
Application Development in
A Knowledge-Based Conceptual Generator

by

Johanes Chandra Sugiono

B.S., Northeastern University (1992)
Boston, MA

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Civil and Environmental Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1995

@ Massachusetts Institute of Technology 1995. All rights reserved.

Author................................
Department of Civil and tnvxronipental Engineering

- December 8, 1994

C ertified by
Duvvuru Sriram,

Senior Research Scientist, Thesis Supervisor

-I r)
A ccepted by

Joseph M. Sussman
Chairman, Departmental Committee on Graduate Students

Application Development in

A Knowledge-Based Conceptual Generator

by

Johanes Chandra Sugiono

Submitted to the Department of Civil and Environmental Engineering
on December 16, 1994, in partial fulfillment of the

requirements for the degree of
Master of Science in Civil and Environmental Engineering

Abstract

Engineering design process can be decomposed into several stages. One of the most
important stage is conceptual design. Conceptual design provides a strong foundation on
which the subsequent design stages are executed. CONGEN (CONcept GENerator), a
conceptual design agent provides the capability of integrating knowledge which supports
the decision making process, as well as a constraint management satisfaction scheme and a
visualization tool to help the designer overcome the limitations of traditional CAD systems.

In implementing a design application on top of CONGEN, the structural engineering
domain is chosen. Structural engineering design provides a good testbed for application
development in CONGEN. The existing knowledge and the preliminary computational
support provides challenge to CONGEN as the choice platform.

The contribution of this study is to provide complete documentation support for CON-
GEN. This helps the users to successfully implement various applications. It starts by in-
troducing the users to the basic concepts and structure of CONGEN and gradually moves
toward the development of a Cabin Design application utilizing all the capabilities of CON-
GEN.

The issues addressed by this thesis are the formulation of CONGEN basic concepts in
answering the challenges of conceptual design implementation, the step-by-step approach
in developing the application, and lastly, the evaluation of CONGEN capabilities and its
future directions. In addition, this thesis also supports the basic premise that CONGEN is
a flexible system for developing design applications independent of any knowledge domain.

Thesis Supervisor: Duvvuru Sriram

Title: Senior Research Scientist

Acknowledgments

Firstly, I sincerely thank God for the chances that He has given me throughout my life.

The works that He has done for me has been amazing and miraculous.

I would like to thank my advisor, Professor Duvvuru Sriram for his support throughout

this study and giving me another shot for studying something totally new.

Thank you to Prof. Robert Logcher for the discussions on developing the application.

His quest for new ways and directions in Information Technology makes me believe that

the changes are only for the better future.

I would like to thank Jen Diann Chion for his assistance in developing the knowledge

base in an area I've never known before.

I also express my gratitude to Prof. Jayachandran, Gorti Sreenivasa-Rao, and Murali

Vemulapati for the discussions and support in finishing this thesis.

I also would like to express my thanks to PT. PAL INDONESIA for giving me the

opportunity to study at M.I.T. for two years and supporting me financially during my

years in USA.

Lastly, to all my KMK friends, the ones who believe or even do not believe in my

finishing this thesis, thank you all for the prayers.

Dedications

To my ever-loving, supportive parents and sisters in Indonesia. Thanks for believing in

me. For without them, I would not be here at all. It is my turn to take care of you all now.

To my beloved grandparents, I love you both. You are the best grandparents in the

world!!

To my guiding light and inspiration. Diany Pranata. I would not have finished this

thesis if I never met you here. You made me believe in miracles. We did it!

Contents

1 Introduction 15

1.1 M otivation . 17

1.2 O bjectives . 18

1.3 Roadmap of the Thesis 18

2 Background 21

2.1 Object Oriented Concepts 21

2.2 DICE Project 23

2.3 C O SM O S . 25

2.4 G N OM ES 26

2.5 CO PLA N . 27

2.6 CON G EN 28

2.7 How to Use this Documentation 28

2.8 Sum m ary 31

3 CONGEN Application Concepts 32

3.1 CONGEN - CONcept GENerator 32

3.2 Knowledge and Design Concepts . 34

3.3 CONGEN Product Concepts 37

3.4 CONGEN Process Concepts 38

3.5 Integrating the Concepts 40

3.6 CONGEN Application Structure 42

CONTENTS

3.7 Sum m ary .

4 Tutorial I: Getting Familiar with CONGEN

4.1 Starting a CONGEN Session

4.2 File M enu

4.2.1 CONGEN Application Management System . .

4.3 Knowledge Menu

4.4 Specifications Menu

4.5 Execute M enu

4.6 Browsers M enu

4.7 Sum m ary

5 Tutorial II: A Simple CONGEN Application

5.1 The Notation

5.2 The Problem

5.3 The Implementation

5.3.1 Preparation

5.3.2 Creating a new application

5.3.3 Creating classes and rulesets

5.3.4 Making the application

5.3.5 Creating goals and plans for the application . .

5.3.6 Executing the Synthesizer

5.3.7 Executing the Geometric Modeler (GNOMES) and show the geometry

5.4 Other Solutions to the Problem

5.5 Sum m ary .

6 Tutorial III: Building a Box

6.1 The Problem .

6.2 The Implementation

6.2.1 Preparation .

6.2.2 Creating a new application .

46

. 46

. 48

. 51

. 53

. 57

. 58

. 60

. 64

65

. 65

. 66

......... 67

. 67

. 68

. 69

. 75

..... 75

. 77

CONTENTS

6.3

6.4

6.2.3 Creating classes and rulesets

6.2.4 Making the Application

6.2.5 Creating goals and plans for the application

6.2.6 Executing the Synthesizer

6.2.7 Executing the Geometric Modeler (GNOMES) and

Other Solutions to the Problem

Summary

show

. 92

. 97

. 98

. 102

the geometry 108

. 109

. 112

7 Tutorial IV: CABIN DESIGN Application

7.1 The Problem

7.1.1 Process Flow

7.1.2 Knowledge Acquisition

7.1.3 Vocabulary

7.1.4 Geom etry

7.1.5 A nalysis .

7.2 The Implementation

7.2.1 Preparation

7.2.2 Creating a new application

7.2.3 Creating classes and rulesets

7.2.4 Making the Application

7.2.5 Creating goals and plans for the application

7.2.6 Executing the Synthesizer

114

114

115

118

121

124

129

130

130

131

132

140

140

153

159

160

7.2.7 Executing GNOMES and displaying the geometry

7.3 Summary

8 Summary and Future Work

8.1 Summary

8.2 Future Work

A REFERENCE MANUAL

A.1 Reserved Keywords

164

S164

S167

176

S176

:r

CONTENTS

A.2 Available Methods

A.3 Dynamic Methods

A.4 Application Script

B COSMOS Knowledge Base Rule in CONGEN

B.1 COSMOS Rule Grammar

B.1.1 Explanation of the Grammar

B.1.2 Comment Block

B.1.3 Rule

B.1.4 Rule Name

B.1.5 Rule Priority

B.1.6 Condition Block

B.1.7 Test Expression

B.1.8 Arithmetic Expression ...

B.1.9 Example of Condition Block.

B.1.10 Action Block

B.1.11 Example of Action Block . .

B.1.12 Inline Comment Block

B.2 Helpful hints in building and running rules in CO SMOS

C Installation, Configuration & Troubleshooting

C.1 Installation

C.1.1 How to Obtain CONGEN

C.1.2 Requirements

C.1.3 Pre-installation

C.1.4 Compiling CONGEN

C.1.5 Environment Variables .

C.1.6 Database Environment V

D Tutorial 2 & 3 Listings

D).1 TUTORIAL 2 - SIMPLE SLAB

.

ariable

198

. 19 S

: :::

177

179

183

185

185

186

187

187

187

188

188

188

189

189

190

191

191

192

195

195

195

195

196

196

196

197

CONTENTS

D.1.1 Main Listing of the rulefile Tutorial_2.rul = Alternative 1 - One Goal,

One Plan rulefile

D.1.2 Alternative 2 - One Goal, One Plan, Two Subgoals

D.2 TUTORIAL 3 - BOX APPLICATION

D.2.1 Main Listing

D.2.2 Alternative - tut3long.rul . . .

E CABIN DESIGN elements

E.1 Cabin Artifact Vocabulary

E.1.1 Structural Member Superclass .

. ,. .

E.1.2 Joint

E.1.3 Linear Members . . .

E.1.4 Area Members

E.1.5 Beams

E.1.6 Columns

E.1.7 Piers

E.1.8 Truss-member

E.1.9 Truss-system

E.1.10 Slabs

E.1.11 W alls

E.1.12 Walliopening

E.1.13 Strip-footing

E.1.14 Matifound

E.1.15 Spreadfound

E.2 Examples of CABIN Rulefiles

E.2.1 cabineff.rul

E.2.2 set-columns.rul

E.2.3 set-girders.rul

E.2.4 set girderseff.rul . . .

E.2.5 set southwalleff.rul

213

. 213

. 213

. 214

. 215

. 216

. 2 16

. 2 17

. 2 18

. 219

. 220

. 221

. 223

. 223

. 224

.. 225

. 226

. 228

. 228

. 229

. 235

. 236

. 238

198

200

202

202

209

.

.

CONTENTS

E.2.6 set _foundation-eff.rul .

E.3 CABIN calculation rulefiles .

E.3.1 Loading.rul

E.3.2 Beam.rul

E.3.3 Column.rul

E.3.4 Slab.rul

E.4 CABIN script

E.4.1 createcabin.c

. 241

. 261

. 261

...... 264

. 266

. 267

. 269

. 269

.
...
..
.......~.

..

List of Figures

1-1 The organization of this thesis

2-1 The roadmap of this chapter

2-2 The collaborative product development environment

3-1 The organization of this chapter.

3-2 The architecture of CONGEN and the supporting modules within its frame-

w ork .

3-3 The integrated CONGEN's product a:

3-4 CONGEN Application Architecture.

The roadmap of this chapter. .

CONGEN Main Console

QUIT Warning window

NEW Application window

RETRIEVE Application window.

DELETE Application window. .

Design Decomposition Hierarchy

GOAL EDITOR window

Product Knowledge window. .

CLASS EDITOR window.....

Rule List Selection window

Rule File EDITOR window

EDI•

• •

nd process concepts 35

.. 4 5

.. 4 7

.. 48

.. 48

.. 49

. 49

.. 50

TOR window. 54

. 55

. 55

. 56

. 57

. 5 7

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

LIST OF FIGURES

4-13 Specifications EDITOR window

4-14 GNOMES Geometric Modeler window

4-15 Synthesizer window.

4-16 GNOMES Geometric Modeler window with top and bottom covers of an

application.

4-17 Artifact Browser window.

4-18 Rulefile Browser window.

5-1 The roadmap of this chapter.

5-2 Creating Tutorial2 application

5-3 Slab Attributes entered.

5-4 CLASS EDITOR (PUBLIC) window after attributes have been entered..

5-5 createslab rule in the RULE EDITOR window.

5-6 Saving createslab Rule in the RULE EDITOR window

5-7 createslab Goal shown.

5-8 DDH Editor after everything has been entered and saved

SYNTHESIZER window after finished creating the Slab..

XTERM window after finished creating the Slab.......

GNOMES showing the Slab geometry

Other alternative solution to Tutorial_2

Other alternative solution to Tutorial2

The technique of combining a dummy plan and a goal to f

The roadmap of this chapter

Tutorial 3 Application structure.

Slab3 class attributes

Assembly class attributes

Assembly class Artifact Defaults

The createbox root goal for the application

The createiboxplan for the application.

ire a ruleset. .

.. 88

.. 90

. 93

.. 94

.. 95

.. 98

.. 99

5-9

5-10

5-11

5-12

5-13

5-14

63-1

6-2

6(3-3

6(3-4

6(3-5

6-6

6- 7

--

LIST OF FIGURES

The create.northsouth goal for the application

The create-northsouth-plan for the application

The create-north goal for the application

The DDH EDITOR window after everything has been entered

The SPECIFICATION EDITOR window after everything has been entered.

The SYNTHESIZER window with the created instance of Assembly.....

The SYNTHESIZER window after the top cover slab has been created . .

6-8

6-9

6-10

6-11

6-12

6-13

6-14

6-15

6-16

6-17

6-18

6-19

The roadmap of this chapter.

Cabin Architectural plan.

Cabin Design Application structure

The New Structural Member hierarchy

The abstraction of GAB geometry classes in CONGEN . . .

Cabin class expanded without using the Cabin-part - notice

. 115

. 116

. 119

. 122

. 127

all the parts

linked to Cabin class filling the window.

7-7 Cabin class expanded using the Cabin-part.

instances shown in the preceding figure . .

7-8 Cabin class attributes

7-9 The create-cabin goal description

7-10 The set beam-column-grid goal description..

7-11 The setcolumn goal description

7-12 The setbeams goal description

7-13 The set-girders goal description

7-14 The set-supporting beams goal description. .

7-15 The set-trusssys goal description

Cabin_part contains all the

. 134

. 135

. 142

. 143

. 143

. 144

. 144

. 145

. 145

The XTERM window showing all the rulefiles fired

The SYNTHESIZER window after every path has been traversed.

The DDH EDITOR window after every path has been traversed.

The DDH BROWSER window after create-south.Slab3 is pressed.

The GNOMES window with the box

100

101

101

102

103

104

106

S107

S107

S108

S109

S110

7-1

7-2

7-3

7-4

7-5

7-6

133..

LIST OF FIGURES

7-16

7-17

7-18

7-19

7-20

7-21

7-22

7-23

7-24

7-25

7-26

7-27

7-28

7-29

7-30

The settrusses goal description

The set-purlins goal description

The setwalls goal description

The set-north-wall goal description

The set-southwall goal description

The set-east-wall goal description

The set-westwall goal description

The setfoundation goal description

The cabin design plan description

The set beamcolumngrid plan description. . . .

The set -beams-plan description

The setwalls-plan description.

The set trusssys-plan description

The Synthesizer first pass of the Cabin Design ap

The Synthesizer beam-column grid pass of the C2

. 146

. 146

. 147

. 147

. 148

. 148

. 149

. 149

. 150

. 151

. 151

. 152

. 152

tion 154

Design aDp lication.. . 155

7-31 The Synthesizer pops out the editor for the artifact Cabin of the Cabin

7-32

7-33

7-34

7-35

Design application 156

The DDH EDITOR window. 157

The CONTEXT BROWSER window for the Context: set-columns.4 158

The SYNTHESIZER window for the Context: set trusssys.set trusssysplan. 159

The CONTEXT BROWSER window for setbeamcolumngrid.set-beam.column-grid-plan

1 60
. xU

7-36 The Geometric Modeler for Cabin configuration with 6 columns, 2 girders,

1 supporting beam, and two trusses. 161

7-37 The GNOMES window showing configuration with 4 columns, wall openings,

and mat foundation 162

7-38 The GNOMES window showing configuration with 6 columns, 3 trusses and

4 purlins . 163

A-1 The HELP window with the createcabin script entry 184

plica

bin
t.J .ll. J.

Chapter 1

Introduction

One of the most challenging tasks performed by engineers is the process of designing prod-

ucts. This task requires large amounts of domain-specific knowledge, experience, and prob-

lem solving skills. In addition to the above, the notion of the geometric structure of artifacts

comprising the product plays an important role in design. The design process is evolution-

ary and iterative in nature with increasing details being developed as the design progresses.

The process of solving a design problem typically involves six stages [52]:

1. Problem Identification - Describing of which functions the artifact should perform.

2. Specification Generation - Providing the constraints of the artifact - spatial, geomet-

rical, and interaction with other artifacts.

3. Concept Generation - Synthesizing preliminary design solutions which satisfy key

constraints.

4. Analysis - Analyzing the design alternatives generated by the former step in detail.

5. Evaluation - Narrowing down feasible design alternatives accepted by the designer's

intention.

6. Detailed Design - Refining the best possible design so that all applicable constraints

or specifications are satisfied.

The process of design itself is dual natured [11]. The heuristic nature of the design makes

the process a very good candidate for the knowledge-based application. The parameters

in designing a system are usually complex and must be selected according to the intuition,

judgment, and previous expert knowledge. Therefore, a knowledge-based design support

application is very suitable in answering the design process challenges.

In addition, as design is an open-ended problem, a vast design alternative space may be

produced which demands further process of selecting the best overall design. Sometimes,

the experience of an expert designer is not sufficient to select the best design judged from

every required criteria. The ultimate choice of a design made by an expert is usually limited

by the expert's knowledge. To extend the expert's capability in selecting the best design

satisfying all the criteria, a design support tool is needed.

At the conceptual design stage, the important task is to identify and design the artifact

to meet the designer's abstract functionality requirements. Within this scope, a system

that can support conceptual design from the initial stages is required. This system will

help the designers performing the sequential tasks of general arrangement of artifacts to

the detailed geometric structure of the artifacts. Current CAD tools require a complete

information of the artifact being created in the design process, including the knowledge and

the geometric abstractions.

However, traditional CAD tools pose limitations to the designer's capability such as the

following [17]:

* CAD systems do not have the ability to capture the essential functional intent of the

design because they are very limited in representing the required design detail.

* CAD systems' ability is focused towards representing the geometric aspects of the

artifact instead of supporting the conception.

* CAD systems dictate detailed geometric representation which limits the freedom of

conceptual design.

* The design domain geometric requirements and the CAD geometric primitives some-

times differ greatly.

1.1 Motivation

Based on the limitations and the required capabilities, CONGEN (CONcept GENera-

tor) was developed. CONGEN is a knowledge-based conceptual design support system to

help designers. CONGEN is able to represent the conceptual design space efficiently and

prune the alternatives according to the required specifications. Ultimately, CONGEN helps

produce satisfying initial product designs [17].

1.1 Motivation

The structural design process is initiated by a need for a safe and a rigid building

structure. It ends with an efficient and effective design satisfying all specifications and

constraints. The functional description of the design refers to the characteristics of indi-

vidual artifacts, such as columns, beams, shear walls, and foundations. The first stage of

the design process is the conceptual design - generating solution alternatives based on a set

of requirements. It is very crucial to provide the flexibility of accommodating the needs of

the users in this stage, and support the decision process.

The main motivation of this work is to develop a structural engineering design system

within CONGEN's integrated knowledge-base engineering system framework. Another im-

portant factor is the lack of documentation for CONGEN application development. In

order to successfully develop a full-blown application, the users must understand the basic

concepts and familiarize themselves with CONGEN by developing simple applications first

and gradually move towards building a real-world design application.. To achieve this goal,

we acknowledge a need to provide the user with complete documentation in CONGEN

implementation and CONGEN application development framework.

In addition, this thesis addresses the issue of extending and evaluating CONGEN, pri-

marily in the development of a real life application within its framework. CONGEN is

expected to fulfill the following Computer Aided Engineering goals:

* Shortening the design process time, saving time and money.

* Offering rapid response to changing environmental conditions such as budgeting, busi-

ness, social, and political.

1.2 Objectives

* Enabling effortless adaptation to architectural changes.

* Providing flexibility of dealing with new design changes generated during the design

process.

* Superior control of design errors and enhancements by applying expert knowledge to

the design criteria.

1.2 Objectives

The primary objective of this study is to develop a complete design application in

the area of structural engineering using CONGEN. The knowledge from the structural

engineering area itself is too vast to be covered in this application. In realizing this obstacle,

we decided to focus the application toward developing preliminary structural engineering

design elements. However, the basic concepts presented in this application can be applied

to more complex building structures.

To accomplish the above primary objective, we decided on the following strategy:

1. Acquire expert knowledge in the area of structural engineering from texts and inter-

views with a domain expert.

2. Develop a real-life application of integrated structural design utilizing CONGEN's

features.

3. Provide complete documentation on the implementation of CONGEN.

4. Evaluate and suggest future enhancements to CONGEN.

1.3 Roadmap of the Thesis

This thesis is organized as follows:

* Background of all the modules in CONGEN are discussed in Chapter 2.

* Basic concepts of CONGEN required to build an application within its framework and

a detailed overview of the internal structure of CONGEN are presented in Chapter 3.

1.3 Roadmap of the Thesis

* Chapter 4 gives a flavor of CONGEN's user interface and the basic interaction scheme

between CONGEN and the user in the process of application development.

* A simple application development example is the focus of Chapter 5.

* Chapter 6 broadens the scope of the simple application into more complex applica-

tion structure within CONGEN with utilization of the product-process knowledge

structure.

* Chapter 7 provides implementation details of a cabin design application. It also lists

the evolving ideas and the procedures of knowledge acquisition.

* Conclusions resulting from this study and recommendations for future work on CON-

GEN are the subjects of Chapter 8.

* Appendices overview COSMOS capabilities - which supports forward and backward

chaining, rulefiles and classes defined in the applications listed in this study, as well

as the CONGEN installation procedures.

1.3 Roadmap of the Thesis

Figure 1-1: The organization of this thesis.

Chapter 2

Background

This chapter presents a background of the concepts and modules incorporated in CON-

GEN. Starting with the object-oriented concepts, the chapter continues with an overview

of the DICE project, the birthplace of CONGEN and its modules. The subsequent sections

provide overviews of the modules used in CONGEN: COSMOS, GNOMES, and COPLAN.

Finally, a guide to use this documentation on CONGEN is provided in the last section.

2.1 Object Oriented Concepts

The object oriented paradigm is a philosophy of programming which involves the use of

objects and messages. Objects are entities that combine the properties of procedures and

data, since they can perform computation and save their own local state [48]. Messages are

sent between objects to inform the target object to perform specific operations according

to the logic of the application

Objects become unique when they each have different object ids. A unique object

contains attributes which distinguish it from other objects. The attributes consist of data

and methods that shape the object's behavior and properties. The object's methods are

summoned via message passing between the objects.

The object oriented programming concepts have many advantages, but the major ones

are that it allows reusability, is flexible in changing problem specifications, allows easy

2.1 Object Oriented Concepts

Figure 2-1: The roadmap of this chapter.

expansion and can easily model real-world concepts.

An object-oriented application design usually has the following

1. Identity. Objects in the design are unique entities which

assigned to each object.

behaviors [35]:

have a special identity

2. Classification. A group of objects with the same properties and behavior are defined

as a class. A class also functions as the template of the objects it refers to. A unique

object which belongs to a class is called an instance of the class. Classes, however

can have relationships with one another in several ways:

(a) is-a - describes the relationship when one class is a subtype of the other, for

example: a Whale is a kind of Mammal.

(b) part-of - describes the relationship when one class is a composition of the others,

for example: Wheels are part-of a Bicycle.

Chapter II OBJECT ORIENTED CONCEPTS

- identity
- classification
- polymorphism

DICE PROJECT

C CONGEN SHELL
0

N COSMOS GNOMES COPLAN
G module module module

E

N

USING THIS DOCUMENTATION

Knowledge Eng'g & End-users

I

2.2 DICE Project

3. Inheritance. This behavior allows the sharing of behaviors and properties based on

the is-a relationship. A class inherits properties of another class (parent class) when

it becomes a subclass of the parent. Moreover, the subclass can modify the properties

inherited from the parent with its own unique properties.

4. Polymorphism. Methods with the same name in two different classes inherited from

the same parent may have different behaviors. For example, the class Mammal has

a method Movement. The Mammal's subclass Whale and Cow inherit the Move-

ment method. Whale's Movement method and Cow's Movement method behaves

differently, because a Whale moves in the water while a Cow moves on the ground.

5. Reusability. Classes can easily be extended in the future by the Inheritance and

Polymorphism mechanisms.

The object-oriented methodology is a powerful modeling tool in a complex engineering

information system because of its capability in modeling real-world system. Code reusabil-

ity and system extendibility provide key advantages for using object-oriented methodology

for developing engineering information systems.

2.2 DICE Project

The engineering product process involves several stages. The success or failure of the

project, however, lies in the proper collaboration between various engineering disciplines.

The coordination task between the designers, the engineers, and the builders poses a big

challenge to the success of the process.

Recent studies have shown that a collaborative effort during the entire life cycle of

the product results in reduced development times, fewer engineering changes, and better

overall quality [45]. Figure 2-2 depicts a computer-based collaborative engineering develop-

ment environment that is being developed at MIT to address the collaborative engineering

paradigm. This environment called DICE (Distributed and Integrated environment for

Computer-aided Engineering). DICE project has the following goals[44]:

2.2 DICE Project

* Facilitating effective coordination and communication in various disciplines involved

in engineering;

* Capturing the process by which individual designers make decisions, such as what

information should be used, how to use it, and what it creates;

* Forecasting the impact of design decisions on various engineering fields;

* Providing an interactive interface to the designers for the detailed manufacturing

process or construction planning; and

* Developing design agents to illustrate the approach.

Figure 2-2: The collaborative product development environment.

DICE project was developed as a network of collaborating design agents where the

communication and the coordination of the design tasks are achieved through a global

database and a control mechanism. Several domain independent shells have been built as a

]

2.3 COSMOS

part of the DICE initiative:: COSMOS - a knowledge base system, GNOMES - a geometric

modeler, COPLAN - a constraint manager, and CONGEN - a design shell. These systems

are reviewed below.

2.3 COSMOS

COSMOS is an object-oriented knowledge base system development tool. It is geared

primarily for engineering applications. COSMOS integrates rule-based and object-oriented

design to provide a robust framework for processing and developing procedural and heuristic

knowledge [42].

COSMOS contains the following modules:

* The Object Manager module manipulates objects in-core and on disk. The module

was developed using an object-oriented database EXODUS, thus providing a per-

sistent storage. The module are responsible for the maintenance of all classes and

instances created at run time. It also provides the information exchange facilities of

rule files, classes, and instances between the user interface and the database.

* The Application Manager keeps a simple record of the information about the appli-

cations in the database. It also supports a series of functions to store and retrieve

this information.

* The Class Manager handles all the information exchange between the user interface

and the database, regarding the C++ classes defined by knowledge base developers.

* The Instance Manager takes the responsibilities of managing the instances created

by the end users. The instance manager is used mainly for setting or changing the

attribute values of an instance.

* The Rule Managers manages the operations of rule files and rules in the system. They

are different from the three managers discussed above. The names of the rule file and

the rules are stored in the data base, but the rules themselves are stored as ordinary

2.4 GNOMES

text files in the current working directory. The managers simply scan the working

directory and get all the information through the COSMOS' parsing mechanism.

* The Parser accepts and parses the input typed in the Class Editor and Rule Editor by

the knowledge engineers. As its output, the Parser generates two data structures used

by the Inference Mechanism. The first data structure is an inference network that

is used by the backward chaining (BC) mechanism. The second data structure is an

intermediate data structure which is used by the RETE network building algorithm

of the forward chaining (FC) mechanism.

* The Inference Mechanism in COSMOS supports forward and backward chaining

mechanisms in a unified framework. The forward chaining mechanism uses a modified

object-oriented RETE network algorithm which has several advantages over other

RETE implementations. The backward chaining mechanism is an object-oriented

implementation of the KAS inference network, and incorporates a Bayesian network

propagation algorithm [42].

2.4 GNOMES

GNOMES is a non-manifold geometric modeler. It is a fully functional solid modeler.

It can represent and manipulate design entities at various levels of abstraction during the

design evolution. A solid modeler is an important part of a CAD system which displays,

manipulates, and applies various useful analyses and operations, including mass property

calculations, object translations, and Boolean operations, to the design objects [21].

GNOMES was developed using the object-oriented approach paradigm. This design

enables the system to be maintained and extended easily. The object-oriented design of

GNOMES needed an implementation of an Object-Oriented Database (OODB) environ-

ment which allows concurrent access to provide flexibility for the design group. The OODB

Management System accommodates a powerful media for modeling, coordination, storage,

and manipulation of engineering information [46].

Moreover, the OODB also provides the superior capability of better design process

2.5 COPLAN

concurrency than other traditional database architectures because of its semantic content.

GNOMES exploits EXODUS OODB system capability in sharing the common data and

information with other modules, such as COSMOS, and CONGEN [16].

2.5 COPLAN

COPLAN is a constraint satisfaction module which uses the Asynchronous Teams of

Agents (ATeams) approach developed at Carnegie Mellon University. Murthy defines the

ATeams concept [30]:

"An ATeam can be described as an organization of autonomous problem-

solving agents, operating asynchronously and cyclically on shared memories."

This approach stresses on the importance of the evaluation and improvement tasks to solve

a design problem. The implementation of ATeams in COPLAN also uses the object-oriented

paradigm. This provides the flexibility and expandability of the module to model real-world

systems. CONGEN utilizes ATeams' capability to evaluate qualitative constraints, such as

the 3D relationships between objects in an application [17].

COPLAN manages the constraints generated during design generation process. These

constraints can be resource restrictions, relationships between design objects, or restrictions

due to the design context conditions [19].

To support the above scheme, the COPLAN constraint management includes:

* A constraint representation language;

* A consistency verification scheme;

* An instantiation technique for feasible solutions;

* A constraint addition handler; and

* A parametric modification manager.

2.6 CONGEN

2.6 CONGEN

In an engineering environment, geometry plays a key role through the various stages of

the product evolution. The part identification process and the fulfillment of the required

functionality of each part contribute to the initial, yet critical stage of engineering design.

Thus, a major portion of the designer's effort is spent on deriving the geometric structure

of the objects.

Though traditional CAD systems tried to work around this obstacle, their own limi-

tations restrict the designer's freedom [17]. Therefore, in order to expand the designer's

capability to meet the requirements of geometric arrangements and overall system func-

tionality, CONGEN was conceived as a design support system for the conceptual design

process.

CONGEN integrates all the base modules in the DICE system and acts as the uppermost

application layer to provide all the individual modular systems of DICE project. CONGEN

can also be used to build design agents using all the modules within CONGEN framework.

CONGEN synthesizes the design stages by using product block arrangement to achieve

the final design. The synthesis itself depends on the integration of three problem-solving

approaches: a functional decomposition, a product-oriented model, and constraint propaga-

tion approaches [17]. This integration will support the designer's flexibility and alternatives

in generating the preliminary designs.

2.7 How to Use this Documentation

As a design support system, CONGEN incorporates the domain knowledge and geo-

metric primitives needed for design. In addition, it includes an OODBMS back end. The

CONGEN architecture enables its users to define their problems in the corresponding do-

mains, and the usage of the knowledge base to solve the problems. Hence, there are two

different kinds of users in CONGEN:

1. Knowledge Engineers (KEs). The personnel who tackles the task of providing the

basic product and process knowledge and generating an application in an appropriate

2.7 How to Use this Documentation

domain.

2. End-Users (EUs). The group of people who use the application to solve specific

domain problems.

Although both roles can be played by a single person or group, we need to clarify the

difference in the two roles and what is expected from each group.

In using CONGEN effectively, KEs must know how to structure the knowledge for the

end-user. The tasks include:

1. Developing the application.

2. Defining and developing the classes.

3. Developing the rulesets.

4. Setting up the process links which includes understanding the concepts of Goals, Plans,

and Artifacts, and how they interacts with each other.

5. Setting up the relationships and geometry capability of GNOMES.

The role of the KE is very critical because the flexibility and the capability of the appli-

cation depends on the knowledge defined by the KE. If the KE hardcodes the knowledge,

then the end-user cannot generate expected alternatives from the application.

On the other hand, the end-users must be able to:

1. Define the problem clearly to the Knowledge Engineer to avoid future ambiguity of the

problem statement.

2. Provide the requirements and specifications of the problem.

3. Provide the constraints and relationships of the application parts.

4. Understand the basic concepts of:

* Classes and Rulesets

* Goals, Plans and Artifacts

2.7 How to Use this Documentation

* Synthesizer and Geometric Modeler

5. Become well-versed in navigating CONGEN's user interface.

Within these two distinct scopes, there are two parts of CONGEN structure to be dealt

with each kind of user. The Knowledge Engineers must deal with:

1. Knowledge Problem Definition,

2. Knowledge base Development, and

3. Multiple Views of Knowledge Acquisition Process.

whereas the end-users must understand the importance of:

1. End-user Problem Definition,

2. Application Flow, and.

3. Notes about CONGEN implementation.

This documentation is divided into two parts: 1) Basic concepts and implementation of

CONGEN; and 2) The tutorial samples. Both groups (i.e., KEs and EUs) are expected to

know the basic concepts of CONGEN, and perform the tutorial samples.

The tutorials are tailored to make the user fully utilize the capabilities of CONGEN in

a gradual manner. Specifically, each tutorial are organized as follows:

* Tutorial I provides an overview of CONGEN's user interface, including how to

navigate through the menus, how to start CONGEN, and how to enter values.

* Tutorial II presents a simple geometrical problem to the user and how to solve it

using CONGEN.

* Tutorial III presents an intermediate problem to the user, which includes multiple

goals and plans. This tutorial also implements basic CONGEN application structure.

* Tutorial IV elaborates on an advanced, real-world CONGEN design support appli-

cation - CABIN DESIGN.

2.8 Summary

After going through the tutorials, the users can be expected to develop their own ap-

plication based on the examples and concepts presented.

2.8 Summary

This chapter presented the overview of all the modules composing CONGEN. The

various capabilities of the modules provide a general survey of CONGEN's capabilities as

a stand-alone integrated system. The following chapter will elaborate on the important

concepts employed in CONGEN.

Chapter 3

CONGEN Application Concepts

This chapter presents an overview of the capability of CONGEN in more depth. Addi-

tionally, it also explains about different concepts used throughout CONGEN. The concepts

span from knowledge base to product and process hierarchies. Each concept is defined and

explained thoroughly in the chapter. Section 3.2, section 3.3, and section 3.4 provide the

basic structures of CONGEN's application development framework. Section 3.6 provides a

template of a CONGEN application for users who want to develop their own applications.

3.1 CONGEN - CONcept GENerator

As explained in the previous chapter, CONGEN consists of a layered knowledge-base

system. a context mechanism manager, and a friendly user interface. Specifically, CONGEN

combines together the capabilities of:

* Knowledge Representation. The CONGEN design environment integrates to-

gether the knowledge-intensive nature of engineering process and the judgments made

according to the knowledge. This knowledge contains the design products, the design

processes, and the interrelationships between products and processes [17]. CONGEN

provides the design knowledge representation scheme, maintains the design alterna-

tives, and supports design as a synthesis process.

3.1 CONGEN - CONcept GENerator

Figure 3-1: The organization of this chapter.

* Visualization Support. CONGEN provides the capability of supporting form

evolution and the visual interface to the designer. This is done via GNOMES, the

non-manifold geometric modeler.

* Problem Solving Support. CONGEN incorporates various problem solving ap-

proaches, such as top-down refinement, bottom-up reasoning, constraint propagation,

etc. COSMOS, the object-oriented expert system shell, and COPLAN, a constraint

satisfaction framework contribute to this capability.

* Database Support. CONGEN was built on a robust object database system

provided by the University of Wisconsin, Madison (EXODUS). EXODUS provides

facilities for persistency and maintenance of design data, alternatives and histories,

etc.

The architecture of CONGEN with all the modules is shown in figure 3-2

KNOWLEDGE AND DESIGN CONCEPTS

Chapter III
OVERVIEW OF CONGEN

IMPLEMENTATION

Visualization, Knowledge-base, etc.

PUTTING CONCEPTS TO WORK:

CONGEN APP. STRUCTURE

3.2 Knowledge and Design Concepts

Figure 3-2: The architecture of CONGEN and the supporting modules within its framework

3.2 Knowledge and Design Concepts

A definition of the design can be found in [52]:

"Design involves specifying a description of an Artifact(s) satisfying con-

straints arising from a number of sources by utilizing diverse sources of knowl-

edge."

Understanding the concept of design is very essential in performing engineering tasks. While

engineering design essentially maps a function to a physical structure, there are many other

aspects involved in the design process.

An expert usually has enough knowledge to direct the pruning of many search space

branches into a single one which is most feasible and requirement-satisfying. This task

becomes more complex as A relationship between the design space, the knowledge base,

and the design process which departs from this analogy, is as follows:

"A design process operation such as refinement, patching, or optimization

may generate a new point in design space from one or more old ones;...may

CONGEN

Representation User Interfaces
Product Model Context Management Top-down refinement
Process Model Symbol-form mapping Bottom-up support

COSMOS GNOMES CBR

Forward Chaining Geometric Enginet.............................. a_ 0. 04. 088......
Backward Chaining COPLAN
Object Interfaces

Object Interfaces Constraint Management (Asynchronous Teams)
..... ii wifl ol l ne a. :....... a 0.. a sen l nn ee mliI lIiIes ail~lgili 0.u6.... mmom co

Object Oriented Database Management System (EXODUS)

Query Management Persistency Data Model

3.2 Knowledge and Design Concepts

involve creating new instances of design object classes from the design knowledge

base [52]".

CONGEN is a knowledge-based design tool which provides support for three design

steps of:

* Identifying the design task - the user side of design.

* Configuring and instantiating the design process model - CONGEN.

* Implementing and evaluating the design process model - CONGEN Knowledge-Based

Expert System.

Legend

sub-part zero or more

- mub-class directed link

Figure 3-3: The integrated CONGEN's product and process concepts.

In representing the knowledge, CONGEN utilizes COSMOS knowledge-based system.

