forces (compare with Fig. 2-18).
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the azimuthal coordinate p. Using eqns. (36) and (37) from Langley [18], I plot the

plate displacement components at the point p = 0.00 on the attachment ring for three

different angles of incidence, 00 = 5.00, 45.00, and 89.00 grazing, as shown in Fig. 2-17.

Note that these results are valid for the point monopole source positioned in the far

field of the plate. Also, I have normalized the frequency axis by the radius a of the

sphere.

Due to Poisson's effect, the compressional modes have a vertical displacement

component in addition to the in-plane component. The flexural waves are subsonic in

this frequency regime, and are therefore very weakly excited. For our plate parameters,

the critical grazing angle for the excitation of compressional waves in the plate roughly

corresponds to •,, = 59.00. Therefore, the compressional modes excited by the acoustic

source will be observed at the attachment ring for all grazing angles 0 such that

00 < 590. This is evident from the figure which shows that the amplitude of the in-

plane components are significantly lower for the case when 0o = 89.00. The point to

be made from this plot is that the typical magnitudes of the displacement components

for this frequency range, and over all grazing angles, is between -240 dB to -280 dB.

In Fig. 2-18 1 have plotted the plate displacement components at the point O =

0.00 on the attachment ring for three different angles of incidence, 00 - 5.00, 45.00, and

90.0' grazing. Note that the magnitudes here typically range from -160 dB to -200 dB.

Comparing these magnitudes for each grazing angle to those plotted in Fig. 2-17, we

observe that the displacements due to acoustic excitation are more than 80 dB below

those due to the coupling forces and moments at the attachment ring. Therefore, the

approximation I made in obtaining eqn. (2.28) is clearly justified, and the resulting

errors are almost negligible.

Now consider the displacements due to the interaction forces in the low frequency

regime ka < 1.5, or in terms of frequency f < 35Hz, The figure shows that for very

shallow grazing angles, the excitation of the in-plane motion in the plate is higher than

the vertical displacement. This makes intuitive sense as at these low values of grazing

angles, the primary action of the incident acoustic field is to cause a lateral motion of



Plate displacement components due to coupling forces (5.0 deg.)
SI I I I I I I I

- = Radial in-plane component

Out-of-plane component

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
ka

Plate displacement components due to coupling forces (45.0 deg.)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
ka

Plate displacement components due to coupling forces (90.0 deg.)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
ka
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the sphere in the horizontal plane. This translational motion then, in turn, excites the

plate horizontally, thereby producing higher deformations in the in-plane direction as

opposed to the vertical motions. As we progress to higher grazing angles, the flexural

motions start becoming comparable to the in-plane motions. At 90.00 grazing, i.e.,

with the source illuminating the plate-sphere coupled structure from directly below, we

observe large amplitudes of displacement in the vertical direction. These large vertical

displacements are due to the incident acoustic field which forces the sphere to oscillate

predominantly in the vertical direction. However, we also observe the roll-off in the

vertical displacements with frequency because of the enhanced flexural impedance of

the elastic plate. Therefore, we conclude that the relative amplitudes of the motions

of the plate in different directions are determined by the grazing angles at which the

acoustic field is incident on the plate sphere junction.

A more definitive corroboration of this conclusion may be achieved by considering

the distribution of energy among the various wave types excited in the elastic ice

plate. An exact analysis would require the computation of stresses and strains due to

each of these wave types in the plate. However, I can make a first order estimate of

this energy distribution by assuming that, for example, the energy injected into the

compressional mode is given by the product of radial force and radial displacement.

This is not exactly correct since the radial force on the plate generates both the radial

and azimuthal components of displacement. This is caused by the two dimensional

nature of the plate geometry. As the plate expands in the radial direction, it must

also simultaneously stretch in the azimuthal direction, i.e., the radial displacement

component vR and the strain in the azimuthal direction ~, are completely coupled.

This is also evident from eqn. (2.21).

Thus, I calculate the approximate energy levels injected into the various wave types

at the attachment ring, averaged over the azimuthal direction, as

Ucomp = 2 Re fRa• , Ushear 2 Re fw ,
m=-oo m=-oo
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Figure 2-19: Energy distribution among the various plate modes at the attachment
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J";* 1  1  M -
S= J + MRe b , (2.33)

where "*" denotes complex conjugate. Note that the bending energy consists of con-

tributions from both the vertical force f, and the bending moment Mb. Consistent

with our results for the displacements, we observe that the energy in the flexural waves

increases with increasing angle of incidence. Once again limiting our analysis to the

frequency regime ka < 1.5, we note that for very shallow grazing angles, the energy

introduced in the in-plane motions is about 10 dB higher than in the flexural waves.

At intermediate angles (00 = 45.00) the flexural and in-plane modes have comparable

energy levels. Note the presence of the resonances as were observed in the plate dis-

placement components. However, for beam incidence (00 = 90.00), the energy in the

flexural mode is about 15 - 20 dB higher than the in-plane modes. At this juncture,

it is also worthwhile to note that Lepage [7], who used MSP to model the rough ice

water interface, observed similar differences in the energy levels between the out-of-

plane and in-plane motions. In fact, for a 17 Hz plane wave incident at 100 grazing

on the rough interface, he observed the vertical energy of the antisymmetric mode to

be about 5 dB higher than the energy in the horizontal motions.

Thus our analysis of the plate sphere interaction dynamics leads us to the fol-

lowing inference. The plate displacements and the energy levels of the various plate

modes suggests that the nature of the interaction is significantly modified by varying

the angle of incidence. A good indication of this effect would be noticed by com-

puting the bistatic scattered pressure for various angles of incidence. If indeed the

results show strong dependence on grazing angles, i.e., significant observables, then

it should be possible to invert for these physical mechanisms from measurements of

the acoustic field in the fluid medium. The subsequent analysis, where I compute

the spatial scattering patterns from this protuberance, will demonstrate how strongly

these observables are manifested in the scattered field.



Figure 2-20: Scattering beampattern from the elastic ice sphere for ka = 0.5, 2.3, 3.7,
4.6. Backscatter is to the left and forward scatter is to the right

Spatial structure of the scattered field

As mentioned earlier, our primary interest is in the analysis of scattering in the fre-

quency regime (ka - 0(1)), which is also the frequency range for which our analysis

is valid. The next step is to evaluate the bistatic scattering pattern from the protuber-

ance. I shall compute the scattering pattern for a fixed source and receiver geometry.

The source is assumed to be positioned, as before, at X = -600 m, Y = 0.0 m, Z

= -500 m, i.e., a grazing angle of incidence roughly corresponding to 40.00, while the

sphere is located at the origin of the coordinate system. The receiver plane is located

500 m below the plate, i.e., at the depth corresponding to the depth of the source. I

shall compute the scattering pattern at four distinct values of ka, i.e., at ka = 0.5,

2.3, 3.7, 4.6. The first frequency ka = 0.5, is a typical low frequency value, whereas

the other three are the locations of the resonances of the in-plane radial motions as

observed in Fig. 2-10.

Before computing the bistatic scattering patterns from the coupled geometry, it

is instructive to consider the beampattern from the solid elastic sphere only at these
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frequencies. This will provide an insight into the physics of the coupled problem.

Fig. 2-20 shows the bistatic beampatterns from the ice sphere for these four frequencies.

From the figure, we observe that for very low frequencies (ka = 0.5), the behavior of

the elastic sphere resembles that of a rigid sphere (compare with Fig. 2-6). As we move

to a higher frequency (ka = 2.3), we observe that the scatter displays a very interesting

pattern. Neither backscatter nor forward scatter is essentially the dominant behavior;

we observe significant scatter in other directions too. This is due to the interference

pattern generated by the radiation from both the compressional and shear modes in

the sphere. As the frequency is increased to other higher values (ka = 3.7, 4.6), we

begin to observe higher scatter in forward direction. This once again resembles the

scattering characteristics from a rigid sphere. These scattering beampatterns should

be borne in mind when trying to understand those from the coupled geometry which

I shall now present.

In Fig. 2-21, 1 have plotted the bistatic scattering pattern for a ka value of 0.5. The

pressure levels have been corrected for the transmission loss from source to scatterer,

and from scatterer to receiver. As in the case of the free sphere, we observe very high

scatter in the backward direction, and very low levels in the forward direction. This

is due to the fact that at this frequency, the contributions from the coupling forces

and bending moment are comparable with that from the direct scatter from the sphere

resulting in an interference pattern that produces a deep null in the forward direction.

However, as we move away from this frequency to ka = 2.3, as shown in Fig. 2-22,

we observe deep null regions at angles of 450 from the source-sphere axis. These nulls

are caused by the interference between the compressional and shear modes in the

sphere, as is also evident by the strong radial component of motion of the sphere. The

predominant mode of vibration of the sphere is like a quadrupole as is also evident

from Fig. 2-12. This multi-lobar nature of the radial motion of the sphere has been

referred to as the football resonance in Ref. [41], where the sphere is expanding along

the X axis, and simultaneously compressing in the Y direction, and vice versa. Note

that this vibration mode exists in the free sphere too (see Fig. 2-20).
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Figure 2-23: Scattering pattern from the 3D protuberance on the elastic plate for ka
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origin.
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Next, I compute the scattering pattern for ka = 3.7 as shown in Fig. 2-23. At

this frequency, the acoustic wavelength is almost equal to the diameter of the sphere

and causes a global resonance in the sphere. The bright spots correspond to direct

forward and backscatter. Note the multi-lobar structure of the beampattern. We

observe regions of deep null beyond the lobes of the beampattern. At ka = 4.6, as

shown in Fig. 2-24, we observe a similar field except for the fact that now we have

additional lobes of high scatter. This interesting lobar nature of the beampattern

arises from the constructive and destructive interference between the elastic modes

in the sphere. Also, at these frequencies, the primary motion of the sphere is in

the horizontal plane, with constraints from the attached plate. As we go higher in

frequency, we expect to see more and more lobes in the pattern. An essential outcome

of these results is to the demonstrate the three-dimensional nature of the scattering

pattern from our plate-sphere coupled model.

2.6 Summary

In this Chapter, I have developed an analytical solution for the analysis of scattering

from a three-dimensional protuberance on a thin infinite submerged plate. The protu-

berance was modeled as a solid elastic sphere attached to the plate along its equatorial

plane. The results from even our simplified model demonstrated the rich nature of the

scattered field. Some of the essential results of this analysis are summarized below.

* Among all the forces and bending moment included in the characterization of

the coupling between the sphere and the plate, in general, the excitation of the

in-plane radial force fR is the highest.

* The radial force and displacement components (fR and vR) are symmetric with

respect to the azimuthal coordinate, whereas the azimuthal force and displace-

ments (f, and v,) are antisymmetric.



* For shallow angles of incidence, the dominant contribution to the scattered field

arises from the in-plane forces as the attached plate primarily restrains the lateral

motion of the sphere. With increase in frequency, the contributions due to the

out-of-plane forces, and therefore the flexural waves in the plate, are higher than

the in-plane modes of the plate. Similar observations were made by Lepage

[7] who showed that flexural waves play an important role in the estimation of

scattering loss in the Arctic ice environment. On another note, the contributions

from the bending moment are always smaller than the the vertical force, and

could therefore be ignored in the analysis.

* The presence of the plate is manifested in the scattered field in a frequency

selective manner corresponding to the resonances of the sphere excited by the

coupling forces.

* In the low frequency regime (ka < 1.5), the relative magnitudes of the plate

displacement components depends on the grazing angle of incidence 00. As the

grazing angle is increased to beam incidence, the excitation of flexural waves

in the plate becomes increasingly predominant. However, with increasing fre-

quency there is a gradual roll-off in the amplitudes of excitation of the flexural

waves.

* The spatial structure of the scattered field consists of a multi-lobar pattern, with

higher number of lobes with increasing frequency.

* The most significant point to be noted here is that unlike a 2D analysis, the

3D analysis that I have presented here allows the inclusion of horizontally po-

larized shear (SH) modes. Lepage [7] has shown that these play a role in the

low-frequency loss observed in the Arctic ice propagation environment. The

results of my analysis here reiterate their importance in 3D scattering scenar-

ios. I demonstrated that the contributions from these modes can be significant,

which therefore necessitates their inclusion in any realistic model of the three-

dimensional scattering scenario.



In Chapter 5, I will draw upon my analysis here, and make comparisons with re-

stilts from experimental data, where I shall evaluate scattering from a discrete protu-

berance under the Arctic ice sheet. Although the explicit analytical solution presented

here is for an idealized environmental model, I will show how this analysis may be

exploited to construct a model for the real scattering scenario.



Chapter 3

Reverberation Experiments

3.1 Overview

In the previous Chapter, I formulated an analytical model which I will use to compare

with results from experimental data. The following two Chapters discuss some issues

related to the processing of data gathered from real field experiments in the Arctic

Ocean. As with any real experimental data set, some amount of data conditioning

needs to be undertaken before any estimates can be made of quantities of interest.

Thus, I have divided the analysis of the experimental data into two Chapters. In

Chapter 3, I conduct a preliminary analysis of the raw reverberation data, and discuss

some data conditioning methodologies I developed to make the data amenable to more

detailed analysis. I discuss issues related to the uncertainty in source position and

receiver array locations. This is critical as all subsequent estimates that I make will

depend on whether I have the correct positions of the source and receivers. In Chapter

4, I shall set up the data analysis as a global parameter estimation problem, and make

some global estimates of the scattering characteristics of the rough ice.



3.2 The CEAREX Experiments

The Coordinated Eastern Arctic Experiments (CEAREX 89) were sponsored by the

Office of Naval Research (ONR), and jointly conducted by the scientists of Mas-

sa~chusetts Institute of Technology (MIT), Woods Hole Oceanographic Institute (WHOI),

and the Naval Research Laboratory (NRL). These experiments were conducted in the

Norwegian-Iceland Sea in an area northeast of Greenland. Various experiments were

carried out each with different objectives. Some measured long range propagation

while others monitored the sources of ambient noise. Of particular interest to us, are

the short-range reverberation experiments that were carried out in the afternoon of

15th of April between 13:26 and 14:52 hours local time. The sources used in these

experiments were 1.8 lb SUS charges with nominal detonation depths of 800 feet or

244 m, and set off at an approximate distance of 250 m from the apex of the crossed

horizontal hydrophone array. Five shots were fired at intervals of 15 minutes, and

only the data from four of these was available to us for subsequent processing.

Fig. 3-1 shows a schematic of the layout of the acoustics camp (A-camp) during

the CEAREX experiments. The camp was situated on a circular floe about 650 m in

diameter as depicted by the circular jagged boundary in Fig. 3-1. The geographical

North points upwards and East points to the right. The scale is roughly 1 cm =

50 m. The acoustics hut is located near the center of the camp floe which is also the

apex of the horizontal hydrophone array. The main camp is located about 300 m due

North. Also seen in the pictorial representation, about 250 m North and 60 m East

of the apex of the array, is Wiebe's biology hydrohole through which the SUS charges

for the reverberation experiments were dropped. Aerial pictures of the camp revealed

that the area around the camp had a rough topography.

3.3 Receiver Array Geometry

Two sets of arrays were deployed during these reverberation experiments. The first

consisted of a crossed horizontal hydrophone array with unequally spaced receivers
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Horizontal array hydrophone positions at mean depth of 60.0 m
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Figure 3-2: Horizontal crossed array sensor positions with the X axis pointing towards
East and the Y axis pointing North.

(Mills' Cross), located at nominal depths of 60 m, and was monitored by MIT/WHOI.

The second receiver array system which was deployed by NRL consisted of one long

(.- 1200 m) and four short (-- 330 m) vertical arrays. Moreover, these two sets of

arrays were connected to different data acquisition systems. The MIT/WHOI data

recording system. acquired the digital data at a sampling rate of 1 kHz, while the NRL

data acquisition system recorded the data at a sampling frequency of 689.0625 Hz.

3.3.1 Horizontal Array

The crossed horizontal hydrophone array consisted of 25 logarithmically spaced hy-

drophones distributed along the two legs of the array as shown in Fig. 3-2. The

hydrophones were placed at nominal distances of 20 m, 40 m, and so on up to 640

m from the apex of the array. The Northwest-Southeast (NW-SE) and Northeast-

Southwest (NE-SW) legs were thus approximately 1280 m in length. The positions of

the hydrophones on the horizontal array were monitored in real time via an acoustic

Sensor Tracking System (STS). Six high frequency pingers were deployed at cali-
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brated positions, and periodic travel time measurements from these to the various

hydrophones were used in a simulating annealing algorithm to estimate sensor posi-

tions [42]. All the hydrophones recorded very high quality data, and therefore I was

able to use all of them in our analysis. Table C.1 in Appendix C lists the positions of

the horizontal array sensors that I used in all my analysis.

3.3.2 Vertical Line Arrays

One long and four short vertical line arrays were deployed by NRL. The 1200 m long

vertical line array consisted of 31 hydrophones, 21 of which were spaced 30 m apart

at nominal depths of 30 - 630 m, and 10 of which were spaced 60 m apart at nominal

depths of 690 - 1230 m. The four short 300 m long vertical line arrays consisted of

8 hydrophones each at nominal depths of 30 m, 90 m, 120 m, 150 m, 180 m, 210

m, 270 m and 330 m. These were approximately positioned along the NW leg of the

crossed horizontal array as shown in Fig. 3-1. The fixation points of the top of the 5

vertical arrays were at ranges of 67 m, 92 m, 116 m, 148 m and 231 m from the apex

of the MIT/WHOI crossed array. Six hydrophones of the vertical line array and five

hydrophones on the short arrays had severe 60 Hz contamination and were thus not

used in our analysis. Using a high-frequency pinger, the hydrophone positions were

recorded for only 16 channels on the long vertical line array, and I interpolated for the

locations of the missing hydrophones from the shape of the array. Only the locations

of the fixation points were recorded for the short vertical line arrays, and therefore I

had to once again interpolate for the positions of the missing hydrophones. As shown

in the following sections, I carried out an empirical analysis to estimate the sensor

positions on the shorter arrays. My methodology is based on the ideas suggested by

Polcari [43].

Sensor position predictions for the long vertical line array

I model the cable statics problem using a very simple approach, parameterized such

that the analysis can be easily extended to similar cables. I assume the sensors to be
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Figure 3-3: Cable displacement under a uniform current.

suspended from a uniform cable of length L, diameter d, and weight per unit length

w, with one end fixed to the ice and a concentrated mass of weight W hanging at the

other end as shown in Fig. 3-3. The current U is assumed to be uniform and constant

in depth. Note that in the Arctic ice environment we have the additional complexity

associated with the drift of the ice floe. In my model, I assume that the velocity U is

the resultant of the current velocity and the drift velocity of the ice floe.

The uniform flow U produces a horizontal drag force per unit length y on the

cable and a drag force F on the mass hanging at the end of it. The drag force -

on the cable is given by 7 = pCdAU2 /2, where p is the density of water, A is the

frontal area (A == d x unit length), and Cd is the drag coefficient which depends on

the Reynolds number, R = Ud/v, where v is the kinematic viscosity of water. The

horizontal drag has two components - tangential and normal to the cable axis. The

tangential component is usually much smaller than the normal component, and will

thus be neglected in our analysis. This is also consistent with the small angle (or

relative displacements) approximation made in this analysis.

Consider the free body diagram of a point on the cable at a vertical distance of z

Depth



from the point of suspension of the cable as shown in the right half of Fig. 3-3. The

horizontal force is the sum of two components - the drag on the lower section of the

cable which is approximately given -y(L - z) and the drag F on the concentrated mass

at; the end. The vertical force is the sum of the weight of the lower portion of the

cable given by w(L - z) and the weight of the mass W. Note the implicit use of the

small angle approximation inherent in this analysis, where I have used the vertical

coordinate (z) instead of the coordinate (s) along the axis of the deflected cable.

