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Abstract

There are several systems that use external hardware, stand-alone applications, or
special purpose languages to facilitate experimentation with audio processes ([22, 35,
44] and [29, section 3.2]). These packages take advantage of the extra efficiency gained
by hardware support and by focusing a complete application on a particular problem.
However, as computation becomes cheaper, increasingly more complex synthesis and
analysis algorithms can be performed in real time on high end workstations without
the help of specialized hardware. Environments that are geared specifically towards
manipulating signals might solve that particular problem extremely well, but cannot
be used at the level of notes or user interaction; these problems must then be solved
independently. Adding support for audio to an already existing programming lan-
guage would eliminate the need to create and support specialized, ad-hoc syntaxes.
A general purpose language would ease the transition from the signal level to the
note level, because all of the code would exist in the same framework. An extensible
language would allow applications to combine low level audio routines with packages
from just about any domain, including networking, artificial intelligence, and scien-
tific computation. Finally, an interpreted language would give the user immediate
feedback, and would allow applications to be flexible and configurable.

We extended one portable and available language that meets these requirements,
Tcl/Tk [30], with the framework for a traditional patch-based audio system. The
resulting package, "swish," lets the user create applications that implement, control,
and interact with audio processes at a high level. Since Tk provides access to a widget
set, the interaction can be either textual or graphical.

In order to incorporate a unit generator patcher into Tcl/Tk, it was necessary to
reconcile the programming model presented by the audio system with that presented
by the language. Using ideas found in [3], we replaced the traditional graphical
dataflow machine with a more general "task" model. In the task model, the temporal
relationships are specified independently of the functional relationships. We show



that this model is still amenable to both graphical and textual representations, fits
naturally into the Tcl/Tk framework, and is more general and flexible than several
other existing systems.

Finally, after examining the way that a typical patch is executed, we discuss
the need for a language that is capable of performing incremental compilations. A
typing system, lexical scope, and a functional programming style are other language
features that might be useful, but are not found in Tcl/Tk. We use these observations
to examine several languages that may become available in the near future.

In the conclusion, we hypothesize about the role that audio will play in the near
future in the developing networked multimedia environments, and argue that the
applications that are going to have the most influence on the way that we use and
view computers are going to be the ones that make portability a central concern.

Thesis Supervisor: Tod Machover

Title: Associate Professor
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Chapter 1

Introduction and Overview

A large amount of research has been done by the computer music community to

determine the data types and programming paradigms that are effective in music and

digital audio projects. Many of these concepts have been demonstrated through the

use of specially designed languages or special purpose hardware. However, now that

many synthesis and analysis algorithms can be performed in real time on high end

workstations without the use of a special signal processing chip, the efficiency hit taken

by using a higher level, more flexible environment to develop audio applications is

more acceptable. Recently, the programming systems community has shown that code

can be made modular and reusable through the use of "very high level languages." We

propose that extending a high level language with the tools needed to do music and

audio would benefit both communities: Designers of computer music projects would

have access to a system that integrates the tools that they are accustomed to with

code developed for other aspects of computation and interaction, such as graphical

user interfaces or networking, while application developers would be given the ability

to interact with the user through audio and music.

We illustrate this point with a prototype system, "swish," that extends the Tcl/Tk

scripting language [30] with a framework that supports the patching together of "unit

generators" to describe synthesis and analysis algorithms in a manner that is ex-

tremely familiar to the computer music community [5, 28, 29]. Tel is a scripting

language that meets all of our requirements: it is portable, freely available, high



level, extensible, and interpreted. Tk is an extension to Tcl that provides easy access

to a widget set.

It is common for patch editors to provide graphical interfaces. Tk is particularly

useful because it enables swish to distinguish itself from these applications by provid-

ing both graphical and textual representations of the patches. Unit generators can

be manipulated using an intuitive graphical user interface, and then represented tex-

tually for use in an application. Alternatively, since all of the unit generators can be

manipulated using Tcl procedures, the user has the option of bypassing the restric-

tive graphical framework altogether, and creating patches directly through textual

scripts. Finally, the user can write applications that use audio patches together with

Tcl procedures that provide other forms of interaction and computation. Now, inter-

esting synthesis or analysis algorithm can be implemented, without having to write a

specialized application that can only read from and write to sound files. Instead, by

implementing it as an extension to swish, it can be used in conjunction with other

audio processes, and controlled in real time using an intuitive and flexible graphical

interface.

Another distinction between traditional systems and swish is that swish uses a

task-based programming model [3, 4] instead of a dataflow machine. The basic idea

behind the task-based model is to divorce the temporal dependencies of the unit gen-

erators from their functional dependencies. The user then has the flexibility needed

to handle special cases that the traditional "dataflow machine" approach has trouble

with. The task-based model also facilitates a smooth transition from the signal rate to

either a synchronous or asynchronous control rate, and leaves open the possibility of

developing sets of tasks that work in domains besides signal processing. After describ-

ing several existing computer music programming environments in chapter two, we

present this model in chapter three, and show that it can be represented graphically

in a manner that fits elegantly into the Tcl/Tk framework. Chapter four provides

further discussion about swish, the task model, and some important implementation

issues.

Swish was developed on an DEC 3000 model 400/400S running OSF 2.0, using a



J300 Sound and Motion card to provide audio, and a KEY Electronics Midiator-124W

box to establish MIDI capabilities through the serial port. AudioFile [25], a trans-

parent, portable audio server written by DEC at Cambridge Research Laboratory,

was used to interface with the J300 Sound and Motion card. Ak [32], also written at

CRL, serves as the interface between AudioFile and Tcl.

Since the Alpha was a relatively new architecture at the time of development,

many languages available on other platforms had not been ported yet. At the time,

Tcl/Tk was the only free, available, extensible, interpreted, high level language with

easy access to a widget set. Furthermore, the designer of Tcl/Tk did not orient

his language towards proving a theoretical point about a new and improved way of

specifying computation or a better method for creating data abstractions. Instead,

he realized that developers of contemporary applications need to be able to specify

interaction with the user at a high level. Because Tcl/Tk was designed to support

interesting interactive behavior, it has a powerful combination of features that are

missing in many popular languages. Its self-inspecting facilities made the current

state of the interpreter available to scripts, and aided the development of a prototype

of a graphical task browser and editor. Its support for variable traces made it possible

for Tcl variables to asynchronously control task parameters. Its concept of tags raised

an interesting idea about how to organize dynamically created structures, like notes or

scores. Finally, the "configuration variables" routines enabled the user to configure an

audio task using the same intuitive syntax used to configure a Tk widget. However,

because it is a scripting language, it lacks several important properties, including

incremental compilation, lexical scope, and a typing system, that can be found in

more abstract and theoretical languages. In chapter five, we discuss the potential

utility of incremental compilation and a typing system for an application like swish,

and consider several appropriate languages that may be available in the near future

on the platform in question.

In recent years, our conception of the nature of a computer has started to change.

Users are beginning to expect to be able to view, edit, and communicate data rep-

resenting a variety of media at a high level. One possible outcome of this is that



the computer music community will be greatly broadened, as more people will have

access to the tools needed to investigate this form of art. However, another possi-

bility is that audio will be incorporated into multimedia systems as merely another

form of interaction, and play a "voice-mail" kind of role, deriving its purpose and

motivation from video, graphics, and networking applications, rather than having

any independent meaning. It is crucial that the computer music community influence

the path that is being taken, by exporting the tools that they have developed to

an audio environment accessible to the general computer community. In chapter 6,

we hypothesize about the roles that audio might play in a typical computer system

in the near future, and conclude that portability will be an essential feature in any

successful development environment for handling audio.



Chapter 2

Related Work

The history of languages and tools for specifying computer music is incredibly exten-

sive. It seems that almost every concept studied in computer science, from context

free grammars [20], Petri nets [19], and Markov models [29, section 5.5], to expert

systems [23], neural networks, and genetic algorithms [21], has been the basis for

some algorithmic composition, sound synthesis technique, or musical listening tool.

However, many of these projects have been implemented by developing stand-alone

applications, making it impossible to work with them in an environment where all of

these mechanisms can interact with each other and with the outside world. To ad-

dress this issue, several special purpose languages or language extensions have been

developed that give the user high level access to a variety of algorithms for handling

both signal and note level abstractions. Here, we look at just a few of the more pop-

ular systems. Keep in mind that this is just a small sampling of a vast literature, and

that we are looking specifically at the programming model used by these packages,

and how they integrate music into the programming system as a whole, rather than,

for example, at what they have to say about the nature of musical structure.

2.1 Csound, cmusic, and the Music-N family

The Music-N family of computer music systems [34, 45] uses a two-tiered approach:

One syntax is used to describe how to produce signals or instruments given a set of



unit generators, and another is used to describe scores. The user divides the code he

writes into two parts, based on the type of the object that is being worked on. The

structure of the two-tiered approach creates a model of computation that provides

the composer with a simulation of the hardware found in a traditional music studio,

where MIDI instruments or sequencers send triggers to synthesizers and effects boxes.

Csound [44] and cmusic [29, section 3.2] are two popular members of the Music-N

family.

Csound provides the user with a powerful library of audio routines that have been

proven to be effective in computer music pieces. The parameters for the synthesis

algorithms have been tuned, over time, to give the user the correct level of control.