COSMOS provides the flexibility to represent the knowledge via if-then rules. Before contin-

uing with CONGEN's design concepts, it is important to define some of the basic concepts

of knowledge base implemented in COSMOS, they are:

3.2 Knowledge and Design Concepts

* RULESET. The set of knowledge dependent rules acts as the decision maker of

a specific problem. The Rulesets depend on the knowledge engineer's capability

to refine and analyze different choices at distinct levels in the design process. The

Rulesets are defined as part of the COSMOS expert system shell in CONGEN. An

example of a rule is as follows:

(RULE: ProblemDeadBatteryl 10
IF
(CLASS: car OBJ: $x

((problem == "unknown") AND

((initproblem == "startingsystem") AND
(headlights == "dim")))
)

THEN (
(MODIFY (0BJ:$x
(problem " has a dead battery")
)10000 0.001)
)

COMMENT:"If the car's problem is still unknown, but we know that there is
a problem with the startingsystem and dim headlights, then we
can conclude that the car has a dead battery.")

* CONSTRAINT. The Constraints in CONGEN help in narrowing down the design

search space. All artifacts are connected to constraints, such as size, time, cost, etc.

The constraints restrict the values of design parameters. The constraints in the design

can be categorized into [13]:

1. Synthesis. Synthesis constraints are associated with individual decision making

in the design stages. Synthesis constraints apply to decisions with a finite set of

discrete choices. They are mainly within the domain of symbolic values.

2. Parametric. Parametric constraints are associated with the design parameter

which represents the numerical quality of the artifact.

3. Interaction. The design of complex systems is usually decomposed into smaller

design goals. Although they are separated, the subsystems may not be indepen-

dent. As the subsystems interact with each other, the interaction constraints

3.3 CONGEN Product Concepts

govern the process of interaction by imposing constraints on information flow,

compatibility of materials and behavior, and geometric alignment constraints.

4. Causal. The Causal constraints refer to the equilibrium equations as well as

the compatibility, constitutive, and other relationships based on the physics of

the problem.

CONGEN utilizes the Asynchronous Teams of Agents constraint management module

from COPLAN for solving constraint satisfaction problems.

3.3 CONGEN Product Concepts

Within the CONGEN environment, it is important to define a flexible means of en-

capsulating the designer's product information and requirements. The design products are

actually the mapping of functional description to concrete objects. The functional descrip-

tions provide a clear requirement of the artifact's behavior and constraints. To produce the

best design alternative, the functional descriptions have to be decomposed hierarchically.

CONGEN's main product concept is :

* ARTIFACT. All user defined classes in CONGEN are derived automatically from

the Artifact class. An Artifact is a part of the overall design system which contains

information about:

1. the functionality,

2. the form (geometry information), and

3. the behavior of the part.

An Artifact can be linked explicitly to a child Plan expanding into more subtasks in

the design process. A Plan is a sequence of design decisions which will be explained

in depth in the next section. In the event that an Artifact has parts that are not

defined explicitly by the user in the class definition, the method make-part invoked

via a rule should be used to link an Artifact to its parts.

3.4 CONGEN Process Concepts

The Artifact itself contains the information about the function, form, and behavior

of the intended design. However, an Artifact does not always represent the overall

design intention. A primitive Artifact may have its own functional description re-

gardless of the Context in which it is created. For an assembly comprising of more

than one Artifact, a design Context is needed. The design Context will involve

the more complete knowledge and decisions required to integrate different Artifacts.

The integration is needed in order to satisfy the functional descriptions of the overall

design system. Contexts integrating the concepts of product and process will be

discussed in depth in the following section.

3.4 CONGEN Process Concepts

CONGEN effects the handling of the design iteration process via the concepts of Plans,

Goals, and Specifications. The process concepts provide the knowledge required of the

synthesized Artifacts to be integrated as a functional entity. As a designer generates the

alternatives, it is very crucial that information created within the steps can be analyzed

and recorded. CONGEN's process concepts are:

* CONTEXT. This class represents the information and data generated during the

design process. For example, a new Context is created whenever a new alternative

is generated at a decision point. A Context contains the product information, such as

the Artifacts, the design relationships, the decisions, and the design Specifications.

The Contexts provide the flexibility for the designer to change from one alternative

to another and analyze them for further requirement fulfillment.

* GOAL. This class illustrates the design objective, which can also be a decision point

for a design. A Goal can:

1. expand for further design Plan;

2. create a new Artifact;

3. modify an existing Artifact / set the attributes of an Artifact; and

3.4 CONGEN Process Concepts

4. invoke a function externally, or defined within a class.

In essence, Goals represent the functions needed in the functional hierarchy. They

provide flexibility to the design to define the functions more clearly. Moreover, they

enable the user to focus the attention on the abstraction of the design (Artifacts) or

the refining of the design subtasks. To achieve the needed functionality, Goals may

have knowledge associated with them to control the decision making process.

Moreover, the Goal can have two kinds of Rulesets associated with it - the selection

or choice Rulesets and the consequence or effect Rulesets. The choice Rulesets are

built to direct the decision-making process of the choice given to the Goal, whether

it is an attribute, an Artifact, or a Plan. On the other hand, the consequence

Rulesets are built to modify or expand the process after the choice has been made.

For example, if a designer wants to provide a set of criteria for choosing a material,

the designer must first prepare the choice Rulesets. After the user makes the choice,

the consequence Rulesets will be fired.

* PLAN. This class organizes the ordered sequence of Goals as part of the design

task. Basically. a Plan's role is to associate the product information (Artifacts)

with the process hierarchy. A Plan can be associated with an Artifact or a Goal.

In addition. a Ruleset can also be attached to a Plan. This Ruleset can change

the Goal ordering according to some specific requirement. The order of the Goals inll

a Plan can also be changed manually by the user in the course of the design process.

* SPECIFICATION. This class contains all the Specifications necessary for a partic-

ular alternative. Specifications are given by the user depending on the Context in

which the Specifications are built. They are used primarily to provide user defined

constraints on the Artifact relationships, the geometric representation, and the at-

tributes. The Specification can be directed towards a specific instance of a class, or

all the instances of a class. A new Specification instance is also created whenever a

user changes an object directly through the instance editor.

3.5 Integrating the Concepts

* DECISION. This class refers to all user decisions which control the flow of the

design process. The decisions contain the design alternatives for a Goal in a specified

Context. More importantly, each decision made instantiates a new design Context

with a different design alternative. As multiple decisions spawn multiple Contexts,

CONGEN allows the user to pursue multiple design alternatives simultaneously.

3.5 Integrating the Concepts

All the concepts laid in the previous sections contribute to the building of a design

application shown in the figure 3-3.

A Context represents a specific design alternative. The Context itself consists of

design tasks (Goals) referring to the particular design alternative, design flow control

(Plans), user-defined Specifications, decisions made in the process, and the Artifacts

created within the process. Each corresponding element in the Context is needed to

satisfy the overall design functionality, such as the function, form and behavior of the

design primitives as well as the decisions and the hierarchy of the design process.

The Contexts are managed through the Synthesizer. The Synthesizer allows a set of

Specifications or problem-specific constraints navigate through different satisfying design

alternatives or solutions. After defining all the domain knowledge, the Synthesizer also acts

as the driving engine to pursue the choices based on the given knowledge.

One simple example is the process of building a box using CONGEN. Logically, the

sequence of tasks of building a box is to define the constraints and Specifications, build

the parts (covers), and lastly, to assemble all the parts which form a box.

This process can be synthesized as follows:

* INITIATE PROCESS

- Input constraints and initial specifications

- Create the initial assembly

* CREATE PARTS

3.5 Integrating the Concepts

- Create top-bottom covers

- Create east-west covers

- Create north-south covers

* ASSEMBLE PARTS

- Move top-bottom covers to the geometry placement

- Move east-west covers to the geometry placement

- Move north-south covers to the geometry placement

* SHOW TO USER

The preceding steps can be mapped directly onto the CONGEN concepts with some

minimal changes:

* ROOT GOAL - Create Assembly of parts

- Rulesets - Input constraints and specifications

- Rulesets - Create the initial assembly

* PLAN - CREATE PARTS (has 3 Goals)

- GOAL - Create top-bottom covers

* PLAN - Create top-bottom covers (has 2 goals)

SGOAL - Create top cover

SGOAL - Create bottom cover

- GOAL - Create east-west covers

* PLAN - Create east-west covers (has 2 goals)

SGOAL - Create east cover

SGOAL - Create west cover

- GOAL - Create north-south covers

3.6 CONGEN Application Structure

* PLAN - Create north-south covers (has 2 goals)

SGOAL - Create north cover

* GOAL - Create south cover

* Rulesets - PLACE COVERS AND SHOW GEOMETRY

- Rulesets - Move top-bottom covers to the geometry placement

- Rulesets - Move east-west covers to the geometry placement

- Rulesets - Move north-south covers to the geometry placement

The preceding example is a simple exercise in structuring the knowledge and the con-

straints to build a simple geometric form. In the following chapters, more examples will be

provided and more features of CONGEN will be presented.

3.6 CONGEN Application Structure

As explained previously, the domain knowledge in CONGEN is represented by Plans,

Goals, Artifacts, Constraints, and Functions. CONGEN was based on a formal object

model SHARED defined in [56]. These elements represent the engineering design knowl-

edge which involves mapping specified functions onto the physical structure of products or

Artifacts. Based on the complex needs of design, a model of design product and process

is thus needed to satisfy the conditions of the designer.

Modeling the design process of an application is the same as applying logical steps

in performing the tasks such as those presented in the previous section. However, the

CONGEN internal structure must also be understood in order to combine the subtasks

with the CONGEN knowledge system.

First of all, the application must define the product and process knowledge. The product

consists of the classes and the rulefiles. On the other hand, the process knowledge consists

of the Specifications, the Goals, the Plans, and the Artifacts.

To form the product knowledge, the application developer must first decompose the

final design system into smaller subsystems if applicable. For example, a box must be

3.6 CONGEN Application Structure

decomposed into covers, and covers can also be decomposed into inner and outer layer, and

so forth. The task of breaking down the final design product proves to be very essential

because the simpler the base classes, the more information can be embedded into them.

After decomposing the subclasses forming the design system, the rules must be writ-

ten. However, providing the knowledge through the Ruleset is an extremely cumbersome

task. The complexity of the application depends on the depth of the domain knowledge.

CONGEN provides freedom from limitations in the task of providing knowledge to the

process. The developer must realize that CONGEN is a conceptual design support system.

CONGEN was not created to support the detailed design of an Artifact with all the sup-

porting modules. CONGEN was geared mainly towards assisting the designers in the field

of conceptual design.

The next step is to choose a root Goal as the top level Goal to execute the Synthesizer.

The root Goal acts as the entry point into the design process. It also creates the initial

Context in which all the input from the user is created. A good naming practice for the

root Goal is to use the application purpose as the name of the root Goal. For example,

the root Goal of a bridge design application should be build-bridge, or the root Goal of a

cabin design application should be build-cabin.

The root Goal's role is usually the creation of an incomplete Artifact of the final

product class with preliminary information. Even though this practice is not required, the

application flow should start with a preliminary design system and finish with the final

design product along with detailed information. Along with the final product class, the

developer must provide another class to contain the parts created in the process.

An implementation example of the above procedure is as follows: when a box containing

six covers is instantiated, all the Artifacts in the Synthesizer window are shown with links

when they are attached using make.part method. If there are less than ten parts attached

to a class, it is still acceptable. If there are tens, or even hundreds of Artifacts attached

to a class, the Synthesizer window will be too cluttered and hard to navigate. Therefore,

a container class is defined in the Cabin Design application - "Cabinpart" class acting as

the container and entry point for all the parts attached to the "Cabin" class.

3.7 Summary

In designing the application itself, the developer must remember that Goals can be

expanded into Plans, and Plans can contain a sequence of Goals. Therefore, to create a

hierarchy of Plans and Goals, the developer must keep in mind that whenever there is more

than one Goal to be achieved, a Plan has to be used. In addition, a Plan can be derived

from a Goal to provide flexibility to the design process. Be advised that the sequence of

Goals within a task must be performed from left to right whenever they are expanded

in the Synthesizer window. An extensive example of the Goal-Plan-Artifact application

structure can be seen in figure 3-4. We suggest that the user follow the structure shown

in the figure to develop an application in CONGEN.

3.7 Summary

This chapter has given a brief introduction about the important implementation aspects

and various facilities of CONGEN. Knowledge information is represented by COSMOS'

knowledge-base system. Meanwhile, the product, and the process concepts provide the

flexibility for the users to define, solve, and give alternatives to their problems.

3.7 Summary

,-4 eq
M

4J 4.)
1.4 1.~ 4) 4)

Ii 1.4
QI 1~. ~

QI ~1.

Figure 3-4: CONGEN Application Architecture

Chapter 4

Tutorial I: Getting Familiar with

CONGEN

This chapter presents CONGEN's basic user interface. The tutorial aims to show the

users about various windows and capabilities of CONGEN. This tutorial is also tailored to

make the new user familiar with CONGEN's user interface. Moreover, section 4.2.1 gives a

detailed description on how the data and the information is managed within the framework

of CONGEN and the object-oriented database system of CONGEN.

4.1 Starting a CONGEN Session

Before starting each CONGEN session, make sure that the environment is properly

defined, such as paths, .Xresources, and the environment variables. You should refer to

Appendix B for more detailed information about setting the environment to execute CON-

GEN. In addition, you have to ensure that an EXODUS database volume is assigned to

you by your database administrator.

To start a CONGEN session:

1. Make a directory as the workspace directory for CONGEN (i.e. /congen/work)

2. Go to the directory, and issue the following command: congen

4.1 Starting a CONGEN Session

Figure 4-1: The roadmap of this chapter.

3. After a few moments, the MAIN CONSOLE window displays.

The MAIN CONSOLE window contains a window frame, a menu bar, a working

directory display, and scroll bars. Several buttons (window menus at the upper left

of window, minimize, and maximize) and a title bar are also in the window frame.

The MAIN CONSOLE window provides the ability for the users to manipulate appli-

cations, develop and edit knowledge, change specifications, execute the application.

and browse the application parts at any point in the design process.

Figure 4-2 shows the CONGEN MAIN CONSOLE window that displays after typing:

congen.

Now you are ready to start a CONGEN session. It is crucial that you go to the desig-

nated workspace directory before starting CONGEN, because CONGEN will automatically

look for the files and data it needs in the directory where it was initially executed. You

cannot edit the working directory display to change to another directory.

To end a CONGEN session, select FILE, and then QUIT. You will be asked whether

4.2 File Menu

Figure 4-2: CONGEN Main Console.

you want to save the current application or not. Figure 4-3 shows the choices that you have

at this point. Press OK if you want to disregard all the changes and exit CONGEN, or

press Cancel to save the application first.

Figure 4-3: QUIT Warning window.

4.2 File Menu

The File menu consists of five submenus. They are:

1. NEW

Choose this submenu if you want to create a new application in the database. The

name of the application must not have any space in between the words, use underline

instead, for example: An-application is a valid name, but An application is not.

Figure 4-4 shows a sample of the window. Press OK if you want to create a new

application with the designated name, or press CANCEL to cancel the process.

4.2 File Menu

Figure 4-4: NEW Application window.

2. RETRIEVE APPLICATION

This submenu activates a window showing a list of available applications in the

database. To select an application to be retrieved, press the left button on any

application name, and press OK. Otherwise, press CANCEL to cancel the process.

Refer to figure 4-5 for a view of APPLICATION RETRIEVAL window.

Figure 4-5: RETRIEVE Application window.

3. DELETE APPLICATION

4.2 File Menu

DELETE submenu will erase the designated application from the database. This

submenu will activate a window showing a list of applications in the database. To

select an application to be deleted, press the left button on any application name,

and press OK. Otherwise, press CANCEL to cancel the process. Refer to figure 4-6

for a view of APPLICATION DELETION window.

Figure 4-6: DELETE Application window.

4. SAVE

SAVE submenu will make all the changes to the active application permanent in

the database. This operation is the same as committing transactions in database

operations. Refer to figure 4.2.1 to understand how the applications and the database

interact with each other.

5. QUIT

QUIT submenu quits the application. Before you quit the application, remember to

decide whether you want to save the changes to the application by choosing SAVE or

to abort all the changes to the application.

4.2 File Menu

4.2.1 CONGEN Application Management System

CONGEN has a specific scheme of application and database organization. All applica-

tions in CONGEN are treated as objects in the database. Applications are entities within

CONGEN encapsulating a specific set of design processes. The data inside applications con-

sist of classes, goals, plans, specifications, and contexts. In addition, applications provide

a database entry point to the information contained inside, such as classes, goals, etc..

CONGEN application classes are publicly available across all applications residing

within the same database. Different applications can share classes defined in one database.

On the other hand, other information such as goals, etc. is privately held by the owner

application. The class sharing mechanism enables a group of people to have common classes

representing same kind of objects used by different applications. However, in the current

implementation of CONGEN, there is no versioning capability available for the database.

The versioning capability is needed to control the changes to the common classes.

The most important thing about the application management system is the notion

of SAVE in the FILE menu in the MAIN CONSOLE Window. Saving an application

means that the database is being updated permanently, or in other words, committing

the transactions performed up till that time. For example, when the user executes the

Synthesizer and the goal/plan creates some instances of an artifact, the instances are created

within the database. If the user wants to make the instances permanent, then the user must

hit SAVE in the FILE menu. Otherwise, the created instances are not permanently stored.

On the other hand, if the user needs to undo some of the instance creation, then the

user must not SAVE the application, not committing the changes to the database. The

user must know when and where to commit the changes to the database. Further advice

follows below.

Users are advised to SAVE the application:

* everytime a new class has been entered, provided the Synthesizer has not been exe-

cuted;

* everytime a new rulefile has been entered, provided the Synthesizer has not been

4.2 File Menu

executed;

* everytime a new goal has been entered, provided the Synthesizer has not been exe-

cuted:

* everytime a new plan has been entered, provided the Synthesizer has not been exe-

cuted; and

* everytime the user wants to save the created artifact instances after the Synthesizer

has finished executing the application.

Users are advised not to save the application whenever:

* the entered class / goal / plan needs to be changed;

* the structure of the application (goals/ plans) needs to be changed after running

Synthesizer while creating new artifacts; and

@ the Synthesizer results are not satisfying and you have to rerun the Synthesizer again.

There is a major difference between committing transaction via FILE --+ SAVE in

the MAIN CONSOLE window and in other windows such as DDH EDITOR, GOAL ED-

ITOR, or other EDITOR windows. Whereas committing a transaction makes the update

permanent in the database, SAVE in other windows means that the information entered

in the window fields is transmitted to the corresponding data structure of CONGEN. In

other words, there are two phases of saving an object before it is used in the application:

1. Saving typed entries to the data structure. This is done via SAVE submenu in

the corresponding windows. This action will be referred to as saving the objects

throughout the documentation.

2. Saving data structure permanently to the database. This is done via FILE - SAVE

submenu in the MAIN CONSOLE window. This action will be referred as saving

the application throughout the documentation.

4.3 Knowledge Menu

A Reminder: Whatever the user creates in the database depends on the commit

action. If there is an unwanted modification to the database, for example, a mistake in

Synthesizer execution, then the user must quit CONGEN to restore to the old state of the

database.

4.3 Knowledge Menu

The Knowledge menu provides the facilities to encode the knowledge necessary to solve

a CONGEN design application problem. The Knowledge menu has three selections

1. Process Definitions

The Process Definitions menu shows the window of the Design Decomposition Hier-

archy Editor (DDH). This editor shows all the important processes involved in the

application, such as goals, plans, artifacts and contexts. You can click on any of the

goals, plans, or created artifacts to access to the corresponding editor. For example

if you click on the Build-accessroad Goal entry in the DDH EDITOR window

in figure 4-7, you will be presented with the GOAL EDITOR window as shown in

figure 4-8.

In addition, to specify the root goal for the application, the EDIT submenu has an

option for entering the name of the root goal. Moreover, this submenu also provides

the ability to enter new plans and new goals to the DDH Editor.

After everything has been entered, you must press FILE and SAVE to save the

entered items into the memory. Be advised that saving the DDH entries are not the

same as committing a transaction. To make the update permanent, you must select

the entry FILE -- SAVE from the Main Console Menu.

2. Product Definitions

The Product Definitions menu has the following functions: 1) to manipulate classes

and rulesets, 2) browse the existing class and ruleset entries, and 3) compile everything

into a COSMOS library used by CONGEN. As pictured in figure 4-9, the window

4.3 Knowledge Menu

Figure 4-7: Design Decomposition Hierarchy EDITOR window.

enables the user to summon the CLASS EDITOR window by simply clicking on the

entries.

For example, when the class Slabsystemrn is clicked, then there are three selections:

* Edit

* Browse

4.3 Knowledge Menu

Figure 4-8: GOAL EDITOR window.

Figure 4-9: Product Knowledge window.

4.3 Knowledge Menu

* Delete

To choose one of the above selections, press the right button of the mouse on the item

that you want to perform. After the right button is pressed on Edit, then the CLASS

EDITOR (Figure 4-10) window is shown.

Figure 4-10: CLASS EDITOR window.

In addition to this, the FILE submenu gives the ability to create a new class, a new

rulefile, or compiling the classes into COSMOS library. The TOOL submenu enables

the user to browse the classes and rulesets.

3. Rule Definitions

The Rule Definitions menu displays the list of rules available for the application

(Figure 4-11). To modify a rule, select the name of the rule with the mouse, and

4.4 Specifications Menu

click on the button.

(Figure 4-12).

You will be brought into the RULE FILE EDITOR window

Figure 4-11: Rule List Selection window.

Figure 4-12: Rule File EDITOR window.

4.4 Specifications Menu

The Specifications menu is created to help the users set the specifications for the ap-

plication. The Specifications can be applied for a single instance of an artifact, or all

instances of a specific class. When the SPECIFICATIONS submenu is clicked on the

4.5 Execute Menu

MAIN CONSOLE window, there are two selections available:

1. Input Context

When Input Context is selected by the user, the SPECIFICATIONS EDITOR window

is shown. Users can create new specifications, add and delete specifications, or save

the specifications to the memory. As a reminder, saving the SPECIFICATIONS

EDITOR window does not mean saving it permanently into the database. To save it

permanently, you must choose FILE --+ SAVE from the MAIN CONSOLE window.

Manual entries in the fields of the window are done using the mouse to navigate

through the fields, or pressing the TAB key to move around the fields. After you

have arrived at the desired field, then type the entries as wished. An example of a

SPECIFICATIONS EDITOR window is presented in figure 4-13.

2. Geometry

Pressing the Geometry selection in this menu brings up the GNOMES Geometric

Modeler application, as shown in figure 4-14. The purpose of this menu item is to

provide the user flexibility in creating and manipulating new geometric forms.

4.5 Execute Menu

The Execute menu consists of two submenus, the Synthesizer, and the Geometric Mod-

eler. The Geometric Modeler submenu performs the same task as the Geometry in the

Specifications menu. It is provided under the Execute menu to associate GNOMES with

the Synthesizer whenever an application is executed in the Synthesizer. The SYNTHE-

SIZER window is equipped with the scroll bars to help the user navigate through the

branches of application decision tree.

For example, in figure 4-15, the goals and the plans have produced two slabs at the

bottom, which are used as the top and bottom covers of a box. To look at the real ge-

ometry form of both covers, the user selects Geometric Modeler from the Execute

menu, and executes GNOMES. Then, the user presses Display Geometry in the Ge-

ometry submenu in the SYNTHESIZER window. As soon as the selection is pressed, the

4.5 Execute Menu

Figure 4-13: Specifications EDITOR window.

parts that have been created (top and bottom covers) are shown in the GNOMES window

(Figure 4-16).

In addition to that, the SYNTHESIZER window provides flexibility for the user to:

* edit the specifications;

* add new artifacts and relationships;

* show the geometry of the artifacts; and

4.6 Browsers Menu

Figure 4-14: GNOMES Geometric Modeler window.

* run the ATeams Constraint Manager.

4.6 Browsers Menu

This menu enables the user to browse different aspects of the application, such as

artifacts, goals, plans, and rulefiles. In addition to the ability to browse, the user can also

edit the corresponding objects from the browse windows. The Browsers Menu consists of

three selections:

4.6 Browsers Menu

Figure 4-15: Synthesizer window.

4.6 Browsers Menu

Figure 4-16: GNOMES Geometric Modeler window with top and bottom covers of an
application.

1. Artifact Browser.

The Artifact Browser acts as a class browser, as pictured in the figure 4-17.

2. Design Decomposition Hierarchy (DDH) window.

Selecting this submenu summons the DDH EDITOR window. This window is the

same as the PROCESS DEFINITIONS EDITOR window from the Knowledge menu

in the MAIN CONSOLE Window.

4.6 Browsers Menu

Figure 4-17: Artifact Browser window.

3. Rulefile Browser.

The Rulefile Browser allows the user to: look at the rulefiles, create a new rulefile.

manipulate rules within a rulefile, and save the changes. A picture of the RULEFILE

BROWSER window is shown in figure 4-18.

Figure 4-18: Rulefile Browser window.

4.7 Summary

4.7 Summary

This chapter acts as a tutorial to familiarize a new user to the various windows and ca-

pabilities of CONGEN. There are some important concepts that have been presented, such

as the difference between saving an object and committing transactions to the database.

This chapter gives an overview of the user interface of CONGEN, which prepares the user

to solve a simple problem explained in the following chapter.

Chapter 5

Tutorial II: A Simple CONGEN

Application

This chapter describes a simple yet representative application in CONGEN. It also shows

how the modules and windows described in the previous chapter interact with each other.

Firstly, the chapter provides an overview of the problem and the steps necessary to accom-

plish the final design. Then it guides the user in performing each step in CONGEN while

making the user familiar with some of the unique mechanisms in CONGEN. Finally, the

chapter closes with various approaches to solve the problem.

5.1 The Notation

Before we go on to the tutorial, the notations used throughout the following tutorials

are as follows:

* the class names, attributes and instances are referred by quotes, for example "Slab"

class with attributes "s-length" and "swidth";

* the goals, plans, rulesets, and specifications are referred by italics, for example cre-

ateslab goal and design-slab-plan plan;

* the applications are referred by boldface, for example: Tutorial_2 application;

5.2 The Problem

Figure 5-1: The roadmap of this chapter.

* the windows are referred by uppercase, for example: CLASS EDITOR window;

* the user entries are referred by a combination of boldface and italics, for example

enter Slab as the name of the class; and

* the menu selections and the buttons are referred by uppercase and boldface, for

example press FILE - SAVE - first you select the FILE submenu and then choose

the SAVE submenu.

5.2 The Problem

The problem in this tutorial is to create a slab instance, create the slab's geometry, and

show the geometry in GNOMES using a simple CONGEN design application.

Generally, the steps required to solve this problem in CONGEN are:

Chapter V

5.3 The Implementation

1. Prepare the application and the database.

2. Create a new application.

3. Create classes and rulesets.

4. Make the application.

5. Create goals and plans for the application.

6. Execute the Synthesizer.

7. Execute the Geometric Modeler (GNOMES) and show the geometry.

These seven steps are typical of a CONGEN application. These steps will be used many

times throughout the following tutorial chapters. At this point, the details of the application

have not been defined yet. The following section will provide further information on how

to develop this application.

The simplest way to solve the problem poised above is to create One Goal, One Class.

One Rulefile. We only need one goal to create the slab. The dimension and geometry of

the slab is provided by the rulesets. As we are only creating one slab, we need only one

class to contain all the artifact information. This solution is the one implemented by the

tutorial.

5.3 The Implementation

The steps explained in the previous section apply generally. To be more specific, here

are the preliminary steps to solve this problem:

5.3.1 Preparation

To build an application, you must do the following:

1. Have a specialized database volume prepared by your database administrator.

5.3 The Implementation

2. Set the .cshrc environment variable in the root directory to point to your database

volume :

setenv EVOLID (the volume number of the database)
setenv CONDIR (the directory where your congen is installed)
setenv CONGENUSERAR (the directory where the class archive is installed)
setenv INCDIR (the directory where the congen include source files is placed)

3. Set the .sm-config EXODUS configuration file in the root directory to point to your

database volume: client*mount: (volume number) (port number)@(serverhost).

4. Create a special directory to run this tutorial such as: mkdir /mit/gnomes/congen/tutorial2.

5. Create a special directory to store the classes generated by this application: mkdir

/mit/gnomes/congen/ar. Note that this directory must be named ar - archive. The

CONGENUSERAR environment variable must point to this directory.

6. Change to the special directory that you have specified (/mit/gnomes/congen/tutorial2),

and run CONGEN within that directory. This directory will store the rulefiles needed

for this SLAB application.

All of these actions can be done with the help of your database administrator and

system manager. For more information about the environment variables, please refer to

Appendix C. After you have completed these tasks, you are ready to build the application.

5.3.2 Creating a new application

Before entering the classes, goals or plans, the first step is to create a new application

in the database.

In the MAIN CONSOLE window, select FILE --+ NEW. You will be presented with

the NEW APPLICATION window.

Enter: Tutorial_2 and press OK

5.3 The Implementation

Figure 5-2: Creating Tutorial_2 application.

Figure 5-2 shows the corresponding window. After you press OK, remember to commit

the transaction via FILE - SAVE in the MAIN CONSOLE window. This will ensure

the permanent storage of the new application.

* NOTE: If you have multiple applications in one database, you have to make the

classes. rulefiles into the same directory as the others. This is because the Cosmos

Makefile cannot look automatically for the corresponding parts of the applications if

they are not within the same directory.

5.3.3 Creating classes and rulesets

* Creating classes.

For this application, one class is sufficient - "Slab" class. The "Slab" class consists of

two attributes "slength" and "swidth". These attributes represents the slab length

and width.

To create the "Slab" class,

1. Select KNOWLEDGE -+ PRODUCT DEFINITIONS to pop up the PROD-

UCT KNOWLEDGE window. Then select FILE -+ NEW CLASS. After the

NEW CLASS window pops up, enter Slab for the new class name, and press

OK.

- NOTE: If you make any mistakes with the name or any window entry, place

the cursor with the window in front of the word, and press DELETE. This

5.3 The Implementation

key would not work like the BACKSPACE key. You have to move the

cursor to the front of unwanted word or letter and press the DELETE key.

2. The next thing is to edit the "Slab" class to enter the attributes needed. High-

light "Slab" class in the PRODUCT KNOWLEDGE window, and choose EDIT

with the right button.

Figure 5-3: Slab Attributes entered.

The COSMOS' CLASS EDITOR window will pop up to provide the user with

editing capability. Select EDIT --+ PUBLIC which will pop up the COSMOS'

CLASS EDITOR (PUBLIC) window. Again, select FILE --+ NEW in this

window. A new window is shown that will enable you to enter the attributes.

Enter:

dbint slength;

dbint s.width;

The result is shown in figure 5-3.

3. After everything is entered, press SAVE. The window will be cleared. After

that, press QUIT and OK in the WARNING window to return to the CLASS

EDITOR (PUBLIC) window (Figure 5-4). Press FILE -+ QUIT to go back

5.3 The Implementation

to CLASS EDITOR window. Press FILE -- QUIT in the CLASS EDITOR

window to go back to PRODUCT KNOWLEDGE window.

Figure 5-4: CLASS EDITOR (PUBLIC) window after attributes have been entered.

- NOTE: The "slength" attribute has a domain of dbint. Dbint is equivalent

to the integer data type, in addition to that, it is tailored to be persistent in

the EXODUS database. The same applies to the "s-width" attribute. The

dbint data type ensures that all the instances are kept permanently in the

database.

- NOTE: There are some reserved keywords that are used exclusively by

CONGEN classes. For example, "length" is the keyword attribute denoting

a "Geometry" class' "length" attribute. Therefore, the user cannot use the

attribute name "length" for the Slab length, "slength" is more preferable.

To avoid confusion, please refer to the list of reserved keywords in Appendix

A.

* Creating Rulefiles

There are two rules associated with this application, createslab rule to create a slab

instance with its dimensions, and create-geometry rule to set up the geometry values

of the slab. To create the rulefiles, the following steps must be taken:

1. In the PRODUCT KNOWLEDGE window, select FILE --+ NEW RULE

5.8 The Implementation

FILE submenu. Enter: Tutorial_2 and press OK. You will be presented by

the RULE FILE EDITOR window.

2. Select FILE -+ NEW RULE. When the NEW RULE window pops up, enter:

Create-slab and press OK. The RULE EDITOR window will come up as shown

in figure 5-5.

Figure 5-5: createslab rule in the RULE EDITOR window.

3. There are two ways to enter a ruleset, one is using the RULE EDITOR window,

and the other one by using a text editor i.e.: EMACS. The first ruleset createslab

is created using the RULE EDITOR window. As an exercise, the following is the

picture (figure 5-5) of the createslab rule, you should enter the values as shown

in the picture. Use TAB and mouse to guide you around. Remember that the

DEL key has to be used as explained in the previous section. After entering the

rule, you can either view the rule using the FILE -+ CHECK RULE submenu

or save the rule into the data structure using FILE - SAVE as in figure 5-6.

4. Another way to enter the rule is through the text editor such as EMACS. You

5.3 The Implementation

Figure 5-6: Saving createslab Rule in the RULE EDITOR window.

should try to type the second rule via a text editor. The detail of the second

rule is as follows:

(RULE: create-geometry 10
IF

(CLASS: Slab OBJ: $x

(((slength == $1en) AND
(swidth == $wid)) AND
(length != $1en))
)

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(16,"slabgeom2"))
(MODIFY (0BJ:$x

(plane 2)
)1000 0.001)
(MODIFY (OBJ:$x

(length $1en)

)1000 0.001)
(MODIFY (OBJ:$x

(width $wid)
)1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x set-translation(0.0,36.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x set-rotation(90.0,0.0,0.O))

5.3 The Implementation

(EXECUTE VAR:$rtn OBJ: $x show.geometryo())
)

COMMENT:"Rule to set up the slab geometry")

- NOTE: If the rule is not complicated, the user is invited to use the

RULEFILE EDITOR window in CONGEN. But if the rule consists of many

branches and actions, it is suggested that the user exploits the capability of

a text editor. Entering a complex rule in a text editor allows easier editing

if there are any errors.

5. The meaning of the two rules are as follows:

(a) The first rule states that when there is a slab created, and the parameters

are not set yet, then set the length to 40 and the width to 20.

(b) The second rule states that after a slab is created, pass the contents of the

parameters to the variables, and use the parameters to create a geometry

instance of that slab to be shown in GNOMES. After a geometry has been

created, fill the parameters of the geometry, set the translation and rotation

parameters, and show the geometry in GNOMES screen if available.

- NOTE: The syntax of the rule sets are listed in the appendix B. Notice:

(((slength == $1en) AND

(svwidth == $wid)) AND

(length ! $1en))

The usage of the third condition is to stop the rule from firing continuously,

because the first two conditions will always be fulfilled whenever the first

rule is fired. Therefore, it is crucial to stop the rule from firing by comparing

the "Geometry" class attribute, before and after the create-geometry rule

has been fired. It ensures that after the "Geometry" class attribute "length"

has been changed, the rule will not be fired again.

In addition, the conditions in a rule must be paired, for example (((cond

1) AND (cond 2)) AND (cond 3)), the expert system cannot handle

more than two conditions to be evaluated in one set of parenthesis. Refer

5.3 The Implementation

to Appendix B for more information about COSMOS rules.

5.3.4 Making the application

After all the classes and rulefiles have been saved and entered into CONGEN and the

application has been saved (transactions have been committed), then you are ready to

compile all the classes (making the application). Press FILE -+ MAKE APP to compile

the "Slab" class and make it ready for CONGEN Synthesizer execution. You can monitor

the compilation of the classes via the XTERM window. After the compilation is finished,

you should save the application again to ensure that everything has been saved permanently

in the database.

5.3.5 Creating goals and plans for the application

When the parts that make the application have been created and compiled, it is time

to enter the processes that governs the application. Firstly, select KNOWLEDGE --+

PROCESS DEFINITIONS submenu from the MAIN CONSOLE window. After it is

selected, then the Design Decomposition Hierarchy (DDH) EDITOR window will show

up. This is the window where the manipulation of goals, plans and artifacts are done.

Tutorial_2 application only has one goal - to create a slab and set the geometry of the

slab.

After the DDH EDITOR window comes up, select the EDIT - GOAL submenu that

brings up the GOAL EDITOR window. Enter the same entries as figure 5-7.

To specify the Root Goal as create-slab, select EDIT --+ SPECIFY ROOT GOAL

and enter create-slab as the root goal and press OK.

There are six important parts in the Goal Editor:

1. Name. This field denotes the name of the goal to be entered. The name cannot

have any space in between the words. We choose the name create-slab as this Goal's

name. You cannot have duplicate goal names within the same application.

2. Rulebase. This field denotes the name of the rulefile used to make a choice for

the intention of the goal. For example, if the goal has to create an artifact from

5.3 The Implementation

Figure 5-7: create-slab Goal shown.

three different classes, then the Rulebase will contain the rulesets needed to make

the choices based on the information given by previous decisions. In other words,

Rulebase contains rulesets that are fired according to the backward chaining concept.

In this case, we do not have any ruleset to choose because we only have one choice,

the "Slab" class.