The slope of the cable at any point z may then be expressed as

dr F + (L - z)y
tan 0 = - = (3.1)dz W + (L- z)w

Eqn. (3.1) can be written as

dr =a 1+ c (3.2)dz c - z

where
SF W W

Sb= --- c= +L (3.3)
w Y w w

Integrating both sides of eqn. (3.2), and using the condition r = 0 at z = 0 yields the

solution -

r = a[z - bl n 1- -z (3.4)

This equation, which defines the shape of the cable under a uniform flow, describes

the relationship between the depth z and displacement r. However, we are not done

yet. We know the positions of the sensors along the length of the cable, and therefore

we need to find the relationship between the depth z and the distance s along the axis

of the displaced cable too.

We begin by noting that ds 2 = dz2 + dr2, or since dr/dz is assumed to be small, I

can use the approximation

ds = dz 1 + dr 2  1 () 2- dz (3.5)dz 2 dz



Substituting eqn. (3.4) in eqn. (3.5), integrating both sides, and using the condition s

= 0 at z = 0, we obtain the result

s=z 1+az ) -a2bln 1( - )+ ( (3.6)2 c 2 c-z c

Thus eqns. (3.4) and (3.6) then relate s, z and r for any point on the cable. As

mentioned earlier, positions of only 16 sensors on the long vertical array were recorded

using a high-frequency pinger. The depths and horizontal displacements of these

receivers along the SW - NE axis are then used in a least-squares-minimization

scheme to estimate the parameters a, b and c which best fit the data. My results yield

a = 0.85,

b = E- = -1322.4 , (3.7)d w

c = +L = 2553.1

Using these estimates in eqn. (3.4), I can draw the deflected shape of the long vertical

line array in a plane parallel to SW - NE axis as shown by the dark line in the

lower part of Fig. 3-4. It is evident from my results that the simplified analysis I have

carried out is adequate at modeling the real data. Regarding the unknown sensor

locations, the only information that I have is the distance along the displaced cable.

Thus I can read off their r and z coordinates from the best fit line in the lower part

of Fig. 3-4. The known and interpolated sensor positions are also shown in the same

figure by "*" and "o" respectively.

The cable also has an out-of-plane displacement component or an offset, as shown

in the upper part of Fig. 3-4. A possible explanation is the non-uniformity of the

current flow in depth, contrary to the assumptions made in our analysis. However,

I was able to account for this displacement as well, by fitting a 5th order polynomial

through the known data points. Then, with an estimate of r for the unknown receiver

positions from the lower part of Fig. 3-4, I can then also estimate their out-of-plane

displacements as shown in the upper part of the same figure. Thus, we now have

complete information on the sensor positions of the long vertical line array, and my
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Figure 3-4: Long vertical line array displaced shape - data and best fit model with
positive horizontal axis pointing along the North - East direction. The array tilt is
due to ocean current and drift of the ice floe.

results are summarized in Table C.2 in Appendix C.

Sensor position predictions for the short vertical line arrays

My analysis in the previous section has the significant advantage of being amenable to

make predictions regarding the deflected shapes of similar cables. I have parameterized

the deflected shape in terms of three quantities which were also estimated for the long

vertical array. Note that the non-dimensionalization of the problem eliminated the

need to know the specifics of the cable or the mass suspended from it. This is very

advantageous as I will now demonstrate how I can use the analysis and results of the

previous section to estimate the deflected shape of the shorter arrays.

No information was available from NRL regarding the cables or the weights sus-

pended from them for either the long or short vertical arrays [44]. Thus, my analysis

of cable statics so far is not directly useful for making any estimations on the shorter

arrays. However, the information which is available to us is that the shorter arrays



were cables of length 330 m. I shall make the following assumptions for the shorter

cables to estimate their sensor positions.

* The parameter a estimated above for the long cable is the same for the shorter

cable. Since the shorter cable will have a smaller diameter, it will also have a

smaller weight per unit length as it varies as the square of the diameter. The

drag force per unit length will also be reduced since it is directly proportional

to the diameter. However, the drag force also depends on the drag coefficient

which in turn depends in a complicated way on the Reynolds number which is a

function of the cable diameter. Therefore, this assumption is not unreasonable.

* The second parameter b is also assumed to remain unchanged for the shorter

cable. For the shorter cable, the mass attached at its end must also be smaller,

and therefore, also the drag force on the mass. Reasoning as above, I can

conclude that this parameter also remains unchanged.

* The parameter c which depends on the length of the cable, however, does change.

From my analysis I had c = w + L, where L = 1230 m for the long cable. From

my earlier estimate of c, and using the new length L' = 330 m, my estimate of

c' for the shorter cable becomes 1653.1.

Using the approximations listed above, I can estimate the deflected shape of the

shorter arrays as shown in Fig. 3-5. Then with a knowledge of the distances of the

sensors from the point of suspension, I can estimate the sensor positions for the shorter

arrays. The estimated hydrophone positions are shown by the symbol "o" in Fig. 3-

5. Note the different scale of this figure compared with that of the longer array.

Regarding the out-of-plane or cross displacements, having no other information, it is

not unreasonable to assume that the drift current on the shorter arrays is the same as

that of the longer array since they are suspended in the same water column. Therefore,

I assume that the shorter arrays have the same angle of offset as the longer array. I

estimated this angle from the upper figure in Fig. 3-4, and used this in predicting the

offsets for the shorter arrays. Moreover, I also assume that all the shorter arrays have
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Figure 3-5: Short vertical line array displaced shape - best fit model with positive
horizontal axis pointing along the North - East direction. The array tilt is due to
ocean current and drift of the ice floe.

identical displaced shapes as computed above. However, from practical considerations,

we know that this will not necessarily be the case, but this is the best I can do given

the limitations of the available information. My results for the sensor positions of the

four shorter arrays are listed in Table C.3 in Appendix C.

3.4 Sound Velocity Profile

The sound velocity profile was measured up to a depth of 500 m. In my analysis, I

shall use a bilinear approximation of the measured profile as shown in Fig. 3-6. The

gradients of the upper and lower profiles are estimated to be go = 0.0905 s - 1 and gl

= 0.013 s - 1 with the sound velocities at the top of the profile and at the transition

depths being co == 1437.0 ms-1 and cl = 1458.5 ms-1 respectively. The transition

between the two profiles occurs at a depth of 239 m. In other words, if I let c(z) be
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Figure 3-6: Measured and bilinear approximation of the Sound Velocity Profile.

the sound velocity at any depth z, then I can write

(Z) = co + goz for 0.0 < z < 239.0m

ci + gi(z - 239.0) for z > 239.0m

Additionally, it may be noted that the value 0.013 s - ' for the gradient of the lower

profile is not very different from 0.016ms - ', the typical value for deep oceans. How-

ever, as my subsequent analysis of short range reverberation primarily involves the

upper part of the SVP, I shall use the gradient estimated from the measured profile

rather than the value for the deep oceans.

In all my subsequent analysis, I computed ray angles, time delays and path lengths

along ray trajectories using a ray tracing algorithm. The methodology behind this

algorithm is as follows. To compute these quantities I discretized the spatial domain

of interest into a discrete set of points. To compute these ray quantities with respect

to the source, I launched a series of rays covering the whole angular spectrum, and

then tabulated the arrival times, source and receiver angles, and path lengths. I inter-

polated for these quantities at points of interest using cubic splines. I benchmarked



my ray tracing algorithm to verify if it gave the right answers by comparing these

with those obtained by using an isovelocity SVP. Other than due to refraction, these

numbers from my ray tracing algorithm agreed reasonably well with those obtained

from straight line paths. I carried out a similar analysis for estimation of these pa-

rameters for rays launching off from the ice sheet. The numbers obtained were close

to those from a constant SVP, once again, validating my ray tracing code.

3.5 Data Conditioning

The first task at hand was to extract the segment of data of interest to us from optical

disks for the horizontal arrays. The data was stored in WHOI on optical disk # M120-

7321-185, side # 2. The vertical array data, with a 16-bit integer format, was acquired

from NRL (courtesy Tom Hayward) on an exabyte tape. Before any data could be

processed, I had to synchronize the two different data sets to the same reference time

frame, i.e., I was required to estimate the shot times or the zero time reference for the

time series. The NRL log book records show that five shots were fired at 15 minute

intervals of which one turned out to be a dud. Thus, data from only four shots was

available for the analysis. The shot times recorded in the log book were 13:41:55,

13:56:50, 14:11:00 (dud), 14:26:52 and 14:41:50 hours local time. To estimate the shot

time in the data, I needed to know the locations where the charges were set off. As

far as the source locations were concerned, the only information available was that the

SUS charges were dropped into Wiebe's biology hydrohole (see Fig. 3-1). However,

the precise location of this spot was not available, and therefore, I was also faced with

the task of estimating the source positions from the raw time series.

3.6 Raw Experimental Data

Fig. 3-7 shows the raw time series for Shot # 1 for the 25 channels of the horizontal

array, sampled at 1 kHz. The channels numbers on the plot are in no particular
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Figure 3-7: Horizontal line array raw data for Shot # 1. Observe the direct bottom
returns that arrive around 5.1 secs, and the surface-reflected bottom returns that
arrive about 0.2 secs later.
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Figure 3-8: Expanded view of
# 1.

horizontal line array raw data for Shot # 1, Channel
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Figure 3-9: Long vertical line array raw data for Shot # 1. The direct bottom returns
and the surface-reflected bottom returns are clearly distinguishable for the deeper
receivers.

order. The direct shock pressure pulse is seen to arrive around 1.2 secs at most of

the receivers. The hydrophones are observed to saturate with the arrival of the shock

pressure pulse. After a characteristic system decay time, the sensors are seen to come

back on line as shown in the expanded view in Fig. 3-8. Note that the data is not

clipped but superposed on a system decay response. Also, the bubble pulses can be

easily seen in the! close-up view of the time series. The ocean bottom is roughly at a

depth of 3.0 Km, and therefore, as we would expect, the first bottom arrivals come

in about 4 sees later, at a time of about 5.1 sees. Also seen are the surface-reflected

bottom returns that arrive about 0.2 sees later. The usable data for estimating short-

range scattering from under the ice surface is then contained between 1.8 secs, i.e.,

after the sensors come back on line, and 5 sees.

On the other hand, the raw time series for the 31 long vertical and 32 short vertical

line array hydrophones, sampled at 689.0625 Hz, are shown in Fig. 3-9 and Fig. 3-10

respectively. As mentioned before, these time series were recorded on a different data

acquisition system by NRL. The direct arrival is seen to come in around 3.0 sees

for the top-most receiver of the long vertical array, denoted by channel # 1. The
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Figure 3-10: Short vertical line array raw data for Shot # 1.
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Figure 3-11: Expanded view of long vertical line array raw data for Shot # 1, Channel
# 1.



receiver time series are stacked in the order of depth with the deepest hydrophone

corresponding to Channel # 31. The bottom reflected arrival comes in about 4 secs

later at a time of about 7.0 secs for the shallowest receiver. Note how the direct bottom

returns and the surface-reflected bottom returns are clearly separated for the deeper

receivers of the long vertical array. These could also be used in the future to evaluate

the scattering characteristics of the ocean bottom in the Arctic Ocean. In contrast

to the MIT/WHOI system, the arrival of the shock pressure pulse at the hydrophone

nearest to the source, results in a simultaneous saturation of all the hydrophones as is

evident from the expanded view of the time series of a typical sensor of the vertical

arrays as shown in Fig. 3-11. In spite of the clipping of the time series, we can observe

the faint outline of the bubble pulses here. However, I do not have enough confidence

to use these in any kind of estimation scheme.

3.7 Source Localization

To estimate the source locations, I developed a source localization scheme based on a X2

estimation procedure. In general, I need to search a four-dimensional parameter space

with the unknowns being the three source coordinates and the shot time. However, to

simplify the analysis, I did this in two steps by reducing the number of unknowns to

three by estimating the source detonation depths via a different analysis.

Previous results by Wakeley [45] have shown that the depth of detonation may be

related to the first bubble pulse period and weight of the charge by

Z = (0.21)6/5 W 2 / 5 (TBp) - 6/ 5 - 10.1 , (3.8)

where Z is the depth of detonation in m, W is the weight of the charge in Kg, and

TBp, is the first bubble pulse period in secs. The bubble pulses are clearly visible

in the raw horizontal array time series (Fig. 3-8) but not in the vertical array data

(Fig. 3-11) which is clipped as shown before. Therefore, I estimated the first bubble

pulse period from the MIT/WHOI data by noting the difference in arrival times of



Table 3.1: Estimated first bubble pulse periods and the corresponding depths of det-
onation

the shock pulse and the first bubble pulse, and then averaging the result over the 25

channels. As stated before, the weight of the SUS charge used in the experiments was

1.8 lb or 0.82 Kg. My estimates of the bubble pulse periods and the corresponding

depths of detonation are shown in Table 3.1.

The next step is to determine the (X, Y) coordinates of the source locations, and

the time when the shot was fired. This is done by first identifying the arrival time of the

direct pressure pulse, i.e., the peak of the shock pulse, at each hydrophone. As noted

before, the arrival times of the direct pressure pulse on the vertical array sensors is

obscured by the system-wide overload. Thus, I was unable to use the NRL data in my

shot localization procedure, and my analysis was therefore confined to the horizontal

array arrival times only. Using ray tracing in the bilinear sound speed profile, for

each assumed position of the source (X, Y), I computed the time delays from the

source location to each of the receivers. The shot time is estimated by averaging the

difference between the arrival times and the computed delays over all the hydrophones

as

tahot = -(ti - i) , (3.9)N i1

where N is the number of sensors used in the analysis, ti is the arrival time at the

i th sensor in the raw data, and Ti is the time delay from the assumed source position

to the ith sensor. The mean-square-error, X2 of our estimate for this guess is then

computed as -

X' = N i~i - (tsho + Ti) (3.10)
i= 1

Bubble pulse periods and depths of detonation
Shot # TBps(secs) Zs(m)

1 0.0194 246.5
2 0.0199 239.1
3 0.0189 254.4
4 0.0196 244.0
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Figure 3-12: Contours of constant levels of 1/X 2 for best fit source location for Shot
#1

I compute the value of X2 at different locations in a given region of interest and plot

contours of constant values of 1/X 2 as shown in Fig. 3-12, where the contours levels are

plotted in a dB scale and normalized to a maximum value of 0 dB. The point where

X2 is a minimum, or 1/X2 is a maximum, is then my best estimate of the coordinates

(X,, Y,) of the shot location. The plot shows that I have indeed obtained this estimate

with a very high resolution, the -3 dB contour being only 15 m in diameter.

I carried out this analysis for each of the four shots, and obtained similar X2 am-

biguity contours. My results for the four different shots are summarized in Table 3.2.

The results demonstrate that I was able to come up with very reliable and consistent

estimates of the locations where the SUS charges went off. Moreover, these estimates

are also consistent with the location of Wiebe's hydrohole (see Fig. 3-1) from where

the SUS charges were reportedly dropped through a hole in the ice cover. It is also

worthwhile to note that the source locations for the different shots need not be pre-

cisely the same because when the SUS charges are dropped through the hole in the

ice, they will tend to drift a little, with the drift varying from shot to shot.

__



Table 3.2: Estimates of source location for the 4 different shots using a X2 based
analysis.

Figure 3-13: Data resampling algorithm. U is the upsampling factor and D is the
decimation factor.

3.8 Data Synchronization

Before any data could be processed, the raw NRL and MIT/WHOI data had to be

synchronized, i.e., filtered and resampled to the same common sampling frequency.

As pointed out previously, the NRL data was sampled at the nominal rate of 690 Hz

and the MIT/WHOI data was sampled at 1000 Hz. Since the maximum frequency of

interest to us is 130 Hz, I decided to resample both the data sets at four times this

frequency, i.e., at the common rate of 520 Hz. Fig. 3-13 shows the algorithm I used

in reducing the sampling rates for the data sets by a non-integer factor. Following the

approach in Ref. [46], by a combination of decimation and interpolation, it is possible

to resample the data at a different rate. This is done by first identifying two integers

U and D such that the ratio UID equals the factor L by which I wish to reduce the

sampling frequency. In my case, for the NRL data U = 40, and D = 53 since L

= 690/520 = 1.33 and for the MIT/WHOI data U = 13, and D = 25 because L =

1000/520 = 1.92.

Estimates of source location for the 4 shots

Shot # X(m) Y,(m) ZS(m)
1 27.5 266.0 246.5
2 31.5 266.0 239.1
3 28.5 266.0 254.4
4 28.5 265.5 244.0
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Figure 3-14: Impulse response of equiripple, linear-phase, band-pass-filter, designed
using the Parks-McClellan algorithm, with a pass band of 19.5 - 130 Hz.

Having decided upon the 2 integers U and L, the raw data is first upsampled or

interpolated by a factor U, low-pass filtered, and then decimated by the factor D. The

low-pass filter used was a 8th order Chebyshev type I filter with cut-off frequency of

0.8 times half the sampling frequency of the data set being filtered, and a pass band

ripple of 0.05 dB. The resampled data was then finally band-pass-filtered between

the frequency range 19.5 Hz - 130.0 Hz using a equiripple linear-phase filter designed

using the Parks - McClellan algorithm. Fig. 3-14 shows the impulse response of this

FIR filter and Fig. 3-15 shows its frequency response. Note that the sidelobes are

more than 85 dB down. The resampled data sets were then time-shifted to zero time

reference to coincide with the time the SUS charges went off.

As the the two data sets were acquired on different systems, their gains and sen-

sitivities also had to be corrected for. The MIT/WHOI horizontal array sensors had

a sensitivity of -160 dB re 1 yPa//-H-z, and at a 1 kHz sampling rate were low-pass

filtered with a 8 pole Butterworth filter with the -3 dB point at 260 Hz. No gains

were applied at pre-amplification stage [42]. On the other hand, the NRL vertical

array sensors had a sensitivity of -157 dB V/IpPa, and a preamp/digitizer gain of

65536 digital units per 10 V, and variable gain settings for the four different shots

or; · · · · · · ·
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Figure 3-15: Frequency response of equiripple, linear-phase, band-pass-filter, designed
using the Parks-McClellan algorithm, with a pass band of 19.5 - 130 Hz.

of 20 dB, 30 dB, 40 dB and 40 dB respectively [44]. Therefore, to obtain the data

values in iPa, the MIT/WHOI values were multiplied by 108, and the NRL values

were multiplied by the factor (1.0/6553.6) x 10157/20 / gain.

Fig. 3-16 shows the signal at Channel # 1 of the horizontal array after filtering,

zero time shifting, and correcting for sensor sensitivity. From the figure, it is clear

that the usable portion of the data for reverberation analysis is limited between 0.6

secs and the arrival time for bottom returns.

3.9 Summary

In this Chapter, I have conducted a preliminary analysis of the CEAREX field rever-

beration data which I will use subsequently for estimating the scattering characteristics

of ice. The analysis carried out in this Chapter basically consisted of two parts -

* Array localization and source position estimation.

* Synchronization of the MIT/WHOI and NRL data sets.
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Figure 3-16: Expanded view of filtered and time-shifted horizontal line array raw data
for Shot # 1, Channel # 1.

As the discussion in this Chapter illustrated, I was severely handicapped regarding

the sensor positions of the vertical arrays, especially the four shorter arrays. However,

aided by an empirical analysis, I was able to make some estimates of the sensor

locations on the vertical arrays. I shall briefly return to these estimates in Chapter 4,

where I discuss how I further improved these estimates via a different analysis.

I also obtained very reliable and consistent estimates of the positions where the SUS

charges detonated. These were pre-requisite to the synchronization of the MIT/WHOI

and NRL reverberation time series. The matched field analysis that shall be carried

out; in Chapter 4 requires these two data sets to be referenced to the same time frame.