Also, Csound can be extended, so that new synthesis algorithms can be added as

they are discovered. Finally, its portability has helped make Csound a standard for

specifying computer music pieces. For example, there are extensive online archives

of musical compositions, specified as Csound input files. Miller Puckette, author

of MAX (discussed below), has pointed out that musical compositions should be

reproducible for decades, if not centuries. If a musical piece is specified using a

particular computer platform or is tied to a popular computer language, then the

composition will not outlive the technology or the language. MAX and Csound are

appropriate as standards for specifying computer music compositions, because they

are independent of any particular architecture or computer language. Of course, this

also means that they can not take advantage of the architecture of a given machine,

or of the abstractions available in some newly developed programming language. It

is clear, however, that portability, longevity, and availability are extremely important

features of any system that is intended for artistic use.

In [29, page 174], Moore writes

"Because the computations involved are arbitrarily complicated and
therefore arbitrarily time-consuming, programs such as cmusic do not run
in real time, which would allow them to be played by live performers like
musical instruments."

Here, there is an implication that real-time interaction is merely a question of



efficiency: if computers were fast enough, then cmusic could be used to specify in-

teractive audio applications. However, it is not at all clear how to specify real-time

temporal behavior using the programming model presented by the cmusic score lan-

guage. It is our contention that real time interaction introduces new questions about

how languages should be structured, and is not merely an issue of efficiency. Fur-

thermore, even if the proper language structure was determined, many non-audio

capabilities, such as networking, accurate scheduling, and graphical user interfaces,

would have to be added to cmusic to support different aspects of real time interaction.

Finally, developing a stand-alone audio and music system only for the specification of

computer music neglects the systems programming community, who would like to use

this technology in their applications. The Music-N family fits very cleanly into the

classic UNIX "file-oriented" philosophy: Pipelines of soundfiles and programs that

output score files are very common when writing non-realtime compositions. How-

ever, the challenges that networking, multimedia, and graphical user interfaces bring

to the UNIX world raise many interesting questions about how applications should

be structured so that modularity can be maintained as code to support new forms of

interaction is developed.

2.2 MAX

Several systems, in part as a reaction to the two-tiered approach, go to the other

extreme, and make a point of having a completely unified approach. These systems

include MAX [35] and Nyquist [11] (discussed below). MAX is a popular system for

specifying note and control level interactions, primarily through MIDI, although signal

processing facilities are available on some platforms. It distinguishes itself by using a

purely graphical interface. The user creates MAX "patches" by making connections

between "boxes." Note, however, that the data being passed between boxes is often

MIDI information, and not an audio signal. This makes the interpretation of a MAX

patch different from the interpretation of a graph that represents a patch of unit

generators, because in a MAX patch, data flows at irregular intervals through different



parts of the graph, while in a patch that represents a signal processing synthesis

algorithm, data flows continuously through the whole graph.

In a MAX patch, the connections describe how data is passed from one box to an-

other. The lines are also interpreted, however, by a set of conventions that determine

when a box is activated. For example, many boxes execute when data appears on

their leftmost input. It is also often possible to trigger execution by passing around

"bang" messages. Its intuitive graphical interface and conventions for how boxes are

executed make MAX easy to learn and independent of any particular computer archi-

tecture or programming language. Sliders, buttons, text boxes, and other important

elements of graphical user interfaces can be created easily, and can be connected to

ports controlling MIDI devices or audio processes. However, because it insists on

remaining independent of any particular environment (as described in the previous

section), it cannot easily interact with code that was not written explicitly for use as

a box in a MAX patch. Conversely, the graphical interface provides one intuitive and

high level way to manipulate MAX code and create patches. However, because MAX

insists on isolating itself, it is difficult to create and manipulate patches in any other

way.

2.3 Nyquist

Nyquist [11, 9] is another system that unifies the two tiered approach. That, how-

ever, is where the similarity with MAX ends. Nyquist extends xlisp with a set of

unit generators. However, instead of describing a patch graphically, it is described

textually, using lazy evaluation. Each unit generator is a function of several param-

eters. Some unit generators have parameters that are usually the output of another

unit generator. For example, the multiply function takes, as input, the outputs of

two other unit generators. When a multiply is defined, two other unit generators are

taken as input, and an unevaluated function is returned. In this way, patches are

built up. When a patch is finally evaluated, the remaining parameters are taken from

the "transformation environment."



This brief description may sound complicated, but the result is a level of data

abstraction and a sense of scope that makes this language very powerful. First class

functions give us the ability to manipulate sounds through the functions that describe

how the sounds are going to be generated, rather than specifying at each step how

buffers in memory should be manipulated. Lazy evaluation ensures that each of these

functions is evaluated only when the patch is completely described, and that each

function is evaluated at most once. Some of the potential as well as a few difficul-

ties offered by functional languages in general are discussed further in chapter five.

We note here, however, that specifying interactive temporal behavior and creating

a graphical representation of a program written in a functional language are both

interesting but open research problems [2, 36].

2.4 The NeXT Music Kit

The NeXT Music Kit[22] is an extension to NeXTSTEP that gives the user access to a

library of unit generators, and the ability to make patches out of them from within any

language that can link to object files, including Objective C and Common Music [42].

Objective C provides an object oriented environment, so that musical constructs, such

as notes or scores, can be described using object classes. Common Music provides

an interpreted, portable environment, so that the user can interact with the system

dynamically, and then execute his compositions later on other platforms (presumably

using a different library to generate audio). The resulting access to low level audio

patches from within a high level, complete language creates a flexible and powerful

environment. The Music Kit is part of the NeXTSTEP environment, so that the

programmer can use all of the features of that operating system when developing

applications that handle music or audio. This includes the interface builder (which

greatly simplifies the creation of graphical user interfaces), Display PostScript, and

access to the plethora of music-oriented applications that have already been created

for NeXT workstations (There is a large library of software available, partly because

NeXT workstations have been used very heavily by several centers for computer music



research, including CCRMA, Ircam, and Princeton).

Because the NeXT Music Kit is an extension to existing languages, it is easy to

use it to write applications that use audio patches and musical abstractions together

with other libraries. For example, the application kit gives the programmer access to

widgets that can be used to build a graphical user interface. This has been demon-

strated by the author's undergraduate research project grasp, the "GRAphical Synth

Patch" editor, an implementation of a program proposed in [28]. Grasp is a stand-

alone application that provides both a graphical and a textual interface to the patch

creation aspect of the Music Kit. Grasp and other Music Kit interfaces demonstrate

that, the Music Kit is amenable to a graphical representation.

The Music Kit provides reliable scheduling and extra efficiency by writing patches

directly onto the signal processing chip that comes with the NeXT workstation. In

chapter five, we will discuss the importance of incremental compilation. Note, for now,

however, that generating code to be executed on external hardware is potentially use-

ful independently of the gain in efficiency, simply because it allows us to create our

patches on the fly. [5] provides a good description of another system that dynamically

generates code for a DSP chip based on a graphical patch of unit generators. Using

a DSP chip greatly simplifies the programming model, because it automatically de-

termines the proper order of execution for the patches, and avoids several scheduling

issues that arise when patches have to be executed as separate processes or threads

(see chapter five). There are two small disadvantages to the approach taken by the

Music Kit. First, patches must written in the assembly language used by the chip.

Second, our programming model has been fixed: Our audio patches must be static,

the dataflow machine simulated by the signal processing chip can only be used to

execute audio patches, and, conversely, the audio patches can only be executed by

the dataflow machine.

Unfortunately, the Music Kit's general approach has hurt its portability and avail-

ability. It is dependent on a language (Objective C), on a platform (NeXTSTEP),

and on external hardware (the signal processing chip in the NeXT) that, because of

the status of the NeXT workstation, are no longer accessible to the typical computer



user. Although it is now possible to use Objective C on many platforms, NeXTSTEP

is only beginning to become available, while the status of the Music Kit is not clear.

The Music Kit will either have to remove its dependence on the signal processing chip,

or these chips will have to be built into more machines. This may require changes to

the programming model presented by the Music Kit, and to the way that the Music

Kit interacts with the operating system.

The importance of the longevity of an environment used to specify musical com-

positions was discussed above. Portability is also important for other reasons. The

development of the world wide web and increasingly available audio capabilities has

the potential to change the computer music community from being concentrated in

several centers of computer music research to being a large distributed network of

people who interact and dynamically exchange musical ideas and applications online.

This is only possible, however, if the applications that are developed are capable

of running on a variety of platforms. In general, users will not want to gear their

hardware or their programming environment towards getting one particular mode of

interaction with their machines highly optimized, yet they will want to have audio

and music available as an important part of a more general multimedia machine. Fur-

thermore, application developers will want to be able to use audio and music, without

being forced to limit their applications to run on a particular platform. NeXT is ad-

dressing this issue by porting NeXTSTEP to several platforms, and by creating the

OpenStep standard. If they are successful, then it is possible that, at some point, the

Music Kit will be considered to be portable. It would be interesting to see an appli-

cation change its status from being available, to being neither available nor portable,

to being portable, without ever having changed the code itself! This phenomenon un-

derlines the shades of grey involved in the question of the definition of portability, and

shows that it is really tied to our constantly changing, almost arbitrary perception of

what a computer consists of.

Smalltalk is another extensible language that has been extended for use in com-

puter music [33]. Smalltalk provides many of the language abstractions that we will

discuss as being essential. It is an interpreted, object oriented, multi-threaded lan-



guage capable of performing incremental compilations, that has been shown to be

appropriate for the development of specific musical installations [33, 46]. However,

because of its large class library, and because it takes over many of the duties of

the operating system, implementing the Smalltalk language itself requires too much

development time and code to be freely available and portable, particularly on newer,

more powerful platforms. [33], for example, describes a system based on Smalltalk

that shares many of our goals:

"The motivation for the development of IDP is to build a powerful,
flexible, and portable computer-based composer's tool and musical instru-
ment that is affordable by a professional composer (i.e., around the price
of a good piano or MIDI studio.)"