3. Consequences. This field contains the name of the rulefile used to do anything

after the intention of the goal has been executed. In this case, the Tutorial2.rul

ruleset is chosen because the ruleset performs all the tasks necessary to complete the

application. It modifies the Slab attributes after the Slab instance is created, and

creates the corresponding geometry for the Slab instance. Whereas the Rulebase uses

the backward chaining, the Consequences rulesets use the forward chaining concept.

4. ParentPlan. This field is optional. A root goal doesn't have to have any value in

5.3 The Implementation

this field. On the other hand, other goals must have a value for this field because it

will ensure the synchronicity of the Synthesizer execution process and the logic of the

application. In this case, because the goal is also the root goal, then create-slab goal

doesn't have any ParentPlan.

5. Goal intended to. This field has four different choices, as explained in chapter 3:

* CREATE-ARTIFACT

* MODIFY-ARTIFACT

* EXPAND-PROCESS

* EXTERNAL-FUNCTION

The createslab goal's intention is to create a Slab artifact.

6. Choice List. This field gives alternative choices to the intention of the Goal; for

example, if the goal is intended to choose one out of three types of slabs - waffle slab,

two-way slab, and simple slab, then the class names must be listed in the fields of the

Choice List. In this case, there is only one choice for the Goal, therefore there is only

one entry in the list.

After finishing entering the values, you should save the values by selecting FILE -

SAVE in the GOAL EDITOR window, and FILE - SAVE DDH in the DDH EDITOR

window. Save the whole changes in the application by choosing FILE --+ SAVE in the

MAIN CONSOLE window.

The Tutorial-2 application only has one goal, and no plans. This is done because

there is no need to expand the process. As we know, the plan acts as an organizer of goals.

Therefore if there is only one goal, then there is no need for any plan. The connection

between goals and plans will be discussed in deeper detail in the following chapters.

5.3.6 Executing the Synthesizer

When the product and process knowledge has been entered and saved, the problem

solving mechanism should be checked by running the Synthesizer. To run the Synthesizer,

5.3 The Implementation

Figure 5-8: DDH Editor after everything has been entered and saved.

Figure 5-9: SYNTHESIZER window after finished creating the Slab.

5.3 The Implementation

Figure 5-10: XTERM window after finished creating the Slab.

select EXECUTE - SYNTHESIZER in the MAIN CONSOLE window. After it is

selected, the SYNTHESIZER window will pop up.

To run the application, press the button GOAL ::EXPAND.GOAL. Pressing that

button will create another button labeled ?SLAB. This button means that the user is

expected to continue the process of creating a Slab, as contained in the create-slab goal.

Pressing this button will create an instance of a "Slab" with the specifications enlisted

in the TutoriaL2.rul rulefile. The outcome of this process is shown in figure 5-9. To check

whether the rules have been fired correctly, refer to the XTERM window, as shown in

figure 5-10.

* NOTE: Expanding the artifact once more after it has been created will produce the

error message:

Error opening Slab.rul

The reason behind this message is that there is nothing more to be done after creating

the instance of the artifact. However, a class of artifacts can have a ruleset attached

to it to enable the user shape the basic behavior of the artifact itself. The ruleset

attached to the class may check the constraints of the class or even continue the design

process of a slab by attaching beams to it. The name of the attached ruleset must

be the same as the class added by extension .rul such as Slab.rul. In this application,

the ruleset Slab.rul is fired automatically whenever the "Slab" instance is expanded.

Since Slab.rul does not exist, the error message will be produced.

* NOTE: When running the Synthesizer, remember that whenever the Synthesizer

creates an instance of an artifact, the instance is still in the transitional memory before

ganesh: GRAPHITI -- > congen
Done with GNmanager constructor
OPENING DATABAISE DETutorial_2
Getting name : Tutorial_2
FINISHED OPENING DATABASE DBTutorial_2
S Rule-base loaded S
* Rule selected: createsleb *
SRule selected: creategeoaetry *

0

5.3 The Implementation

being committed permanently to the database. If you want to change a goal or a plan

after running the Synthesizer, you should remember to QUIT the application. If you

do not QUIT then Whatever changes made after the Synthesizer finishes running will

not be reflected in the next run of Synthesizer. In addition to that, you have to make

sure that after running the Synthesizer, DO NOT save the application because all

the instances will be made persistent. Unless you want to keep the data and instances

permanent in the database, you should QUIT the application.

5.3.7 Executing the Geometric Modeler (GNOMES) and show the geometry

The last step of the application is to execute the Geometric Modeler to see the geometry

of the slab. So far, we have defined the geometry of the slab in the create-geometry rule

as:

(EXECUTE VAR:$rtn OBJ: $x create.geometry(16,"slabgeom2"))

(MODIFY (OBJ:$x
(plane 2)

)1000 0.001)

(MODIFY (OBJ:$x

(length $1en)

)1000 0.001)

(MODIFY (OBJ:$x

(width $wid)

)1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x settranslation(0.0,36.0,0.0))

(EXECUTE VAR:$rtn OBJ: $x setrotation(90.0,0.0,0.0))

(EXECUTE VAR:$rtn OBJ: $x show.geometryo())
)

COMMENT:"Rule to set up the slab geometry")

This information means that:

1. Create an instance of "Geometry" of the artifact with the name "slabgeom2". Any

name for the instance is possible.

2. Set the attribute values of the geometry in the XY plane (2). In addition, also set

the "length" and "width" attribute of the "Geometry" the same as the "Slab"'s.

5.3 The Implementation

Figure 5-11: GNOMES showing the Slab geometry.

3. Translate the created geometry 0.0 in the X axis, 36.0 in the Y axis, and 0.0 in the Z

axis.

4. Rotate the created geometry 90.0 degrees w.r.t X axis, 0.0 degrees w.r.t Y axis, and

0.0 degrees w.r.t Z axis.

For more information about the Geometry operations, refer to Chapter 7 Section 1.4.

To execute GNOMES Geometric Modeler, select EXECUTE --+ Geometric Modeler

in the MAIN CONSOLE window. After the GNOMES window is shown, go back to the

5.4 Other Solutions to the Problem

SYNTHESIZER window and select GEOMETRY -- SHOW GEOMETRY. This step

assumes that you have run the Synthesizer correctly with the createslab and creategeometry

rules without error. After selecting the SHOW GEOMETRY, go back to the GNOMES

window, and the "Slab" geometry will be shown, e.g. as in figure 5-11.

* NOTE: You can always start GNOMES before the Synthesizer starts or executes

everything. If the rule states:

(EXECUTE OBJ: $x showgeometry())

then the geometry is automatically shown whenever this rule is fired. Again, this

depends on the user's preference of Synthesizer and GNOMES execution.

5.4 Other Solutions to the Problem

In solving a design problem, there may well be many strategies applicable. This section

will elaborate on how we can develop the Slab application differently to produce the same

design. Below is a list of various ways to solve the problem :

1. One Root Goal, One Plan, One Class.

The above structure is considerably more complex than our primary example in this

chapter. The steps for this alternative is as follows:

* Root Goal: create-slab. This root goal will create a slab to be used in the

application.

* Plan: createslab-plan. This plan modifies the dimension and creates the ge-

ometry. There is no goal associated with this plan, only a rulefile to change the

"Slab" dimension and geometry.

This example can be seen in figure 5-12 and the listings are provided in the Appendix

D.

5.4 Other Solutions to the Problem

Figure 5-12: Other alternative solution to Tutorial_2.

2. One Root Goal, One Plan, Two Subgoals, Two Rulefiles.

Other complicated alternative is to expand everything. The steps towards solving

this one is:

* Root Goal: createslab. This root goal will create a slab to be used in the

application.

* Plan: createslabplan. This plan modifies the dimension and creates the ge-

ometry. The goals in this plan are:

* Goal: modify-slab. This goal modifies the dimension of the slab and has a

subplan Plan: modify-slab-plan to fire the rule to change the dimension.

* Goal: geometry-slab. This goal modifies the geometry of the slab and has a

subplan Plan: geometry-slab-plan to fire the rule to change the geometry of the

artifact.

5.5 Summary

Figure 5-13: Other alternative solution to Tutorial-2.

The output for this example is shown in figure 5-13 and the listings are provided

in Appendix D. This solution employs a special technique to run a ruleset by only

expanding a process. This technique was explained in Chapter 3, Section 5. The

application of this is shown in figure 5-14.

5.5 Summary

So far, we have succeeded in finishing Tutorial 2 which implemented basic concepts of

CONGEN, such as:

1. Creating TutoriaL2 application

2. Creating Slab class

5.5 Summary

Figure 5-14: The technique of combining a dummy plan and a goal to fire a ruleset.

5.5 Summary

3. Creating Tutorial_2.rul ruleset

4. Entering create-slab goal

5. Running Synthesizer

6. Running GNOMES and viewing the Slab's geometry

The following chapter will provide an example involving multiple goals and plans.

Chapter 6

Tutorial III: Building a Box

This chapter provides a deeper knowledge of structuring an application in CONGEN.

Whereas the previous chapter only deals with one Goal and one Class, this tutorial will

introduce multiple goals and plans to prepare the user for a simple real-world application.

The steps for developing a CONGEN application is also presented. Finally, this chapter

closes with various CONGEN application approaches to solve the problem.

6.1 The Problem

The problem to be solved in this tutorial is to create a box, with six covers. After the

box and the covers have been created, the geometry of the box must be shown in GNOMES.

Here are the important steps of structuring the application:

1. Prepare the application and the database.

2. Create a new application.

3. Create classes and rulesets.

4. Make the application.

5. Create goals and plans for the application.

6. Execute the Synthesizer.

6.1 The Problem

Figure 6-1: The roadmap of this chapter.

7. Execute the Geometric Modeler (GNOMES) and show the geometry.

These steps will be elaborated in more depth in the following sections.

Before the implementation, it is important to decompose the problem in tasks and

objects. The decomposition will help in structuring the application with the combination

of Goals, Plans, and Artifacts.

The intuitive steps to solve this problem are:

1. Get the dimensions (specifications and constraints).

2. Create the bounding box that will contain the covers.

3. Create the covers (top, bottom, east, west, north and south).

4. Move the covers to the corresponding location (geometrical information).

5. Show the box.

Chapter VI

6.1 The Problem

To elaborate further, firstly we have to identify and define the unique objects. The

crucial objects are: the assembly - (the box) and the slabs - (the covers). The assembly

object provides the final design product which has six slabs. The six slabs contain two

kinds of information: the dimensions and the geometry of each slab to function as covers

for the box. The dimensions of the cover slabs should correspond to the dimension part of

the box covered.

Referring to the above steps, the logical GOAL-PLAN-ARTIFACT steps are:

1. ROOT GOAL: Create the box

2. PLAN: Create box which has three goals:

* GOAL: Create top-bottom covers which in turn has a plan:

- PLAN: Create top-bottom cover plan which consists of two goals:

* GOAL: Create top cover

* GOAL: Create bottom cover

* GOAL: Create east-west covers which in turn has a plan:

- PLAN: Create east-west cover plan which consists of two goals:

* GOAL: Create east cover

* GOAL: Create west cover

* GOAL: Create north-south covers which in turn has a plan:

- PLAN: Create north-south cover plan which consists of two goals:

* GOAL: Create north cover

* GOAL: Create south cover

The PLAN - GOAL - ARTIFACT hierarchy for this application is shown in figure 6-2.

This approach may not be the best solution to the problem. There are lots of ways

in structuring the goal-plan-artifact combination for design. You, as the designer, are

expected to exercise your creativity in building the application and structuring the concepts

of CONGEN.

6.1 The Problem

Figure 6-2: Tutorial 3 Application structure.

6.2 The Implementation

The next step is to develop the rulesets for the application. To create six covers, we need

six rulesets for the creation of the slab and its geometry. Creating the rulesets conclude

the preliminary step of developing the application. The next section will elaborate more

on the implementation of this application.

6.2 The Implementation

To comply with the seven steps of creating a CONGEN application, we should start

with:

6.2.1 Preparation

Before creating the tutorial application, you must do the following:

1. Have a specialized database volume prepared by your database administrator.

2. Set the .cshrc environment variable in the root directory to point to your database

volume :

setenv EVOLID (the volume number of the database)
setenv CONDIR (the directory where your congen is installed)
setenv CONGENUSERAR (the directory where the class archive is installed)
setenv INCDIR (the directory where the congen include source files is placed)

3. Set the .smconfig EXODUS configuration file in the root directory to point to your

database volume: client*mount: (volume number) (port number)@(serverhost).

4. Create a special directory to run this tutorial such as: mkdir /mit/gnomes/congen/tutorial3.

5. Create a special directory to store the classes generated by this application: mkdir

/mit/gnomes/congen/ar. Note that this directory must be named ar - archive. The

CONGENUSER.AR environment variable must point to this directory.

6. Change to the special directory that you have specified (/mit/gnomes/congen/tutorial3),

and run CONGEN within that directory. This directory will store the rulefiles needed

for this BOX application.

6.2 The Implementation

All of these actions can be done with the help of your database administrator and

system manager. For more information about the environment variables, please refer to

Appendix C. After you have completed these tasks, you are ready to build the application.

6.2.2 Creating a new application

Create the application by:

* Select FILE --+ NEW in the Main Console.

* Enter Tutorial3 and press OK.

* Save the application.

6.2.3 Creating classes and rulesets

* Creating Classes

There are two classes to be created: the "Slab3" and the "Assembly" class:

1. Creating Slab3.

From the MAIN CONSOLE window, select KNOWLEDGE --+ PRODUCT

DEFINITIONS. Then in the PRODUCT KNOWLEDGE window, select FILE

-- NEW CLASS to create a new class. You should enter Slab3 and press OK.

In the CLASS EDITOR window, select EDIT ---+ PUBLIC, then FILE

NEW in the next window. Enter:

dbint slength;

dbint swidth;

Press SAVE, QUIT, and OK in the WARNING window.

Exit the editor by selecting FILE --+ QUIT in the ClASS EDITOR window,

and FILE -+ QUIT to go back to PRODUCT KNOWLEDGE window.

The result can be seen in figure 6-3. This class will be used for the covers.

6.2 The Implementation

Figure 6-3: Slab3 class attributes.

- NOTE: We can use a class as the attribute of another class to implement

the part-of relationship, for example:

CLASS COVER; // a paper slab.

CLASS BOX{ // a paper box consisting of paper covers.
COVER top.cover;
COVER bottom.cover;
}
The part-of relationship is not shown in the list of attributes in the CLASS

EDITOR window. This is because all part-of relationships are explicitly

and separately maintained by the system. The similar implementation of

the relationship using CONGEN's ruleset is:

in the rulefile:
CLASS BOX OBJ: $x

MAKE CLASS:COVER OBJ:COVERTOP
MAKE CLASS:COVER OBJ:COVERBOT
EXECUTE VAR: $rtn OBJ: $x makepart(' 'top.cover', '"'COVER'', '"COVERTOP'');
EXECUTE VAR: $rtn OBJ: $x makepart(' 'bottom.cover'' , ' 'COVER' ' ''COVERBOT' ')

6.2 The Implementation

What the make-part method does is to create a part-of link between the BOX

and the cover. The relationship between the box and the cover is top-cover. The

last two arguments in the make-part method refer to the classname of the child,

and the instance name of the child.

2. Creating Assembly. Follow the same instructions as above, but with Assembly

as the name of the new class. Then for the attributes, enter:

dbint alength;
dbint a_width;
dbint adepth;

Figure 6-4: Assembly class attributes.

- NOTE: Because "Assembly" class is connected explicitly to the Plan -

create-box.plan the class must set its plan default to the corresponding plan.

The steps are explained below. The reason why it has to maintain an explicit

connection is because the artifact needs the subplan to continue with the

design procedure.

In other words, the "Assembly" class still needs to attach itself to the six

covers, but the covers haven't been created yet. In order to provide a way to

expand the process and continue with the design procedure, the "Assembly"

6.2 The Implementation

must have a subplan linked explicitly. To do this, select the EDIT -

ARTIFACT DEFAULTS in the CLASS EDITOR window, and set the

values as shown in the figure 6-5.

Figure 6-5: Assembly class Artifact Defaults.

Save the class and now you can compile the classes to make it ready for the

application. The result can be seen in figure 6-4. This class will be used as the

bounding box.

* Creating Rulesets

There are six rulesets that have to be defined:

1. Top cover ruleset.

By using the RuleFile Editor or EMACS, enter:

(RULE: createtop 1000
IF
((CLASS: Slab3 OBJ: $x

6.2 The Implementation

((slength == 0) AND

(s.width == 0))
)
AND
(CLASS: Assembly OBJ: $y
(((alength == $1en) AND
(awidth == $wid)) AND
(adepth == $dep))

THEN (
(MODIFY (OBJ:$x
(s.length $1en)

(s.width $wid)
(s-depth 2)
) 1000 0.001)
)

COMMENT:"Rule to create the top cover for tutorial 3")

(RULE: topgeometry 10

IF

(CLASS: Slab3 OBJ: $x

(((slength == $1en) AND
(swidth == $wid)) AND
(length != $1en))

)

THEN (
(EXECUTE VAR:

(MODIFY (OBJ:

(plane 2)

(length $1en)

(width $wid)

) 1000 0.001)
(EXECUTE VAR:
(EXECUTE VAR:

(EXECUTE VAR:

$rtn OBJ: $x create.geometry(16, ' 'slabgeom2' '))

$x

$rtn OBJ: $x setrotation(0.0,0.0,0.0))

$rtn OBJ: $x set.translation(0.0,0.0,30.0))

$rtn OBJ: $x show.geometry())

COMMENT:" Rule to set up the geometry of the top ")

These top cover rules state that :

(a) If the top slab hasn't been created, then pass the length and width of the

box to create the top slab dimension.

(b) Modify the top slab dimension to be the same as the box's length and width.

6.2 The Implementation

(c) If the geometry of the top slab hasn't been changed, then create the geometry

of the top slab.

(d) Set the geometry dimension the same as the slab itself, do not rotate the

slab, but translate the top cover up as high as the depth of the box.

2. Other covers' rulesets.

The other covers follows the logic of the previous example. For example, to

create the bottom cover, the rule must:

(a) Create the bottom slab cover, then pass the length and width of the box to

create the top slab dimension.

(b) Modify the bottom slab dimension to be the same as the box's length and

width.

(c) If the geometry of the top slab hasn't been changed, then create the geometry

of the bottom slab.

(d) Set the geometry dimension the same as the slab itself, do not rotate or

translate the slab.

The other thing to remember is to understand the basic geometry of GNOMES.

For example, when a slab is created, the user must know where it is created and

the corresponding amount of translation and rotation needed to place the slab's

geometry.

The remaining rulesets are listed in the Appendix D, along with the other tuto-

rials' listings.

6.2.4 Making the Application

After defining all the classes and rulesets, it is time to compile the classes to make

it ready for CONGEN. When the compilation is finished, please remember to save the

application permanently to the database.

6.2 The Implementation

6.2.5 Creating goals and plans for the application

Now it is time to enter the process knowledge into the database. After you have sum-

moned the DDH EDITOR window, you should enter:

1. Root Goal: createbox.

This goal creates the artifact of an "Assembly" as shown in figure 6-6. Even though

there is no rulefile to define the parameters of the "Assembly", the Specifications

Editor will provide the parameters needed for the dimension of the box. Section

6.2.6 will explain further about the Specifications entry.

Figure 6-6: The create-box root goal for the application.

2. Plan: create-box-plan.

This plan acts as the manager of the goals to be executed by this application. This

plan is linked explicitly to the "Assembly" artifact after it is created by the root goal

(refer to the previous section).

6.2 The Implementation

Create-box-plan will consist of three subgoals: create the top-bottom, east-west, and

north-south covers. See figure 6-7 for the definition of this plan.

Figure 6-7: The create -box -plan for the application.

3. Goal: create-northsouth, create.topbottom, createeastwest.

Below the create.box.plan, we divide the tasks to three subgoals to create the pair of

covers. The example of create.northsouth goal explains about how this goal is used

to expand the process for further refinery of subplans, and ultimately, the creation of

each cover complete with the geometry information.

See figure 6-8 for the example of the create.northsouth. The user is expected to create

two more goals similar to this example to tackle the task of creating top-bottom, and

east-west covers.

4. Plan: create-northsouthplan, create-topbottom.plan, create eastwestplan.

Because we still have to create two cover slabs for each goal, it is crucial that we use

another plan to contain the tasks of creating each cover slab. The reason behind this

6.2 The Implementation

Figure 6-8: The create northsouth goal for the application.

is that a goal can only create one artifact. To create multiple instances of an artifact,

you must use rulesets.

To fulfill the need for creating two cover slabs, the goal must expand the process by

incorporating another plan. The subplan contains the goals / tasks of creating each

cover slab.

The example of create-northsouthplan provides a better view of how the tasks are

organized. It can be seen in figure 6-9. You should create two more plans, similar to

this example, for the create-topbottom-plan, and create.eastwest plan.

5. Goal: create-north, create-south, create-east, createwest, create-top, create.bottom.

These are the end goals that create the corresponding covers and provide the geometry

of the cover. The consequence field contains the name of the ruleset that performs

the above tasks.

The example of createnorth goal is shown in the figure 6-10. This example contains

one rulefile which is used to control the creation of the Slab3 artifact and its geo-

metrical information. Again, you are expected to type in the five remaining goals to

create the other five cover slabs.

100

6.2 The Implementation

Figure 6-9: The createnorthsouth plan for the application.

Figure 6-10: The create-north goal for the application.

101

6.2 The Implementation

6. DDH window.

After everything has been entered correctly, you should save the application before

continuing to execute the Synthesizer. Figure 6-11 shows all the information entered

into the DDH Editor.

Figure 6-11: The DDH EDITOR window after everything has been entered.

6.2.6 Executing the Synthesizer

After all the classes, rulesets, and the process knowledge have been saved, the flow of

the application should be checked using the Synthesizer. Before running the application

102

6.2 The Implementation

using the Synthesizer, you must enter the Specifications value for the Assembly box.

To enter the Specifications, press SPECIFICATIONS - INPUT CONTEXT in

the MAIN CONSOLE window. When the SPECIFICATION EDITOR window pops up,

you can start entering the Specifications item by selecting EDIT - ADD AN ITEM.

Figure 6-12: The SPECIFICATION EDITOR window after everything has been entered.

Everytime you select that submenu, four slots of specifications will be shown. Under

the ClassName field you should enter Assembly. You should not enter anything under

the ObjectName field because we want the Specification to be shared by every instance

of the class "Assembly". In the SlotName field enter alength pointing to the attribute

of "Assembly". Lastly, you should enter 100 in the SlotValue field as the value of the

attribute. Continue entering the values as shown in figure 6-12.

* NOTE: When you do not specify any ObjectName field entry in the Specification

item, it means that this specification is valid for every instance of the class Assembly.

To limit the Specification scope to a particular instance, you must enter the name of

the instance in the ObjectName field.

After you are finished, select FILE - SAVE in the SPECIFICATION EDITOR win-

dow to transmit the information temporarily to the active application, and finally save the

application.

To run the application, you should execute the Synthesizer from the MAIN CONSOLE

103

6.2 The Implementation

Figure 6-13: The SYNTHESIZER window with the created instance of Assembly.

window.

In the Synthesizer, you should press the button GOAL::expand _goal in the create-box

item followed by a click on the ?Assembly button. The action creates an instance of

the "Assembly" with the required Specifications entered above. To confirm whether the

Specifications values have been entered correctly and passed to the instance of "Assembly",

you should refer to figure 6-13.

104

6.2 The Implementation

After all the steps have been performed correctly, you may continue executing the Syn-

thesizer by clicking at the ARTIFACT::expand-artifact button below the Assemblyl

item. Please remember that you can always access the editor of the corresponding object by

clicking on the upper buttons, e.g.: if you click on the Assembly1 button, the ARTIFACT

EDITOR window will pop up, as seen in figure 6-13.

To continue, you should click the expandartifact button will pop up four more but-

tons, the create-boxplan button, the createtopbottom, the createeastwest, and

the create.northsouth goal buttons in sequence.

After expanding the goal of createtopbottom, and clicking on the ?create-topbottomplan

button, more buttons will be shown on the screen. Exploring this path further will create

the top cover slab for the box, as shown in figure 6-14.

Continuing this example and traversing every path available for the application will

create five more cover slabs. The overall view of the Synthesizer after every path has been

traversed can be seen in figure 6-16. You can check whether the corresponding rulefiles

have been fired from the XTERM window. It should give an output like the one shown in

figure 6-15.

The DDH EDITOR window can also provide you with the information about all created

artifacts, slab instances, and new contexts, such as those shown in figure 6-17. The DDH

Editor also gives you the capability to examine every context listed in the window.

To explore different contexts, you can click on any item on the list of contexts. For

example, if you click on the createsouth.Slab3 context, you are accessing the state of the

application when you create the south cover slab. A DDH BROWSER window will pop up

to show the decision tree of the design path at that instant.

What the DDH Browser shows you is the design decision point when the create-south.Slab3

is created. The createsouth.Slab3 context refers to the decision of creating a Slab to cover

the South area of the "Assembly". Before the South Slab is created , there have been two

more slabs created with the instance name of Slab31 and Slab32. Those slabs refer to the

top and bottom slabs. Tracing the path, we found that the deepest path ends with Slab33.

This means that this context pursues that decision as the last decision point.

105

6.2 The Implementation

I~raýtopota~pa I

rice~te=tppot~mIan -P3

leee boto

3 -0 .exaidga

Figure 6-14: The SYNTHESIZER window after the top cover slab has been created.

106

6.2 The Implementation

11..W

Figure 6-15: The XTERM window showing all the rulefiles fired.

Figure 6-16: The SYNTHESIZER window after every path has been traversed.

107

ganesh: GRAPHITI -> congen
Done with GNmanager constructor
OPENING DATABASE DBTutorial_3
Getting name : Tutorial_3
FINISHED OPENING DATABASE DBTutorial_3
* Rule-base loaded *
* Rule selected: createtop **
** Rule selected: topgeometri *
* Rule-base loaded *
* Rule selected: createbottom *

8 Rule selected: bottomgeometry 8
8 Rule-base loaded 8
* Rule selected: createsouth **

8 Rule selected: south-geometry *
8 Rule-base loaded 8
8 Rule selected: createnorth 8

8* Rule selected: north-geometrU 8
* Rule-base loaded 8
SRule selected: createleft *

8 Rule selected: leftgeometry *8
8 Rule-base loaded 8
8* Rule selected: createright 8*
* Rule selected: rightgeometry *

10

I
6.2 The Implementation ti

x~xll............. k~·~iIliI:l: ij: ::::l~j::r:~~:j~i-il:i::.) :::~a-: ::;::i::;:-:::,: ..: .-::::::j.:::::::::-.::: ::: `Xa::~:i;l;~:P~::'.:~D~

6.2 The Implementation

Figure 6-17: The DDH EDITOR window after every path has been traversed.

6.2.7 Executing the Geometric Modeler (GNOMES) and show the geometry

To execute GNOMES Geometric Modeler, select EXECUTE -- GEOMETRIC

MODELER in the MAIN CONSOLE window. After the GNOMES window is shown,

go back to the Synthesizer and select GEOMETRY --+ SHOW GEOMETRY. After

selecting the SHOW GEOMETRY, you should go back to the GNOMES window. The

GNOMES window will display the box as shown in figure 6-19.

108

6.3 Other Solutions to the Problem

Figure 6-18: The DDH BROWSER window after create-south.Slab3 is pressed.

6.3 Other Solutions to the Problem

The more complex the problem, the more application alternatives you can create to

solve it. Below is the list of the various solutions. The listing of the alternative rulesets

can be seen in Appendix D.

1. One Root Goal, Two Classes, One Rulefile

Instead of creating many plans and goals, we can implement the solution using only

one long rulefile to create the "Assembly" and all the cover slabs. This is a very

109

6.3 Other Solutions to the Problem

Figure 6-19: The GNOMES window with the box.

simple solution. The specifications are the same for the "Assembly" class.

An example of the rulefile follows:

RULE: createslabs 1000
IF
(CLASS: Assembly3 OBJ: $y
(((alength == $1en) AND
(awidth == $wid)) AND
(adepth == $dep))

110
110

6.3 Other Solutions to the Problem

THEN (
(MAKE (CLASS: Slab

(slength $1en)

(swidth $wid)

(sdepth 2)

(MAKE (CLASS: Slab
(slength $1en)

(swidth $wid)
(s-depth 2)

(MAKE (CLASS: Slab
(s-length $dep)
(s.width $wid)
(s-depth 2)

(MAKE (CLASS: Slab
(s-length $dep)
(swidth $wid)
(s-depth 2)

(MAKE (CLASS: Slab
(s-length $1en)

(s.width $dep)
(s.depth 2)

(MAKE (CLASS: Slab
(s-length $1en)
(s.width $dep)
(s-depth 2)

OBJ: top

OBJ: bottom

OBJ: north

OBJ: south

OBJ: east

OBJ: west

)
COMMENT:"Rule to create the covers for alternative tutorial")

(RULE: topgeometry 10
IF
((CLASS: Slab OBJ: $x
(instancename == "top")) AND
(CLASS: Slab OBJ: $x
(((slength == $1en) AND

(s-width == $wid)) AND
(length != $1en))

THEN (

111

6.4 Summary

(EXECUTE VAR: $rtn OBJ: $x create.geometry(16, ' 'slabgeomtop' '))
(MODIFY (OBJ: $x

(plane 2)

(length $1en)

(width $wid)
) 1000 0.001)
(EXECUTE VAR: $rtn OBJ: $x setrotation(0.0,0.0,0.0))

(EXECUTE VAR: $rtn OBJ: $x settranslation(0.0,0.0,30.0))

(EXECUTE VAR: $rtn OBJ: $x showgeometry())
)
COMMENT:" Rule to set up the geometry of the top ")

etc... for five more geometry.

2. One Root Goal, One Plan, Six Subgoals, Six Rulefiles

The complex structure explained in the previous section can be simplified by using:

* Root Goal: Create-box

* Plan: Create-box-plan comprised of six subgoals:

- Goal: Create-top which has the consequence rulefile create-top.rul.

- Goal: Create-bottom which has the consequence rulefile create-bottom.rul.

- Goal: Create-east which has the consequence rulefile create-east.rul.

- Goal: Create-west which has the consequence rulefile create-west.rul.

- Goal: Create-north which has the consequence rulefile create-north.rul.

- Goal: Create-south which has the consequence rulefile createsouth.rul.

6.4 Summary

Tutorial 3 introduced many new concepts including:

1. Explicit connection between an Artifact and a Plan

2. Structuring information with Goals and Plans

3. Various ways to tackle the problem

112

6.4 Summary

4. Specifications Editor usage

5. DDH Browser

The next chapter will deal with the real world application of CABIN DESIGN.

113

Chapter 7

Tutorial IV: CABIN DESIGN

Application

This chapter will present a real world application designed to help Structural Engineers.

The application will incorporate all of the concepts explained in the preceding chapters,

including the application structure, the goal-plan-artifact relationship, and the geometry

of the objects. Section 7.1.1 provides the flow of the application to solve the problem.

Section 7.1.2 presents the knowledge acquisition process in completing this application.

Section 7.1.3 overviews the basic application vocabulary - classes. Section 7.1.4 explains

about various aspects of the Geometry class in CONGEN. Finally, this chapter gives the

steps toward completing the application.

7.1 The Problem

The problem posed in this chapter is the process of designing a simple single-room

cabin. The design of the cabin itself actually spans from the Architectural, Structural,

Mechanical, and Contractor. In this case, the area chosen to be the focus of the application

is the Structural Engineering. Structural Engineers (for this project) will determine the

structural system and structural members to be used, e.g. foundation, beams, columns,

and trusses. These members are designed to sustain horizontal loads such as wind loads,

114

7.1 The Problem

Figure 7-1: The roadmap of this chapter.

and vertical loads, such as dead load and live load.

The cabin itself has a specified dimension, which is done by the architect. The building

plan can be seen in figure 7-2.

7.1.1 Process Flow

The structural design process aims to produce a safe, and serviceable structural system

satisfying several constraints, such as cost, geometry, loads, etc. The structural design

process can be divided into three subtasks [9]:

115

Chapter VII

7.1 The Problem

02

Io
H-
tri

114

kn

Es

Hr

to

vU)

Figure 7-2: Cabin Architectural plan.

116

7.1 The Problem

1. Preliminary Design. The conceptual design of a structure is closely related to

the synthesis of the design alternatives fulfilling the constraint requirements. The

preliminary design stage primary task is to decompose the whole structure into smaller

substructures. In addition, the preliminary constraints must be satisfied. Ultimately,

the process will choose one of the preliminary design alternatives.

2. Analysis. The analysis stage simulates the response of the selected alternative

according to different environmental effects. The tasks of transforming the alternative

into a mathematical model, utilizing structural analysis procedures, and evaluating

the results are the focus of this stage.

3. Detailed Design. This stage further refines the selection process of different members

in the system to satisfy all the constraints required. There are several subproblems

regarding this stage, such as main structural members' selection, supporting members'

selection, and designing connections between the members in the system.

The three separate subtasks are generally not sequential. In practice, they may be inter-

linked and rehashed according to the needs of the designer. In the CONGEN application,

the structural design processes is represented by the subtasks performed in the Detailed

Design stage. However, the other stages - the Preliminary Design and the Analysis stages -

are directly integrated into the application and interlinked with the Detailed Design stage.

Therefore, the three stages are transparent to the user of this application.

The Cabin Design process consists of the following stages :

1. Setting the Beam and Column Grid. Setting beams and columns grid stage is

decomposed into further subtasks, such as setting the number of columns, the number

of girders, and the number of supporting beams for the structure. In this stage, the

layout of the structure is determined by the main structural members. All other

members are to follow the basic configuration of the beam-column grid.

2. Setting the Truss System. After putting the beams and columns in place, the

trusses are created according to the main members. For example, in four-column

117

7.1 The Problem

cabin, we can have two trusses, while in six-column cabin, we can add one more truss

in the middle, making it a three-truss roof. Moreover, this stage also defines the

number of purlins involved in the roof to sustain the loads further.

3. Setting the Walls. Setting the walls consists of selecting the type of wall for each

direction. For example, setting the north wall will select the type of wall, such as

shear, brick, or wall with an opening.

4. Setting the Foundation. This stage provides the user the capability of selecting

the foundation type. However, the foundation type depends on the number of columns

and other considerations. The available foundation types are spread foundation, mat

foundation, and strip footings.

For the task structure of this problem, refer to figure 7-3.

7.1.2 Knowledge Acquisition

Outlining the structural design processes and integrating them into a system in CON-

GEN requires a mix of structural design knowledge, real-life experiences, and creativity. The

representation of conceptual design knowledge consists of the topology, geometry, structural

functionality, structural behavior of the members, and analysis of the overall structure [11].

The design knowledge in this application combines the expertise of a real-life engineer and

the textbook information.

The knowledge base implemented in CONGEN covers problem-solving rules, and facts

or intuition from the expertise of a real-life engineer. It is stored as If-Then rules in the

COSMOS module. COSMOS solves the problem in two steps: First, it incorporates the

knowledge base with the working memory - the task specific data for the problem. Secondly,

COSMOS combines the knowledge base and the working memory in the Inference Engine

(IE). IE applies some control mechanism on the knowledge base and the working memory

in order to achieve a feasible conclusion.

The engineer's expertise in this system uses the skills to achieve a feasible solution

utilizing the heuristic reasoning strategy. This type of reasoning which is also called "rules

118

7.1 The Problem

I

I

COIw

z

m 0

C, cn
w wC,) C,

Figure 7-3: Cabin Design Application structure.

119

7.1 The Problem

of thumb" or "expert heuristics" provides ways and solutions to the expert to arrive at a

good decision. COSMOS utilizes forward chaining and backward chaining methods to check

the validity of a decision made at a certain point in the design process.

The knowledge acquisition process in developing a CONGEN application begins when

the knowledge engineer acquires some basic knowledge from the application domain. The

characteristics of the knowledge acquired depend on the domain of the problem, and the

level of expertise of the knowledge source. The vast variety of the textbook information

sometimes becomes a barrier in the process. The overflow of the knowledge acquired from

the textbooks happens because the structural engineering area has spawned many qualita-

tive and quantitative procedures in ensuring the safety and serviceability of a structure [9].

This overflow makes the knowledge acquisition too broad.

One of the problems encountered in this phase was that the knowledge engineer has the

same background as the expert - structural engineering. The same background creates two

scenarios:

1. The knowledge engineer can absorb and process the acquired expertise thoroughly so

that users will understand the application more easily.

2. Both of them become so comfortable with the subject that they do not consider

the users' perception of the problem and proceed with more technical and domain-

dependent approach for the application.

In the Cabin Design application, the knowledge always changes, because of the evolving

nature of the domain knowledge itself. New ways and innovations are created to solve more

complex problems. Therefore, it is almost impossible to create a fully complete expert

system in the first cut. As the knowledge base is tested and expanded, there will be

more modifications to be incorporated in the later versions. The most important thing is

that the first version should lay a strong groundwork for the subsequent versions, because

changing the application structure is harder to accomplish than adding more knowledge to

the knowledge base.