This will then allow us to simulate a volumetric array by combining the outputs

from the horizontal and vertical arrays, thereby providing higher resolution in our

beamformer output.

I



Chapter 4

Matched Field estimation of

scattering from ice

4.1 Overview

As stated earlier, the main theme behind this thesis is to analyze scattering from

a three-dimensional feature or protuberance under the Arctic cover. The analysis

may be viewed to consist of two parts where the first deals with the development of

an analytical model. This was undertaken in Chapter 2. The second part consists

of an experimental evaluation of scattering using field data. Chapter 3 contained the

preliminary analysis of the data from the CEAREX field experiments. The subsequent

analysis will dwell upon the identification and isolation, as well as the determination

of the scattering characteristics of discrete protuberances under the Arctic ice canopy.

In its most general form, this is a complex multi-parameter estimation problem with

the unknown quantities to be estimated being (i) the location of the protuberances,

and (ii) their spatial scattering characteristics.

Among the multitude of methods available to solve this problem is the Matched

Field Processor (MFP), which maximizes the correlation between data and model. In

other words, the MFP compares the observed data with an assumed model defined



by a set of parameters. The search parameter set is chosen so as to encompass the

true parameters which generated the data. One then searches the complex multi-

dimensional parameter space for that combination set of variables which maximizes

the correlation between the data and the model. The methodology of this processor

will be discussed in the section that follows. Note that this is similar but distinct from

the Mean Square Error (MSE) minimization method which tries to minimize the error

between the data and the replica model generated from search parameters.

Within the gamut of matched field estimators are included the conventional and

high-resolution processors. The conventional processor weights the dependence on

the parameters uniformly, whereas the high resolution processor adaptively weights

the parameters so as to maximize its performance. It is to be noted that while the

performance of the conventional processor (e.g., the Bartlett processor) is relatively

insensitive to mismatch in the environmental parameters that define the model, the

performance of the high resolution processor rapidly degrades with increasing envi-

ronmental mismatch. Ideally, one prefers to use the high resolution processor, like

the Maximum Likelihood Method (MLM), since it optimizes the weights and pro-

vides estimates of the parameters with the highest resolution. However, it is severely

constrained by demanding an exact knowledge of the environment that defines the

replica field or model. Therefore, in a scenario where uncertainties exist in defin-

ing the environment, the Bartlett processor, in spite of its lower resolution, is to be

preferred.

Coming back to my problem of locating the protuberances as well as determining

their scattering characteristics, I should ideally use the MLM processor to obtain

estimates of these quantities with very high confidence. However, since I am using

real field data, instead of data generated in controlled surroundings, environmental

uncertainties are bound to creep in. For example, I do not have the precise locations

of the sensors on the vertical arrays even though my estimates for the horizontal array

are reasonably good. Also, I have approximated the SVP as a bilinear profile which

further introduces some errors in my estimates of arrival times and ray angles. These



uncertainties will cause a deterioration in the performance of the MLM processor

which will produce erroneous results. Therefore, I will carry out my analysis with the

Bartlett processor which is more forgiving.

In general, the scattered field from a large-scale feature under ice may be repre-

sented by g(p, f, rp, ro), where p is the size of the feature, f is the frequency, rp and

ro are the three-dimensional coordinates of the location of the protuberance and the

receiver. Note that it is not known a priori what the functional dependence of g is on

these parameters, and the position of the protuberance is not known either. This is

inherently a complex problem to solve where I need to simultaneously determine the

location of the feature and is scattering characteristics. Therefore, I make this insur-

mountable task more manageable by splitting this complicated problem into two parts.

In the first step I shall isolate and identify discrete scatterers under the ice cover. My

theoretical analysis in Chapter 2 allows me to assume that the three-dimensional fea-

tures resemble point radiators with a quadrupolar scattering pattern. Fricke [13, 24]

has demonstrated that the scattering pattern from a two-dimensional protuberance on

an elastic plate, i.e., an elastic keel, resembles a deformed quadrupole. That this is

also the case for the three-dimensional scattering scenario will be confirmed by my an-

alytical realizations of scatter from an isolated protuberance under ice. This assumed

scattering pattern, will then provide me with an approximate map of the under surface

of the rough ice cover. As my analysis will demonstrate, I obtain satisfactory results

and am able to isolate strong features or "hot spots". This will be the main focus of

this Chapter.

In Chapter 5, I will continue with the next step where I will evaluate the spatial

scattering characteristics of these protuberances. In general any acoustic field can

be synthesized by a multi-polar expansion. Theoretically, any such expansion must

include poles of all orders. However, once again, I shall make my analysis tractable

by assuming that the scattered field consists of a dipole term and a quadrupole term.

For the low frequency regime that is of interest to us, as previously shown by Fricke

[13], this is not an unreasonable approximation as the contribution from the higher



order terms may be shown to be negligible. In fact, the estimates obtained from the

data and my analytical model will reiterate the validity of my assumption.

The matched field estimation procedure that I carry out is a significant improve-

ment over the results that have been published recently [47] using the data from the

long vertical array only. The results presented here are of higher resolution as I have

combined the outputs from all the arrays, simulating a volumetric array [48]. Another

difference between the results of this thesis and the previously published work is that

while I compute my results via matched field processing, their results were based on

plane-wave beamforming.

4.2 Matched Field Array Processing

As mentioned earlier, the matched field processor correlates the field arriving at the

array with model replicas of the expected field. In other words, the intent is to find

which replica field best compares with the received signal. Matched field processing

techniques have traditionally been used by researchers in Acoustics in the past in the

context of plane-wave beamforming. The beamformer steers the array in all possible

look directions and outputs the direction with which the best match was obtained

between the received plane-wave and the modeled replica plane-wave. However, re-

cent literature [49] has demonstrated the applicability of this approach in the context

of localizing a distant source in range, depth and bearing. Here, I shall adapt the

algorithm to nearfield beamforming or focusing.

Consider an N element array in a narrowband environment where both signal

(s) and noise (n) are present. Following the approach outlined in [50], I assume the

noise process to be white, and uncorrelated from sensor to sensor. Denoting the

signal arriving at the array by S(w, , KpT), and the noise at the array by A/'n(w), with

variance A/o(w), I can write

where w is the frequency of the (w = ()signal. Note that S(,z, ) contains

where w is the frequency of the narrowband signal. Note that S(w, ý 'PT) contains
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Figure 4-1: Flowchart depicting matched field array processing. s is the signal arriving
at the sensors, n is the noise component, uncorrelated from sensor to sensor, and b is
the matched field processor output.

both the signal and noise components, and is dependent on pT' the true parameter

set describing the field. Examples of pT include source location coordinates (x, y, z),

direction of plane-wave k, or sound speed of the medium c. In the frequency domain,

the matched field processor output, bsignl, is obtained by weighting the signals at the

sensors by W*, followed by summation over all the elements of the array as shown

in Fig. 4-1. Here "*" denotes complex conjugate. In other words, the output of the

processor may be written as

N

bsignal = W, S(w,zKnIPT) = Wi (w)S(w) , (4.1)
n=1

where "+" denotes complex conjugate transpose. The white noise level at the output

of the processor is given by

N

4n= No(w) n IW,(w)12  (4.2)
n=1

The objective of the matched field array processor is to maximize the Signal-to-Noise



Ratio (SNR) at the output of the processor, i.e.,

Max Ibigna 12
Wn(W) 2

an

or
Max 11= 1 W (w)S(w, n Il) 12
Wn(W) n= n

A1 (W) =F IWn(W>1l

or in vector notation,
Max IW+S12
W .. (4.3)KVIWI2

The solution may be obtained by setting VRewl, VImjW = 0, i.e., we must separately

set the derivatives with respect to the real and imaginary parts equal to 0. This yields

2S+IW+S IW+WI - 2W+IW+S IS+WI = 0

or

Wn(w) = S(w, Znl pT) , (4.4)

and the resulting SNR is given by

SIS(,_IpT)I (4.5)SNR =V_ o(W)
n=i

In other words, the output of the processor is maximized when we correlate the signal

received at the array with the true replica field. In general, the true parameter set

p-T defining the received field at the array is not known. In such a situation, one

uses the matched field array processor to estimate the parameter set ET defining the

field. One computes the output of the matched field processor in response to different

trial weight vectors associated with each trial parameter set p. The parameter set for

which the output of the processor is maximized, i.e., the field has been "matched", is

then the best estimate of the true parameter set defining the field. The response of
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Figure 4-2: Receiver array and source geometry for nearfield beamforming or focusing

the processor to a trial parameter set p, is then given by

W(, PIE,) - ' Zf S(W, "Ip)S*(w,_znI pT) (4.6)

where the output of the processor has been normalized to have unity response at the

true signal parameter set. Note that in the context of plane-wave beamforming, this

implies a 0 dB response at the Maximum Response Axis (MRA). Also, this processor

can easily be simplified to the case of plane-wave beamforming, where the parameter

set defining the field received at the array reduces to the directional wavenumber k.

4.3 Nearfield Beamforming or Focusing

I will now demonstrate the application of matched field array processing to nearfield

beamforming or focusing. Consider a time harmonic point radiator of strength Po and

frequency w located at (x,, y,, z,) in the nearfield of an array of receivers of arbitrary

geometry as shown in Fig. 4-2. Assuming the radiation pattern to be denoted by

B(w, 0, cp), the field received by the N sensors of the array, located at (xj, yj, zj), may
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be expressed as

eikRT
Pj(w) = Po(w)B(w, 0j, cpj) ýT + (w), j = 1,..., N , (4.7)

where Po(w) is the source strength at 1 m, and Oj and pj are the polar and azimuthal

angles, respectively, subtended by the source at the jth receiver. J/Mj(w) is the noise

term uncorrelated from sensor to sensor, k is the acoustic wavenumber with k = w/c,

and c is the speed of sound in the medium. The distance from the source to the jth

receiver is given by

RT = [(, - xj) + (y,- yj)2+(zS- zj)] 2  , j=1,..., N (4.8)

The nearfield beamforming operation estimates the strength of the point source and

its location from the received signal at the N sensors. Since my model assumes a

point radiator, the signal strength may be estimated by exploiting the difference in

phase of the spherical wavefront at each of the sensors. Noting the analogy with my

analysis in the previous section on matched field array processing, the received signal

at the array Pj(w) corresponds to S(w, 4 nPT), while the parameter -T corresponds

to the source location coordinates (x,, y,, z,). For a trial source position (x, y, z), the

output of the nearfield beamformer is given by

N

P(w) = Z Wj RjBj Pj(w)e- ikR , (4.9)
j=1

where

R = [(x - j) 2 + (y - yj) 2 + (z - z)2] 1/2 , j = 1,..., N , (4.10)

and

b_ 1B- = bj bj = ,, (4.11)

Here, Wj is the weighting or array taper vector, and the radiation pattern has been

normalized to obtain a 0 dB response at the MRA. The radial distance Rj appears in

the numerator of eqn. (4.9) to account for the spherical spreading loss. In applications
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where the change of this term from one sensor to the other is small, this term may be

conveniently dropped without affecting the performance of the processor. However, if

we are interested in estimating the source strength, then it is crucial that this term be

retained. Also, the term B(w, Oj, ij) accounts for the radiation pattern. In this case,

eqn. (4.9) will yield the estimate of the source strength when the trial source position

coincides with the true source coordinates.

The discussion so far has been a frequency-domain approach, where the output of

the matched field processor is computed for narrowband signals. However, if we have

a wideband signal, it may be advantageous to do the processing in the time domain

by invoking time-frequency duality. Although, the processing becomes faster, there

are some caveats to be noted here.

(i) Sampling in time

Imposing an upper limit on the error in phase, say 7r/2, the highest frequency for

which the processing can be done in the time domain is limited by the sampling rate

of the data, i.e. if we impose the requirement

2rf( (At) <
2

then
1

fmax < (4.12)
4 (At)

(ii) Sampling in space

The second point to bear in mind concerns the spacing between the array elements.

Imposing a similar constraint on the phase error in the spatial domain requires

k (AR) < -
2

where, k is the acoustic wavenumber, and AR is the difference in path lengths from

the source to adjacent receivers as shown in Fig. (4-3). As can be seen from the figure,

the path length differential AR varies from sensor to sensor in the array. Hence, it
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Figure 4-3: Equally spaced line array geometry for determining differential path
lengths in nearfield beamforming.

i - Ax -I- Ax Ax

Figure 4-4: Equally spaced line array geometry
lengths in plane wave beamforming.

for determining differential path
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is not very obvious which AR one should consider when developing the phase error

criteria. If one is overly cautious, then the criteria must be satisfied by the minimum

AR. In practice, this usually needs to be violated and one chooses a typical value of

AR for the array such that

(AR)min < (AR) < (AR)ma ,

and then one proceeds to develop a bound for the error in phase. However, if we

consider plane-wave beamforming with a uniformly spaced line array, and an inter-

element spacing of Ax as shown in Fig. 4-4, and relax the phase error criterion to be

7r instead of the more stringent 7r/2, we get

2·r- cos(O) (Ax) < ,

or

fmaz < , (4.13)2 (Ax) cos(0)(4.13)

where 0 is the grazing angle made by the incoming plane-wave with the line array.

Considering the case when the array is steered broadside, this reduces to the familiar

Nyquist sampling criterion (Ax) < A/2. I will refer back to eqns. (4.12) and (4.13)

subsequently when I shall evaluate the performance of our arrays.

(iii) Frequency dependence of radiation pattern

In general, the radiation pattern of the source depends on both frequency (w)

and the angles subtended at the receivers (0j, pj). Therefore, unless the beampattern

is frequency independent, or constant over the signal bandwidth, i.e., B(w, 0, P) -

B(0, ý), it would be erroneous to to the processing in the time domain.
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4.4 Adaptive Focusing for CEAREX arrays

In the analysis to be presented in this section, I shall combine the outputs from the

horizontal array, the long vertical line array, and the four short vertical line arrays. I

begin by simulating a broad band point monopole source, a truncated sinc function

of bandwidth 125 Hz, duration 65 msecs and sampled at 1 kHz. A truncated sinc is

convenient as it has a flat frequency spectrum and is very narrow in the time domain.

I let the source be located at (900.0,900.0,3.357), i.e., at the mean depth of the ice

sheet. Next, assuming spherical spreading, I propagated the field to all the receivers

as shown by eqns. (4.7) and (4.8) and constructed a synthetic time series for each of

the sensors. Note that since the monopolar source has a uniform radiation pattern

which is independent of frequency, i.e., B(w, 0, p) = 1.0, I can take advantage of

time-domain processing. Simultaneously, I also added white Gaussian noise to all the

sensors with an effective SNR of 60 dB. Satisfying the criteria of eqn. (4.12) requires

that the limiting frequency for which time-domain processing is acceptable is given by

f,,m < 1/(4 x 0.001) or f < 250Hz.

Having synthesized the time series for each of the channels, I then used nearfield

beamforming or focusing to propagate the fields back to the plane coinciding with the

mean ice depth. It is to be noted that back propagation is a particular case of matched

field processing as in both schemes, the output is given by the product of the signal

received at the array and the conjugate of the replica field. In the first stage of my

analysis, I used the three array configurations separately to evaluate their individual

performances. Fig. 4-5 shows the ambiguity function for the crossed horizontal array,

where I have focused onto a grid of dimensions 600 m square using a step size of 10.0

m. Also, I have geometrically averaged the output of the processor over the frequency

band 45 Hz - 55 Hz. It has been shown previously [49] that the sidelobe levels can

be further reduced by averaging over frequencies, as the locations of the sidelobes is

frequency dependent.

As discussed in an Section 3.3.1, the two legs of the crossed hydrophone array are

each about 1280 mn long, and therefore we get good resolution in range. However,
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Beamformer response averaged over 45 - 55 Hz (dB)
Source at (900,900) (HORIZONTAL)
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Figure 4-5: Contours of constant levels of beamformer output for the horizontal array
averaged over the frequency band 45 - 55Hz.

the array does not perform well in resolving the azimuthal ambiguity as the sensor

geometry, as opposed to that of a ring array, does not sample the field fine enough in

the azimuthal direction. Notice the high sidelobes, almost 6 dB down, in the azimuthal

direction. From classical optics, the angular resolution of a uniform line array of length

L is approximately given by As - A/L. Therefore, the range resolution of a uniform

line array focused at a distance RT may be approximated by Aras e (A/L) x RT. At

a frequency of 50 Hz, the wavelength is approximately 29 m, and the distance of the

source from the apex of the array is approximately 1130 m. Therefore, the resolution

in range is almost 1130 x 29/1280 - 25 rm. From the figure we observe the resolution

in range to be about 35 m or so, not very different from the classical optics result.

Fig. 4--6 shows the ambiguity function for the long vertical line array alone, averaged

over the same frequency band as before. As we would have expected, this array has

good resolution in range, in the order of about 40 m or so, but poor resolution in the

azimuthal direction. The response of the shorter line arrays is shown in Fig. 4-7. This

array performs better than the longer vertical array in azimuth, and a little worse in
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Beamformer response averaged over 45 - 55 Hz (dB)
Source at (900,900) (LONG VERTICAL)
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Figure 4-6: Contours of constant levels of beamformer output for the long vertical line
array averaged over the frequency band 45 - 55Hz.

Beamformer response averaged over 45 - 55 Hz (dB)
Source at (900,900) (SHORT VERTICAL)
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Figure 4-7: Contours of constant levels of beamformer output for the short vertical
line arrays averaged over the frequency band 45 - 55Hz.
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range as the arrays are shorter in length.

My task is to combine the outputs from the three arrays in an adaptive manner

so as to maximize the performance in both range and azimuth. From these results it

is clear that combination of the outputs from these arrays in equal proportions will

not be the most optimum response as they have different characteristics. What is

required is to combine the outputs from these three arrays in a manner that optimizes

the resolution in both range and azimuth. Hence, I need to introduce some kind

of' adaptive combination. At this stage it is worthwhile to point out that I could

have chosen to use any of the high resolution beamformers like MLM or MUSIC to

adaptively combine the outputs from the three arrays so as to optimize performance.

However, I preferred to use the conventional Bartlett beamformer as the performance

of the adaptive beamformers degrades with environmental mismatch. Note that this

is unavoidable in my case, as I have limited information on the source and receiver

geometry. I estimated these in the previous Chapter, but as with all estimates, these

are correct within certain error bounds. This will the lead to uncertainties in arrival

times, which would in turn cause the adaptive beamformers to place nulls at signal

locations.

Therefore, after an extensive study of various possible combinations of the conven-

tional beamformer outputs, I found that the best response is obtained by combining

the outputs from the three arrays - horizontal, long vertical, and short vertical- in the

ratio 0.6, 0.2, 0.2, respectively. Note that the sum of the three ratio factors must equal

1 if the output is :not to be biased (recall the 0 dB MRA requirement). The ambiguity

function for this adaptive processor is shown in Fig. 4-8, where the response has once

again been averaged over the frequency band 45 Hz - 55 Hz. Note the improvement

in performance in the azimuth direction while simultaneously preserving the range res-

olution. Also observe the significant reduction in sidelobes. I shall use this adaptive

scheme in all subsequent analyses. Fig. 4-9 shows the beamformer response averaged

over the frequency band 75 Hz - 85 Hz. Comparison with Fig. 4-8 reveals that, as

we would expect, with increasing frequency, the width of the mainlobe is decreased
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Beamformer response averaged over 45 - 55 Hz (dB)
Source at (900,900) (VOLUMETRIC)

750 900 1050 1200
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Figure 4-8: Contours of constant levels of output from the adaptive volumetric beam-
former averaged over the frequency band 45 - 55Hz.