Here, we see a clear emphasis on flexibility and portability. However, by limiting

their goals and allowing themselves to rely on commercial software, by assuming that

the computer system will be configured and developed from day one with the goal of

creating a tool for a professional composer, they have made their system inaccessible

to people who are not willing to dedicate their whole computer environment to the

composition of computer music. In particular, complete versions of Smalltalk are

not expected to be available on the Alpha for at least another year. Even if a user

has access to Smalltalk, an application that relies on this language forces the user to

dedicate the whole machine to that environment. [33] has achieved the goals it set

out for itself, and has proven to be influential within the computer music community.

However, it is not the solution for the typical workstation user, who would like to

have access to audio and music as one tool in an interactive multimedia programming

environment, but is not necessarily willing to design his whole machine configuration

around this particular component. It is possible that the workstation designers will

realize that Smalltalk provides a much better development environment than Unix

and C, and that at some point, Smalltalk will be available as part of any high end

workstation that is capable of the computational power needed to handle real-time

interactive audio. For now, however, we consider these problems in the context of the

world as it exists.



Note that we are guilty ourselves of drawing a rather arbitrary line in our definition

of portable, by restricting our interest to Unix workstations. Our only justification for

this is that commonly available computers that use other operating systems are only

recently becoming powerful enough to handle sophisticated real-time interactive audio

processing. However, as time progresses, it will be important to maintain portability.

This requires that we use a small system, with no reliance on specific hardware or on

a commercial language.

2.5 VuSystem, Pacco, and Tcl-Me

Recently, several portable, real-time, interactive multimedia packages have been de-

veloped by the programming systems community, providing the ability to patch to-

gether video and graphics modules. They address many of the implementation and

scheduling issues facing the developer of an interactive audio package. They include

the VuSystem [43], Pacco [7], and Tcl-Me [16]. All of these projects were developed

in UNIX, using Tcl.

The VuSystem divides its code into "in-band code" and "out-of-band code." The

presented model of computation could be described as a client/server model: in-band

code consists of modules that run continuously in the background, responding to asyn-

chronous demands made on it by out-of-band code. Out-of-band code, responding

to user input or other external events, starts, controls, and destroys these modules.

[13] discusses similar concepts, using different terminology, from the computer mu-

sic perspective. It introduces the term "resource" for in-band code, and contrasts

it with the concept of an "instance," which is a procedure that is "independent and

isolated." An example of a resource is given by the AudioFile server [25], which runs

in the background, processing play or record requests. An example of an instance is

a procedure that plays a MIDI note: it starts up, it executes, and then it goes away,

without responding to any events that other procedures might try to give it. [13]

proposes the use of a hierarchy of modules, each module treating ones below it in the

hierarchy as resources, and the one above it as an instance. This hierarchy provides



a view of the world where control starts at the top (perhaps with the user or the

operating system), and is passed down to the lowest level, gaining more detail as it

goes down, until it reaches the output. The process can be thought of in terms of

decoding. For example, the user might push a button on a controller that sets off a

score; a sequencer will decode the reference to the score into a list of notes, and send

that list of notes to the synthesizer resource, which decodes each note into a signal,

and sends the signal to the mixer resource. This model suggests that for computer

music applications, a two level in-band/out-of-band hierarchy provides the right kind

of abstraction, but may have to be extended further.

With the VuSystem, modules automatically become active and process data as

it arrives on their input ports. The user can think of the modules as running con-

tinuously and in parallel, leaving it to the system to provide a scheduling algorithm

that supports this view. Each module makes itself available through receive and send

procedures. Receive procedures are called when data is made available to a module,

while send procedures are used to invoke the next module in the pipeline. Also, it

seems that receive and send procedures can use timestamps to determine if it is ap-

propriate for them to execute. In this fashion, as in MAX, each module can use the

status of its input ports to enforce a convention that describes when the module is to

be executed.

To contrast, modules in Tcl-Me make themselves available through an activation

procedure, and give the user the ability to specify activation through higher order

modules. In the VuSystem, modules activate themselves when data is present on

their input ports. In Tcl-Me, modules are activated, either by other modules or by

the user. The Tcl-Me approach is similar to the interaction between swish's invocation

procedures and its higher order tasks. We discuss this issue further in chapters three

and four. In particular, we will argue that the latter approach is more flexible, and

results in a more natural specification of temporal behavior.



Chapter 3

Swish

3.1 Framework

Swish was not designed just to let the user patch together unit generators, and listen

to the result. Instead, emphasis is placed on the utility of making audio processes

available in a high level language. Natural and elegant integration of the audio pro-

cesses into the high level, interactive language was the overall goal in the design of

swish's basic framework. The result is that every unit generator and audio process

can be configured using Tcl scripts. Rather than having one way of dealing with op-

erations that work on signals, and then another for operations that work on notes, the

two problems were properly defined, and then merged into the same setting. Instead

of creating a special purpose object system with its own syntax and support routines

within Tcl, we used the already standard and generalized Tk "parameter configura-

tion" routines, so that the user can interact with swish using the same syntax that

is used to create and configure widgets. With these principles in mind, the toolkit

has been structured into three layers of abstraction, each one intended as a general

purpose tool, instead of just as a means for implementing the next layer.

The first layer is the description of the types useful in a music system. A type

provides a description of a format that can be used to pass information from one task

to another. It specifies how a section of memory should be interpreted. Swish has

three types at the moment, but more could easily be added. Short buffers are buffers



of short integers, used for linear 16 bit signals. They can be sent to the speakers,

used to store audio input, or written out to disk to create standard sound files. For

more accurate, internal use, there is also support for buffers of long integers. Tasks

that operate on long buffers follow the convention that one fourth of the bits (this

will usually be one byte, however recall that the Alpha has long integers that are 8

bytes long) are considered to be after the decimal point. The buffers of long integers

provide a representation of floating point numbers that can be manipulated using

integer arithmetic. This kind of trick is extremely common in inner loops of sound

synthesis programs. Our use of it is loosely modeled after code found in Nyquist [11].

Whether or not it is truly necessary anymore, given the improved performance of

floating point arithmetic, is an interesting question. Finally, we provide support for

instances. From the point of view of the tasks, an instance is a constant double; if

the task is expecting a buffer, then it treats the constant as if it were a buffer of long

integers, where all of the elements have the same value. However, any instance can

be tied to a Tcl variable, so that every time the Tcl variable changes, the value of the

instance is changed as well, and vice versa. This enables the asynchronous control of

parameters. For example, the user can control an input parameter through a slider

widget, and the value will only be updated when the user makes a change. If the user

doesn't touch the slider, then the code will run as efficiently as if it were not there.

The importance of the proper specification of types can not be overemphasized.

The way to truly extend the domains that the system works in is to add support

for new types. A description of how memory is to be used is at the heart of any set

of unit generators. Each type should have at least one visualization and editing tool

associated with it, as well as a textual representation in Tcl. Although swish currently

emphasizes support for signals, its status as a prototype tool would be elevated to

that of a complete music and audio synthesis system simply through the addition of

note lists, filters, and envelopes as types. Later, we will see, in particular, that adding

tasks themselves as a type to the system would actually create a more powerful and

dynamic programming model.

The second layer consists of the tasks that act on the types described in the first



layer. These are the traditional unit generators. Swish currently provides support

for addition, multiplication, audio input and output, interpolation, bandpass filters,

topological-sort based apply tasks, and script tasks.

The types and tasks described above are implemented in C, using the Tcl/Tk C

API (Application Programmer's Interface). The third layer provides the graphical

and high level textual representations of the tasks and types. The textual representa-

tion of the tasks has the same high level syntax that is used to represent Tk widgets.

Currently, swish provides its own graphical representation of the tasks through a

set of browsing and editing tools. However, it would be worthwhile to investigate

incorporating the graphical representations of the tasks and types into a more so-

phisticated, previously existing browser and editor. It has already been shown that

a simple program, tkInspect [40], written independently of swish, can be used to ex-

amine and modify the current configuration of the tasks. Xf [14] and hierQuery [37]

are two possible candidates for browsing and editing tools that might be extended to

support the manipulation of swish types and tasks.

It is important to emphasize that, in a sense, we are using audio and music as an

excuse for investigating programming models, to see how well they handle side effects,

user interaction, and real time processing with different rates of control. The result-

ing model, therefore, ought to be general enough to work in other domains as well.

Examples that come to mind include scientific visualization, physical modeling, and

robotics. Support for these domains could be added, simply by creating appropriate

sets of types and unit generators.

3.2 The Task-Based Programming Model

The use of dataflow machine simulators to patch together audio processes is extremely

common. It provides an interface that dates back to the configuration of analog

synthesizers. As a simple example, frequency modulation synthesis can be described

by connecting the output of one sine wave generator (generator "A") to the frequency

(or, more commonly, phase) input of another (generator "B") [29](See Figure 3-1).



Figure 3-1: Patching together unit generators to describe FM synthesis.

In an analog world, the meaning of the line connecting the two sinusoids is com-

pletely clear: the output signal of A is used as one of the input signals for B. However,

in a computer, computation is discrete and (in this case) serial, and suddenly, the

line connecting the two sinusoids has two completely separate meanings. First, it

represents a functional dependence between the two unit generators: The buffer used

as the output of one sinusoid is to be used as the input for the other. Second, it

represents a temporal dependence between the two unit generators: Every time A

is executed, B should be executed as well. The functional dependence statically de-

scribes how data is passed, while the temporal dependence actually causes execution

to occur.