The extent of the usage of Cabin Design application depends on the qualitative and

120

7.1 The Problem

quantitative complexity of the structural engineering design processes. Although the expert

system approach helps in the selection process, the expert system itself deals only with

shallow knowledge [9] such as empirical knowledge. This is the reason why the application

needs to have a structural analysis program to support deeper knowledge. Some of the

uses of this application can be the preprocessor - preparing the preliminary data - or

postprocessor - rule-of-thumb testing of the output - of a structural analysis program. The

complexity of preparing data for an analysis program will be reduced to conceptual design

artifacts satisfying preliminary constraints rather than the extensive process of defining the

topology and geometry of the structure to be fed to the analysis program [11].

7.1.3 Vocabulary

The vocabulary used in this application follows the definitions of all the basic members

of a structural system. Basically, all basic member classes are subclassed from the class

"Structural Members". The "Structural Member" class acts as the superclass of all the

physical parts of a structure as shown in figure 7-4. The class definition of "Structural

Member" contains detailed information about:

* The relative coordinate & rotation of a member. This information provides a di-

rect relationship between the location of the structural member and the system that

contains this member. The relative coordinate and rotation of a member are defined

according to the Structural System's coordinate, not the global coordinate i.e. (0,0,0).

* The belongs-to relationship. This information will help to trace which Structural

System contains this member.

* The loadings. This information consists of the main design loads of a member i.e.:

dead load, live load, wind load, etc.

The "Structural Member" class is subclassed into three dimensional member classes

representing linear, area, and joint member classes. Ultimately the dimensional classes are

subclassed into basic structural classes containing more information about the physical part

they represent, for example:

121

9

-€-.

.i i

.0 1)

C

$.=

=t
Cz

Figure 7-4: The New Structural Member hierarchy

122

7.1 The Problem

7.1 The Problem

* Beam, representing the concept of a beam.

* Column, representing the concept of a column.

* Slab, representing the concept of a concrete slab. The "Slab" class is subclassed

into two other kinds of Slab - "Waffle-slab" and "Ribbedslab".

* Pier, representing the concept of a pier.

* Wall, representing the concept of a wall.

* WalLopening, representing the concept of an opening within a wall such as doors,

windows, etc.

* Truss system, representing the concept of a truss system of the roof.

* Trussmember, representing the concept of a truss member within a truss system.

* Matfound representing the concept of mat foundation.

* Spreadfound representing the concept of column footing, or isolated foundation.

* Stripfooting representing the concept of wall foundation.

The definition of "Beam" class complete with its attributes to simulate the real life

behavior of the member can be seen in Appendix E. In addition, more detailed information

about the Structural Member class and its subclasses can also be found in Appendix E.

In addition to the above classes, there are three more classes representing the basic be-

havior of the cabin itself and its environment. They are: "Cabin", "Site", and "Cabin-part".

The "Cabin" class contains the dimensional constraints of the design, along with additional

information about the number of columns, number of beams used, etc. The "Site" class

provides information about the condition of the location i.e. geological and topological

condition, and the soil bearing capacity. "Cabinpart" class acts as the container of all the

parts created in the process.

"Cabin" and "Cabin-part" instances have a part-of relationship. All other structural

member instances have a part-of relationship with "Cabinpart". Therefore, the designer

123

7.1 The Problem

can access the data from the "Cabin" class by traversing the part-of hierarchy of the design

from the entry point "Cabin-part".

7.1.4 Geometry

The geometry involved in this application consists of the representation of beams,

columns, trusses, walls, and foundations. The basis of the geometry is the Geometric

Abstractions module within the GNOMES module. The Geometric Abstractions (GAB)

module is a collection of spatial classes that form a layer of abstraction over the actual

geometry representation. GAB supports conceptual design, through the use of the different

levels of abstraction.

The GAB taxonomy represents objects commonly used in the areas of Civil Engineering,

such as beams, plates, shells, etc. GAB uses two different levels of abstraction: internal

and external. The external abstraction is between the classes - supported by the concept of

inheritance of object oriented programming. On the other hand, the internal abstractions

are provided by the information and behavior contained inside each class. Each class has

the knowledge to display a representation of the object, based on the information within its

attributes [26]. The GAB classes can be accessed directly using the GNOMES Geometric

Modeler interface in CONGEN.

There are three important statements regarding GAB geometry:

1. A GAB geometry is created by using the statement:

(EXECUTE VAR: $rtn OBJ: $x create.geometry(7,"negeom"))

in the COSMOS rule. What this statement means is to inform GNOMES to create

a geometry instance of a LINERECSOLID (Straight Line with 3D extensions) to

simulate, for example, the form for beams and columns.

2. By using further GAB geometry statements such as:

(EXECUTE VAR: $rtn OBJ: $x setrotation(0.0,270.0,90.0)) ,

the geometry is rotated by 0 degrees around X axis, 270 degrees around Y axis and

90 degrees around Z axis. The rotation example follows the rule of the right thumb,

124

7.1 The Problem

with the thumb pointing to the positive side of the rotational axis.

3. We can also utilize the statement:

(EXECUTE VAR: $rtn OBJ: $x set-translation(5.0,725.0,10.0))

to translate the geometry 5 units along X axis, 725 units along Y axis, and 10 units

along Z axis.

In addition to the above, the statement:

(MODIFY (OBJ: $x
(length $1en)
(width $wid)
(height $hgt)
) 1000 0.001)

modifies the attributes of the geometry, primarily the length, width, and height.

The geometry classes implemented in CONGEN are classified as follows:

* TYPE: 0 - ENGINEERING OBJECT is the top level class. It provides the
generic interface for all classes. In addition, it also has the information about the
bounding box containing all the engineering objects. This class contains the union,
difference, and intersection operations.

* TYPE: 1 - CUBOID

* TYPE: 2 - CONE

* TYPE: 3 - CYLINDER

* TYPE: 4 - STRAIGHT LINE

* TYPE: 5 - LINE RECTANGULAR CROSSSECTION

* TYPE: 6 - LINE CIRCULAR CROSSSECTION

* TYPE: 7 - LINE RECTANGULAR SOLID

* TYPE: 8 - LINE RECTANGULAR HOLLOW

* TYPE: 9 - LINE CIRCULAR SOLID

* TYPE: 10- LINE CIRCULAR HOLLOW

125

7.1 The Problem

* TYPE: 11 - T BEAM

* TYPE: 12 - C BEAM

* TYPE: 13 - I BEAM

* TYPE: 14 - L BEAM

* TYPE: 15 - SURFACE

* TYPE: 16 - SURFACE RECTANGULAR PLATE

* TYPE: 17 - SURFACE CIRCULAR PLATE

* TYPE: 18 - SURFACE RECTANGULAR PLATE HOLLOW

* TYPE: 19 - SURFACE RECTANGULAR PLATE SOLID

* TYPE: 20 - SURFACE CIRCULAR PLATE HOLLOW

* TYPE: 21 - SURFACE CIRCULAR PLATE SOLID

* TYPE: 22 - ENGINEERING ASSEMBLY

* TYPE: 23 - TRUSS

* TYPE: 24- FRAME

More information about the classes can be found in [26]. The geometry objects are

categorized into line and surface forms. Line forms provide a basic abstraction for straight

and curved lines, whereas the surface forms can be derived into planar or curved. The

abstractions of the classes mentioned above are shown in figure 7-5. The GAB classes

with their associated solid and hollow section derivations provide an evolution of shape

descriptions from linear elements, such as from lines to beams, from surfaces to slabs.

The geometry classes that are used in this application are mainly type 4 (Straight

Line) to represent the concept of beams, columns, and piers, and type 7 (Line Rectangular

Solid) to represent the walls, foundation mat, and foundation pads. However, most Civil

Engineering structural members can easily be represented using these classes.

Whereas the GAB classes provide the abstraction of the geometry, the rules in COSMOS

provide the execution of the methods embedded within the geometry classes itself. For

example, the following rule creates the geometry of a northeast column:

126

z0
H

Q
0

> CO

Figure 7-5: The abstraction of GAB geometry classes in CONGEN.

127

7.1 The Problem

7.1 The Problem

(RULE: negeometry 10

IF

((CLASS: Column OBJ: $x
(instancename == "necolumn")) AND
(CLASS: Column OBJ: $x
(((clength == $1en) AND

(cwidth == $wid)) AND

((length != $1en) AND

(cdepth == $hgt)))

THEN (
(EXECUTE VAR: $rtn OBJ: $x create.geometry(7,' 'negeom' '))
(MODIFY (OBJ: $x
(length $1en)
(width $wid)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR: $rtn OBJ: $x setrotation(0.0,270.0,0.0))
(EXECUTE VAR: $rtn OBJ: $x settranslation(365.0,725.0,10.0))
)

COMMENT:" Rule to set up the geometry of the necolumn")

The explanation of each part of the rule is as follows:

* The first condition checks whether there is any instance of the "Column" class with

the name of "ne-column".

* The second condition passes the values of the instance to $1en, $wid, and $hgt. In

addition, the condition also checks whether the "length" attribute of "necolumn"

Geometry has been changed to reflect the value from the "Column" class.

The check is useful to avoid endless loop of this rule, because whenever the rule is

true, it will always be fired. By adding the condition:

(length != $1en)

the rule will stop firing if the Geometry's "length" is equal to Column's "clength".

* The first action to do if both conditions are true is to create this instance's geometry

with the name "negeom".

128

7.1 The Problem

* The second action modifies the attribute values of the "Geometry" to be similar to

the "Column" instance values.

* The last two actions provide the extent of the rotation and translation of the "Col-

umn" geometry.

You should note that "Geometry" class and "Column" class are not mutually exclusive.

"Column" class, or any other CONGEN user-defined classes automatically have "Geom-

etry" class attached to it. This attachment is necessary to interface CONGEN classes

with GNOMES functionality. When a CONGEN class object is instantiated, its "Geom-

etry" class is still empty. To activate the instance's geometry, we use the method cre-

ate-geometry(..) to reserve storage space for "Geometry" attributes of the instance.

For a more complete list of geometry creation rules for this application including the

walls, foundations, and trusses, refer to appendix E.

7.1.5 Analysis

Ideally, the analysis of the structure produced by this application must be performed

by a specialized application, such as GROWLTIGER from MIT. We are in the process of

integrating such an application within CONGEN itself by spawning an external process

and accessing the external application via dynamic methods.

The current version of CONGEN, provides dynamic methods to be defined within the

classes itself. It also enables the passing of variables to a method, and dynamically add

method in the runtime. This capability will enable the integration of external methods and

other structural analysis application into CONGEN.

Since the first version of this application uses the version of CONGEN without this

capability, we decided to use the rule syntax of COSMOS to perform simple calculations

for the members in the system such as:

(RULE: calculatetotalload 900
IF
(CLASS: Column OBJ: $x

129

7.2 The Implementation

(((deadload == $dl) AND

(liveload == $11)) AND

(totalload == 0.0))
)
THEN (
(BIND VAR:$dl $dl*1.4)

(BIND VAR:$11 $11*1.7)

(MODIFY (OBJ: $x
(totalload $dl+$11)
) 1000 0.001)
)
COMMENT:"Rule to calculate Column totalload")

The above example lists the process of calculating the total load passed to a Column

by the formula:

total load = 1.4 * dead load + 1.7 * live load

The BIND statement provides the capability of storing values into a temporary variable.

7.2 The Implementation

The preliminary information needed to build the cabin design application is explained

in the previous section. In this section, we show how to create the complete application.

7.2.1 Preparation

Before creating the tutorial application, you must prepare:

1. Have a specialized database volume prepared by your database administrator.

2. Set the .cshrc environment variable in the root directory to point to your database

volume :

setenv EVOLID (the volume number of the database)
setenv CONDIR (the directory where your congen is installed)

setenv CONGEN_USERAR (the directory where the class archive is installed)
setenv INCDIR (the directory where the congen include source files is placed)

130

7.2 The Implementation

3. Set the .sm-config EXODUS configuration file in the root directory to point to your

database volume: client*mount: (volume number) (port number)@(serverhost).

4. Create a special directory to run this tutorial such as: mkdir /mit/gnomes/congen/tutorial4.

5. Create a special directory to store the classes generated by this application: mkdir

/mit/gnomes/congen/ar. Note that this directory must be named ar - archive. The

CONGENUSERAR environment variable must point to this directory.

6. Change to the special directory that you have specified (/mit/gnomes/congen/tutorial4),

and run CONGEN within that directory. This directory will store the rulefiles needed

for this CABIN DESIGN application.

All of these actions can be done with the help of your database administrator and

system manager. For more information about the environment variables, please refer to

Appendix C. After you have completed these tasks, you are ready to build the application.

NOTE: The following information about the CONGEN application can be emulated

usinag a C script. All the goals, plans, and classes can be entered and compiled using the

script instead of entering them manually. This feature will help shorten the time needed

to reenter all the information into the database if the database is corrupted. For more

information about the script, please refer to Appendix A. The complete listing of the

Cabin Design script can be seen in Appendix E.

7.2.2 Creating a new application

Create the application by:

* Select FILE --+ NEW in the MAIN CONSOLE window.

* Enter Cabin and press OK.

* Save the application via FILE --+ SAVE in the MAIN CONSOLE window.

131

7.2 The Implementation

7.2.3 Creating classes and rulesets

Creating Classes

For this complete application, you need the following classes:

* Cabin. This class contains the crucial information of the cabin to be designed, such

as the dimensions of the cabin given by the architects, the number of beams, columns,

and girders, the type of foundation, etc.

* Site. This class contains the information about the site of the cabin including the

soil condition, and the location of the site. Some of the information in this class will

be used to determine the type of cabin's foundation.

* Cabin-part. This class acts as the container for the parts being created in the design

process. The "Cabin-part" class was more of a convenience to distinguish the parts

and the cabin itself.

If the parts are attached via the make-part method, the SYNTHESIZER window

will show explicitly the link between the parts and the Cabin instance. By using

"Cabin-part" class to contain the link, the SYNTHESIZER window will only show

the link between the instances of "Cabin" and "Cabin-part".

This approach will help decrease the number of objects shown in the SYNTHESIZER

window. For clearer view of the difference, refer to figure 7-6 and figure 7-7.

* Column. This class acts as the representation of a column with its attributes.

* Beam. The representation of a beam with its attributes.

* Slab. The representation of a slab with its attributes.

* Wall. The representation of a wall with its attributes.

* Wall-opening. The representation of a wall opening with its attributes.

* Truss-member. The representation of a truss member with its attributes.

132

7.2 The Implementation

Figure 7-6: Cabin class expanded without using the Cabin-part - notice all the parts linked
to Cabin class filling the window.

* Trusssystem. The representation of a truss system with its attributes.

* Mat found. The representation of a mat foundation with its attributes.

* Spread found. The representation of a spread foundation with its attributes.

* Strip-footing. The representation of a strip footing / wall foundation with its at-

tributes.

As an example, to create one of the classes, you should do the following:

1. Creating "Cabin" class.

Select KNOWLEDGE - PRODUCT DEFINITIONS, in the PRODUCT KNOWL-

EDGE window, select FILE --+ NEW CLASS. Enter Cabin and press OK.

In the CLASS EDITOR window, select EDIT - PUBLIC, then FILE -- NEW

in the next window.

Enter:

float calength;

float ca.height;

133

7.2 The Implementation

Figure 7-7: Cabin class expanded using the Cabin-part. Cabinpart contains all the in-
stances shown in the preceding figure.

float ca_width;

The remaining attributes to be entered can be examined from figure 7-8. For more

complete list of attributes and the header files of all the classes, refer to appendix E.

Press SAVE, QUIT, and OK in the WARNING window.

Exit the editor by selecting FILE - QUIT in the CLASS EDITOR window, and

FILE -+ QUIT to go back to PRODUCT KNOWLEDGE window.

NOTE: In compiling all the classes for this application, it is better to add three

classes at a time and compile, instead of adding all classes and try to compile ev-

134

7.2 The Implementation

ndef LabinH
Fine CabinH

Cabin(char*, char*);
virtual Val directget-value (dbchar*);
virtual int direct.put-value (dbchar*,char*);

lendif

Loading "/.c++-mode.el ,done

Figure 7-8: Cabin class attributes.

erything at once. There is a bug with the current version of EXODUS that causes

CONGEN to hang whenever there are too many classes to be compiled and commit-

ted.

Creating rulesets

For your convenience, we have included the listing of all the rulefiles in Appendix E.

They are:

135

I
;'"":''::'"'"'"l'"i"" 'I'"'""':"'""''"''::: '::'"'"*"''''":"""*"'':'''"":"""'":

7.2 The Implementation

* cabin-eff.rul. This rulefile instantiates the Cabin artifact and sets the initial infor-

mation about the Cabin itself such as the dimensions needed for the other parts.

* set-columns-eff.rul. This rulefile instantiates the Column artifacts with the geometry

information.

* set-girders.rul. This rulefile controls the selection of the number of girders used in

the structure.

* set-girders-eff.rul. This rulefile instantiates the girders with the geometry informa-

tion.

* set-supporting.beams.rul. This rulefile controls the selection of the number of sup-

porting beams used in the structure.

* set.supporting-beams.eff.rul. This rulefile instantiates the supporting beams with

the geometry information.

* set-trusses.rul. This rulefile controls the selection of the number of truss system

used in the structure.

* set-trusses-eff.rul. This rulefile instantiates the truss systems and their members

with each geometry information.

* set-purlins.rul. This rulefile controls the selection of the number of purlins used in

the roof of the structure.

* set-purlins-eff.rul. This rulefile instantiates the purlins with the geometry informa-

tion.

* setLnorthwall.rul. This rulefile controls the selection of the type of the north wall

used in the structure.

* set-north-walleff.rul. This rulefile instantiates the north wall, openings if necessary,

with the geometry information.

136

7.2 The Implementation

* set-south-wall.rul. This rulefile controls the selection of the type of the south wall

used in the structure.

* set-south-walleff.rul. This rulefile instantiates the south wall, openings if necessary,

with the geometry information.

* set-east-wall.rul. This rulefile controls the selection of the type of the east wall used

in the structure.

* set-east-walLeff.rul. This rulefile instantiates the east wall, openings if necessary,

with the geometry information.

* set-west-wall.rul. This rulefile controls the selection of the type of the west wall used

in the structure.

* setwest-walleff.rul. This rulefile instantiates the west wall, openings if necessary,

with the geometry information.

* set-foundation.rul. This rulefile controls the selection of the type of foundation used

in the structure depending on the site, the number of columns and openings on the

walls.

* set-foundation-eff.rul. This rulefile instantiates the parts of the foundation with the

geometry information.

If we observe the list of the rulefiles closely, it is clear that there are two kinds of rulefiles:

the selection rulefile and the effects rulefile. The selection rulefile acts as the controller of

the decision making process. The choices that the selection rulefiles provide will be based

on the active context of the knowledge base. On the other hand, the effects rulefile takes

the decision and fires some other rules based on what will happen to the knowledge base if

one decision has been made.

An example of a selection rulefile is as follows:

137

7.2 The Implementation

(RULE: three 20

IF

(CLASS: Declist OBJ: $y
((set.columns == "6") AND
(settrusses != "3"))

)

THEN (

(MODIFY (OBJ: $y

(settrusses "3")
) 1000 0.001)
)

COMMENT:" If the number of columns is six, then we can use three trusses")

(RULE: two 20
IF
(CLASS: Declist OBJ: $y
((set.columns != "6") AND
(settrusses != "2"))

)
THEN (

(MODIFY (OBJ: $y

(settrusses "2")
) 1000 0.001)
)

COMMENT:" If the number of columns is not six, then we can use only 2 trusses")

(RULE: threeortwo 20
IF
(CLASS: Declist OBJ: $y
((setcolumns == "6") AND
(settrusses != "2"))

)
THEN (
(MODIFY (OBJ: $y
(settrusses "2")
) 1000 0.001)
)

COMMENT:" If the number of columns is six, then we can use two trusses")

Basically, these selection rules dictate that if we have more than four columns in the

structure, we can have either two or three trusses. If we only have four columns, then the

structure can only support two trusses. This rulefile is a very simple example of how the

138

7.2 The Implementation

"rules of thumb" in designing a structure can be applied to the design application. These

rules are attached to the GOAL: set-trusses shown in figure 7-16.

An example of an effect rulefile is as follows:

(RULE: createtwopurlins 1000
IF
((CLASS: Cabin OBJ: $x
((calength == $1en) AND
(numpurlins == 2))
) AND
(CLASS: Cabinpart OBJ: $y
(instancename == "cabin.parts")

THEN (
(MAKE (CLASS: Beam OBJ: epurlin
(blength $1en)
(b.width 5.0)
(bdepth 5.0)

(MAKE (CLASS: Beam OBJ: wpurlin
(b-length $1en)
(bvwidth 5.0)
(b.depth 5.0)

(EXECUTE VAR:$rtn OBJ: $y makepart(' 'eastpurlin' ' ," 'Beam' ',''epurlin''))
(EXECUTE VAR:$rtn OBJ: Sy makepart(' 'westpurlin' ,',"Beam'',"' 'w.purlin''))
)
COMMENT:"Rule to create the two purlins")

(RULE: epurlingeometry 10
IF
((CLASS: Beam OBJ: $x
(instancename == "epurlin")) AND
(CLASS: Beam OBJ: $x
(((blength == $1en) AND
(b.width == $wid)) AND
((length ! $1en) AND
(b.depth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x create.geometry(4,"' 'epurlgeom''))
(MODIFY (OBJ: $x

139

7.2 The Implementation

(length $1en)

(width $wid)

(height $hgt)

) 1000 0.001)

(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,0.0,90.0))

(EXECUTE VAR:$rtn OBJ: $x settranslation(275.0,5.0,300.0))
)

COMMENT:" Rule to set up the geometry of the epurlin")

The first rule above states that if the decision is to build two purlins, then create

the two-purlin artifacts, and attach the purlins to the "Cabin-part" instance (referred by

OBJ: $y). After the two purlins have been created, the geometry of one of the purlins is

created using another rule. The above rules are attached to the GOAL: seLtpurlins shown

in figure 7-17.

7.2.4 Making the Application

After defining all the classes and rulesets, it is time to compile the classes to make

it ready for CONGEN. When the compilation is finished, please remember to save the

application permanently to the database. If by any chance CONGEN hangs, you should

press Ctrl-C to halt the operation and start typing everything again.

NOTE: In this version of CONGEN, you are allowed to create a script to shortcut the

manual entries of the goals, plans and classes. This script is basically an external method

to invoke internal CONGEN functions to define the application directly without the user

interface. Please refer to Appendix E for further information about the script.

7.2.5 Creating goals and plans for the application

Goals

When the Product knowledge (i.e. Classes, Rulefiles, etc) input process is finished, the

next step is to enter the Process knowledge consisting of the sequence of goals, plans, and

artifacts to be created. Basically, all the goals to be entered are as follows:

140

7.2 The Implementation

1. createcabin2. This goal is the root goal of the application. It creates the Cabin

artifact which has the initial specifications that will affect other parts.

2. set-beam-column.grid. This goal is to expand the process of setting the beam-column

grid.

3. set-columns. This goal is to select the number of the principal columns in the

structure. Its choices are: 0, 4, 6 columns.

4. set-beams. This goal is to expand the process of setting the beams in the structure.

5. set girders. This goal is to select the number of girders for the structure. Its choices

are: 0, 2 girders.

6. set-supporting-beams. This goal is to select the number of supporting beams aside

of the girders. Its choices are: 0, 1, 2, 3, 6, 7.

7. set-trusssys. This goal is to expand the process of setting the roof trusses of the

structure.

8. set-trusses. This goal is to set the number of trusses available for the structure. Its

choices are: 2, 3 trusses.

9. set-purlins. This goal is to set the number of purlins created for the roof. Its choices

are: 0, 2, 4 purlins.

10. set-walls. This goal is to expand the process of setting the wall system of the

structure.

11. set-north-wall. This goal is to select the type of the north wall. Its choices are:

Brick, Opening, Shear.

12. set.southwall. This goal is to select the type of the south wall. Its choices are:

Brick, Opening, Shear.

13. set-east-wall. This goal is to select the type of the east wall. Its choices are: Brick,

Opening, Shear.

141

7.2 The Implementation

14. set-west-wall. This goal is to select the type of the west wall. Its choices are: Brick,

Opening, Shear.

15. set-foundation. This goal is to select the type of the foundation of the structure. Its

choices are: Mat, Spread, Strip.

The detailed information about the goals follows:

Figure 7-9: The create-cabin goal description.

142

7.2 The Implementation

Figure 7-10: The set beam column grid goal description.

Figure 7-11: The setcolumn goal description.

143

7.2 The Implementation

Figure 7-12: The set-beams goal description.

Figure 7-13: The set-girders goal description.

144

7.2 The Implementation

Figure 7-14: The set-supportingbeams goal description.

Figure 7-15: The set-trusssys goal description.

145

7.2 The Implementation

Figure 7-16: The settrusses goal description.

Figure 7-17: The set-purlins goal description.

146

7.2 The Implementation

Figure 7-18: The set-walls goal description.

Figure 7-19: The set-north-wall goal description.

147

7.2 The Implementation

Figure 7-20: The set-south.wall goal description.

Figure 7-21: The set-east-wall goal description.

148

7.2 The Implementation

Figure 7-22: The set_westwall goal description.

Figure 7-23: The set-foundation goal description.

149

7.2 The Implementation

Plans

As soon as the goals have been entered, the plans must be entered as well:

1. cabin-design-plan. This is the plan that controls the sequence of designing parts of

the cabin.

Figure 7-24: The cabin-design-plan description.

2. set beam.column-grid-plan. This is the plan that controls the sequence of setting the

beam-column grid of the structure.

3. set-beams-plan. This is the plan that controls the beam system in the cabin.

4. set-walls-plan. This is the plan that manages the type of each direction of the walls

in the cabin.

5. set-trusssys-plan. This is the plan that provides the sequence of the truss system

design of the cabin.

150

7.2 The Implementation

Figure 7-25: The set beam _column grid -plan description.

Figure 7-26: The set-beamsplan description.

151

7.2 The Implementation

Figure 7-27: The setwalls_plan description.

Figure 7-28: The set trusssysplan description.

152

7.2 The Implementation

7.2.6 Executing the Synthesizer

When all the knowledge elements are entered and ready to be executed, the flow of the

application should be checked using the Synthesizer. At this phase, you should have saved

all the information to the database. In the previous chapter we showed how to specify the

initial values for an artifact, either by using rulefiles or through the Specification Editor.

In this case, we are using the rulefile to control the initial specifications of the Cabin.

The advantage of using rulefile instead of SPECIFICATIONS window is that the rulefile is

independent of a particular program instantiation. Therefore, if the application is erased

accidentally, the rulefile will still contain the initial specification values.

To run the application, execute the Synthesizer from the MAIN CONSOLE window.

Press the button GOAL:: EXPANDGOAL in the createcabin2 and then click on the

?CABIN button. After you have done this, you have created an instance of the Cabin

with its initial specifications.

After instantiating the Cabin artifact, you should expand the process furthermore by

expanding the artifact which will reveal the cabin-design-plan that consists of the sequence

of design from left to right: set-beanmcolumngrid goal, settrusssys goal, setwalls goal, and

set-foundation goal. Refer to figure 7-29 for the example of the Synthesizer execution.

Pursuing a design alternative such as the combination of the beam-column grid will

yield something like figure 7-30.

You may continue executing Synthesizer by clicking at the choices presented by the

goals, or by clicking at goals and plans to expand the processes. You can always access the

editor of the corresponding Synthesizer object by clicking on the upper button, for example:

if you click on the Cabinl button, the ARTIFACT EDITOR window will pop out, as seen

in figure 7-31.

Following this example and traversing every path available for the application will create

a complete design of the cabin based on your configuration of choices. Additionally, you

can check whether the right rulefiles have been fired from the XTERM window.

Context Switching within the application

153

7.2 The Implementation

Figure 7-29: The Synthesizer first pass of the Cabin Design application.

CONGEN incorporates a powerful tool within its knowledge-base: the Context switch-

ing facility. As explained, Contexts contain the complete information about the state of

the knowledge-base whenever a decision has been made such as shown in figure 7-32.

When you summon the DDH EDITOR window, you are presented with four subwindows

inside the editor. The lower right window shows the list of Contexts created so far. This

figure shows that there are a lot of Contexts created for the course of the design process,

such as: set-columns.4 which refers to the state of the knowledge-base when the choice of

creating four columns was made. By clicking on the set-columns.4 in this subwindow, the

CONTEXT BROWSER window pops up showing the paths that have been traversed and

choices made such as shown in figure 7-33.

By switching Contexts, you can pursue other design alternatives by starting the Syn-

thesizer from that particular Context. The steps are as follows:

1. Quit the Synthesizer.

2. Summon the DDH EDITOR window (KNOWLEDGE - PROCESS KNOWL-

EDGE menu in the MAIN CONSOLE window).

154

7.2 The Implementation

Figure 7-30: The Synthesizer beam-column grid pass of the Cabin Design application.

155

7.2 The Implementation

Figure 7-31: The Synthesizer pops out the editor for the artifact Cabin of the Cabin Design
application.

156

7.2 The Implementation

Figure 7-32: The DDH EDITOR window.

3. Click on the Context that you want to start your design alternative from.

4. Go back to the MAIN CONSOLE window and execute the Synthesizer again.

When you execute the Synthesizer after you select a new Context, you are given a

chance to pursue a different path from the one you have traversed before. For example,

after you pursue a certain path like the one shown in figure 7-34, you may want to change

the decision of using different number of columns. To do this, you should perform the steps

outlined above and choose the Context of set-beam-column-grid.set-beam.column-grid-plan

in order to reset the choice of set.columns.4 Context. The state of knowledge-base in the

157

7.2 The Implementation

Figure 7-33: The CONTEXT BROWSER window for the Context: setcolumns.4.

new Context is shown in figure 7-35.

After you have selected the new Context, then you are ready to select the new config-

uration by executing the Synthesizer once again.

158

7.2 The Implementation

Figure 7-34: The SYNTHESIZER window for the Context: set trusssys.set-trusssys -plan.

7.2.7 Executing GNOMES and displaying the geometry

To execute GNOMES Geometric Modeler, select EXECUTE - GEOMETRIC

MODELER in the MAIN CONSOLE window. After the GNOMES window is shown,

go back to the SYNTHESIZER window and select GEOMETRY - SHOW GEOM-

ETRY. After selecting, you should go back to the GNOMES window, and the various

configurations will be shown, such as those in figure 7-36, figure 7-37, an figure 7-38.

159

7.3 Summary

Figure 7-35: The CONTEXT BROWSER window for
seLtbeam-columngrid.set-beam-column-grid.plan .

7.3 Summary

Tutorial 4 presents a complete Cabin Design application consisting of a representative

design example. Most concepts outlined in the previous chapters have been used extensively

and expanded to develop this application. By finishing this tutorial, you should be able to

develop an application of your own.

The next chapter deals with CONGEN limitations and future research directions.

160

7.3 Summary

Figure 7-36: The Geometric Modeler for Cabin configuration with 6 columns, 2 girders, 1
supporting beam, and two trusses.

161

7.3 Summary

Figure 7-37: The GNOMES window showing configuration with 4 columns, wall openings,
and mat foundation.

162

7.3 Summary

Figure 7-38: The GNOMES window showing configuration with 6 columns, 3 trusses and
4 purlins.

163

Chapter 8

Summary and Future Work

This thesis has presented a guide to the implementation of CONGEN along with a real

world example. The central idea is to provide a documentation for the users of CONGEN

to develop their own applications. This chapter presents some conclusions drawn from

the experience in developing CONGEN applications. Section 8.1 summarizes the overall

implementation. Section 8.2 concludes the thesis with some recommendations on future

developments of CONGEN.

8.1 Summary

One of the critical stages in the design process is conceptual design. Subsequent de-

sign stages depends heavily on the conceptual design solutions. Later on, the alternative

solutions will complement the initial design with more detailed information and further

modifications. A good conceptual design support usually leads to a fully functional prod-

uct satisfying various constraint requirements. Performing the conceptual design tasks in

the early design stages will smooth the final design's criteria satisfaction process [11].

This thesis has presented an approach towards building a specific domain application

on top of a knowledge-based design support system, mainly structural engineering area.

The conceptual design presented here does not concern itself with the quantitative analysis

process because the detail data may not be available at the early stages of the design

164

8.1 Summary

process. Conceptual design phase distinguishes itself from the other stages because it

primarily deals with qualitative criteria to simulate the behavior of the artifacts such as

material selection, spatial relationships, and rule-of-thumb domain knowledge [9]. The later

design stages then proceeds with evaluating and testing the artifacts quantitatively such as

the structural analysis of each structural member / artifact.

The structural design application developed on CONGEN utilizes the empirical knowl-

edge of how a structure is conceptualized in the initial stages. For example, the knowledge

involved may require that "For weak soil and poor condition of the site, it is better to use

mat foundation than spread foundation". This kind of knowledge is very helpful for the

designer to consider the basic artifacts' behaviors. The overall behaviors of all artifacts will

affect the whole structure's behavior as well.

In developing the application on CONGEN, I believe that CONGEN holds a very bright

potential in its role as the platform of conceptual design process. The support of knowledge

available to the designers and the visualization capability makes the conceptual design

process more flexible and adaptive to changes in the functional requirements. The embedded

knowledge guides the designers in producing a satisfactory design while the visualization

tool simulates real life artifact models in its final form.

Another important point that has to be noted is that CONGEN is highly flexible.

CONGEN is domain independent and can be used in any domain to build its applications.

Moreover, CONGEN can represent any visual representation of the artifacts with its ge-

ometric modeler. Design engineers from Mechanical Engineering, for example, can utilize

CONGEN as their choice of platform in order to develop a conceptual design application.

CONGEN's modeling capabilities such as storing the domain knowledge, providing the con-

straint management scheme, and modeling the design visually make it ideal for developing

conceptual design system.

Moreover, CONGEN is highly modularized. This aspect supports future expansion and

reallocation of existing modules within the framework of CONGEN. More modules can be

attached or decoupled from CONGEN's framework according to the required specifications

of the design application and the specific needs of the users. Currently we are in the process

165

8.1 Summary

of integrating GROWLTIGER, a structural analysis program developed at MIT to support

the Cabin Design Application.

The issues arising in the process of developing Cabin Design Application can be cate-

gorized as follows:

1. Knowledge Acquisition. The source of knowledge used in the structural engineer-

ing application comes from two primary sources: an expert structural engineer and

textbooks. The developer's lack of experience in knowledge acquisition made the

development process harder to accomplish because the knowledge sources are either

too complete, or incomplete. Textbooks provide a wealth of knowledge, yet with

various approaches and different techniques. The textbooks can not provide a simple

implementable procedure to solve a problem in the application.

On the other hand, the initial discussions of Cabin Design development saw a lot

of design procedure hierarchies being proposed and dropped. The experience of the

real life engineer provide a better guidance in selecting the best design logic at the

end. Had we had more experience in knowledge acquisition, the task of synthesizing

information and knowledge from the source would have been easier to complete.

2. Lack of Documentation. Implementing an application on top of CONGEN without

any practical documentation proved to be quite challenging. The only documentation

available was the theoretical implementation of the CONGEN designer. CONGEN

was never tested by a real user before. This results in confusion of the end-user in

handling even simple tasks in CONGEN. The need for clear and concise documenta-

tion of CONGEN was realized immediately after getting involved with CONGEN for

the first time.

3. Evolving Application Structure. One of the advantages of CONGEN is that it

permits flexibility in representing the design process hierarchy. The concepts of goals,

plans, artifacts, and contexts provide essential building blocks for the application.

However, this advantage proved to be somewhat ambiguous, because the application

structure tends to evolve from time to time. The application evolution is needed in

166

8.2 Future Work

order to overcome CONGEN limitations and different approaches to a subproblem.

Therefore, it is very important for the user to define clear functional descriptions of

the product-process knowledge in the initial stages of application development. The

clear segregation will help the user avoid spending too much time searching different

approaches to a subproblem.

8.2 Future Work

As an evolving design support system, CONGEN will still inherit many enhancements

and shortcomings in the future. Right now, the version of CONGEN has incorporated the

new version of COSMOS. With its modularized architecture, independent modules can be

upgraded and attached to CONGEN easily. However, the disadvantage is that the bugs

and errors of the newly attached module are also integrated into CONGEN.

These limitations severely crippled the capability of CONGEN to provide more flexibil-

ity to the application development process. In addition to the limitation, there are several

enhancements in various areas of CONGEN which need to be incorporated such as:

1. The need for online-help.

2. The need for utility to migrate databases / applications from one volume to another.

3. The need for functions to print the contents of database to a text file to be evaluated.

4. The need for to represent the complete list of attributes of an instance in the instance

editor inherited either from its own class definition or the parent class attributes.

5. The need for informing the user whenever the user switches a context to a different

one.

6. The need to expand basic data types in CONGEN to cover arrays, class objects along

with their special access mechanisms in the ruleset of COSMOS.