Beamformer response averaged over 75 - 85 Hz (dB)
Source at (900,900) (VOLUMETRIC)
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Figure 4-9: Contours of constant levels of output from the adaptive volumetric beam-
former averaged over the frequency band 75 - 85Hz.
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Source Spectral Levels at 1.0 m
f(Hz) 5.0 6.25 8.0 10.0 12.5 16.0 20.0

Level (dB) 198.79 200.30 203.03 205.86 207.59 209.61 211.65

f (Hz) 25.0 31.25 40.0 50.0 62.5 80.0 100.0
Level (dB) 213.78 215.51 217.14 218.37 217.00 212.53 211.76

f (Hz) 125.0 160.0 200.0 250.0 320.0 400.0 500.0
Level (dB) 207.09 208.31 205.35 202.28 200.80 198.83 197.27

Table 4.1: Source spectral levels at 1.0 m for 1.8 lb or 0.82 Kg SUS charges, with
nominal detonation depths of 244 m.

thereby increasing resolution. Also note the significant improvement in the reduction

of sidelobes levels.

4.5 Source Spectrum Estimation

Recently, Chapman [51] has presented some results from experimental data in

which he estimated the spectral levels for 0.82 Kg Signal Underwater Sound (SUS)

charges detonated at nominal depths of 244.0 m. The values presented by him are

1/3 octave band source levels in units of dB re 1 erg/cm2 /Hz at 1 m. I corrected

these to dB MPa at 1 m using the following conversion formula

S +90.0+ pC2

L, = L + 90.0 + 10.0logol0( ) - 10.0 l1ogl 0(BW) - (4.14)

Here Lo are the levels reported by him in units of dB re 1 erg/cm2 /Hz at 1 m, BW

is the 1/3 octave band interval in Hz, and p is the density of water assumed to be

1025.0 Kg/m3 . c is the speed of sound in water assumed to have the constant value

of 1460.0 ms-', and L, is the source level in units of dB pPa at 1 m. These corrected

values are shown in Table 4.1. The source levels at other frequencies of interest are

easily computed by interpolation.
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Ice Sheet of mean

(Focusing point)

Receivers

Figure 4-10: Scattering geometry showing the source, receiver and focusing point
configuration. The source is 1.8 lb SUS with nominal detonation depth of 800 feet.
The ice sheet is assumed to have a mean thickness of 11 feet.

4.6 Estimation of scattering strength

As mentioned earlier, the sources used in the experiments were 1.8 lb SUS charges,

detonated at nominal depths of 800 feet or 244 m. The actual source depths were

determined from the first bubble pulse periods. I shall analyze the short-range rever-

beration data from four different shots fired from approximately the same position.

Fig. 4-10 shows the scattering geometry and the relative positions of source, receiver

and ice, which is assumed to have a mean depth of 11 feet. The geometric paths from

source to focusing points, and then on to receivers are determined using ray tracing.

I shall focus onto a plane that coincides with the mean bottom level of the ice sheet.

The scattering strength calculations are based on the standard sonar equation

S'S = LRL + HS-FP + HFP-+R - LSL - 10log A - (4.15)

Here LRL is the received pressure level at the receivers in units of dB, HS-+FP is the

transmission loss from source to the focusing point, and HFP-R is the transmission

loss from the focusing point to the receiver in dB. LSL is the source spectral level in
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Figure 4-11: Ensonified area for the source, receiver and focusing point configuration.
tl and t2 are the two way travel times for paths 1 and 2

dB at a reference distance of 1 m, and A is the ensonified area. This equation yields

an estimate of the scattering strength SS in units of dB/m2 .

The algorithm for computing the scattering strength of ice from the data received

at all the hydrophone arrays is as follows. For each given sensor, I compute the

two-way travel time from source to focusing point, and then on to the receiver using

ray tracing. For a constant Sound Velocity Profile (SVP), the loci of points on the

focusing plane for a fixed two-way travel time corresponds to an ellipse as shown

in Fig. 4-11. This is also true for the varying SVP provided I determine the travel

times from correct ray paths. I centered a small window around the two-way travel

time corresponding to the focusing point of interest on each hydrophone. The area of

intersection between the two ellipses, corresponding to the end points of the windowed

reverberation time segment, is then the ensonified area.

Suppose the two-way travel time is to, and tl and t2 are the end points of the

window for a particular receiver as shown in the lower part of Fig. 4-11. In all my

analysis, I used a Hamming window 101 samples long or 0.194 secs in length. The

length of the window was decided upon by considering the two conflicting criteria

- longer the window, higher the frequency resolution, and simultaneously, larger the
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ensonified area. I need to choose a length of the window which suitably optimizes both

the requirements. Coherent summation across channels of the suitably normalized,

windowed outputs in the time-domain for each array separately yields the beamformer

output as
N'
= Wj 1B R,, RR,, P (t,j : t2,j) • (4.16)

Here pi is the coherent beamformer output for the ith array, N i is the number of

receivers in the ith array, and Wj is the Hamming window for the jth sensor in the ith

array. Also, R 8,, is the path length from source to focusing point, and Rj,, is the ray

path length from the focusing point to the receiver. Pj(tl, : t2,j) is the segment of

data 101 samples long, centered at t, for the jth sensor in the ith array, and Aý is the

ensonified area for each sensor.

The sensor outputs have also been weighted by the suitably normalized assumed

radiation pattern B . My theoretical analysis in Chapter 5 will establish that the scatter

from an isolated feature under the ice is symmetric with respect to the azimuthal

coordinate p. It will also be shown that the polar radiation pattern resembles that

of a deformed quadrupole over the frequency regime of interest to us (see Figs. 5-

8 - 5-11). This fact has also been corroborated by Fricke [13, 24] who considered

scattering from 2D elastic keels. Motivated by these analyses, I approximated the

radiation pattern from these "hot spots" as

B(w, 0, ) = cosp sin20 , (4.17)

where cp and 0 are the azimuthal and polar radiation angles. In other words, my replica

field for the matched field processing scheme is that due to a quadrupolar radiator.

This radiation pattern must then be normalized to obtain OdB at the MRA. This is

done by defining
1 1

' B(w, 0i, ) cos sin 20 (4.18)
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and therefore
b"

S •j= (4.19)

As the beampattern is assumed to be the same over the frequency regime of interest,

I can therefore do the matched field processing in the time domain. Note that in

the special case of a monopolar radiation pattern, as we would expect, the weighting

factor B' reduces to 1/N', i.e., that due to a uniformly weighted array.

Also, observe the different way in which the sonar equation is summed across

sensors in the time domain. The beamformer output of the three arrays is then

combined adaptively as -
3

P = E vi , (4.20)
i=1

where vi is relative weighting of the outputs from the three arrays with Eý1 Vi = 1.

Finally, the scattering strength is found by transforming the beamformer output to

the frequency domain, averaging the reverberation level in dB over 10 Hz frequency

bands, and subtracting the source level at 1.0 m, i.e.

SS(f) = f -f LRL(f) -LsL(f) (4.21)

Fig. 4-12 shows the relative geometry of the source, receiver arrays and beamform-

ing patches. The shaded rectangular patch to the North - East of the apex of the

array is the area where I shall focus to estimate the scattering strength. Ideally, I

would prefer to look broadside to the horizontal array, i.e., look vertically up. But

this was not possible due to the limitation of the data set available for analysis. As

pointed out before, the arrivals from features broadside to this array come in at times

close to the direct path arrivals, and hence, are clipped. This means that I was forced

to look at features at least 600 m from the apex of the array.
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Figure 4-12: Relative geometry of source, receiver arrays and beamforming patches

4.6.1 Spatial Variation of Scattering Strength

In this section I shall use the matched field processing methodology set up in pre-

vious sections. As stated earlier, I shall assume the scatterers under the ice canopy

radiate like point quadrupoles. With these assumptions, I computed the scattering

strength of the rough features under the ice sheet. Recalling the phase error criterion

in eqn. (4.12), we note that our time domain processing scheme is valid for frequencies

fmax < (1/4) x 520 or fr < 130Hz as the data is sampled at 520 Hz.

I focus on to an area that is located approximately 850 m N-E of the apex of the

array as shown in Fig. 4-12. The patch of ice is 600 m square, and I have computed

the scattering strength at uniform intervals of 10 m. Results for the frequency band

45 Hz - 55 Hz are shown in Fig. 4-13, where I have averaged the mean-square values

of scattering strength from the four different shots. The horizontal and vertical axes

correspond to range from the apex of the horizontal array. We can clearly observe

the ambiguity pattern and sidelobes of our array processing scheme superposed in the

plot (see Fig. 4-8). One has to view this figure bearing the response of the simulated
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Scattering Strength averaged over 45 - 55 Hz (dB/m2)
(Averaged over 4 shots)

SCALE

ABOVE -34.0

-36.0- -34.0
-38.0 - -36.0
-40.0 - -38.0
-42.0 - -40.0
-44.0 - -42.0

-46.0 - -44.0
-48.0 - -46.0

-50.0 - -48.0
-52.0 - -50.0
-54.0 - -52.0

BELOW -54.0

750 900 1050 1200

Range, X (m)

Figure 4-13: Contours of constant levels of mean scattering strength for the scattering
patch located N-E of the apex of the horizontal array, and averaged over the frequency
band 45 - 55 Hz.

Scattering Strength averaged over 45 - 55 Hz (dB/m2)
(Variance over 4 shots)
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Figure 4-14: Contours of constant levels of variance of scattering strength for the
scattering patch located N-E of the apex of the horizontal array, and averaged over
the frequency band 45 - 55 Hz.
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volumetric array in mind. We observe strong scatterers at approximate grid points

of (980,890), (1000,1040), (750,1130), and (720,680). Our resolution of these features

is limited by the performance of the simulated volumetric array. Therefore, it is not

possible to deduce the length scales of the scatterers from this plot because of the

wide beamwidth of the mainlobe. However, strong scatter in this frequency range

would suggest length scales of L - A, or L '-- 30 m. Moreover, there could possibly

be many small features within the mainlobe of this ambiguity pattern, and the ones

whose sizes match the wavelengths of the acoustic field will be the ones that scatter

with the highest magnitude. However, note the strong discrete scatterer at (980,890).

I will return to this isolated scatterer later in my analysis, when I shall compute its

scattering response as a function of grazing angle of scatter.

In Fig. 4-14, I have plotted the variance of my estimates resulting from averaging

the results from the four different shots. This plot is consistent with Fig. 4-13 in the

sense that regions of high scattering strength show lower variance. In other words,

we have very high confidence in our processing scheme regarding the isolation of

scatterers and estimation of their scattering strengths. The regions where we observe

high variance are areas of low scattering strength, and corresponding lower SNR.

Therefore, these tend to be closer to the noise floor should not be considered as

reliable estimates.

It is instructive to evaluate the frequency dependence of the scattering strength

as well. With this analysis, it will be possible to infer how strongly scatter depends

on frequency. Fig. 4-15 shows the scattering strength for the same ice patch averaged

over the four shots for a lower frequency band 25 - 35 Hz. Note that this plot is

qualitatively similar to Fig. 4-13. Once again we observe the characteristic ambiguity

pattern of the volumetric array. However, at this frequency, the resolution in range is

approximately 50 m. Therefore, there is increased uncertainty regarding the size of

the scatterers. Note that the scattering strength levels observed here are about 4 - 6

dB lower than those in the 45 - 55 Hz band. This is to be expected as we would, in

general, predict scattering strength to increase with frequency.
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Scattering Strength averaged over 25 - 35 Hz (dB/m2)
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Figure 4-15: Contours of constant levels of mean scattering strength for the scattering
patch located N-E of the apex of the horizontal array, and averaged over the frequency
band 25 - 35 Hz.

However, the striking difference between the 30 Hz and 50 IHz results is that

features at a given location do not scatter as strongly in different frequency bands.

What this means is that the bright spots do not show up at exactly the same place

in different frequency bands. Features that scatter strongly in the 50 Hz band do

not scatter as strongly in the 30 Hz frequency band. This can also be explained

by recalling that within the main lobe of the ambiguity function lie many features of

varying sizes and orientation. At a given frequency of incidence of the acoustic wave,

the features whose scattering characteristics match that of the incident acoustic field

radiate most strongly. The important conclusion that we can draw from this result is

that scattering from the under surface of the ice sheet is a frequency selective process.

Fig. 4-16 and Fig. 4-17 show the scattering strength for the same ice patch averaged

over four shots for higher frequency bands 75 - 85 Hz and 95 - 105 Hz respectively.

Once again we observe qualitative similarities with those presented for the lower

frequency bands. Our previous deduction about frequency selectivity is reiterated

by these results. In the 80 Hz results, we observe a strong scatterer at (880,740).
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Figure 4-16: Contours of constant levels of mean scattering strength for the scattering
patch located N-E of the apex of the horizontal array, and averaged over the frequency
band 75 - 85 Hz.
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Figure 4-17: Contours of constant levels of mean scattering strength for the scattering
patch located N-E of the apex of the horizontal array, and averaged over the frequency
band 95 - 105 Hz.
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This feature was not as striking in the 30 Hz and 50 Hz results, and shows up with

a weaker magnitude in the 100 Hz band results. However, we continue to observe

increasing levels of scatter with increasing frequency. Therefore, as postulated before,

the results from these four frequency bands suggest a strong frequency dependence.

It is also informative to look at the scattering patterns from other patches under

the ice canopy. This is essential to demonstrate that the conclusions we have arrived

at; for the patch N-E of the apex of the horizontal array, are also valid for other areas

under the ice cover. Therefore, I decided to look at a patch of ice 850 m S-W of

the apex of the array. This patch is diagonally opposite to N-E patch considered

previously. The scattering patterns for two frequency bands centered at 30 Hz and 50

Hz are presented in Fig. 4-18 and Fig. 4-19 respectively. Once again we observe the

circular ambiguity pattern of the volumetric array. Also, the qualitative differences

about strong features that we mentioned for the N-E patch are seen here too. These

results are a little deceptive in the sense that they show that features show up in the

same place in both frequency bands. For example consider the bright feature in 50

Hz band at (-650,-850). It seems that it shows up at the same location in the 30 Hz

results. However, in the 30 Hz frequency band we observe two peaks surrounding this

location. Neither of these necessarily correspond to the feature observed in Fig. 4-19.

As another example, consider the feature at (-825,-900) in the 30 Hz band. There

is no corresponding bright spot in the 50 Hz results. One can easily pick out other

differences in the locations of these "hot spots" in the two plots. Therefore, we can

decisively state that scatter is indeed a frequency selective process. Also, as was

observed for the N-E patch, the scattering levels also increase with frequency.

4.6.2 Array localization - revisited

Before I conclude my analysis of the spatial variation of scattering strength, I need to

point out some issues related to the sensor positions on the short vertical line arrays.

The initial sensor positions for the short array I started out with, did not give me

results that conformed to those obtained by using the horizontal array only. This
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Scattering Strength averaged over 25 - 35 Hz (dB/m2)
(Averaged over 4 shots)
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Figure 4-18: Contours of constant levels of mean scattering strength for the scattering
patch located S-W of the apex of the horizontal array, and averaged over the frequency
band 25 - 35 Hz.
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Figure 4-1.9: Contours of constant levels of mean scattering strength for the scattering
patch located S-W of the apex of the horizontal array, and averaged over the frequency
band 45 - 55 t-Hz.
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implied that the sensor positions that I was using were not exactly correct. Therefore,

I was faced with the formidable task of perturbing the geometry of the shorter vertical

arrays until a good match was obtained with the focusing results from the horizontal

array only.

My methodology of approaching this problem was as follows. I let the fixation

points of the shorter arrays be variable within certain bounding values. Moreover, I

also allowed the azimuthal orientation of the tilt of the arrays to be variable. Then, I

used a simulated annealing algorithm to find these parameters for which a good match

was obtained between the focusing results of the horizontal array and the shorter

arrays, in particular with respect to the location of features in the same frequency

bands. The shorter array geometry was allowed to vary with the constraint that the

error between the source location obtained from the new sensor positions, and that

from my analysis in Section 3.7 be minimized. By recursively using this algorithm, I

found the parameters for which the best match was obtained. These were, then, the

sensor positions for the shorter arrays that I used in all my analysis, and are listed in

Table C.3 in Appendix C.

4.6.3 Scattering Strength vs. Grazing Angle of Incidence

In the final stage of my analysis in this Chapter, I compute the variation of the

scattering strength as a function of the grazing angle of incidence and frequency. This

is done by focusing at different points in the gray patch shown in Fig. 4-12. Each

arc centered at the source defines the loci of constant grazing angle of incidence. The

farther we move away from the source, the shallower the grazing angle of incidence.

The segment of available reverberation data limited the range of grazing angles to

120 to 300, and azimuth angles to -300 to 1450. For each arc centered at the source,

I calculated the scattering strength at discrete points on the are corresponding to a

given grazing angle of incidence in steps of 10 m, followed by subsequent averaging

of the results. This yields an estimate of the mean scattering strength as a function of

grazing angle of incidence. Once again, I have averaged the results over the four shots,
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Scattering strength vs. Grazing angle (averaged over 4 shots)
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Figure 4-20: Scattering strength as a function of frequency and grazing angle of inci-
dence.

and the results are shown in Fig. 4-20. We observe that in general, scattering strength

increases with grazing angle of incidence. This is in agreement with Lambert's law

according to which the scattering strength increases as sin 0, where 0 is the grazing

angle of incidence. Moreover, as we have previously seen, scattering strength also

increases with frequency.

4.7 Summary

In this Chapter, I have formulated the methodology which I shall use to analyze the

field experimental data. As discussed in the Introduction, I shall use Matched Field

Processing methods to solve this complex multi-parameter estimation problem. As

stated there, to make the analysis more manageable I divided the estimation problem

into two parts - identification of feature, and subsequent evaluation of its scattering

characteristics. In this Chapter, I investigated the first part of this problem. I used

nearfield beamforming techniques to estimate the scattering behavior of rough ice, as
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well as to identify and isolate prominent features.

The most outstanding contribution of this Chapter was to develop a methodology

by which to adaptively combine the outputs of the horizontal array and the vertical

arrays. The simulated volumetric array thus obtained had optimum properties in

terms of resolution and sidelobe suppression. The results obtained using matched field

processing are of higher resolution than those obtained previously using plane-wave

beamforming [47]. My focusing results demonstrated that even with a simplified model

of the scatterers, I was able to come up with very reasonable estimates of scattering

strength. The levels observed here are consistent with those reported elsewhere in

the literature. Secondly, I was also able to elucidate the scattering behavior of the

protuberances under ice, which may be summarized as -

* In general, scattering levels increase with increasing frequency.

* Scattering levels increase with grazing angle of incidence, and seems to be con-

sistent with Lambert's law.

* Most importantly, scattering is a frequency selective process, i.e., features re-

spond strongly only at frequencies where their sizes and orientation match the

characteristics of the incident acoustic field.

The main intent of this Chapter was to identify discrete protuberances or "hot

spots" under the ice. These will now be used in the second stage of the MFP scheme,

in Chapter 5, where I will evaluate its individual scattering behavior as a function of

grazing of scatter. I will also compare the results from experimental data with those

from an approximate model, whose formulation will be based on the results of the

analysis of Chapter 2.
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Chapter 5

Comparisons between analytical

model and experimental data

5.1 Overview

The analysis in the previous Chapter involved the solution to the first part of my

Matched Field parameter estimation methodology. In this Chapter, I devote my anal-

ysis to the second part of the problem, i.e., the evaluation of the spatial scattering

characteristics of a single protuberance under the ice canopy. From my focusing plots

in the previous Chapter, I was able to identify and isolate discrete scatterers in various

frequency bands for patches of ice located both N-E and S-W relative to the apex of

the arrays. For the purpose of illustration, I will focus my attention of the feature that

was identified to scatter strongly at the grid point corresponding to (980,890) in the

N-E patch in the 50 Hz frequency band.