In the analog world, the temporal dependency is not an issue, since the unit

generators execute continuously and in parallel. However, if a computer tried to

simulate the patch in figure 3-1 by repeatedly executing the sinusoids as often as

possible and ignored the temporal restriction imposed by the line, it could end up

executing B before its input buffer has been updated, or it could execute A too often,

overwriting the buffer before B has had the opportunity to process it.

Many systems compensate for this discrepancy by making reasonable assumptions

about temporal dependencies based on the existence of functional dependencies. For

example, [35] describes how MAX uses the convention that one unit generator A will

cause another unit generator B to execute (a temporal dependence) if the output of A



is connected to the leftmost input of B (a functional dependency). A more common

assumption is the one made by dataflow machines. The "dataflow assumption" is

that the temporal dependencies are the same as the functional dependencies. This

means that a unit generator A will automatically be executed after each of the unit

generators that have their outputs connected to A have been executed. For example,

in Nyquist, "behaviors" (functions that produce sounds) can be combined through

function composition (using the dataflow assumption) to create other behaviors. At

some point, however, behaviors are instantiated into sounds; from that point, only

temporal relationships can be specified.

These assumptions are often, but not always, correct. If the user is trying to de-

scribe the computation of an expression, for example, then the dataflow assumption

is generally applicable. However, graphical dataflow machines have traditionally had

difficulty describing sophisticated programming constructs, such as control flow, con-

ditionals, and loops ([1] and [39, chapter 7]). Methods have been developed to handle

these situations. In particular, an apply node can be used to elegantly provide many

of these facilities [1, 6, 39]. However, when you add the issues that arise because

of the use of audio, such as time delays, user events, side effects (audio output, for

example), different rates of execution, and asynchronous interactions, the dataflow

assumption breaks down very quickly.

Rather than having the designer of the language decide when a unit generator

should execute, a language should give the programmer the ability to specify tem-

poral behavior independently of functional behavior. Then, if a particular user of

the language decides that he wants to apply the dataflow assumption, he can config-

ure the system so that every time he specifies a functional relationship, a temporal

dependency is inferred as well.

The task model gives the user this flexibility. It was originally introduced in [3],

and a description of a language that uses it is found in [4]. We describe our use of it

in the next few sections. Note that we strongly deviate from it in our use of higher

order tasks to specify temporal dependencies.



3.3 Higher Level Tasks

In programming languages terms, a task serves the same purpose as a closure: It

provides a description of a function to be executed, together with the environment

that it should be executed in. They differ from a closure, however, in the way that

the execution environment is described. The key to understanding the task model is

understanding how the tasks specify the execution environment. In other words, we

must look at how the tasks are represented in memory.

Each task has a list of input and output ports, a "timing" structure that describes

when a task executes, and the function that the task executes when it is invoked.

Based on figure one of [3], this might look like:

task 1
function

timing
ports

task 2
function

timing
ports

task n
function
timing
ports

[3] proposes that each task specify its temporal behavior through a set of con-

ditions based on the status of its input port. As discussed in chapter two, MAX

and the VuSystem use this idea, and create modules that enforce conventions that

describe when the modules should execute, based on when data becomes present on

input ports. However, the result is a two-tiered system that is not quite an accurate

representation of how a typical user thinks about the processes that occur in a com-

puter. Although it is natural to specify "task x receives its first input from port y,"

a similar temporal statement is harder to formulate. Even [3] says that "[the timing

information] is the behavior of the task seen from the outside." Therefore, we propose

that the information about the timing behavior of a task should be removed from the



description of the task itself, and that all of this information should be collected into

data structures outside of any individual task:

task 1
function
ports

task 2
function
ports

task n
function
ports

task 1
timing

task 2
timing

task n
timing

This representation captures the idea that a task actively performs operations

on memory, but is executed by some other agent. A task does not specify when it

should be executed; rather, some other task causes it to be executed. Of course, in

order for the whole process to be initiated, it is necessary for some event external to

the system to cause some task to execute. Typically, either the user or the system

clock will perform an action like pressing the mouse button or hitting a MIDI note;

execution then flows from the user, to the operating system (through an interrupt), to

the application (through an event or signal), to the task (through a procedure call).

In this sense, temporal dependencies are completely distinct from functional ones:

temporal dependencies provide a dynamic description of a chain of causality that

starts at the user and ends in a domino-like triggering of tasks, while the functional

dependencies provide a static description of where in memory the tasks should read

from and write to when they are executed.

In swish, each task has an invocation procedure that can be executed by sending

a command consisting of the name of the task, followed by "invoke." Rather than

having a single system-wide data structure containing all of the temporal dependencies



for all of the tasks, some of the dependencies are represented as callbacks for events

using Tcl's bind command, while others are implemented through the use of special

higher order tasks. For example, the "dataflow" task contains a dependency graph.

When invoked, it uses a topological sort [8, pages 485-488] of the graph to invoke each

of the tasks in the graph in an order that respects the dependencies. Since this is

precisely the behavior that is desired when describing an expression, the dataflow task

is used quite frequently. However, other models of temporal behavior could easily be

implemented as well.
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Figure 3-2: The graphical representation of FM synthesis in swish. Note that there
are two graphs, one for temporal dependencies, and one for functional dependencies.

For example, a metronome task might invoke an FM task at regular intervals,

to update the buffers read by the speakers. Petri nets [19] and Markov models [29,

section 5.5] have both been found effective for specifying the algorithmic composition

of computer music. Higher order tasks are powerful abstractions, partly because they
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are allowed to depend on delays or on user interaction. In swish, each of these exam-

ples could be implemented as a task that has other tasks as parameters, and invokes

those tasks in a way that exhibits some interesting behavior. Then, we would have

three different ways of generating interesting behavior for algorithmic compositions

all available in the same environment. This would not be possible in an environment

that forced all temporal behavior to be described using the "dataflow assumption."

Finally, it would not be hard to extend the current framework, so that higher level

tasks could be completely dynamic. By adding tasks themselves to the system as

a type, we could create patches that passed tasks themselves around as data. This

means, for instance, that the dependency graph for the dataflow task could be treated

as an input port, connected to the output of some other task. The dependency graph

could then change over time, without requiring any interaction with the user.

The idea of having tasks invoke other tasks is similar to constructs found in other

languages. For example, the "apply" node in a dataflow language takes a function and

arguments as input, and invokes them. In non-procedural programming languages

like ML, "functionals" take functions as inputs, and compose them both functionally

and temporally to produce the result [31, chapter 5]. In swish, higher order tasks

perform a role similar to both of these, except that they only work in the temporal

domain.

A similar abstraction is conceivable in the functional domain. In swish, each task

keeps track of its own functional connections. The user sets aside buffers in memory,

and then configures the tasks to read from and write to specified buffers. In a more

sophisticated system, however, it would be possible to have higher order functional

tasks that were responsible for maintaining the functional relationships for a set of

tasks. This would give the system a sense of scope. Higher order functional tasks

would fill the same roll as structures in imperative languages, meta-widgets in Tcl/Tk,

and subpatches in a traditional sound synthesis application.



3.4 A Simple Example

Here, we go through a simple "sine tone" example to show how tasks are created and

how dependencies are described. In swish, tasks can be created, represented, and

manipulated both graphically and textually. For the sake of simplicity, we present

our example initially using the textual representation.

Tasks are created and configured in swish using the same intuitive syntax used to

create and configure Tk widgets. This lowers the learning curve, integrates the audio

routines into the Tcl/Tk environment very cleanly, and lets the implementor of new

tasks take advantage of Tk's support for "parameter configuration."

First, we create one buffer to hold the sine wave, and another buffer to store the

input to the speakers:

swbuffer .wave \
-numBlocks [expr int($sw-samplingRate)] \
-blockSize $sw-sampleSize

sw-buffer .b \
-numBlocks $bufferSize \
-blockSize $swsampleSize

Next, we create an oscillator task to initialize the wavetable:

sw-osc .fillWave -min 0 -max $swmaxshort -output .wave

and a phasor to go through the table:

sw-phasor .p \
-output .b \
-input .wave
-frequency \
[expr cps2pi(500, $swsamplingRate, $sw-samplingRate)]

and, finally, the speakers:

swspeaker .sl \
-input .b \
-update $update \
-lookAhead $1ookahead \
-device roomLeft

swspeaker .sr \
-input .b \



-update $update \
-lookAhead $1ookahead \
-device roomRight

Now, our memory system is completely configured. All of the functional depen-

dencies have been described. In particular, the phasor is set up to write to the same

buffer that the speakers read from. However, the temporal dependencies have not

been specified! In order to do this, we create an apply node, and configure it so that

the phasor always executes before the speakers:

set d [swdataflow .d]
$d add .p {.sl .sr}

Finally, we have to create the sine wave:

.fillWave invoke

Now, if we say

.d invoke

.p, .sl, and .sr will each be invoked, and we will hear a beep whose length is de-

pendent on the size of the buffers being used and on the sampling rate. A metronome

task could be used to keep invoking .d so that the sine tone does not stop.

The value of separating the functional dependencies from the temporal depen-

dencies can be seen even in this simple example. Although many of the functional

dependencies also appear as temporal dependencies, note that .fillWave isn't even in

the dataflow machine. This makes it possible to fill the wavetable at initialization

time, and then not have to refill it every time we want to use it. Conversely, it means

that when the wavetable is filled at initialization time, the rest of the tasks do not

get invoked. If we had used the dataflow assumption, then the system would have

assumed the phasor should be invoked every time that .fillWave is, since .fillWave is

writing to the same buffer that the phasor is reading from. The task based model

allows us to specify that .fillWave should execute independently of the rest of the

tasks, even though it is connected to them functionally.