The continual observation in implementing Cabin Design application on CONGEN

sheds light on some further inquiries of future CONGEN development:

167

8.2 Future Work

1. Speed. CONGEN allows the user to switch contexts easily to reflect the various

design stages. However, the context switching dictates that every object existing in

the current context be copied to the new context generated by a decision. Therefore,

most computational resources in CONGEN are geared towards copying instances

within the database whenever a decision making point is reached. Moreover, the

geometric modeler also contributes to the decrease of processing speed of CONGEN.

It will be worthwhile to pursue several alternatives in improving the computational

speed of CONGEN, such as decoupling the geometric modeler and CONGEN, or

investigating the database mechanism closely to identify weak areas in persistent

data operations.

2. Transaction Management - The transaction management in CONGEN is based on

one big transaction. The major transaction is started when CONGEN starts, or after

the user saves the application. It ends when the user quits (aborts the transaction)

the application or saves the application (commits the changes to the database). How-

ever, with multiple applications, the need to define a better transaction management

scheme is acknowledged. For example, a user is working in application A. Then the

user decides to open another existing application or creates a new application with-

out saving the application A. When the user commits the transaction in the new

application, all changes in application A will also be committed. This means that

the previous application's operation is not controlled sufficiently because the changes

committed are not limited to the current application. Therefore, a new transaction

management scheme for CONGEN is needed to support better control for the persis-

tence of the application data.

3. Versioning Capability. Versioning capability is needed in order to share objects

across different applications, or even different departments. Collaborative engineer-

ing mechanism requires a superior object management capability to avoid confusion

among engineers. Versioning will enable the users to store gradual enhancements for

an object. In addition, it will help the users trace who does what changes on a shared

168

8.2 Future Work

object.

4. More Elaborate Testing. In essence, the Cabin Design application only represents

a small portion of the domain knowledge of structural engineering. To build a more

complete one with bigger scope of design stages, CONGEN must be able to perform

effectively and efficiently real time. The issues of performance degradation of a big

application and the more various representations of an artifact's geometry must be

solved immediately. The Cabin Design application should become the starting point

for the future exploitation of CONGEN, where real world applications will test the

limits of CONGEN further. When CONGEN can overcome the limitations, it will

prove to be an invaluable conceptual design tool for the designers.

5. More Efficient Object-Oriented Database Management System. CONGEN uti-

lizes EXODUS as the database platform. However, the developers of EXODUS at

Wisconsin-Madison has decided not to further explore the EXODUS research. There

are still lots of areas that can be made more efficient in EXODUS, such as the database

limitations in migrating data from one volume to another. Therefore, the idea to mi-

grate the whole CONGEN application to a commercial database with better speed

and handling of the objects is worth considering.

169

Bibliography

[1] A. Goldman, K. Hussein, G. Margelis, J. Sugiono, and Y. C. Huang. GRAPHITI De-

tailed Design. Project for Course: Computer Aided Engineering II: Software Engineering

for CAE Systems, 1.552 of M.I.T., May 1994.

[2] A. Goldman, K. Hussein, G. Margelis, J. Sugiono, and Y. C. Huang. GRAPHITI

Functional Specifications. Project for Course Computer Aided Engineering II: Software

Engineering for CAE Systems, 1.552 of M.I.T., April 1994.

[3] Adeli, H. and Balasubramanyam, K. Expert Sytems for Structural Design - A New

Generation, Prentice-Hall, Englewood Cliffs, 1988.

[4] Adedeji, B., Expert Systems Applications in Engineering and Manufacturing, Prentice-

Hall, Englewood Cliffs, 1992.

[5] Addis, W., Structural Engineering - the nature of theory and design, Ellis Horwood

Ltd., Great Britain, 1990.

[6] Agbayani N., DFRAME: An Object-oriented Plane Frame LRFD Design Program with

Novel Design Algorithm, S.M Thesis, Department of Civil Engineering MIT, June 1991.

[7] Ahmed, S., Wong, A., Sriram, D., and Logcher, R., "Object-Oriented Database Man-

agement Systems for Engineering: A comparison," Journal of Object-Oriented Program-

ming, June, 1992.

[8] Ambrose. J., Building Structures 2nd Ed., John Wiley & Sons, New York, 1993.

170

BIBLIOGRAPHY

[9] Arockiasamy, M., EXPERT SYSTEMS Applications for Structural, Transportation, and

Environmental Engineering, CRC Press, Boca Raton, 1993.

[10] Bowles, J., Foundation Analysis and Design, McGraw-Hill Book Co., New York, 1982.

[11] Bozzo. L. and Fenves, G., "Qualitative Reasoning About Structural Behavior for

Conceptual Design, " Structural Engineering Mechanics and Materials Report No.

UCB/SEMM-92/26, Department of Civil Engineering U.C. Berkeley, California 1992.

[12] Brown D. and Chandrasekaran B., "Investigating Routine Design Problem Solving,"

AI in Engineering Design, Vol. III, Editors: Tong, C. and Sriram, D., Academic Press,

1992.

[13] Cheong, K.W., A Knowledge-Based Framework for Conceptual Design, S.M Thesis,

Department of Civil Engineering, M.I.T., March 1991.

[14] Cherneff, J., "Knowledge Based Interpretation of Architectural Drawing, " IESL Re-

search Report R90-13, Intelligent Engineering Systems Laboratory, M.I.T, 1990.

[15] Coduto, D., Foundation Design - Principles and Practices, Prentice-Hall, Englewood

Cliffs, 1994.

[16] Carey, M.J., DeWitt, D.J., Graefe, G., Halght, D.M., Richardson, J.E., Schuh, D.T.,

Shekita, E.J., and Vandenberg, S.L., "The EXODUS Extensible DBMS Project: An

Overview," Readings in Object-Oriented Databases, Zdonik, S., and Maier, D., eds.,

Morgan-Kaufman, 1990.

[17] Gorti, S.R., From Symbol to Form: A Framework for Design Evolution, Ph.D Thesis,

Department of Civil Engineering, M.I.T., September 1994.

[18] Hakim, M., "A Representation for Evolving Engineering Design Product Models,"

Technical Report, Dept. of Civil Engg., CMU, 1992.

[19] Humair, S., An Approach to Solving Constraint Satisfaction Problems Using Asyn-

chronous Teams of Autonomous Agents, S.M Thesis, Department of Civil Engineering,

M.I.T., Aug. 1994.

171

BIBLIOGRAPHY

[20] Johnson, A.L., "Functional Modelling: A New Development in Computer-Aided De-

sign," Intelligent CAD, II, Yoshikawa, H. and Holden, T. (Editors), IFIP, 1990.

[21] Li, H., A Non-Manifold Geometry Modeler: An Object Oriented Approach, S.M Thesis,

Department of Civil Engineering, M.I.T., Feb. 1993.

[22] Lin, T. and Stotesbury, S., Structural Concepts and Systems for Architects and Engi-

neers, Prentice-Hall, Englewood Cliffs, 1981.

[23] MacGinley T. and Choo, B., Reinforced Concrete - Design Theory and Examples, E

& F.N. Spon, Great Britain, 1990.

[24] MacGregor, J., Reinforced Concrete - Mechanics and Design, Prentice-Hall, Engle-

wood Cliffs, 1988.

[25] Mantyla,M., "A Modeling System for Top-down Design of Assembled products," IBM

Journal of Research and Development, Volume 34, Number 5, Sept. 1990

[26] Margelis, G., Geometric Abstractions for Conceptual Design, S.M. Thesis, Intelligent

Systems Laboratory, Dept. of Civil and Environmental Engg., MIT, 1994.

[27] Mittal, S. and Araya, A., "A Knowledge-Based Framework for Design," AI in Engi-

neering Design, Vol. III, Editors: Tong, C. and Sriram, D., Academic Press, 1992.

[28] Mukerjee,A., "Qualitative Geometric Design," Symposium on Solid Modeling Founda-

tions and CAD/CAM Applications, Editors: Rossignac,J. and Turner,J., ACM Press,

1991.

[29] Murthi, S.S. , and Addanki, S., "PROMPT: An Innovative Design Tool," AAAI-87,

pp. 637-642, 1987.

[30] Murthy, S., "Synergy in Cooperating Agents: Designing Manipulators from Task Spec-

ifications,", Ph.D. Thesis, CMU, Sept 1992

[31] Nilson, A. and Winter, G., Design of Concrete Structures, McGraw-Hill Book Co.,

New York, 1986.

172

BIBLIOGRAPHY

[32] Parker, H., and Ambrose, J., Simplified Engineering for Architects and Builders," John

Wiley & Sons, 1984.

[33] Richardson, J.E., Carey, M.J., and Schuh, D.T., "The Design of E Programming

Language," ACM Transactions of Programming Languages and Systems, Vol. 15, No.

3, 1993.

[34] Rossignac, J., Advanced Representations for Geometric Structures, Seminar given at

IESL, Department of Civil Engineering, M.I.T., December 10, 1992.

[35] Rumbaugh, J., Blaha,M., Premerlani,W., Eddy,F., and Lorensen,W., Object-Oriented

Modeling and Design, Prentice Hall, 1991.

[36] Salmon, C. and Johnson, J., Steel Structures Design and Behavior 2nd Ed., Harper

& Row. New York, 1980.

[37] Schodek, D. L., Structures, Prentice-Hall, Englewood Cliffs, 1980.

[38] Serrano, D., Constraint Management in Conceptual Design, PhD Thesis, MIT, Oct

1987.

[39] Smithers,T., "Al-Based Design versus Geometry-Based Design," Computer Aided De-

sign 21(3): 141-150., 1989.

[40] Sriram, D., "Knowledge-based Approaches for Structural Design," Topics in Engineer-

ing Vol.1, Computational Mechanics Publications, Boston 1987.

[41] Sriram, D., Intelligent Systems for Engineering: Knowledge-based and Neural Net-

works, Technical report, IESL, MIT, 1988.

[42] Sriram, D., et al., "An Object-Oriented Knowledge Based Building Tool for Engi-

neering Applications," IESL Research Report R91-16, Intelligent Engineering Systems

Laboratory, M.I.T, 1991.

173

BIBLIOGRAPHY

[43] Sriram, D., Cheong, K., and Kumar, L., "Engineering Design Cycle: A Case Study

and Implications for CAE," Knowledge Aided Design, Editor: Green, M., Academic

Press, 1991.

[44] Sriram, D. and Logcher, R., "The MIT DICE Project," IEEE Computer, Special Issue

on Concurrent Engineering, pp. 64-65, January 1993.

[45] Sriram. D., Logcher, R., Groleau. N., and Cherneff, J., "DICE: An Object-Oriented

Programming Environment for Cooperative Engineering Design," AI in Engineering

Design, Vol. III, Editors: Tong, C. and Sriram, D., Academic Press, 1992.

[46] Sriram, D., Wong, A., and He, L., "An Object-Oriented Non-manifold Geometric

Engine," CAD Journal, to be published.

[47] Steele, G. J., The Definition and Implementation Of a Computer Programming Lan-

guage Based on Constraints, PhD Thesis, MIT, Aug 1980.

[481, Stefik, M. and Bobrow, D.G., "Object-Oriented programming: Themes and Varia-

tions," AI Magazine, 1986.

[49] Steinberg, L., "Design as Top-Down Refinement Plus Constraint Propagation," AI in

Engineering Design, Vol. III, Editors: Tong, C. and Sriram, D., Academic Press, 1992.

[50] Swenson, E. and Logcher, R., "Knowledge Acquisition in Conceptual Project Schedul-

ing, " IESL Research Report R92-25, Intelligent Engineering Systems Laboratory,

M.I.T, 1992.

[51] Taranath, B., Structural Analysis and Design of Tall Buildings, McGraw-Hill Book

Co., New York, 1988.

[52] Tong, C. and Sriram, D., Introduction to Artificial Intelligence in Engineering Design,

Vol. 1, Academic Press Incorporated, 1992.

[53] White, R., Gergely, P. and Sexsmith, R., Structural Engineering, John Wiley & Sons,

Inc., New York, 1972.

174

BIBLIOGRAPHY

[54] Wong, A. and Sriram, D., "Geometric Modeling Facilities for Product Modeling,"

Intelligent Engineering Systems Laboratory, M.I.T, 1993.

[55] Wong, A., Sriram, D., et. al., Design Document for the GNOMES Geometric Modeler,

IESL Technical Report, Intelligent Engineering Systems Laboratory, M.I.T. December

1991.

[56] Wong, A. and Sriram, D., "SHARED: An Information Model for Coooperative Product

Development," Research in Engineering Design, Fall 1993.

[57] Wong, A. and Sriram, D., Shared Workspaces for Computer-aided Collaborative Engi-

neering. Intelligent Engineering Systems Laboratory, Dept. of Civil and Environmental

Engineering, Technical Report No: IESL 93-06, March 1993.

[58] Wong, A. and Sriram, D. "An Extended Object Model for Design Representation," to

be submitted to IEEE Transactions on Knowledge and Data Engineering.

[59] Wright, E. Structural Design by Computer, Van Nostrand Reinhold, Great Britain,

1976.

175

Appendix A

REFERENCE MANUAL

A.1 Reserved Keywords

The reserved keywords are:

* attribute: object-type used by the Geometry class in CONGEN.

* attribute: length used by the Geometry class in CONGEN.

* attribute: width used by the Geometry class in CONGEN.

* attribute: height used by the Geometry class in CONGEN.

* attribute: xpos used by the Geometry class in CONGEN.

* attribute: ypos used by the Geometry class in CONGEN.

* attribute: zpos used by the Geometry class in CONGEN.

* attribute: thetax used by the Geometry class in CONGEN.

* attribute: thetay used by the Geometry class in CONGEN.

* attribute: thetaz used by the Geometry class in CONGEN.

* attribute: sizex used by the Geometry class in CONGEN.

* attribute: sizey used by the Geometry class in CONGEN.

* attribute: sizez used by the Geometry class in CONGEN.

176

A.2 Available Methods

In addition to this, users are strongly advised not to use the following scheme in naming

an instance of a class. For example, if the user owns a class "Column", and wants to name

a created instance of the class, DO NOT use the naming Column1, or Column2, etc.

CONGEN uses this naming convention to refer to the instances that it produces in the

process. Whenever Synthesizer instantiates an instance of a class, the name of the instance

follows the rule: iclassnameLinumL e.g. Columnl. Therefore, instead of using the following

scheme:

MAKE (CLASS:Column 0BJ:Columnl ... -> WRONG!

you should do:

MAKE (CLASS:Column OBJ:Coll or Col_1 or Column.1

A.2 Available Methods

Every method listed below can be summoned via rulefiles. Please remember not to put

any space between the arguments of the method.

* make part(relationshipname,childclassname,childinstancename) This method is used

to link a parent and a child with part-of relationship. Example:

Class Wheel; // Child class

Class Car; // Parent class

in the rulefile:
(EXECUTE VAR: $rtn 0BJ:Carl makepart('"'leftwheel'', ''Wheel'',' 'Wheell''))

* showgeometry() This method automatically updates the geometric modeler display

if it is already active. Example:

(EXECUTE VAR: $rtn OBJ:Carl showgeometry())

177

A.2 Available Methods

* creategeometry(geometrytype,instancename) This method creates a geometry to

be linked to an artifact, and assigns an instancename to the geometry. The type of

geometry can be found in the Cabin Design Application Tutorial in Geometry section.

Example:

(EXECUTE VAR: $rtn OBJ:Carl creategeometry(7, ' ' cargeom' '))

The type 7 denotes LINE RECTANGULAR SOLID geometry. To create a line ge-

ometry, use type 4.

* set-translation(Xunit, Yunit,Zunit) This method translates a geometry as much as

Xunit along X axis, Yunit along Y axis, and Zunit along Z axis. The translation

units must be float, not integer. Example:

(EXECUTE VAR: $rtn 0BJ:Carl settranslation(100.0,100.0,200.0))

* setrotation(Xdegree, Ydegree, Zdegree) This method rotates a geometry as much as

Xdegree along X axis, Ydegree along Y axis, and Zdegree along Z axis. The degrees

must also be float, not integer. The direction of the rotation follows the rule of right

thumb pointing to the positive direction of the axis and fingers denoting the direction.

Example:

(EXECUTE VAR: $rtn OBJ:Carl setrotation(90.0,90.O,180.0))

* propagate-attributevalues(childclass,childinstancename) This method acts to propa-

gate parent's geometry values to the children. This method is important in ensuring

that the children have the same geometry as the parent. Example:

(RULE: create-columns22 10000
IF

(CLASS: pier OBJ: $x

((noofcol == 2) AND
(instancename == "pier2"))

178

A.3 Dynamic Methods

)

THEN (
(MAKE (CLASS:column OBJ: pier2coll
(width 3)
(ypos 22)

(EXECUTE VAR: $rtn 0BJ: $x makepart(' 'coll' ', ' 'column' ', ' 'pier2coll' '))
(EXECUTE VAR: $rtn OBJ: $x propagate.attributevalues(' 'column' ', ' 'pier2coll' '))
(EXECUTE VAR: $rtn OBJ: $x create.geometry(7,''pier2coll''))
)
COMMENT:" Creating a column, link it to the pier, propagate the
geometry value from pier to column, and create the column geometry")

The above rules create a column for the pier, set up part-of link between the column

and the pier, propagate the pier geometry values to the column, and lastly, create the

geometry of the column itself based on the pier's geometry values.

* notify-constraintviolation(stringmessage) This method acts as the notifier to the

user if the constraint is violated or there's any violation happening in the knowledge

base. Example:

(EXECUTE VAR: $rtn 0BJ: $x notifyconstraint.violation(''The wheel is too small"))

A.3 Dynamic Methods

The current version of CONGEN provides a powerful tool in supporting the users' need

- dynamic methods. Dynamic methods are methods provided by the user, compiled and

linked by CONGEN at runtime. Users do not have to shutdown CONGEN to compile and

add new methods to their own applications.

Dynamic methods are defined in two ways:

1. Member functions defined within a class.

2. Independent external C functions.

The syntax to summon the dynamic method is as follows:

EXECUTE VAR: $returnidentifier OBJ: $caller-identifier method(arguments)

179

A.3 Dynamic Methods

* $returnidentifier points to the variable name which will hold the return value of the

method, i.e.: $rtn.

* $caller-identifier points to the object summoning this method i.e.: $x, $y, etc.

* method represents the method name as defined by the user such as: make-part,

calculateload, etc.

* arguments are the arguments needed by the method.

The current implementation of dynamic methods only supports six basic data types to

be parsed as arguments:

1. integer,

2. character,

3. float,

4. double, and

5. PString - Persistent string implementation in EXODUS.

6. PStringList - Persistent list of strings.

An example of a dynamic method implementation is as follows:

* The header file:

#ifndef trussH
#define truss_H

#include "Artifact.h"
#include "exemplar.h"
dbclass truss:public Artifact{

private:

public:
dbvoid analyze();
int get nodes();

180

A.3 Dynamic Methods

int getmemno();
dbvoid setnonodes(dbint);
int no nodes;
int nonmems;
int meminc[5][2];
int supported[4][2];
double jcoord[4][2];
double memberarea[5]; 20
double memr youngs[5];
double loads[8];

};
#endif

e The program file:

#include "/mit/jdchiou/congen/ar/truss.h"
#include "metaclass.h"
#include "ccString.h"
#include "datamanager.h"
#include "InstanceManager.h"
#include <iostream.h>
#include <math.h>

// All the declaration of class Truss is put here by CONGEN (code automatically generated)
... 10

// The following methods are other external methods entered in CONGEN

dbint truss::getnodes() {
return no_nodes;

}
dbint truss::get_memno() {
return nomems;

}
dbvoid truss::set no-nodes(dbint i){ 20
nonodes = i;
}

// The following methods are inserted manually using a text editor (EMACS)

void truss(int nomems, int nonodes, int mem inc[][2],
double jcoord[l[2], int supportedo[2], double *loads, double
*memberarea, double *mem-youngs) ;

30

dbvoid truss::analyze()
// analyze function calls the "truss" C function from inside

181

A.3 Dynamic Methods

// this is a dummy function to implement external method invocation

{

// the body of function "analyze"

40
// prepare data to be passed to the function "truss" below

truss(nomem s,no_nodes,mem incl ,jcoord 1 ,supported 1 ,loadsl ,member_areal,memyoungsl);

// Function "truss" declaration in C
// This function must be inserted manually by the user using
// a text editor.

50
void truss(int no-mems, int nonodes, int memjinc][2],

double jcoord[[2), int supported[[2], double *loads, double
*member-area, double *memyoungs)

{

// the body of function "truss"..

* The rulefile:

(RULE: creategeomtry 10
IF
(CLASS: truss OBJ: $x
(nomems == 0)

THEN (
(EXECUTE VAR:$rtn OBJ:$x setnonodes ($rtn-1)
(EXECUTE VAR:$rtn OBJ:$x analyze ())

COMMENT:"Rule to execute methods defined inside the class truss") 10

The external methods can be written in two ways:

1. By entering the method and edit the method inside CONGEN itself (from the PROD-

UCT KNOWLEDGE menu). This approach is effective when the method to be in-

serted is relatively short.

2. By entering the method manually - editing the class files (.e and .h) using a text editor

i.e.: EMACS. This approach is effective when you need to insert a long function.

182

A.4 Application Script

In the example, the function getnodes() from the above example is entered using CON-

GEN's Product Knowledge facility. The function is very short, so it is better to use CON-

GEN's facility. On the other hand, the function analyze() is quite long. It is not effective

to use CONGEN's facility to enter the source code. Therefore, we use EMACS to edit the

"truss.h" and "truss.e" files manually.

A.4 Application Script

Application scripts are provided to help the user shortcut the tedious process of entering

many goals. plans, and classes manually.

The steps to prepare an application script are as follows:

1. Prepare the entries for goals and plans before writing the script.

2. Use the template from Cabin Design application script listed in Appendix E. This

template will help explain the basic entry rules for the goals and plans. You must use

a different name for your own script. In addition, you should change the name of the

goals or plans and each field entry as outlined in the example.

3. Prepare the classes to be entered, complete with their attributes.

4. Enter the classes as written in the Cabin Design sample. You should not enter all

attributes into the script. The attributes should be put in another file, for example:

Cabin class is linked to Cabin.attr file containing all the Cabin attributes.

5. Enter the subclass relationships between the classes. The relationship examples can

be seen at the end of the Cabin Design script.

6. Compile the script, i.e.: make create.cabin.o.

7. Execute CONGEN, and in the MAIN CONSOLE window, select the submenu HELP.

After you click on HELP a window should be presented to you as shown in figure A-1.

You must enter the name of the script program without the extension .o.

8. Wait for the script to finish executing.

183

A.4 Application Script

Figure A-1: The HELP window with the create-cabin script entry.

9. Make the application / compile the classes using the PRODUCT KNOWLEDGE

window menu FILE --+ MAKE APP.

NOTE: The statements: Estart-transaction and Ecommit-transaction should be used

often in the application. Due to a bug in EXODUS that crashes CONGEN whenever there

are too many objects to be committed, you should put the statement pairs more often in

the script code.

184

Appendix B

COSMOS Knowledge Base Rule

in CONGEN

B.1 COSMOS Rule Grammar

The BNF notation for the knowledge base in COSMOS is given below.

<knowledge base> ::= <knowledge base> <commentblock>

<knowledge base> <rule>

<commentblock> -= /* <comment> */

<comment> ::= identifier I <comment> identifier

<rule> = (RULE: <rulename> <ruleprior> if <condblock>

then <actblock> <comblock>)

<rulename> ::= identifier

<ruleprior> ::= number

<condblock> ::= (<condblock> OR <condblock>) I

(<condblock> AND <condblock>)

(CLASS: identifier OBJ: $identifier <slot-ops>)

<slotops> ::= (<slotops> OR <slot-ops>) I

(<slot-ops> AND <slot-ops>) I

(identifier <lop> <expr>)

185

B.1 COSMOS Rule Grammar

<lop> =

<expr> =

<aop> :=

<actblock> :=

<actionstatement>::=

<Isno> ::=

<Inno> ::=

<comblock> ::

GT I GEI LT I LE I EQ I NE

number

stringI

$identifier I

VAR I
(<expr>) I
<expr> <aop> <expr>I

+1 -1 * 1
(<actionstatement>+)

(MODIFY OBJ: $ identifier [(identifier<expr>)]+) <lsno><Inno>

(MAKE CLASS: identifier OBJ: $identifier [(identifier <expr>)]+) I

(REMOVE OBJ: $identifier) I

(PRINT <expr> [,<expr>]*) I

(READ PROMPT: string, VAR: $identifier, TYPE:identifier)

(BIND VAR: $identifier<expr>) I

(EXECUTE VAR: identifier OBJ: identifier method)

(DISPLAY string)

number

number

COMMENT: string

B.1.1 Explanation of the Grammar

The knowledge base (rule base) is composed of comments and rules as given by the

grammar rule given below.

<knowledge base> ::= <knowledge base> <commentblock>I

<knowledge base> <rule>

186

B.1 COSMOS Rule Grammar

B.1.2 Comment Block

<commentblock> :: /* <comment> */

<comment> : identifier I <comment> identifier

The comments are identifiers enclosed by the characters '/*' and '*/'. Any text enclosed

like this is a comment and are ignored by the parser. This form of comment can occur only

outside the rules. They cannot be used to omit parts of rules. The grammar for a rule is

as follows:

B.1.3 Rule

<rule> ::= (RULE: <rulename> <ruleprior> if <condblock>

then <actblock> <comblock>)

The rules are the main part of the knowledge base. A matched set of parenthesis delimits

a rule. Inside parenthesis, the rule begins with the keyword 'RULE:'. The rule is made of

the following components. The keyword 'RULE:', rule name, rule priority, the if portion

or antecedent or condition part, the then portion or consequent or action part, and the

comment part.

B.1.4 Rule Name

<rulename> ::= identifier

The rule name is an identifier uniquely labeling a rule. Each rule in the rule base has a

unique rule name. It is an identifier beginning with a character and can be 25 characters

long. The rule name must consist of alphanumeric characters, and should not contain any

blanks.

187

B.1 COSMOS Rule Grammar

B.1.5 Rule Priority

<ruleprior> ::= number

The rule priority is a number. The higher the number, the higher the priority of the rule.

B.1.6 Condition Block

The unit condition block element is delimited by parenthesis and the portion inside the

parenthesis has three parts.

1. the class name beginning with 'CLASS:' keyword and class name identifier

2. the object name beginning with 'OBJ:' keyword and object identifier prefixed by

the '$' symbol.

3. the conditional expression. It is recursively made of the unit condition block elements

interconnected by conjunctive or disjunctive logical connectives represented by the

keywords 'AND' and 'OR' respectively. The negation operator NOT is also used for

recursive definition of the condition block.

<condblock> ::= (<condblock> OR <condblock>) I

(<condblock> AND <condblock>) I

(C LASS:identifier 0 BJ:$identifier <slotops>)

B.1.7 Test Expression

The unit test expression is an identifier and an arithmetic expression connected by

comparative operators. The comparative operators used are ,, ,=, ,, Z=, ==, != to

represent greater-than, greater-than-or-equal, less-than, less-than-or-equal, equal, not-equal

respectively. The grammar for the test expression is given below.

<slotops> ::= (<slotops> OR <slotops>) I

188

B.1 COSMOS Rule Grammar

(<slot-ops> AND <slotops>) I
(identifier <lop> <expr>)

<lop> ::=GTIGE I LTI LEI EQI NE

While, in general test expressions are used to match values to attribute variables of

classes, they can be used to construct more complex pattern matching cases.

For example:

attribute op val : If val is not defined, and op is '==' ,the comparison is reduced to a

binding, wherein the variable val is bound to equal attribute. This fact may be used to

perform matches of the kind attributel op attribute2, by reducing the conditional to a

BOOLEAN AND of the two conditions, attributel == $val and attribute2 op $val.

The scope of such bound variables is, however, limited to the rule !

Note that when val is an arithmetic expression, the syntax for the conditional would

be as in attribute op {2.0 + $val}, to use an example.

B.1.8 Arithmetic Expression

The arithmetic expression is formed of number, string, object, variable, or these things

except strings combined by the binary arithmetic operators of addition, subtraction, multi-

plication and division. The unary operator used is the negation.The NOT unary operator

is the only allowed logical operator. The string is represented by characters enclosed in

double quotes "".

<expr> ::= number I string I $ identifier I VAR

(<expr>) I <expr> <aop> <expr>

<aop> ::= + - I *

B.1.9 Example of Condition Block

An example of a condition block will be:

189

B.1 COSMOS Rule Grammar

((CLASS:car OBJ:buick

(spare-wheel LT 1)) AND

(service-shop NE "available")) OR

(car-junked EQ "true"))) AND

((CLASS:) OR

(CLASS:)))

IMPORTANT NOTE: Be sure that the parenthesis are used only for couples,

for example (COND1), ((COND1) AND (COND2)), (((COND1) AND (COND2)) AND

(COND3)). You cannot use conditional statements in more than two conditions at one

point of testing within the same parenthesis.

B.1.10 Action Block

The next part of the rule is the consequent or the action part of the rule. Each rule has

one action block. The action block is composed of one or more action statements. When

the condition part is satisfied, the action statements are executed in the textual sequence.

There are seven different types of action statements:

1. MODIFY- This statement modifies the values of the attribute in a class.

2. MAKE - This statement creates an instance of a class. You can also attach initial
values of attributes within the MAKE statement.

3. REMOVE - This statement removes an object from the working memory.

4. READ - This statement reads input from a popped dialog window.

5. BIND - This statement provides a variable name to be bound to a

6. EXECUTE - This statement enables the user to execute an external method. Please
refer to Appendix A for further information.

7. DISPLAY- This statement displays a picture taken from an Xwindow screendump.

The action statements are expressed by the following grammar rules.

190

B.1 COSMOS Rule Grammar

<actblock>

<actionstatement>

(<actionstatement>+)

(MODIFY OBJ:$identifier

[(identifier <expr>)]+) <Isno> <Inno> I

(MAKE CLASS: identifier OBJ: $identifier

[(identifieriexprL)]+) I

(REMOVE OBJ: $identifier) I

(READ PROMPT: string,VAR: $identifier,TYPE:identifier) -

(BIND VAR: $identifier <expr>) I

(EXECUTE VAR:identifier OBJ:identifier method) I

(DISPLAY string)

B.1.11 Example of Action Block

Examples of the Action Block are provided below.

THEN (

(MODIFY (OBJ: $x

(problem "dead battery")) 1000 0.001)

(MAKE (CLASS: Aclass OBJ:$x

(problem "dead battery")))

(REMOVE OBJ: $x)

(READ PROMPT: "read a value", VAR:$x,TYPE:whatever)

(BIND VAR: $num 550.34)

(EXECUTE VAR: $rtn OBJ: $x method)

(DISPLAY "/pathname/filename.xwd")

B.1.12 Inline Comment Block

There is another form of comment used in COSMOS which forms the part of rule.

This forms one of the segments of a rule. This comment is preceded by the keyword

191

B.2 Helpful hints in building and running rules in COSMOS

'COMMENT:' followed by the string representing the comment. The grammar for the

comment is given below.

::= <comblock>

B.2 Helpful hints in building and running rules in COSMOS

* VERY IMPORTANT: A rule will always be fired whenever the condition it tests

is true. There are some ways to overcome this problem, for example,

IF (CLASS: Column OBJ: \$x

((c_length == $1en) AND

(length != $1en))

THEN

(MODIFY OBJ: \$x

(length $1en) 1000 0.001)

In this case, length is a variable modified by the rule. Initially, length is not equal to

the column length, therefore this rule is fired. After the rule is fired, length is set to

the value of column length, therefore this rule is not fired for the second time. If the

(length != $1en) is omitted, then the condition will always be true, and CONGEN

will be caught in an infinite loop.

* The above behavior of the rulefile is very helpful in doing iterations, for example, you

have to evaluate every instance from an unknown quantity. One way to iterate through

all the instances is to make a rulefile that intercepts any of the instance immediately,

and then set a flag such as dbint processed; to 1, and 0 if not yet intercepted. For

example:

(RULE: createsource 1000
IF

192

B.2 Helpful hints in building and running rules in COSMOS

(CLASS: source OBJ: $x
(s int == 0)
)
THEN (
(MAKE (CLASS: source OBJ: sourcenew
(sint 1)
(schar "sourcel")
(sfloat 0.0) 10
(processed 0)

(MAKE (CLASS: source OBJ: sourcenew2
(sint 2)
(schar "source2")
(s float 0.0)
(processed 0)

))

COMMENT:"Rule to create the source") 20

(RULE: readsources 1000
IF
(CLASS: source OBJ: $x
(((processed == 0) AND
(s char == $name)) AND
((s int == $int) AND
(sfloat == $float)))

THEN(30

(READ PROMPT:"We found a source, would you name a new target?" VAR: $tname TYPE: s)
(BIND VAR: $newint 5/2)
(MAKE (CLASS: target OBJ: dummy
(tint $int)
(tchar $tname)
(tjfloat $newint)
(instancename $tname)

(MODIFY (OBJ:$x
(processed 1) 40
) 1000 0.001)

COMMENT:"Rule to read in targets")

(RULE: readtargets 1000
IF
(CLASS: target OBJ: $x
(instancename == "try")
) 50
THEN (
(READ PROMPT:"We found the target, would you name a new target?" VAR: $tname TYPE: s)
(MODIFY (OBJ:$x
(processed 1)
) 1000 0.001)

193

B.2 Helpful hints in building and running rules in COSMOS

COMMENT:"Rule to read in targets")

* Be sure to check whether the classnames and the attributes to corresponding classes

exist, because when they do not exist, the rule is never fired.

* Use DISPLAY statement to show a screen capture from a window (.xwd suffix). The

DISPLAY statement is very helpful in showing a screen capture of a geometry without

having to execute the Geometric Modeler.

* Remember that after MODIFY statement, you have to add more parameters as listed

above such as " 10000 0.001) "

* Check the OBJ identifier of the classes where you build your conditions. There

has been some occasions when the OBJ identifiers are the same for the class, and

CONGEN doesn't react to the rule.

* Check on the parenthesis coupling for the conditional statement. You have to make

sure that cparenthesis match with each other, and there are no more than two con-

ditions inside a conditional composite.

* When you use strings in the rules, be sure to check the quotes whether they match

or not.

* OR statement can also be implemented using two rules complementing each other.

For example if A OR B, can be implemented as IF A and IF B while they

perform the same exact operations.

* Check on the executed methods, whether they exist or not in the classes or in the

libraries.

* Remember that when you use the equal operator (==), it behaves as a conditional

operator and assignment operator if the right hand side is a new variable.

194

Appendix C

Installation, Configuration &

Troubleshooting

C.1 Installation

C.1.1 How to Obtain CONGEN

CONGEN can be obtained by anonymous ftp from iesl.mit.edu from the directory

pub/dice/congen as the file congen.tar.Z. For further information, contact vemula@mit.edu.

C.1.2 Requirements

Your site must meet the following minimum requirements before installing CONGEN:

* CONGEN runs on the family of Sun SPARC stations under Sun OS 4.1. CONGEN

runs as a client/server system requiring the EXODUS server process and the CON-

GEN client process. Each process can run on the same or different machine.

* A minimum of 45 mb of disk space is needed to install all the modules in CONGEN

including COSMOS, GNOMES, COPLAN, and CONGEN itself.

* Installed XWindows Version 11 Release 5.

* Installed EXODUS Object-oriented Database Management System.

195

C.1 Installation

C.1.3 Pre-installation

Before you install the program, there are several steps to be taken to ensure a successful

installation:

1. Ensure that the directories where you are installing CONGEN are read/writeable.

2. Use the uncompress command

uncompress congen.tar.Z

to expand the file.

3. Use the tar command to extract the installation files in the target directory:

tar -xvf congen.tar

C.1.4 Compiling CONGEN

All the source code is in the directory src, library archives are in the directory lib, and the

bin contains the congen executable. There are README files in each of the subdirectories

to help identify the wanted files.

C.1.5 Environment Variables

Environment variables which need to be set are:

setenv DISPLAY <machine-name>:O.0 (enter your machine name instead)

setenv HOOPSPICTURE X 11/<machine-name>:0.0

setenv EVOLID (the volume number of the database)

i.e.: 4008

setenv CONDIR (the directory where your congen is installed)

i.e.: /mit/congen/bin

setenv CONGENUSERAR (the directory where the class archive is installed)

i.e.: /mit/jsugiono/congen/ar

196

C.1 Installation

setenv INCDIR (the directory where the congen include sourcefiles is placed)

i.e.: /mit/congen/src/include

The Xresource files used by CONGEN is the file .Xdefaults in the home directory

The database volume needs to be set up according to the instructions provided in

the EXODUS OODBMS release. Note that if the Exodus storage manager and the E

directories are not installed, the program will neither run, nor will any of the source code

compile since the application needs to use the eg++ compiler provided by the EXODUS

OODBMS release.

The EXODUS OODBMS source code and documents can be obtained from the Univer-

sity of Wisconsin, Madison. The OBject Management (OBM) part of COSMOS interacts

with the EXODUS storage manager server in order to create and retrieve the persistent

data. For each class the user defines through the COSMOS User Interface, the OBM gen-

erates code in the language E (which is a superset of C++ with support for persistence).