The investigation in the Chapter consists of two main sections. In the first I de-

velop an approximate analytical model for a typical three-dimensional protuberance

under the ice. In the second, I shall use the experimental data to make some com-

parisons between theory and experiment. Using this dual analysis, I hope to develop

an appreciation for the physics of three-dimensional scattering from any large-scale
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(a) Typical 3D protuberance Air

Water

Point Source

(b) Analytical model of protuberance

Image Point Source

Solid elastic
/ sphere (ice) Water

Water

Point Source

Figure 5-1: (a) Pictorial representation of a typical large three-dimensional feature
under the ice sheet. (b) Analytical model of the protuberance. The pressure release
surface at the ice-air interface is approximated by including an image point source.

feature under the Arctic ice sheet.

5.2 Analytical model of a three-dimensional pro-

tuberance under ice

In this section, I construct an approximate analytical model of scattering from a

three-dimensional protuberance under the ice sheet. Previous analyses [8, 9] have

modeled these, for example, as a hemispherical protuberance on an infinite plane.

These analyses had the shortcomings of not accounting for the elasticity of the ice

plate. As a significant improvement in modeling capabilities, my prototype of the

feature is a solid elastic sphere attached to a thin elastic plate along its equatorial plane.

Fig. 5-1(a) shows the pictorial representation of a typical large-scale feature, or "hot

spot", under the Arctic ice canopy. Note that the ice plate is not of uniform thickness,
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and may comprise of an abundance of such features, many close to one another. Any

such large projection from the ice into the water will also have a substantial mass of

ice, or sail, projecting out into the air as shown pictorially in Fig. 5-1. This is because

these features are created by large sheets of ice colliding with each other. When two

such blocks of ice collide, the sheets are forced together and the breaking blocks of

ice create the protuberance and its projection into the air. It is also to be noted that

this mass of ice does not necessarily comprise one single feature. In fact, it is not

uncommon to see many smaller features cemented to the same general area giving the

illusion of one large "hot spot".

In Fig. 5-1(b) I have shown one of the possible analytical ways of realizing the ide-

alized environmental model which could possibly be used in my analysis to represent

this protuberance. The details of the methodology for modeling scattering from the

completely submerged coupled model were presented earlier in Chapter 2. However,

now I need to modify the model presented there to account for the free-surface at the

ice-air interface. It is well known in Acoustics that a free-surface can be modeled as

a 'negative' reflector of sound [52], where we position a negative image source sym-

metrically about the surface (z = 0) to be simulated as a free surface. The total field

Q, is then synthesized from the contributions from both the real source Q, located at

(x, y, z), and the image source Qi located at (x, y, -z) as

Qt = Qr(X, y, z) - Q•(x, y, -z)

Following this strategy, I assume I can approximate the air-ice interface as a free-

surface modeled by including a negative image source, as shown in Fig. 5-1(b), with

the total scattered field then being computed as

t = r - p , (5.1)

where pt represents the total scattered field, pr is the scatter from the plate-sphere

coupled structure due to the real source located at (ro, k0, 0p), and pi is the scattered
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pressure due to the image source located at (ro, 7r - 00, 0po).

Evidently this is not an exact solution because of the excitation of elastic waves

in the plate and sphere. Consider for example the shear waves. As these have an

anti-symmetric and a symmetric component (with respect to 9), the anti-symmetric

part does not cancel at the simulated pressure-release boundary. Recall that the total

scattered pressure from the completely submerged coupled model depends on both the

associated Legendre function Pm(cos 0) and its derivatives. While P,m is symmetric

with respect to 0, its derivatives are not. The expressions for stresses on the sphere

involve both Pm' and its higher order derivatives. Therefore, by including a negative

image source the stresses at the upper hemispherical surface are not canceled out. A

more exact analysis would require the application of a stress distribution on the entire

upper surface of the plate-sphere coupled model such that all resulting stresses vanish

there. This would involve an integral equation formulation and is a very involved

procedure. The work required would be a thesis in its own right, and therefore I

choose not to pursue this approach. However, the idealized environmental model that

I have presented may be viewed as a first order approximation in representing the real

scattering scenario. In the next section, I will also discuss some other alternate methods

that could possibly be adapted to model the air-ice interface. Moreover, as my results

will demonstrate, this model performs reasonably well in describing the qualitative

nature of the three-dimensional scattered field. It also helps us elucidate the difference

between two-dimensional and three-dimensional scatter as I will demonstrate in the

section that follows.

5.2.1 Comparison with Boundary Element Method (BEM)

results

As a first step in my analysis, I decided to compare the bistatic scattered field from my

analytical model of a protuberance under the ice sheet (including the image source)

with that from a Boundary Element (BEM) formulation of scattering from a half-

cylindrical protuberance on an infinite elastic plate. I compare my results with

129



0.1

10

20

30

40

50

60

70

F= 50.0Hz SD= 15.OM

100

-30
-32
-34
-36
-38
-40
-42
-44
-46
-48
-50

149.8

Range (m)

Figure 5-2: Contours of transmission loss for scattering from the two-dimensional pro-
tuberance using BEM for f = 50.0 Hz. The source is located at (0.0,-15.0). (Adapted
from Computational Ocean Acoustics [53], Fig. 7.16, courtesy H. Schmidt.)

Scattering pattern from the analytical model of the
protuberance on an infinite plate (ka = 1.3)

O-

-25-

-50-

SCALE
S"R cABrOv 900

87.0 - 90.0
84.0 - 87.0
81.0 - 84.0
78.0 - 81.0
75.0 - 78.0
72.0 - 75.0
69.0 - 72.0
66.0 - 69.0
63.0 - 66.0
60.0 - 63.0

BELOW 60.0

-75 -

Range. X (m)

Figure 5-3: Contours of transmission loss for
protuberance using the analytical model for f
(0.0,-15.0).

scattering from the three-dimensional
= 50.0 Hz. The source is located at

130



those presented in Ref. [53]. However, it must be pointed out that the scattering

scenario modeled there is two-dimensional in nature while my analytical model is

three-dimensional. This comparison will also serve the purpose of delineating the

difference between scattering in a two-dimensional scattering environment versus a

three-dimensional one.

The results presented in Ref. [53] are a function of range and depth. Therefore, to

make a meaningful comparison, I shall compute the scattered field from my theoretical

model in a plane passing through the source, and the center of the sphere. The plate

is assumed to be 3 m thick, while the protuberance is 6 m in radius. The source is

located at a depth of 15 m, and horizontal range of 85.5 m corresponding to a grazing

angle of incidence of 100. The material properties of the ice are the same as mentioned

before, the only difference being that water is assumed to have a sound speed of 1430

m/s. Fig. 5-2 shows the bistatic scattering pattern from the BEM formulation for a

frequency of 50 Hz or ka = 1.3. The plot shows contours of constant Transmission

Loss (TL), i.e.,

TL = -20 log Ipt(r,z)I [dB re 1 m] • (5.2)
I0 I

Transmission loss is the sum of the loss due to geometrical spreading and that due

to attenuation, reflection and scattering [53]. Therefore, lower values of transmission

loss correspond to higher levels of scatter. We observe the characteristic quadrupolar

beampattern with higher scatter in the forward direction. The results from my 3D

formulation, as shown in Fig. 5-3, display a similar quadrupolar behavior, but with

one significant difference. The three-dimensional model predicts higher backscatter as

opposed to the two-dimensional BEM formulation. Note that the difference in levels

in transmission loss between the 2D and 3D results. While propagation loss in the 2D

scenario is due to cylindrical spreading (TL = 10 log r dB re 1 m), in 3D it is due to

spherical spreading (TL = 20 log r dB re 1 m).

One could therefore arrive at the conclusion that increasing the dimension of the

problem changes the nature of scatter completely. However, one must not hastily settle

on this deduction. There are many possible reasons for explaining this discrepancy.
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Scattering pattern from the sphere due to the real
and image source + full forces (ka = 1.3)
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Figure 5-4: Contours of transmission loss for scattering from the three-dimensional
protuberance using the analytical model with full contributions from the coupling
forces for f = 50.0 Hz. The source is located at (0.0,-15.0).
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Figure 5-5: Contours of transmission loss for scattering from the three-dimensional
protuberance using the analytical model with half the contributions from the coupling
forces for f = 50.0 Hz. The source is located at (0.0,-15.0).
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The first is that my approximate model which synthesizes the total scattered field from

contributions due to the real and image sources is not exactly correct and may not

necessarily predict the right qualitative behavior of the scattered field. At this point,

it would be prudent to retract our steps and re-evaluate our analytical approximation.

The inclusion of the negative image source significantly reduces the contributions

from the coupling forces and bending moment. Therefore, one may argue that one

should solve for the dynamics of the coupled problem exactly by submerging the whole

structure in water, accounting for the scattered pressure from the free sphere only with

the image source, and then adding the total contribution from the coupling forces. If

I were do this, i.e., compute the total scattered pressure as

Pt = Ps,a ,ret - Ps,a limage + Ps,c ,

we would obtain the result shown in Fig. 5-4, where the pressure components were

previously described in eqn. (2.2). This result is different from that computed in

Fig. 5-3 in the sense that now we observe more or less equal levels of scatter in both

the forward and backward directions.

Another school of thought would be to reason that since only half the sphere is

actually in contact with water, one should therefore include only half the contribu-

tions of the coupling forces and bending moment. In other words, the total scattered

pressure should be computed as

Pt = Ps,a Ireal - Ps,a limage + 0.5Ps,c ,

and the corresponding results are shown in Fig. 5-5. In comparison to the Fig. 5-4, the

results here also predict almost equal scatter in the forward and backward directions

too. The levels are about 3 dB lower than those obtained there, and are in fact closer

to those observed in Fig. 5-3 for scatter in the backward direction.

In summary, the results from the three possible ways of empirically simulating the

pressure-release surface that I have discussed above are not drastically different from
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each other, and compare reasonably well in backscatter. As mentioned earlier, the

experimental array geometry limits the span of grazing angles of scatter to primarily

in the backward direction. And since all three approximations give more or less the

same answers in this angular domain, I decided to choose the formulation with the

image source for the total coupled problem, and will use that model for all subsequent

analysis.

However, note that at this stage we are still in no position to draw any definite

inferences regarding the distinction between three-dimensional and two-dimensional

scatter. It is intuitive to expect that changing the dimensionality of the problem should

completely alter the physical mechanisms of scatter. However, unless we are able to

model the air-ice interface with more accuracy, it would be misleading to arrive at

any such conclusion from this analysis. However, the theoretical analysis of Chapter

2 should convince us to believe that wave mechanisms involved in 3D scatter are

different from those in a 2D formulation, especially with regard to the excitation of

horizontally polarized shear (SH) modes. It must also be pointed out that, in general,

a more intricate interference pattern would be observed in the spatial distribution of

the scattered field if one were to include the contributions due to the radiation of the

elastic modes traveling in the plate.

Fig. 5-6 shows the results from my analytical formulation with the image source

for a higher frequency, i.e., f = 100 Hz. In this case, we begin to see higher levels of

scatter in the forward direction. In fact, the scattering pattern here resembles more

closely the 2D result obtained using BEM for f = 50.0 Hz. These results can also be

explained by considering the scattering beampattern from the free submerged sphere

alone as shown in Fig. 5-7. The beampattern has been computed in the plane of the

source and the sphere. This figure clearly shows why we obtain the trends we observed

in the range vs depth contour plots. At 50 Hz, the free sphere scatters primarily in

the backward direction. Even after adding the contribution due to the image source,

the dominant scatter is in the backward direction. However, at a frequency of 100 Hz,

the free sphere has a dipolar-like scattering pattern, with higher scatter in the forward
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Figure 5-6: Contours of transmission loss for scattering from the three-dimensional
protuberance using the analytical model for f = 100.0 Hz. The source is located at
(0.0,-is.0).

direction. Therefore, on adding the image source, we still observe the dominance of

the lobe from the image source in the forward direction resulting in higher forward

scatter.

5.2.2 Analytical realizations of scatter from a single protu-

berance under Arctic ice

In this section., I present some simulations of the scattering pattern from my realization

of the protuberance under ice for various frequencies. Therefore, the results presented

in this section consist of the sum of the contributions from the real source and its

negative image. In all my results, I assume the sphere to be of radius 10 rm, and

attached to a 3 m7r; thick ice plate. The source is assumed to be positioned at (-1120,0)

and at a depth of 250 m, while the sphere is located at the origin of the coordinate

system. The receivers are located on a horizontal plane at a depth of 60 m below

the ice cover. I chose this scenario as it closely resembles the geometry of the field

experiments, in particular, that of the crossed horizontal hydrophone array. This is

what the hydrophones on the crossed horizontal array would have seen if we were able
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(ka = 1.3)

900.45 901.6

1 0

270 270

Figure 5-7: Scattering beampattern from the elastic sphere only for ka = 1.3 and 2.6.
Backscatter is to the left and forward scatter to the right.

to steer the array vertically upwards.

I shall present the results for four frequencies, f = 30 Hz, 50 Hz, 80 Hz, and

100 Hz. This set of frequencies covers the whole frequency spectrum (f < 100Hz)

which is of interest for propagation in the Arctic Ocean waveguide. Note that in the

absence of the plate, the results would be dependent on the non-dimensional frequency

parameter ka only. In other words, scatter from a 10 m sphere at 50 Hz would be

identical to that of a 5 m sphere at 100 Hz. However, in the presence of the plate,

this should not be the case as the dynamics of the attached plate is also frequency

dependent (oc kh).

Fig. 5-8 shows the bistatic scattering pattern as a function of range in the X and

Y directions for f = 30 Hz. Note that as opposed to my previous results which

plotted contours of constant transmission loss, here I have plotted the scattered field

after removal the geometrical spreading term. It is more prudent to do this in this

context as this will reveal the bistatic scattering pattern from the isolated feature.

We observe the familiar deformed quadrupolar scattering pattern, and as discussed

previously, at this frequency, the scatter is predominantly in the backward direction.

The pattern resembles a deformed quadrupole due to the interference between the
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Scattering pattern from the analytical realization of
the 3D protuberance under ice (ka = 1.3)

0
Range, X (n)

Figure 5-8: Bistatic scattering pattern from
protuberance under ice for f = 30.0 Hz on a
ice canopy. The source is located at (-1120,0'

my simulation of the three-dimensional
horizontal plane located 60 m below the

Scattering pattern from the analytical realization
of the 3D protuberance under ice (ka = 2.2)

0

Range, X (m)

Figure 5-9: Bistatic scattering pattern from my simulation of the three-dimensional
protuberance under ice for f = 50.0 Hz on a horizontal plane located 60 m below the
ice canopy. The source is located at (-1120,0).
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Scattering pattern from the analytical realization
of the protuberance under ice (ka = 3.4)
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Figure 5-10: Bistatic scattering pattern from my simulation of the three-dimensional
protuberance under ice for f = 80.0 Hz on a horizontal plane located 60 m below the
ice canopy. The source is located at (-1120,0).

Scattering pattern from the analytical realization
of the 3D protuberance under ice (ka = 4.3)
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Figure 5-11: Bistatic scattering pattern from my simulation of the three-dimensional
protuberance under ice for f = 100.0 Hz on a horizontal plane located 60 m below the
ice canopy. The source is located at (-1120,0).
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dipole and quadrupole components of the total scattered field. On increasing the

frequency to 50 Hz, as shown in Fig. 5-9, the beampattern becomes symmetric with

respect to forward and backscatter. The forward lobe, and the lobe in the backward

direction, are more or less of the same magnitude. The beampattern almost resembles

that of a true quadrupole. Stepping up in frequency to 80 Hz, we begin to observe a

more intricate pattern in the scattered field. Scatter is predominantly in the forward

direction, with some leakage of energy broadside to the source-sphere axis as shown in

Fig. 5-10. Finally, I plot the scattered field at a frequency of 100 Hz, and we observe

the incident acoustic energy being re-radiated primarily in the forward direction.

To recapitulate, these results demonstrate that in the mid-frequency regime (ka

0(1)), the scattering pattern from a three-dimensional protuberance is primarily

quadrupolar in nature. This agrees with the observations of Fricke [13, 24] who ana-

lyzed scattering from two-dimensional features of various shapes and sizes using both

numerical (Finite Difference) and experimental data. This then validates my model

for the replica field in the Matched Field Processing I carried out in Chapter 4 to iden-

tify and isolate features under the Arctic ice canopy. A more exact MFP algorithm

would incorporate the scattering pattern from my analytical model as the replica field.

At low frequencies, the contributions from the dipole component may be significant

enough to cause a modulation of the quadrupolar term as was evident from Fig. 5-8.

It is hypothesized that higher resolution focusing results of the under-surface of the

ice may be obtained using this more detailed analysis.

5.3 Experimental data analysis

In this section, I revert to the second stage in my Matched Field parameter estimation

methodology and make estimates of the scattering characteristics of a single feature

under the ice canopy from the reverberation data. Simultaneously, I shall make some

comparisons between the data and the results from my analytical realization of the

protuberance. As mentioned earlier, for the purpose of illustration, the focal point of
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1.8 lb SUS
Explosive source

(4 shots)

Vertical Line
Array (- 1200 m)

8inc = 14.40

R = 1350 m

Figure 5-12: Experimental geometry of source, protuberance, and long vertical and
crossed horizontal arrays.

this part of the analysis will be the discrete scatterer isolated earlier at the grid point

(980,890). This feature is approximately located in a region N-E relative to the apex

of the horizontal array.

5.3.1 Scattering pattern from an isolated feature

The reverberation data from the long vertical array was used to determine its polar

(vertical) directivity while the data from the crossed horizontal array was used to

compute its scattering pattern in the azimuthal (horizontal) direction. The vertical

array has a limited aperture of 500 in the vertical, and the azimuthal angles subtended

at the receivers by the protuberance vary from 4.80 to 7.20, or a mean angle of 6.00.

Here, I have implicitly assumed the source to be located at the origin of the azimuthal

coordinate system. The salient reason for choosing a scatterer in an region N-E relative

to the apex of the arrays is that the plane of tilt of the long vertical array also lies in

this direction. Therefore, the variation of the azimuthal angle at the sensors on the

array will not be very significantly different. Also, the array is positioned such that

it receives the scattered field in the backward direction at a distance of about 1350

m from the discrete feature as shown in Fig. 5-12. On the other hand the horizontal

array spans an azimuthal angular region of about 600, i.e., from -200 to 400. Also,

since the sensors of the horizontal array are located at a mean depth of 60 m, the
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polar angle of scatter at all the sensors is clustered around a very small angle, with a

mean value of 50. The point source is located at a distance of 1150 m, and is incident

on the scatterer at a grazing angle of 14.40.

The approach for estimating the scattered pressure from the reverberation data is

similar to that outlined in Section 4.6. In this case, however, I do not normalize the

scattered pressure with the ensonified area. Secondly, at each frequency, I use the

replica fields generated from my analytical realization of the protuberance under ice

using the real and image source. In other words, I make no simplifying assumptions

about the scattering pattern, and use the radiation pattern from my theoretical model.

Also, in the matched field estimation of the signal from the scatterer s(t), I used each

of the long vertical and horizontal arrays independently to evaluate the polar and

azimuthal scattering patterns. Then, denoting the Fourier Transform of the signal

from the scatterer by S(f), the directivity of the scatterer as a function of the polar

(0) and azimuthal (p) angles are then estimated as

B(ff . O,) = X(f,, B(f, 1, c) = X(f , (5.3)
S(f) ' S(f)

and the normalized scattered intensity (I) is given by

I(f, 0, p) = 20 log IB(f, 0, p)I [dB re 1 m] • (5.4)

Here 0i and pi are the angles subtended by the scatterer at the ith receiver on the

vertical and horizontal arrays respectively. Also, Pc and 0 c are the azimuthal and

polar angles (assumed constant) subtended by the protuberance at the vertical and

horizontal array respectively. Note that since the sensors are located at discrete points

in the angular domain, it is not possible to obtain the beampattern as a continuous

function of 0 and p.