Tcl-Me hides the existence of the buffers and instances. The programmer specifies

connections in terms of the ports associated with tasks, and Tcl-Me automatically

creates a correspondence between connections and buffers in memory. Swish is set up



so that every task, buffer, and instance is visible to the user through both a graphical

representation and a textual representation. If the above code is typed in using the

swish command line, and a graphical representation of the system is active as well,

then the graphical representation will be updated automatically as each command is

executed. Currently, we use notification procedures to enforce the correspondence.

For example, a dataflow task can be given the name of a command to execute ev-

ery time one of its parameters is changed. Typically, this command will update the

graphical representation of the task. A more elegant implementation would raise an

event every time a parameter is changed; then, any graphical representation of the

task could respond to that event. Since Tcl/Tk does not allow the user to create his

own kinds of events, an extension such as userevent [18] could be used. Alternatively,

a rule-based system, such as that provided by Rush [38], could provide an elegant so-

lution: We could enforce rules that describe how the graphical representation depends

on the state of the tasks.

1 This is the swish command line,
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editing tool. It makes the distinction between types, functional relationships, and

temporal relationships extremely clear. In one window, the functional relationships

are shown: Each task is displayed in a box, and if the output of a task writes to the

same buffer that another task reads from, then a line is drawn. The size and color

of the line indicates the type of the data that is being passed. If a task is selected,

then another window is opened to show its parameters. In particular, the temporal

connections can be viewed in our simple example by selecting the dataflow task, and

then looking at the dependency graph. In another window, we have a listing of all of

the instances of each type. Each window is completely editable, so that almost every

operation that can be done textually through the command line interface can also be

done using the graphical interface.

The swish interface illustrates that a program written using the task model can

be represented graphically as a Tcl/Tk browser, and can be represented textually

using the same interface that is used to represent Tk widgets. Because of this, the

audio modules fit very cleanly in the Tcl/Tk environment, and can interact easily with

other extensions. To demonstrate, we show how a Tk slider can be used to control the

amplitude of the sine wave in our simple example. We will also demonstrate a clean

transition from the signal rate to the control rate through the use of an asynchronous

interaction: Changing the slider will cause a Tcl variable to change; the same Tcl

variable will be the instance that is being read by a multiplication task.

First, we create the slider.

set ampControl [swinstance .ampControl]
pack [fscale .f \

-variable $ampControl \
-resolution 0.01 \
-digits 4 \
-to 1.0]

Next, we add a multiplication task to the system, to scale the signal. Note that

the input of the multiplication task is the same variable that is being controlled by

the slider.

set c [swbuffer .c \
-numBlocks [expr int($update * $sw-samplingRate)]\
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Figure 3-4: Using sliders to control the frequency and amplitude of a sine tone.

-blockSize $swsampleSize]
swmultiply .m -input2Variable $ampControl -output $c -inputl .b
.d delete .p {.sr .sl}
.d add .p .m .m {.sr .sl}
.sl configure -input $c
.sr configure -input $c

Any Tcl code executed at this point has immediate, high level access to the ampli-

tude of the sine wave through the global variable $ampControl. The simple fact that

both the signals level and the control level code are written using a single interpreter

provides a benefit that is missing in many existing packages, where the note level

code is written using one interpreter and one syntax, while the signals level code is
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written using another.



Chapter 4

Discussion

4.1 Comparison

We argued in the last chapter that modularity was an important principle in the design

of swish. Several systems exist and have been discussed that use graphical dataflow

machines to describe computation. However, here we argue that the task based model

is more powerful than any particular kind of dataflow machine, since the task model

can be used to implement them. Furthermore, the particular dataflow machine model

that has been implemented in swish allows for a clarity in the graphical representation

that is missing in other systems. Finally, swish differs from purely graphical dataflow

languages, because it can be manipulated textually as well.

Higher order tasks can be used to implement a variety of different kinds of dataflow

machines. For example, the dataflow task that swish currently supports implements

a static dataflow machine as efficiently as possible, by performing and caching the

result of a topological sort. However, a demand driven dataflow machine could also

be implemented, simply by writing a higher order "wrapper" task. The wrapper has

another task as one of its parameters. When the wrapper is invoked, it checks to see

if all of the input is present for the task it is in charge of; if not, it invokes the tasks

that are supposed to provide the data. Once all the input is present, the task can be

invoked.

Demand driven dataflow machines are useful, because they provide a graphical



language capable of lazy evaluation. To implement them properly however, some

effort must be made to handle the case where a task sends its output to more than

one other task. A naive implementation might cause the same computation to be

performed more than once, as each output would demand input from the task in

question. An efficient implementation would store the result of the computation the

first time it was demanded, and have it ready for the future. This "automatic caching"

serves the same purpose in a graphical language that assign-once variables do in a

textual language.

The other major kind of dataflow machine, data driven machines, can be imple-

mented using a similar structure. This time, the wrapper checks to see if the input is

present; if it is, then it first invokes the task that it is in charge of, and then invokes

any task that is connected to the output; if not, then it does nothing. Data driven

machines correspond naturally to the way that the analog world works. Also, unlike

demand driven dataflow machines, they don't tend to build up a large stack before

performing any computation.

All of these models are capable of handling expressions well. Given an expression,

the precomputed topological sort will be the most efficient, since it does not have the

overhead required to determine the order of execution for the tasks at runtime. In this

case, each of the dynamic approaches degenerates into an algorithm used to compute a

topological sort in linear time. However, more sophisticated programming structures

are handled differently by the three models. Conditionals provide a good basis for

examining the differences. In particular, if the expression given to a conditional is

true, then it is important that the false clause not be evaluated, because the is only

going to be thrown out.

With demand driven dataflow machines, conditionals are automatically imple-

mented efficiently. The conditional node simply evaluates the predicate, and only

makes a demand on the appropriate input.

Even though the precomputed topological sort task built into swish is static, it

can still perform conditionals efficiently. By making tasks a type, a conditional task

could be written that has an expression and two other tasks as input, and invokes the



appropriate one after evaluating the expression. This is also typically the solution

taken by data driven machines through the use of an apply node.

The advantage to the precomputed topological sort technique is that when you

look at a dependency graph, you know that data really does flow through all of it,

while when you look at a dependency graph intended for a demand driven machine, it

is not clear which parts of it are going to be executed. By bundling up the tasks into

"subpatches" that can be fed into apply nodes, the topological sort approach forces

the user to divide up the graph into basic blocks. Also, by examining the apply nodes,

it is easy to see how the execution stack is going to be built up. With a demand driven

approach, however, it is possible to have no subpatches, and have the whole program,

control structure and all, in one dependency graph. With text, indentation is used

to indicate the conditions under which any particular piece of code is executed; with

a dependency graph for a demand driven dataflow machine, however, these clues are

missing. Also, in a demand driven system, the execution stack is built up implicitly.

These objections could be applied to MAX as well. There, the order of execution

depends on the way that the dependency graph is drawn: patches are invoked from

right to left. Execution can also be caused by passing "bangs" from one patch to

another. Both of these rules obscure the temporal behavior of a patch, simply in

order to make it possible to display the behavior of the entire patch using a single

graph.

4.2 The Need for Threads

One of the advantages to developing and using your own external hardware to do sig-

nal processing is that the question of reliable scheduling can be solved independently,

and then built into the design of the chip, which runs continuouly and in parallel,

to ensure that any audio patch is executed often enough to keep the output buffers

full and avoid glitches. Unfortunately, because of our desire for portability, external

hardware was not an option. This forces us to work from within the architecture

presented by a contemporary workstation. Here, we discuss some of the options when



trying to ensure glitch-free real-time audio on a Unix machine.

When running a real-time audio process, it is necessary to execute the process

often enough to allow the process to refresh the output buffers in order to avoid

glitches. One option is to increase the size of the buffers. However, for an interactive

application, increasing the buffer size causes delays in response to user input. There

is a trade-off between the granularity of response to the user and the amount of time

the audio process has when it is invoked, as well as a tradeoff between the delay in

response to the user and the frequency with which the audio process must be invoked.

In theory, handling scheduling is the job of the operating system. Ideally, we

would like to have one light weight thread for each active patch. That way, we

could start up our Tcl interpreter, and every time a metronome task was invoked, we

could start a thread. The thread would ask the operating system to call it back at

regular intervals. Since the thread is running in the same memory space as the Tcl

interpreter, its behavior can still be controlled asynchronously by the user, since the

Tcl interpreter will be able to change the values stored in locations in memory that

the thread reads its control parameters from. However, since it is an independent

thread, it can schedule its own execution; the interpreter doesn't have to worry about

invoking it at regular intervals.

Unfortunately, real-time interrupts and multithreading was not part of the origi-

nal Unix philosophy. The designers clearly felt that threads were unnecessary, since

processes could communicate through files (The first sentence of chapter two of [24]

proclaims "Everything in the UNIX system is a file."), using pipelines when appro-

priate, and that the purpose of scheduling was to ensure that system resources were

distributed equitably when several users wanted to use the computer at the same time.

UNIX has evolved beyond this, and the developing POSIX standards will hopefully

turn it into an environment that has complete support for real-time, interactive ap-

plications. In the mean time, however, even the POSIX threads on the DEC Alpha

don't support per-thread callbacks: Both the operating system and the X windowing

system provide per-process callbacks that execute from within the main thread.

This leaves us two options. If we execute each patch in its own process, then



scheduling is easy, but interprocess communication becomes difficult. If we don't,

then interprocess communication is trivial, but we still have to address the question

of scheduling.