This code is compiled by the E compiler and linked in at run-time.

The COSMOS user needs to install both EXODUS v.3.1 and E-2.3.3 before using COS-

MOS. The EXODUS Storage Manager and the E Compiler can be obtained by anonymous

ftp from ftp.cs.wisc.edu.

C.1.6 Database Environment Variable

The EXODUS database variable to be set are:

* In .cshrc file - setenv EVOLID (Database Volume ID).

* In .sm-config file - client*mount: (DB Vol ID) (Port number)@(servername).

197

Appendix D

Tutorial 2 & 3 Listings

D.1 TUTORIAL 2 - SIMPLE SLAB

D.1.1 Main Listing of the rulefile Tutorial_2.rul = Alternative 1 - One Goal,

One Plan rulefile.

(RULE: createslab 0
IF
(CLASS: Slab OBJ: Sx
((s length == 0) AND
(swidth == 0))

THEN (
(MODIFY (OBJ:$x
(slength 40)
) 1000 0.001)
(MODIFY (OBJ:$x
(s-width 20)
) 1000 0.001)
)
COMMENT:"Rule to create

(RULE: create-geometry 10
IF
(CLASS: Slab OBJ: $x
(((s length == $1en) AND
(s width == Swid)) AND
(length != $1en))

THEN (
(EXECUTE VAR:$rtn OBJ:$x

a slab for tutorial 2")

creategeometry (16,"slabgeom2"))

198

1)1 TUTORIAL 2 - SIMPLE SLAB

(MODIFY (OBJ:$x
(plane 2)
)][0Oo 0.001)
(MODIFY (OBJ:$x
(length $1en) 30
)1oo0 0.001)
(MODIFY (OBJ:$x
(width $wid)
)1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x set_translation (0.0,36.0,0.0)
(EXECUTE VAR:$rtn OBJ: $x set_rotation (90.0,0.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x show-geometry ())

COMMENT:"Rule to _set _upthe_slab_geometry")
40

199

D.1 TUTORIAL 2 - SIMPLE SLAB

D.1.2 Alternative 2 - One Goal, One Plan, Two Subgoals

modslab.rul

(RULE: createslab 0
IF
(CLASS: Slab OBJ: $x
((s length == 0) AND
(swidth == 0))

THEN (
(MODIFY (OBJ:$x
(s length 40)
) 1000 0.001) 10
(MODIFY (OBJ:$x
(swidth 20)
) 1000 0.001)

COMMENT:"Rule to create a simple slab for Tutorial 2")

200

D.1 TUTORIAL 2 - SIMPLE SLAB

geoslab.rul

(RULE: create-geometry 10
IF
(CLASS: Slab2 OBJ: $x
(((slength == $1en) AND
(swidth == $wid)) AND
(length != l$1en))

THEN (
(EXECUTE OBJ: $x creategeometry(16,"slabgeom2"))
(MODIFY (OBJ:$x o10
(plane 2)
)1000 0.001)
(MODIFY (OBJ:$x
(length $1en)
)1000 0.001)
(MODIFY (OBJ:$x
(width $wid)
)1000 0.001)
(EXECUTE OBJ: $x settranslation(0.0,36.0,0.0))
(EXECUTE OBJ: $x set_rotation(90.0,0.0,0.0)) 20
(EXECUTE OBJ: $x show.geometry())

COMMENT:"Rule to set up the slab geometry")

201

D.2 TUTORIAL 3 - BOX APPLICATION

D.2 TUTORIAL 3 - BOX APPLICATION

D.2.1 Main Listing

createass-eff.rul

(R1ULE: createass 1000

IF
(CLASS: Assembly3 OBJ: $x
((ajength == 0) AND

(awidth == 0))

THEN (

(MODIFY (OBJ:$x
(alength 1000)
)1000 0.001) o10
(MODIFY (OBJ:$x
(awidth 500)
) 1000 0.001)
(MODIFY (OBJ:$x
(adepth 300)
) 1000 0.001)

CCOMMENT:"Rule-tocreate_a_simpleassemblyboxfortest_3")

202

D.2 TUTORIAL 3 - BOX APPLICATION

create-top.rul

(RULE:
IF

createtop 1000

((CLASS: Slab3 OBJ: $x
((slength == 0) AND
(s width == 0))

AND
(CLASS: Assembly OBJ: $y
(((alength == $1en) AND
(a width == $wid)) AND
(a depth == $dep))

THEN (
(MODIFY (OBJ:$x
(slength $1en)
(s-width $wid)
(sdepth 2)
) oo1000 0.001)

COMMENT:"Rule to create the top cover for test 3")

(RULE: topgeometry 10
IF
(CLASS: Slab3 OBJ: $x
(((slength == $1en) AND

(s_width == $wid)) AND
(length != $1en))

)
THEN (
(EXECUTE VAR: $rtn OBJ:
(MODIFY (OBJ: $x
(plane 2)
(length $1en)
(width Swid)
) looo 0.001)
(EXECUTE VAR: $rtn OBJ:
(EXECUTE VAR: $rtn OBJ:
(EXECUTE VAR: $rtn OBJ:

$x creategeometry(16,"slabgeom2"))

$x set_rotation(0.0,0.0,0.0))
$x set_translation(0.0,0.0,30.0))
$x show-geometry())

COMMENT:" Rule to set up the geometry of the top ")

203

D.2 TUTORIAL 3 - BOX APPLICATION

createbottom.rul

(RULE: createbottom 1000
IF
((CLASS: Slab3 OBJ: $x
((slength == 0) AND

(s-width == 0))

AND
(CLASS: Assembly OBJ: Sy
(((alength == $1en) AND
(awidth == $wid)) AND
(a_depth == $dep))

THEN (
(MODIFY (OBJ:$x
(slength $1en)
(swidth $wid)
(sdepth 2)
) 1000 0.001)

COMMENT:"Rule to create the bottom cover for test 3")

(RULE: bottom-geometry 10
IF
(CLASS: Slab3 OBJ: $x
(((s length == $1en) AND

(swidth == Swid)) AND
(length != $1en))

THEN (
(EXECUTE VAR: $rtn OBJ: $x creategeometry(16,"slabgeom2"))
(MODIFY (OBJ: $x
(plane 2)
(length $1en)
(width $wid)
) 1000 0.001)
(EXECUTE VAR: $rtn OBJ: $x setrotation(0.0,0.0,0.0))
(EXECUTE VAR: $rtn OBJ: $x settranslation(0.0,0.0,0.0))
(EXECUTE VAR: $rtn OBJ: $x show.geometry())

COMMENT:" Rule to set up the geometry of the bottom ")

204

D.2 TUTORIAL 3 - BOX APPLICATION

createeast.rul

(RULE:
IF

createeast 1000

((CLASS: Slab3 OBJ: $x
((slength == 0) AND
(swidth == 0))

AND
(CLASS: Assembly OBJ: $y
(((a_ length == $1en) AND
(a_width == $wid)) AND
(a _depth == $dep))

TIHEN (
(MODIFY (OBJ: $x
(slength $1en)
(swidth $dep)
(s_depth 2)
) 1000 0.001)

COMMENT:"Rule to create the east cover for test 3")

(RULE: eastgeometry 10
IF
(CLASS: Slab3 OBJ: $x
(((sJength == $1en) AND

(swidth == Swid)) AND
(length != $1en))

THEN (
(EXECUTE VAR: Srtn OBJ: $x create geometry(16,"slabgeom2"))
(MODIFY (OBJ: $x
(plane 2)
(length $1en)
(width Swid)
) 1000 0.001)
(EXECUTE VAR: $rtn OBJ: $x set_rotation(90.0,0.0,0.0))
(EXECUTE VAR: $rtn OBJ: $x set translation(0.0,0.0,0.0))
(EXECUTE VAR: $rtn OBJ: $x showgeometry())

COMMENT:" Rule to set up the geometry of the east ")

205

D.2 TUTORIAL 3 - BOX APPLICATION

create_west.rul

(RULE:
IF

createwest 1000

((CLASS: Slab3 OBJ: $x
((slength == 0) AND

(swidth == 0))

AND
(CLASS: Assembly OBJ: $y
(((ajlength == $1en) AND
(a_width == Swid)) AND

(a_depth == $dep))

THEN (
(MODIFY (OBJ: $x
(slength $1en)
(swidth $dep)
(s_depth 2)
) 1000 0.001)

COMMENT:"Rule to create the west cover for test 3")

(RULE: westgeometry 10
IF
(CLASS: Slab3 OBJ: $x
(((slength == $1en) AND

(swidth == $wid)) AND

(length != $1en))

THEN (
(EXECUTE VAR: $rtn OBJ: $x creategeometry(16,"slabgeom2"))
(MODIFY (OBJ: $x
(plane 2)
(length $1en)

(width $wid)
) 1000 0.001)
(EXECUTE VAR: $rtn OBJ: $x set-rotation(90.0,0.0,0.0))
(EXECUTE VAR: $rtn OBJ: $x set_translation(0.0,50.0,0.0))
(EXECUTE VAR: $rtn OBJ: $x show_geometry())

COMMENT:" Rule to set up the geometry of the west ")

206

D.2 TUTORIAL 3 - BOX APPLICATION

createnorth.rul

(RULE:
IF

createnorth 1000

((CLASS: Slab3 OBJ: $x
((sjlength == 0) AND
(s width == 0))

AND
(CLASS: Assembly OBJ: $y
(((alength == $1en) AND
(a width == $wid)) AND
(adepth == $dep))

THEN (
(MODIFY (OBJ:$x
(slength $dep)

(s width Swid)
(sdepth 2)
) 1000 0.001)

COMMENT:"Rule to create the north cover for test 3")

(RULE: northgeometry 10
IF
(CLASS: Slab3 OBJ: $x
(((s.length == $1en) AND
(swidth == $wid)) AND
(length != $1en))

THEN (
(EXECUTE VAR: $rtn OBJ: $x creategeometry(16,"slabgeom2"))
(MOI)IFY (OBJ: $x
(plane 2)
(length $1en)
(width $wid)
) 1000 0.001)
(EXECUTE VAR: $rtn OBJ: $x setrotation(0.0,270.0,0.0))
(EXECUTE VAR: $rtn OBJ: $x set_translation(100.0,0.0,0.0))
(EXECUTE VAR: $rtn OBJ: $x showgeometry())

COMMENT:" Rule to set up the geometry of the north ")

207

D.2 TUTORIAL 3 - BOX APPLICATION

create-south.rul

(RULE: createsouth 1000
IF
((CLASS: Slab3 OBJ: $x
((sJength == 0) AND
(swidth == 0))

AND
(CLASS: Assembly OBJ: Sy
(((alength == $1en) AND
(a_ width == Swid)) AND
(adepth == $dep))

THEN (
(MODIFY (OBJ:$x
(s length $dep)
(s-width Swid)
(s depth 2)

1000 0.001)

COMMENT:"Rule to create the south cover for test 3")

(RULE: south-geometry 10
IF
(CLASS: Slab3 OBJ: $x
(((slength == $1en) AND

(swidth == Swid)) AND
(length != $1en))

THEN (
(EXECUTE VAR: $rtn OBJ:
(MODIFY (OBJ: $x
(plane 2)
(length $1en)
(width $wid)
) 1000 0.001)
(EXECUTE VAR: $rtn OBJ:
(EXECUTE VAR: $rtn OBJ:
(EXECUTE VAR: $rtn OBJ:

$x create geometry(16,"slabgeom2"))

$x set rotation(0.0,270.0,0.0))
$x set translation(0.0,0.0,0.0))
$x show_geometry())

COMMENT:" Rule to set up the geometry of the south)COMMENT:" Rule to set up the geouetry of the south ")

208

D.2 TUTORIAL 3 - BOX APPLICATION

D.2.2 Alternative - tut3long.rul

(RULE: createass 1000
IF
(CLASS: Assembly3 OBJ: $x
((a length == 0) AND
(a width == 0))

THEN (
(MODIFY (OBJ:$x
(ajlength 1000)
(awidth 500)
(adepth 300)
) 1000 0.001)

COMMENT:"Rule to create

(RULE: createslabs 1000
IF
(CLASS: Assembly3 OBJ: $y
(((alength == $1en) AND
(awidth == Swid)) AND
(adepth == $dep))

THEN (
(MAKE (CLASS:
(slength $1en)
(swidth Swid)
(sdepth 2)

(MAKE (CLASS:
(slength $1en)
(swidth Swid)
(sdepth 2)

(MAKE (CLASS:
(slength $dep)
(swidth $wid)
(sdepth 2)

(MAKE (CLASS:
(slength $dep)
(swidth Swid)
(sdepth 2)

(MAKE (CLASS:
(sj length $1en)
(swidth $dep)
(s_depth 2)

a simple assembly box for test 3")

Slab OBJ: top

Slab OBJ: bottom

Slab OBJ: north

Slab OBJ: south

Slab OBJ: east

(MAKE (CLASS: Slab OBJ: west

209

D.2 TUTORIAL 3 - BOX APPLICATION

(s jength $1en) 50

(swidth $dep)
(sdepth 2)

COMMENT:"Rule to create the covers for alternative tutorial")

(RULE: topgeometry 10
IF
((CLASS: Slab OBJ: $x
(instancename == "top")) AND 60

(CLASS: Slab OBJ: $x
(((s Jlength == $1en) AND

(s_width == $wid)) AND
(length != $1en))

THEN (
(EXECUTE VAR:$rtn OBJ: $x create_geometry(16,"slabgeomtop"))
(MODIFY (OBJ: $x
(plane 2)
(length Slen) 70
(width $wid)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: Sx set_rotation(0.0,0.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x set_translation(0.0,0.0,30.0))
(EXECUTE VAR:$rtn OBJ: $x showgeometry())

COMMENT:" Rule to set up the geometry of the top ")

(RULE: bottomgeometry 10
IF 80so

((CLASS: Slab OBJ: $x
(instancename == "bottom")) AND
(CLASS: Slab OBJ: $x
(((slength == $1en) AND

(swidth == Swid)) AND
(length != $1en))

THEN (
(EXECUTE VAR:$rtn OBJ: $x create..geometry(16,"slabgeombottom"))
(MODIFY (OBJ: $x 90

(plane 2)
(length $1en)
(width Swid)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x set-rotation(0.0,0.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x set translation(0.0,0.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x showgeometry())

COMMENT:" Rule to set up the geometry of the bottom ")
100

(RULE: eastgeometry 10
IF
((CLASS: Slab OBJ: $x

210

D.2 TUTORIAL 3 - BOX APPLICATION

(instancename == "east")) AND
(CLASS: Slab OBJ: $x
(((slength == $1en) AND

(swidth == Swid)) AND
(length != $1Slen))

THEN (110
(EXECUTE VAR:$rtn OBJ: $x creategeometry(16,"slabgeomeast"))
(MODIFY (OBJ: $x
(plane 2)
(length $1en)
(width $wid)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x set rotation(90.0,0.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x settranslation(0.0,0.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x show.geometry())
) 120
COMMENT:" Rule to set up the geometry of the east ")

(RULE: west.geometry 10
IF
((CLASS: Slab OBJ: Sx
(instancename == "west")) AND
(CLASS: Slab OBJ: $x
(((sdlength == $1en) AND

(swidth == Swid)) AND
(length != $1en)) 130

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(16,"slabgeomwest"))
(MODIFY (OBJ: $x
(plane 2)
(length $1en)
(width $wid)
)1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x set_rotation(90.0,0.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x set_translation(0.0,50.0,0.0)) 140
(EXECUTE VAR:$rtn OBJ: $x showgeometry())

COMMENT:" Rule to set up the geometry of the west ")

(RULE: northbgeometry 10
IF
((CLASS: Slab OBJ: $x
(instancename == "north")) AND
(CLASS: Slab OBJ: $x
(((slength == $1en) AND 150so

(swidth == Swid)) AND
(length != $1en))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(16,"slabgeomnorth"))
(MODIFY (OBJ: $x
(plane 2)

211

D.2 TUTORIAL 3 - BOX APPLICATION

(length $len)
(width $wid)
) 1000 0.001) 160
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,270.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x settranslation(100.0,0.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x show_geometry())

COMMENT:" Rule to set up the geometry of the north ")

(RULE: south_geometry 10
IF
((CLASS: Slab OBJ: $x
(instancename == "south")) AND 170

(CLASS: Slab OBJ: $x
(((slength $1== len) AND

(swidth == $wid)) AND
(length != $len))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(16,"slabgeomsouth"))
(MODIFY (OBJ: $x
(plane 2)
(length $len) 180
(width $wid)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0.270.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x set_translation(0.0,0.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x showgeometry())

COMMENT:" Rule to set up the geometry of the south ")

212

Appendix E

CABIN DESIGN elements

E.1 Cabin Artifact Vocabulary

E.1.1 Structural Member Superclass

The following is the base class description of all the structural engineering classes. The

attributes contains all the information needed to analyze the structural feasibility of the

whole assembly.

dbclass Structmbr
{
public:
dbint concretegrade;
dbint reinforcementgrade;
dbint dead-load;
dbint liveload;
dbint earthquakeload;
dbint windload;
PStringList parent _names;
dbfloat Xcoordinate;
dbfloat Ycoordinate;
dbfloat Zcoordinate;
dbfloat Xrotation;
dbfloat Yrotation;
dbfloat Z-rotation;

};

213

E.1 Cabin Artifact Vocabulary

Description of Basic Structural Member Attributes

* Struct-mbr.concrete grade. Concrete compressive cylinder stress in newton/sq. mm
- number.

* Structmbr.reinforcementgrade. Steel yield stress in newton/sq. mm.

* Structmbr.dead load. Applied permanent dead loads including member's weight in
newton/sq. mm - number.

* Structmbr.live load. Load on a structure or member produced by the external

environment and intended occupancy or use in newton/sq. mm - number.

* Struct-mbr.earthquake load. Earthquake equivalent lateral load in newton/sq. mm

- number.

* Struct-mbr.wind-load. Wind equivalent lateral load in newton/sq. mm - number.

* Struct-mbr.parentnames. The list of the parents which this member belongs to.

* Struct-mbr.Xcoordinate. X coordinate of member's local reference frame origin with
respect to the building reference frame in mm - number.

* Struct-mbr. Y-coordinate. Y coordinate of member's local reference frame origin with
respect to the building reference frame in mm - number.

* Struct Lmbr.Z coordinate. Z coordinate of member's local reference frame origin with
respect to the building reference frame in mm - number.

* Struct-mbr.Xjrotation. Rotation of member's local reference frame about X axis in
degrees - number.

* Struct-mbr. Y-rotation. Rotation of member's local reference frame about Y axis in
degrees - number.

* Struct-mbr.Z-rotation. Rotation of member's local reference frame about Z axis in
degrees - number.

E.1.2 Joint

The class Joint corresponds to the node information in the structural analysis process

such as the connection type etc.

214

E.1 Cabin Artifact Vocabulary

dbclass Joint : public Structmbr
{

public:
dbfloat pointloading;

PString connectiontype;

PStringList parts_attached;

Description of Basic Joint Attributes

* Joint.point-loading. The member's point force magnitude applied to the area in
Newton / sq.mm - number.

* Joint.connectiontype. The member's connection type at this joint.

* Joint.partsattached. The list of other members attached to this Joint.

E.1.3 Linear Members

The class Linear Member corresponds to the structural members that we regard as

having a linear load such as columns, piers, beams, truss members etc.

dbclass Linearmbr: public Struct_mbr

{
public:
PString startjoint;

PString endjoint;
dbfloat axialloading;

Description of Linear Members Attributes

* Linear-mbr.startjoint. The member's joint name at start (lower 3D point).

* Linear-mbr.end-joint. The member's joint name at end (higher 3D point).

* Linear-mbr.axial-loading. The member's linear force magnitude applied linearly in
Newton / sq.mm - number.

215

E.1 Cabin Artifact Vocabulary

E.1.4 Area Members

The class Area Member corresponds to the structural members that we regard as having

an area load such as walls, footings, slabs, etc.

dbclass Areambr: public Structmbr
{
public:
PStringList corner-_joints;
dbfloat arealoading;

};

Description of Area Members Attributes

* Area-mbr.corner.joints. The list of member's corner joint names.

* Areambr.area-Joading. The member's linear force magnitude applied to the area in
Newton / sq.mm - number.

E.1.5 Beams

dbclass Beam : public Linearmbr // Generic Beam

public:
dbfloat
dbfloat
dbfloat
dbfloat
dbfloat
dbfloat
PString

blength;
b.width;
bdepth;
b.effective.depth;
bmoment;
breinforcement-_area;
b.material;

Description of Attributes

* Beam.b-length. Distance between centers of adjacent supporters along the X axis of
beam local reference frame in mm - number.

216

E.1 Cabin Artifact Vocabulary

* Beam. b-width. Dimension of beam cross section along the Y axis of beam local
reference frame in mm - number.

* Beam.b-depth. Overall depth of the beam cross section along the Z axis of beam
local reference frame in mm - number.

* Beam.b effectivedepth. Depth to the centerline of the tension steel along the Z axis
of beam local reference frame in mm - number.

* Beam.b-moment. Capacity (resisting moment) of the RC beam in newton mm -
number.

* Beam. breinforcementarea. Area of ribbed tension steel reinforcement in sq. mm
for RC beam - number.

* Beam.b-material. Beam material (RC, Steel, etc) - text.

E.1.6 Columns

dbclass Column : public Linearmbr // Generic column

{
public:
dbfloat c_width;

dbfloat clength;

dbfloat cdepth;

dbfloat ceffectivelength;

dbfloat cbar-diameter;

dbfloat clinkdiameter;

dbfloat cmoment;

dbfloat csteelarea;

dibfloat cconcretearea;

PString cmaterial;

Description of Attributes

* Column.c-width. Dimension of column cross section along Y axis of column reference
frame in mm - number.

* Column.c-depth. Dimension of column cross section along the Z axis of column local
reference frame in mm - number.

* Column.clength. Distance between the ends of column along the X axis of column
local reference frame in mm - number.

217

E.1 Cabin Artifact Vocabulary

,, Column.ceffectivelength. Buckling length along X axis of column local reference

frame in mm - number.

* Column. cbar-diameter.

number.

* Column. clinkdiameter.

number.

Diameter of column reinforcement bar within in mm -

Diameter of column reinforcement lateral tie in mm -

* Column.c-moment. Moment applied to the center of the column in newton - number.

* Column.c-steelarea. RC column total steel area in sq. mm - number.

* Column.c-concrete-area. RC column total concrete area in sq. mm - number.

* Column.c material. Material of column - text.

E.1.7 Piers

dbclass Pier : public Linearmbr // Generic Pier

public:
dbfloat
dbfloat
dbfloat
dbfloat
dbf loat
dbf loat
dbfloat
PString

p-width;
p-length;

p-depth;

p-effective-length;

p-moment;

p-steelarea;

pconcretearea;

pmaterial;

Description of Attributes

* Pier.pwidth. Dimension of Pier cross section along Y axis of Pier reference frame
in mm - number.

* Pier.pdepth. Dimension of Pier cross section along the Z axis of Pier local reference
frame in mm - number.

* Pier.plength. Distance between the ends of Pier along the X axis of Pier local
reference frame in mm - number.

218

E.1 Cabin Artifact Vocabulary

* Pier.p-effective-length. Buckling length along X axis of Pier local reference frame in

mm - number.

* Pier.p.moment. Moment applied to the center of the Pier in newton - number.

* Pier.p.steeLarea. RC Pier total steel area in sq. mm - number.

* Pier.p.concrete-area. RC Pier total concrete area in sq. mm - number.

* Pier.p-material. Material of Pier - text.

E.1.8 Truss-member

dbclass Trussmember : public Linear-mbr

{
public:

dbfloat t-axialload;

dbfloat t-length;

dbfloat t-angleleg;

dbfloat t-thickness;

dbfloat t-width;

dbfloat t-crosssection-area;

PString t-material;
};

Description of Attributes

* Truss-member.t.axiaLload. Axial load applied on truss member in newton - number.

* Truss-member.tlength. Dimension of truss member along X axis of member local
reference frame in mm - number.

* Truss-member.Ltangleileg. Angle leg section of truss member in degrees - number.

* Truss-member.Ltthickness. Dimension of truss member along Z axis of member local
reference frame in mm - number.

* Truss-member.t Lwidth. Dimension of truss member along Y axis of member local
reference frame in mm - number.

* Truss-member.t-cross-section-area. Cross sectional area of truss member in sq. mm
- number.

* Truss-member.t-material. The material of the Truss member.

219

E.1 Cabin Artifact Vocabulary

E.1.9 Truss-system

dbclass Trusssystem : public Areambr

{
public:
dbfloat tspitch;

dbfloat tstrussweight;

dbfloat tspurlinweight;

dbfloat tsroofing._weight;

dbfloat tstotalheight;

dbfloat tstotallength;

PString tstrusstype;

PString tsmaterial;

PStringList tsmemberlist;

Description of Attributes

* Trusssystem.tspitch. The pitch angle of the Truss system.

* Truss system.ts-trussweight. The total weight of the Truss system in newton -

number.

* Truss system.ts purlinweight. The total weight of the purlins in newton - number.

* Truss system.ts roofing-weight. The total weight of the roofings in newton - number.

* Truss-system.ts-total-height. The total vertical dimension of truss system along Z

axis of truss local reference frame - number.

* Truss-system.ts-totallength. The total vertical dimension of truss system along X

axis of truss local reference frame - number.

* Trusssystemrn.ts-trusstype. The type of the Truss system (e.g., gable-truss, ..).

* Truss system.ts-material. The material of the Truss system.

* Truss system.ts-memberlist. The list of all the members attached to this Truss

system.

220

E.1 Cabin Artifact Vocabulary

E.1.10O Slabs

dbclass Slab : public Areambr // Generic Slab

{
public:
dbfloat s-clearxspan;

dbfloat s-effectivexspan;

dbfloat s-clearyspan;
dbfloat s-effectiveyspan;
dbfloat s-depth;
dbfloat s-effective-depth;
PString s-slabtype;

dbfloat s-bendingmoment;

dbfloat s-reinforcementarea;

PString s.material;
};

Description of Attributes

* Slab. sclear-xspan. Distance between opposite faces of support along the X axis of

slab local reference frame in mm - number.

* Slab.s•effective-xspan. Distance between center to center of beams supporting slab
along the X axis of slab local reference frame in mm - number.

* Slab.s•clear-yspan. Distance between opposite faces of support along the Y axis of

slab local reference frame in mm - number.

* Slab.s•effective-yspan. Distance between center to center of beams supporting slab
along the Y axis of slab local reference frame in mm - number.

* Slab.s depth. Overall depth (thickness) of slab along the Z axis of slab local reference
frame in mm - number.

* Slab.s-effective-depth. Depth to the centerline of the steel (Z axis direction) in mm
- number.

* Slab.s&slabtype. Type of the slab - one way or two way or flat slab.

* Slab. s-moment. Moment of resistance of the slab in newton mm - number.

* Slab.s-reinforcementarea. Area of steel reinforcement in sq. mm - number.

* Slab.s-material. Slab material (RC, Steel, etc).

221

E.1 Cabin Artifact Vocabulary

Ribbed _slab

dbclass Ribbedslab : public Slab // One way spanning ribbed slab

{
public:
dbfloat ribwidth;

dbfloat ribdepth;

dbfloat topping;

;Description of Attributes
Description of Attributes

* Ribbed.slab.rib-width.

* Ribbed-slab.rib-depth.

* Ribbed-slab.topping.

Breadth of the rib in mm - number.

Depth of the rib in mm - number.

Depth of the topping of the slab in mm - number.

Waffle-slab

dbclass Waffleslab : public Slab // Two-way spanning ribbed slab

{
public:

dbfloat ribwidth;

dbfloat ribdepth;

dbfloat rib-spacing;

dbfloat topping;

Description of Attributes

* Waffleslab.rib-width. Breadth of the rib in mm - number.

* Waffleslab.rib-depth. Depth of the rib in mm - number.

* Waffleslab.rib-spacing. Distance between the centers of the rib in mm - number.

* Waffle-slab.topping. Thickness of slab in along z axis of slab local reference frame
in mm - number.

222

E.1 Cabin Artifact Vocabulary

E.1.11 Walls

dbclass Wall : public Area.mbr // Generic Wall

{
public:

PString wtype;

dbfloat w.width;

dbfloat w.height;

dbfloat wlength;

dbfloat waxialload;

dbfloat w-reinforcementarea;

dbfloat wslendernessratio;

PString wmaterial;
};

Description of Attributes

* Wall.w type. The type of the wall (brick or Shear or Opening).

* Wall.w-width. Dimension of wall along Y axis of wall local reference frame in mm -
number.

* Wall.w-height. Dimension of wall along Z axis of wall local reference frame in mm -
number.

* Wall.wlength. Dimension of wall along X axis of wall local reference frame in mm
- number.

* Wall.w-axiaLload. Vertical concentrated load applied on wall along Z axis of wall
local reference frame in newton - number.

* Wall.wreinforcementarea. Area of steel reinforcement in sq mm - number.

* Wall.w.slenderness.ratio. Slenderness (height/thickness) ratio for wall - percentage.

* Wall.w.material. Material of wall - text.

E.1.12 WalLopening

dbclass Wallopening : public Area-mbr // Openings in the wall (door,etc.)

{
public:

223

E.1 Cabin Artifact Vocabulary

dbfloat wo-length;

dbfloat wowidth;

dbfloat wodepth;

Description of Attributes

* Wall-opening.wo.width.
in mm - number.

* Wall-opening. uwodepth.
in mm - number.

* Wallopening.wo-length.
in mm - number.

Dimension of wall along Y axis of wall local reference frame

Dimension of wall along Z axis of wall local reference frame

Dimension of wall along X axis of wall local reference frame

E.1.13 Strip-footing

dbclass Strip-footing : public Areambr // Wall foundation

public:
dbfloat
dbfloat
dbfloat
dbfloat
PString
PString
dbfloat
dbfloat
dbfloat
dbfloat
dbfloat
dbfloat

faxialload;
fhorizontalload;
fbearingload;
f-momentload;
f-material;
f-connection;
fbasewidth;
fbase_depth;
fbase_length;
fpier_width;
fpierlength;
fpierdepth;

Description of Attributes

* Strip footing.f-base-width. Dimension of foundation along Y axis of foundation of
local reference frame in mm - number.

224

E.1 Cabin Artifact Vocabulary

* Stripjfooting.fbase-length. Dimension of foundation along X axis of foundation of
local reference frame in mm - number.

* Strip footing.fbase-depth. Dimension of foundation along Z axis of foundation of
local reference frame in mm - number.

* Strip-footing.faxiaLload. Vertical concentrated load applied on foundation in new-
ton - number.

* Stripjfooting.f horizontal-load. Concentrated load applied along the x axis of foun-
dation local reference frame in newton - number.

* Stripjfooting.f bearingload. Soil bearing capacity in vertical direction in newton/sq.
mm - number

* Stripjfooting.f-moment-load. Moment applied to the foundation in newton - number.

* Stripjfooting.f material. Material of the Foundation element - text.

* Stripjfooting.f connection.
ported - text.

* Strip footing.fpier-width.
direction) in mm - number.

* Stripjfooting.fpier-length.
direction) in mm - number.

* Stripjfooting.frpier.depth.
direction) in mm - number.

Connection type from foundation to the member sup-

The width of the pier supporting foundation (Y axis

The length of the pier supporting foundation (X axis

The depth of the pier supporting foundation (Z axis

E.1.14 Matfound

dbclass Matfound : public Areambr // Mat Foundation

public:
dbfloat
dbfloat
dbfloat
dbfloat
dbfloat
dbfloat
dbfloat
dbfloat
dbfloat
dbfloat

f_base_width;
fbase_length;
fbasedepth;
fpier_width;
fpier-length;
fpierdepth;
faxialload;
fhorizontal-load;
fbearingload;
f_moment_load;

225

E.1 Cabin Artifact Vocabulary

PString fmaterial;
PString fconnection;

Description of Attributes

* Matjfound.f-base-width. Dimension of foundation along Y axis of foundation of local
reference frame in mm - number.

* Mat-found.f base-length.
reference frame in mm -

* Mat-found.fbase-depth.
reference frame in mm -

* Mat-found.f pier-width.
mm - number.

* Mat-found.f pier-length.
in mm - number.

* Matjfound.f pierdepth.
mm - number.

* Matjfound.f.axialload.
- number.

Dimension of foundation along X axis of foundation of local
number.

Dimension of foundation along Z axis of foundation of local
number.

The width of the pier supporting Mat (Y axis direction) in

The length of the pier supporting Mat (X axis direction)

The depth of the pier supporting Mat (Z axis direction) in

Vertical concentrated load applied on foundation in newton

* Mat-found.f horizontalload. Concentrated load applied along the x axis of founda-
tion local reference frame in newton - number.

* Mat-found.f-bearing-load. Soil bearing capacity in vertical direction in newton/sq.
mm - number

* Matjfound.f-momentload. Moment applied to the foundation in newton - number.

* Mat-found.f material. Material of the Foundation element - text.

* Mat-found.f connection. Connection type from foundation to the member supported
- text.

E.1.15 Spread-found

dbclass Spread-found : public Areambr // = Isolated Foundation
{

226

E.1 Cabin Artifact Vocabulary

public:
dbfloat f-basewidth;

dbfloat f.baselength;

dbfloat f-basedepth;

dbfloat f.pier.width;
dbfloat f.pier-length;

dbfloat f.pierdepth;

dbfloat f-axialload;

dbfloat f-horizontal_load;

dbfloat f-bearingload;

dbfloat f-momentload;

PString f-material;

PString f-connection;
};

Description of Attributes

* Spread-found.f base-width. Dimension of foundation along Y axis of foundation of
local reference frame in mm - number.

* Spread-found.f.base-length. Dimension of foundation along X axis of foundation of
local reference frame in mm - number.

* Spread-found.f base-depth. Dimension of foundation along Z axis of foundation of
local reference frame in mm - number.

* Spread-found.f pier-width. The width of the pier supporting foundation (Y axis
direction) in mm - number.

* Spreadjfound.f pier-length. The length of the pier supporting foundation (X axis
direction) in mm - number.

* Spread-found.fpier.depth. The depth of the pier supporting foundation (Z axis
direction) in mm - number.

* Spreadfound.f axialload. Vertical concentrated load applied on foundation in new-
ton - number.

* Spread-found.fhorizontaload. Concentrated load applied along the x axis of foun-
dation local reference frame in newton - number.

* Spread-found.fbearingload. Soil bearing capacity in vertical direction in newton/sq.
mm - number

@ Spreadjfound.fmoment-load. Moment applied to the foundation in newton - number.

227

E.2 Examples of CABIN Rulefiles

* Spread-found.f material. Material of the Foundation element - text.

* Spread-found.f-connection. Connection type from foundation to the member sup-
ported - text.