There is a caveat in this processing scheme. I have inherently made the assumption

that all the energy arriving within this two-way travel time window at the receivers is

from this feature only. However, due to the geometry of the scattering scenario, there
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will be multiple contributions from all such large features lying within the elliptical

ensonified area as was discussed in Section 4.6. I reduce this ambiguity by using the

beamformed signal instead of the source waveform directly. As the contributions from

other scatterers will not add up coherently, we can expect to obtain a good estimate of

the signal s(t) from the feature, limited by the resolution of the array. However, xz(t)

will still contain contributions from all scatterers within the ensonified area. This is a

primary limitation of the experimental data. This point must be borne in mind when

I compare the results from field data and the theoretical model.

However, if instead of an omni-directional source, the experiments had been con-

ducted with an array of sources, it would have been possible to steer the source array

directly at the feature of interest. This would have tremendously improved the qual-

ity of the data available for comparisons. Thus, when making comparisons with my

analytical model, one should bear this limitation in mind. In spite of not being able

to make quantitative comparisons with utmost confidence, we can still glean some

insight into the scattering phenomena by making qualitative judgments.

The material properties for the analysis that follows are exactly the same as were

stated earlier. I shall restrict my analysis once again to the four frequencies - 30

Hz, 50 Hz, 80 Hz, and 100 Hz - which cover the frequency regime of interest to us.

Also, as in the case of scattering strength analysis, I shall average the results from

experimental data over 10 Hz frequency bands.

Polar Directivity

I begin by first considering the polar (0) directivity of the protuberance. As stated

earlier, I use the received signal at the long vertical array for this part of the analysis.

Fig. 5-13 shows the results from experimental data, and the analytical model for f =

30 Hz. The experimental data values have been denoted by the symbol "+", and I

have plotted the data from all four shots. Assuming the scattered field to consist of

contributions from only the dipolar and quadrupolar terms, I model the data as

p, = cl sin 0 + c2 sin 20 ,
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where 0 is the grazing angle of scatter, and cl and c2 are the relative amplitudes of

the polar components. As was demonstrated earlier, this approximation is justified

for low frequencies. The solid curve represents the least-squares best fit through the

data points. Also, I have plotted the scattered field from my analytical realization of

scattering from the approximate analytical model for two values of the radius of the

sphere, a = 10 m (dashed line) and 20 m (dashed-dotted line). At a frequency of 30

T1z, these two curves correspond to ka values of 1.3 and 2.6 respectively. The reason

for plotting two curves is that since I have no information regarding the actual size of

the feature, there is no reason to arbitrarily chose a value of a for making comparisons

with the experimental values. Moreover, the two values of a at each frequency may

be interpreted as two curves for different values of ka at that frequency. Therefore,

these two curves will demonstrate how the scattered field varies with ka, and give

us an indication regarding what the scattered field should be quantitatively, were the

experimental data values from a single scatterer only.

However, even though the trends in the data and the analytical simulations are

somewhat similar, there is no agreement in magnitudes. This could be attributed to

the fact that at this frequency, this feature does not scatter quite as prominently as

is evident from Fig. 4-15. The disagreement in magnitude can also be ascribed to

the fact that the analytical model assumes a single scatterer, while the experimental

values include contributions from all features located within the ensonified area or

the region of ambiguity. Another possible explanation is that while the results from

the experimental data have been averaged over 10 Hz frequency bands, the analytical

estimates are essentially single frequency results. Moreover, observe the large standard

deviations in the experimental values for a given angle of scatter. The variation at

any given angle is due to the data from the four different shots. In contrast to the

horizontal array data, as shown later, the vertical array data seems to have more

fluctuations over shots. This would lead us to have less confidence in the values

presented here. However, the discrepancy in magnitude is very large to be resolved

by these arguments.
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Polar scattering pattem from expts and analytical model (f = 30.0 Hz)

4$+ ++

+

I

-I + = Experimental data values
- = Line of best fit through data
- - = Analytical model (a = 10.0 m)
-. = Analytical model (a = 20.0 m)

5 10 15 20 25 30 35
Polar grazing angle of scatter (deg.)

Figure 5-13: Polar (vertical) beampattern from experiments and analytical model for
a frequency of f = 30 Hz. The values from experiments are represented by (+),
while the solid line (-) represents the best fit line through the data. The results from
the analytical model are denoted by the dashed line (- -) for a = 10.0 m and by the
dashed-dotted line (- .) for a = 20.0 m.

Polar scattering pattern from expts and analytical model (f = 50.0 Hz)

0 5 10 15 20 25 30 35
Polar grazing angle of scatter (deg.)

40 45 50

Figure 5-14: Polar (vertical) beampattern from experiments and analytical model for
a frequency of f = 50 Hz. The values from experiments are represented by (+),
while the solid line (-) represents the best fit line through the data. The results from
the analytical model are denoted by the dashed line (- -) for a = 10.0 m and by the
dashed-dotted line (- .) for a = 20.0 m.
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Polar scattering pattern from expts and analytical model (f = 80.0 Hz)
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Polar grazing angle of scatter (deg.)

Figure 5-15: Polar (vertical) beampattern from experiments and analytical model for
a frequency of f = 80 Hz. The values from experiments are represented by (+),
while the solid line (-) represents the best fit line through the data. The results from
the analytical model are denoted by the dashed line (- -) for a = 10.0 m and by the
dashed-dotted line (- .) for a = 20.0 m.

Fig. 5-14 shows the data and the model for a frequency of 50 Hz. The dashed

and dashed-dotted lines represent the analytical solutions with a = 10 m and 20 m

respectively. We observe better qualitative agreement between data and model at

this frequency. Referring back Fig. 4-13, this should not be astonishing. There we

observed this feature to scatter most strongly in this frequency band. Therefore, the

dominant contribution in the time window at each of the receivers must be from this

scatterer. In other words, data values at this frequency more closely resemble the

"true" values that would have been observed were this feature the only contributor.

Therefore, we conclude that this is the best frequency to compare data with model.

The figure shows excellent agreement in both trend and behavior of the scattered field,

with the better match being obtained with the 10 m sphere. However, the analytical

estimate is still about 15 dB below the the mean of the experimental values This is

the best evidence available to us that my analytical realization of the protuberance

does in fact model the attributes of the "real" scattering scenario moderately well,

especially at small angles of scatter in the backward direction.
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Polar scattering pattern from expts and analytical model (f = 100.0 Hz)
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Figure 5-16: Polar (vertical) beampattern from experiments and analytical model for
a frequency of f = 100 Hz. The values from experiments are represented by (+),
while the solid line (-) represents the best fit line through the data. The results from
the analytical model are denoted by the dashed line (- -) for a = 10.0 m and by the
dashed-dotted line (- .) for a = 20.0 m.

Fig. 5-15 and Fig. 5-16 show the comparison between data and model for two

higher frequencies, i.e., f = 80 Hz and 100 Hz. As in the case for the 30 Hz band,

the 80 Hz results barely show some agreement, whereas the 100 Hz results seem to

agree qualitatively with the analytical predictions. However, note the high variance

exhibited by the experimental values. It must be pointed out that similar variances

over the four different shots were reported by Hayward and Yang [47] in the estimates

presented in their paper (see Ref. [47], Fig. 6.(a)). Due to this high variance in their

reverberation spectral estimates, they averaged their results over all available incident

angles. This is not what I intend to do in this thesis. My inference is that there

seems to be some discrepancy in the data acquired by NRL on the vertical arrays.

Therefore, at this stage, it is not conclusive to say whether my model predicts the

right levels until I can make comparisons with more reliable reverberation data. One

possible way to rectify this shortcoming in the vertical array data would be to compare

the reverberation estimates from the horizontal and vertical arrays separately, shot by

shot. Subsequently, I should have the most confidence in the vertical array data for
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Azimuthal scattering pattern from expts and analytical model (f = 50.0 Hz)
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Figure 5-17: Azimuthal (horizontal) directivity from experiments and analytical model
for f = 50 Hz. The values from experiments are represented by (+), the solid line (-)
represents the best fit line through the data. The results from the analytical model
are denoted by the dashed line (- -) for a = 10.0 m, and the dashed-dotted line (- .)
for a = 20.0 m.

that shot which most closely matches the estimates from the horizontal array. This

will be done in a future work.

Azimuthal Directivity

Finally, the azimuthal (p) directivity from the experimental data is estimated from

the received signal at the horizontal array. However, this array does not sample the

field uniformly in azimuth. As the data will show, the receivers are clustered around

small angles of azimuth, in particular around 90. This is primarily due to the receivers

on the N-E leg of the crossed horizontal array, which make small angles (70- 100) with

the protuberance. Therefore, this is not very reliable for making comparisons over a

wide range of angles since the data points available at larger angles are relatively few.

However, for the sake of completeness, I shall present my results for the horizontal

directivity too.

Fig. 5-17 shows the results from experimental data and the analytical model for f

= 50 Hz. Once again, the experimental data values have been denoted by the symbol
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"+". Retaining only the first two terms in the modal summation representation of the

scattered field, I[ assume the azimuthal variation of the scattered field to be given by

p, = c3 cos V + c4 cos 2ý ,

where Vo is the azimuthal angle of scatter, and c3 and c3 are the relative amplitudes of

the modal components. As in the case of polar directivity, the solid curve represents

the least-squares best fit through the data points. Also, plotted is the analytical

scattered field for two values of the radius of the sphere, a = 10 m (dashed line)

and 20 m (dashed-dotted line). The plot clearly shows the severe limitations of the

experimental data, with most values being clustered around 90 azimuth, and only a

couple of points for the higher angles. Note that in contrast to the values at high

azimuthal angles which have very low variance, the values at smaller angles have

large deviations from the mean. The main reason behind this large divergence, as

mentioned before, is due to the N-E leg of the crossed horizontal array. Another reason

is that I have selected equal segments of the reverberation data from each channel with

the same length of time window, i.e., the same number of time samples. Depending

on the relative locations of the source, protuberance and receivers, each sensor will

receive energy from a different ensonified region. The different ensonified regions

may contain different scatterers, both in number and type. This inconsistency may

also be explained by noting that the feature is not necessarily azimuthally symmetric.

Therefore, for each source-protuberance-receiver orientation, the azimuthal angle of

incidence for each receiver will also vary. This will in turn result in an amplitude

modulation of the received scattered field.

Fig. 5-18 shows the results for a higher frequency band f = 100 Hz. The plot

reveals that once again, there are large discrepancies between model and data. Once

again, the discrepancies may be explained by following a reasoning similar to that

for the 50 Hz frequency band. However, it is instructive to compare the scattered

pressures observed on the horizontal and vertical arrays to see if the estimates made

from these two different measurement systems are consistent. I did this by including
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Azimuthal scattering pattern from expts and analytical model (f = 100.0 Hz)
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Figure 5-18: Azimuthal (horizontal) directivity from experiments and analytical model
for f = 100 Hz. The values from experiments are represented by (+), the solid line
(-) represents the best fit line through the data. The results from the analytical model
are denoted by the dashed line (- -) for a = 10.0 m, and the dashed-dotted line (- .)
for a = 20.0 m.

receivers on the two arrays that were within the following range of scattering angles -

4.50 <p< 7 .5 0 , 3.50 <0<6.50

Averaging the values estimated from the two arrays separately, I obtain the results

shown in Table 5.1. The table shows the mean values for the angles pO and 0 at the

sensors selected for the averaging process, along with the corresponding statistics of

Table 5.1: Mean and Standard Deviation (SD) of the scattered pressure levels observed
at the horizontal and vertical array receiver systems.
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the scattered pressure for two frequency bands f = 50.0 Hz, 100.0 Hz. The results

indicate that the mean values of the scattered pressure obtained on the two arrays

compare extremely well.

5.3.2 Total intensity from multiple scatterers

The comparison between data and model that was conducted in the previous section

is not really meaningful since the experimental values are due to multiple scatterers,

while the analytical model computes the scattered intensity from a single feature. In

this section, I present an example demonstrating how one could possibly attempt to

make some better comparisons, especially with respect to the intensity levels.

For the discrete scatterer analyzed in the previous section, the typical values of

ensonified areas for the receivers are approximately A - 1.2 x 106 m 2. From Fig. 4-13

and Fig. 4-19, we observe that the average number of strong features in a 600m x 600m

area in the 50 lHz frequency band is about 12. Therefore, the number of strong

scatterers N within the typical ensonified area is given by

1.2 x 106
N= x 12 40

600 x 600

Then, assuming incoherent addition of energy, the total scattered intensity from the

whole ensonified area is given by

'total = Isinge + 10 log 40

= Isinlg, + 16dB - (5.5)

This value of 16 dB compares extremely well with the observed difference between

the data values and the theoretical model with a = 10.0 m in Fig. 5-14. A more

exact analysis would require the statistics of the distribution of three-dimensional

protuberances under the ice. However, there is a caveat to be noted here. All features

within the ensonified area do not subtend the same angle of scatter at the receiver.
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Therefore, the results obtained with this approach would also be approximate.

5.4 Summary

In this Chapter, I presented an approximate model for an analytical realization of a

three-dimensional protuberance under the ice, and compared my results with those

obtained independently via a BEM formulation. Next I presented some results for

the bistatic scattering pattern from an isolated protuberance using my approximate

solution. In the final stage of the analysis, I made comparisons between my analytical

realization and results from field experimental data. The salient results of this Chapter

are summarized below -

* The analytical realization using the image source displays the right qualitative

behavior, especially at low grazing angles of scatter. In fact, the spatial pattern

of the scattered field clearly depicts the quadrupolar nature of the beampattern.

The relative strengths of forward scatter to scatter in the backward direction

seems to increase with increasing frequency.

* It was not possible to draw definite inferences regarding the distinction between

2D and 3D scatter. A more exact representation of the free-surface may bring

us a step closer to making this delineation. However, the 3D formulation allows

the inclusion of SH waves as opposed to a 2D analysis.

* Comparisons with experimental data provided no definite conclusions regarding

how well our analytical model compared with experiments. This was primar-

ily due to the severe limitations of the available data. However, we obtained

encouraging results in the vertical directivity in the 50 Hz frequency band.

* It was also demonstrated how the intensity levels due to multiple scatterers from

the experimental data may be compared with those from the analytical model

of a single feature.
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In a nutshell, the analytical realization seems to predict the right scattering char-

acteristics as it models all the relevant physics of the idealized problem where simpli-

fications were made with respect to the continuously rough interface, distribution of

protuberances, and the porosity of ice. However, to demonstrate that the right levels

of the scattered field are obtained, I need to compare my model with data from a more

controlled environment. This will then allow us to emphatically state our confidence

in the validity of the analytical model.
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Chapter 6

Conclusions and Future Work

6.1 Overview

In this final chapter, I begin by recapitulating all the results I have obtained so far

and discuss their implications on our understanding of three-dimensional scattering.

Next, I dwell on the significant contributions made by this thesis in the context of the

theoretical modeling, and development of some of the data analysis techniques I have

implemented. Then I move on to a brief discussion on some possible applications of

the work reported in this thesis. Finally, I make some recommendations for future

work in the context of analytical modeling, as well as the conducting of appropriate

field and laboratory experiments for generating data suitable for comparison with my

analytical model.

6.2 Discussion and Summary

In this thesis, I have carried out a theoretical and experimental investigation of three-

dimensional scattering. The theoretical analysis provided an understanding into the

underlying physical mechanisms of the scattering phenomena. I discussed the dynam-

ics of the interaction between the plate and the sphere, and demonstrated the impor-
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tance of the elastic waves in the re-radiated field. In particular, the three-dimensional

analytical modeling included the horizontally polarized shear (SH) modes which can

exist only in a 3D scenario. It was also shown that the dominant contribution to the

scattered field arises from the in-plane coupling forces as the attached elastic plate

primarily constrains the lateral motions of the sphere in the horizontal plane. I also

investigated the relative importance of compressional, shear and flexural waves in

influencing scatter. It was shown that the excitation of flexural waves in the plate

depends on both frequency and grazing angle of incidence of the acoustic field.

However, the most significant result from my theoretical analysis is the frequency

selective nature of the scattering phenomenon. In other words the acoustic scatter from

protuberances, or "hot spots", depends on the non-dimensional frequency parameter

ka, where k is the acoustic wavenumber in water. This was made evident from my

analysis in Chapter 2, where the scattered field from the plate-sphere coupled structure

was shown to be a modulation of that from the free submerged sphere. Other than

the contributions to the radiated field by the interaction forces and bending moment

at selective frequencies, the total scattered field resembles that due to the free sphere

only. In other words, the effects of the attachment of the plate to the sphere are

manifested in a frequency selective manner. This result was reinforced from my

matched field analysis of the experimental data in Chapter 4, where my focusing plots

clearly showed the frequency selectivity of the scattered field. Features that scattered

strongly in some frequency bands, did not do so at others.

This leads me to answer the issue I started to address at the beginning of this

thesis - what is the importance of the attachment of the plate to the protuberance.

In other words do the elastic waves, in particular the in-plane waves, in the ice play

a decisive role in defining the spatial scattering patterns. As was repeatedly evident

from the results of my theoretical formulation, the most dominant contribution to

the scattered field was due to the in-plane radial force and thus, the excitation of

compressional and shear waves in the plate. Flexural waves play an important role

predominantly at low frequencies (f < 35Hz), and angles of incidence close to beam
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incidence. With increasing frequency, the bending impedance of the plate increases,

and therefore the energy injected into the flexural modes at the attachment also rolls-

off. Previous analysis by Lepage [7] also demonstrated similar results. On another

note, it can be speculated that when the protuberance deviates from the axisymmetric

geometry, shear wave excitation will become the dominant phenomena in defining the

characteristics of the scattered field. However, this still remains to be seen.

Most importantly, within the enclaves of the available field experimental data, I

was unable to conclusively corroborate my theoretical solutions. This was due to the

severe limitations of the data available for processing. Even though I estimated the

horizontal and vertical directivities of scatter from an individual scatterer, there was

no quantitative comparison in magnitude between data and model. This was primarily

due to the fact that while the analytical results were computed for a single scatterer

scenario, the experimental results were due to a multitude of such features. The

qualitative nature of the results demonstrated that the field resembles a quadrupolar

pattern. This was also observed by Fricke [13] who used a 2D version of Finite

Differences to model scattering from features of various shapes and sizes. He also

demonstrated the validity of his observations by conducting laboratory experiments

using an aggregation of polypropylene chips to build a half cylinder [24].

Finally, comparisons of my analytical solutions with those obtained independently

via a BEM formulation showed that the right qualitative behavior is duplicated in

my theoretical analysis. The significant difference between the two analyses was that

while the BEM results predict high scatter in the forward direction, even at moderate

frequencies, my results showed that the relative strength of forward scatter to scat-

ter in the backward direction is frequency dependent. However, it must be borne in

mind that this difference could also be attributed to my approach of simulating the

pressure-release boundary condition at the ice-air interface which has its own associ-

ated limitations.
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6.3 Contributions

The overall contribution of this thesis to the study of Acoustics has been to pro-

vide a fundamental understanding of the physics of three-dimensional seismo-acoustic

(fluid-elastic) scatter. The exact analysis can be addressed using numerical methods.

However, as these are computationally expensive, I developed an approximate theo-

retical model which contained all the physics pertinent to 3D scatter. Simultaneously,

I analyzed field experimental data to elucidate the nature of scatter in real environ-

ments. I was also able to compare and contrast the results from these two independent

investigations. The prominent contributions of this thesis are outlined below -

* Development of a complete theoretical solution to the three-dimensional model-

ing of scatter with all the relevant physics.

* Formulation of a two step Matched Field parameter estimation methodology to

identify and isolate discrete features, and estimate the spatial scattering charac-

teristics of individual protuberances.