The first option is to create a new process every time a patch is executed. This

process executes at regular intervals, modifying its behavior according to the input it

receives on some socket. One big advantage to this approach is that patches that could

be controlled by sockets could easily be used in a distributed, networked environment.

The prime disadvantage is that in order to control a patch through a socket, we would

have to create our own protocol for interpreting the data sent across the socket, since

we would no longer be able to communicate through Tcl scripts that were executing

in the same environment. Depending on how flexible we wanted to be, we could end

up creating a complete language for our protocol.

To contrast, the AudioFile server runs in its own process, and responds to requests

made by other processes. It implements its own scheduler, so that audio output can

be reliably planned for some time in the future. By imagining extending the AudioFile

domain to include MIDI streams, or FM synthesis streams, or video playback streams,

it becomes clear that the AudioFile server could be expanded to provide scheduling

support for a complete multimedia system. AudioFile has, in effect, been forced to

implement an abstraction that should really be supplied by the operating system. It

has compensated for the lack of a scheduler in the operating system by providing its

own. Our second option is to do what AudioFile has done: have only one process,

and implement our own scheduler. The process keeps track of all requests for timed

callbacks made by any patches. However, it cannot tell the operating system about

all of them, because if it did, then the parent thread might be interrupted when it was

busy, and because the parent thread must keep track of which interrupt is associated

with which patch. Instead, the process waits until it is idle, and then figures out

which of the requests is the next one to occur. It schedules an interrupt with the

operating system for that time, and go to sleep. When the interrupt occurs, the

process will know which patch should be invoked. The problem of handling a set of

timed callback requests and dynamically determining which is the next one that is



going to occur is exactly the problem that the operating system is supposed to solve

with its scheduler. For musical applications, it is addressed in [10]. Fortunately, it is

also part of the functionality of the Tcl/Tk main loop. For now, we rely on the Tcl/Tk

main loop to handle the scheduling. But, having an system with three independently

written schedulers is clearly inelegant, and will hopefully be addressed by the POSIX

standards at some point, through per-thread (and not just per-process) interrupts.

4.3 The Need for Objects

Recently, several systems have proposed using object oriented programming models

for computer music projects [22, 33]. These systems make the point that an object

oriented system provides a facility for abstraction that is extremely important in an

environment that has to support the dynamic creation and naming of any kind of

module. Any abstraction, such as a widget or an audio task, that can be said to

"exist" in a computer, must have its state represented in memory.

Swish clearly needed support for some kind of object mechanism. From a practical

viewpoint, tasks are the bundling together of functions (invocation procedures) with

data (parameters), while instances of types (buffers and instances) are just structures

in memory. Both are amenable to being implemented as objects.

Since Tcl is not object oriented, many extensions, like swish, that require the dy-

namic creation of any kind of abstract module must provide their own special-purpose

instantiation and control facilities. This accounts for the abundance of Tcl extensions

that provide some sort of "meta-widget," "object-oriented," or "namespace" facility.

However, having a separate data encapsulation scheme for each extension makes it

more difficult for the extensions to work together. Furthermore, Tk does provide

support for the mechanisms that it uses to create and configure widgets. Since the

Tk "parameter configuration" routines seem to be the only facility for providing data

abstraction that has any chance of becoming standard, we decided to use them to

instantiate and configure swish objects. There are fairly popular packages that add

object oriented facilities to Tcl, but in the long run, none are likely to be as widely



available or as consistently supported as the mechanisms already built into Tk. Fur-

thermore, because we use Tk routines, the syntax for instantiating and configuring

swish objects is the same as for Tk widgets. This makes swish tasks easier to imple-

ment and cleaner to work with.



Chapter 5

Future Work

5.1 Incremental Compilation

One of the advantages to working in an interpreted environment is that the user has

the same power as the developer. Most commercial applications are given to the user

as an inflexible, compiled binary. An interpreted language, however, allow the user to

configure applications using the same language that the application itself was written

in. There is no longer a clear distinction between the role of the developer and the

role of the user; both are capable of extending the code at the same level. The user

can change the front end using the same tools that the developer used to create it in

the first place. Industry is gradually giving users tools and interface agents that allow

the user to configure their applications at a high level. As computer literacy increases,

people will start to challenge the business driven "developer/user" paradigm, and will

demand the ability to write scripts to interact with their applications.

The fact that code written in C can be executed at a lower level than Tcl code

introduces a small barrier between the developer and the user. The initial compilation

required to incorporate C extensions into the interpreter allows the developer to write

code that is executed using the native machine code interpreter, while the user can

only write code that is executed using the Tcl REPL (Read-Eval-Print Loop). For

example, in swish, audio tasks are implemented by the developer as an extension,

because of the need for efficiency. The user has to be able to dynamically combine



these tasks into patches. However, because of the barrier, he can only manipulate

them through the Tcl REPL. To handle this barrier, tasks have to be bundled up into

procedures that are only available to the Tcl REPL as "black boxes." The resulting

patches are not as efficient as if the patches were combined using the same language

that they were written in.

At the moment, Tcl scripts and extensions written in C are executed using two

different REPL's, one on top of the other: C code is executed by the loop implemented

by the hardware that interprets machine code, while Tcl code is evaluated by the Tcl

main loop. Code written in Tcl is distinct from code written in C in two ways: It uses

Tcl's high level syntax, and it is interpreted using using the Tcl REPL. If we could

somehow eliminate the Tcl REPL, then Tcl and C could be thought of as merely two

different syntaxes for representing the same language. That way, rather than having

code written in Tcl execute on top of code written in C, they would both execute at

the same level.

If Tcl had the ability to perform incremental or partial compilations down to

native machine code, then Tcl code would execute in the same loop that C code

executes in, and Tcl scripts could manipulate tasks much more directly. The tasks

created by the developer could be written much more cleanly, and the patches created

by the user could be implemented much more efficiently.

In the next two sections, we discuss two specific problems that arose because of

Tcl's inability to perform incremental compilation. We then discuss a few languages

that have this capability that may become available in the near future.

5.2 The Generalization Phenomenon

In the first chapter of his classic monograph [15, page 4], Dijkstra writes

"When asked to produce one or more results, it is usual to generalize
the problem and to consider these results as specific instances of a wider
class."



He goes on to say that the basis for deciding how to generalize a problem should

be how easily the correctness of the resulting code can be mathematically verified.

In doing so, he under-represents the importance of the question of efficiency. For

instance, consider a function isEven(x) that determines if x is even. This is the same

as code that determines GCD(2, x). So, is it appropriate to generalize isEven(x) into

code that computes the GCD of two integers? It is inelegant to have both isEven(x)

and GCD(x, y) in the same system, since they are redundant. If isEven and GCD

differ textually by only a small amount of code, then the resulting "cut-and-paste"

programming would violate the principle of modularity. However, it is simply very

inefficient to compute isEven(x) using GCD(2, x).

This dilemma confronted us repeatedly while designing swish. To illustrate it, we

take a closer look at the phasor inner loop.

A phasor task is at the heart of a signal synthesis system. It adds the notion of

time or state to a buffer. The code for the phasor in swish is based on code found in

Nyquist [11]. In its most basic form, it looks like this: (Recall that long integers are

really representations of floats, with SB bits after the decimal point.)

register AF_INT16 *inBuf, *outBuf;

register long wraparound = bufferSize << SB;
register AF-INT16 *bufEnd = outBuf + bufferSize;
register long phaselncrement = phasorPtr->freq * (1<<SB);
register long phase = phasorPtr->phase;

while (outBuf<bufEnd)

*outBuf++ = inBuf [phase >> SB];

phase = (phase + phaselncrement) %. wraparound;

phasorPtr->phase = phase;

This code is fairly straightforward; it just indexes through an input buffer, and

writes the result to the output buffer. Note that this code is incredibly compact,

and actually does very little on each iteration. This means that even the smallest

performance hit in the loop will be a large percentage of the time required to do each

iteration. Yet, this code is the inner loop during signal synthesis, and its efficiency



determines where the limit on how sophisticated our interactive, real-time synthesis

algorithms can be. It is clearly unacceptable to have any unnecessary code inside this

loop at all.

The problem is that this code is not nearly general enough. There are many

cases where this is almost what we want to do, but not quite. For example, swish is

supposed to support both buffers of 16 bit samples, and buffers of long integers. The

code for a phasor that works on buffers of long integers is almost the same as the

code written above, except for the declarations of the variables. Also, in the sample

code, frequency is a constant. However, if we don't also provide code that can treat

frequency as a buffer, then we can't even implement FM synthesis! Once again, the

code to do this is very similar to the sample code; we pretty much just have to change

"phaseIncrement" to "*phaseIncrement++".

These variations are necessary just to get the most basic functionality out of

the system. However, it would be easy to continue to add desirable features by

generalizing further. For instance, the buffers can be generalized into delay lines,

by turning them into arrays along with an associated index that indicates where the

beginning of the buffer is. In fact, the buffers that we are using are themselves a

generalization of the buffers found in Nyquist: Nyquist forces the buffers to be a

power of 2, so that it can use mask (&) instead of mod (%) in the inner loop when

determining if the phase has wrapped around the end of the buffer.

All of the examples of generalization that we have given so far take an input

parameter, and make the task work when that parameter has a different or more

general type. Many languages address this problem. Some, like ML [31], allow

operators to be overloaded, so that they work on many different types. They check the

type of a variable at runtime every time it is used. Some object oriented systems would

let you define a different phasor for every possible combination of input types. This

requires the programmer to write code for a different phasor for each combination

of input types. Both of these ideas, and the problems associated with them, are

discussed below in a more general context.