E.2 Examples of CABIN Rulefiles

E.2.1 cabin.eff.rul

(RULE: createcabin 1000
IF
(CLASS: Cabin OBJ: $x
(ca length == 0.0)

THEN (
(MODIFY (OBJ:$x
(cajlength 720.0)
(ca width 360.0)
(ca_height 240.0) 10to

(ca0roof.span 360.0)
(cajroof height 90.0)
(site location "above groundwater")
(soil-condition "poor")
) 1000 0.001)
(MAKE (CLASS: Cabinpart OBJ: cabin_parts
(length 0.0)

(EXECUTE VAR: $rtn OBJ:$x makepart("partcontainer","Cabinpart","cabinparts"))
) 20
COMMENT:"Rule to create the cabin and site information & container of all parts")

228

E.2 Examples of CABIN Rulefiles

E.2.2 setcolumns.rul

(RULE: createfourcolumns 1000
IF
((CLASS: Cabin OBJ: $x
((ca height == $hgt) AND
(numcolumns == 4))
) AND
(CLASS: Cabin_part OBJ: $y
(instancename == "cabinparts")

THEN(10
(MAKE (CLASS: Column OBJ: ne_column
(cjlength Shgt)
(cwidth 10.0)
(cdepth 10.0)
(Xcoordinate 365.0)
(Ycoordinate 725.0)
(Zcoordinate 10.0)
(X.rotation 0.0)
(Yrotation 270.0)
(Z_rotation 0.0) 20

(MAKE (CLASS: Column OBJ: nw_column
(clength Shgt)
(cwidth 10.0)
(cjdepth 10.0)
(Xcoordinate 5.0)
(Ycoordinate 725.0)
(Z-coordinate 10.0)
(Xrotation 0.0)
(Yrotation 270.0) 30

(Z rotation 0.0)

(MAKE (CLASS: Column OBJ: se column
(clength Shgt)
(cwidth 10.0)
(cdepth 10.0)
(Xcoordinate 365.0)
(Ycoordinate 5.0)
(Z-coordinate 10.0)
(X rotation 0.0) 40
(Yrotation 270.0)
(Z-rotation 0.0)

(MAKE (CLASS: Column OBJ: sw_column
(c.length Shgt)
(cwidth 10.0)
(c.depth 10.0)
(Xcoordinate 5.0)
(Ycoordinate 5.0)

229

E.2 Examples of CABIN Rulefiles

(Z coordinate 10.0) 50

(Xrotation 0.0)
(Yrotation 270.0)
(Z_rotation 0.0)

(EXECUTE VAR:$rtn OBJ: Sy makepart("northeastcol","Column","ne column"))
(EXECUTE VAR:$rtn OBJ: $y makepart("northwestcol","Column","nw column"))
(EXECUTE VAR:$rtn OBJ: $y make.part("southeastcol","Column","secolumn"))
(EXECUTE VAR:$rtn OBJ: $y make part("southwestcol","Column","sw column"))

COMMENT:"Rule to create the four columns") 60

(RULE: createsixcolumns 1000
IF
((CLASS: Cabin OBJ: $x
((ca height == Shgt) AND
(numcolumns == 6))
) AND
(CLASS: Cabinpart OBJ: $y
(instancename == "cabinparts")

)) 70
THEN (
(MAKE (CLASS: Column OBJ: necolumn
(clength $hgt)
(cwidth 10.0)
(c_depth 10.0)
(X.coordinate 365.0)
(Ycoordinate 725.0)
(Zcoordinate 10.0)
(X rotation 0.0)
(Yrotation 270.0) 80

(Zrotation 0.0)

(MAKE (CLASS: Column OBJ: nwcolumn
(clength Shgt)
(cwidth 10.0)
(cdepth 10.0)
(X-coordinate 5.0)
(Ycoordinate 725.0)
(Zcoordinate 10.0)
(Xrotation 0.0) 90

(Yrotation 270.0)
(Zrotation 0.0)

(MAKE (CLASS: Column OBJ: secolumn
(clength $hgt)
(cwidth 10.0)
(c depth 10.0)
(X-coordinate 365.0)
(Ycoordinate 5.0)
(Zcoordinate 10.0) 100
(Xirotation 0.0)
(Yrotation 270.0)
(Zrotation 0.0)

230

E.2 Examples of CABIN Rulefiles

(MAKE (CLASS: Column OBJ: sw column
(c length $hgt)
(cwidth 10.0)
(c.depth 10.0)
(Xcoordinate 5.0)
(Y coordinate 5.0) 110
(Z coordinate 10.0)
(X rotation 0.0)
(Y rotation 270.0)
(Z-rotation 0.0)

(MAKE (CLASS: Column OBJ: e_column
(clength $hgt)
(cwidth 10.0)
(cdepth 10.0)
(X-coordinate 365.0) 120
(Y-coordinate 365.0)
(Zcoordinate 10.0)
(Xrotation 0.0)
(Yrotation 270.0)
(Zrotation 0.0)

(MAKE (CLASS: Column OBJ: wcolumn
(c length Shgt)
(c_width 10.0)
(cdepth 10.0) 130o

(X_coordinate 5.0)
(Ycoordinate 365.0)
(Zcoordinate 10.0)
(Xrotation 0.0)
(Yrotation 270.0)
(Zrotation 0.0)

(EXECUTE VAR:$rtn OBJ: $y make)part("northeastcol","Column","ne column"))
(EXECUTE VAR:$rtn OBJ: Sy makepart("northwestcol","Column","nw column"))
(EXECUTE VAR:$rtn OBJ: Sy make part("southeastcol","Column","secolumn")) 140

(EXECUTE VAR:$rtn OBJ: $y makepart("southwestcol","Column","swcolumn"))
(EXECUTE VAR:$rtn OBJ: $y make part("eastcol","Column","eCcolumn"))
(EXECUTE VAR:$rtn OBJ: $y make-part("westcol","Column","w-column"))

COMMENT:"Rule to create the six columns")

(RULE: ne_geometry 10
IF
((CLASS: Column OBJ: $x
(instancename == "necolumn")) AND 150
(CLASS: Column OBJ: $x
(((clength $== len) AND

(cwidth == $wid)) AND
((length != l$1en) AND
(cdepth == $hgt)))

THEN (

231

E.2 Examples of CABIN Rulefiles

(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"negeom"))
(MODIFY (OBJ: $x
(length $1en)
(width Swid)
(height Shgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,270.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x set translation(365.0,725.0,10.0))
)
COMMENT:" Rule to set

(RULE: nw-geometry 10
IF

up the geometry of the ne.column")

((CLASS: Column OBJ: $x
(instancename == "nw.column")) AND
(CLASS: Column OBJ: $x
(((clength == $1en) AND

(cwidth == Swid)) AND
((length != $1en) AND
(cdepth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"nwgeom"))
(MODIFY (OBJ: $x
(length $1en)
(width $wid)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,270.0,0.0))
(EXECUTE VAR:$rtrn OBJ: $x set_translation(5.0,725.0,10.0))

COMMENT:" Rule to set up the geometry of the nw-column ")

(RULE: segeometry 10
IF
((CLASS: Column OBJ: $x
(instancename == "se.column")) AND
(CLASS: Column OBJ: Sx
(((clength == $1en) AND

(c-width == Swid)) AND
((length != $1en) AND
(c depth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x create-geometry(7,"segeom"))
(MODIFY (OBJ: $x
(length $1en)
(width Swid)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x set_rotation(0.0,270.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x set_translation(365.0,5.0,10.0))

232

E.2 Examples of CABIN Rulefiles

COMMENT:" Rule to set up the geometry of the secolumn ")

(RULE: sw geometry 10
IF
((CLASS: Column OBJ: $x
(instancename == "swcolumn")) AND
(CLASS: Column OBJ: $x
(((clength == $1en) AND

(cwidth == Swid)) AND
((length != $1en) AND
(c depth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x create-geometry(7,"swgeom"))
(MODIFY (OBJ: $x
(length $1en)
(width $wid)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x set_rotation(0.0,270.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x set_translation(5.0,5.0,10.0))

COMMENT:" Rule to set)COMMENT:" Rule to set up the geometry of the swcolumn ")

(RULE: e_geometry 10
IF
((CLASS: Column OBJ: $x
(instancename == "e-column")) AND
(CLASS: Column OBJ: $x
(((c length == $1en) AND

(cwidth == $wid)) AND
((length != $1en) AND
(cdepth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x create.geometry(7,"egeom"))
(MODIFY (OBJ: $x
(length $1en)
(width Swid)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,270.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x set translation(365.0,365.0,10.0))

COMMENT:" Rule to set up the geometry of the ecolumn ")

(RULE: w-geometry 10
IF
((CLASS: Column OBJ: $x
(instancename == "wcolumn")) AND
(CLASS: Column OBJ: $x

233

E.2 Examples of CABIN Rulefiles

(((clength == $1en) AND
(c-width == Swid)) AND
((length != $1en) AND
(cdepth == $hgt)))

)) 270
THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"wgeom"))
(MODIFY (OBJ: $x
(length $1en)
(width Swid)
(height Shgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,270.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x set_translation(5.0,365.0,10.0))

) 280

COMMENT:" Rule to set up the geometry of the w column ")

234

E.2 Examples of CABIN Rulefiles

E.2.3 set-girders.rul

(RULE: zero 20
IF
(CLASS: Declist OBJ: $y

((set columns == "0") AND
(set-girders != "0"))

THEN (
(MODIFY (OBJ: $y
(set-girders "0")
) 1000 0.001)

COMMENT:" If the number of columns is zero, then use no girders")

(RULE: two 20
IF
((CLASS: Cabin OBJ: $x
(numcolumns != 0))
AND
(CLASS: Declist OBJ: $y
(set girders != "2"))

THEN (
(MODIFY (OBJ: $Sy
(setgirders "2")
) 1000 0.001)

COMMENT:" If the number of columns is more than zero, then can use 2 girders")

(RULE: zeroor_two 20
IF
((CLASS: Cabin OBJ: $x
(numcolumns == 6))
AND
(CLASS: Declist OBJ: $y
(set-girders != "0"))

THEN (
(MODIFY (OBJ: $y
(set-girders "0")
) 1000 0.001)

COMMENT:" If the number of columns is six, then can use zero girders")

235

E.2 Examples of CABIN Rulefiles

E.2.4 setgirderseff.rul

(RULE: createtwogirders 1000
IF
((CLASS: Cabin OBJ: $x
((calength == $1en) AND
(numgirders == 2))
) AND
(CLASS: Cabinpart OBJ: Sy
(instancename == "cabinparts")

THEN (10
(MAKE (CLASS: Beam OBJ: e-girder
(b length $1en)
(bwidth 5.0)
(bdepth 5.0)

(MAKE (CLASS: Beam OBJ: w-girder
(b_length Slen)
(bwidth 5.0)
(b depth 5.0)

)) 20
(EXECUTE VAR: $rtn OBJ: $3y makepart("eastgirder","Beam","egirder"))
(EXECUTE VAR: Srtn OBJ: Sy makepart("westgirder","Beam","w.girder"))

COMMENT:"Rule to create the two girders")

(RULE: egeometry 10
IF
((CLASS: Beam OBJ: 8x
(instancename == "egirder")) AND
(CLASS: Beam OBJ: $x 30

(((blength == $1en) AND
(bwidth == Swid)) AND
((length != $1en) AND
(b..depth == $hgt)))

THEN (
(EXECUTE VAR: $rtn OBJ: $x create-geometry(4,"egirdgeom"))
(MODIFY (OBJ: $x
(length $1en)
(width Swid) 40
(height $hgt)
) 1000 0.001)
(EXECUTE VAR: $rtn OBJ: $x setrotation(0.0,0.0,90.0))
(EXECUTE VAR: $rtn OBJ: $x set_translation(365.0,5.0,250.0))

COMMENT:" Rule to set up the geometry of the egirder")

(RULE: w-geometry 10
IF

236

E.2 Examples of CABIN Rulefiles

((CLASS: Beam OBJ: $x
(instancename == "wgirder")) AND
(CLASS: Beam OBJ: Sx
(((b.length == $1en) AND

(b-width == $wid)) AND
((length != $1en) AND
(b depth == $hgt)))

THEN (
(EXECUTE VAR: $rtn OBJ: $x
(MODIFY (OBJ: $x
(length $1en)
(width Swid)
(height $hgt)
)1000 0.001)
(EXECUTE VAR: $rtn OBJ: $x
(EXECUTE VAR: $rtn OBJ: $x

COMMENT:" Rule to set up)COMMENT:" Rule to set up

create_geometry(4,"wgirdgeom"))

set_rotation(0.0,0.0,90.0))
settranslation(5.0,5.0,250.0))

the geometry of the w-girder")

237

E.2 Examples of CABIN Rulefiles

E.2.5 set _south.wall-eff.rul

(RULE: createsouthshear 1000
IF
((CLASS: Cabin OBJ: $x
(((ca width == $1en) AND
(ca-height == $hgt)) AND
(southwalltype == "Shear"))

) AND
(CLASS: Cabin_part OBJ: $y
(instancename == "cabinparts")

10)) to
THEN (
(MAKE (CLASS: Wall OBJ: swall
(w length $1en)
(wheight $hgt)

(EXECUTE VAR:$rtn OBJ: $y makepart("southwall","Wall","s-wall"))

COMMENT:"Rule to create the south wall")

(RULE: createsouthbrick 1000 20
IF
((CLASS: Cabin OBJ: $x
(((ca width == $1en) AND
(ca.height == Shgt)) AND
(southwalltype == "Brick"))

) AND
(CLASS: Cabinpart OBJ: $y
(instancename == "cabinparts")

THEN(30

(MAKE (CLASS: Wall OBJ: swall
(wl.ength $1en)
(w height Shgt)

(EXECUTE VAR:$rtn OBJ: $y makepart("southwall","Wall","swall"))

COMMENT:"Rule to create the south brick wall")

(RULE: createsouthopening 1000
IF 40

((CLASS: Cabin OBJ: $x
(((cawidth == $1en) AND
(ca height == $hgt)) AND
(southwalltype == "Opening"))
) AND

(CLASS: Cabin_part OBJ: $y
(instancename == "cabin_parts")

THEN (

238

E.2 Examples of CABIN Rulefiles

(MAKE (CLASS: Wall OBJ: swall 50

(w Jength $1en)
(w height $hgt)

(EXECUTE VAR:$rtn OBJ: $y makepart("southwall","Wall","s_-wall"))
)
COMMENT:"Rule to create the south Opening wall")

(RULE: attachsouthopening 1000
IF 60
(((CLASS: Wall OBJ: $x
(instancename == "s_wall")
) AND
(CLASS: Cabin OBJ: $y
(southwalltype == "Opening")
)) AND
(CLASS: Cabin_part OBJ: $z
(instancename = "cabinparts")

THEN(70
(MAKE (CLASS: Wallopening OBJ: s-opening
(wolength 215.0)
(wo width 95.0)
(wodepth 5.0)

(EXECUTE VAR:$rtn OBJ: $x make_part("southopening","Wallopening","sopening"))

COMMENT:"Rule to create the south opening and attach it to the wall")

80

(RULE: south-geometry 100
IF
(CLASS: Wall OBJ: $x
(((wlength == $1en) AND

(wheight == $wid)) AND
((length != $len) AND
(instancename == "swall")))

)
THEN (
(EXECUTE VAR:$rtn OBJ: $x create-geometry(7,"wallsgeom")) 90
(MODIFY (OBJ: $x
(length $1en)
(width $wid)
(height 5.0)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x setrotation(90.0,0.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x set.translation(5.0,5.0,10.0))

COMMENT:" Rule to set up the geometry of the south ")
100

(RULE: southopeninggeometry 10
IF
(CLASS: Wallopening OBJ: $x

239

E.2 Examples of CABIN Rulefiles

((instancename == "s-opening") AND
(length != 215.0))

THEN (
(EXECUTE VAR:$rtn OBJ: $x create-geometry(16,"wallsopengeom"))
(MODIFY (OBJ: $x
(length 215.0) 110
(width 100.0)
(height 5.0)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,270.0,270.0))
(EXECUTE VAR:$rtn OBJ: $x set translation(135.0,3.0,10.0))

COMMENT:" Rule to set up the geometry of the south ")

240

E.2 Examples of CABIN Rulefiles

E.2.6 set foundationeff.rul

(RULE: creatematfour 1000
IF
(((CLASS: Cabin OBJ: $x
((calength == $len) AND
(ca width == $wid))
) AND

(CLASS: Declist OBJ: Sy
((set foundation == "Mat") AND
(setcolumns != "6"))

)) AND 10
(CLASS: Cabinpart OBJ: $z
(instancename == "cabinparts")

THEN (
(MAKE (CLASS: Mat-found OBJ: matpier_ne
(tbasejength $1en)
(f base_width $wid)
(f base_depth 5.0)
(f.pierlength 5.0)
(fpierwidth 2.0) 20

(f.pier_depth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpierne","Mat_found","mat_pier_ne"))
(MAKE (CLASS: Mat_found OBJ: mat_pier_nw
(fjbase-length $1en)
(fbase_width Swid)
(fbase_depth 5.0)
(fpierlength 5.0)
(f pierwidth 2.0)
(f pierdepth 2.0) 30

(EXECUTE VAR:$rtn OBJ: $z make_part("foundationpier-nw","Mat found","mat_piernw"))
(MAKE (CLASS: Mat-found OBJ: mat_pier_se
(fbaseength $1en)
(fbase_width $wid)
(fbasedepth 5.0)
(fpierlength 5.0)
(f. pierwidth 2.0)
(f pier_depth 2.0)

)) 40
(EXECUTE VAR:$rtn OBJ: $z make_part("foundationpierse","Mat _f ound","mat-pierse"))
(MAKE (CLASS: Matfound OBJ: mat_piersw
(fbaselength $1en)
(f base_width $wid)
(fbasedepth 5.0)
(tpierlength 5.0)
(fpierwidth 2.0)
(f pierdepth 2.0)

241

E.2 Examples of CABIN Rulefiles

(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpiersw","Mat_found","matpier_sw")) 50

(MAKE (CLASS: Mat found OBJ: mat-base
(fbaselength $1en)
(fbasewidth Swid)
(fbasedepth 5.0)
(f pierjength 5.0)
(f.pierwidth 2.0)
(fpierdepth 2.0)

)of
(EXECUTE VAR:$rtn OBJ: $z make-part("foundationfloor","Matf ound","matbase"))
) 60
COMMENT:"Rule to create the mat foundation with four columns")

(RULE: creatematsix 1000
IF
(((CLASS: Cabin OBJ: $x
((calength == $1en) AND
(cawidth == Swid))

) AND
(CLASS: Declist OBJ: Sy
((setfoundation == "Mat") AND 70

(set._columns == "6"))
)) AND
(CLASS: Cabin_part OBJ: $z
(instancename == "cabinparts")

THEN (
(MAKE (CLASS: Mat-found OBJ: mat-pier-ne
(tbaselength $1en)
(f base width $wid)
(fbasedepth 5.0) 80

(f.pierlength 5.0)
(f pier-width 2.0)
(fpierdepth 2.0)

(EXECUTE VAR:$rtn OBJ: $z make_part("foundation.pierne","Mat-f ound","mat.pierne"))
(MAKE (CLASS: Mat_found OBJ: matpier-nw
(tbaselength $1en)
(fbasewidth $wid)
(fbase-depth 5.0)
(fpierlength 5.0) 90

(f-pierwidth 2.0)
(fpierdepth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("foundation-piernw","Matfound","matpier-nw"))
(MAKE (CLASS: Matfound OBJ: matpier-se
(f.baselength $1Slen)
(fbasewidth Swid)
(fbasedepth 5.0)
(f pier-length 5.0)
(f pierwidth 2.0) 100oo
(fpierdepth 2.0)

(EXECUTE VAR:$rtn OBJ: $z make_part("foundation-pierse","Mat _found","matpierse"))

242

E.2 Examples of CABIN Rulefiles

(MAKE (CLASS: Mat found OBJ: mat_pier_sw
(fILbaselength $1en)
(f basewidth Swid)
(fbase_depth 5.0)
(fpierlength 5.0)
(f pierwidth 2.0)
(f pier depth 2.0) 110

(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpier-sw","Mat_f ound","matpiersw"))
(MAKE (CLASS: Mat found OBJ: matpiere
(fbaselength $1en)
(f basewidth $wid)
(f.base_depth 5.0)
(fpierlength 5.0)
(fpierwidth 2.0)
(fOpier_depth 2.0)

)) 12o
(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpiere","Matfound","matpiere"))
(MAKE (CLASS: Mat-found OBJ: matpierw
(f baselength $1en)
(f base_width Swid)
(fbasedepth 5.0)
(fpier_length 5.0)
((pierwidth 2.0)
(fpierdepth 2.0)

(EXECUTE VAR:$rtni OBJ: $z makepart("foundationpier-w","Matfound","matpierw")) 130

(MAKE (CLASS: Mat found OBJ: matbase
(f baselength $1en)
(fbasewidth $wid)
(fbase_depth 5.0)
(f pierlength 5.0)
(f pierwidth 2.0)
(fpierdepth 2.0)

(EXECUTE VAR:$rtn OBJ: $z make-part("foundation-floor","Mat-found","mat _base"))
) 140
COMMENT:"Rule to create the mat foundation with four columns")

(RULE: createspreadfour 1000
IF
(((CLASS: Cabin OBJ: $x
((calength == $1en) AND
(ca width == $wid))
) AND

(CLASS: Declist OBJ: $y
((setfoundation == "Spread") AND 150
(setcolumns != "6"))

)) AND
(CLASS: Cabinpart OBJ: $z
(instancename == "cabinparts")

THEN (
(MAKE (CLASS: Spreadfound OBJ: spreadpierne

243

E.2 Examples of CABIN Rulefiles

(f baselength 5.0)
(Cbasewidth 10.0)
(f.base_depth 10.0) 160
(f pierlength 5.0)
(fpier-width 2.0)
(f.pier_depth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpierne","Spreadfound","spreadpierne"))
(MAKE (CLASS: Spreadjfound OBJ: spread_piernw
(ftbaselength 5.0)
(fbasewidth 10.0)
(fbase_depth 10.0)
(f.pierlength 5.0) 170
(fpier width 2.0)
(f pierdepth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpiernw","Spread-found","spread-pier-nw"))
(MAKE (CLASS: Spread found OBJ: spread_pier_se
(tbaselength 5.0)
(fCbasewidth 10.0)
(f base_depth 10.0)
(fpierlength 5.0)
(f pierwidth 2.0) 180o
(fipier-depth 2.0)

(EXECUTE VAR:$rtn OBJ: $z make_part("foundationpierse","Spread_found","spreadpier_ se"))
(MAKE (CLASS: Spread found OBJ: spreadpiersw
(fbaselength 5.0)
(fbase width 10.0)
(fbase_depth 10.0)
(fpierlength 5.0)
(f. pierwidth 2.0)
(fjpierdepth 2.0) 190

(EXECUTE VAR:$rtn OBJ: $z makepart("f oundation-piersw","Spreadf ound","spreadpiersw"))
(MAKE (CLASS: Spread found OBJ: spreadpadne
(Lbaselength 5.0)
(fbasewidth 10.0)
(fbasedepth 10.0)
(fpierlength 5.0)
(f pier width 2.0)
(fpierdepth 2.0)

)) 200
(EXECUTE VAR:$rtn OBJ: $z makepart("f oundation-pad-ne","Spread-found","spreadpadne"))
(MAKE (CLASS: Spreadfound OBJ: spread-padnw
(f.baselength 5.0)
(fbasewidth 10.0)
(fbase_depth 10.0)
(fpierlength 5.0)
(fpierwidth 2.0)
(f.pierdepth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("foundation-pad-nw","Spreadfound","spread-padnw")) 210
(MAKE (CLASS: Spread found OBJ: spreadpad_se

244

E.2 Examples of CABIN Rulefiles

(tbaselength 5.0)
(ftbasewidth 10.0)
(ftbase_depth 10.0)
(f.pierlength 5.0)
(fLpierwidth 2.0)
(f pier_depth 2.0)

(EXECUTE VAR:$rtn OBJ: $z make-part("foundationpadse","Spread-found","spreadpadse"))
(MAKE (CLASS: Spreadfound OBJ: spreadpadsw 220

(f..basejength 5.0)
(fbasewidth 10.0)
(fbasedepth 10.0)
(f.pierlength 5.0)
(fpierwidth 2.0)
(fpier_depth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpadsw","Spreadfound","spreadpadsw"))
)
COMMENT:"Rule to create the spread foundation with four columns") 230

(RULE: createspreadsix 1000
IF
(((CLASS: Cabin OBJ: $x
((calength == $1en) AND
(cawidth == $wid))
) AND

(CLASS: Declist OBJ: $y
((setfoundation == "Spread") AND
(setcolumns == "6")) 240

)) AND
(CLASS: Cabinpart OBJ: $z
(instancename == "cabinparts")

THEN (
(MAKE (CLASS: Spreadfound OBJ: spreadpierne
(ftbaselength 5.0)
(fbase_width 10.0)
(fbase_depth 10.0)
(f pierlength 5.0) 250
(Cpierwidth 2.0)
(fpier_depth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpier_ne","Spread_found","spread-pierne"))
(MAKE (CLASS: Spread-found OBJ: spreadpiernw
(fbaselength 5.0)
(fbasewidth 10.0)
(ftbasedepth 10.0)
(fpierlength 5.0)
(fpier width 2.0) 260
(fpier_depth 2.0)

(EXECUTE VAR:$rtn OBJ: Sz make_part("foundationpiernw","Spread_found","spread-piernw"))
(MAKE (CLASS: Spreadfound OBJ: spread_pier_se
(ftbaselength 5.0)

245

E.2 Examples of CABIN Rulefiles

(f basewidth 10.0)
(tbase_depth 10.0)
(f pierlength 5.0)
(f pierwidth 2.0)
(fpierdepth 2.0) 270

(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpier-se","Spreadfound","spreadpier-se"))
(MAKE (CLASS: Spreadfound OBJ: spreadpiersw
(fbasejength 5.0)
(fbasewidth 10.0)
(f.basedepth 10.0)
(fpier-length 5.0)
(fpierwidth 2.0)
(fpier-depth 2.0)

)) 280
(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpier-sw","Spread_found","spreadpiersw"))
(MAKE (CLASS: Spreadfound OBJ: spreadpiere
(fbaselength 5.0)
(ftbase width 10.0)
(fbase_depth 10.0)
(f pier_length 5.0)
(fLpierwidth 2.0)
(f.pier_depth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpiere","Spread_found","spreadpiere")) 290
(MAKE (CLASS: Spreadfound OBJ: spread_pierw
(f basejength 5.0)
(fbase_width 10.0)
(fbasedepth 10.0)
(f pierlength 5.0)
(fpierwidth 2.0)
(fpier_depth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpierw","Spread_found","spreadpierw"))
(MAKE (CLASS: Spreadfound OBJ: spread_padne 300oo

(f baselength 5.0)
(fbasewidth 10.0)
(tbase_depth 10.0)
(f pierlength 5.0)
(f.pierwidth 2.0)
(f pier_depth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpadne","Spreadfound","spread-padne',))
(MAKE (CLASS: Spreadfound OBJ: spread_padnw
(fbaselength 5.0) 310
(fbasewidth 10.0)
(fbase_depth 10.0)
(f.pierlength 5.0)
(fpierwidth 2.0)
(f.pier_depth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("foundation_pad_nw","Spread_found","spreadpadnw"))
(MAKE (CLASS: Spreadfound OBJ: spread_padse
((fbasejength 5.0)

246

E.2 Examples of CABIN Rulefiles

(fbasewidth 10.0) 320
(fLbasedepth 10.0)
(f pierjlength 5.0)
(f-pierwidth 2.0)
(f.pier-depth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("f oundationpadse","Spreadf ound","spread-pad-se"))
(MAKE (CLASS: Spreadfound OBJ: spreadpadsw
(f baselength 5.0)
(fbase width 10.0)
(fbasedepth 10.0) 330

(fpierjength 5.0)
(fpierwidth 2.0)
(f.pierdepth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpadsw","Spreadfound","spread-padsw"))
(MAKE (CLASS: Spreadfound OBJ: spreadpade
(fbaselength 5.0)
(f base_width 10.0)
(fbase_depth 10.0)
(f pierlength 5.0) 340
(fpierwidth 2.0)
(fpier_depth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpad-e","Spread-found","spread-pad.e"))
(MAKE (CLASS: Spreadfound OBJ: spread_padw
(ftbase_length 5.0)
(f basewidth 10.0)
(fbasedepth 10.0)
(fpierlength 5.0)
(fpierwidth 2.0) 350so

(fpier_depth 2.0)

(EXECUTE VAR:$rtn OBJ: $z makepart("foundationpadw","Spread-found","spreadpadw"))

COMMENT:"Rule to create the spread foundation with four columns")

(RULE: createstrip 1000
IF
(((CLASS: Cabin OBJ: $x
((calength $== len) AND 360
(ca-width == $wid))

) AND
(CLASS: Declist OBJ: Sy
(set foundation == "Strip")
)) AND
(CLASS: Cabin_part OBJ: $z
(instancename == "cabinparts")

THEN (
(MAKE (CLASS: Stripfooting OBJ: wall_piern 370
(fbase-depth 5.0)
(fbaselength Swid)
(fbase_width 15.0)

247

E.2 Examples of CABIN Rulefiles

(fjpier-jength $wid)
(f-pier width 5.0)
(f pierdepth 5.0)

(EXECUTE VAR:$rtn OBJ:$z makepart("wallpier.n","Stripfooting","wallpier-n"))
(MAKE (CLASS: Stripfooting OBJ: wall piers
(fbasedepth 5.0) 380
(fbaselength $wid)
(fbasewidth 15.0)
(fpierjlength Swid)
(f pierwidth 5.0)
(f pierdepth 5.0)

(EXECUTE VAR:$rtn OBJ:$z makepart("wall-pier-s","Stripfooting","wall-pier.s"))
(MAKE (CLASS: Strip_footing OBJ: wall pier_e
(fbasedepth 5.0)
(fbasejength $1en) 390
(f base width 15.0)
(fpierlength $1en)
(f pier-width 5.0)
(f pierdepth 5.0)

(EXECUTE VAR:$rtn OBJ:$z make-part("wall pier-e","Strip-footing","wall piere"))
(MAKE (CLASS: Strip_footing OBJ: wallpierw
(fbasedepth 5.0)
(fbasejength $1en)
(fbase_width 15.0) 400oo
(fpierlength $1en)
(fpierwidth 5.0)
(fpier_depth 5.0)

(EXECUTE VAR:$rtn OBJ:$z make_part("wall pier-w","Stripfooting","wall_pier_w"))
(MAKE (CLASS: Stripfooting OBJ: wallpad n
(fbasedepth 5.0)
(fbase length Swid)
(f basewidth 15.0)
(fpierlength Swid) 410
(f pierwidth 5.0)
(fpierdepth 5.0)

(EXECUTE VAR:$rtn OBJ:$z make_part("wallpad-n","Stripfooting","wallpadn"))
(MAKE (CLASS: Strip_footing OBJ: wall_pads
(fbase_depth 5.0)
(fbase-length Swid)
(fbasewidth 15.0)
(fpierlength Swid)
(fpierwidth 5.0) 420
(fpier_depth 5.0)

(EXECUTE VAR:$rtn OBJ:$z makepart("wallpads","Stripfooting","wallpad.s"))
(MAKE (CLASS: Strip_footing OBJ: wall_pad_e
(fbasedepth 5.0)
((baselength $1en)
(fbasewidth 15.0)

248

E.2 Examples of CABIN Rulefiles

(f pierlength $1en)
(fpierwidth 5.0)
(f pier_depth 5.0) 430

(EXECUTE VAR:$rtn OBJ:$z makepart("wallpade","Stripfooting","wallpade"))
(MAKE (CLASS: Stripjfooting OBJ: wallpadw
(fbasedepth 5.0)
(fbaselength $len)
(f basewidth 15.0)
(fjpierlength $1en)
(fpierwidth 5.0)
(f pierdepth 5.0)

)) 440

(EXECUTE VAR:$rtn OBJ:$z makepart("wallpad-w","Stripf ooting","wallpadw"))
)
COMMENT:"Rule to create the Strip footing")

(RULE: Wall_n_pier_geometry 10
IF
((CLASS: Stripfooting OBJ: $x
(instancename == "wallpier-n")) AND
(CLASS: Strip_footing OBJ: $x
(((f pierlength $1en) AND 450

(fpierwidth Swid)) AND
((length != $1en) AND
(fpier_depth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"wallbngeom"))
(MODIFY (OBJ: $x
(length l$1en)
(width $wid)
(height Shgt) 460
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x settranslation(5.0,715.0,5.0))
)
COMMENT:" Rule to set up the geometry of the wall northeast Strip-footing ")

(RULE: Wallspiergeometry 10
IF
((CLASS: Stripjfooting OBJ: $x
(instancename == "wallpiers")) AND 470
(CLASS: Stripfooting OBJ: $x
(((f pier-length == $1en) AND

(fpierwidth == Swid)) AND
((length != $1len) AND
(f pierdepth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"wallbsgeom"))
(MODIFY (OBJ: $x
(length $1en) 480
(width $wid)

249

E.2 Examples of CABIN Rulefiles

(height Shgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x set_translation(5.0,5.0,5.0))

COMMENT:" Rule to set up the geometry of the wall northwest Strip-footing ")

(RULE: Wall-e-pier-geometry 10
IF 490
((CLASS: Stripfooting OBJ: $x
(instancename == "wallpier e")) AND
(CLASS: Stripfooting OBJ: $x
(((f pier-length $1en) AND

(fpier-width == $wid)) AND
((length != $1en) AND
(fpierdepth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"wallbegeom")) 500
(MODIFY (OBJ: $x
(length $1en)
(width 3.0)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,0.0,90.0))
(EXECUTE VAR:$rtn OBJ: $x set_translation(365.0,5.0,5.0))

COMMENT:" Rule to set up the geometry of the wall southheast Column ")
510

(RULE: Wall~wpiergeometry 10
IF
((CLASS: Strip-footing OBJ: $x
(instancename == "wallpierw")) AND
(CLASS: Stripfooting OBJ: $x
(((f pierlength == $1en) AND

(fpier_width == Swid)) AND
((length != $len) AND
(fpier_depth == $hgt))) 520

THEN (
(EXECUTE VAR:$rtn OBJ: $x create.geometry(7,"wallbwgeom"))
(MODIFY (OBJ: $x
(length $1en)
(width $wid)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,0.0,90.0))
(EXECUTE VAR:$rtn OBJ: $x setjtranslation(10.0,5.0,5.0)) 530

COMMENT:" Rule to set up the geometry of the wall southwest Column ")

(RULE: Wallnpadgeometry 10

250

E.2 Examples of CABIN Rulefiles

IF
((CLASS: Strip-footing OBJ: $x
(instancename == "wallpadn")) AND
(CLASS: Strip footing OBJ: $x
(((fbase-length == $1en) AND 540

(f base width == $wid)) AND
((length != $1en) AND
(f-base-depth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x create-geometry(7,"pngeom"))
(MOI)IFY (OBJ: $x
(length $1en)
(width $wid)
(height Shgt) 550
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x settranslation(0.0,710.0,0.0))

COMMENT:" Rule to set up the geometry of the wall northeast pad ")

(RULE: Wall_s_padgeometry 10
IF
((CLASS: Stripfooting OBJ: $x
(instancename == "wallpads")) AND 560
(CLASS: Strip footing OBJ: $x
(((fbase length == $1en) AND

(f.base_width == Swid)) AND
((length != Slen) AND
(fbase_depth == Shgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x create_geometry(7,"psgeom"))
(MODIFY (OBJ: $x
(length $1en) 570
(width $wid)
(height Shgt)

1000 0.001)

COMMENT:" Rule to set up the geometry of the wall northwest pad ")

(RULE: Walle_pad-geometry 10
IF
((CLASS: Stripfooting OBJ: $x 580
(instancename == "wallpade")) AND
(CLASS: Stripfooting OBJ: $x
(((fbasejength == $1en) AND

(f-base_width == $wid)) AND
((length != $1en) AND
(f:basedepth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"pegeom"))

251

E.2 Examples of CABIN Rulefiles

(MODIFY (OBJ: $x 590

(length $1en)
(width $wid)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,0.0,90.0))
(EXECUTE VAR:$rtn OBJ: $x settranslation(350.0,0.0,0.0))
)
COMMENT:" Rule to set up the geometry of the wall southheast pad ")

600

(RULE: Wall-w_pad_geometry 10
IF
((CLASS: Stripfooting OBJ: $x
(instancename == "wall padw")) AND
(CLASS: Stripfooting OBJ: $x
(((fbaselength == $1en) AND

(f base_width == Swid)) AND
((length != $1en) AND
(fbase_depth == Shgt)))

)) 610

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"pwgeom"))
(MODIFY (OBJ: $x
(length $1en)
(width $wid)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x settranslation(15.0,0.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x set rotation(0.0,0.0,90.0))
) 620
COMMENT:" Rule to set up the geometry of the wall southwest pad ")

(RULE: mat_ne_pier_geometry 10
IF
((CLASS: Mat_found OBJ: $x
(instancename == "matpierne")) AND
(CLASS: Mat_found OBJ: $x
(((fpierlength == $1en) AND

(fpierwidth == $wid)) AND 630

((length != $1en) AND
(f(pierdepth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x create-geometry(7,"negeom"))
(MODIFY (OBJ: $x
(length $1en)
(width $wid)
(height Shgt)
) 1000 0.001) 640
(EXECUTE VAR:$rtn OBJ: $x set_translation(366.0,724.0,5.0))
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,270.0,0.0))

252

E.2 Examples of CABIN Rulefiles

COMMENT:" Rule to set up the geometry of the mat northeast pier ")

(RULE: matnw_pier-geometry 10
IF
((CLASS: Matfound OBJ: $x
(instancename == "mat pier.nw")) AND
(CLASS: Mat found OBJ: $x 650o
(((fpierlength == $1en) AND

(fpier width == $wid)) AND
((length != $1en) AND
(fpierdepth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x create-geometry(7,"nwgeom"))
(MODIFY (OBJ: $x
(length $1en)
(width Swid) 660
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x settranslation(6.0,724.0,5.0))
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,270.0,0.0))

COMMENT:" Rule to set up the geometry of the mat northwest pier ")

(RULE: mat_se_piergeometry 10

IF 670
((CLASS: Mat_found OBJ: $x
(instancename == "matpierse")) AND
(CLASS: Mat found OBJ: $x
(((f pierlength == $1en) AND

(fpier_width == $wid)) AND
((length != $1en) AND
(fpierdepth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"segeom")) 680
(MODIFY (OBJ: $x
(length $1en)
(width $wid)
(height Shgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x set translation(366.0,4.0,5.0))
(EXECUTE VAR:$rtn OBJ: $x setjrotation(0.0,270.0,0.0))

COMMENT:" Rule to set up the geometry of the mat southheast pier ")
690

(RULE: matswpier geometry 10
IF
((CLASS: Mat_found OBJ: $x
(instancename == "matpiersw")) AND
(CLASS: Mat found OBJ: $x
(((f pierlength == $1en) AND

253

E.2 Examples of CABIN Rulefiles

(fpierwidth == $wid)) AND
((length != $1en) AND
(fpier_depth == $hgt))) 700

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"swgeom"))
(MODIFY (OBJ: $x
(length $1en)
(width Swid)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x set_rotation(0.0,270.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x settranslation(6.0,4.0,5.0)) 710