* I devised an adaptive array processing technique to combine the outputs from

the horizontal and vertical arrays. The resulting volumetric array had optimum

properties in terms of resolution and sidelobe suppression.

* I demonstrated that there is some evidence for frequency selectivity in three-

dimensional scatter. This was corroborated by independent investigations of

experimental data and an analytical model.

6.4 Applications

One can think of many applications where the analysis carried out in this thesis could

be of use. One particularly interesting application that comes to mind, is in the area of

Medical Imaging. Presently, the methodology to identify tumors or cancerous growths
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is to use ultrasound and look at initial returns, This technique yields very low Signal-

to-Noise Ratios (SNR). An interesting approach would be to perhaps model the tumor

as a protuberance on an otherwise smooth surface. This model could then be used in

a matched field approach to significantly increase the SNR. The details of the matched

field approach were discussed in Chapter 4 of this thesis.

6.5 Recommendations for future work

How can a thesis end without having recommendations. A thesis is like an interim

report of an ongoing project, and there is always room for improvements. I can

identify three areas in the context of the work reported in this thesis that definitely

warrant some additional work in the future. The first is with respect to theoretical

analysis, while the second deals with improvements in the Matched Field estimation

procedure. The third pertains to the conducting of field and laboratory experiments.

6.5.1 Analytical model

There is definitely some room for improving my theoretical model of three-dimensional

scatter. The first is in regard to the propagation of elastic waves in the plate. The

exact analysis requires the excitation of the plate modes by the incident acoustic

field, especially the flexural and compressional waves. These waves would then travel

towards the plate-sphere junction, while simultaneously radiating back into the fluid

by phase-matching, and scatter into the fluid. Their inclusion follows an approach

exactly similar to the one I developed for sphere modes coupling into the plate. The

flexural waves will still be evanescent in this frequency regime, and therefore, the

only significant radiation would be due to the compressional waves. My analysis

in Chapter showed that the displacements at the ring due to these plate waves is

significantly smaller compared to those due to the sphere. Hence, these will not alter

the plate-sphere 'interaction dynamics at the attachment ring. However, the elastic

modes excited in the plate due to the coupling forces would cause additional radiation
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into the fluid as these propagate away from the junction. These would also make

the scattered beampattern more rich, and we should begin to see some interference

between the contributions from the coupling forces and these plate waves, which will

leak energy into the fluid as they propagate in the plate.

Secondly, it would also be interesting to demonstrate if the shape of the three-

dimensional feature plays any significant role in characterizing scatter. My strong

suspicion is that any deviation from a regular geometry will strongly excite shear

waves in the plate. Finally, it would be rewarding to be able to come up with a better

method of approximating the free-surface at the ice-air interface. I suggested three

empirical ways of doing this in Chapter 5. All three approximations gave the same

results in backscatter but strong qualitative discrepancies in forward scatter. Even

though the image source method provides the right qualitative description, I suspect

that the levels are not quite correct.

6.5.2 Matched field analysis of scattering strength

The MFP algorithm that I used in Chapter 4 to evaluate scattering strength under

ice assumed that the features radiate like quadrupoles. A more exact analysis would

mandate the use of the exact replica fields from my analytical model at each frequency.

This would make the processing more time consuming as I would no longer be able

to take advantage of time-domain processing as the replica fields would be frequency

dependent. However, this would yield higher resolution estimates of scattering strength

and the locations of discrete features under the ice canopy.

6.5.3 Field and laboratory experiments

The ultimate validation of my analysis will come from conducting true bistatic ex-

periments either in the field or in a laboratory. The other alternative is to generate

numerical data using three-dimensional FD or BEM. If conducting experiments in the

laboratory, with a uniform plate, use of a larger aperture is recommended so that the
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array samples both forward and backscatter. This is the only way of making true

comparisons of scattering patterns.

Finally, in all my analysis I was truly handicapped lacking any information on the

size of the protuberances. It would be especially helpful to conduct these experiments

in a controlled environment where both the thickness of the plate and the size of

the protuberance are known. In collecting data in field experiments, it would be

appropriate to have an image of the under side of the ice, perhaps by deploying an

Autonomous Underwater Vehicle (AUV). Also, instead of using one omni-directional

source, the analysis would be significantly improved by firing an array of sources,

which could then be steered to any possible look direction under the Arctic ice cover.
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Appendix A

Spherical Coordinate Greens

Functions for Ring Tractions in a

solid unbounded medium

A.1 Introduction

Excitation of a solid elastic medium by a ring load or traction is a problem of inter-

est when dealing with forced excitation of structures in spherical coordinates. This

becomes even more pertinent when analyzing problems involving forcings without ax-

isymrnmetry. Examples where one needs to consider excitation of structures by ring

loads include the acoustic scattering from a plate attached externally to a sphere as

shown in Chapter 2, or scattering from a spherical shell with an internal deck plating

or a ring stiffener. The need for explicit solutions to the Green's function problem

arises especially when using full three-dimensional elastodynamic modeling of the in-

teraction between coupled structures. Ring force solutions are also useful since the

stresses and displacements due to a point force excitation may be readily synthesized

by summing the appropriately phased ring force solutions.

Green's functions in spherical coordinates have been previously derived for a simple
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point source positioned in a spherically stratified environment [33], and for axisym-

metric (azimuthal order m = 0, 0 = 0) point loads pushing in various directions in

Cartesian coordinates [54]. These solutions are not useful for the analysis of contact

problems where two structures are coupled along attachment rings. In such cases,

explicit solutions for ring traction loads pushing in various directions are required,

and we need to solve the ring force problem directly by explicitly retaining the depen-

dence on the azimuthal coordinate cp. Recently, expressions for admittances for a zero

azimuthal order (m = 0) radial ring force on a spherical shell were presented in [55].

In this Appendix, I shall derive closed form solutions for excitation by ring traction

loads of any azimuthal order m.

I begin by formulating the Green's function problem in Section A.2. Retaining the

dependence on the azimuthal coordinate (ýp) increases the complexity of the problem

since, as I will show in Section A.3, the stresses and displacements contain a mixed de-

pendence on the order of the associated Legendre functions P,' (cos 0) and P ,_ 1 (cos 0),

where n is the index of summation over the polar angle (0) and m is the corresponding

index of summation for the azimuthal angle (pý). I will employ a linear transformation

of the tangential components of stress and displacements to derive explicit analytical

solutions.

A.2 Formulation

The equations governing the motions of a homogeneous isotropic elastic solid are given

by [36, 37]
02

(A + 2p)VV - U - /V x V x U + pf = p (A.1)

where U' is the displacement vector and f is the body force per unit mass of material.

Following [34], I write the displacement potential in terms of three scalar fields, 0, V)

and y, i.e.,

= V + Vx ( ,,r) + VxVx (,r) , (A.2)
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where the first term is the longitudinal part of the solution, and the other two are

the transverse parts. The three potentials may then be shown to satisfy the following

scalar wave equations

1 02

V2 1 2
at21 02

V2 _ 10t (A.3)

where ca and cp are compressional and shear wave speeds respectively, and are given

by

c = , cP =

Assuming an exp (-iwt) harmonic time dependence (suppressed henceforth), the po-

tentials then also satisfy the following Helmholtz equations

(V+ a2)4 = 0 ,

(v 2+ 2) = 0 ,

(V2+p2) = 0 , (A.4)

where a = w/ca and 8 = w/cp denote the wavenumbers for the compressional and shear

waves respectively. Also, I have normalized the potential J by the shear wavenumber

/ as x = O3, so that the dimensions of 0, ri and rX are the same. The Laplacian

operator V 2 in spherical coordinates is given by

V210 r 1 0 ( ) 1 2

S+ r2 sin in nO a ) r2sin2 00 2 p2
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When the Helmholtz equations are separated in spherical coordinates as R(r)O(E)(cp),

the radial equation has the form

1 d (2dR) + n(n + 1)R=O

and its solutions are the spherical Bessel functions (j, n,,) [29]. The solutions with

respect to the spatial variables 0 and ý are obtained by expanding the potentials in

terms of Spherical Harmonic Waves (SHW) as [56, 57]

f (n, m) = J e-'imdp f(0, p)P.m(cos 0) sin Od0

f (0, P) = - E e m amnf(n,m)Pm(cos0) , (A.5)2 =-oo n=IMI

where

(2n + 1) (n - m)!
2 (n + m)!

and

(n - m!P,m (cos ) = (-1)m )m (cos 0)(n + m•)!.
Note that I have interchanged the summations over the n and m orders as I shall be

computing the Green's functions due to excitation by ring traction loads of arbitrary

azimuthal order mr, followed by subsequent summation to synthesize the Green's func-

tions due to point force excitation. Correspondingly, I define the Fourier Transform

(FT) pair with respect to the spatial variable ýo as

f(m) = f( p)e-i m(cd ,c

10

f(w) f Z f(m) eimv
2 rm = -oo

Assuming the traction load to be located at the ring defined by (r = ro, 0 = 0o, -7r <

p < 7r) as shown in Fig. A-1, I then need three potentials to represent the displacement

field iU, with components (ur, u, u,), inside the ring and three to represent Ui outside,
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Figure A-1: Geometry for ring force excitation of a solid unbounded elastic medium
of material properties A, yu and p.

i.e..

1u = VC7 + Vx (eror) + VxVx (xrxI)
0 < r < ro

1
SVOE + V X ('rikE) ±+ X × X (4rXE)

... ro < r< 00 , (A.6)

where the subscripts I and E denote the interior and exterior regions. I therefore

need six equations to constrain these potentials at r = ro, 0 = 8o. The first three

are obtained from continuity of displacement, while the other three are obtained by

accounting for the jump in stresses at r = ro, 0 = 00.

The normal and shear stresses involved in the boundary conditions are given by

Hooke's law as [36, 37]

Ou
rrr,(r,0,) = AV.U?+2p au

Or

\(r 80 r -ar
1 s u, u 5 ,) r (A.7)

re,(r, 8, I) = p rsin 8 +(
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and the corresponding displacement components u,, u0 and u. are given by

r 0+1 aD2(rX) rV 2
Xu,(r, e, p) = Dr 8 Dr2

aq n(n + 1)
r +  s x

S 1d 1 0 1 a2(rx)
uo(r, 0, P) = + + r

r dO sin08 dp pr 08i r
1 8q D8 1 D2(ry)

U, (r, 0, p) =+ (A.8)
rsin08Dp Do prsinm0 Dpdr

Substituting eqn. (A.8) into eqn. (A.7) yields expressions for the stresses in terms of

the potentials 0, V and X. Note that these expressions for stresses and displacements

contain terms which depend on both the associated Legendre function P,~(cos 0) and

its derivative dfm (cos 0)/do. Recalling the property of associated Legendre functions

[58],
dPm(cos 0) = n cot OPm(cos 0) - -"(cos ) ,dO sin P (cos

we observe that the stresses and displacements therefore have a mixed dependence

on the order n of the associated Legendre function. However, if I eliminate this

mixed dependence, I can satisfy the boundary conditions more elegantly since the

associated Legendre function dependence will drop out and then I will need to satisfy

the boundary conditions at each order n only. This is done by employing a linear

transformation of the tangential displacements and stresses [59]

U = Ur ,

V = - [(uo sin 0) + sie

W = (u, sin 0) - ' (A.9)

R = r ,
S =- ([(7ro sin 0) + a s

T = -2-(rr, sino) - a- r - ] sI
a 1o JW sin 0

As this is a linear transformation of the linearly independent tangential (0, ýp) compo-

nents, the resulting displacement and stress components are also linearly independent.
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Insertion of eqn. (A.9) into eqns. (A.7) and (A.8) yields expressions containing the

associated Legendre function P,(cos 0) of order n only. Expanding the Helmholtz

potentials in terms of Spherical Harmonic Waves (SHW) as

0 = Amn•z(ar) , b = Bmn.z(P) , 2 = Cmz,(pr) ,

the transformed displacements of order n and m may then be written as

U = Amndznn(ar) + Cm n(n 1)n(r)
dr pr

V n(n + 1) Amn ( + zCmn d(fr) + )r 0 dr r
W = n(n + 1)Bmnz,(pr) , (A.10)

and the three transformed stresses of order n and m may be expressed as

R [ATmnTi1 + mn T1

S - 2p n(n + 1) AmnT 21 + Cmn T22

T = n(n + 1)BmnT3  , (A.11)

where

2 r dr

dZn(ar) z ((r)I

T22 = (n2 + p 2 z,(r) d Zn(r)2 r dr
T3  d (r) r) (A.12)

dr r

z, is represented by the spherical Bessel function (in) for the interior potentials, and

by the spherical Hankel function of the first kind (h(1) - hA) for the exterior potentials.
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Henceforth, I will carry out our analysis with the transformed displacement and stress

components.

A.3 Ring Traction Excitations

In the following sections I shall evaluate the closed form solutions for the Helmholtz

potentials due to various ring force and ring bending moment excitations. Denoting the

potentials of order n and m by §(r, m, n), where g = {q, b, X}, the Green's functions

for ring excitations of any arbitrary azimuthal order m are computed by summing

over the polar order n as

00

t(r,m, 0) = amn§(r, m,n)P,m(cos) , (A.13)
n=lml

where 9(r, m, 0) is evaluated at the location of the ring traction load 0 = 00. The

potentials due to a point load located at (0o, 0o) can then be readily synthesized by

summing the appropriately phased ring traction load solutions as

100
g(r, ) = (r, m, 9)e imW , (A.14)

where g(r, 0, p) is evaluated at the location of the point load (0 = 0o, Op = wpo).

Following Ref. [35], six equations of continuity need to be satisfied at the boundary

where the ring traction load is applied - three involving displacements and the other

three involving stresses. Continuity of displacements across the ring load at r = ro, 0

= 00, yields

lim [U]o+ = lim [U]ro_, ,

F---0 C--0

lim[V]ro+e = lim [V]o-

lim [W]r+ , = lim [W]ro-F-4O c4O0
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Representing the interior and exterior potentials of order n and m as

;I = Ailj(. ) , 0, = Bj.(pPr) , xj = Cijn(p#r),

OE = AEhn(ar) , OE = BEh(p3r) , XE = Ehn (pr) ,

I obtain the first set of three equations between the

the SHW domain as

interior and exterior potentials in

-d 

J r1

dr ro dr I =ro^'~~~'' AE~, jri·[hd~ ar).] r
+ n(n + 1)+CE h,(pro) ,

pro

+0(o) (1 [d jn(r)1 j ro)
ro 0 Ldr r=ro ro

h,(aro) + d ) + (pro)
ro dr r=ro r

Bijn(pro) = BEhn(flro) (A.15)

Note that eqn. (A.15), which represents continuity of displacement, must be satisfied

for all traction loads. In the sections that follow, I compute the explicit solutions for

the displacement potentials for each ring traction load individually.

A.3.1 Radial (r) direction

I begin by expressing the ring traction load in the radial direction as

a(o - Oo)
Tro(ro, 0, 0) = T, 2 0 '

27rro sin 0 (A.16)

where Tr is the total force (N) at the ring, 7,0 is the corresponding stress (Nm- 2 ) in

the radial direction, and its decomposition into SHW may be shown to be

-im - r,(
. = 7 e-im"d j T(W) 2  P,(cos 0) sin OdOfw 7o 2ra2 sin

168



MP,(cos7)
27rra 2

where T, is the Fourier Transform (FT) of Tr with respect to the spatial coordinate 0.

This traction load in the radial direction introduces a discontinuity in the radial stress

component while the tangential stresses, which are orthogonal to this loading, remain

continuous across the ring. Therefore, balancing tractions in the radial direction I

obtain RE - RI = R0 , or

1 1 Pn' (cos o)
A4TI,.r + CI T12,I- AET11,E - CEý 12,E = -r P(co )

1 1
AIT 2 1,1 + 0 1C-T 22, - AET21,E - CE T22,E = 0

BIT3,1 - BET3,E = 0 , (A.17)

where the additional subscripts I and E have been used to mean that the traction-like

quantities Tij need to be evaluated in the interior and exterior regions respectively.

From eqns. (A.15) and (A.17) we observe that the equations for B are decoupled from

those for A and C.

Solution Strategy

I begin by noting a very useful Wronskian relationship that can be used in deter-

mining the explicit solutions to the Green's function problem, i.e.,

j,(,ro) -h,(nr) - h,(rro) -j,(nr) --- (A.18)
dr I ro---tO r-ro K

The solutions for B are found in a relative straight forward manner since their equa-

tions are decoupled. Eliminating BE by substituting the third equation in (A.15) in

the third equation in (A.17), I obtain

BI {hn(Oro) [rn(r)] - jn(fro) [ d-hn(r)] = ,
r=ro r=ro
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Since (-i/lpr) # 0, therefore,

BI = BE = 0 (A.19)

The solutions to the remaining four simultaneous equations in A and C, may be

conveniently found by speculating that the solutions will be of the form such that it

would be possible to exploit the Wronskian relationship in eqn. (A.18). With this

consideration, I assume the solutions to have the following forms

Az = A 1 [d h(ar) + A 2h,((aro)dr
r=ro

AE = A 1  n(Or) = + 2 o )
dr r=ro + h(ro)

E = C1 d jn(r) + 0 2j (ro) , (A.20)
dr rr

where A 1, A 2, C1 and 02 are the new unknown constants yet to be determined. The

reasoning behind this assumption is as follows. Consider the internal potential q$ =

A j.3(ar) which contains the explicit dependence on the spherical Bessel function. If

we assume that the Ai is composed of terms with spherical Hankel functions (h,(acr))

and/or their derivatives, we can easily see that each equation in (A.17) will yield

terms some of which will drop out and others that will simplify after some algebraic

manipulation with the Wronskian. Substituting these assumed forms for the unknown

potentials in eqns. (A.20) into the four simultaneous equations in A z, AE, CI and CE,

yields a system of equations whose solutions may be found with relative ease. After

some algebraic manipulation, and on recursively using the Wronskian relationship, I

obtain the following result for the potentials for a radial ring force of azimuthal order
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2xrpw2

- iT,
27rpw2

I= 0

[d 1
d h n (ar)Idr

i r=ro

d dr~nar)]r=ro

P,'(cos 0o)j (ar)

Pnm(cos Oo)h,(ar)

bE = 0 ,

-I = 2 hn(pro)P (cos 0o)j, (or)
2E rop 2 oP os0)h r)

~E =2 pn~0 (cos O0)h n(pr)27rop in o
(A.21)

A.3.2 Polar (0) direction

Following my analysis in the previous section, I write the ring traction load pushing

in the positive 0 direction as

6(8 - o0)
ro(ro, 0, o) = To r 2 sin 0o

2II sm Go 1 V

(A.22)

and the corresponding stress components in the transformed domain are found to be

so = - (o sin 0)]80
(0) ]

1
sin 0

1
sin 0

Expressing SO and TO in terms of SHW, I obtain

2 2r7r ro

P m(cos 0o) 1
sin 0o
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S'(o -so)= -T .s
2;rrr, smn B

[dTo lW
dcp

S(0 - 0o)
27ro sin2 0

0)10=0o

= mTo
27rro (A.23)

To= - [(9w

d o
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Continuity of displacement yields exactly the same set of equations as in (A.15).