We would also like to generalize the functionality of the task in ways that are

not based on the types of the input parameters. For example, the sample code

determines which sample to use by rounding off to the nearest integer. Many systems,

however, provide the option of using interpolation. As another example, the phasor

task classically has an amplitude input as well. This could be implemented simply

by multiplying the output by the amplitude in the sample code. Once again, the

generalization is less efficient but more elegant and more powerful. Note also that

many of the generalizations make the original behavior available as a special case.

It should be clear that the issue at hand really is a serious one of modularity

versus efficiency, and is not just a question of bit twiddling or implementation issues.

Here, we consider the options.

Dijkstra's solution would probably be to forget about efficiency, and write the

most concise, most elegant code. For the generalizations that make the original

behavior available as a special case, that would mean replacing the special case code

with the more general, less efficient code. An example of this is found in the sample

code. In Nyquist, all of the buffers have lengths that are a power of two, so that we

can use masking instead of mod when determining if the phasor wraps around. The

swish code has been generalized, so that it works on buffers of any length. It is still

capable of working on buffers whose lengths are a power of two, but when restricted

to this kind of buffer, it is less efficient than the Nyquist code. This approach could

also be used to generalize any task that is written to operate on scalars into a task

that operates on vectors: The original, scalar case can be treated as a vector of

length one. However, the resulting code, when restricted to scalar input, will be less

efficient than the original code, because of the overhead required to test for the end

of the vector. For generalizations that switch between two kinds of similar behavior,

Dijkstra's solution forces us to put a conditional inside the loop. For example, if we

wanted to allow interpolation, we could write "if (interpolating) *outBuf++ = ...;

else *outBuf++ = ..." A conditional can be used also to handle the "mod instead of

mask" generalization as well: we could write "if the length of the buffer is a power of

two, then use mask; else use mod". This introduces a severe inefficiency because the



test will be performed during each iteration, even though the result of the test will

always be the same. However, it is one possible solution.

Well then, why not put the conditionals outside of the for loop? This could be

done by making two copies of the loop, one for the original case and one for the

generalization, and selecting the proper one. There is a very serious problem with

this approach. Before, we simply had to write one conditional for each generalization.

Now, every time we have a generalization, the number of loops that we have to write

doubles! For example, in order for the phasor to work on both buffers of 16 bit samples

and buffers of long integers, it was necessary to write two distinct (but very similar)

loops. However, in order to further generalize and make the phasor work both when

the frequency is a scalar and when it is a buffer, it was necessary to write a total

of four loops. Consider the prospect of writing 125 very similar loops, just so that

the "interpolation" task's four inputs and one output can each accept any of swish's

three types! This kind of cut-and-paste programming is inelegant and non-modular,

and creates code that can't be changed or reused.

Another option is to put the conditionals inside of the for loop, use a really good

optimizing compiler, and hope that it figures out that they can be moved outside of the

loop. There are several practical problems with this approach. First, we must verify

that the compiler that we are using actually performs this optimization. Second, there

would be an exponential blow up between the size of the source code and the size of the

object code. And, finally, in practice, some generalizations actually can't be written

elegantly as conditionals inside of the for loop, because of C's scoping laws. For

example, to change the phasor so that it operates on buffers of long integers instead

of on buffers of 16 bit samples, it is necessary to change each of the declarations in

the sample code from AFINT16 to long. This particular generalization clearly forces

us to have separate, almost identical loops for each case.

Unfortunately, there seems to be no other options when working in a traditional

programming environment. Most systems, like csound, Nyquist, or swish, handle the

situation through a combination of these possibilities, writing compact code for all but

the most critical cases. Swish, for instance, uses five very similar loops to implement



the phasor, seven for interpolation, and five for multiplication. Fortunately, the

problem is with the limitations imposed on us by our programming environment,

and not one inherent with computation. We investigate some solutions based on

changing our programming model after describing how a very similar problem arises

when trying to execute user defined patches.

5.3 Implementing Higher Order Tasks

The factor that determines if a particular synthesis algorithm described by a swish

patch can be performed in real time is the efficiency with which it is executed. As

we have seen, each task in a patch performs very fast iterations over elements of

a buffer. The reason that efficiency is even an issue is because of the number of

iterations that must be performed to produce 44,100 16 bit samples each second, and

not because of the length of each iteration. In the last section, we described some

of the difficulties that are encountered when trying to make the code inside the loop

as efficient as possible. Here, we describe efficiency issues that arise when trying to

glue loops together to execute a patch. In particular, we show that we are taking

a large performance hit because the only way that we can manipulate these loops

is to execute one after the other - we don't have access to the internal structure of

each loop, so we can't combine them at a low enough level to take advantage of our

machine's architecture.

To illustrate the problem, we examine the way that the higher order dataflow task

operates. Recall that this task performs the topological sort needed to create patches

that compute expressions.

The dataflow task maintains a dependency graph for a collection of other tasks.

Based on a "lazy evaluation" philosophy, it only performs a topological sort when it

has to, but when it does, it stores the result away for the next time it is invoked.

This means that the first time it is invoked, the dataflow task performs a topological

sort on the graph, and stores the resulting ordered list of tasks in a "cache." From

then on, every time it is invoked, the dataflow task uses the cached list to invoke the



tasks in an order that respects their temporal dependencies.

The process of computing a topological sort and then caching the result away as a

list of tasks can be thought of as a compilation process. The dependency graph spec-

ifies a program that is to be executed, while the cache specifies the same program at

a lower level that is easier for the machine to understand. Taking this line of thought

further, one could easily imagine the compilation process continuing all the way down

to the native assembly code. Unfortunately, because the invocation procedures for

the tasks that the dataflow task invokes are "black boxes," it is not possible for the

compilation process to go any further than specifying the order in which tasks can be

invoked. This is a large source of inefficiency. Not only is there the overhead required

to interpret the instructions in the cache, but we are missing out on many important,

very basic compiler optimizations. For example, a typical "pipeline" patch consisting

of a series of tasks might do something like this when executed:

#define A(x) ...
#define B(x) . . .

#define C(x) ...

for (i = 0; i<bufferSize; i++)
aOutput[i] = A(input[i]);

for (i = 0; i<bufferSize; i++)
bOutput[i] = B(aOutput[i]);

for (i = 0; i<bufferSize; i++)
cOutput[i] = c(bOutput[i]);

Clearly, a much more efficient solution would be:

for (i = 0; i< bufferSize; i++)

{
aOutput[i] = A(input[i]);
bOutput[i] = B(aOutput[i]);

cOutput [i] = C(bOutput [i]);
}

This is a large improvement, just because of the overhead associated with perform-

ing the extra, loops. We also have the more subtle, but just as substantial improvement



of being able to keep the intermediate values of our computation in the cache, if not

in registers. Rather than computing the first phase of each computation and then

storing the results away in buffers in main memory until we are ready to compute the

second phase, the improved code follows a computation all the way through, keeping

the relevant variables in registers until it is finished with them.

Unfortunately, we can't use the improved code, because there is no way to dy-

namically create it at run time. Even if we had access to A, B, and C as functions or

as cases in a switch statement, the extra overhead required to perform the function

call or switch test at every iteration would cancel out any improvement in efficiency.

Basically, all this would do is execute "for each sample, for each task, invoke task"

instead of "for each task, for each sample, invoke task."

We conclude, therefore, that there is no way to design swish so that its patches

are executed as efficiently as if they were implemented in C, because swish can only

manipulate tasks as black box procedures, and can not generate native assembly code.

5.4 Solutions

It should be clear that the ability to dynamically generate code would solve both

these problems, and would make swish much more modular and efficient. First,

the internals of each task could be implemented more efficiently and more cleanly.

Currently, each task has several sections of very similar code. When the task is

invoked, one of these sections is executed. With dynamic compilation, tasks could

make themselves available to higher order tasks through procedures that emit the

code that should be executed when the task is invoked, instead of through "invocation

procedures." These procedures could be written very concisely and cleanly: For every

generalization, we would have one conditional. For example, to support both buffers of

16 bit samples and buffers of long integers in the phasor example, the code could start

out with "if (longIntegers) emit("register long *inBuf, *outBuf"); else emit("register

AFINT16 *inBuf, *outBuf");". Furthermore, executing the emitted code would be

more efficient than executing the loops that the tasks are currently implemented with.



Second, simple optimizations could be performed on the emitted code to transform

the structure of patches from the "sequence of black boxes" to the improved code, as

described in the last section.

At the moment, the only interpreted, free, and portable languages that support

dynamic compilation are functional ones created by the programming languages re-

search community, like ML [31], Haskell, or Scheme. It might be possible to add

dynamic compilation to the Tcl/Tk environment in a way that maintains portability

across architectures, by creating a Tcl interface to the SMLNJ back end. Then, tasks

could emit intermediate code, and the SMLNJ back end would compile it down to

native machine code, and optimize it. Although SMLNJ was not available on the

platform in question when we started the implementation process, this remains an

intriquing option for the future.

Partial compilation is another, related language feature that could be used to im-

plement tasks in a more efficient and modular manner. To implement a phasor task

that takes advantage of partial compilation, we would write a function that had, as

arguments, in addition to the locations of the input, output, and frequency buffers,

parameters that indicated whether or not we should perform interpolation, whether

the input buffers and output buffers are instances, buffers of 16 bit samples, or buffers

of long integers, whether the buffers have lengths that are powers of two, and so on.

This function could be written in a concise style, without regard for efficiency. Then,

the first time a task was invoked, we could create a new function that had all of these

arguments filled in, and the language would automatically compile and optimize the

new function. Similarly, tasks could be combined by creating a new function that

invoked one task after the other; When it defined the new function, the language

would automatically compile and optimize it, so that the "straightforward" algo-

rithm described in the last section would be replaced with the "improved" algorithm.