COMMENT:" Rule to set up the geometry of the mat southwest pier ")

(RULE: matepiergeometry 10
IF
((CLASS: Mat found OBJ: $x
(instancename == "matpiere")) AND
(CLASS: Matfound OBJ: $x
((((fpierlength == $1en) AND 720

(flpier_width == $wid)) AND
((length != $1en) AND
(fpier_depth == Shgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"egeom"))
(MODIFY (OBJ: $x
(length $1en)
(width Swid)
(height Shgt) 730
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x settranslation(366.0,364.0,5.0))
(EXECUTE VAR:$rtn OBJ: $x set rotation(0.0,270.0,0.0))

COMMENT:" Rule to set up the geometry of the mat east pier ")

(RULE: mat w pier_geometry 10
IF
((CLASS: Matfound OBJ: $x 740
(instancename == "mat.pierw")) AND
(CLASS: Mat found OBJ: $x
(((f.pierlength == $1en) AND

(f pier width == $wid)) AND
((length != $1en) AND
(ftpierdepth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"wgeom"))
(MODIFY (OBJ: $x 750so
(length $1en)

254

E.2 Examples of CABIN Rulefiles

(width Swid)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x set _translation(6.0,364.0,5.0))
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,270.0,0.0))

COMMENT:" Rule to set up the geometry of the mat west pier ")

(RULE: mat_base_geometry 10 760

IF
((CLASS: Mat_found OBJ: $x
(instancename == "matbase")) AND
(CLASS: Mat found OBJ: $x
(((fbaselength == Slen) AND

(f basewidth == Swid)) AND
((fbasedepth == Shgt) AND
(height != $hgt)))

THEN (770
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"basegeom"))
(MODIFY (OBJ: $x
(length $1en+2)
(width Swid)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x settranslation(366.0,4.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x set_rotation(0.0,0.0,90.0))

COMMENT:" Rule to set up the geometry of the mat base") 780

(RULE: Spreadnepier-geometry 10
IF
((CLASS: Spreadfound OBJ: $x
(instancename == "spread-pierne")) AND
(CLASS: Spreadfound OBJ: $x
(((f pierlength == $1en) AND

(fpierwidth == $wid)) AND
((length != $1en) AND
(f.pierdepth == Shgt))) 790

THEN (
(EXECUTE VAR:$rtn OBJ: $x create-geometry(7,"negeompier"))
(MODIFY (OBJ: $x
(length $1en)
(width Swid)
(height Shgt)
) oo1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x settranslation(366.0,724.0,5.0))
(EXECUTE VAR:$rtn OBJ: $x set_rotation(0.0,270.0,0.0)) 800
)
COMMENT:" Rule to set up the geometry of the spr northeast pier ")

(RULE: Spreadnw_piergeometry 10

255

E.2 Examples of CABIN Rulefiles

IF
((CLASS: Spreadfound OBJ: $x
(instancename == "spreadpier-nw")) AND
(CLASS: Spreadfound OBJ: $x
(((f pierlength == $len) AND 810o

(f pierwidth == Swid)) AND
((length != Slen) AND
(fpierdepth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"nwgeompier"))
(MODIFY (OBJ: $x
(length $len)
(width $wid)
(height $hgt) 820
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x settranslation(6.0,724.0,5.0))
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,270.0,0.0))

COMMENT:" Rule to set up the geometry of the spr northwest pier ")

(RULE: Spreadsepier-geometry 10
IF
((CLASS: Spreadfound OBJ: $x 830o

(instancename == "spreadpierse")) AND
(CLASS: Spreadjfound OBJ: $x
(((fpierjength == $len) AND

(f pier_width == $wid)) AND
((length != glen) AND
(fpierdepth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x create-geometry(7,"segeompier"))
(MODIFY (OBJ: $x 840
(length $len)
(width $wid)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x settranslation(366.0,4.0,5.0))
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,270.0,0.0))

COMMENT:" Rule to set up the geometry of the spr southheast pier ")

850
(RULE: Spreadswpier-geometry 10
IF
((CLASS: Spreadfound OBJ: $x
(instancename == "spread.piersw")) AND
(CLASS: Spreadfound OBJ: $x
(((f pierjlength $1== len) AND

(fpierwidth == Swid)) AND
((length != l$1en) AND
(fpierdepth == $hgt)))

256

E.2 Examples of CABIN Rulefiles

)) 860
THEN (
(EXECUTE VAR:$rtn OBJ: $x create-geometry(7,"swgeompier"))
(MODIFY (OBJ: $x
(length $1en)
(width Swid)
(height Shgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x set_translation(6.0,4.0,5.0))
(EXECUTE VAR:$rtn OBJ: $x set rotation(0.0,270.0,0.0))
) 870
COMMENT:" Rule to set up the geometry of the spr southwest pier ")

(RULE: Spreadepiergeometry 10
IF
((CLASS: Spread-found OBJ: $x
(instancename == "spreadpiere")) AND
(CLASS: Spreadfound OBJ: $x
(((f.pierlength == $1en) AND

(fpierwidth == Swid)) AND a880
((length != Slen) AND
(fpier_depth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"egeompier"))
(MODIFY (OBJ: $x
(length $1en)
(width Swid)
(height $hgt)
) 1000 0.001) 890
(EXECUTE VAR:$rtn OBJ: $x settranslation(366.0,364.0,5.0))
(EXECUTE VAR:$rtn OBJ: $x set rotation(0.0,270.0,0.0))

COMMENT:" Rule to set up the geometry of the spr east pier ")

(RULE: Spreadwpiergeometry 10
IF
((CLASS: Spread-found OBJ: $x
(instancename == "spread.pier.w")) AND 900

(CLASS: Spread-found OBJ: $x
(((f pierlength == $1en) AND

(fpierwidth == $wid)) AND
((length != $1en) AND
(Lpierdepth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"wgeompier"))
(MODIFY (OBJ: $x
(length $1en) 910
(width $wid)
(height Shgt)
)1000 0.001)

257

E.2 Examples of CABIN Rulefiles

(EXECUTE VAR:$rtn OBJ: $x settranslation(6.0,364.0,5.0))
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,270.0,0.0))

COMMENT:" Rule to set up the geometry of the spr west pier ")

(RULE: Spread_ne_pad-geometry 10 920
IF
((CLASS: Spread-found OBJ: $x
(instancename == "spreadpadne")) AND
(CLASS: Spreadfound OBJ: $x
(((fbasejength Sl1en) AND

(fbase width == $wid)) AND
((length != $1en) AND
(fbasedepth == Shgt)))

THEN (930
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"negeompad"))
(MODIFY (OBJ: $x
(length $1en)
(width Swid)
(height Shgt)
)1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x settranslation(360.0,720.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,90.0,0.0))

COMMENT:" Rule to set up the geometry of the spr northeast pad ") 940

(RULE: Spreadnwpadgeometry 10
IF
((CLASS: Spread-found OBJ: $x
(instancename == "spread.padnw")) AND
(CLASS: Spreadfound OBJ: $x
(((f basejength == $1en) AND

(f basewidth == Swid)) AND
((length != $1en) AND 950
(ftbasedepth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"nwgeompad"))
(MODIFY (OBJ: $x
(length $1en)
(width Swid)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x set_translation(0.0,720.0,0.0)) 960
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,90.0,0.0))

COMMENT:" Rule to set up the geometry of the spr northwest pad ")

(RULE: Spread_sepadgeometry 10
IF

258

E.2 Examples of CABIN Rulefiles

((CLASS: Spreadfound OBJ: $x
(instancename == "spreadpadse")) AND
(CLASS: Spreadfound OBJ: $x 970
(((fbaselength == $1en) AND

(fbasewidth == $wid)) AND
((length != $1en) AND
((basedepth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"segeompad"))
(MODIFY (OBJ: $x
(length $1en)
(width Swid) 980

(height Shgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x settranslation(360.0,0.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,90.0,0.0))

COMMENT:" Rule to set up the geometry of the spr southheast pad ")

(RULE: Spreadswpadgeometry 10
IF 990
((CLASS: Spreadfound OBJ: $x
(instancename == "spreadpadsw")) AND
(CLASS: Spreadfound OBJ: $x
(((f baselength == $1en) AND

(fbasewidth == $wid)) AND
((length != $1en) AND
(fbase_depth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x creategeometry(7,"swgeompad")) 1000
(MODIFY (OBJ: $x
(length $1en)
(width $wid)
(height Shgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,90.0,0.0))

COMMENT:" Rule to set up the geometry of the spr southwest pad ")

1010

(RULE: Spreadee_padgeometry 10
IF
((CLASS: Spreadfound OBJ: $x
(instancename == "spread.pade")) AND
(CLASS: Spreadfound OBJ: $x
(((fbasejength == $1en) AND

(Ibasewidth == Swid)) AND
((length != $1en) AND
((basedepth == $hgt))) 1020

259

E.2 Examples of CABIN Rulefiles

THEN (
(EXECUTE VAR:$rtn OBJ: $x create-geometry(7,"egeompad"))
(MODIFY (OBJ: $x
(length $1en)
(width $wid)
(height $hgt)
) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x settranslation(360.0,360.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x set_rotation(0.0,90.0,0.0)) 1030

COMMENT:" Rule to set up the geometry of the spr east pad ")

(RULE: Spreadwpadgeometry 10
IF
((CLASS: Spreadfound OBJ: $x
(instancename == "spreadcpadw")) AND
(CLASS: Spreadfound OBJ: $x
(((fbaselength == $1en) AND 1040
(fbasewidth == $wid)) AND
((length != Slen) AND
(fbase depth == $hgt)))

THEN (
(EXECUTE VAR:$rtn OBJ: $x create-geometry(7,"wgeompad"))
(MODIFY (OBJ: $x
(length $1en)
(width $wid)
(height $hgt) 1050

) 1000 0.001)
(EXECUTE VAR:$rtn OBJ: $x settranslation(0.0,360.0,0.0))
(EXECUTE VAR:$rtn OBJ: $x setrotation(0.0,90.0,0.0))

COMMENT:" Rule to set up the geometry of the spr west pad ")

1060

260

E.3 CABIN calculation rulefiles

E.3 CABIN calculation rulefiles

All the rulefiles listed below are taken from the analysis of the reinforced concrete

structures.

E.3.1 Loading.rul

This rulefile passes the loading of the structure from top to bottom.

(RULE: createclasses 1000
IF
(CLASS: roof OBJ: Sx
(deadload == 0.0)

THEN (
(MODIFY (OBJ: $x
(deadload 100.1)
(liveload 200.2)
(windload 100.1) 10
) 1000 0.001)
(MAKE (CLASS: column OBJ: newcolumn
(deadload 10.1)
(liveload 20.2)
(windload 10.1)

(MAKE (CLASS: footing OBJ: newfooting
(deadload 1000.1)
(liveload 2000.2)
(windload 1000.1) 20

COMMENT:"Rule to create the source")

(RULE: calculateroof 1000
IF
(CLASS: roof OBJ: $x
(((deadload == $dl) AND
(liveload == $11)) AND
((windload == Swl) AND 30

(totalload == 0.0))

THEN (
(BIND VAR:$dl $dl*1.4)
(BIND VAR:$11 $11*1.7)
(MODIFY (OBJ: $x
(totalload $dl+$11)
) 1000 0.001)

261

E.3 CABIN calculation rulefiles

COMMENT:"Rule to calculate roof totalload") 40

(RULE: calculatecolumn 1000
IF
(CLASS: column OBJ: $x
(((deadload == $dl) AND
(liveload == $11)) AND
((windload == $wl) AND
(totalload == 0.0))

THEN(50
(MODIFY (OBJ: $x
(totalload $dl+$11+$wl)
) 1000 0.001)

COMMENT:"Rule to calculate column totalload")

(RULE: calculatefooting 1000
IF
(CLASS: footing OBJ: $x
(((deadload == $dl) AND 60
(liveload == $11)) AND
((earthquakeload == $eql) AND
(totalload == 0.0))

THEN (
(MODIFY (OBJ: $x
(totalload $dl+$11+$eql)
) 1000 0.001)

COMMENT:"Rule to calculate footing totalload") 70

(RULE: passroofload 500
IF
((CLASS: roof OBJ: $x
(totalload == $tl)) AND
(CLASS: column OBJ: Sy
((passedload == 0.0) AND
(totalload == $ctl)))

THEN(80

(MODIFY (OBJ: $y
(totalload $ctl+$tl)
(passedload $tl)
)1000 0.001)

COMMENT:"Rule to pass roof totalload and calculate column loads")

(RULE: passcolumnload 100
IF 90
((CLASS: column OBJ: $x
(totalload == $tl)) AND
(CLASS: footing OBJ: $y

262

E.3 CABIN calculation rulefiles

((passedload == 0.0) AND
(totalload == $ctl)))

THEN (
(MODIFY (OBJ: Sy
(totalload $ctl+$tl)
(passedload $tl) 100o
) 1000 0.001)

COMMENT:"Rule to pass roof totalload and calculate column loads")

263

E.3 CABIN calculation rulefiles

E.3.2 Beamrn.rul

This rulefile calculates the cross section area of the beam according to the loading.

(RULE: createbeam 1000
IF
(CLASS: beam OBJ: $x
(bJength == 0.0)

THEN (
(MODIFY (OBJ: $x
(deadload 100.0)
(liveload 200.0)
(bjength 100.0) 10
) 1000 0.001)

COMMENT:"Rule to create the beam")

(RULE: calculatetotalload 900
IF
(CLASS: beam OBJ: $x
(((deadload == $dl) AND
(liveload ==: $11)) AND
(totalload == 0.0)) 20

THEN (
(BIND VAR:Sdl $dl*1.4)
(IBIND VAR:$11 $11*1.7)
(MODIFY (OBJ: $x
(totalload $dl+$11)
) 1000 0.001)

COMMENT:"Rule to calculate beam totalload")
30

(RULE: assumewidthdepth 800
IF
(CLASS: beam OBJ: $x
((blength $1en) AND
(b-width == 0.0))

THEN (
(MODIFY (OBJ: $x
(bwidth $1en/16)
(bdepth $1en/16) 40
) 11000 0.001)

COMMENT:"Rule to calculate beam width & depth")

(R1ULE: calculatemoment 700
IF
(CLASS: beam OBJ: $x

264

E.3 CABIN calculation rulefiles

(((b length == $Slen) AND
(totalload == $tl)) AND
(moment == 0.0)) 50

THEN (
(BIND VAR:$1enl $tl*$1en)
(BIND VAR:$1en2 $1en/8)
(MODIFY (OBJ: $x
(moment $1enl*$1en2)
) 1000 0.001)

COMMENT:"Rule to calculate beam moment")
60

(RULE: calculateeff depth 600
IF
(CLASS: beam OBJ: $x
((bdepth == $dep) AND
(beftfdepth == 0.0))

THEN (
(MODIFY (OBJ: $x
(beftidepth $dep-2.5)
) 1000 0.001) 70

COMMENT:"Rule to calculate beam effective depth")

(RULE: calculatearea 500
IF
(CLASS: beam OBJ: $x
(((moment == $mom) AND
(b-eftdepth == $efdep)) AND
(b_reinfarea == 0.0))

) so
THEN (
(BIND VAR:$i 0.875*$efdep)
(BIND VAR:$j 0.9*36.0)
(BIND VAR:$k $i*$j)
(MODIFY (OBJ: $x
(breinf area $mom/$k)
) 1000 0.001)

COMMENT:"Rule to calculate beam reinforcement area")
90

265

E.3 CABIN calculation rulefiles

E.3.3 Column.rul

This rulefile calculates the cross section area of the column according to the loading.

(RULE: createcolumn 1000
IF
(CLASS: column OBJ: $x
(c length == 0.0)

THEN (
(MODIFY (OBJ: $x
(axialload 100.0)
(clength 15.0)
(ceff length 0.8*15.0) o10
) 1000 0.001)

COMMENT:"Rule to create the column")

(RULE: calculate reinf area 900
IF
(CLASS: column OBJ: $x
(((axialload == $al) AND
(ceft length == $Slen)) AND
(c reinfarea == 0.0)) 20

THEN (
(BIND VAR:$i 1.31-2.77)
(BIND VAR:$j $1en/12.84)
(BIND VAR:$k $i*$j)
(BIND VAR:$fa 2.77+$k)
(BIND VAR:$pu 1.4*$al)
(MODIFY (OBJ: $x
(creinf area $pu/$fa)
)1000 0.001) o30

COMMENT:"Rule to calculate column reinforced area")

(RULE: calculatesteelarea 800
IF
(CLASS: column OBJ: $x
((c reinf area == $area) AND

(csteel area == 0.0))

THEN(40
(MODIFY (OBJ: $x
(c steel area $area*0.04)
) 1000 0.001)

COMMENT:"Rule to calculate column initial area")

266

E.3 CABIN calculation rulefiles

E.3.4 Slab.rul

This rulefile calculates the cross section area of the slab according to the loading.

(RULE: createslab 1000
IF
(CLASS: slab OBJ: $x
(slength == 0.0)
)
THEN (
(MODIFY (OBJ: $x
(deadload 100.0)
(liveload 50.0)
(slength 100.0) 10
) 1000 0.001)

COMMENT: "Rule to create the slab")

(RULE: calculatetotalload 900
IF
(CLASS: slab OBJ: $x
(((deadload == $dl) AND
(liveload == $11)) AND
(totalload == 0.0)) 20

THEN (
(BIND VAR:$dl $dl*1.4)
(BIND VAR:$11 $11*1.7)
(MODIFY (OBJ: $x
(totalload $dl+$11)
) 1000 0.001)

COMMENT: "Rule to calculate the slab total load")
30

(RULE: assumedepth 800
IF

(CLASS: slab OBJ: $x
((slength == $1en) AND
(swidth == Swid))

THEN (
(MODIFY (OBJ: $x
(sdepth $1en/20)
(sefftdepth $1en/20) 40
) 1000 0.001)

COMMENT:"Rule to calculate slab width & depth")

(RULE: calculatemomnent 700
IF
(CLASS: slab OBJ: Sx

267

E.3 CABIN calculation rulefiles

(((slength == $1en) AND
(totaUlload == $tl)) AND
(moment == 0.0)) 50

THEN(
(MODIFY (OBJ: $x
(moment $tl*$1en*$1en/8)
) 1000 0.001)

COMMENT:"Rule to calculate slab width & depth")

(RULE: calculatearea 500
IF 60

(CLASS: slab OBJ: $x
(((moment $mom) AND

(s'depth == $dep)) AND

(s_reinf area == 0.0))

THEN (
(B]31[ND VAR:$i 0.9)
(B131[ND VAR:$j 60000.0)
(BIND VAR:$k 0.925)
(B][ND VAR:$1 12000.0) 70
(B][ND VAR:$m $dep-1.0)
(B13][ND VAR:$n $i*$j*$k*$m)
(MODIFY (OBJ: $x
(s reinfarea Smom*$1/$n)
(seff-depth Sin)
)1000 0.001)

COMMENT: "Rule to calculate slab reinforcement area")

80

268

E.4 CABIN script

E.4 CABIN script

The following is the script to generate all the information of Cabin Design application.

Before the script is executed in CONGEN, it must be compiled successfully.

E.4.1 create.cabin.c

/ ***

* create-cabin: File to conveniently create the
* CA BIN DESIGN application, without having to go through all the
* elaborate rigmarole of the user interface
*

* Author: Johanes C. Sugiono
* Intelligent Engineering Systems Laboratory
* Massachusetts Institute of Technology
* Date: December 2, 1994
** 10

#include <iostream.h>
#include <E/trans.h>
#include "congen.h"
#include "context .h"
#include "datamanager.h"
#include "goal. h"
#include "goallist .h"
#include "plan. h"
#include "artifact. h"
#include "geometry.h" 20
#include "decision.h"
#include "SpecFrame.h"
#include "classobj.h"

#include "ClassManager .h"
#include "InstanceManager.h"
#include "AppManager.h"
#include "ui.h"
extern Congen * TheCongen;
extern Data-manager* TheDataManager; 30
extern ClassManager *classmanagerptr;
extern AppManager* app-managerptr;
extern InstanceManager* instancemanager-ptr;

#ifndef PUBLIC
#define PUBLIC 2
#endif

#ifndef PERSISTENT
#define PERSISTENT 1 40
#endif

269

E.4 CABIN script

void make demo()
I
int i;
TheCongen- >setapplication("CabinDesign");

//SSetting up root goal

TheDataManager->createArfGoal("createcabin",NULL); 50

Goal* gl;
gl= TheDataManager->lookupGoal("createcabin");
gl- >setchoice("Cabin");
gl- >seteffectsrulebase("cabineff.rul");
TheCongen- >setrtgoal(gl);

cout << "Finished creating rootgoal \n";

//DDeclaring the goals
60

TheDataManager- >createModGoal("setcolumns", "Cabin",
"numcolumns",NULL);

TheDataManager- >createModGoal("set _girders","Cabin",
"numgirders",NULL);

TheDataManager- >createModGoal("set _support ingbeams" ,"Cabin",
"numbeams",NULL);

TheDataManager-> createModGoal ("set -purlins","Cabin",
"numpurlins",NULL);

TheDataManager- >createModGoal("set _trusses", "Cabin",
"numtruss",NULL); 70

TheDataManager- >createModGoal ("setnorthwall", "Cabin",
"northwalltype",NULL);

TheDataManager- >createModGoal("set _southwall","Cabin",
"southwalltype",NULL);

TheDataManager- >createModGoal("set east_ wall","Cabin",
"eastwalltype",NULL);

TheDataManager- >createModGoal("setwestwall","Cabin",
"westwalltype",NULL);

TheDataManager- >createModGoal("setf oundat ion","Cabin",
"foundationtype",NULL); 80

TheDataManager- >createAbsGoal("set beams",NULL);
TheDataManager- >create AbsGoal("setwalls",NULL);
TheDataManager->createAbsGoal("set trusssys",NULL);
TheDataManager- >createAbsGoal("setbeam column-grid",NULL);

cout << "Finished declaring all the goals in the application \n";

//EEntering plans and expansion goals
ECommitTransactiono();
E.BeginTransaction(); 90

TheDataManager->createPlan("cabin-designplan");
Plan* pl = TheDataManager->lookupPlan("cabindesignplan");
pl->setparent("Cabin",0);
pl- >addgoal("setsbeamcolumngrid");

270

E.4 CABIN script

pl- >addgoal("set _trusssys");
pl- > addgoal ("set -walls");
pl->add-goal("setf oundation");
cout << "create plan cabindesignplan in the application \n";

100
gl = TheDataManager->lookup_ Goal("setcolumns");
gl->setchoice("O");
gl->setchoice("4");
gl- >setchoice("6");
gl->setparent("set _beam columngrid-plan");
gl- >seteffectsrulebase("set _columnseff rul");

gl = TheDataManager- >lookup_Goal("setbeams");
gl- >set-choice("set beams_plan");
gl - >setparent("set _beamcolumn.gridplan"); 110
cout << "create goals set columns & beams in the application \n";

gl = TheDataManager- >lookup_Goal("set_ trusssys");
gl- >setchoice("settrusssysplan");
gl- >setparent("cabindesignplan");

gl = TheDataManager- >lookupGoal("set_walls");
gl- >setchoice("set _walls plan");
gl- >setparent("cabindesignplan");

120

gl = TheDataManager->lookup_Goal("set foundation");
gl->setchoice("Mat");
gl-- >setchoice("Strip");
gl-- >set choice("Spread");
gl->setrulebase("set _f oundation.rul");
gl- >set-parent("cabindesignplan");
gl - >set effectsrulebase("set _foundat ion_ oeff rul");
cout << "create goals set trusses, walls and foundation in the application \n";

TheDataManager- >create_Plan("set_beamsplan"); 130

pl = TheDataManager- >lookup_Plan("setbeamsplan");
pl- >setparent("set -beams",1);
pl- >add_goal("set _girders");
p]- >addgoal("setsupportingbeams");

TheDataManager- >create_Plan("set _beam column-gridplan");
pl = TheDataManager->lookup_Plan("setbeamcolumngridplan");
pl->set-parent("set _beamcolumngrid",1);
pl->addgoal("set-columns");
pl- >add_goal("set__beams"); 140

TheDataManager- >createPlan("set trusssysplan");
pl = TheDataManager->lookup_Plan("settrusssys-plan");
pl->set parent("settrusssys",1);
pl- >addgoal("set purlins");
pl - >add-goal("set _trusses");

TheDataManager- >createPlan("set wallsplan");
pl = TheDataManager->lookup Plan("setwalls plan");

271

E.4 CABIN script

pl- >setparent("set _walls",1); 150

pl- >addgoal("set northwall");
pl- >add-goal("setsouthwall");

pl- >addgoal("set-east -wall");
pl- >add-goal("set _west _wall");

cout << "Finished creating all the plans and expansion goals in the application \n";

//lEEntering the goals
E_CommitTransaction();
E_BeginTransaction (); 160

gl == TheDataManager->lookup_Goal("set girders");
gl- >set-choice("O");
gl->setchoice("2");
gl->setrulebase("set _girders.rul");
gl- >setparent("set beamsplan");
gl- >set_effects_rulebase ("setgirders eff.rul");

gl == TheDataManager->lookupGoal("set supporting-beams");
gl->set choice("O"); 170
gl->set choice("1");
gl- >set choice("2");
gl- >set choice("3");
gl->set choice("6");
gl->set choice("7");
gl->set_rulebase("setsupport ingbeams. rul");
gl->setparent("setbeams plan");
gl- >set_effects_rulebase("set support ing.beamseeff. rul");

gl == TheDataManager->lookup Goal("setpurlins"); 180
gl->set choice("O");
gl->setchoice("2");
gl->set choice("4");
gl->setrulebase("setpurlins.rul");
gl->setparent("set _trusssysplan"):
gl- >seteffects_rulebase("set _purlins eff rul");

gl == TheDataManager->lookup_Goal("set trusses");
g- >set-choice("2");
gl->set choice("3"); 190
gl->set rulebase("set -trusses. rul");

gl- >set-parent("set _trusssysplan");
gl- >seteffectsrulebase("set trusses eff. rul");

gl == TheDataManager->lookupGoal("set north_wall");
gl- >setchoice("Shear");

gl->set choice("Brick");
gl- >set-choice("Opening");
g1l- >set_rulebase("setnorth-wall. rul");
g]l- >set parent("set _wallsplan"); 200
gl]->set effects_rulebase("setnorth_walleff .rul");

gl =: TheDataManager->lookup_Goal("set southwall");

272

E.4 CABIN script

gl.- >setchoice("Shear");

gl- >set choice("Brick");
gl- > setchoice("Opening");
gl- >setrulebase("setsouth_wall. rul");
gl- >setparent("set _wallsplan");
gl-:>set effects_rulebase("setsouth_wall eff.rul");

210
gl = TheDataManager->lookupGoal("seteast_wall");

gl- :>setchoice("Shear");
gl- >setchoice("Brick");
gl.-:>set-choice("Opening");
gl-:>set_rulebase("set _east _wall.rul");
gl.-: >set_parent("set walls_plan");
gl-->set_effects_rulebase("set _east _walleff. rul");

gl = TheDataManager- >lookupGoal("setwest_wall");
gl-- >setchoice("Shear"); 220
gl- >set choice("Brick");
gl-- >setchoice("Opening");
gl-- >setrulebase("set_west wall. rul");
gl-- >setparent("set _walls-plan");
gl-- >seteffects_rulebase("set_west _walleff. rul");

cout << "Finished creating goals in the application \n";

//DDeclaring the rulefiles
ECommitTransaction(); 230
EBeginTransaction();

TheCongen->addrulefile("cabin_eff .rul");

TheCongen - >addrulefile("set _columnseff rul");
TheCongen --> addrulefile("seteastwall. rul");

TheCongen- >add-rulefile(set_east_wall_ef .rul");
TheCongen- >add rulefile("set_foundation. rul");
TheCongen- >add-rulefile("set_foundation_eff . rul");
TheCongen- >add-rulefile("setgirders. rul");
TheCongen- >add-rulefile("set girdersef f .rul"); 240
TheCongen- > addrulefile("set north_wall. rul");
TheCongen- >addrulefile("set north_wall_eff . rul");
TheCongen- >addrulefile("set _purlins. rul");
TheCongen- >add-rulefile("set purlinseff .rul");
TheCongen- >addrulefile("setsouthwall. rul");
TheCongen- >add-rulefile("setsouth wall-eff . rul");
TheCongen- >addrulefile("set _supportingbeamns. rul");
TheCongen- >add-rulefile("setsupporting._beams-eff . rul");
TheCongen- > add rulefile("set_trusses. rul");
TheCongen- >addrulefile("set trusseseff .rul"); 250
TheCongen- >addrulefile("set _westwall. rul");
TheCongen-> addrulefile("set -west _walleff. rul");

coaut << "Finished adding rulefiles in the application \n";

//CCreating the classes
ECommitTransaction();

273

E.4 CABIN script

E_BeginTransaction();

class_manager ptr- >create_class("Cabin"); 260

app_manager_ptr- >add_class("CabinDesign","Cabin");
classmanagerptr-> add attributesf("Cabin","Cabin. attr",PUBLIC);

cout << "Class: Cabin finished parsing \n"

class_managerptr- >create_class("Cabinpart");
app_managerptr- >add_class("CabinDesign","Cabinpart");

class_manager_ptr- >create_class("Site");
app_manager_ptr- >add_class("CabinDesign","Site"); 270
classmanagerptr->addattributesf("Site","Site. attr", PUBLIC);

cout << "Class: Site finished parsing \n" ;

class_manager_ptr- >create_class("Structmbr"):
appmanager-ptr- >add-class("CabinDesign","Structmbr");
classmanager_ptr- >add_attributesf("Struct mbr", "Structmbr. attr",PUBLIC);

cout << "Class: Struct mbr finished parsing \n"

280
classmnanagerptr- >create_class("Joint");
appmanager-ptr- >addclass("Cabin Design","Joint");
class_manager_ptr-> add_attributesf(" Joint","Joint. attr",PUBLIC);

cout << "Class: Joint finished parsing \n"

class_manager_ptr- >create_class("Linearmbr");
appmanagerptr- >addclass("CabinDesign","Linearmbr");
class_managerptr- >add_attributesf("Linear-mbr","Linear mbr. attr",PUBLIC);

290
cout << "Class: Linearmbr finished parsing \n"

class_manager_ptr- >create_class("Areambr");
app manager-ptr- >add-class("CabinDesign", "Area mbr");
class_manager_ptr- >add_attributes f("Are ambr", "Area_mbr. attr",PUBLIC);

cout << "Class: Area_mbr finished parsing \n"

E_CommitTransaction();
EBeginTransaction(); 300

classmanagerptr- >createclass("Beam");
appmanager-ptr- >addclass("CabinDesign","Beam");
class manager_ptr- >add_attributesf("Beam","Beam. attr",PUBLIC);

cout << "Class: Beam finished parsing \n" ;

class_manager ptr- >create_class("Column");
app-managerptr- >addclass("CabinDesign","Column");
class_manager_ptr- >addattributes_f("Column","Column. attr",PUBLIC); 310

274

E.4 CABIN script

cout << "Class: Column finished parsing \n" ;

classmanager_ptr->createsclass("Pier");
appmanager_ptr- > addclass("Cabin-Design", "Pier");
classmanagerptr- >add attributesf("Pier","Pier. attr",PUBLIC);

cout << "Class: Pier finished parsing \n";

class manager_ptr->createclass("Wall"); 320

appmanager_ptr->addclass("CabinDesign","Wall");
class-rmanagerptr- >addattributesf("Wall","Wall. attr",PUBLIC);

cout << "Class: Wall finished parsing \n" ;

ECommitTransaction();
EBeginTransaction();

classmanager_ptr- >createclass(" Slab");
appmanagerptr->addclass("CabinDesign","Slab"); 330
classmanagerptr->addattributesf("Slab","Slab. attr",PUBLIC);

cout << "Class: Slab finished parsing \n";

classmanager_ptr- >createclass("Ribbed_ slab");
appmanagerptr- >addclass("CabinDesign","Ribbedslab");
class manager_ptr- >addattributesf("Ribbed_slab","Ribbed_slab. attr",PUBLIC);

cout << "Class: Ribbed-slab finished parsing \n" ;
340

classmanager_ptr- >createclass("Waf fle-slab");
appmanagerptr->addclass("Cabin-Design","Waff le-slab");
classmanager_ptr- > addattributes f("Waf f le_ slab","Waf f leslab. attr",PUBLIC);

cout << "Class: Waf f leslab finished parsing \n"

classmanagerptr- >create_class("Wallopening");
app-managerptr->addclass("CabinDesign","Wallopening");
classmanager_ptr- >addattributesf("Wallopening","Wallopening. attr",PUBLIC);

350
cout << "Class: Wall-opening finished parsing \n" ;

ECommitTransactiono();
EBeginTransaction();

class managerptr- >createclass("Truss-member");
appmanager ptr- >addclass(" CabinDes ign", "Truss _member");
classm anager_ptr- > add_attributesf("Trussmember", "Truss _member. attr",PUBLIC);

cout << "Class: Trussmember finished parsing \n" ; 360

classmanager_ptr- >createclass("Trusssystem");
app-managerptr- >addclass("CabinDesign", "Truss-system");
class_manager_ptr- > addattributesf("Truss-system", "Trusssystem. attr",PUBLIC);

275

E.4 CABIN script

cout << "Class: Trusssystem finished parsing \n" ;

class_managerptr- >create_class("Mat _f ound");
app managerptr- >add_class("CabinDesign","Matf ound");
class_managerptr->addattributesf("Mat.f ound","Mat-f ound. attr",PUBLIC); 370

cout << "Class: Matfound finished parsing \n" ;

class_managerptr->create_class("Spreadf ound");
app.managerptr- >addclass(" CabinDesign"," Spreadf ound");
class.managerptr->addattributesf("Spreadf ound","Spreadf ound. attr",PUBLIC);

cout << "Class: Spreadfound finished parsing \n" ;

class manager_ptr->create_class("Stripfooting"); 380
app.managerptr- >addclass("CabinDesign","Strip-footing");
class_manager-ptr->addattributesf("Stripf ooting","Stripf ooting. attr",PUBLIC);

cout <<"Finished creating all the classes \n";

// base class relationships
E CommitTransaction();
EBeginTransaction();

class_managerptr->addbase("Planarsys", "Structsys", PUBLIC); 390
class_manager_ptr->add_base("Boundarysys", "Struct-sys", PUBLIC);
class_manager_ptr->addbase("Joint", "Struct mbr", PUBLIC);
class_managerptr->add-base("Linearmbr", "Struct_mbr", PUBLIC);
class_managerptr->add base("Areambr", "Struct_mbr", PUBLIC);
class_manager_ptr->add_base("Beam", "Linear_mbr", PUBLIC);
class_manager-ptr- >add base("Column", "Linear_mbr", PUBLIC);
class_manager_ptr->add_base("Pier", "Linear_mbr", PUBLIC);
classmanagerptr- >add base("Trussmember", "Linear_mbr", PUBLIC);
class_managerptr->add base("Slab", "Area_mbr", PUBLIC);
class_manager_ptr->add_base("Ribbed slab", "Slab", PUBLIC); 400

class_manager_ptr->add_base("Waffleslab", "Slab", PUBLIC);
class_manager-ptr->addbase("Wall", "Area_mbr", PUBLIC);
class_manager_ptr- >add_base("Wallopening", "Areambr", PUBLIC);
class_manager_ptr->add_base("Stripfooting", "Areambr", PUBLIC);
class_managerptr- >add base("Mat found", "Area mbr", PUBLIC);
classmanager_ptr- >add_base("Spread•found", "Area_mbr", PUBLIC);
class_managerptr->addbase("Trusssystem", "Area_mbr", PUBLIC);

class_managerptr-> add_child ("Structsys","Planar-sys");
class_manager_ptr-> addchild("Struct _sys","Boundary- sys"); 410
class_manager-ptr-> add-child("Structmbr","Joint");
class_manager ptr-> add_child("Struct mbr","Linearmbr");
class_managerptr-> add_child("Structmbr","Areambr");
class_manager-ptr-> add child("Linearmbr","Beam");
class_manager ptr-> addchild("Linearmbr","Column");
class_managerptr-> add child("Linear-mbr", "Pier");
class_manager-ptr-> addchild("Linear mbr","Truss.member");
class manager_ptr-> add_child("Are ambr","Trussmember");
classmanagerptr-> add_child("Area.mbr","Slab");

276

E.4 CABIN script

classmanager ptr->
classmanagerptr- >
classmanager_ptr- >
classmanager_ptr->
class-managerptr- >
class_ manager_ptr- >
classmanager_ptr- >

addchild("Slab","Ribbedslab");
addchild("Slab","Waffleslab");
addchild("Area-mbr","Wall");
addchild("Areambr","VWall_opening");
addchild("Areaabr","Strip footing");
addchild("ALreambr","Matfound");
addchild("Areambr","Spread-found");

cout << "Finished adding the base class relationships \n";

E_CommitTransaction();
EBeginTransaction();

277