Balancing tractions,

1AET11,E - CE-T12,E

1T
AET21,E - E T22,E

BIT3 ,1 - BET3,E

= 0,

47rx/n(n + 1)

-im'To

27rxIn(n + 1)r

dO I0=0o

i"o sin 0
(A.24)

Assuming the same form of the solutions as in eqn. (A.20), and on carrying out the

algebra, aided by the Wronskian relationship in eqn. (A.18), I obtain the potentials

for the ring force pushing in the polar 0 direction as

6 LIg

rropw•

E 7rrop
7ropw2

1 d hn ar
,32ro dr I r=ro
1 [ d n a
2{ o dr r=ro

-h,(aro) [-P,"(cos 0) =o

2- dO } [=(cos0]
1 n (ro) dPm (Cos 0)2 1 dO n I00

m/3 3 T

27rn(n + l)pw2

'E 2n mn70 +o)2 7n(n + 1)pw

7rn(n + l)pw2
1 [

Pnm (cos 0o)in r)
sin 00 1

Pm (cos 0)
sin 0

dh (Or)
dr

h h(r) ,

(n 2 ,n_ p 2r 2/2)\

=ro 0 r

x [dP (cos 0)] ji(pr) ,

i,62T
XE 7rn(n + 1)pw2

1 d in (r)

dr r-

rro

[ dO P

(n 2 + n_- p2r2/2)

0)] h

"(cos 0) hn(Pr)
0= 0o
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1
I•T11,I + 'ITl 2,I -

ArT 21,I + CIT22, -

j, (ar)

hý(ar)

(A.25)

A, -
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A.3.3 Azimuthal (so) direction

The ring traction load pushing in the positive W direction is expressed as

T (9 - 9o)
r, 0, S) = T, (A.26)

27rro sin 00

and the corresponding stress components in the transformed domain are given by

so= d 0( 1
sin 8

dTE
d~p

(0 -00)
27rro sin2 0

To=[ d (rsin 0)]dO
1

sin 0
J'(0 - 00)
2rro sin 0

Expanding So and T o in terms of SHW, I have

imTip [P,(cos o)
2-rroL sin0 0  J
T2 d

2 Pne~ ,,,i~~
(A.27)

Proceeding with the algebra in a manner similar to that in the previous section, I

obtain the solutions for the potentials for a ring force in the azimuthal ýo direction as

1 d 1

/32 ro drn( ) r=ro

02ro dr I r=ro

maT

=E p7rropw2

j#3 =3 h,(pro)
21rn(n + 1)pw2

bE = )p, 2j n ( ro)

2·ln(n2 + 1)pw

1- h,(aro)2
Pnm (cos 0) jn( )

sin 0 o r )

n (aro) (os ) h.(ar)2 sin m0
d P • " (cos 0)] =o

d 1
[dO Pn(C

in (Pr)

rnmp 2T,
I r =

7rn(n + 1)pw2

1 [d ,, Or)
2 dr

r=ro

os ()I= h.(Or) ,

(n2 + n - #2 , /2) h(
23 hn(pro) xr2p3

X[ P,(cos Oo)in (r)
sin 00 j1
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mp" 2 A 2 d r  2 2/2) }XE 'i1 n ( ) 0 in ( 0) x7rn(n + 1)pwL 2 r

x hnM (Cos 00) hn (A.28)
S1sin00

A.3.4 Ring Bending Moment

I apply a ring bending moment with a radial ring force couple with magnitude Mb

=: FrrAO, where AO is the vanishingly small angle in the polar direction as shown in

Fig. A-2. The direction of the forces in the couple is chosen such that the couple applies

00 + AO)

Figure A-2: Model for applying a ring bending moment along the positive pO direction
on the sphere. We use a couple constituted of two radial ring forces located at (r, 00)
and (r, 00 + AO).

a positive bending moment in the azimuthal (p) direction. Then, the corresponding

traction load which applies this bending moment is given by

Fr = Mb [-(Oo + AO) + ()= - Mb '(O - 00)
rAO r

I represent the ring traction load in the radial direction due to the bending moment

as

(sfro(ro, 0, )= -Mn0- (A.29)27rro sin 0
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and correspondingly

b= I Pm (cos ) 0)]

Then, using my results for the radial ring traction, we can easily show that the po-

tentials for a ring bending moment take the form

2iap d hn(or)] [P"m(cos 9) ji(ar)
2r-ropw- dr ro dO 0-00

iaMb r1 d d
OE = 2rropw I(r) • n(cos 0) hc(ar)(2drrropw2 (a) rdr rr dO 0=0o

ý= 0,

jI = M hn(pro) dP"'(cos 0) i,(r)

XE = 2 • 2 -•J(p3ro) Pnm(cos 0) hn(pr) • (A.30)

A.4 Summary

In this Appendix, I derived explicit analytical solutions for Green's functions for ring

traction loads in a solid unbounded elastic medium using spherical coordinates. So-

lutions were obtained for ring forces pushing in the radial, polar and azimuthal direc-

tions, and for a ring bending moment acting along the positive azimuthal (Qp) coor-

dinate. As an aside, it is worthwhile to note that similar expressions were obtained

by Ricks [60] who derived the Green's functions for ring tractions in cylindrical co-

ordinates. For non-axisymmetric loadings, I employed a linear transformation of the

tangential components of stresses and displacements to satisfy the boundary condi-

tions. This facilitated the derivation of closed form solutions for the interior and

exterior potentials. Having obtained the solutions due to ring traction excitations,

the Green's functions for excitation by a point source in any arbitrary direction in an

unbounded medium may be readily synthesized. As pointed out in the Introduction,

these explicit solutions are required to model the scattering of sound from coupled
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structures. In Chapter 2, I draw upon my analyses here, where I model the acoustic

scattering from a spherical protuberance on an infinite submerged plate.
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Appendix B

Influence Matrices for sphere and

plate

B.1 Overview

In this Appendix, I present the details and the significant results of the decoupled

constituent problems from my coupling formulation in Chapter 2. I begin by comput-

ing the free sphere displacement components and the scattered pressure from the free

sphere in Section B.2. Section B.3 contains the analysis of the influence coefficients

for the thin elastic plate, while Section B.4 contains the influence coefficients for the

elastic sphere excited by ring forces and bending moment.

B.2 The free submerged elastic sphere

As stated in subsection 2.4.1, I need to satisfy four boundary conditions at the fluid-

elastic interface. The expressions for the transformed components of displacements

and stresses were given in Appendix A. The boundary conditions are

177



* Continuity of radial or normal displacement, Ui + U, = U,, or

-AmnII11 + BmnI12 + DmnII13 = 61 , (B.1)

* Continuity of normal stress (pressure), Ri + R, = R,, or

-Amn21 + BmnII22 + DmnII23 = S2 , (B.2)

e Vanishing of the transformed tangential shear stress, Sr = 0, or

BmnIl32 + DmnIa33 = 0 , (B.3)

e Vanishing of the transformed tangential shear stress, T, = 0, or

Cmn = 0 - (B.4)

Expressing these boundary conditions in matrix form, the amplitudes of the po-

tentials for excitation by the incident acoustic field for the the free submerged sphere

are given by
01 0 2  03Amn , mn = mn= 0 Dmn = o (B.5)

= I111122I133 - IlI32II23 + 112111321113 - 112111121133 ,

= 811221I33 - 81I32123 + 521132I113 - 82112I133 ,

= 211IlII33 - S11121 33 ,

-S2Il11I32 + 81I21I32

H11 = -h'(roa) , I112 = j(a, a)
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A0

01
02

03

Also,



n(n + 1) n1a
l jn(plaa  ,

10a

S 1 [Xjn(ola) + 2aXljn+l(ala)] ,

Sn(n + 1)
01

= o , IIa32 1 1[j( la-l- n ( ]

[33 - [XJn(la) + pjn+ (la)] ,

J, = j'(aoa) , 2 anoaj

where X = (n2 -- n- .f2a 2 )/a, and I have used the concise notation

z(ka) = z(kr) n
= -z,(ka) - kzn+l(ka)

a

(z = j, h). Setting A0o = 0 at each polar order n yields the resonances of the solid

sphere immersed in fluid.

B.3 The thin elastic plate

B.3.1 In-plane Motions

As discussed in Section 2.4.2, the boundary conditions that need to be satisfied at the

inner annulus of the plate for in-plane motions are

OVR

fR
27rbh

27rbh
[Ov,

= A2 1
[OR

V40

R

± [ °v· l

1 oVR
RO - (B.7)

Substituting for VR and v, from eqns. (2.21) and (2.22)

= A2 V21' + 2Y2 [ 2

= IL2 [2
R1 02£
R~ R9OR

a (1 aQ)
1R2
R2 W S(

1 O2 Q

R2 O(2
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I13

1122

I123

1131

121= -aoahn(aoa)

I

3 = 0 , (B.6)

fR
2irbh

fep
27rbh

ROR
1 a)]RaR))]



Taking the Fourier transform, i.e. setting a/lp -+ im, dividing both sides by 242,

and using A/2yp2 = ( -2/2 
2 - 1), we obtain

jR
4rwP 2bh

- [(K2
2

a2+-
R22

iR
R

1 a2

2 aR247r•p2bh

aR RJ + R=b

RdR R2 (B.8)
R=b

Finally, the entries Pj (i,j = 1,2) of the plate influence matrix for

are given by

P12

P21

P22

the in-plane motion

G21 b Hm(rb)}

b) + Gilb imHm(qb)}

= M1 {G 2 2 i Hm(b) + G2iH (rqb) ,

= M1 GI2 Hm(ab)- G IH' (qb) (B.9)

where

G12

G21

1 (m2 _71 2 b2/2)Hm b)

Sin 1b]

= b H m(7b) - b Hm (7b)

i [ H,(rb) - Hm(Kb)]
b b

- Hk(7b) (B.10)

arnd
1

M =
47rglbhAl

, Al = G 11 G 22 - G12G21

180

(B.11)

Mi G22H{ ' (nb)

MI {-G12H" (rt

im jar
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B.3.2 Out-of-plane Motions

As discussed in Section 2.4.3, the boundary conditions that need to be satisfied at the

inner annulus of the plate for the out-of-plane motions are

M b - 2 w Il aw 1 92 Ww\ l
=-D +27rb [R 2  R+ R R2  p2/J R=b

f _ O(V 2w)+ (1I-v) 012 w w]
27rb -D OR 2 2  R (B.12)

Note that Mb and fz are total bending moment and shear force respectively. I use a

mathematical trick to simplify the first term of eqn. B.12. Factoring the biharmonic

equation as, we have

(V2 2 2(o - ) = 0 ,

with the solution to the first and second components being given by Hm( fR) and

K (6fR) respectively. In other words,

V-_ww for w = Hm((fR){ +(w for w = Km(~IR)

Taking the Fourier transform on both sides of eqn. (B.12) wrt 9, and replacing /awd

with im, we get

M ^b 2, v(im)2  V O i+  +
27rbD - R2  R 2  R OR b

z 62 06 (1 - v)(im)r' RW _T f- + (B.13)27rbD t• R 2  R (B.13)

where I have used the compact notation F to represent the use of (-) for w = Hm(6fR)

and (+) for w = Km((fR). This set of equations can then be solved for the constants

C3 and C4, and finally the entries ij (i, J = 3,4) of the plate influence matrix for the

out-of-plane motion are obtained as

P33 = M 2 {O 22Hm(f b) - 021Km(f b)} ,
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P3 4 - M 2 {-O 2Hm(Qýb) + OxKm(mýb)}

= M2 {O22H'm(fb) - 02 I'(f b)}
= M2 {-0 12H' (fb) + Ol, ' (ýb)}

(1 - v)m 2 _ 21

= -(1- b2 +

(1- v)m2

b2 -ý
(1- v)m2b +

P I

1
M2 = bDA

27rbDA 2

Hm (f b)

Km (f b)

m( fb) -

m( jb) -

(1 - v)m2

+ b Hm (i b)

(1 - )m2

+ b Km(~fib)

(1 - v)

A2 = 011022 - 012021

I have used the concise notation (Z = H, K)

Zm(kb) = [dRZm (kR)]
R=b

m
Z b m(kb) - kZm+l(kb) -

b

B.4 The submerged elastic sphere excited by cou-

pling forces

The entries Sij (ij = 1,..., 4) of the sphere influence matrix are found by proceeding

in a manner similar to that of the free submerged by replacing (A,,, Bm, C,m, Dmn)

with (Imn, Jmn, Kmn, Lm,), respectively.
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where

(B.14)

011

012

021

022

and

(B.15)



B.4.1 Radial (r) Ring Traction

The ring traction load load in the radial direction is expressed as

Tro (al,0, fp) = PS 2-

2fr( a 2 sin

and its expansion in terms of Spherical Harmonic Waves is given by

:-°(a, m, n) E Ro r sm d 7rc-w 7 J f,(cp) Sa2 sin P ~ (cos 0) sin OdO27a2 sin m0
f Pm(cos) 

,
S27ra

2 P(

where the 'tilde' notation is used to denote dependence on both the polar order n and

the azimuthal order m, and the 'hat' denotes dependence on the Fourier or azimuthal

order order m only. Balancing tractions, and referring to the quantities defined in

eqn. (B.6), the potentials for the ring force acting in the radial (r) direction are given

by

- P"(cos y47r

fr r
= -P,~( (cosy

47r
0,

-Lr PnmP(cos47r

11321113 - 112133
A0

[1-1-I32]
•)[ •

B.4.2 Polar (0) Ring Traction

The ring traction load load in the polar (0) direction is expressed as

0(a, 0, p) = fo 8(c 227ra sin 0
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Transforming this component of stress, we obtain the corresponding stress components

S o and TO as

sin 0]

1
sin 0

1 _ '( -_ )
sin 0 2ra2 sin 0

dfo(ý) S (O - -y)
dp J 27ra 2 sinO 0

The expansion of these transformed stress components in terms of SHW may then be

shown to be given by

d Pnm (CosdO 0)] =
S0= _ imfe2ra2 sin (cos 7)2•-a2 sin y

Balancing tractions in a manner similar to the radial traction, the potentials for the

ring force acting in the polar (0) direction, are found to be

fo
4rn(n + 1)

fo
47rn(n + 1)

iman(n + 1)
= -2ir~an(n + 1)

n+
47rn(n + 1)

11121123 - 1113122
AO

ddPnm(cos 0)d0 I=11211113 - 11111123
Ao

sin- rj (O a)p si (cos Y)] [ a j l(fa) ( I
d P(csdPOm(cos

dO 0)] =-y
[111122 - 121112Ao (B.17)

B.4.3 Azimuthal (cp) Ring Traction

The ring traction load load in the azimuthal (p) direction is expressed as

7"(a, 0, p ) = f(P) 2
27ra2 sin8
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2

Imn

Jmn

Lmn

So=8_ (ro)

= (no(7-,0

Pnm cos 0)]



Transforming this tangential stress into the two components SO and TO, and then

expanding these in terms of SHW, we obtain

A 0 imf -o sin PmP(cos7) ,27ra 2 sin -

Balancing tractions yields the following expressions for the potentials for the ring force

acting in the azimuthal (W) direction

imfw,

S-4n(n + 1)
im4fn

47rn(n + 1)

Pnm(cosY) [11121123-11131122]
sin7 ] 1 - I

P m (cos 7) ] [II211 13 - 11 23sin - AO
_ [dPm (cos 0)

-2x7ran(n + 1)[ dO 1=- [ajn(a)1 ( ,(a)

imf
47rn(n + 1)

P (cos7) [11111122 - 121 12J
sin r O

B.4.4 Ring Bending Moment

As shown in Appendix A, I apply a ring bending moment via a force couple, and

represent the ring traction load in the radial direction due to the bending moment as

J '(0 - y>
o,?(a, 0, ) = -Mb a3 sin 0 '

and correspondingly, its expansion in terms of SHW is obtained as

7,r(a, m, n) =
2•-ra 3

d

dO

Finally, the solutions for the ring bending moment are found to be

Mb d
47ra dO

Mb d

47ra dO

Pn(cos )

Pm(cos·)

1132113- 0112133

11T1133
[42~-P2~,

[SoG=-y
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Imn

Jmn

Kmn

Lmn (B.18)

Imn

Jmn

Pm (cos 0)]

= 2 d P (Cos 0)27ra2 dO 0



-0 ,
Ab d= I""m(Cos )47ra IdO P

Lmn

-r ll1132AoI (B.19)
0=-y
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Appendix C

Horizontal and Vertical Array

Sensor Positions

In this Appendix, I list the sensor positions for the three arrays used in my analysis.

The positions for horizontal array sensors are essentially the same as those given in

Ref. [42]. The arrival times of the direct pulse demonstrated the consistency of these

positions. The sensor positions for 16 channels of the long vertical array and the

fixation points of the shorter arrays were provided by Tom Hayward of NRL [44].

These were given with respect to a coordinate system aligned with the N-E axis of

the horizontal array, and had to be transformed to the universal coordinate system.

The missing positions were interpolated using the analysis in Section 3.3.2. That

analysis methodolgy was also extended to estimate the sensor positions of the shorter

vertical arrays. Moreover, by repeated iteration I improved on the estimates of the

shorter array positions by comparing the nearfield beamforming results obtained by

independent processing of the horizontal and short vertical array reverberation data.
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HORIZONTAL ARRAY POSITIONS
Hydrophone # x,(m)

14.0834
51.0266

-34.8596
23.3318

0.0
28.6041

-21.6686
-10.28

-27.8904
37.2584
64.7682
129.213

-59.3577
-49.2728
103.035

-96.0213
-117.35

-272.318
170.479

-187.487
263.392
547.593

-372.394
-499.854
402.652

Y.(m)
17.537
62.375
30.741
-9.845

0.0
30.965
12.825

-13.397
-34.931
-29.693
-50.206
-99.734
55.013

-62.052
121.974

-122.533
99.552

222.216
197.15

-289.897
-211.6

-432.586
-568.349
415.074
489.644

Zs(m)
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0

Table C.1: Horizontal array hydrophone positions
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LONG VERTICAL ARRAY POSITIONS
Hydrophone # X,(m) Y,(m) ZS(m)

Table C.2: Long vertical line array hydrophone positions
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

-58.162
-50.728
-43.353
-36.073
-28.911
-21.881
-14.991
-8.242
-2.730
4.131

10.866
17.442
23.714
30.066
36.536
42.887
47.086
52.731
58.277
63.720
69.050
79.329
89.011
97.977

106.566
113.368
119.312
124.177
128.301
131.454
132.924

-4.860
3.491
1.174

19.905
28.005
36.046
44.027
51.944
58.474
66.563
74.733
82.971
90.633
98.225

105.718
113.312
118.517
125.178
131.658
137.953
144.058
155.691
166.547
176.616
186.718
194.348
201.452
207.653
213.263
217.845
220.064

27.702
55.454
83.259

111.115
139.024
166.988
195.006
223.079
252.562
280.625
308.694
336.781
365.100
393.420
421.739
450.059
478.368
507.040
535.774
564.573
593.437
651.360
709.545
767.992
827.995
887.118
946.399

1005.879
1065.473
1125.215
1185.156------ --------- ------------



SHORT VERTICAL ARRAY POSITIONS
Hydrophone # Z,(m)X,(m)

-88.337
-82.646
-80.191
-78.014
-76.126
-74.542
-72.343
-71.539

-109.527
-103.836
-101.381

-99.204
-97.316
-95.732
-93.533
-92.729

-139.652
-133.961
-131.506
-129.329
-127.441
-125.858
-123.658
-122.854
-204.606
-198.914
-196.460
-194.282
-192.394
-190.811
-188.612
-187.807

Table C.3: Estimated short vertical line arrays hydrophone positions
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Ys(m)
10.041
16.486
19.265
21.730
23.868
25.661
28.151
29.062
31.227
37.671
40.451
42.916
45.052
46.847
49.339
50.248
44.148
50.591
53.371
55.836
57.974
59.767
62.257
63.168

105.000
111.445
114.224
116.689
118.826
120.620
123.110
124.021

29.602
88.979

118.749
148.567
178.431
208.335
268.240
328.225

29.602
88.979

118.749
148.749
178.431
208.335
268.240
328.225

29.602
88.979

118.749
148.749
178.431
208.335
268.240
328.225

29.602
88.979

118.749
148.749
178.431
208.335
268.240
328.225
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