Once again, the only interpreted, free, and portable languages that support partial

compilation are functional ones.

When the project started, there were very few functional languages that were

freely available for the Alpha. A more fundamental problem with using functional



languages is that they traditionally have had difficulty specifying I/O, user interac-

tion, and side effects. However, because of their ability to handle functions as first

class objects, support for lazy evaluation, and ability to dynamically compile down

to native assembly code, they have recently received attention by people developing

systems that, like swish, have to handle the concept of time in an elegant manner. [2]

describes a project that uses Haskell for computer animation. [36] is the beginnings

of a visual interface on top of Haskell, much in the same way that swish provides a

graphical interface to the tasks in swish. Nyquist [11] is written in xlisp, and em-

phasizes the utility of lazy evaluation. Finally, Common Music [42] adds support for

objects that represent musical abstractions in CLOS (Common Lisp Object System).

However, there are several important mechanisms built into Tcl that simplify

applications that use side effects that are not supported by these languages. First,

Tcl makes the current state of the interpreter available to scripts. For example, it is

possible to determine all currently defined procedures, the parameters for any given

widget, or the names of all global variables. This encourages the development of

graphical browsers and interface builders (like the prototype task browser and editor

that swish provides). Second, variable traces make efficient asynchronous interaction

possible, and were used in swish to ease the transition from the signals level to the

note level. Third, Tcl supports the use of tags with canvas items. The concept of tags

has potential for use with audio tasks, as well. Tags can be associated with instances

or buffers, making it possible for a process to set the value of all variables whose tags

satisfy some predicate. Tags have already been found to be useful in computer music

systems [12]. A variable can receive a tag because of its lexical properties (where it

lies in the code), or because of its dynamic properties (what caused the variable to

be instantiated). They can indicate which task a variable is associated with ("I am a

parameter associated with a guitar synthesizer"), which parameter of a task the global

variable is ("I am a pitch bend parameter"), when the task was created ("I am the

fourth note in channel 3 in the notelist set off in the second section"), or why the task

was invoked ("I was activated because the user pressed MIDI note C3.") We could

extend the tag paradigm even further by suggesting the use of a database of active



widgets, tasks, and parameters. Finally, functional languages are only beginning to

support complete widgets sets like Tk at a high level. Without the ability to change

state in an imperative manner, however, it is not clear how to provide an interface

to a widget like a slider. In Tcl, the slider is implemented by maintaining a widget

record located at a fixed position in memory. Every time the user moves the slider,

the widget record is updated. This is a very natural way to represent the slider, and it

is not clear how it could be as elegantly implemented in a truly functional language,

without having to allocate a new widget record every time the slider moved. A

proponent of functional languages may argue that recklessly changing the state of

the widget record may cause problems because that widget record may "belong" to

some other part of the system. However, Tcl's variable tracing facility compensates

for this by allowing a component of an application to monitor changes made to a Tcl

variable. Before real-time interaction can be specified in a functional language, these

issues must be seriously addressed.

One final possibility is a dialect of Tcl/Tk currently under development, called

Rush [38]. Rush gives us the same interpreted, imperative approach that Tcl/Tk

has shown is extraordinarily powerful when designing applications that interact with

the user in real time, but adds to it several of the features found in functional lan-

guages, including a sophisticated rule-based system (a powerful replacement for vari-

able traces), lexical scoping, closures, types, and the ability to compile (although it

is not known if this will be dynamic). This is a potentially powerful combination

of features. First, having a rule-based system in an imperative language gives the

programmer the data protection that functional languages make available through

assign-once variables. Rules could be used to model the MIDI note abstraction accu-

rately, by allowing the user to create and configure notes using arbitrary parameter

values, but then using rules to enforce the restrictions imposed on note parameters by

the MIDI standard. For example, a rule could be used to force the pitch bend param-

eters associated with the notes on any particular channel to be the same. Any time

one of the pitch bends changed, the rule would change the pitch bend value for all of

them. Second, the absence of a typing system in Tcl forces the parameter configura-



tion routines to superficially create a special purpose convention for specifying types

inside of widgets and tasks. One problem that this causes is that typing information

is not available at the script level. Rush provides a consistent type system. This

could be used to automatically generate graphical interfaces. For example, if the user

is examining an integer, then the computer might produce a slider. However, if the

user decides to look at a dataflow task, then the system would be able to figure out,

solely from the typing information, that it should represent this particular task using

a dependency graph. This is a principle already used in existing editors/browsers like

[37], but it could be done much more elegantly if types were actually built in to Tcl.

[36] proves this point, and starts raising questions about the right way to represent

more complicated types. This is an extremely intriquing area. Some interesting ques-

tions include: What is the proper way to graphically represent an object whose type

is the Cartesian product of two other types (such as int * int), and how can types be

used to aid in the graphical creation of a function whose type is known in advance.

Rush should make it possible to begin investigating these issues, by giving us the data

abstraction capabilities of a functional language, but the basic programming style of

an imperative language, along with all of the features that make Tcl so appropriate

for real-time interaction.



Chapter 6

Conclusion

The development and expansion of the world wide web in recent years has demon-

strated that generally available desktop computers are capable of the computation

and communications bandwidth necessary to support distributed multimedia applica-

tions, and that typical workstation users are literate enough to use the technology and

are willing to support the growth of standards that allow people to interact through

a variety of media, including graphics, text, hypertext, animation, video, and audio.

The computer music community is very aware of these developments, and is respond-

ing with further research into representations of music appropriate for real-time, net-

worked installations [46]. The HyTime/SMDL standards [41] being considered by the

American National Standards Institute may provide the SGML (standard generalized

markup language) that will allow note-level descriptions of music to be passed around

on the internet through textual documents. Prof. Machover has recently proposed

the Virtual Brain Opera, an extensive, networked, musical installation to be made

available on the internet [27]. The computer music community already has an exten-

sive history of interest in real-time interaction with audio processes (see, for instance,

[26]); the transformation of the computer music community from that small group of

people with access to the required special purpose hardware to the global community

of workstation users connected through the internet will reemphasize the need for

environments that are not only capable of performing real-time audio with no special

purpose hardware, but are also easily installed, extensible, and, most of all, portable.



In particular, there are three commonly proposed ways to extend the domains that a

network, such as the internet, can operate over; it is our contention that each option

calls for an interpreted, portable, extensible, high level language.

The first option is to extend the browsers used to inspect the data being distributed

over the network. For example, documents that describe music could be distributed

over a large network if everybody that wanted to inspect musical data installed a

program on their machine that interpreted a textual representation of music. The

browser could then be configured to invoke that program every time a document in

the new format was encountered. This option clearly requires the development of

a program that can be installed by anybody who wants to have access to the new

formats, so portability and ease of installation becomes a real concern. It also assumes

that the browser is, in some sense, extensible. Perhaps the most serious drawback for

this scheme is the simple requirement that each person that wants to examine data

that represents music must be willing to take the time, disk space, and security risk

needed to install this new program on his system.

The second option is a client/server approach. To create a new standard, you

set up a server process on your own machine. Other machines can communicate

with this process using a standard network protocol, and give it any documents

that have to be interpreted. The process can then respond using another standard

client/server protocol. It might use, for example, the X window protocol to respond

with an image, or the AudioFile protocol to send back an audio interpretation of

the data. The advantage to this is that only one person (the person who designed

the representation of music) has to install the new software. Furthermore, he has

complete control over the software, and can update it at any time. The disadvantage

is that all of the computation takes place on this one machine, creating a potentially

serious bottleneck both in terms of computation and in terms of communications

bandwidth. Here, we see that an application is going to have to be written that

is capable of handling several network protocols, plus document parsing, plus, in

our example, musical abstractions. Clearly, this application calls for the modularity

provided by an interpreted, high level, extensible environment.



The final option, and perhaps the most intriquing one, describes a network that

depends on using rpc's (remote procedure calls) to interpret pieces of code, rather

than clients and servers that pass data to each other in some previously arranged,

hard-coded, domain-dependent format. At the 1994 Tcl/Tk workshop, Prof. Ouster-

hout described a network where processes passed flexible and dynamic pieces of code

to each other, rather than passing static documents that are known to be in some

arbitrary, predetermined format. Implementing this scheme would require the co-

operation of the networked community as a whole; however, once it was in place,

anybody could then extend the domains that the network could operate in. Clearly,

the main hurdle here is security. Equally clear is the importance of portability, ex-

tensibility, and availability for the interpreted language. Replacing the transmission

of domain-specific documents with the transmission of code to be executed in a se-

cured environment is similar to the way that PostScript has superceded ASCII for

the transmission of text to printers, and would make the multimedia environment a

more flexible and dynamic arena.

These possibilities for enabling audio to become an integral part of a networked

world all involve the development of a portable development environment. The main

difference lies in the question of which machines have to execute the application.

Within the next few years, the programming systems community will determine

the nature of multimedia interaction over the internet. This decision will be more

of a communal settlement into some commonly utilized solution rather than a well

thought out, deliberate decision made by a particular person or agency. The result

will be based on the popularity and general acceptance of specific portable and avail-

able applications that actually exist, rather than on the most technically or musically

appropriate solution. It is essential, therefore, that the computer music community

begin to develop an environment that makes musical constructs accessible to the typ-

ical workstation user, so that an effective approach that reveals the artistic aspects

of audio will become part of the standard interaction between people and their com-

puters, rather than one that simply adds audio as a thin layer in between the user

and already existing applications like news readers and electronic mail processors.
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